876b1112d5bafd28038d31810ba53bd4adcec9bb
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *queue)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&queue->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *queue)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&queue->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043 }
1044
1045 /**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 {
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074 }
1075
1076
1077 /**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083 void netdev_features_change(struct net_device *dev)
1084 {
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 }
1087 EXPORT_SYMBOL(netdev_features_change);
1088
1089 /**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097 void netdev_state_change(struct net_device *dev)
1098 {
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103 }
1104 EXPORT_SYMBOL(netdev_state_change);
1105
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 {
1108 return call_netdevice_notifiers(event, dev);
1109 }
1110 EXPORT_SYMBOL(netdev_bonding_change);
1111
1112 /**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122 void dev_load(struct net *net, const char *name)
1123 {
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292 int dev_close(struct net_device *dev)
1293 {
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403 }
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406 /**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 {
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424 }
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427 /**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 {
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444 void net_enable_timestamp(void)
1445 {
1446 atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449
1450 void net_disable_timestamp(void)
1451 {
1452 atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455
1456 static inline void net_timestamp(struct sk_buff *skb)
1457 {
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462 }
1463
1464 /**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483 {
1484 skb_orphan(skb);
1485
1486 if (!(dev->flags & IFF_UP))
1487 return NET_RX_DROP;
1488
1489 if (skb->len > (dev->mtu + dev->hard_header_len))
1490 return NET_RX_DROP;
1491
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500 /*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 {
1507 struct packet_type *ptype;
1508
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp(skb);
1512 #else
1513 net_timestamp(skb);
1514 #endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 skb2->protocol, dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551
1552 static inline void __netif_reschedule(struct Qdisc *q)
1553 {
1554 struct softnet_data *sd;
1555 unsigned long flags;
1556
1557 local_irq_save(flags);
1558 sd = &__get_cpu_var(softnet_data);
1559 q->next_sched = sd->output_queue;
1560 sd->output_queue = q;
1561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1562 local_irq_restore(flags);
1563 }
1564
1565 void __netif_schedule(struct Qdisc *q)
1566 {
1567 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1568 __netif_reschedule(q);
1569 }
1570 EXPORT_SYMBOL(__netif_schedule);
1571
1572 void dev_kfree_skb_irq(struct sk_buff *skb)
1573 {
1574 if (atomic_dec_and_test(&skb->users)) {
1575 struct softnet_data *sd;
1576 unsigned long flags;
1577
1578 local_irq_save(flags);
1579 sd = &__get_cpu_var(softnet_data);
1580 skb->next = sd->completion_queue;
1581 sd->completion_queue = skb;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1584 }
1585 }
1586 EXPORT_SYMBOL(dev_kfree_skb_irq);
1587
1588 void dev_kfree_skb_any(struct sk_buff *skb)
1589 {
1590 if (in_irq() || irqs_disabled())
1591 dev_kfree_skb_irq(skb);
1592 else
1593 dev_kfree_skb(skb);
1594 }
1595 EXPORT_SYMBOL(dev_kfree_skb_any);
1596
1597
1598 /**
1599 * netif_device_detach - mark device as removed
1600 * @dev: network device
1601 *
1602 * Mark device as removed from system and therefore no longer available.
1603 */
1604 void netif_device_detach(struct net_device *dev)
1605 {
1606 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1607 netif_running(dev)) {
1608 netif_tx_stop_all_queues(dev);
1609 }
1610 }
1611 EXPORT_SYMBOL(netif_device_detach);
1612
1613 /**
1614 * netif_device_attach - mark device as attached
1615 * @dev: network device
1616 *
1617 * Mark device as attached from system and restart if needed.
1618 */
1619 void netif_device_attach(struct net_device *dev)
1620 {
1621 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1622 netif_running(dev)) {
1623 netif_tx_wake_all_queues(dev);
1624 __netdev_watchdog_up(dev);
1625 }
1626 }
1627 EXPORT_SYMBOL(netif_device_attach);
1628
1629 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1630 {
1631 return ((features & NETIF_F_GEN_CSUM) ||
1632 ((features & NETIF_F_IP_CSUM) &&
1633 protocol == htons(ETH_P_IP)) ||
1634 ((features & NETIF_F_IPV6_CSUM) &&
1635 protocol == htons(ETH_P_IPV6)) ||
1636 ((features & NETIF_F_FCOE_CRC) &&
1637 protocol == htons(ETH_P_FCOE)));
1638 }
1639
1640 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1641 {
1642 if (can_checksum_protocol(dev->features, skb->protocol))
1643 return true;
1644
1645 if (skb->protocol == htons(ETH_P_8021Q)) {
1646 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1647 if (can_checksum_protocol(dev->features & dev->vlan_features,
1648 veh->h_vlan_encapsulated_proto))
1649 return true;
1650 }
1651
1652 return false;
1653 }
1654
1655 /**
1656 * skb_dev_set -- assign a new device to a buffer
1657 * @skb: buffer for the new device
1658 * @dev: network device
1659 *
1660 * If an skb is owned by a device already, we have to reset
1661 * all data private to the namespace a device belongs to
1662 * before assigning it a new device.
1663 */
1664 #ifdef CONFIG_NET_NS
1665 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1666 {
1667 skb_dst_drop(skb);
1668 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1669 secpath_reset(skb);
1670 nf_reset(skb);
1671 skb_init_secmark(skb);
1672 skb->mark = 0;
1673 skb->priority = 0;
1674 skb->nf_trace = 0;
1675 skb->ipvs_property = 0;
1676 #ifdef CONFIG_NET_SCHED
1677 skb->tc_index = 0;
1678 #endif
1679 }
1680 skb->dev = dev;
1681 }
1682 EXPORT_SYMBOL(skb_set_dev);
1683 #endif /* CONFIG_NET_NS */
1684
1685 /*
1686 * Invalidate hardware checksum when packet is to be mangled, and
1687 * complete checksum manually on outgoing path.
1688 */
1689 int skb_checksum_help(struct sk_buff *skb)
1690 {
1691 __wsum csum;
1692 int ret = 0, offset;
1693
1694 if (skb->ip_summed == CHECKSUM_COMPLETE)
1695 goto out_set_summed;
1696
1697 if (unlikely(skb_shinfo(skb)->gso_size)) {
1698 /* Let GSO fix up the checksum. */
1699 goto out_set_summed;
1700 }
1701
1702 offset = skb->csum_start - skb_headroom(skb);
1703 BUG_ON(offset >= skb_headlen(skb));
1704 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1705
1706 offset += skb->csum_offset;
1707 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1708
1709 if (skb_cloned(skb) &&
1710 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1711 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1712 if (ret)
1713 goto out;
1714 }
1715
1716 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1717 out_set_summed:
1718 skb->ip_summed = CHECKSUM_NONE;
1719 out:
1720 return ret;
1721 }
1722 EXPORT_SYMBOL(skb_checksum_help);
1723
1724 /**
1725 * skb_gso_segment - Perform segmentation on skb.
1726 * @skb: buffer to segment
1727 * @features: features for the output path (see dev->features)
1728 *
1729 * This function segments the given skb and returns a list of segments.
1730 *
1731 * It may return NULL if the skb requires no segmentation. This is
1732 * only possible when GSO is used for verifying header integrity.
1733 */
1734 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1735 {
1736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1737 struct packet_type *ptype;
1738 __be16 type = skb->protocol;
1739 int err;
1740
1741 skb_reset_mac_header(skb);
1742 skb->mac_len = skb->network_header - skb->mac_header;
1743 __skb_pull(skb, skb->mac_len);
1744
1745 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1746 struct net_device *dev = skb->dev;
1747 struct ethtool_drvinfo info = {};
1748
1749 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1750 dev->ethtool_ops->get_drvinfo(dev, &info);
1751
1752 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1753 "ip_summed=%d",
1754 info.driver, dev ? dev->features : 0L,
1755 skb->sk ? skb->sk->sk_route_caps : 0L,
1756 skb->len, skb->data_len, skb->ip_summed);
1757
1758 if (skb_header_cloned(skb) &&
1759 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1760 return ERR_PTR(err);
1761 }
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype,
1765 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1766 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1768 err = ptype->gso_send_check(skb);
1769 segs = ERR_PTR(err);
1770 if (err || skb_gso_ok(skb, features))
1771 break;
1772 __skb_push(skb, (skb->data -
1773 skb_network_header(skb)));
1774 }
1775 segs = ptype->gso_segment(skb, features);
1776 break;
1777 }
1778 }
1779 rcu_read_unlock();
1780
1781 __skb_push(skb, skb->data - skb_mac_header(skb));
1782
1783 return segs;
1784 }
1785 EXPORT_SYMBOL(skb_gso_segment);
1786
1787 /* Take action when hardware reception checksum errors are detected. */
1788 #ifdef CONFIG_BUG
1789 void netdev_rx_csum_fault(struct net_device *dev)
1790 {
1791 if (net_ratelimit()) {
1792 printk(KERN_ERR "%s: hw csum failure.\n",
1793 dev ? dev->name : "<unknown>");
1794 dump_stack();
1795 }
1796 }
1797 EXPORT_SYMBOL(netdev_rx_csum_fault);
1798 #endif
1799
1800 /* Actually, we should eliminate this check as soon as we know, that:
1801 * 1. IOMMU is present and allows to map all the memory.
1802 * 2. No high memory really exists on this machine.
1803 */
1804
1805 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1806 {
1807 #ifdef CONFIG_HIGHMEM
1808 int i;
1809 if (!(dev->features & NETIF_F_HIGHDMA)) {
1810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1811 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1812 return 1;
1813 }
1814
1815 if (PCI_DMA_BUS_IS_PHYS) {
1816 struct device *pdev = dev->dev.parent;
1817
1818 if (!pdev)
1819 return 0;
1820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1821 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1822 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1823 return 1;
1824 }
1825 }
1826 #endif
1827 return 0;
1828 }
1829
1830 struct dev_gso_cb {
1831 void (*destructor)(struct sk_buff *skb);
1832 };
1833
1834 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1835
1836 static void dev_gso_skb_destructor(struct sk_buff *skb)
1837 {
1838 struct dev_gso_cb *cb;
1839
1840 do {
1841 struct sk_buff *nskb = skb->next;
1842
1843 skb->next = nskb->next;
1844 nskb->next = NULL;
1845 kfree_skb(nskb);
1846 } while (skb->next);
1847
1848 cb = DEV_GSO_CB(skb);
1849 if (cb->destructor)
1850 cb->destructor(skb);
1851 }
1852
1853 /**
1854 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1855 * @skb: buffer to segment
1856 *
1857 * This function segments the given skb and stores the list of segments
1858 * in skb->next.
1859 */
1860 static int dev_gso_segment(struct sk_buff *skb)
1861 {
1862 struct net_device *dev = skb->dev;
1863 struct sk_buff *segs;
1864 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1865 NETIF_F_SG : 0);
1866
1867 segs = skb_gso_segment(skb, features);
1868
1869 /* Verifying header integrity only. */
1870 if (!segs)
1871 return 0;
1872
1873 if (IS_ERR(segs))
1874 return PTR_ERR(segs);
1875
1876 skb->next = segs;
1877 DEV_GSO_CB(skb)->destructor = skb->destructor;
1878 skb->destructor = dev_gso_skb_destructor;
1879
1880 return 0;
1881 }
1882
1883 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1884 struct netdev_queue *txq)
1885 {
1886 const struct net_device_ops *ops = dev->netdev_ops;
1887 int rc = NETDEV_TX_OK;
1888
1889 if (likely(!skb->next)) {
1890 if (!list_empty(&ptype_all))
1891 dev_queue_xmit_nit(skb, dev);
1892
1893 if (netif_needs_gso(dev, skb)) {
1894 if (unlikely(dev_gso_segment(skb)))
1895 goto out_kfree_skb;
1896 if (skb->next)
1897 goto gso;
1898 }
1899
1900 /*
1901 * If device doesnt need skb->dst, release it right now while
1902 * its hot in this cpu cache
1903 */
1904 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1905 skb_dst_drop(skb);
1906
1907 rc = ops->ndo_start_xmit(skb, dev);
1908 if (rc == NETDEV_TX_OK)
1909 txq_trans_update(txq);
1910 /*
1911 * TODO: if skb_orphan() was called by
1912 * dev->hard_start_xmit() (for example, the unmodified
1913 * igb driver does that; bnx2 doesn't), then
1914 * skb_tx_software_timestamp() will be unable to send
1915 * back the time stamp.
1916 *
1917 * How can this be prevented? Always create another
1918 * reference to the socket before calling
1919 * dev->hard_start_xmit()? Prevent that skb_orphan()
1920 * does anything in dev->hard_start_xmit() by clearing
1921 * the skb destructor before the call and restoring it
1922 * afterwards, then doing the skb_orphan() ourselves?
1923 */
1924 return rc;
1925 }
1926
1927 gso:
1928 do {
1929 struct sk_buff *nskb = skb->next;
1930
1931 skb->next = nskb->next;
1932 nskb->next = NULL;
1933
1934 /*
1935 * If device doesnt need nskb->dst, release it right now while
1936 * its hot in this cpu cache
1937 */
1938 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1939 skb_dst_drop(nskb);
1940
1941 rc = ops->ndo_start_xmit(nskb, dev);
1942 if (unlikely(rc != NETDEV_TX_OK)) {
1943 if (rc & ~NETDEV_TX_MASK)
1944 goto out_kfree_gso_skb;
1945 nskb->next = skb->next;
1946 skb->next = nskb;
1947 return rc;
1948 }
1949 txq_trans_update(txq);
1950 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1951 return NETDEV_TX_BUSY;
1952 } while (skb->next);
1953
1954 out_kfree_gso_skb:
1955 if (likely(skb->next == NULL))
1956 skb->destructor = DEV_GSO_CB(skb)->destructor;
1957 out_kfree_skb:
1958 kfree_skb(skb);
1959 return rc;
1960 }
1961
1962 static u32 hashrnd __read_mostly;
1963
1964 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965 {
1966 u32 hash;
1967
1968 if (skb_rx_queue_recorded(skb)) {
1969 hash = skb_get_rx_queue(skb);
1970 while (unlikely(hash >= dev->real_num_tx_queues))
1971 hash -= dev->real_num_tx_queues;
1972 return hash;
1973 }
1974
1975 if (skb->sk && skb->sk->sk_hash)
1976 hash = skb->sk->sk_hash;
1977 else
1978 hash = skb->protocol;
1979
1980 hash = jhash_1word(hash, hashrnd);
1981
1982 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983 }
1984 EXPORT_SYMBOL(skb_tx_hash);
1985
1986 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987 {
1988 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1989 if (net_ratelimit()) {
1990 pr_warning("%s selects TX queue %d, but "
1991 "real number of TX queues is %d\n",
1992 dev->name, queue_index, dev->real_num_tx_queues);
1993 }
1994 return 0;
1995 }
1996 return queue_index;
1997 }
1998
1999 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2000 struct sk_buff *skb)
2001 {
2002 u16 queue_index;
2003 struct sock *sk = skb->sk;
2004
2005 if (sk_tx_queue_recorded(sk)) {
2006 queue_index = sk_tx_queue_get(sk);
2007 } else {
2008 const struct net_device_ops *ops = dev->netdev_ops;
2009
2010 if (ops->ndo_select_queue) {
2011 queue_index = ops->ndo_select_queue(dev, skb);
2012 queue_index = dev_cap_txqueue(dev, queue_index);
2013 } else {
2014 queue_index = 0;
2015 if (dev->real_num_tx_queues > 1)
2016 queue_index = skb_tx_hash(dev, skb);
2017
2018 if (sk && rcu_dereference_check(sk->sk_dst_cache, 1))
2019 sk_tx_queue_set(sk, queue_index);
2020 }
2021 }
2022
2023 skb_set_queue_mapping(skb, queue_index);
2024 return netdev_get_tx_queue(dev, queue_index);
2025 }
2026
2027 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2028 struct net_device *dev,
2029 struct netdev_queue *txq)
2030 {
2031 spinlock_t *root_lock = qdisc_lock(q);
2032 int rc;
2033
2034 spin_lock(root_lock);
2035 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2036 kfree_skb(skb);
2037 rc = NET_XMIT_DROP;
2038 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2039 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2040 /*
2041 * This is a work-conserving queue; there are no old skbs
2042 * waiting to be sent out; and the qdisc is not running -
2043 * xmit the skb directly.
2044 */
2045 __qdisc_update_bstats(q, skb->len);
2046 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2047 __qdisc_run(q);
2048 else
2049 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2050
2051 rc = NET_XMIT_SUCCESS;
2052 } else {
2053 rc = qdisc_enqueue_root(skb, q);
2054 qdisc_run(q);
2055 }
2056 spin_unlock(root_lock);
2057
2058 return rc;
2059 }
2060
2061 /*
2062 * Returns true if either:
2063 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2064 * 2. skb is fragmented and the device does not support SG, or if
2065 * at least one of fragments is in highmem and device does not
2066 * support DMA from it.
2067 */
2068 static inline int skb_needs_linearize(struct sk_buff *skb,
2069 struct net_device *dev)
2070 {
2071 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2072 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2073 illegal_highdma(dev, skb)));
2074 }
2075
2076 /**
2077 * dev_queue_xmit - transmit a buffer
2078 * @skb: buffer to transmit
2079 *
2080 * Queue a buffer for transmission to a network device. The caller must
2081 * have set the device and priority and built the buffer before calling
2082 * this function. The function can be called from an interrupt.
2083 *
2084 * A negative errno code is returned on a failure. A success does not
2085 * guarantee the frame will be transmitted as it may be dropped due
2086 * to congestion or traffic shaping.
2087 *
2088 * -----------------------------------------------------------------------------------
2089 * I notice this method can also return errors from the queue disciplines,
2090 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2091 * be positive.
2092 *
2093 * Regardless of the return value, the skb is consumed, so it is currently
2094 * difficult to retry a send to this method. (You can bump the ref count
2095 * before sending to hold a reference for retry if you are careful.)
2096 *
2097 * When calling this method, interrupts MUST be enabled. This is because
2098 * the BH enable code must have IRQs enabled so that it will not deadlock.
2099 * --BLG
2100 */
2101 int dev_queue_xmit(struct sk_buff *skb)
2102 {
2103 struct net_device *dev = skb->dev;
2104 struct netdev_queue *txq;
2105 struct Qdisc *q;
2106 int rc = -ENOMEM;
2107
2108 /* GSO will handle the following emulations directly. */
2109 if (netif_needs_gso(dev, skb))
2110 goto gso;
2111
2112 /* Convert a paged skb to linear, if required */
2113 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2114 goto out_kfree_skb;
2115
2116 /* If packet is not checksummed and device does not support
2117 * checksumming for this protocol, complete checksumming here.
2118 */
2119 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2120 skb_set_transport_header(skb, skb->csum_start -
2121 skb_headroom(skb));
2122 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2123 goto out_kfree_skb;
2124 }
2125
2126 gso:
2127 /* Disable soft irqs for various locks below. Also
2128 * stops preemption for RCU.
2129 */
2130 rcu_read_lock_bh();
2131
2132 txq = dev_pick_tx(dev, skb);
2133 q = rcu_dereference_bh(txq->qdisc);
2134
2135 #ifdef CONFIG_NET_CLS_ACT
2136 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2137 #endif
2138 if (q->enqueue) {
2139 rc = __dev_xmit_skb(skb, q, dev, txq);
2140 goto out;
2141 }
2142
2143 /* The device has no queue. Common case for software devices:
2144 loopback, all the sorts of tunnels...
2145
2146 Really, it is unlikely that netif_tx_lock protection is necessary
2147 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2148 counters.)
2149 However, it is possible, that they rely on protection
2150 made by us here.
2151
2152 Check this and shot the lock. It is not prone from deadlocks.
2153 Either shot noqueue qdisc, it is even simpler 8)
2154 */
2155 if (dev->flags & IFF_UP) {
2156 int cpu = smp_processor_id(); /* ok because BHs are off */
2157
2158 if (txq->xmit_lock_owner != cpu) {
2159
2160 HARD_TX_LOCK(dev, txq, cpu);
2161
2162 if (!netif_tx_queue_stopped(txq)) {
2163 rc = dev_hard_start_xmit(skb, dev, txq);
2164 if (dev_xmit_complete(rc)) {
2165 HARD_TX_UNLOCK(dev, txq);
2166 goto out;
2167 }
2168 }
2169 HARD_TX_UNLOCK(dev, txq);
2170 if (net_ratelimit())
2171 printk(KERN_CRIT "Virtual device %s asks to "
2172 "queue packet!\n", dev->name);
2173 } else {
2174 /* Recursion is detected! It is possible,
2175 * unfortunately */
2176 if (net_ratelimit())
2177 printk(KERN_CRIT "Dead loop on virtual device "
2178 "%s, fix it urgently!\n", dev->name);
2179 }
2180 }
2181
2182 rc = -ENETDOWN;
2183 rcu_read_unlock_bh();
2184
2185 out_kfree_skb:
2186 kfree_skb(skb);
2187 return rc;
2188 out:
2189 rcu_read_unlock_bh();
2190 return rc;
2191 }
2192 EXPORT_SYMBOL(dev_queue_xmit);
2193
2194
2195 /*=======================================================================
2196 Receiver routines
2197 =======================================================================*/
2198
2199 int netdev_max_backlog __read_mostly = 1000;
2200 int netdev_budget __read_mostly = 300;
2201 int weight_p __read_mostly = 64; /* old backlog weight */
2202
2203 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2204
2205 #ifdef CONFIG_RPS
2206 /*
2207 * get_rps_cpu is called from netif_receive_skb and returns the target
2208 * CPU from the RPS map of the receiving queue for a given skb.
2209 */
2210 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2211 {
2212 struct ipv6hdr *ip6;
2213 struct iphdr *ip;
2214 struct netdev_rx_queue *rxqueue;
2215 struct rps_map *map;
2216 int cpu = -1;
2217 u8 ip_proto;
2218 u32 addr1, addr2, ports, ihl;
2219
2220 rcu_read_lock();
2221
2222 if (skb_rx_queue_recorded(skb)) {
2223 u16 index = skb_get_rx_queue(skb);
2224 if (unlikely(index >= dev->num_rx_queues)) {
2225 if (net_ratelimit()) {
2226 pr_warning("%s received packet on queue "
2227 "%u, but number of RX queues is %u\n",
2228 dev->name, index, dev->num_rx_queues);
2229 }
2230 goto done;
2231 }
2232 rxqueue = dev->_rx + index;
2233 } else
2234 rxqueue = dev->_rx;
2235
2236 if (!rxqueue->rps_map)
2237 goto done;
2238
2239 if (skb->rxhash)
2240 goto got_hash; /* Skip hash computation on packet header */
2241
2242 switch (skb->protocol) {
2243 case __constant_htons(ETH_P_IP):
2244 if (!pskb_may_pull(skb, sizeof(*ip)))
2245 goto done;
2246
2247 ip = (struct iphdr *) skb->data;
2248 ip_proto = ip->protocol;
2249 addr1 = ip->saddr;
2250 addr2 = ip->daddr;
2251 ihl = ip->ihl;
2252 break;
2253 case __constant_htons(ETH_P_IPV6):
2254 if (!pskb_may_pull(skb, sizeof(*ip6)))
2255 goto done;
2256
2257 ip6 = (struct ipv6hdr *) skb->data;
2258 ip_proto = ip6->nexthdr;
2259 addr1 = ip6->saddr.s6_addr32[3];
2260 addr2 = ip6->daddr.s6_addr32[3];
2261 ihl = (40 >> 2);
2262 break;
2263 default:
2264 goto done;
2265 }
2266 ports = 0;
2267 switch (ip_proto) {
2268 case IPPROTO_TCP:
2269 case IPPROTO_UDP:
2270 case IPPROTO_DCCP:
2271 case IPPROTO_ESP:
2272 case IPPROTO_AH:
2273 case IPPROTO_SCTP:
2274 case IPPROTO_UDPLITE:
2275 if (pskb_may_pull(skb, (ihl * 4) + 4))
2276 ports = *((u32 *) (skb->data + (ihl * 4)));
2277 break;
2278
2279 default:
2280 break;
2281 }
2282
2283 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2284 if (!skb->rxhash)
2285 skb->rxhash = 1;
2286
2287 got_hash:
2288 map = rcu_dereference(rxqueue->rps_map);
2289 if (map) {
2290 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2291
2292 if (cpu_online(tcpu)) {
2293 cpu = tcpu;
2294 goto done;
2295 }
2296 }
2297
2298 done:
2299 rcu_read_unlock();
2300 return cpu;
2301 }
2302
2303 /*
2304 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2305 * to be sent to kick remote softirq processing. There are two masks since
2306 * the sending of IPIs must be done with interrupts enabled. The select field
2307 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2308 * select is flipped before net_rps_action is called while still under lock,
2309 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2310 * it without conflicting with enqueue_backlog operation.
2311 */
2312 struct rps_remote_softirq_cpus {
2313 cpumask_t mask[2];
2314 int select;
2315 };
2316 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2317
2318 /* Called from hardirq (IPI) context */
2319 static void trigger_softirq(void *data)
2320 {
2321 struct softnet_data *queue = data;
2322 __napi_schedule(&queue->backlog);
2323 __get_cpu_var(netdev_rx_stat).received_rps++;
2324 }
2325 #endif /* CONFIG_SMP */
2326
2327 /*
2328 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2329 * queue (may be a remote CPU queue).
2330 */
2331 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2332 {
2333 struct softnet_data *queue;
2334 unsigned long flags;
2335
2336 queue = &per_cpu(softnet_data, cpu);
2337
2338 local_irq_save(flags);
2339 __get_cpu_var(netdev_rx_stat).total++;
2340
2341 rps_lock(queue);
2342 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2343 if (queue->input_pkt_queue.qlen) {
2344 enqueue:
2345 __skb_queue_tail(&queue->input_pkt_queue, skb);
2346 rps_unlock(queue);
2347 local_irq_restore(flags);
2348 return NET_RX_SUCCESS;
2349 }
2350
2351 /* Schedule NAPI for backlog device */
2352 if (napi_schedule_prep(&queue->backlog)) {
2353 #ifdef CONFIG_RPS
2354 if (cpu != smp_processor_id()) {
2355 struct rps_remote_softirq_cpus *rcpus =
2356 &__get_cpu_var(rps_remote_softirq_cpus);
2357
2358 cpu_set(cpu, rcpus->mask[rcpus->select]);
2359 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2360 } else
2361 __napi_schedule(&queue->backlog);
2362 #else
2363 __napi_schedule(&queue->backlog);
2364 #endif
2365 }
2366 goto enqueue;
2367 }
2368
2369 rps_unlock(queue);
2370
2371 __get_cpu_var(netdev_rx_stat).dropped++;
2372 local_irq_restore(flags);
2373
2374 kfree_skb(skb);
2375 return NET_RX_DROP;
2376 }
2377
2378 /**
2379 * netif_rx - post buffer to the network code
2380 * @skb: buffer to post
2381 *
2382 * This function receives a packet from a device driver and queues it for
2383 * the upper (protocol) levels to process. It always succeeds. The buffer
2384 * may be dropped during processing for congestion control or by the
2385 * protocol layers.
2386 *
2387 * return values:
2388 * NET_RX_SUCCESS (no congestion)
2389 * NET_RX_DROP (packet was dropped)
2390 *
2391 */
2392
2393 int netif_rx(struct sk_buff *skb)
2394 {
2395 int cpu;
2396
2397 /* if netpoll wants it, pretend we never saw it */
2398 if (netpoll_rx(skb))
2399 return NET_RX_DROP;
2400
2401 if (!skb->tstamp.tv64)
2402 net_timestamp(skb);
2403
2404 #ifdef CONFIG_RPS
2405 cpu = get_rps_cpu(skb->dev, skb);
2406 if (cpu < 0)
2407 cpu = smp_processor_id();
2408 #else
2409 cpu = smp_processor_id();
2410 #endif
2411
2412 return enqueue_to_backlog(skb, cpu);
2413 }
2414 EXPORT_SYMBOL(netif_rx);
2415
2416 int netif_rx_ni(struct sk_buff *skb)
2417 {
2418 int err;
2419
2420 preempt_disable();
2421 err = netif_rx(skb);
2422 if (local_softirq_pending())
2423 do_softirq();
2424 preempt_enable();
2425
2426 return err;
2427 }
2428 EXPORT_SYMBOL(netif_rx_ni);
2429
2430 static void net_tx_action(struct softirq_action *h)
2431 {
2432 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2433
2434 if (sd->completion_queue) {
2435 struct sk_buff *clist;
2436
2437 local_irq_disable();
2438 clist = sd->completion_queue;
2439 sd->completion_queue = NULL;
2440 local_irq_enable();
2441
2442 while (clist) {
2443 struct sk_buff *skb = clist;
2444 clist = clist->next;
2445
2446 WARN_ON(atomic_read(&skb->users));
2447 __kfree_skb(skb);
2448 }
2449 }
2450
2451 if (sd->output_queue) {
2452 struct Qdisc *head;
2453
2454 local_irq_disable();
2455 head = sd->output_queue;
2456 sd->output_queue = NULL;
2457 local_irq_enable();
2458
2459 while (head) {
2460 struct Qdisc *q = head;
2461 spinlock_t *root_lock;
2462
2463 head = head->next_sched;
2464
2465 root_lock = qdisc_lock(q);
2466 if (spin_trylock(root_lock)) {
2467 smp_mb__before_clear_bit();
2468 clear_bit(__QDISC_STATE_SCHED,
2469 &q->state);
2470 qdisc_run(q);
2471 spin_unlock(root_lock);
2472 } else {
2473 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2474 &q->state)) {
2475 __netif_reschedule(q);
2476 } else {
2477 smp_mb__before_clear_bit();
2478 clear_bit(__QDISC_STATE_SCHED,
2479 &q->state);
2480 }
2481 }
2482 }
2483 }
2484 }
2485
2486 static inline int deliver_skb(struct sk_buff *skb,
2487 struct packet_type *pt_prev,
2488 struct net_device *orig_dev)
2489 {
2490 atomic_inc(&skb->users);
2491 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2492 }
2493
2494 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2495
2496 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2497 /* This hook is defined here for ATM LANE */
2498 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2499 unsigned char *addr) __read_mostly;
2500 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2501 #endif
2502
2503 /*
2504 * If bridge module is loaded call bridging hook.
2505 * returns NULL if packet was consumed.
2506 */
2507 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2508 struct sk_buff *skb) __read_mostly;
2509 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2510
2511 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2512 struct packet_type **pt_prev, int *ret,
2513 struct net_device *orig_dev)
2514 {
2515 struct net_bridge_port *port;
2516
2517 if (skb->pkt_type == PACKET_LOOPBACK ||
2518 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2519 return skb;
2520
2521 if (*pt_prev) {
2522 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2523 *pt_prev = NULL;
2524 }
2525
2526 return br_handle_frame_hook(port, skb);
2527 }
2528 #else
2529 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2530 #endif
2531
2532 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2533 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2534 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2535
2536 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2537 struct packet_type **pt_prev,
2538 int *ret,
2539 struct net_device *orig_dev)
2540 {
2541 if (skb->dev->macvlan_port == NULL)
2542 return skb;
2543
2544 if (*pt_prev) {
2545 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2546 *pt_prev = NULL;
2547 }
2548 return macvlan_handle_frame_hook(skb);
2549 }
2550 #else
2551 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2552 #endif
2553
2554 #ifdef CONFIG_NET_CLS_ACT
2555 /* TODO: Maybe we should just force sch_ingress to be compiled in
2556 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2557 * a compare and 2 stores extra right now if we dont have it on
2558 * but have CONFIG_NET_CLS_ACT
2559 * NOTE: This doesnt stop any functionality; if you dont have
2560 * the ingress scheduler, you just cant add policies on ingress.
2561 *
2562 */
2563 static int ing_filter(struct sk_buff *skb)
2564 {
2565 struct net_device *dev = skb->dev;
2566 u32 ttl = G_TC_RTTL(skb->tc_verd);
2567 struct netdev_queue *rxq;
2568 int result = TC_ACT_OK;
2569 struct Qdisc *q;
2570
2571 if (MAX_RED_LOOP < ttl++) {
2572 printk(KERN_WARNING
2573 "Redir loop detected Dropping packet (%d->%d)\n",
2574 skb->skb_iif, dev->ifindex);
2575 return TC_ACT_SHOT;
2576 }
2577
2578 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2580
2581 rxq = &dev->rx_queue;
2582
2583 q = rxq->qdisc;
2584 if (q != &noop_qdisc) {
2585 spin_lock(qdisc_lock(q));
2586 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2587 result = qdisc_enqueue_root(skb, q);
2588 spin_unlock(qdisc_lock(q));
2589 }
2590
2591 return result;
2592 }
2593
2594 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2595 struct packet_type **pt_prev,
2596 int *ret, struct net_device *orig_dev)
2597 {
2598 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2599 goto out;
2600
2601 if (*pt_prev) {
2602 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2603 *pt_prev = NULL;
2604 } else {
2605 /* Huh? Why does turning on AF_PACKET affect this? */
2606 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2607 }
2608
2609 switch (ing_filter(skb)) {
2610 case TC_ACT_SHOT:
2611 case TC_ACT_STOLEN:
2612 kfree_skb(skb);
2613 return NULL;
2614 }
2615
2616 out:
2617 skb->tc_verd = 0;
2618 return skb;
2619 }
2620 #endif
2621
2622 /*
2623 * netif_nit_deliver - deliver received packets to network taps
2624 * @skb: buffer
2625 *
2626 * This function is used to deliver incoming packets to network
2627 * taps. It should be used when the normal netif_receive_skb path
2628 * is bypassed, for example because of VLAN acceleration.
2629 */
2630 void netif_nit_deliver(struct sk_buff *skb)
2631 {
2632 struct packet_type *ptype;
2633
2634 if (list_empty(&ptype_all))
2635 return;
2636
2637 skb_reset_network_header(skb);
2638 skb_reset_transport_header(skb);
2639 skb->mac_len = skb->network_header - skb->mac_header;
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2643 if (!ptype->dev || ptype->dev == skb->dev)
2644 deliver_skb(skb, ptype, skb->dev);
2645 }
2646 rcu_read_unlock();
2647 }
2648
2649 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2650 struct net_device *master)
2651 {
2652 if (skb->pkt_type == PACKET_HOST) {
2653 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2654
2655 memcpy(dest, master->dev_addr, ETH_ALEN);
2656 }
2657 }
2658
2659 /* On bonding slaves other than the currently active slave, suppress
2660 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2661 * ARP on active-backup slaves with arp_validate enabled.
2662 */
2663 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2664 {
2665 struct net_device *dev = skb->dev;
2666
2667 if (master->priv_flags & IFF_MASTER_ARPMON)
2668 dev->last_rx = jiffies;
2669
2670 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2671 /* Do address unmangle. The local destination address
2672 * will be always the one master has. Provides the right
2673 * functionality in a bridge.
2674 */
2675 skb_bond_set_mac_by_master(skb, master);
2676 }
2677
2678 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2679 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2680 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2681 return 0;
2682
2683 if (master->priv_flags & IFF_MASTER_ALB) {
2684 if (skb->pkt_type != PACKET_BROADCAST &&
2685 skb->pkt_type != PACKET_MULTICAST)
2686 return 0;
2687 }
2688 if (master->priv_flags & IFF_MASTER_8023AD &&
2689 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2690 return 0;
2691
2692 return 1;
2693 }
2694 return 0;
2695 }
2696 EXPORT_SYMBOL(__skb_bond_should_drop);
2697
2698 static int __netif_receive_skb(struct sk_buff *skb)
2699 {
2700 struct packet_type *ptype, *pt_prev;
2701 struct net_device *orig_dev;
2702 struct net_device *master;
2703 struct net_device *null_or_orig;
2704 struct net_device *null_or_bond;
2705 int ret = NET_RX_DROP;
2706 __be16 type;
2707
2708 if (!skb->tstamp.tv64)
2709 net_timestamp(skb);
2710
2711 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2712 return NET_RX_SUCCESS;
2713
2714 /* if we've gotten here through NAPI, check netpoll */
2715 if (netpoll_receive_skb(skb))
2716 return NET_RX_DROP;
2717
2718 if (!skb->skb_iif)
2719 skb->skb_iif = skb->dev->ifindex;
2720
2721 null_or_orig = NULL;
2722 orig_dev = skb->dev;
2723 master = ACCESS_ONCE(orig_dev->master);
2724 if (master) {
2725 if (skb_bond_should_drop(skb, master))
2726 null_or_orig = orig_dev; /* deliver only exact match */
2727 else
2728 skb->dev = master;
2729 }
2730
2731 __get_cpu_var(netdev_rx_stat).total++;
2732
2733 skb_reset_network_header(skb);
2734 skb_reset_transport_header(skb);
2735 skb->mac_len = skb->network_header - skb->mac_header;
2736
2737 pt_prev = NULL;
2738
2739 rcu_read_lock();
2740
2741 #ifdef CONFIG_NET_CLS_ACT
2742 if (skb->tc_verd & TC_NCLS) {
2743 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2744 goto ncls;
2745 }
2746 #endif
2747
2748 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2749 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2750 ptype->dev == orig_dev) {
2751 if (pt_prev)
2752 ret = deliver_skb(skb, pt_prev, orig_dev);
2753 pt_prev = ptype;
2754 }
2755 }
2756
2757 #ifdef CONFIG_NET_CLS_ACT
2758 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2759 if (!skb)
2760 goto out;
2761 ncls:
2762 #endif
2763
2764 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2765 if (!skb)
2766 goto out;
2767 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2768 if (!skb)
2769 goto out;
2770
2771 /*
2772 * Make sure frames received on VLAN interfaces stacked on
2773 * bonding interfaces still make their way to any base bonding
2774 * device that may have registered for a specific ptype. The
2775 * handler may have to adjust skb->dev and orig_dev.
2776 */
2777 null_or_bond = NULL;
2778 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2779 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2780 null_or_bond = vlan_dev_real_dev(skb->dev);
2781 }
2782
2783 type = skb->protocol;
2784 list_for_each_entry_rcu(ptype,
2785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2786 if (ptype->type == type && (ptype->dev == null_or_orig ||
2787 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2788 ptype->dev == null_or_bond)) {
2789 if (pt_prev)
2790 ret = deliver_skb(skb, pt_prev, orig_dev);
2791 pt_prev = ptype;
2792 }
2793 }
2794
2795 if (pt_prev) {
2796 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2797 } else {
2798 kfree_skb(skb);
2799 /* Jamal, now you will not able to escape explaining
2800 * me how you were going to use this. :-)
2801 */
2802 ret = NET_RX_DROP;
2803 }
2804
2805 out:
2806 rcu_read_unlock();
2807 return ret;
2808 }
2809
2810 /**
2811 * netif_receive_skb - process receive buffer from network
2812 * @skb: buffer to process
2813 *
2814 * netif_receive_skb() is the main receive data processing function.
2815 * It always succeeds. The buffer may be dropped during processing
2816 * for congestion control or by the protocol layers.
2817 *
2818 * This function may only be called from softirq context and interrupts
2819 * should be enabled.
2820 *
2821 * Return values (usually ignored):
2822 * NET_RX_SUCCESS: no congestion
2823 * NET_RX_DROP: packet was dropped
2824 */
2825 int netif_receive_skb(struct sk_buff *skb)
2826 {
2827 #ifdef CONFIG_RPS
2828 int cpu;
2829
2830 cpu = get_rps_cpu(skb->dev, skb);
2831
2832 if (cpu < 0)
2833 return __netif_receive_skb(skb);
2834 else
2835 return enqueue_to_backlog(skb, cpu);
2836 #else
2837 return __netif_receive_skb(skb);
2838 #endif
2839 }
2840 EXPORT_SYMBOL(netif_receive_skb);
2841
2842 /* Network device is going away, flush any packets still pending */
2843 static void flush_backlog(void *arg)
2844 {
2845 struct net_device *dev = arg;
2846 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2847 struct sk_buff *skb, *tmp;
2848
2849 rps_lock(queue);
2850 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2851 if (skb->dev == dev) {
2852 __skb_unlink(skb, &queue->input_pkt_queue);
2853 kfree_skb(skb);
2854 }
2855 rps_unlock(queue);
2856 }
2857
2858 static int napi_gro_complete(struct sk_buff *skb)
2859 {
2860 struct packet_type *ptype;
2861 __be16 type = skb->protocol;
2862 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2863 int err = -ENOENT;
2864
2865 if (NAPI_GRO_CB(skb)->count == 1) {
2866 skb_shinfo(skb)->gso_size = 0;
2867 goto out;
2868 }
2869
2870 rcu_read_lock();
2871 list_for_each_entry_rcu(ptype, head, list) {
2872 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2873 continue;
2874
2875 err = ptype->gro_complete(skb);
2876 break;
2877 }
2878 rcu_read_unlock();
2879
2880 if (err) {
2881 WARN_ON(&ptype->list == head);
2882 kfree_skb(skb);
2883 return NET_RX_SUCCESS;
2884 }
2885
2886 out:
2887 return netif_receive_skb(skb);
2888 }
2889
2890 static void napi_gro_flush(struct napi_struct *napi)
2891 {
2892 struct sk_buff *skb, *next;
2893
2894 for (skb = napi->gro_list; skb; skb = next) {
2895 next = skb->next;
2896 skb->next = NULL;
2897 napi_gro_complete(skb);
2898 }
2899
2900 napi->gro_count = 0;
2901 napi->gro_list = NULL;
2902 }
2903
2904 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2905 {
2906 struct sk_buff **pp = NULL;
2907 struct packet_type *ptype;
2908 __be16 type = skb->protocol;
2909 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2910 int same_flow;
2911 int mac_len;
2912 enum gro_result ret;
2913
2914 if (!(skb->dev->features & NETIF_F_GRO))
2915 goto normal;
2916
2917 if (skb_is_gso(skb) || skb_has_frags(skb))
2918 goto normal;
2919
2920 rcu_read_lock();
2921 list_for_each_entry_rcu(ptype, head, list) {
2922 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2923 continue;
2924
2925 skb_set_network_header(skb, skb_gro_offset(skb));
2926 mac_len = skb->network_header - skb->mac_header;
2927 skb->mac_len = mac_len;
2928 NAPI_GRO_CB(skb)->same_flow = 0;
2929 NAPI_GRO_CB(skb)->flush = 0;
2930 NAPI_GRO_CB(skb)->free = 0;
2931
2932 pp = ptype->gro_receive(&napi->gro_list, skb);
2933 break;
2934 }
2935 rcu_read_unlock();
2936
2937 if (&ptype->list == head)
2938 goto normal;
2939
2940 same_flow = NAPI_GRO_CB(skb)->same_flow;
2941 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2942
2943 if (pp) {
2944 struct sk_buff *nskb = *pp;
2945
2946 *pp = nskb->next;
2947 nskb->next = NULL;
2948 napi_gro_complete(nskb);
2949 napi->gro_count--;
2950 }
2951
2952 if (same_flow)
2953 goto ok;
2954
2955 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2956 goto normal;
2957
2958 napi->gro_count++;
2959 NAPI_GRO_CB(skb)->count = 1;
2960 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2961 skb->next = napi->gro_list;
2962 napi->gro_list = skb;
2963 ret = GRO_HELD;
2964
2965 pull:
2966 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2967 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2968
2969 BUG_ON(skb->end - skb->tail < grow);
2970
2971 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2972
2973 skb->tail += grow;
2974 skb->data_len -= grow;
2975
2976 skb_shinfo(skb)->frags[0].page_offset += grow;
2977 skb_shinfo(skb)->frags[0].size -= grow;
2978
2979 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2980 put_page(skb_shinfo(skb)->frags[0].page);
2981 memmove(skb_shinfo(skb)->frags,
2982 skb_shinfo(skb)->frags + 1,
2983 --skb_shinfo(skb)->nr_frags);
2984 }
2985 }
2986
2987 ok:
2988 return ret;
2989
2990 normal:
2991 ret = GRO_NORMAL;
2992 goto pull;
2993 }
2994 EXPORT_SYMBOL(dev_gro_receive);
2995
2996 static gro_result_t
2997 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2998 {
2999 struct sk_buff *p;
3000
3001 if (netpoll_rx_on(skb))
3002 return GRO_NORMAL;
3003
3004 for (p = napi->gro_list; p; p = p->next) {
3005 NAPI_GRO_CB(p)->same_flow =
3006 (p->dev == skb->dev) &&
3007 !compare_ether_header(skb_mac_header(p),
3008 skb_gro_mac_header(skb));
3009 NAPI_GRO_CB(p)->flush = 0;
3010 }
3011
3012 return dev_gro_receive(napi, skb);
3013 }
3014
3015 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3016 {
3017 switch (ret) {
3018 case GRO_NORMAL:
3019 if (netif_receive_skb(skb))
3020 ret = GRO_DROP;
3021 break;
3022
3023 case GRO_DROP:
3024 case GRO_MERGED_FREE:
3025 kfree_skb(skb);
3026 break;
3027
3028 case GRO_HELD:
3029 case GRO_MERGED:
3030 break;
3031 }
3032
3033 return ret;
3034 }
3035 EXPORT_SYMBOL(napi_skb_finish);
3036
3037 void skb_gro_reset_offset(struct sk_buff *skb)
3038 {
3039 NAPI_GRO_CB(skb)->data_offset = 0;
3040 NAPI_GRO_CB(skb)->frag0 = NULL;
3041 NAPI_GRO_CB(skb)->frag0_len = 0;
3042
3043 if (skb->mac_header == skb->tail &&
3044 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3045 NAPI_GRO_CB(skb)->frag0 =
3046 page_address(skb_shinfo(skb)->frags[0].page) +
3047 skb_shinfo(skb)->frags[0].page_offset;
3048 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3049 }
3050 }
3051 EXPORT_SYMBOL(skb_gro_reset_offset);
3052
3053 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3054 {
3055 skb_gro_reset_offset(skb);
3056
3057 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3058 }
3059 EXPORT_SYMBOL(napi_gro_receive);
3060
3061 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3062 {
3063 __skb_pull(skb, skb_headlen(skb));
3064 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3065
3066 napi->skb = skb;
3067 }
3068 EXPORT_SYMBOL(napi_reuse_skb);
3069
3070 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3071 {
3072 struct sk_buff *skb = napi->skb;
3073
3074 if (!skb) {
3075 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3076 if (skb)
3077 napi->skb = skb;
3078 }
3079 return skb;
3080 }
3081 EXPORT_SYMBOL(napi_get_frags);
3082
3083 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3084 gro_result_t ret)
3085 {
3086 switch (ret) {
3087 case GRO_NORMAL:
3088 case GRO_HELD:
3089 skb->protocol = eth_type_trans(skb, skb->dev);
3090
3091 if (ret == GRO_HELD)
3092 skb_gro_pull(skb, -ETH_HLEN);
3093 else if (netif_receive_skb(skb))
3094 ret = GRO_DROP;
3095 break;
3096
3097 case GRO_DROP:
3098 case GRO_MERGED_FREE:
3099 napi_reuse_skb(napi, skb);
3100 break;
3101
3102 case GRO_MERGED:
3103 break;
3104 }
3105
3106 return ret;
3107 }
3108 EXPORT_SYMBOL(napi_frags_finish);
3109
3110 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3111 {
3112 struct sk_buff *skb = napi->skb;
3113 struct ethhdr *eth;
3114 unsigned int hlen;
3115 unsigned int off;
3116
3117 napi->skb = NULL;
3118
3119 skb_reset_mac_header(skb);
3120 skb_gro_reset_offset(skb);
3121
3122 off = skb_gro_offset(skb);
3123 hlen = off + sizeof(*eth);
3124 eth = skb_gro_header_fast(skb, off);
3125 if (skb_gro_header_hard(skb, hlen)) {
3126 eth = skb_gro_header_slow(skb, hlen, off);
3127 if (unlikely(!eth)) {
3128 napi_reuse_skb(napi, skb);
3129 skb = NULL;
3130 goto out;
3131 }
3132 }
3133
3134 skb_gro_pull(skb, sizeof(*eth));
3135
3136 /*
3137 * This works because the only protocols we care about don't require
3138 * special handling. We'll fix it up properly at the end.
3139 */
3140 skb->protocol = eth->h_proto;
3141
3142 out:
3143 return skb;
3144 }
3145 EXPORT_SYMBOL(napi_frags_skb);
3146
3147 gro_result_t napi_gro_frags(struct napi_struct *napi)
3148 {
3149 struct sk_buff *skb = napi_frags_skb(napi);
3150
3151 if (!skb)
3152 return GRO_DROP;
3153
3154 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3155 }
3156 EXPORT_SYMBOL(napi_gro_frags);
3157
3158 static int process_backlog(struct napi_struct *napi, int quota)
3159 {
3160 int work = 0;
3161 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3162 unsigned long start_time = jiffies;
3163
3164 napi->weight = weight_p;
3165 do {
3166 struct sk_buff *skb;
3167
3168 local_irq_disable();
3169 rps_lock(queue);
3170 skb = __skb_dequeue(&queue->input_pkt_queue);
3171 if (!skb) {
3172 __napi_complete(napi);
3173 rps_unlock(queue);
3174 local_irq_enable();
3175 break;
3176 }
3177 rps_unlock(queue);
3178 local_irq_enable();
3179
3180 __netif_receive_skb(skb);
3181 } while (++work < quota && jiffies == start_time);
3182
3183 return work;
3184 }
3185
3186 /**
3187 * __napi_schedule - schedule for receive
3188 * @n: entry to schedule
3189 *
3190 * The entry's receive function will be scheduled to run
3191 */
3192 void __napi_schedule(struct napi_struct *n)
3193 {
3194 unsigned long flags;
3195
3196 local_irq_save(flags);
3197 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3198 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3199 local_irq_restore(flags);
3200 }
3201 EXPORT_SYMBOL(__napi_schedule);
3202
3203 void __napi_complete(struct napi_struct *n)
3204 {
3205 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3206 BUG_ON(n->gro_list);
3207
3208 list_del(&n->poll_list);
3209 smp_mb__before_clear_bit();
3210 clear_bit(NAPI_STATE_SCHED, &n->state);
3211 }
3212 EXPORT_SYMBOL(__napi_complete);
3213
3214 void napi_complete(struct napi_struct *n)
3215 {
3216 unsigned long flags;
3217
3218 /*
3219 * don't let napi dequeue from the cpu poll list
3220 * just in case its running on a different cpu
3221 */
3222 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3223 return;
3224
3225 napi_gro_flush(n);
3226 local_irq_save(flags);
3227 __napi_complete(n);
3228 local_irq_restore(flags);
3229 }
3230 EXPORT_SYMBOL(napi_complete);
3231
3232 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3233 int (*poll)(struct napi_struct *, int), int weight)
3234 {
3235 INIT_LIST_HEAD(&napi->poll_list);
3236 napi->gro_count = 0;
3237 napi->gro_list = NULL;
3238 napi->skb = NULL;
3239 napi->poll = poll;
3240 napi->weight = weight;
3241 list_add(&napi->dev_list, &dev->napi_list);
3242 napi->dev = dev;
3243 #ifdef CONFIG_NETPOLL
3244 spin_lock_init(&napi->poll_lock);
3245 napi->poll_owner = -1;
3246 #endif
3247 set_bit(NAPI_STATE_SCHED, &napi->state);
3248 }
3249 EXPORT_SYMBOL(netif_napi_add);
3250
3251 void netif_napi_del(struct napi_struct *napi)
3252 {
3253 struct sk_buff *skb, *next;
3254
3255 list_del_init(&napi->dev_list);
3256 napi_free_frags(napi);
3257
3258 for (skb = napi->gro_list; skb; skb = next) {
3259 next = skb->next;
3260 skb->next = NULL;
3261 kfree_skb(skb);
3262 }
3263
3264 napi->gro_list = NULL;
3265 napi->gro_count = 0;
3266 }
3267 EXPORT_SYMBOL(netif_napi_del);
3268
3269 #ifdef CONFIG_RPS
3270 /*
3271 * net_rps_action sends any pending IPI's for rps. This is only called from
3272 * softirq and interrupts must be enabled.
3273 */
3274 static void net_rps_action(cpumask_t *mask)
3275 {
3276 int cpu;
3277
3278 /* Send pending IPI's to kick RPS processing on remote cpus. */
3279 for_each_cpu_mask_nr(cpu, *mask) {
3280 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3281 if (cpu_online(cpu))
3282 __smp_call_function_single(cpu, &queue->csd, 0);
3283 }
3284 cpus_clear(*mask);
3285 }
3286 #endif
3287
3288 static void net_rx_action(struct softirq_action *h)
3289 {
3290 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3291 unsigned long time_limit = jiffies + 2;
3292 int budget = netdev_budget;
3293 void *have;
3294 #ifdef CONFIG_RPS
3295 int select;
3296 struct rps_remote_softirq_cpus *rcpus;
3297 #endif
3298
3299 local_irq_disable();
3300
3301 while (!list_empty(list)) {
3302 struct napi_struct *n;
3303 int work, weight;
3304
3305 /* If softirq window is exhuasted then punt.
3306 * Allow this to run for 2 jiffies since which will allow
3307 * an average latency of 1.5/HZ.
3308 */
3309 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3310 goto softnet_break;
3311
3312 local_irq_enable();
3313
3314 /* Even though interrupts have been re-enabled, this
3315 * access is safe because interrupts can only add new
3316 * entries to the tail of this list, and only ->poll()
3317 * calls can remove this head entry from the list.
3318 */
3319 n = list_first_entry(list, struct napi_struct, poll_list);
3320
3321 have = netpoll_poll_lock(n);
3322
3323 weight = n->weight;
3324
3325 /* This NAPI_STATE_SCHED test is for avoiding a race
3326 * with netpoll's poll_napi(). Only the entity which
3327 * obtains the lock and sees NAPI_STATE_SCHED set will
3328 * actually make the ->poll() call. Therefore we avoid
3329 * accidently calling ->poll() when NAPI is not scheduled.
3330 */
3331 work = 0;
3332 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3333 work = n->poll(n, weight);
3334 trace_napi_poll(n);
3335 }
3336
3337 WARN_ON_ONCE(work > weight);
3338
3339 budget -= work;
3340
3341 local_irq_disable();
3342
3343 /* Drivers must not modify the NAPI state if they
3344 * consume the entire weight. In such cases this code
3345 * still "owns" the NAPI instance and therefore can
3346 * move the instance around on the list at-will.
3347 */
3348 if (unlikely(work == weight)) {
3349 if (unlikely(napi_disable_pending(n))) {
3350 local_irq_enable();
3351 napi_complete(n);
3352 local_irq_disable();
3353 } else
3354 list_move_tail(&n->poll_list, list);
3355 }
3356
3357 netpoll_poll_unlock(have);
3358 }
3359 out:
3360 #ifdef CONFIG_RPS
3361 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3362 select = rcpus->select;
3363 rcpus->select ^= 1;
3364
3365 local_irq_enable();
3366
3367 net_rps_action(&rcpus->mask[select]);
3368 #else
3369 local_irq_enable();
3370 #endif
3371
3372 #ifdef CONFIG_NET_DMA
3373 /*
3374 * There may not be any more sk_buffs coming right now, so push
3375 * any pending DMA copies to hardware
3376 */
3377 dma_issue_pending_all();
3378 #endif
3379
3380 return;
3381
3382 softnet_break:
3383 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3384 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3385 goto out;
3386 }
3387
3388 static gifconf_func_t *gifconf_list[NPROTO];
3389
3390 /**
3391 * register_gifconf - register a SIOCGIF handler
3392 * @family: Address family
3393 * @gifconf: Function handler
3394 *
3395 * Register protocol dependent address dumping routines. The handler
3396 * that is passed must not be freed or reused until it has been replaced
3397 * by another handler.
3398 */
3399 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3400 {
3401 if (family >= NPROTO)
3402 return -EINVAL;
3403 gifconf_list[family] = gifconf;
3404 return 0;
3405 }
3406 EXPORT_SYMBOL(register_gifconf);
3407
3408
3409 /*
3410 * Map an interface index to its name (SIOCGIFNAME)
3411 */
3412
3413 /*
3414 * We need this ioctl for efficient implementation of the
3415 * if_indextoname() function required by the IPv6 API. Without
3416 * it, we would have to search all the interfaces to find a
3417 * match. --pb
3418 */
3419
3420 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3421 {
3422 struct net_device *dev;
3423 struct ifreq ifr;
3424
3425 /*
3426 * Fetch the caller's info block.
3427 */
3428
3429 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3430 return -EFAULT;
3431
3432 rcu_read_lock();
3433 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3434 if (!dev) {
3435 rcu_read_unlock();
3436 return -ENODEV;
3437 }
3438
3439 strcpy(ifr.ifr_name, dev->name);
3440 rcu_read_unlock();
3441
3442 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3443 return -EFAULT;
3444 return 0;
3445 }
3446
3447 /*
3448 * Perform a SIOCGIFCONF call. This structure will change
3449 * size eventually, and there is nothing I can do about it.
3450 * Thus we will need a 'compatibility mode'.
3451 */
3452
3453 static int dev_ifconf(struct net *net, char __user *arg)
3454 {
3455 struct ifconf ifc;
3456 struct net_device *dev;
3457 char __user *pos;
3458 int len;
3459 int total;
3460 int i;
3461
3462 /*
3463 * Fetch the caller's info block.
3464 */
3465
3466 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3467 return -EFAULT;
3468
3469 pos = ifc.ifc_buf;
3470 len = ifc.ifc_len;
3471
3472 /*
3473 * Loop over the interfaces, and write an info block for each.
3474 */
3475
3476 total = 0;
3477 for_each_netdev(net, dev) {
3478 for (i = 0; i < NPROTO; i++) {
3479 if (gifconf_list[i]) {
3480 int done;
3481 if (!pos)
3482 done = gifconf_list[i](dev, NULL, 0);
3483 else
3484 done = gifconf_list[i](dev, pos + total,
3485 len - total);
3486 if (done < 0)
3487 return -EFAULT;
3488 total += done;
3489 }
3490 }
3491 }
3492
3493 /*
3494 * All done. Write the updated control block back to the caller.
3495 */
3496 ifc.ifc_len = total;
3497
3498 /*
3499 * Both BSD and Solaris return 0 here, so we do too.
3500 */
3501 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3502 }
3503
3504 #ifdef CONFIG_PROC_FS
3505 /*
3506 * This is invoked by the /proc filesystem handler to display a device
3507 * in detail.
3508 */
3509 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3510 __acquires(RCU)
3511 {
3512 struct net *net = seq_file_net(seq);
3513 loff_t off;
3514 struct net_device *dev;
3515
3516 rcu_read_lock();
3517 if (!*pos)
3518 return SEQ_START_TOKEN;
3519
3520 off = 1;
3521 for_each_netdev_rcu(net, dev)
3522 if (off++ == *pos)
3523 return dev;
3524
3525 return NULL;
3526 }
3527
3528 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3529 {
3530 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3531 first_net_device(seq_file_net(seq)) :
3532 next_net_device((struct net_device *)v);
3533
3534 ++*pos;
3535 return rcu_dereference(dev);
3536 }
3537
3538 void dev_seq_stop(struct seq_file *seq, void *v)
3539 __releases(RCU)
3540 {
3541 rcu_read_unlock();
3542 }
3543
3544 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3545 {
3546 const struct net_device_stats *stats = dev_get_stats(dev);
3547
3548 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3549 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3550 dev->name, stats->rx_bytes, stats->rx_packets,
3551 stats->rx_errors,
3552 stats->rx_dropped + stats->rx_missed_errors,
3553 stats->rx_fifo_errors,
3554 stats->rx_length_errors + stats->rx_over_errors +
3555 stats->rx_crc_errors + stats->rx_frame_errors,
3556 stats->rx_compressed, stats->multicast,
3557 stats->tx_bytes, stats->tx_packets,
3558 stats->tx_errors, stats->tx_dropped,
3559 stats->tx_fifo_errors, stats->collisions,
3560 stats->tx_carrier_errors +
3561 stats->tx_aborted_errors +
3562 stats->tx_window_errors +
3563 stats->tx_heartbeat_errors,
3564 stats->tx_compressed);
3565 }
3566
3567 /*
3568 * Called from the PROCfs module. This now uses the new arbitrary sized
3569 * /proc/net interface to create /proc/net/dev
3570 */
3571 static int dev_seq_show(struct seq_file *seq, void *v)
3572 {
3573 if (v == SEQ_START_TOKEN)
3574 seq_puts(seq, "Inter-| Receive "
3575 " | Transmit\n"
3576 " face |bytes packets errs drop fifo frame "
3577 "compressed multicast|bytes packets errs "
3578 "drop fifo colls carrier compressed\n");
3579 else
3580 dev_seq_printf_stats(seq, v);
3581 return 0;
3582 }
3583
3584 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3585 {
3586 struct netif_rx_stats *rc = NULL;
3587
3588 while (*pos < nr_cpu_ids)
3589 if (cpu_online(*pos)) {
3590 rc = &per_cpu(netdev_rx_stat, *pos);
3591 break;
3592 } else
3593 ++*pos;
3594 return rc;
3595 }
3596
3597 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3598 {
3599 return softnet_get_online(pos);
3600 }
3601
3602 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3603 {
3604 ++*pos;
3605 return softnet_get_online(pos);
3606 }
3607
3608 static void softnet_seq_stop(struct seq_file *seq, void *v)
3609 {
3610 }
3611
3612 static int softnet_seq_show(struct seq_file *seq, void *v)
3613 {
3614 struct netif_rx_stats *s = v;
3615
3616 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3617 s->total, s->dropped, s->time_squeeze, 0,
3618 0, 0, 0, 0, /* was fastroute */
3619 s->cpu_collision, s->received_rps);
3620 return 0;
3621 }
3622
3623 static const struct seq_operations dev_seq_ops = {
3624 .start = dev_seq_start,
3625 .next = dev_seq_next,
3626 .stop = dev_seq_stop,
3627 .show = dev_seq_show,
3628 };
3629
3630 static int dev_seq_open(struct inode *inode, struct file *file)
3631 {
3632 return seq_open_net(inode, file, &dev_seq_ops,
3633 sizeof(struct seq_net_private));
3634 }
3635
3636 static const struct file_operations dev_seq_fops = {
3637 .owner = THIS_MODULE,
3638 .open = dev_seq_open,
3639 .read = seq_read,
3640 .llseek = seq_lseek,
3641 .release = seq_release_net,
3642 };
3643
3644 static const struct seq_operations softnet_seq_ops = {
3645 .start = softnet_seq_start,
3646 .next = softnet_seq_next,
3647 .stop = softnet_seq_stop,
3648 .show = softnet_seq_show,
3649 };
3650
3651 static int softnet_seq_open(struct inode *inode, struct file *file)
3652 {
3653 return seq_open(file, &softnet_seq_ops);
3654 }
3655
3656 static const struct file_operations softnet_seq_fops = {
3657 .owner = THIS_MODULE,
3658 .open = softnet_seq_open,
3659 .read = seq_read,
3660 .llseek = seq_lseek,
3661 .release = seq_release,
3662 };
3663
3664 static void *ptype_get_idx(loff_t pos)
3665 {
3666 struct packet_type *pt = NULL;
3667 loff_t i = 0;
3668 int t;
3669
3670 list_for_each_entry_rcu(pt, &ptype_all, list) {
3671 if (i == pos)
3672 return pt;
3673 ++i;
3674 }
3675
3676 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3677 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3678 if (i == pos)
3679 return pt;
3680 ++i;
3681 }
3682 }
3683 return NULL;
3684 }
3685
3686 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3687 __acquires(RCU)
3688 {
3689 rcu_read_lock();
3690 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3691 }
3692
3693 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3694 {
3695 struct packet_type *pt;
3696 struct list_head *nxt;
3697 int hash;
3698
3699 ++*pos;
3700 if (v == SEQ_START_TOKEN)
3701 return ptype_get_idx(0);
3702
3703 pt = v;
3704 nxt = pt->list.next;
3705 if (pt->type == htons(ETH_P_ALL)) {
3706 if (nxt != &ptype_all)
3707 goto found;
3708 hash = 0;
3709 nxt = ptype_base[0].next;
3710 } else
3711 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3712
3713 while (nxt == &ptype_base[hash]) {
3714 if (++hash >= PTYPE_HASH_SIZE)
3715 return NULL;
3716 nxt = ptype_base[hash].next;
3717 }
3718 found:
3719 return list_entry(nxt, struct packet_type, list);
3720 }
3721
3722 static void ptype_seq_stop(struct seq_file *seq, void *v)
3723 __releases(RCU)
3724 {
3725 rcu_read_unlock();
3726 }
3727
3728 static int ptype_seq_show(struct seq_file *seq, void *v)
3729 {
3730 struct packet_type *pt = v;
3731
3732 if (v == SEQ_START_TOKEN)
3733 seq_puts(seq, "Type Device Function\n");
3734 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3735 if (pt->type == htons(ETH_P_ALL))
3736 seq_puts(seq, "ALL ");
3737 else
3738 seq_printf(seq, "%04x", ntohs(pt->type));
3739
3740 seq_printf(seq, " %-8s %pF\n",
3741 pt->dev ? pt->dev->name : "", pt->func);
3742 }
3743
3744 return 0;
3745 }
3746
3747 static const struct seq_operations ptype_seq_ops = {
3748 .start = ptype_seq_start,
3749 .next = ptype_seq_next,
3750 .stop = ptype_seq_stop,
3751 .show = ptype_seq_show,
3752 };
3753
3754 static int ptype_seq_open(struct inode *inode, struct file *file)
3755 {
3756 return seq_open_net(inode, file, &ptype_seq_ops,
3757 sizeof(struct seq_net_private));
3758 }
3759
3760 static const struct file_operations ptype_seq_fops = {
3761 .owner = THIS_MODULE,
3762 .open = ptype_seq_open,
3763 .read = seq_read,
3764 .llseek = seq_lseek,
3765 .release = seq_release_net,
3766 };
3767
3768
3769 static int __net_init dev_proc_net_init(struct net *net)
3770 {
3771 int rc = -ENOMEM;
3772
3773 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3774 goto out;
3775 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3776 goto out_dev;
3777 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3778 goto out_softnet;
3779
3780 if (wext_proc_init(net))
3781 goto out_ptype;
3782 rc = 0;
3783 out:
3784 return rc;
3785 out_ptype:
3786 proc_net_remove(net, "ptype");
3787 out_softnet:
3788 proc_net_remove(net, "softnet_stat");
3789 out_dev:
3790 proc_net_remove(net, "dev");
3791 goto out;
3792 }
3793
3794 static void __net_exit dev_proc_net_exit(struct net *net)
3795 {
3796 wext_proc_exit(net);
3797
3798 proc_net_remove(net, "ptype");
3799 proc_net_remove(net, "softnet_stat");
3800 proc_net_remove(net, "dev");
3801 }
3802
3803 static struct pernet_operations __net_initdata dev_proc_ops = {
3804 .init = dev_proc_net_init,
3805 .exit = dev_proc_net_exit,
3806 };
3807
3808 static int __init dev_proc_init(void)
3809 {
3810 return register_pernet_subsys(&dev_proc_ops);
3811 }
3812 #else
3813 #define dev_proc_init() 0
3814 #endif /* CONFIG_PROC_FS */
3815
3816
3817 /**
3818 * netdev_set_master - set up master/slave pair
3819 * @slave: slave device
3820 * @master: new master device
3821 *
3822 * Changes the master device of the slave. Pass %NULL to break the
3823 * bonding. The caller must hold the RTNL semaphore. On a failure
3824 * a negative errno code is returned. On success the reference counts
3825 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3826 * function returns zero.
3827 */
3828 int netdev_set_master(struct net_device *slave, struct net_device *master)
3829 {
3830 struct net_device *old = slave->master;
3831
3832 ASSERT_RTNL();
3833
3834 if (master) {
3835 if (old)
3836 return -EBUSY;
3837 dev_hold(master);
3838 }
3839
3840 slave->master = master;
3841
3842 if (old) {
3843 synchronize_net();
3844 dev_put(old);
3845 }
3846 if (master)
3847 slave->flags |= IFF_SLAVE;
3848 else
3849 slave->flags &= ~IFF_SLAVE;
3850
3851 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3852 return 0;
3853 }
3854 EXPORT_SYMBOL(netdev_set_master);
3855
3856 static void dev_change_rx_flags(struct net_device *dev, int flags)
3857 {
3858 const struct net_device_ops *ops = dev->netdev_ops;
3859
3860 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3861 ops->ndo_change_rx_flags(dev, flags);
3862 }
3863
3864 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3865 {
3866 unsigned short old_flags = dev->flags;
3867 uid_t uid;
3868 gid_t gid;
3869
3870 ASSERT_RTNL();
3871
3872 dev->flags |= IFF_PROMISC;
3873 dev->promiscuity += inc;
3874 if (dev->promiscuity == 0) {
3875 /*
3876 * Avoid overflow.
3877 * If inc causes overflow, untouch promisc and return error.
3878 */
3879 if (inc < 0)
3880 dev->flags &= ~IFF_PROMISC;
3881 else {
3882 dev->promiscuity -= inc;
3883 printk(KERN_WARNING "%s: promiscuity touches roof, "
3884 "set promiscuity failed, promiscuity feature "
3885 "of device might be broken.\n", dev->name);
3886 return -EOVERFLOW;
3887 }
3888 }
3889 if (dev->flags != old_flags) {
3890 printk(KERN_INFO "device %s %s promiscuous mode\n",
3891 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3892 "left");
3893 if (audit_enabled) {
3894 current_uid_gid(&uid, &gid);
3895 audit_log(current->audit_context, GFP_ATOMIC,
3896 AUDIT_ANOM_PROMISCUOUS,
3897 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3898 dev->name, (dev->flags & IFF_PROMISC),
3899 (old_flags & IFF_PROMISC),
3900 audit_get_loginuid(current),
3901 uid, gid,
3902 audit_get_sessionid(current));
3903 }
3904
3905 dev_change_rx_flags(dev, IFF_PROMISC);
3906 }
3907 return 0;
3908 }
3909
3910 /**
3911 * dev_set_promiscuity - update promiscuity count on a device
3912 * @dev: device
3913 * @inc: modifier
3914 *
3915 * Add or remove promiscuity from a device. While the count in the device
3916 * remains above zero the interface remains promiscuous. Once it hits zero
3917 * the device reverts back to normal filtering operation. A negative inc
3918 * value is used to drop promiscuity on the device.
3919 * Return 0 if successful or a negative errno code on error.
3920 */
3921 int dev_set_promiscuity(struct net_device *dev, int inc)
3922 {
3923 unsigned short old_flags = dev->flags;
3924 int err;
3925
3926 err = __dev_set_promiscuity(dev, inc);
3927 if (err < 0)
3928 return err;
3929 if (dev->flags != old_flags)
3930 dev_set_rx_mode(dev);
3931 return err;
3932 }
3933 EXPORT_SYMBOL(dev_set_promiscuity);
3934
3935 /**
3936 * dev_set_allmulti - update allmulti count on a device
3937 * @dev: device
3938 * @inc: modifier
3939 *
3940 * Add or remove reception of all multicast frames to a device. While the
3941 * count in the device remains above zero the interface remains listening
3942 * to all interfaces. Once it hits zero the device reverts back to normal
3943 * filtering operation. A negative @inc value is used to drop the counter
3944 * when releasing a resource needing all multicasts.
3945 * Return 0 if successful or a negative errno code on error.
3946 */
3947
3948 int dev_set_allmulti(struct net_device *dev, int inc)
3949 {
3950 unsigned short old_flags = dev->flags;
3951
3952 ASSERT_RTNL();
3953
3954 dev->flags |= IFF_ALLMULTI;
3955 dev->allmulti += inc;
3956 if (dev->allmulti == 0) {
3957 /*
3958 * Avoid overflow.
3959 * If inc causes overflow, untouch allmulti and return error.
3960 */
3961 if (inc < 0)
3962 dev->flags &= ~IFF_ALLMULTI;
3963 else {
3964 dev->allmulti -= inc;
3965 printk(KERN_WARNING "%s: allmulti touches roof, "
3966 "set allmulti failed, allmulti feature of "
3967 "device might be broken.\n", dev->name);
3968 return -EOVERFLOW;
3969 }
3970 }
3971 if (dev->flags ^ old_flags) {
3972 dev_change_rx_flags(dev, IFF_ALLMULTI);
3973 dev_set_rx_mode(dev);
3974 }
3975 return 0;
3976 }
3977 EXPORT_SYMBOL(dev_set_allmulti);
3978
3979 /*
3980 * Upload unicast and multicast address lists to device and
3981 * configure RX filtering. When the device doesn't support unicast
3982 * filtering it is put in promiscuous mode while unicast addresses
3983 * are present.
3984 */
3985 void __dev_set_rx_mode(struct net_device *dev)
3986 {
3987 const struct net_device_ops *ops = dev->netdev_ops;
3988
3989 /* dev_open will call this function so the list will stay sane. */
3990 if (!(dev->flags&IFF_UP))
3991 return;
3992
3993 if (!netif_device_present(dev))
3994 return;
3995
3996 if (ops->ndo_set_rx_mode)
3997 ops->ndo_set_rx_mode(dev);
3998 else {
3999 /* Unicast addresses changes may only happen under the rtnl,
4000 * therefore calling __dev_set_promiscuity here is safe.
4001 */
4002 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4003 __dev_set_promiscuity(dev, 1);
4004 dev->uc_promisc = 1;
4005 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4006 __dev_set_promiscuity(dev, -1);
4007 dev->uc_promisc = 0;
4008 }
4009
4010 if (ops->ndo_set_multicast_list)
4011 ops->ndo_set_multicast_list(dev);
4012 }
4013 }
4014
4015 void dev_set_rx_mode(struct net_device *dev)
4016 {
4017 netif_addr_lock_bh(dev);
4018 __dev_set_rx_mode(dev);
4019 netif_addr_unlock_bh(dev);
4020 }
4021
4022 /**
4023 * dev_get_flags - get flags reported to userspace
4024 * @dev: device
4025 *
4026 * Get the combination of flag bits exported through APIs to userspace.
4027 */
4028 unsigned dev_get_flags(const struct net_device *dev)
4029 {
4030 unsigned flags;
4031
4032 flags = (dev->flags & ~(IFF_PROMISC |
4033 IFF_ALLMULTI |
4034 IFF_RUNNING |
4035 IFF_LOWER_UP |
4036 IFF_DORMANT)) |
4037 (dev->gflags & (IFF_PROMISC |
4038 IFF_ALLMULTI));
4039
4040 if (netif_running(dev)) {
4041 if (netif_oper_up(dev))
4042 flags |= IFF_RUNNING;
4043 if (netif_carrier_ok(dev))
4044 flags |= IFF_LOWER_UP;
4045 if (netif_dormant(dev))
4046 flags |= IFF_DORMANT;
4047 }
4048
4049 return flags;
4050 }
4051 EXPORT_SYMBOL(dev_get_flags);
4052
4053 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4054 {
4055 int old_flags = dev->flags;
4056 int ret;
4057
4058 ASSERT_RTNL();
4059
4060 /*
4061 * Set the flags on our device.
4062 */
4063
4064 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4065 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4066 IFF_AUTOMEDIA)) |
4067 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4068 IFF_ALLMULTI));
4069
4070 /*
4071 * Load in the correct multicast list now the flags have changed.
4072 */
4073
4074 if ((old_flags ^ flags) & IFF_MULTICAST)
4075 dev_change_rx_flags(dev, IFF_MULTICAST);
4076
4077 dev_set_rx_mode(dev);
4078
4079 /*
4080 * Have we downed the interface. We handle IFF_UP ourselves
4081 * according to user attempts to set it, rather than blindly
4082 * setting it.
4083 */
4084
4085 ret = 0;
4086 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4087 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4088
4089 if (!ret)
4090 dev_set_rx_mode(dev);
4091 }
4092
4093 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4094 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4095
4096 dev->gflags ^= IFF_PROMISC;
4097 dev_set_promiscuity(dev, inc);
4098 }
4099
4100 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4101 is important. Some (broken) drivers set IFF_PROMISC, when
4102 IFF_ALLMULTI is requested not asking us and not reporting.
4103 */
4104 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4105 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4106
4107 dev->gflags ^= IFF_ALLMULTI;
4108 dev_set_allmulti(dev, inc);
4109 }
4110
4111 return ret;
4112 }
4113
4114 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4115 {
4116 unsigned int changes = dev->flags ^ old_flags;
4117
4118 if (changes & IFF_UP) {
4119 if (dev->flags & IFF_UP)
4120 call_netdevice_notifiers(NETDEV_UP, dev);
4121 else
4122 call_netdevice_notifiers(NETDEV_DOWN, dev);
4123 }
4124
4125 if (dev->flags & IFF_UP &&
4126 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4127 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4128 }
4129
4130 /**
4131 * dev_change_flags - change device settings
4132 * @dev: device
4133 * @flags: device state flags
4134 *
4135 * Change settings on device based state flags. The flags are
4136 * in the userspace exported format.
4137 */
4138 int dev_change_flags(struct net_device *dev, unsigned flags)
4139 {
4140 int ret, changes;
4141 int old_flags = dev->flags;
4142
4143 ret = __dev_change_flags(dev, flags);
4144 if (ret < 0)
4145 return ret;
4146
4147 changes = old_flags ^ dev->flags;
4148 if (changes)
4149 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4150
4151 __dev_notify_flags(dev, old_flags);
4152 return ret;
4153 }
4154 EXPORT_SYMBOL(dev_change_flags);
4155
4156 /**
4157 * dev_set_mtu - Change maximum transfer unit
4158 * @dev: device
4159 * @new_mtu: new transfer unit
4160 *
4161 * Change the maximum transfer size of the network device.
4162 */
4163 int dev_set_mtu(struct net_device *dev, int new_mtu)
4164 {
4165 const struct net_device_ops *ops = dev->netdev_ops;
4166 int err;
4167
4168 if (new_mtu == dev->mtu)
4169 return 0;
4170
4171 /* MTU must be positive. */
4172 if (new_mtu < 0)
4173 return -EINVAL;
4174
4175 if (!netif_device_present(dev))
4176 return -ENODEV;
4177
4178 err = 0;
4179 if (ops->ndo_change_mtu)
4180 err = ops->ndo_change_mtu(dev, new_mtu);
4181 else
4182 dev->mtu = new_mtu;
4183
4184 if (!err && dev->flags & IFF_UP)
4185 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4186 return err;
4187 }
4188 EXPORT_SYMBOL(dev_set_mtu);
4189
4190 /**
4191 * dev_set_mac_address - Change Media Access Control Address
4192 * @dev: device
4193 * @sa: new address
4194 *
4195 * Change the hardware (MAC) address of the device
4196 */
4197 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4198 {
4199 const struct net_device_ops *ops = dev->netdev_ops;
4200 int err;
4201
4202 if (!ops->ndo_set_mac_address)
4203 return -EOPNOTSUPP;
4204 if (sa->sa_family != dev->type)
4205 return -EINVAL;
4206 if (!netif_device_present(dev))
4207 return -ENODEV;
4208 err = ops->ndo_set_mac_address(dev, sa);
4209 if (!err)
4210 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4211 return err;
4212 }
4213 EXPORT_SYMBOL(dev_set_mac_address);
4214
4215 /*
4216 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4217 */
4218 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4219 {
4220 int err;
4221 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4222
4223 if (!dev)
4224 return -ENODEV;
4225
4226 switch (cmd) {
4227 case SIOCGIFFLAGS: /* Get interface flags */
4228 ifr->ifr_flags = (short) dev_get_flags(dev);
4229 return 0;
4230
4231 case SIOCGIFMETRIC: /* Get the metric on the interface
4232 (currently unused) */
4233 ifr->ifr_metric = 0;
4234 return 0;
4235
4236 case SIOCGIFMTU: /* Get the MTU of a device */
4237 ifr->ifr_mtu = dev->mtu;
4238 return 0;
4239
4240 case SIOCGIFHWADDR:
4241 if (!dev->addr_len)
4242 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4243 else
4244 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4245 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4246 ifr->ifr_hwaddr.sa_family = dev->type;
4247 return 0;
4248
4249 case SIOCGIFSLAVE:
4250 err = -EINVAL;
4251 break;
4252
4253 case SIOCGIFMAP:
4254 ifr->ifr_map.mem_start = dev->mem_start;
4255 ifr->ifr_map.mem_end = dev->mem_end;
4256 ifr->ifr_map.base_addr = dev->base_addr;
4257 ifr->ifr_map.irq = dev->irq;
4258 ifr->ifr_map.dma = dev->dma;
4259 ifr->ifr_map.port = dev->if_port;
4260 return 0;
4261
4262 case SIOCGIFINDEX:
4263 ifr->ifr_ifindex = dev->ifindex;
4264 return 0;
4265
4266 case SIOCGIFTXQLEN:
4267 ifr->ifr_qlen = dev->tx_queue_len;
4268 return 0;
4269
4270 default:
4271 /* dev_ioctl() should ensure this case
4272 * is never reached
4273 */
4274 WARN_ON(1);
4275 err = -EINVAL;
4276 break;
4277
4278 }
4279 return err;
4280 }
4281
4282 /*
4283 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4284 */
4285 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4286 {
4287 int err;
4288 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4289 const struct net_device_ops *ops;
4290
4291 if (!dev)
4292 return -ENODEV;
4293
4294 ops = dev->netdev_ops;
4295
4296 switch (cmd) {
4297 case SIOCSIFFLAGS: /* Set interface flags */
4298 return dev_change_flags(dev, ifr->ifr_flags);
4299
4300 case SIOCSIFMETRIC: /* Set the metric on the interface
4301 (currently unused) */
4302 return -EOPNOTSUPP;
4303
4304 case SIOCSIFMTU: /* Set the MTU of a device */
4305 return dev_set_mtu(dev, ifr->ifr_mtu);
4306
4307 case SIOCSIFHWADDR:
4308 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4309
4310 case SIOCSIFHWBROADCAST:
4311 if (ifr->ifr_hwaddr.sa_family != dev->type)
4312 return -EINVAL;
4313 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4314 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4315 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4316 return 0;
4317
4318 case SIOCSIFMAP:
4319 if (ops->ndo_set_config) {
4320 if (!netif_device_present(dev))
4321 return -ENODEV;
4322 return ops->ndo_set_config(dev, &ifr->ifr_map);
4323 }
4324 return -EOPNOTSUPP;
4325
4326 case SIOCADDMULTI:
4327 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4328 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4329 return -EINVAL;
4330 if (!netif_device_present(dev))
4331 return -ENODEV;
4332 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4333
4334 case SIOCDELMULTI:
4335 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4336 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4337 return -EINVAL;
4338 if (!netif_device_present(dev))
4339 return -ENODEV;
4340 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4341
4342 case SIOCSIFTXQLEN:
4343 if (ifr->ifr_qlen < 0)
4344 return -EINVAL;
4345 dev->tx_queue_len = ifr->ifr_qlen;
4346 return 0;
4347
4348 case SIOCSIFNAME:
4349 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4350 return dev_change_name(dev, ifr->ifr_newname);
4351
4352 /*
4353 * Unknown or private ioctl
4354 */
4355 default:
4356 if ((cmd >= SIOCDEVPRIVATE &&
4357 cmd <= SIOCDEVPRIVATE + 15) ||
4358 cmd == SIOCBONDENSLAVE ||
4359 cmd == SIOCBONDRELEASE ||
4360 cmd == SIOCBONDSETHWADDR ||
4361 cmd == SIOCBONDSLAVEINFOQUERY ||
4362 cmd == SIOCBONDINFOQUERY ||
4363 cmd == SIOCBONDCHANGEACTIVE ||
4364 cmd == SIOCGMIIPHY ||
4365 cmd == SIOCGMIIREG ||
4366 cmd == SIOCSMIIREG ||
4367 cmd == SIOCBRADDIF ||
4368 cmd == SIOCBRDELIF ||
4369 cmd == SIOCSHWTSTAMP ||
4370 cmd == SIOCWANDEV) {
4371 err = -EOPNOTSUPP;
4372 if (ops->ndo_do_ioctl) {
4373 if (netif_device_present(dev))
4374 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4375 else
4376 err = -ENODEV;
4377 }
4378 } else
4379 err = -EINVAL;
4380
4381 }
4382 return err;
4383 }
4384
4385 /*
4386 * This function handles all "interface"-type I/O control requests. The actual
4387 * 'doing' part of this is dev_ifsioc above.
4388 */
4389
4390 /**
4391 * dev_ioctl - network device ioctl
4392 * @net: the applicable net namespace
4393 * @cmd: command to issue
4394 * @arg: pointer to a struct ifreq in user space
4395 *
4396 * Issue ioctl functions to devices. This is normally called by the
4397 * user space syscall interfaces but can sometimes be useful for
4398 * other purposes. The return value is the return from the syscall if
4399 * positive or a negative errno code on error.
4400 */
4401
4402 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4403 {
4404 struct ifreq ifr;
4405 int ret;
4406 char *colon;
4407
4408 /* One special case: SIOCGIFCONF takes ifconf argument
4409 and requires shared lock, because it sleeps writing
4410 to user space.
4411 */
4412
4413 if (cmd == SIOCGIFCONF) {
4414 rtnl_lock();
4415 ret = dev_ifconf(net, (char __user *) arg);
4416 rtnl_unlock();
4417 return ret;
4418 }
4419 if (cmd == SIOCGIFNAME)
4420 return dev_ifname(net, (struct ifreq __user *)arg);
4421
4422 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4423 return -EFAULT;
4424
4425 ifr.ifr_name[IFNAMSIZ-1] = 0;
4426
4427 colon = strchr(ifr.ifr_name, ':');
4428 if (colon)
4429 *colon = 0;
4430
4431 /*
4432 * See which interface the caller is talking about.
4433 */
4434
4435 switch (cmd) {
4436 /*
4437 * These ioctl calls:
4438 * - can be done by all.
4439 * - atomic and do not require locking.
4440 * - return a value
4441 */
4442 case SIOCGIFFLAGS:
4443 case SIOCGIFMETRIC:
4444 case SIOCGIFMTU:
4445 case SIOCGIFHWADDR:
4446 case SIOCGIFSLAVE:
4447 case SIOCGIFMAP:
4448 case SIOCGIFINDEX:
4449 case SIOCGIFTXQLEN:
4450 dev_load(net, ifr.ifr_name);
4451 rcu_read_lock();
4452 ret = dev_ifsioc_locked(net, &ifr, cmd);
4453 rcu_read_unlock();
4454 if (!ret) {
4455 if (colon)
4456 *colon = ':';
4457 if (copy_to_user(arg, &ifr,
4458 sizeof(struct ifreq)))
4459 ret = -EFAULT;
4460 }
4461 return ret;
4462
4463 case SIOCETHTOOL:
4464 dev_load(net, ifr.ifr_name);
4465 rtnl_lock();
4466 ret = dev_ethtool(net, &ifr);
4467 rtnl_unlock();
4468 if (!ret) {
4469 if (colon)
4470 *colon = ':';
4471 if (copy_to_user(arg, &ifr,
4472 sizeof(struct ifreq)))
4473 ret = -EFAULT;
4474 }
4475 return ret;
4476
4477 /*
4478 * These ioctl calls:
4479 * - require superuser power.
4480 * - require strict serialization.
4481 * - return a value
4482 */
4483 case SIOCGMIIPHY:
4484 case SIOCGMIIREG:
4485 case SIOCSIFNAME:
4486 if (!capable(CAP_NET_ADMIN))
4487 return -EPERM;
4488 dev_load(net, ifr.ifr_name);
4489 rtnl_lock();
4490 ret = dev_ifsioc(net, &ifr, cmd);
4491 rtnl_unlock();
4492 if (!ret) {
4493 if (colon)
4494 *colon = ':';
4495 if (copy_to_user(arg, &ifr,
4496 sizeof(struct ifreq)))
4497 ret = -EFAULT;
4498 }
4499 return ret;
4500
4501 /*
4502 * These ioctl calls:
4503 * - require superuser power.
4504 * - require strict serialization.
4505 * - do not return a value
4506 */
4507 case SIOCSIFFLAGS:
4508 case SIOCSIFMETRIC:
4509 case SIOCSIFMTU:
4510 case SIOCSIFMAP:
4511 case SIOCSIFHWADDR:
4512 case SIOCSIFSLAVE:
4513 case SIOCADDMULTI:
4514 case SIOCDELMULTI:
4515 case SIOCSIFHWBROADCAST:
4516 case SIOCSIFTXQLEN:
4517 case SIOCSMIIREG:
4518 case SIOCBONDENSLAVE:
4519 case SIOCBONDRELEASE:
4520 case SIOCBONDSETHWADDR:
4521 case SIOCBONDCHANGEACTIVE:
4522 case SIOCBRADDIF:
4523 case SIOCBRDELIF:
4524 case SIOCSHWTSTAMP:
4525 if (!capable(CAP_NET_ADMIN))
4526 return -EPERM;
4527 /* fall through */
4528 case SIOCBONDSLAVEINFOQUERY:
4529 case SIOCBONDINFOQUERY:
4530 dev_load(net, ifr.ifr_name);
4531 rtnl_lock();
4532 ret = dev_ifsioc(net, &ifr, cmd);
4533 rtnl_unlock();
4534 return ret;
4535
4536 case SIOCGIFMEM:
4537 /* Get the per device memory space. We can add this but
4538 * currently do not support it */
4539 case SIOCSIFMEM:
4540 /* Set the per device memory buffer space.
4541 * Not applicable in our case */
4542 case SIOCSIFLINK:
4543 return -EINVAL;
4544
4545 /*
4546 * Unknown or private ioctl.
4547 */
4548 default:
4549 if (cmd == SIOCWANDEV ||
4550 (cmd >= SIOCDEVPRIVATE &&
4551 cmd <= SIOCDEVPRIVATE + 15)) {
4552 dev_load(net, ifr.ifr_name);
4553 rtnl_lock();
4554 ret = dev_ifsioc(net, &ifr, cmd);
4555 rtnl_unlock();
4556 if (!ret && copy_to_user(arg, &ifr,
4557 sizeof(struct ifreq)))
4558 ret = -EFAULT;
4559 return ret;
4560 }
4561 /* Take care of Wireless Extensions */
4562 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4563 return wext_handle_ioctl(net, &ifr, cmd, arg);
4564 return -EINVAL;
4565 }
4566 }
4567
4568
4569 /**
4570 * dev_new_index - allocate an ifindex
4571 * @net: the applicable net namespace
4572 *
4573 * Returns a suitable unique value for a new device interface
4574 * number. The caller must hold the rtnl semaphore or the
4575 * dev_base_lock to be sure it remains unique.
4576 */
4577 static int dev_new_index(struct net *net)
4578 {
4579 static int ifindex;
4580 for (;;) {
4581 if (++ifindex <= 0)
4582 ifindex = 1;
4583 if (!__dev_get_by_index(net, ifindex))
4584 return ifindex;
4585 }
4586 }
4587
4588 /* Delayed registration/unregisteration */
4589 static LIST_HEAD(net_todo_list);
4590
4591 static void net_set_todo(struct net_device *dev)
4592 {
4593 list_add_tail(&dev->todo_list, &net_todo_list);
4594 }
4595
4596 static void rollback_registered_many(struct list_head *head)
4597 {
4598 struct net_device *dev, *tmp;
4599
4600 BUG_ON(dev_boot_phase);
4601 ASSERT_RTNL();
4602
4603 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4604 /* Some devices call without registering
4605 * for initialization unwind. Remove those
4606 * devices and proceed with the remaining.
4607 */
4608 if (dev->reg_state == NETREG_UNINITIALIZED) {
4609 pr_debug("unregister_netdevice: device %s/%p never "
4610 "was registered\n", dev->name, dev);
4611
4612 WARN_ON(1);
4613 list_del(&dev->unreg_list);
4614 continue;
4615 }
4616
4617 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4618
4619 /* If device is running, close it first. */
4620 dev_close(dev);
4621
4622 /* And unlink it from device chain. */
4623 unlist_netdevice(dev);
4624
4625 dev->reg_state = NETREG_UNREGISTERING;
4626 }
4627
4628 synchronize_net();
4629
4630 list_for_each_entry(dev, head, unreg_list) {
4631 /* Shutdown queueing discipline. */
4632 dev_shutdown(dev);
4633
4634
4635 /* Notify protocols, that we are about to destroy
4636 this device. They should clean all the things.
4637 */
4638 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4639
4640 if (!dev->rtnl_link_ops ||
4641 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4642 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4643
4644 /*
4645 * Flush the unicast and multicast chains
4646 */
4647 dev_uc_flush(dev);
4648 dev_mc_flush(dev);
4649
4650 if (dev->netdev_ops->ndo_uninit)
4651 dev->netdev_ops->ndo_uninit(dev);
4652
4653 /* Notifier chain MUST detach us from master device. */
4654 WARN_ON(dev->master);
4655
4656 /* Remove entries from kobject tree */
4657 netdev_unregister_kobject(dev);
4658 }
4659
4660 /* Process any work delayed until the end of the batch */
4661 dev = list_first_entry(head, struct net_device, unreg_list);
4662 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4663
4664 synchronize_net();
4665
4666 list_for_each_entry(dev, head, unreg_list)
4667 dev_put(dev);
4668 }
4669
4670 static void rollback_registered(struct net_device *dev)
4671 {
4672 LIST_HEAD(single);
4673
4674 list_add(&dev->unreg_list, &single);
4675 rollback_registered_many(&single);
4676 }
4677
4678 static void __netdev_init_queue_locks_one(struct net_device *dev,
4679 struct netdev_queue *dev_queue,
4680 void *_unused)
4681 {
4682 spin_lock_init(&dev_queue->_xmit_lock);
4683 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4684 dev_queue->xmit_lock_owner = -1;
4685 }
4686
4687 static void netdev_init_queue_locks(struct net_device *dev)
4688 {
4689 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4690 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4691 }
4692
4693 unsigned long netdev_fix_features(unsigned long features, const char *name)
4694 {
4695 /* Fix illegal SG+CSUM combinations. */
4696 if ((features & NETIF_F_SG) &&
4697 !(features & NETIF_F_ALL_CSUM)) {
4698 if (name)
4699 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4700 "checksum feature.\n", name);
4701 features &= ~NETIF_F_SG;
4702 }
4703
4704 /* TSO requires that SG is present as well. */
4705 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4706 if (name)
4707 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4708 "SG feature.\n", name);
4709 features &= ~NETIF_F_TSO;
4710 }
4711
4712 if (features & NETIF_F_UFO) {
4713 if (!(features & NETIF_F_GEN_CSUM)) {
4714 if (name)
4715 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4716 "since no NETIF_F_HW_CSUM feature.\n",
4717 name);
4718 features &= ~NETIF_F_UFO;
4719 }
4720
4721 if (!(features & NETIF_F_SG)) {
4722 if (name)
4723 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4724 "since no NETIF_F_SG feature.\n", name);
4725 features &= ~NETIF_F_UFO;
4726 }
4727 }
4728
4729 return features;
4730 }
4731 EXPORT_SYMBOL(netdev_fix_features);
4732
4733 /**
4734 * netif_stacked_transfer_operstate - transfer operstate
4735 * @rootdev: the root or lower level device to transfer state from
4736 * @dev: the device to transfer operstate to
4737 *
4738 * Transfer operational state from root to device. This is normally
4739 * called when a stacking relationship exists between the root
4740 * device and the device(a leaf device).
4741 */
4742 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4743 struct net_device *dev)
4744 {
4745 if (rootdev->operstate == IF_OPER_DORMANT)
4746 netif_dormant_on(dev);
4747 else
4748 netif_dormant_off(dev);
4749
4750 if (netif_carrier_ok(rootdev)) {
4751 if (!netif_carrier_ok(dev))
4752 netif_carrier_on(dev);
4753 } else {
4754 if (netif_carrier_ok(dev))
4755 netif_carrier_off(dev);
4756 }
4757 }
4758 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4759
4760 /**
4761 * register_netdevice - register a network device
4762 * @dev: device to register
4763 *
4764 * Take a completed network device structure and add it to the kernel
4765 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4766 * chain. 0 is returned on success. A negative errno code is returned
4767 * on a failure to set up the device, or if the name is a duplicate.
4768 *
4769 * Callers must hold the rtnl semaphore. You may want
4770 * register_netdev() instead of this.
4771 *
4772 * BUGS:
4773 * The locking appears insufficient to guarantee two parallel registers
4774 * will not get the same name.
4775 */
4776
4777 int register_netdevice(struct net_device *dev)
4778 {
4779 int ret;
4780 struct net *net = dev_net(dev);
4781
4782 BUG_ON(dev_boot_phase);
4783 ASSERT_RTNL();
4784
4785 might_sleep();
4786
4787 /* When net_device's are persistent, this will be fatal. */
4788 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4789 BUG_ON(!net);
4790
4791 spin_lock_init(&dev->addr_list_lock);
4792 netdev_set_addr_lockdep_class(dev);
4793 netdev_init_queue_locks(dev);
4794
4795 dev->iflink = -1;
4796
4797 #ifdef CONFIG_RPS
4798 if (!dev->num_rx_queues) {
4799 /*
4800 * Allocate a single RX queue if driver never called
4801 * alloc_netdev_mq
4802 */
4803
4804 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4805 if (!dev->_rx) {
4806 ret = -ENOMEM;
4807 goto out;
4808 }
4809
4810 dev->_rx->first = dev->_rx;
4811 atomic_set(&dev->_rx->count, 1);
4812 dev->num_rx_queues = 1;
4813 }
4814 #endif
4815 /* Init, if this function is available */
4816 if (dev->netdev_ops->ndo_init) {
4817 ret = dev->netdev_ops->ndo_init(dev);
4818 if (ret) {
4819 if (ret > 0)
4820 ret = -EIO;
4821 goto out;
4822 }
4823 }
4824
4825 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4826 if (ret)
4827 goto err_uninit;
4828
4829 dev->ifindex = dev_new_index(net);
4830 if (dev->iflink == -1)
4831 dev->iflink = dev->ifindex;
4832
4833 /* Fix illegal checksum combinations */
4834 if ((dev->features & NETIF_F_HW_CSUM) &&
4835 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4836 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4837 dev->name);
4838 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4839 }
4840
4841 if ((dev->features & NETIF_F_NO_CSUM) &&
4842 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4843 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4844 dev->name);
4845 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4846 }
4847
4848 dev->features = netdev_fix_features(dev->features, dev->name);
4849
4850 /* Enable software GSO if SG is supported. */
4851 if (dev->features & NETIF_F_SG)
4852 dev->features |= NETIF_F_GSO;
4853
4854 netdev_initialize_kobject(dev);
4855
4856 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4857 ret = notifier_to_errno(ret);
4858 if (ret)
4859 goto err_uninit;
4860
4861 ret = netdev_register_kobject(dev);
4862 if (ret)
4863 goto err_uninit;
4864 dev->reg_state = NETREG_REGISTERED;
4865
4866 /*
4867 * Default initial state at registry is that the
4868 * device is present.
4869 */
4870
4871 set_bit(__LINK_STATE_PRESENT, &dev->state);
4872
4873 dev_init_scheduler(dev);
4874 dev_hold(dev);
4875 list_netdevice(dev);
4876
4877 /* Notify protocols, that a new device appeared. */
4878 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4879 ret = notifier_to_errno(ret);
4880 if (ret) {
4881 rollback_registered(dev);
4882 dev->reg_state = NETREG_UNREGISTERED;
4883 }
4884 /*
4885 * Prevent userspace races by waiting until the network
4886 * device is fully setup before sending notifications.
4887 */
4888 if (!dev->rtnl_link_ops ||
4889 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4890 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4891
4892 out:
4893 return ret;
4894
4895 err_uninit:
4896 if (dev->netdev_ops->ndo_uninit)
4897 dev->netdev_ops->ndo_uninit(dev);
4898 goto out;
4899 }
4900 EXPORT_SYMBOL(register_netdevice);
4901
4902 /**
4903 * init_dummy_netdev - init a dummy network device for NAPI
4904 * @dev: device to init
4905 *
4906 * This takes a network device structure and initialize the minimum
4907 * amount of fields so it can be used to schedule NAPI polls without
4908 * registering a full blown interface. This is to be used by drivers
4909 * that need to tie several hardware interfaces to a single NAPI
4910 * poll scheduler due to HW limitations.
4911 */
4912 int init_dummy_netdev(struct net_device *dev)
4913 {
4914 /* Clear everything. Note we don't initialize spinlocks
4915 * are they aren't supposed to be taken by any of the
4916 * NAPI code and this dummy netdev is supposed to be
4917 * only ever used for NAPI polls
4918 */
4919 memset(dev, 0, sizeof(struct net_device));
4920
4921 /* make sure we BUG if trying to hit standard
4922 * register/unregister code path
4923 */
4924 dev->reg_state = NETREG_DUMMY;
4925
4926 /* initialize the ref count */
4927 atomic_set(&dev->refcnt, 1);
4928
4929 /* NAPI wants this */
4930 INIT_LIST_HEAD(&dev->napi_list);
4931
4932 /* a dummy interface is started by default */
4933 set_bit(__LINK_STATE_PRESENT, &dev->state);
4934 set_bit(__LINK_STATE_START, &dev->state);
4935
4936 return 0;
4937 }
4938 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4939
4940
4941 /**
4942 * register_netdev - register a network device
4943 * @dev: device to register
4944 *
4945 * Take a completed network device structure and add it to the kernel
4946 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4947 * chain. 0 is returned on success. A negative errno code is returned
4948 * on a failure to set up the device, or if the name is a duplicate.
4949 *
4950 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4951 * and expands the device name if you passed a format string to
4952 * alloc_netdev.
4953 */
4954 int register_netdev(struct net_device *dev)
4955 {
4956 int err;
4957
4958 rtnl_lock();
4959
4960 /*
4961 * If the name is a format string the caller wants us to do a
4962 * name allocation.
4963 */
4964 if (strchr(dev->name, '%')) {
4965 err = dev_alloc_name(dev, dev->name);
4966 if (err < 0)
4967 goto out;
4968 }
4969
4970 err = register_netdevice(dev);
4971 out:
4972 rtnl_unlock();
4973 return err;
4974 }
4975 EXPORT_SYMBOL(register_netdev);
4976
4977 /*
4978 * netdev_wait_allrefs - wait until all references are gone.
4979 *
4980 * This is called when unregistering network devices.
4981 *
4982 * Any protocol or device that holds a reference should register
4983 * for netdevice notification, and cleanup and put back the
4984 * reference if they receive an UNREGISTER event.
4985 * We can get stuck here if buggy protocols don't correctly
4986 * call dev_put.
4987 */
4988 static void netdev_wait_allrefs(struct net_device *dev)
4989 {
4990 unsigned long rebroadcast_time, warning_time;
4991
4992 linkwatch_forget_dev(dev);
4993
4994 rebroadcast_time = warning_time = jiffies;
4995 while (atomic_read(&dev->refcnt) != 0) {
4996 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4997 rtnl_lock();
4998
4999 /* Rebroadcast unregister notification */
5000 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5001 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5002 * should have already handle it the first time */
5003
5004 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5005 &dev->state)) {
5006 /* We must not have linkwatch events
5007 * pending on unregister. If this
5008 * happens, we simply run the queue
5009 * unscheduled, resulting in a noop
5010 * for this device.
5011 */
5012 linkwatch_run_queue();
5013 }
5014
5015 __rtnl_unlock();
5016
5017 rebroadcast_time = jiffies;
5018 }
5019
5020 msleep(250);
5021
5022 if (time_after(jiffies, warning_time + 10 * HZ)) {
5023 printk(KERN_EMERG "unregister_netdevice: "
5024 "waiting for %s to become free. Usage "
5025 "count = %d\n",
5026 dev->name, atomic_read(&dev->refcnt));
5027 warning_time = jiffies;
5028 }
5029 }
5030 }
5031
5032 /* The sequence is:
5033 *
5034 * rtnl_lock();
5035 * ...
5036 * register_netdevice(x1);
5037 * register_netdevice(x2);
5038 * ...
5039 * unregister_netdevice(y1);
5040 * unregister_netdevice(y2);
5041 * ...
5042 * rtnl_unlock();
5043 * free_netdev(y1);
5044 * free_netdev(y2);
5045 *
5046 * We are invoked by rtnl_unlock().
5047 * This allows us to deal with problems:
5048 * 1) We can delete sysfs objects which invoke hotplug
5049 * without deadlocking with linkwatch via keventd.
5050 * 2) Since we run with the RTNL semaphore not held, we can sleep
5051 * safely in order to wait for the netdev refcnt to drop to zero.
5052 *
5053 * We must not return until all unregister events added during
5054 * the interval the lock was held have been completed.
5055 */
5056 void netdev_run_todo(void)
5057 {
5058 struct list_head list;
5059
5060 /* Snapshot list, allow later requests */
5061 list_replace_init(&net_todo_list, &list);
5062
5063 __rtnl_unlock();
5064
5065 while (!list_empty(&list)) {
5066 struct net_device *dev
5067 = list_first_entry(&list, struct net_device, todo_list);
5068 list_del(&dev->todo_list);
5069
5070 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5071 printk(KERN_ERR "network todo '%s' but state %d\n",
5072 dev->name, dev->reg_state);
5073 dump_stack();
5074 continue;
5075 }
5076
5077 dev->reg_state = NETREG_UNREGISTERED;
5078
5079 on_each_cpu(flush_backlog, dev, 1);
5080
5081 netdev_wait_allrefs(dev);
5082
5083 /* paranoia */
5084 BUG_ON(atomic_read(&dev->refcnt));
5085 WARN_ON(dev->ip_ptr);
5086 WARN_ON(dev->ip6_ptr);
5087 WARN_ON(dev->dn_ptr);
5088
5089 if (dev->destructor)
5090 dev->destructor(dev);
5091
5092 /* Free network device */
5093 kobject_put(&dev->dev.kobj);
5094 }
5095 }
5096
5097 /**
5098 * dev_txq_stats_fold - fold tx_queues stats
5099 * @dev: device to get statistics from
5100 * @stats: struct net_device_stats to hold results
5101 */
5102 void dev_txq_stats_fold(const struct net_device *dev,
5103 struct net_device_stats *stats)
5104 {
5105 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5106 unsigned int i;
5107 struct netdev_queue *txq;
5108
5109 for (i = 0; i < dev->num_tx_queues; i++) {
5110 txq = netdev_get_tx_queue(dev, i);
5111 tx_bytes += txq->tx_bytes;
5112 tx_packets += txq->tx_packets;
5113 tx_dropped += txq->tx_dropped;
5114 }
5115 if (tx_bytes || tx_packets || tx_dropped) {
5116 stats->tx_bytes = tx_bytes;
5117 stats->tx_packets = tx_packets;
5118 stats->tx_dropped = tx_dropped;
5119 }
5120 }
5121 EXPORT_SYMBOL(dev_txq_stats_fold);
5122
5123 /**
5124 * dev_get_stats - get network device statistics
5125 * @dev: device to get statistics from
5126 *
5127 * Get network statistics from device. The device driver may provide
5128 * its own method by setting dev->netdev_ops->get_stats; otherwise
5129 * the internal statistics structure is used.
5130 */
5131 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5132 {
5133 const struct net_device_ops *ops = dev->netdev_ops;
5134
5135 if (ops->ndo_get_stats)
5136 return ops->ndo_get_stats(dev);
5137
5138 dev_txq_stats_fold(dev, &dev->stats);
5139 return &dev->stats;
5140 }
5141 EXPORT_SYMBOL(dev_get_stats);
5142
5143 static void netdev_init_one_queue(struct net_device *dev,
5144 struct netdev_queue *queue,
5145 void *_unused)
5146 {
5147 queue->dev = dev;
5148 }
5149
5150 static void netdev_init_queues(struct net_device *dev)
5151 {
5152 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5153 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5154 spin_lock_init(&dev->tx_global_lock);
5155 }
5156
5157 /**
5158 * alloc_netdev_mq - allocate network device
5159 * @sizeof_priv: size of private data to allocate space for
5160 * @name: device name format string
5161 * @setup: callback to initialize device
5162 * @queue_count: the number of subqueues to allocate
5163 *
5164 * Allocates a struct net_device with private data area for driver use
5165 * and performs basic initialization. Also allocates subquue structs
5166 * for each queue on the device at the end of the netdevice.
5167 */
5168 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5169 void (*setup)(struct net_device *), unsigned int queue_count)
5170 {
5171 struct netdev_queue *tx;
5172 struct net_device *dev;
5173 size_t alloc_size;
5174 struct net_device *p;
5175 #ifdef CONFIG_RPS
5176 struct netdev_rx_queue *rx;
5177 int i;
5178 #endif
5179
5180 BUG_ON(strlen(name) >= sizeof(dev->name));
5181
5182 alloc_size = sizeof(struct net_device);
5183 if (sizeof_priv) {
5184 /* ensure 32-byte alignment of private area */
5185 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5186 alloc_size += sizeof_priv;
5187 }
5188 /* ensure 32-byte alignment of whole construct */
5189 alloc_size += NETDEV_ALIGN - 1;
5190
5191 p = kzalloc(alloc_size, GFP_KERNEL);
5192 if (!p) {
5193 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5194 return NULL;
5195 }
5196
5197 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5198 if (!tx) {
5199 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5200 "tx qdiscs.\n");
5201 goto free_p;
5202 }
5203
5204 #ifdef CONFIG_RPS
5205 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5206 if (!rx) {
5207 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5208 "rx queues.\n");
5209 goto free_tx;
5210 }
5211
5212 atomic_set(&rx->count, queue_count);
5213
5214 /*
5215 * Set a pointer to first element in the array which holds the
5216 * reference count.
5217 */
5218 for (i = 0; i < queue_count; i++)
5219 rx[i].first = rx;
5220 #endif
5221
5222 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5223 dev->padded = (char *)dev - (char *)p;
5224
5225 if (dev_addr_init(dev))
5226 goto free_rx;
5227
5228 dev_mc_init(dev);
5229 dev_uc_init(dev);
5230
5231 dev_net_set(dev, &init_net);
5232
5233 dev->_tx = tx;
5234 dev->num_tx_queues = queue_count;
5235 dev->real_num_tx_queues = queue_count;
5236
5237 #ifdef CONFIG_RPS
5238 dev->_rx = rx;
5239 dev->num_rx_queues = queue_count;
5240 #endif
5241
5242 dev->gso_max_size = GSO_MAX_SIZE;
5243
5244 netdev_init_queues(dev);
5245
5246 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5247 dev->ethtool_ntuple_list.count = 0;
5248 INIT_LIST_HEAD(&dev->napi_list);
5249 INIT_LIST_HEAD(&dev->unreg_list);
5250 INIT_LIST_HEAD(&dev->link_watch_list);
5251 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5252 setup(dev);
5253 strcpy(dev->name, name);
5254 return dev;
5255
5256 free_rx:
5257 #ifdef CONFIG_RPS
5258 kfree(rx);
5259 free_tx:
5260 #endif
5261 kfree(tx);
5262 free_p:
5263 kfree(p);
5264 return NULL;
5265 }
5266 EXPORT_SYMBOL(alloc_netdev_mq);
5267
5268 /**
5269 * free_netdev - free network device
5270 * @dev: device
5271 *
5272 * This function does the last stage of destroying an allocated device
5273 * interface. The reference to the device object is released.
5274 * If this is the last reference then it will be freed.
5275 */
5276 void free_netdev(struct net_device *dev)
5277 {
5278 struct napi_struct *p, *n;
5279
5280 release_net(dev_net(dev));
5281
5282 kfree(dev->_tx);
5283
5284 /* Flush device addresses */
5285 dev_addr_flush(dev);
5286
5287 /* Clear ethtool n-tuple list */
5288 ethtool_ntuple_flush(dev);
5289
5290 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5291 netif_napi_del(p);
5292
5293 /* Compatibility with error handling in drivers */
5294 if (dev->reg_state == NETREG_UNINITIALIZED) {
5295 kfree((char *)dev - dev->padded);
5296 return;
5297 }
5298
5299 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5300 dev->reg_state = NETREG_RELEASED;
5301
5302 /* will free via device release */
5303 put_device(&dev->dev);
5304 }
5305 EXPORT_SYMBOL(free_netdev);
5306
5307 /**
5308 * synchronize_net - Synchronize with packet receive processing
5309 *
5310 * Wait for packets currently being received to be done.
5311 * Does not block later packets from starting.
5312 */
5313 void synchronize_net(void)
5314 {
5315 might_sleep();
5316 synchronize_rcu();
5317 }
5318 EXPORT_SYMBOL(synchronize_net);
5319
5320 /**
5321 * unregister_netdevice_queue - remove device from the kernel
5322 * @dev: device
5323 * @head: list
5324 *
5325 * This function shuts down a device interface and removes it
5326 * from the kernel tables.
5327 * If head not NULL, device is queued to be unregistered later.
5328 *
5329 * Callers must hold the rtnl semaphore. You may want
5330 * unregister_netdev() instead of this.
5331 */
5332
5333 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5334 {
5335 ASSERT_RTNL();
5336
5337 if (head) {
5338 list_move_tail(&dev->unreg_list, head);
5339 } else {
5340 rollback_registered(dev);
5341 /* Finish processing unregister after unlock */
5342 net_set_todo(dev);
5343 }
5344 }
5345 EXPORT_SYMBOL(unregister_netdevice_queue);
5346
5347 /**
5348 * unregister_netdevice_many - unregister many devices
5349 * @head: list of devices
5350 */
5351 void unregister_netdevice_many(struct list_head *head)
5352 {
5353 struct net_device *dev;
5354
5355 if (!list_empty(head)) {
5356 rollback_registered_many(head);
5357 list_for_each_entry(dev, head, unreg_list)
5358 net_set_todo(dev);
5359 }
5360 }
5361 EXPORT_SYMBOL(unregister_netdevice_many);
5362
5363 /**
5364 * unregister_netdev - remove device from the kernel
5365 * @dev: device
5366 *
5367 * This function shuts down a device interface and removes it
5368 * from the kernel tables.
5369 *
5370 * This is just a wrapper for unregister_netdevice that takes
5371 * the rtnl semaphore. In general you want to use this and not
5372 * unregister_netdevice.
5373 */
5374 void unregister_netdev(struct net_device *dev)
5375 {
5376 rtnl_lock();
5377 unregister_netdevice(dev);
5378 rtnl_unlock();
5379 }
5380 EXPORT_SYMBOL(unregister_netdev);
5381
5382 /**
5383 * dev_change_net_namespace - move device to different nethost namespace
5384 * @dev: device
5385 * @net: network namespace
5386 * @pat: If not NULL name pattern to try if the current device name
5387 * is already taken in the destination network namespace.
5388 *
5389 * This function shuts down a device interface and moves it
5390 * to a new network namespace. On success 0 is returned, on
5391 * a failure a netagive errno code is returned.
5392 *
5393 * Callers must hold the rtnl semaphore.
5394 */
5395
5396 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5397 {
5398 int err;
5399
5400 ASSERT_RTNL();
5401
5402 /* Don't allow namespace local devices to be moved. */
5403 err = -EINVAL;
5404 if (dev->features & NETIF_F_NETNS_LOCAL)
5405 goto out;
5406
5407 #ifdef CONFIG_SYSFS
5408 /* Don't allow real devices to be moved when sysfs
5409 * is enabled.
5410 */
5411 err = -EINVAL;
5412 if (dev->dev.parent)
5413 goto out;
5414 #endif
5415
5416 /* Ensure the device has been registrered */
5417 err = -EINVAL;
5418 if (dev->reg_state != NETREG_REGISTERED)
5419 goto out;
5420
5421 /* Get out if there is nothing todo */
5422 err = 0;
5423 if (net_eq(dev_net(dev), net))
5424 goto out;
5425
5426 /* Pick the destination device name, and ensure
5427 * we can use it in the destination network namespace.
5428 */
5429 err = -EEXIST;
5430 if (__dev_get_by_name(net, dev->name)) {
5431 /* We get here if we can't use the current device name */
5432 if (!pat)
5433 goto out;
5434 if (dev_get_valid_name(net, pat, dev->name, 1))
5435 goto out;
5436 }
5437
5438 /*
5439 * And now a mini version of register_netdevice unregister_netdevice.
5440 */
5441
5442 /* If device is running close it first. */
5443 dev_close(dev);
5444
5445 /* And unlink it from device chain */
5446 err = -ENODEV;
5447 unlist_netdevice(dev);
5448
5449 synchronize_net();
5450
5451 /* Shutdown queueing discipline. */
5452 dev_shutdown(dev);
5453
5454 /* Notify protocols, that we are about to destroy
5455 this device. They should clean all the things.
5456 */
5457 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5458 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5459
5460 /*
5461 * Flush the unicast and multicast chains
5462 */
5463 dev_uc_flush(dev);
5464 dev_mc_flush(dev);
5465
5466 netdev_unregister_kobject(dev);
5467
5468 /* Actually switch the network namespace */
5469 dev_net_set(dev, net);
5470
5471 /* If there is an ifindex conflict assign a new one */
5472 if (__dev_get_by_index(net, dev->ifindex)) {
5473 int iflink = (dev->iflink == dev->ifindex);
5474 dev->ifindex = dev_new_index(net);
5475 if (iflink)
5476 dev->iflink = dev->ifindex;
5477 }
5478
5479 /* Fixup kobjects */
5480 err = netdev_register_kobject(dev);
5481 WARN_ON(err);
5482
5483 /* Add the device back in the hashes */
5484 list_netdevice(dev);
5485
5486 /* Notify protocols, that a new device appeared. */
5487 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5488
5489 /*
5490 * Prevent userspace races by waiting until the network
5491 * device is fully setup before sending notifications.
5492 */
5493 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5494
5495 synchronize_net();
5496 err = 0;
5497 out:
5498 return err;
5499 }
5500 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5501
5502 static int dev_cpu_callback(struct notifier_block *nfb,
5503 unsigned long action,
5504 void *ocpu)
5505 {
5506 struct sk_buff **list_skb;
5507 struct Qdisc **list_net;
5508 struct sk_buff *skb;
5509 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5510 struct softnet_data *sd, *oldsd;
5511
5512 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5513 return NOTIFY_OK;
5514
5515 local_irq_disable();
5516 cpu = smp_processor_id();
5517 sd = &per_cpu(softnet_data, cpu);
5518 oldsd = &per_cpu(softnet_data, oldcpu);
5519
5520 /* Find end of our completion_queue. */
5521 list_skb = &sd->completion_queue;
5522 while (*list_skb)
5523 list_skb = &(*list_skb)->next;
5524 /* Append completion queue from offline CPU. */
5525 *list_skb = oldsd->completion_queue;
5526 oldsd->completion_queue = NULL;
5527
5528 /* Find end of our output_queue. */
5529 list_net = &sd->output_queue;
5530 while (*list_net)
5531 list_net = &(*list_net)->next_sched;
5532 /* Append output queue from offline CPU. */
5533 *list_net = oldsd->output_queue;
5534 oldsd->output_queue = NULL;
5535
5536 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5537 local_irq_enable();
5538
5539 /* Process offline CPU's input_pkt_queue */
5540 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5541 netif_rx(skb);
5542
5543 return NOTIFY_OK;
5544 }
5545
5546
5547 /**
5548 * netdev_increment_features - increment feature set by one
5549 * @all: current feature set
5550 * @one: new feature set
5551 * @mask: mask feature set
5552 *
5553 * Computes a new feature set after adding a device with feature set
5554 * @one to the master device with current feature set @all. Will not
5555 * enable anything that is off in @mask. Returns the new feature set.
5556 */
5557 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5558 unsigned long mask)
5559 {
5560 /* If device needs checksumming, downgrade to it. */
5561 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5562 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5563 else if (mask & NETIF_F_ALL_CSUM) {
5564 /* If one device supports v4/v6 checksumming, set for all. */
5565 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5566 !(all & NETIF_F_GEN_CSUM)) {
5567 all &= ~NETIF_F_ALL_CSUM;
5568 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5569 }
5570
5571 /* If one device supports hw checksumming, set for all. */
5572 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5573 all &= ~NETIF_F_ALL_CSUM;
5574 all |= NETIF_F_HW_CSUM;
5575 }
5576 }
5577
5578 one |= NETIF_F_ALL_CSUM;
5579
5580 one |= all & NETIF_F_ONE_FOR_ALL;
5581 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5582 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5583
5584 return all;
5585 }
5586 EXPORT_SYMBOL(netdev_increment_features);
5587
5588 static struct hlist_head *netdev_create_hash(void)
5589 {
5590 int i;
5591 struct hlist_head *hash;
5592
5593 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5594 if (hash != NULL)
5595 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5596 INIT_HLIST_HEAD(&hash[i]);
5597
5598 return hash;
5599 }
5600
5601 /* Initialize per network namespace state */
5602 static int __net_init netdev_init(struct net *net)
5603 {
5604 INIT_LIST_HEAD(&net->dev_base_head);
5605
5606 net->dev_name_head = netdev_create_hash();
5607 if (net->dev_name_head == NULL)
5608 goto err_name;
5609
5610 net->dev_index_head = netdev_create_hash();
5611 if (net->dev_index_head == NULL)
5612 goto err_idx;
5613
5614 return 0;
5615
5616 err_idx:
5617 kfree(net->dev_name_head);
5618 err_name:
5619 return -ENOMEM;
5620 }
5621
5622 /**
5623 * netdev_drivername - network driver for the device
5624 * @dev: network device
5625 * @buffer: buffer for resulting name
5626 * @len: size of buffer
5627 *
5628 * Determine network driver for device.
5629 */
5630 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5631 {
5632 const struct device_driver *driver;
5633 const struct device *parent;
5634
5635 if (len <= 0 || !buffer)
5636 return buffer;
5637 buffer[0] = 0;
5638
5639 parent = dev->dev.parent;
5640
5641 if (!parent)
5642 return buffer;
5643
5644 driver = parent->driver;
5645 if (driver && driver->name)
5646 strlcpy(buffer, driver->name, len);
5647 return buffer;
5648 }
5649
5650 static void __net_exit netdev_exit(struct net *net)
5651 {
5652 kfree(net->dev_name_head);
5653 kfree(net->dev_index_head);
5654 }
5655
5656 static struct pernet_operations __net_initdata netdev_net_ops = {
5657 .init = netdev_init,
5658 .exit = netdev_exit,
5659 };
5660
5661 static void __net_exit default_device_exit(struct net *net)
5662 {
5663 struct net_device *dev, *aux;
5664 /*
5665 * Push all migratable network devices back to the
5666 * initial network namespace
5667 */
5668 rtnl_lock();
5669 for_each_netdev_safe(net, dev, aux) {
5670 int err;
5671 char fb_name[IFNAMSIZ];
5672
5673 /* Ignore unmoveable devices (i.e. loopback) */
5674 if (dev->features & NETIF_F_NETNS_LOCAL)
5675 continue;
5676
5677 /* Leave virtual devices for the generic cleanup */
5678 if (dev->rtnl_link_ops)
5679 continue;
5680
5681 /* Push remaing network devices to init_net */
5682 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5683 err = dev_change_net_namespace(dev, &init_net, fb_name);
5684 if (err) {
5685 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5686 __func__, dev->name, err);
5687 BUG();
5688 }
5689 }
5690 rtnl_unlock();
5691 }
5692
5693 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5694 {
5695 /* At exit all network devices most be removed from a network
5696 * namespace. Do this in the reverse order of registeration.
5697 * Do this across as many network namespaces as possible to
5698 * improve batching efficiency.
5699 */
5700 struct net_device *dev;
5701 struct net *net;
5702 LIST_HEAD(dev_kill_list);
5703
5704 rtnl_lock();
5705 list_for_each_entry(net, net_list, exit_list) {
5706 for_each_netdev_reverse(net, dev) {
5707 if (dev->rtnl_link_ops)
5708 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5709 else
5710 unregister_netdevice_queue(dev, &dev_kill_list);
5711 }
5712 }
5713 unregister_netdevice_many(&dev_kill_list);
5714 rtnl_unlock();
5715 }
5716
5717 static struct pernet_operations __net_initdata default_device_ops = {
5718 .exit = default_device_exit,
5719 .exit_batch = default_device_exit_batch,
5720 };
5721
5722 /*
5723 * Initialize the DEV module. At boot time this walks the device list and
5724 * unhooks any devices that fail to initialise (normally hardware not
5725 * present) and leaves us with a valid list of present and active devices.
5726 *
5727 */
5728
5729 /*
5730 * This is called single threaded during boot, so no need
5731 * to take the rtnl semaphore.
5732 */
5733 static int __init net_dev_init(void)
5734 {
5735 int i, rc = -ENOMEM;
5736
5737 BUG_ON(!dev_boot_phase);
5738
5739 if (dev_proc_init())
5740 goto out;
5741
5742 if (netdev_kobject_init())
5743 goto out;
5744
5745 INIT_LIST_HEAD(&ptype_all);
5746 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5747 INIT_LIST_HEAD(&ptype_base[i]);
5748
5749 if (register_pernet_subsys(&netdev_net_ops))
5750 goto out;
5751
5752 /*
5753 * Initialise the packet receive queues.
5754 */
5755
5756 for_each_possible_cpu(i) {
5757 struct softnet_data *queue;
5758
5759 queue = &per_cpu(softnet_data, i);
5760 skb_queue_head_init(&queue->input_pkt_queue);
5761 queue->completion_queue = NULL;
5762 INIT_LIST_HEAD(&queue->poll_list);
5763
5764 #ifdef CONFIG_RPS
5765 queue->csd.func = trigger_softirq;
5766 queue->csd.info = queue;
5767 queue->csd.flags = 0;
5768 #endif
5769
5770 queue->backlog.poll = process_backlog;
5771 queue->backlog.weight = weight_p;
5772 queue->backlog.gro_list = NULL;
5773 queue->backlog.gro_count = 0;
5774 }
5775
5776 dev_boot_phase = 0;
5777
5778 /* The loopback device is special if any other network devices
5779 * is present in a network namespace the loopback device must
5780 * be present. Since we now dynamically allocate and free the
5781 * loopback device ensure this invariant is maintained by
5782 * keeping the loopback device as the first device on the
5783 * list of network devices. Ensuring the loopback devices
5784 * is the first device that appears and the last network device
5785 * that disappears.
5786 */
5787 if (register_pernet_device(&loopback_net_ops))
5788 goto out;
5789
5790 if (register_pernet_device(&default_device_ops))
5791 goto out;
5792
5793 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5794 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5795
5796 hotcpu_notifier(dev_cpu_callback, 0);
5797 dst_init();
5798 dev_mcast_init();
5799 rc = 0;
5800 out:
5801 return rc;
5802 }
5803
5804 subsys_initcall(net_dev_init);
5805
5806 static int __init initialize_hashrnd(void)
5807 {
5808 get_random_bytes(&hashrnd, sizeof(hashrnd));
5809 return 0;
5810 }
5811
5812 late_initcall_sync(initialize_hashrnd);
5813
This page took 0.14603 seconds and 4 git commands to generate.