Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 char *new_ifalias;
1059
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1077
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1080 }
1081
1082
1083 /**
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed features.
1088 */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094
1095 /**
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1102 */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 }
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117
1118 /**
1119 * dev_load - load a network module
1120 * @net: the applicable net namespace
1121 * @name: name of interface
1122 *
1123 * If a network interface is not present and the process has suitable
1124 * privileges this function loads the module. If module loading is not
1125 * available in this kernel then it becomes a nop.
1126 */
1127
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 struct net_device *dev;
1131 int no_module;
1132
1133 rcu_read_lock();
1134 dev = dev_get_by_name_rcu(net, name);
1135 rcu_read_unlock();
1136
1137 no_module = !dev;
1138 if (no_module && capable(CAP_NET_ADMIN))
1139 no_module = request_module("netdev-%s", name);
1140 if (no_module && capable(CAP_SYS_MODULE)) {
1141 if (!request_module("%s", name))
1142 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 name);
1144 }
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 add_device_randomness(dev->dev_addr, dev->addr_len);
1179 }
1180
1181 return ret;
1182 }
1183
1184 /**
1185 * dev_open - prepare an interface for use.
1186 * @dev: device to open
1187 *
1188 * Takes a device from down to up state. The device's private open
1189 * function is invoked and then the multicast lists are loaded. Finally
1190 * the device is moved into the up state and a %NETDEV_UP message is
1191 * sent to the netdev notifier chain.
1192 *
1193 * Calling this function on an active interface is a nop. On a failure
1194 * a negative errno code is returned.
1195 */
1196 int dev_open(struct net_device *dev)
1197 {
1198 int ret;
1199
1200 if (dev->flags & IFF_UP)
1201 return 0;
1202
1203 ret = __dev_open(dev);
1204 if (ret < 0)
1205 return ret;
1206
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 call_netdevice_notifiers(NETDEV_UP, dev);
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 struct net_device *dev;
1217
1218 ASSERT_RTNL();
1219 might_sleep();
1220
1221 list_for_each_entry(dev, head, unreg_list) {
1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223
1224 clear_bit(__LINK_STATE_START, &dev->state);
1225
1226 /* Synchronize to scheduled poll. We cannot touch poll list, it
1227 * can be even on different cpu. So just clear netif_running().
1228 *
1229 * dev->stop() will invoke napi_disable() on all of it's
1230 * napi_struct instances on this device.
1231 */
1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 }
1234
1235 dev_deactivate_many(head);
1236
1237 list_for_each_entry(dev, head, unreg_list) {
1238 const struct net_device_ops *ops = dev->netdev_ops;
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 dev->flags &= ~IFF_UP;
1251 net_dmaengine_put();
1252 }
1253
1254 return 0;
1255 }
1256
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 int retval;
1260 LIST_HEAD(single);
1261
1262 list_add(&dev->unreg_list, &single);
1263 retval = __dev_close_many(&single);
1264 list_del(&single);
1265 return retval;
1266 }
1267
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 struct net_device *dev, *tmp;
1271 LIST_HEAD(tmp_list);
1272
1273 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 if (!(dev->flags & IFF_UP))
1275 list_move(&dev->unreg_list, &tmp_list);
1276
1277 __dev_close_many(head);
1278
1279 list_for_each_entry(dev, head, unreg_list) {
1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 }
1283
1284 /* rollback_registered_many needs the complete original list */
1285 list_splice(&tmp_list, head);
1286 return 0;
1287 }
1288
1289 /**
1290 * dev_close - shutdown an interface.
1291 * @dev: device to shutdown
1292 *
1293 * This function moves an active device into down state. A
1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296 * chain.
1297 */
1298 int dev_close(struct net_device *dev)
1299 {
1300 if (dev->flags & IFF_UP) {
1301 LIST_HEAD(single);
1302
1303 list_add(&dev->unreg_list, &single);
1304 dev_close_many(&single);
1305 list_del(&single);
1306 }
1307 return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310
1311
1312 /**
1313 * dev_disable_lro - disable Large Receive Offload on a device
1314 * @dev: device
1315 *
1316 * Disable Large Receive Offload (LRO) on a net device. Must be
1317 * called under RTNL. This is needed if received packets may be
1318 * forwarded to another interface.
1319 */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 /*
1323 * If we're trying to disable lro on a vlan device
1324 * use the underlying physical device instead
1325 */
1326 if (is_vlan_dev(dev))
1327 dev = vlan_dev_real_dev(dev);
1328
1329 dev->wanted_features &= ~NETIF_F_LRO;
1330 netdev_update_features(dev);
1331
1332 if (unlikely(dev->features & NETIF_F_LRO))
1333 netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336
1337
1338 static int dev_boot_phase = 1;
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 goto outroll;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 outroll:
1402 raw_notifier_chain_unregister(&netdev_chain, nb);
1403 goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406
1407 /**
1408 * unregister_netdevice_notifier - unregister a network notifier block
1409 * @nb: notifier
1410 *
1411 * Unregister a notifier previously registered by
1412 * register_netdevice_notifier(). The notifier is unlinked into the
1413 * kernel structures and may then be reused. A negative errno code
1414 * is returned on a failure.
1415 *
1416 * After unregistering unregister and down device events are synthesized
1417 * for all devices on the device list to the removed notifier to remove
1418 * the need for special case cleanup code.
1419 */
1420
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 struct net_device *dev;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431
1432 for_each_net(net) {
1433 for_each_netdev(net, dev) {
1434 if (dev->flags & IFF_UP) {
1435 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 }
1438 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 }
1441 }
1442 unlock:
1443 rtnl_unlock();
1444 return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447
1448 /**
1449 * call_netdevice_notifiers - call all network notifier blocks
1450 * @val: value passed unmodified to notifier function
1451 * @dev: net_device pointer passed unmodified to notifier function
1452 *
1453 * Call all network notifier blocks. Parameters and return value
1454 * are as for raw_notifier_call_chain().
1455 */
1456
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 ASSERT_RTNL();
1460 return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467 * If net_disable_timestamp() is called from irq context, defer the
1468 * static_key_slow_dec() calls.
1469 */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477
1478 if (deferred) {
1479 while (--deferred)
1480 static_key_slow_dec(&netstamp_needed);
1481 return;
1482 }
1483 #endif
1484 WARN_ON(in_interrupt());
1485 static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 if (in_interrupt()) {
1493 atomic_inc(&netstamp_needed_deferred);
1494 return;
1495 }
1496 #endif
1497 static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 skb->tstamp.tv64 = 0;
1504 if (static_key_false(&netstamp_needed))
1505 __net_timestamp(skb);
1506 }
1507
1508 #define net_timestamp_check(COND, SKB) \
1509 if (static_key_false(&netstamp_needed)) { \
1510 if ((COND) && !(SKB)->tstamp.tv64) \
1511 __net_timestamp(SKB); \
1512 } \
1513
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 struct hwtstamp_config cfg;
1517 enum hwtstamp_tx_types tx_type;
1518 enum hwtstamp_rx_filters rx_filter;
1519 int tx_type_valid = 0;
1520 int rx_filter_valid = 0;
1521
1522 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 return -EFAULT;
1524
1525 if (cfg.flags) /* reserved for future extensions */
1526 return -EINVAL;
1527
1528 tx_type = cfg.tx_type;
1529 rx_filter = cfg.rx_filter;
1530
1531 switch (tx_type) {
1532 case HWTSTAMP_TX_OFF:
1533 case HWTSTAMP_TX_ON:
1534 case HWTSTAMP_TX_ONESTEP_SYNC:
1535 tx_type_valid = 1;
1536 break;
1537 }
1538
1539 switch (rx_filter) {
1540 case HWTSTAMP_FILTER_NONE:
1541 case HWTSTAMP_FILTER_ALL:
1542 case HWTSTAMP_FILTER_SOME:
1543 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 rx_filter_valid = 1;
1556 break;
1557 }
1558
1559 if (!tx_type_valid || !rx_filter_valid)
1560 return -ERANGE;
1561
1562 return 0;
1563 }
1564
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 struct sk_buff *skb)
1567 {
1568 unsigned int len;
1569
1570 if (!(dev->flags & IFF_UP))
1571 return false;
1572
1573 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 if (skb->len <= len)
1575 return true;
1576
1577 /* if TSO is enabled, we don't care about the length as the packet
1578 * could be forwarded without being segmented before
1579 */
1580 if (skb_is_gso(skb))
1581 return true;
1582
1583 return false;
1584 }
1585
1586 /**
1587 * dev_forward_skb - loopback an skb to another netif
1588 *
1589 * @dev: destination network device
1590 * @skb: buffer to forward
1591 *
1592 * return values:
1593 * NET_RX_SUCCESS (no congestion)
1594 * NET_RX_DROP (packet was dropped, but freed)
1595 *
1596 * dev_forward_skb can be used for injecting an skb from the
1597 * start_xmit function of one device into the receive queue
1598 * of another device.
1599 *
1600 * The receiving device may be in another namespace, so
1601 * we have to clear all information in the skb that could
1602 * impact namespace isolation.
1603 */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 atomic_long_inc(&dev->rx_dropped);
1609 kfree_skb(skb);
1610 return NET_RX_DROP;
1611 }
1612 }
1613
1614 skb_orphan(skb);
1615 nf_reset(skb);
1616
1617 if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 skb->skb_iif = 0;
1623 skb->dev = dev;
1624 skb_dst_drop(skb);
1625 skb->tstamp.tv64 = 0;
1626 skb->pkt_type = PACKET_HOST;
1627 skb->protocol = eth_type_trans(skb, dev);
1628 skb->mark = 0;
1629 secpath_reset(skb);
1630 nf_reset(skb);
1631 return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 struct packet_type *pt_prev,
1637 struct net_device *orig_dev)
1638 {
1639 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 return -ENOMEM;
1641 atomic_inc(&skb->users);
1642 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644
1645 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1646 {
1647 if (ptype->af_packet_priv == NULL)
1648 return false;
1649
1650 if (ptype->id_match)
1651 return ptype->id_match(ptype, skb->sk);
1652 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1653 return true;
1654
1655 return false;
1656 }
1657
1658 /*
1659 * Support routine. Sends outgoing frames to any network
1660 * taps currently in use.
1661 */
1662
1663 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1664 {
1665 struct packet_type *ptype;
1666 struct sk_buff *skb2 = NULL;
1667 struct packet_type *pt_prev = NULL;
1668
1669 rcu_read_lock();
1670 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1671 /* Never send packets back to the socket
1672 * they originated from - MvS (miquels@drinkel.ow.org)
1673 */
1674 if ((ptype->dev == dev || !ptype->dev) &&
1675 (!skb_loop_sk(ptype, skb))) {
1676 if (pt_prev) {
1677 deliver_skb(skb2, pt_prev, skb->dev);
1678 pt_prev = ptype;
1679 continue;
1680 }
1681
1682 skb2 = skb_clone(skb, GFP_ATOMIC);
1683 if (!skb2)
1684 break;
1685
1686 net_timestamp_set(skb2);
1687
1688 /* skb->nh should be correctly
1689 set by sender, so that the second statement is
1690 just protection against buggy protocols.
1691 */
1692 skb_reset_mac_header(skb2);
1693
1694 if (skb_network_header(skb2) < skb2->data ||
1695 skb2->network_header > skb2->tail) {
1696 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1697 ntohs(skb2->protocol),
1698 dev->name);
1699 skb_reset_network_header(skb2);
1700 }
1701
1702 skb2->transport_header = skb2->network_header;
1703 skb2->pkt_type = PACKET_OUTGOING;
1704 pt_prev = ptype;
1705 }
1706 }
1707 if (pt_prev)
1708 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1709 rcu_read_unlock();
1710 }
1711
1712 /**
1713 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1714 * @dev: Network device
1715 * @txq: number of queues available
1716 *
1717 * If real_num_tx_queues is changed the tc mappings may no longer be
1718 * valid. To resolve this verify the tc mapping remains valid and if
1719 * not NULL the mapping. With no priorities mapping to this
1720 * offset/count pair it will no longer be used. In the worst case TC0
1721 * is invalid nothing can be done so disable priority mappings. If is
1722 * expected that drivers will fix this mapping if they can before
1723 * calling netif_set_real_num_tx_queues.
1724 */
1725 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1726 {
1727 int i;
1728 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1729
1730 /* If TC0 is invalidated disable TC mapping */
1731 if (tc->offset + tc->count > txq) {
1732 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1733 dev->num_tc = 0;
1734 return;
1735 }
1736
1737 /* Invalidated prio to tc mappings set to TC0 */
1738 for (i = 1; i < TC_BITMASK + 1; i++) {
1739 int q = netdev_get_prio_tc_map(dev, i);
1740
1741 tc = &dev->tc_to_txq[q];
1742 if (tc->offset + tc->count > txq) {
1743 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1744 i, q);
1745 netdev_set_prio_tc_map(dev, i, 0);
1746 }
1747 }
1748 }
1749
1750 /*
1751 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1752 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1753 */
1754 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1755 {
1756 int rc;
1757
1758 if (txq < 1 || txq > dev->num_tx_queues)
1759 return -EINVAL;
1760
1761 if (dev->reg_state == NETREG_REGISTERED ||
1762 dev->reg_state == NETREG_UNREGISTERING) {
1763 ASSERT_RTNL();
1764
1765 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1766 txq);
1767 if (rc)
1768 return rc;
1769
1770 if (dev->num_tc)
1771 netif_setup_tc(dev, txq);
1772
1773 if (txq < dev->real_num_tx_queues)
1774 qdisc_reset_all_tx_gt(dev, txq);
1775 }
1776
1777 dev->real_num_tx_queues = txq;
1778 return 0;
1779 }
1780 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1781
1782 #ifdef CONFIG_RPS
1783 /**
1784 * netif_set_real_num_rx_queues - set actual number of RX queues used
1785 * @dev: Network device
1786 * @rxq: Actual number of RX queues
1787 *
1788 * This must be called either with the rtnl_lock held or before
1789 * registration of the net device. Returns 0 on success, or a
1790 * negative error code. If called before registration, it always
1791 * succeeds.
1792 */
1793 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1794 {
1795 int rc;
1796
1797 if (rxq < 1 || rxq > dev->num_rx_queues)
1798 return -EINVAL;
1799
1800 if (dev->reg_state == NETREG_REGISTERED) {
1801 ASSERT_RTNL();
1802
1803 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1804 rxq);
1805 if (rc)
1806 return rc;
1807 }
1808
1809 dev->real_num_rx_queues = rxq;
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1813 #endif
1814
1815 /**
1816 * netif_get_num_default_rss_queues - default number of RSS queues
1817 *
1818 * This routine should set an upper limit on the number of RSS queues
1819 * used by default by multiqueue devices.
1820 */
1821 int netif_get_num_default_rss_queues(void)
1822 {
1823 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1824 }
1825 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1826
1827 static inline void __netif_reschedule(struct Qdisc *q)
1828 {
1829 struct softnet_data *sd;
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
1833 sd = &__get_cpu_var(softnet_data);
1834 q->next_sched = NULL;
1835 *sd->output_queue_tailp = q;
1836 sd->output_queue_tailp = &q->next_sched;
1837 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1838 local_irq_restore(flags);
1839 }
1840
1841 void __netif_schedule(struct Qdisc *q)
1842 {
1843 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1844 __netif_reschedule(q);
1845 }
1846 EXPORT_SYMBOL(__netif_schedule);
1847
1848 void dev_kfree_skb_irq(struct sk_buff *skb)
1849 {
1850 if (atomic_dec_and_test(&skb->users)) {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 skb->next = sd->completion_queue;
1857 sd->completion_queue = skb;
1858 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1859 local_irq_restore(flags);
1860 }
1861 }
1862 EXPORT_SYMBOL(dev_kfree_skb_irq);
1863
1864 void dev_kfree_skb_any(struct sk_buff *skb)
1865 {
1866 if (in_irq() || irqs_disabled())
1867 dev_kfree_skb_irq(skb);
1868 else
1869 dev_kfree_skb(skb);
1870 }
1871 EXPORT_SYMBOL(dev_kfree_skb_any);
1872
1873
1874 /**
1875 * netif_device_detach - mark device as removed
1876 * @dev: network device
1877 *
1878 * Mark device as removed from system and therefore no longer available.
1879 */
1880 void netif_device_detach(struct net_device *dev)
1881 {
1882 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1883 netif_running(dev)) {
1884 netif_tx_stop_all_queues(dev);
1885 }
1886 }
1887 EXPORT_SYMBOL(netif_device_detach);
1888
1889 /**
1890 * netif_device_attach - mark device as attached
1891 * @dev: network device
1892 *
1893 * Mark device as attached from system and restart if needed.
1894 */
1895 void netif_device_attach(struct net_device *dev)
1896 {
1897 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1898 netif_running(dev)) {
1899 netif_tx_wake_all_queues(dev);
1900 __netdev_watchdog_up(dev);
1901 }
1902 }
1903 EXPORT_SYMBOL(netif_device_attach);
1904
1905 static void skb_warn_bad_offload(const struct sk_buff *skb)
1906 {
1907 static const netdev_features_t null_features = 0;
1908 struct net_device *dev = skb->dev;
1909 const char *driver = "";
1910
1911 if (dev && dev->dev.parent)
1912 driver = dev_driver_string(dev->dev.parent);
1913
1914 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1915 "gso_type=%d ip_summed=%d\n",
1916 driver, dev ? &dev->features : &null_features,
1917 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1918 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1919 skb_shinfo(skb)->gso_type, skb->ip_summed);
1920 }
1921
1922 /*
1923 * Invalidate hardware checksum when packet is to be mangled, and
1924 * complete checksum manually on outgoing path.
1925 */
1926 int skb_checksum_help(struct sk_buff *skb)
1927 {
1928 __wsum csum;
1929 int ret = 0, offset;
1930
1931 if (skb->ip_summed == CHECKSUM_COMPLETE)
1932 goto out_set_summed;
1933
1934 if (unlikely(skb_shinfo(skb)->gso_size)) {
1935 skb_warn_bad_offload(skb);
1936 return -EINVAL;
1937 }
1938
1939 offset = skb_checksum_start_offset(skb);
1940 BUG_ON(offset >= skb_headlen(skb));
1941 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1942
1943 offset += skb->csum_offset;
1944 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1945
1946 if (skb_cloned(skb) &&
1947 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1948 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1949 if (ret)
1950 goto out;
1951 }
1952
1953 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1954 out_set_summed:
1955 skb->ip_summed = CHECKSUM_NONE;
1956 out:
1957 return ret;
1958 }
1959 EXPORT_SYMBOL(skb_checksum_help);
1960
1961 /**
1962 * skb_gso_segment - Perform segmentation on skb.
1963 * @skb: buffer to segment
1964 * @features: features for the output path (see dev->features)
1965 *
1966 * This function segments the given skb and returns a list of segments.
1967 *
1968 * It may return NULL if the skb requires no segmentation. This is
1969 * only possible when GSO is used for verifying header integrity.
1970 */
1971 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1972 netdev_features_t features)
1973 {
1974 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1975 struct packet_type *ptype;
1976 __be16 type = skb->protocol;
1977 int vlan_depth = ETH_HLEN;
1978 int err;
1979
1980 while (type == htons(ETH_P_8021Q)) {
1981 struct vlan_hdr *vh;
1982
1983 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1984 return ERR_PTR(-EINVAL);
1985
1986 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1987 type = vh->h_vlan_encapsulated_proto;
1988 vlan_depth += VLAN_HLEN;
1989 }
1990
1991 skb_reset_mac_header(skb);
1992 skb->mac_len = skb->network_header - skb->mac_header;
1993 __skb_pull(skb, skb->mac_len);
1994
1995 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 skb_warn_bad_offload(skb);
1997
1998 if (skb_header_cloned(skb) &&
1999 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2000 return ERR_PTR(err);
2001 }
2002
2003 rcu_read_lock();
2004 list_for_each_entry_rcu(ptype,
2005 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2006 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2007 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2008 err = ptype->gso_send_check(skb);
2009 segs = ERR_PTR(err);
2010 if (err || skb_gso_ok(skb, features))
2011 break;
2012 __skb_push(skb, (skb->data -
2013 skb_network_header(skb)));
2014 }
2015 segs = ptype->gso_segment(skb, features);
2016 break;
2017 }
2018 }
2019 rcu_read_unlock();
2020
2021 __skb_push(skb, skb->data - skb_mac_header(skb));
2022
2023 return segs;
2024 }
2025 EXPORT_SYMBOL(skb_gso_segment);
2026
2027 /* Take action when hardware reception checksum errors are detected. */
2028 #ifdef CONFIG_BUG
2029 void netdev_rx_csum_fault(struct net_device *dev)
2030 {
2031 if (net_ratelimit()) {
2032 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2033 dump_stack();
2034 }
2035 }
2036 EXPORT_SYMBOL(netdev_rx_csum_fault);
2037 #endif
2038
2039 /* Actually, we should eliminate this check as soon as we know, that:
2040 * 1. IOMMU is present and allows to map all the memory.
2041 * 2. No high memory really exists on this machine.
2042 */
2043
2044 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2045 {
2046 #ifdef CONFIG_HIGHMEM
2047 int i;
2048 if (!(dev->features & NETIF_F_HIGHDMA)) {
2049 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 if (PageHighMem(skb_frag_page(frag)))
2052 return 1;
2053 }
2054 }
2055
2056 if (PCI_DMA_BUS_IS_PHYS) {
2057 struct device *pdev = dev->dev.parent;
2058
2059 if (!pdev)
2060 return 0;
2061 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2063 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2064 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2065 return 1;
2066 }
2067 }
2068 #endif
2069 return 0;
2070 }
2071
2072 struct dev_gso_cb {
2073 void (*destructor)(struct sk_buff *skb);
2074 };
2075
2076 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2077
2078 static void dev_gso_skb_destructor(struct sk_buff *skb)
2079 {
2080 struct dev_gso_cb *cb;
2081
2082 do {
2083 struct sk_buff *nskb = skb->next;
2084
2085 skb->next = nskb->next;
2086 nskb->next = NULL;
2087 kfree_skb(nskb);
2088 } while (skb->next);
2089
2090 cb = DEV_GSO_CB(skb);
2091 if (cb->destructor)
2092 cb->destructor(skb);
2093 }
2094
2095 /**
2096 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2097 * @skb: buffer to segment
2098 * @features: device features as applicable to this skb
2099 *
2100 * This function segments the given skb and stores the list of segments
2101 * in skb->next.
2102 */
2103 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2104 {
2105 struct sk_buff *segs;
2106
2107 segs = skb_gso_segment(skb, features);
2108
2109 /* Verifying header integrity only. */
2110 if (!segs)
2111 return 0;
2112
2113 if (IS_ERR(segs))
2114 return PTR_ERR(segs);
2115
2116 skb->next = segs;
2117 DEV_GSO_CB(skb)->destructor = skb->destructor;
2118 skb->destructor = dev_gso_skb_destructor;
2119
2120 return 0;
2121 }
2122
2123 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2124 {
2125 return ((features & NETIF_F_GEN_CSUM) ||
2126 ((features & NETIF_F_V4_CSUM) &&
2127 protocol == htons(ETH_P_IP)) ||
2128 ((features & NETIF_F_V6_CSUM) &&
2129 protocol == htons(ETH_P_IPV6)) ||
2130 ((features & NETIF_F_FCOE_CRC) &&
2131 protocol == htons(ETH_P_FCOE)));
2132 }
2133
2134 static netdev_features_t harmonize_features(struct sk_buff *skb,
2135 __be16 protocol, netdev_features_t features)
2136 {
2137 if (skb->ip_summed != CHECKSUM_NONE &&
2138 !can_checksum_protocol(features, protocol)) {
2139 features &= ~NETIF_F_ALL_CSUM;
2140 features &= ~NETIF_F_SG;
2141 } else if (illegal_highdma(skb->dev, skb)) {
2142 features &= ~NETIF_F_SG;
2143 }
2144
2145 return features;
2146 }
2147
2148 netdev_features_t netif_skb_features(struct sk_buff *skb)
2149 {
2150 __be16 protocol = skb->protocol;
2151 netdev_features_t features = skb->dev->features;
2152
2153 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2154 features &= ~NETIF_F_GSO_MASK;
2155
2156 if (protocol == htons(ETH_P_8021Q)) {
2157 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2158 protocol = veh->h_vlan_encapsulated_proto;
2159 } else if (!vlan_tx_tag_present(skb)) {
2160 return harmonize_features(skb, protocol, features);
2161 }
2162
2163 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2164
2165 if (protocol != htons(ETH_P_8021Q)) {
2166 return harmonize_features(skb, protocol, features);
2167 } else {
2168 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2169 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2170 return harmonize_features(skb, protocol, features);
2171 }
2172 }
2173 EXPORT_SYMBOL(netif_skb_features);
2174
2175 /*
2176 * Returns true if either:
2177 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2178 * 2. skb is fragmented and the device does not support SG, or if
2179 * at least one of fragments is in highmem and device does not
2180 * support DMA from it.
2181 */
2182 static inline int skb_needs_linearize(struct sk_buff *skb,
2183 int features)
2184 {
2185 return skb_is_nonlinear(skb) &&
2186 ((skb_has_frag_list(skb) &&
2187 !(features & NETIF_F_FRAGLIST)) ||
2188 (skb_shinfo(skb)->nr_frags &&
2189 !(features & NETIF_F_SG)));
2190 }
2191
2192 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2193 struct netdev_queue *txq)
2194 {
2195 const struct net_device_ops *ops = dev->netdev_ops;
2196 int rc = NETDEV_TX_OK;
2197 unsigned int skb_len;
2198
2199 if (likely(!skb->next)) {
2200 netdev_features_t features;
2201
2202 /*
2203 * If device doesn't need skb->dst, release it right now while
2204 * its hot in this cpu cache
2205 */
2206 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2207 skb_dst_drop(skb);
2208
2209 if (!list_empty(&ptype_all))
2210 dev_queue_xmit_nit(skb, dev);
2211
2212 features = netif_skb_features(skb);
2213
2214 if (vlan_tx_tag_present(skb) &&
2215 !(features & NETIF_F_HW_VLAN_TX)) {
2216 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2217 if (unlikely(!skb))
2218 goto out;
2219
2220 skb->vlan_tci = 0;
2221 }
2222
2223 if (netif_needs_gso(skb, features)) {
2224 if (unlikely(dev_gso_segment(skb, features)))
2225 goto out_kfree_skb;
2226 if (skb->next)
2227 goto gso;
2228 } else {
2229 if (skb_needs_linearize(skb, features) &&
2230 __skb_linearize(skb))
2231 goto out_kfree_skb;
2232
2233 /* If packet is not checksummed and device does not
2234 * support checksumming for this protocol, complete
2235 * checksumming here.
2236 */
2237 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2238 skb_set_transport_header(skb,
2239 skb_checksum_start_offset(skb));
2240 if (!(features & NETIF_F_ALL_CSUM) &&
2241 skb_checksum_help(skb))
2242 goto out_kfree_skb;
2243 }
2244 }
2245
2246 skb_len = skb->len;
2247 rc = ops->ndo_start_xmit(skb, dev);
2248 trace_net_dev_xmit(skb, rc, dev, skb_len);
2249 if (rc == NETDEV_TX_OK)
2250 txq_trans_update(txq);
2251 return rc;
2252 }
2253
2254 gso:
2255 do {
2256 struct sk_buff *nskb = skb->next;
2257
2258 skb->next = nskb->next;
2259 nskb->next = NULL;
2260
2261 /*
2262 * If device doesn't need nskb->dst, release it right now while
2263 * its hot in this cpu cache
2264 */
2265 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2266 skb_dst_drop(nskb);
2267
2268 skb_len = nskb->len;
2269 rc = ops->ndo_start_xmit(nskb, dev);
2270 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2271 if (unlikely(rc != NETDEV_TX_OK)) {
2272 if (rc & ~NETDEV_TX_MASK)
2273 goto out_kfree_gso_skb;
2274 nskb->next = skb->next;
2275 skb->next = nskb;
2276 return rc;
2277 }
2278 txq_trans_update(txq);
2279 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2280 return NETDEV_TX_BUSY;
2281 } while (skb->next);
2282
2283 out_kfree_gso_skb:
2284 if (likely(skb->next == NULL))
2285 skb->destructor = DEV_GSO_CB(skb)->destructor;
2286 out_kfree_skb:
2287 kfree_skb(skb);
2288 out:
2289 return rc;
2290 }
2291
2292 static u32 hashrnd __read_mostly;
2293
2294 /*
2295 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2296 * to be used as a distribution range.
2297 */
2298 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2299 unsigned int num_tx_queues)
2300 {
2301 u32 hash;
2302 u16 qoffset = 0;
2303 u16 qcount = num_tx_queues;
2304
2305 if (skb_rx_queue_recorded(skb)) {
2306 hash = skb_get_rx_queue(skb);
2307 while (unlikely(hash >= num_tx_queues))
2308 hash -= num_tx_queues;
2309 return hash;
2310 }
2311
2312 if (dev->num_tc) {
2313 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2314 qoffset = dev->tc_to_txq[tc].offset;
2315 qcount = dev->tc_to_txq[tc].count;
2316 }
2317
2318 if (skb->sk && skb->sk->sk_hash)
2319 hash = skb->sk->sk_hash;
2320 else
2321 hash = (__force u16) skb->protocol;
2322 hash = jhash_1word(hash, hashrnd);
2323
2324 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2325 }
2326 EXPORT_SYMBOL(__skb_tx_hash);
2327
2328 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2329 {
2330 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2331 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2332 dev->name, queue_index,
2333 dev->real_num_tx_queues);
2334 return 0;
2335 }
2336 return queue_index;
2337 }
2338
2339 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2340 {
2341 #ifdef CONFIG_XPS
2342 struct xps_dev_maps *dev_maps;
2343 struct xps_map *map;
2344 int queue_index = -1;
2345
2346 rcu_read_lock();
2347 dev_maps = rcu_dereference(dev->xps_maps);
2348 if (dev_maps) {
2349 map = rcu_dereference(
2350 dev_maps->cpu_map[raw_smp_processor_id()]);
2351 if (map) {
2352 if (map->len == 1)
2353 queue_index = map->queues[0];
2354 else {
2355 u32 hash;
2356 if (skb->sk && skb->sk->sk_hash)
2357 hash = skb->sk->sk_hash;
2358 else
2359 hash = (__force u16) skb->protocol ^
2360 skb->rxhash;
2361 hash = jhash_1word(hash, hashrnd);
2362 queue_index = map->queues[
2363 ((u64)hash * map->len) >> 32];
2364 }
2365 if (unlikely(queue_index >= dev->real_num_tx_queues))
2366 queue_index = -1;
2367 }
2368 }
2369 rcu_read_unlock();
2370
2371 return queue_index;
2372 #else
2373 return -1;
2374 #endif
2375 }
2376
2377 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2378 struct sk_buff *skb)
2379 {
2380 int queue_index;
2381 const struct net_device_ops *ops = dev->netdev_ops;
2382
2383 if (dev->real_num_tx_queues == 1)
2384 queue_index = 0;
2385 else if (ops->ndo_select_queue) {
2386 queue_index = ops->ndo_select_queue(dev, skb);
2387 queue_index = dev_cap_txqueue(dev, queue_index);
2388 } else {
2389 struct sock *sk = skb->sk;
2390 queue_index = sk_tx_queue_get(sk);
2391
2392 if (queue_index < 0 || skb->ooo_okay ||
2393 queue_index >= dev->real_num_tx_queues) {
2394 int old_index = queue_index;
2395
2396 queue_index = get_xps_queue(dev, skb);
2397 if (queue_index < 0)
2398 queue_index = skb_tx_hash(dev, skb);
2399
2400 if (queue_index != old_index && sk) {
2401 struct dst_entry *dst =
2402 rcu_dereference_check(sk->sk_dst_cache, 1);
2403
2404 if (dst && skb_dst(skb) == dst)
2405 sk_tx_queue_set(sk, queue_index);
2406 }
2407 }
2408 }
2409
2410 skb_set_queue_mapping(skb, queue_index);
2411 return netdev_get_tx_queue(dev, queue_index);
2412 }
2413
2414 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2415 struct net_device *dev,
2416 struct netdev_queue *txq)
2417 {
2418 spinlock_t *root_lock = qdisc_lock(q);
2419 bool contended;
2420 int rc;
2421
2422 qdisc_skb_cb(skb)->pkt_len = skb->len;
2423 qdisc_calculate_pkt_len(skb, q);
2424 /*
2425 * Heuristic to force contended enqueues to serialize on a
2426 * separate lock before trying to get qdisc main lock.
2427 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2428 * and dequeue packets faster.
2429 */
2430 contended = qdisc_is_running(q);
2431 if (unlikely(contended))
2432 spin_lock(&q->busylock);
2433
2434 spin_lock(root_lock);
2435 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2436 kfree_skb(skb);
2437 rc = NET_XMIT_DROP;
2438 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2439 qdisc_run_begin(q)) {
2440 /*
2441 * This is a work-conserving queue; there are no old skbs
2442 * waiting to be sent out; and the qdisc is not running -
2443 * xmit the skb directly.
2444 */
2445 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2446 skb_dst_force(skb);
2447
2448 qdisc_bstats_update(q, skb);
2449
2450 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2451 if (unlikely(contended)) {
2452 spin_unlock(&q->busylock);
2453 contended = false;
2454 }
2455 __qdisc_run(q);
2456 } else
2457 qdisc_run_end(q);
2458
2459 rc = NET_XMIT_SUCCESS;
2460 } else {
2461 skb_dst_force(skb);
2462 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2463 if (qdisc_run_begin(q)) {
2464 if (unlikely(contended)) {
2465 spin_unlock(&q->busylock);
2466 contended = false;
2467 }
2468 __qdisc_run(q);
2469 }
2470 }
2471 spin_unlock(root_lock);
2472 if (unlikely(contended))
2473 spin_unlock(&q->busylock);
2474 return rc;
2475 }
2476
2477 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2478 static void skb_update_prio(struct sk_buff *skb)
2479 {
2480 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2481
2482 if (!skb->priority && skb->sk && map) {
2483 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2484
2485 if (prioidx < map->priomap_len)
2486 skb->priority = map->priomap[prioidx];
2487 }
2488 }
2489 #else
2490 #define skb_update_prio(skb)
2491 #endif
2492
2493 static DEFINE_PER_CPU(int, xmit_recursion);
2494 #define RECURSION_LIMIT 10
2495
2496 /**
2497 * dev_loopback_xmit - loop back @skb
2498 * @skb: buffer to transmit
2499 */
2500 int dev_loopback_xmit(struct sk_buff *skb)
2501 {
2502 skb_reset_mac_header(skb);
2503 __skb_pull(skb, skb_network_offset(skb));
2504 skb->pkt_type = PACKET_LOOPBACK;
2505 skb->ip_summed = CHECKSUM_UNNECESSARY;
2506 WARN_ON(!skb_dst(skb));
2507 skb_dst_force(skb);
2508 netif_rx_ni(skb);
2509 return 0;
2510 }
2511 EXPORT_SYMBOL(dev_loopback_xmit);
2512
2513 /**
2514 * dev_queue_xmit - transmit a buffer
2515 * @skb: buffer to transmit
2516 *
2517 * Queue a buffer for transmission to a network device. The caller must
2518 * have set the device and priority and built the buffer before calling
2519 * this function. The function can be called from an interrupt.
2520 *
2521 * A negative errno code is returned on a failure. A success does not
2522 * guarantee the frame will be transmitted as it may be dropped due
2523 * to congestion or traffic shaping.
2524 *
2525 * -----------------------------------------------------------------------------------
2526 * I notice this method can also return errors from the queue disciplines,
2527 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2528 * be positive.
2529 *
2530 * Regardless of the return value, the skb is consumed, so it is currently
2531 * difficult to retry a send to this method. (You can bump the ref count
2532 * before sending to hold a reference for retry if you are careful.)
2533 *
2534 * When calling this method, interrupts MUST be enabled. This is because
2535 * the BH enable code must have IRQs enabled so that it will not deadlock.
2536 * --BLG
2537 */
2538 int dev_queue_xmit(struct sk_buff *skb)
2539 {
2540 struct net_device *dev = skb->dev;
2541 struct netdev_queue *txq;
2542 struct Qdisc *q;
2543 int rc = -ENOMEM;
2544
2545 /* Disable soft irqs for various locks below. Also
2546 * stops preemption for RCU.
2547 */
2548 rcu_read_lock_bh();
2549
2550 skb_update_prio(skb);
2551
2552 txq = dev_pick_tx(dev, skb);
2553 q = rcu_dereference_bh(txq->qdisc);
2554
2555 #ifdef CONFIG_NET_CLS_ACT
2556 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2557 #endif
2558 trace_net_dev_queue(skb);
2559 if (q->enqueue) {
2560 rc = __dev_xmit_skb(skb, q, dev, txq);
2561 goto out;
2562 }
2563
2564 /* The device has no queue. Common case for software devices:
2565 loopback, all the sorts of tunnels...
2566
2567 Really, it is unlikely that netif_tx_lock protection is necessary
2568 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2569 counters.)
2570 However, it is possible, that they rely on protection
2571 made by us here.
2572
2573 Check this and shot the lock. It is not prone from deadlocks.
2574 Either shot noqueue qdisc, it is even simpler 8)
2575 */
2576 if (dev->flags & IFF_UP) {
2577 int cpu = smp_processor_id(); /* ok because BHs are off */
2578
2579 if (txq->xmit_lock_owner != cpu) {
2580
2581 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2582 goto recursion_alert;
2583
2584 HARD_TX_LOCK(dev, txq, cpu);
2585
2586 if (!netif_xmit_stopped(txq)) {
2587 __this_cpu_inc(xmit_recursion);
2588 rc = dev_hard_start_xmit(skb, dev, txq);
2589 __this_cpu_dec(xmit_recursion);
2590 if (dev_xmit_complete(rc)) {
2591 HARD_TX_UNLOCK(dev, txq);
2592 goto out;
2593 }
2594 }
2595 HARD_TX_UNLOCK(dev, txq);
2596 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2597 dev->name);
2598 } else {
2599 /* Recursion is detected! It is possible,
2600 * unfortunately
2601 */
2602 recursion_alert:
2603 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2604 dev->name);
2605 }
2606 }
2607
2608 rc = -ENETDOWN;
2609 rcu_read_unlock_bh();
2610
2611 kfree_skb(skb);
2612 return rc;
2613 out:
2614 rcu_read_unlock_bh();
2615 return rc;
2616 }
2617 EXPORT_SYMBOL(dev_queue_xmit);
2618
2619
2620 /*=======================================================================
2621 Receiver routines
2622 =======================================================================*/
2623
2624 int netdev_max_backlog __read_mostly = 1000;
2625 int netdev_tstamp_prequeue __read_mostly = 1;
2626 int netdev_budget __read_mostly = 300;
2627 int weight_p __read_mostly = 64; /* old backlog weight */
2628
2629 /* Called with irq disabled */
2630 static inline void ____napi_schedule(struct softnet_data *sd,
2631 struct napi_struct *napi)
2632 {
2633 list_add_tail(&napi->poll_list, &sd->poll_list);
2634 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2635 }
2636
2637 /*
2638 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2639 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2640 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2641 * if hash is a canonical 4-tuple hash over transport ports.
2642 */
2643 void __skb_get_rxhash(struct sk_buff *skb)
2644 {
2645 struct flow_keys keys;
2646 u32 hash;
2647
2648 if (!skb_flow_dissect(skb, &keys))
2649 return;
2650
2651 if (keys.ports)
2652 skb->l4_rxhash = 1;
2653
2654 /* get a consistent hash (same value on both flow directions) */
2655 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2656 (((__force u32)keys.dst == (__force u32)keys.src) &&
2657 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2658 swap(keys.dst, keys.src);
2659 swap(keys.port16[0], keys.port16[1]);
2660 }
2661
2662 hash = jhash_3words((__force u32)keys.dst,
2663 (__force u32)keys.src,
2664 (__force u32)keys.ports, hashrnd);
2665 if (!hash)
2666 hash = 1;
2667
2668 skb->rxhash = hash;
2669 }
2670 EXPORT_SYMBOL(__skb_get_rxhash);
2671
2672 #ifdef CONFIG_RPS
2673
2674 /* One global table that all flow-based protocols share. */
2675 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2676 EXPORT_SYMBOL(rps_sock_flow_table);
2677
2678 struct static_key rps_needed __read_mostly;
2679
2680 static struct rps_dev_flow *
2681 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2682 struct rps_dev_flow *rflow, u16 next_cpu)
2683 {
2684 if (next_cpu != RPS_NO_CPU) {
2685 #ifdef CONFIG_RFS_ACCEL
2686 struct netdev_rx_queue *rxqueue;
2687 struct rps_dev_flow_table *flow_table;
2688 struct rps_dev_flow *old_rflow;
2689 u32 flow_id;
2690 u16 rxq_index;
2691 int rc;
2692
2693 /* Should we steer this flow to a different hardware queue? */
2694 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2695 !(dev->features & NETIF_F_NTUPLE))
2696 goto out;
2697 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2698 if (rxq_index == skb_get_rx_queue(skb))
2699 goto out;
2700
2701 rxqueue = dev->_rx + rxq_index;
2702 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2703 if (!flow_table)
2704 goto out;
2705 flow_id = skb->rxhash & flow_table->mask;
2706 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2707 rxq_index, flow_id);
2708 if (rc < 0)
2709 goto out;
2710 old_rflow = rflow;
2711 rflow = &flow_table->flows[flow_id];
2712 rflow->filter = rc;
2713 if (old_rflow->filter == rflow->filter)
2714 old_rflow->filter = RPS_NO_FILTER;
2715 out:
2716 #endif
2717 rflow->last_qtail =
2718 per_cpu(softnet_data, next_cpu).input_queue_head;
2719 }
2720
2721 rflow->cpu = next_cpu;
2722 return rflow;
2723 }
2724
2725 /*
2726 * get_rps_cpu is called from netif_receive_skb and returns the target
2727 * CPU from the RPS map of the receiving queue for a given skb.
2728 * rcu_read_lock must be held on entry.
2729 */
2730 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2731 struct rps_dev_flow **rflowp)
2732 {
2733 struct netdev_rx_queue *rxqueue;
2734 struct rps_map *map;
2735 struct rps_dev_flow_table *flow_table;
2736 struct rps_sock_flow_table *sock_flow_table;
2737 int cpu = -1;
2738 u16 tcpu;
2739
2740 if (skb_rx_queue_recorded(skb)) {
2741 u16 index = skb_get_rx_queue(skb);
2742 if (unlikely(index >= dev->real_num_rx_queues)) {
2743 WARN_ONCE(dev->real_num_rx_queues > 1,
2744 "%s received packet on queue %u, but number "
2745 "of RX queues is %u\n",
2746 dev->name, index, dev->real_num_rx_queues);
2747 goto done;
2748 }
2749 rxqueue = dev->_rx + index;
2750 } else
2751 rxqueue = dev->_rx;
2752
2753 map = rcu_dereference(rxqueue->rps_map);
2754 if (map) {
2755 if (map->len == 1 &&
2756 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2757 tcpu = map->cpus[0];
2758 if (cpu_online(tcpu))
2759 cpu = tcpu;
2760 goto done;
2761 }
2762 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2763 goto done;
2764 }
2765
2766 skb_reset_network_header(skb);
2767 if (!skb_get_rxhash(skb))
2768 goto done;
2769
2770 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2771 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2772 if (flow_table && sock_flow_table) {
2773 u16 next_cpu;
2774 struct rps_dev_flow *rflow;
2775
2776 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2777 tcpu = rflow->cpu;
2778
2779 next_cpu = sock_flow_table->ents[skb->rxhash &
2780 sock_flow_table->mask];
2781
2782 /*
2783 * If the desired CPU (where last recvmsg was done) is
2784 * different from current CPU (one in the rx-queue flow
2785 * table entry), switch if one of the following holds:
2786 * - Current CPU is unset (equal to RPS_NO_CPU).
2787 * - Current CPU is offline.
2788 * - The current CPU's queue tail has advanced beyond the
2789 * last packet that was enqueued using this table entry.
2790 * This guarantees that all previous packets for the flow
2791 * have been dequeued, thus preserving in order delivery.
2792 */
2793 if (unlikely(tcpu != next_cpu) &&
2794 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2795 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2796 rflow->last_qtail)) >= 0))
2797 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2798
2799 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2800 *rflowp = rflow;
2801 cpu = tcpu;
2802 goto done;
2803 }
2804 }
2805
2806 if (map) {
2807 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2808
2809 if (cpu_online(tcpu)) {
2810 cpu = tcpu;
2811 goto done;
2812 }
2813 }
2814
2815 done:
2816 return cpu;
2817 }
2818
2819 #ifdef CONFIG_RFS_ACCEL
2820
2821 /**
2822 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2823 * @dev: Device on which the filter was set
2824 * @rxq_index: RX queue index
2825 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2826 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2827 *
2828 * Drivers that implement ndo_rx_flow_steer() should periodically call
2829 * this function for each installed filter and remove the filters for
2830 * which it returns %true.
2831 */
2832 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2833 u32 flow_id, u16 filter_id)
2834 {
2835 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2836 struct rps_dev_flow_table *flow_table;
2837 struct rps_dev_flow *rflow;
2838 bool expire = true;
2839 int cpu;
2840
2841 rcu_read_lock();
2842 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2843 if (flow_table && flow_id <= flow_table->mask) {
2844 rflow = &flow_table->flows[flow_id];
2845 cpu = ACCESS_ONCE(rflow->cpu);
2846 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2847 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2848 rflow->last_qtail) <
2849 (int)(10 * flow_table->mask)))
2850 expire = false;
2851 }
2852 rcu_read_unlock();
2853 return expire;
2854 }
2855 EXPORT_SYMBOL(rps_may_expire_flow);
2856
2857 #endif /* CONFIG_RFS_ACCEL */
2858
2859 /* Called from hardirq (IPI) context */
2860 static void rps_trigger_softirq(void *data)
2861 {
2862 struct softnet_data *sd = data;
2863
2864 ____napi_schedule(sd, &sd->backlog);
2865 sd->received_rps++;
2866 }
2867
2868 #endif /* CONFIG_RPS */
2869
2870 /*
2871 * Check if this softnet_data structure is another cpu one
2872 * If yes, queue it to our IPI list and return 1
2873 * If no, return 0
2874 */
2875 static int rps_ipi_queued(struct softnet_data *sd)
2876 {
2877 #ifdef CONFIG_RPS
2878 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2879
2880 if (sd != mysd) {
2881 sd->rps_ipi_next = mysd->rps_ipi_list;
2882 mysd->rps_ipi_list = sd;
2883
2884 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2885 return 1;
2886 }
2887 #endif /* CONFIG_RPS */
2888 return 0;
2889 }
2890
2891 /*
2892 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2893 * queue (may be a remote CPU queue).
2894 */
2895 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2896 unsigned int *qtail)
2897 {
2898 struct softnet_data *sd;
2899 unsigned long flags;
2900
2901 sd = &per_cpu(softnet_data, cpu);
2902
2903 local_irq_save(flags);
2904
2905 rps_lock(sd);
2906 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2907 if (skb_queue_len(&sd->input_pkt_queue)) {
2908 enqueue:
2909 __skb_queue_tail(&sd->input_pkt_queue, skb);
2910 input_queue_tail_incr_save(sd, qtail);
2911 rps_unlock(sd);
2912 local_irq_restore(flags);
2913 return NET_RX_SUCCESS;
2914 }
2915
2916 /* Schedule NAPI for backlog device
2917 * We can use non atomic operation since we own the queue lock
2918 */
2919 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2920 if (!rps_ipi_queued(sd))
2921 ____napi_schedule(sd, &sd->backlog);
2922 }
2923 goto enqueue;
2924 }
2925
2926 sd->dropped++;
2927 rps_unlock(sd);
2928
2929 local_irq_restore(flags);
2930
2931 atomic_long_inc(&skb->dev->rx_dropped);
2932 kfree_skb(skb);
2933 return NET_RX_DROP;
2934 }
2935
2936 /**
2937 * netif_rx - post buffer to the network code
2938 * @skb: buffer to post
2939 *
2940 * This function receives a packet from a device driver and queues it for
2941 * the upper (protocol) levels to process. It always succeeds. The buffer
2942 * may be dropped during processing for congestion control or by the
2943 * protocol layers.
2944 *
2945 * return values:
2946 * NET_RX_SUCCESS (no congestion)
2947 * NET_RX_DROP (packet was dropped)
2948 *
2949 */
2950
2951 int netif_rx(struct sk_buff *skb)
2952 {
2953 int ret;
2954
2955 /* if netpoll wants it, pretend we never saw it */
2956 if (netpoll_rx(skb))
2957 return NET_RX_DROP;
2958
2959 net_timestamp_check(netdev_tstamp_prequeue, skb);
2960
2961 trace_netif_rx(skb);
2962 #ifdef CONFIG_RPS
2963 if (static_key_false(&rps_needed)) {
2964 struct rps_dev_flow voidflow, *rflow = &voidflow;
2965 int cpu;
2966
2967 preempt_disable();
2968 rcu_read_lock();
2969
2970 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2971 if (cpu < 0)
2972 cpu = smp_processor_id();
2973
2974 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2975
2976 rcu_read_unlock();
2977 preempt_enable();
2978 } else
2979 #endif
2980 {
2981 unsigned int qtail;
2982 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2983 put_cpu();
2984 }
2985 return ret;
2986 }
2987 EXPORT_SYMBOL(netif_rx);
2988
2989 int netif_rx_ni(struct sk_buff *skb)
2990 {
2991 int err;
2992
2993 preempt_disable();
2994 err = netif_rx(skb);
2995 if (local_softirq_pending())
2996 do_softirq();
2997 preempt_enable();
2998
2999 return err;
3000 }
3001 EXPORT_SYMBOL(netif_rx_ni);
3002
3003 static void net_tx_action(struct softirq_action *h)
3004 {
3005 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3006
3007 if (sd->completion_queue) {
3008 struct sk_buff *clist;
3009
3010 local_irq_disable();
3011 clist = sd->completion_queue;
3012 sd->completion_queue = NULL;
3013 local_irq_enable();
3014
3015 while (clist) {
3016 struct sk_buff *skb = clist;
3017 clist = clist->next;
3018
3019 WARN_ON(atomic_read(&skb->users));
3020 trace_kfree_skb(skb, net_tx_action);
3021 __kfree_skb(skb);
3022 }
3023 }
3024
3025 if (sd->output_queue) {
3026 struct Qdisc *head;
3027
3028 local_irq_disable();
3029 head = sd->output_queue;
3030 sd->output_queue = NULL;
3031 sd->output_queue_tailp = &sd->output_queue;
3032 local_irq_enable();
3033
3034 while (head) {
3035 struct Qdisc *q = head;
3036 spinlock_t *root_lock;
3037
3038 head = head->next_sched;
3039
3040 root_lock = qdisc_lock(q);
3041 if (spin_trylock(root_lock)) {
3042 smp_mb__before_clear_bit();
3043 clear_bit(__QDISC_STATE_SCHED,
3044 &q->state);
3045 qdisc_run(q);
3046 spin_unlock(root_lock);
3047 } else {
3048 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3049 &q->state)) {
3050 __netif_reschedule(q);
3051 } else {
3052 smp_mb__before_clear_bit();
3053 clear_bit(__QDISC_STATE_SCHED,
3054 &q->state);
3055 }
3056 }
3057 }
3058 }
3059 }
3060
3061 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3062 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3063 /* This hook is defined here for ATM LANE */
3064 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3065 unsigned char *addr) __read_mostly;
3066 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3067 #endif
3068
3069 #ifdef CONFIG_NET_CLS_ACT
3070 /* TODO: Maybe we should just force sch_ingress to be compiled in
3071 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3072 * a compare and 2 stores extra right now if we dont have it on
3073 * but have CONFIG_NET_CLS_ACT
3074 * NOTE: This doesn't stop any functionality; if you dont have
3075 * the ingress scheduler, you just can't add policies on ingress.
3076 *
3077 */
3078 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3079 {
3080 struct net_device *dev = skb->dev;
3081 u32 ttl = G_TC_RTTL(skb->tc_verd);
3082 int result = TC_ACT_OK;
3083 struct Qdisc *q;
3084
3085 if (unlikely(MAX_RED_LOOP < ttl++)) {
3086 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3087 skb->skb_iif, dev->ifindex);
3088 return TC_ACT_SHOT;
3089 }
3090
3091 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3092 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3093
3094 q = rxq->qdisc;
3095 if (q != &noop_qdisc) {
3096 spin_lock(qdisc_lock(q));
3097 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3098 result = qdisc_enqueue_root(skb, q);
3099 spin_unlock(qdisc_lock(q));
3100 }
3101
3102 return result;
3103 }
3104
3105 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3106 struct packet_type **pt_prev,
3107 int *ret, struct net_device *orig_dev)
3108 {
3109 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3110
3111 if (!rxq || rxq->qdisc == &noop_qdisc)
3112 goto out;
3113
3114 if (*pt_prev) {
3115 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3116 *pt_prev = NULL;
3117 }
3118
3119 switch (ing_filter(skb, rxq)) {
3120 case TC_ACT_SHOT:
3121 case TC_ACT_STOLEN:
3122 kfree_skb(skb);
3123 return NULL;
3124 }
3125
3126 out:
3127 skb->tc_verd = 0;
3128 return skb;
3129 }
3130 #endif
3131
3132 /**
3133 * netdev_rx_handler_register - register receive handler
3134 * @dev: device to register a handler for
3135 * @rx_handler: receive handler to register
3136 * @rx_handler_data: data pointer that is used by rx handler
3137 *
3138 * Register a receive hander for a device. This handler will then be
3139 * called from __netif_receive_skb. A negative errno code is returned
3140 * on a failure.
3141 *
3142 * The caller must hold the rtnl_mutex.
3143 *
3144 * For a general description of rx_handler, see enum rx_handler_result.
3145 */
3146 int netdev_rx_handler_register(struct net_device *dev,
3147 rx_handler_func_t *rx_handler,
3148 void *rx_handler_data)
3149 {
3150 ASSERT_RTNL();
3151
3152 if (dev->rx_handler)
3153 return -EBUSY;
3154
3155 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3156 rcu_assign_pointer(dev->rx_handler, rx_handler);
3157
3158 return 0;
3159 }
3160 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3161
3162 /**
3163 * netdev_rx_handler_unregister - unregister receive handler
3164 * @dev: device to unregister a handler from
3165 *
3166 * Unregister a receive hander from a device.
3167 *
3168 * The caller must hold the rtnl_mutex.
3169 */
3170 void netdev_rx_handler_unregister(struct net_device *dev)
3171 {
3172
3173 ASSERT_RTNL();
3174 RCU_INIT_POINTER(dev->rx_handler, NULL);
3175 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3176 }
3177 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3178
3179 /*
3180 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3181 * the special handling of PFMEMALLOC skbs.
3182 */
3183 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3184 {
3185 switch (skb->protocol) {
3186 case __constant_htons(ETH_P_ARP):
3187 case __constant_htons(ETH_P_IP):
3188 case __constant_htons(ETH_P_IPV6):
3189 case __constant_htons(ETH_P_8021Q):
3190 return true;
3191 default:
3192 return false;
3193 }
3194 }
3195
3196 static int __netif_receive_skb(struct sk_buff *skb)
3197 {
3198 struct packet_type *ptype, *pt_prev;
3199 rx_handler_func_t *rx_handler;
3200 struct net_device *orig_dev;
3201 struct net_device *null_or_dev;
3202 bool deliver_exact = false;
3203 int ret = NET_RX_DROP;
3204 __be16 type;
3205 unsigned long pflags = current->flags;
3206
3207 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3208
3209 trace_netif_receive_skb(skb);
3210
3211 /*
3212 * PFMEMALLOC skbs are special, they should
3213 * - be delivered to SOCK_MEMALLOC sockets only
3214 * - stay away from userspace
3215 * - have bounded memory usage
3216 *
3217 * Use PF_MEMALLOC as this saves us from propagating the allocation
3218 * context down to all allocation sites.
3219 */
3220 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3221 current->flags |= PF_MEMALLOC;
3222
3223 /* if we've gotten here through NAPI, check netpoll */
3224 if (netpoll_receive_skb(skb))
3225 goto out;
3226
3227 orig_dev = skb->dev;
3228
3229 skb_reset_network_header(skb);
3230 skb_reset_transport_header(skb);
3231 skb_reset_mac_len(skb);
3232
3233 pt_prev = NULL;
3234
3235 rcu_read_lock();
3236
3237 another_round:
3238 skb->skb_iif = skb->dev->ifindex;
3239
3240 __this_cpu_inc(softnet_data.processed);
3241
3242 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3243 skb = vlan_untag(skb);
3244 if (unlikely(!skb))
3245 goto unlock;
3246 }
3247
3248 #ifdef CONFIG_NET_CLS_ACT
3249 if (skb->tc_verd & TC_NCLS) {
3250 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3251 goto ncls;
3252 }
3253 #endif
3254
3255 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3256 goto skip_taps;
3257
3258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3259 if (!ptype->dev || ptype->dev == skb->dev) {
3260 if (pt_prev)
3261 ret = deliver_skb(skb, pt_prev, orig_dev);
3262 pt_prev = ptype;
3263 }
3264 }
3265
3266 skip_taps:
3267 #ifdef CONFIG_NET_CLS_ACT
3268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3269 if (!skb)
3270 goto unlock;
3271 ncls:
3272 #endif
3273
3274 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3275 && !skb_pfmemalloc_protocol(skb))
3276 goto drop;
3277
3278 rx_handler = rcu_dereference(skb->dev->rx_handler);
3279 if (vlan_tx_tag_present(skb)) {
3280 if (pt_prev) {
3281 ret = deliver_skb(skb, pt_prev, orig_dev);
3282 pt_prev = NULL;
3283 }
3284 if (vlan_do_receive(&skb, !rx_handler))
3285 goto another_round;
3286 else if (unlikely(!skb))
3287 goto unlock;
3288 }
3289
3290 if (rx_handler) {
3291 if (pt_prev) {
3292 ret = deliver_skb(skb, pt_prev, orig_dev);
3293 pt_prev = NULL;
3294 }
3295 switch (rx_handler(&skb)) {
3296 case RX_HANDLER_CONSUMED:
3297 goto unlock;
3298 case RX_HANDLER_ANOTHER:
3299 goto another_round;
3300 case RX_HANDLER_EXACT:
3301 deliver_exact = true;
3302 case RX_HANDLER_PASS:
3303 break;
3304 default:
3305 BUG();
3306 }
3307 }
3308
3309 /* deliver only exact match when indicated */
3310 null_or_dev = deliver_exact ? skb->dev : NULL;
3311
3312 type = skb->protocol;
3313 list_for_each_entry_rcu(ptype,
3314 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3315 if (ptype->type == type &&
3316 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3317 ptype->dev == orig_dev)) {
3318 if (pt_prev)
3319 ret = deliver_skb(skb, pt_prev, orig_dev);
3320 pt_prev = ptype;
3321 }
3322 }
3323
3324 if (pt_prev) {
3325 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3326 goto drop;
3327 else
3328 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3329 } else {
3330 drop:
3331 atomic_long_inc(&skb->dev->rx_dropped);
3332 kfree_skb(skb);
3333 /* Jamal, now you will not able to escape explaining
3334 * me how you were going to use this. :-)
3335 */
3336 ret = NET_RX_DROP;
3337 }
3338
3339 unlock:
3340 rcu_read_unlock();
3341 out:
3342 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3343 return ret;
3344 }
3345
3346 /**
3347 * netif_receive_skb - process receive buffer from network
3348 * @skb: buffer to process
3349 *
3350 * netif_receive_skb() is the main receive data processing function.
3351 * It always succeeds. The buffer may be dropped during processing
3352 * for congestion control or by the protocol layers.
3353 *
3354 * This function may only be called from softirq context and interrupts
3355 * should be enabled.
3356 *
3357 * Return values (usually ignored):
3358 * NET_RX_SUCCESS: no congestion
3359 * NET_RX_DROP: packet was dropped
3360 */
3361 int netif_receive_skb(struct sk_buff *skb)
3362 {
3363 net_timestamp_check(netdev_tstamp_prequeue, skb);
3364
3365 if (skb_defer_rx_timestamp(skb))
3366 return NET_RX_SUCCESS;
3367
3368 #ifdef CONFIG_RPS
3369 if (static_key_false(&rps_needed)) {
3370 struct rps_dev_flow voidflow, *rflow = &voidflow;
3371 int cpu, ret;
3372
3373 rcu_read_lock();
3374
3375 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3376
3377 if (cpu >= 0) {
3378 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3379 rcu_read_unlock();
3380 return ret;
3381 }
3382 rcu_read_unlock();
3383 }
3384 #endif
3385 return __netif_receive_skb(skb);
3386 }
3387 EXPORT_SYMBOL(netif_receive_skb);
3388
3389 /* Network device is going away, flush any packets still pending
3390 * Called with irqs disabled.
3391 */
3392 static void flush_backlog(void *arg)
3393 {
3394 struct net_device *dev = arg;
3395 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3396 struct sk_buff *skb, *tmp;
3397
3398 rps_lock(sd);
3399 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3400 if (skb->dev == dev) {
3401 __skb_unlink(skb, &sd->input_pkt_queue);
3402 kfree_skb(skb);
3403 input_queue_head_incr(sd);
3404 }
3405 }
3406 rps_unlock(sd);
3407
3408 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3409 if (skb->dev == dev) {
3410 __skb_unlink(skb, &sd->process_queue);
3411 kfree_skb(skb);
3412 input_queue_head_incr(sd);
3413 }
3414 }
3415 }
3416
3417 static int napi_gro_complete(struct sk_buff *skb)
3418 {
3419 struct packet_type *ptype;
3420 __be16 type = skb->protocol;
3421 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3422 int err = -ENOENT;
3423
3424 if (NAPI_GRO_CB(skb)->count == 1) {
3425 skb_shinfo(skb)->gso_size = 0;
3426 goto out;
3427 }
3428
3429 rcu_read_lock();
3430 list_for_each_entry_rcu(ptype, head, list) {
3431 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3432 continue;
3433
3434 err = ptype->gro_complete(skb);
3435 break;
3436 }
3437 rcu_read_unlock();
3438
3439 if (err) {
3440 WARN_ON(&ptype->list == head);
3441 kfree_skb(skb);
3442 return NET_RX_SUCCESS;
3443 }
3444
3445 out:
3446 return netif_receive_skb(skb);
3447 }
3448
3449 inline void napi_gro_flush(struct napi_struct *napi)
3450 {
3451 struct sk_buff *skb, *next;
3452
3453 for (skb = napi->gro_list; skb; skb = next) {
3454 next = skb->next;
3455 skb->next = NULL;
3456 napi_gro_complete(skb);
3457 }
3458
3459 napi->gro_count = 0;
3460 napi->gro_list = NULL;
3461 }
3462 EXPORT_SYMBOL(napi_gro_flush);
3463
3464 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3465 {
3466 struct sk_buff **pp = NULL;
3467 struct packet_type *ptype;
3468 __be16 type = skb->protocol;
3469 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3470 int same_flow;
3471 int mac_len;
3472 enum gro_result ret;
3473
3474 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3475 goto normal;
3476
3477 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3478 goto normal;
3479
3480 rcu_read_lock();
3481 list_for_each_entry_rcu(ptype, head, list) {
3482 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3483 continue;
3484
3485 skb_set_network_header(skb, skb_gro_offset(skb));
3486 mac_len = skb->network_header - skb->mac_header;
3487 skb->mac_len = mac_len;
3488 NAPI_GRO_CB(skb)->same_flow = 0;
3489 NAPI_GRO_CB(skb)->flush = 0;
3490 NAPI_GRO_CB(skb)->free = 0;
3491
3492 pp = ptype->gro_receive(&napi->gro_list, skb);
3493 break;
3494 }
3495 rcu_read_unlock();
3496
3497 if (&ptype->list == head)
3498 goto normal;
3499
3500 same_flow = NAPI_GRO_CB(skb)->same_flow;
3501 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3502
3503 if (pp) {
3504 struct sk_buff *nskb = *pp;
3505
3506 *pp = nskb->next;
3507 nskb->next = NULL;
3508 napi_gro_complete(nskb);
3509 napi->gro_count--;
3510 }
3511
3512 if (same_flow)
3513 goto ok;
3514
3515 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3516 goto normal;
3517
3518 napi->gro_count++;
3519 NAPI_GRO_CB(skb)->count = 1;
3520 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3521 skb->next = napi->gro_list;
3522 napi->gro_list = skb;
3523 ret = GRO_HELD;
3524
3525 pull:
3526 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3527 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3528
3529 BUG_ON(skb->end - skb->tail < grow);
3530
3531 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3532
3533 skb->tail += grow;
3534 skb->data_len -= grow;
3535
3536 skb_shinfo(skb)->frags[0].page_offset += grow;
3537 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3538
3539 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3540 skb_frag_unref(skb, 0);
3541 memmove(skb_shinfo(skb)->frags,
3542 skb_shinfo(skb)->frags + 1,
3543 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3544 }
3545 }
3546
3547 ok:
3548 return ret;
3549
3550 normal:
3551 ret = GRO_NORMAL;
3552 goto pull;
3553 }
3554 EXPORT_SYMBOL(dev_gro_receive);
3555
3556 static inline gro_result_t
3557 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3558 {
3559 struct sk_buff *p;
3560 unsigned int maclen = skb->dev->hard_header_len;
3561
3562 for (p = napi->gro_list; p; p = p->next) {
3563 unsigned long diffs;
3564
3565 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3566 diffs |= p->vlan_tci ^ skb->vlan_tci;
3567 if (maclen == ETH_HLEN)
3568 diffs |= compare_ether_header(skb_mac_header(p),
3569 skb_gro_mac_header(skb));
3570 else if (!diffs)
3571 diffs = memcmp(skb_mac_header(p),
3572 skb_gro_mac_header(skb),
3573 maclen);
3574 NAPI_GRO_CB(p)->same_flow = !diffs;
3575 NAPI_GRO_CB(p)->flush = 0;
3576 }
3577
3578 return dev_gro_receive(napi, skb);
3579 }
3580
3581 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3582 {
3583 switch (ret) {
3584 case GRO_NORMAL:
3585 if (netif_receive_skb(skb))
3586 ret = GRO_DROP;
3587 break;
3588
3589 case GRO_DROP:
3590 kfree_skb(skb);
3591 break;
3592
3593 case GRO_MERGED_FREE:
3594 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3595 kmem_cache_free(skbuff_head_cache, skb);
3596 else
3597 __kfree_skb(skb);
3598 break;
3599
3600 case GRO_HELD:
3601 case GRO_MERGED:
3602 break;
3603 }
3604
3605 return ret;
3606 }
3607 EXPORT_SYMBOL(napi_skb_finish);
3608
3609 void skb_gro_reset_offset(struct sk_buff *skb)
3610 {
3611 NAPI_GRO_CB(skb)->data_offset = 0;
3612 NAPI_GRO_CB(skb)->frag0 = NULL;
3613 NAPI_GRO_CB(skb)->frag0_len = 0;
3614
3615 if (skb->mac_header == skb->tail &&
3616 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3617 NAPI_GRO_CB(skb)->frag0 =
3618 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3619 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3620 }
3621 }
3622 EXPORT_SYMBOL(skb_gro_reset_offset);
3623
3624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3625 {
3626 skb_gro_reset_offset(skb);
3627
3628 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3629 }
3630 EXPORT_SYMBOL(napi_gro_receive);
3631
3632 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3633 {
3634 __skb_pull(skb, skb_headlen(skb));
3635 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3636 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3637 skb->vlan_tci = 0;
3638 skb->dev = napi->dev;
3639 skb->skb_iif = 0;
3640
3641 napi->skb = skb;
3642 }
3643
3644 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3645 {
3646 struct sk_buff *skb = napi->skb;
3647
3648 if (!skb) {
3649 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3650 if (skb)
3651 napi->skb = skb;
3652 }
3653 return skb;
3654 }
3655 EXPORT_SYMBOL(napi_get_frags);
3656
3657 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3658 gro_result_t ret)
3659 {
3660 switch (ret) {
3661 case GRO_NORMAL:
3662 case GRO_HELD:
3663 skb->protocol = eth_type_trans(skb, skb->dev);
3664
3665 if (ret == GRO_HELD)
3666 skb_gro_pull(skb, -ETH_HLEN);
3667 else if (netif_receive_skb(skb))
3668 ret = GRO_DROP;
3669 break;
3670
3671 case GRO_DROP:
3672 case GRO_MERGED_FREE:
3673 napi_reuse_skb(napi, skb);
3674 break;
3675
3676 case GRO_MERGED:
3677 break;
3678 }
3679
3680 return ret;
3681 }
3682 EXPORT_SYMBOL(napi_frags_finish);
3683
3684 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3685 {
3686 struct sk_buff *skb = napi->skb;
3687 struct ethhdr *eth;
3688 unsigned int hlen;
3689 unsigned int off;
3690
3691 napi->skb = NULL;
3692
3693 skb_reset_mac_header(skb);
3694 skb_gro_reset_offset(skb);
3695
3696 off = skb_gro_offset(skb);
3697 hlen = off + sizeof(*eth);
3698 eth = skb_gro_header_fast(skb, off);
3699 if (skb_gro_header_hard(skb, hlen)) {
3700 eth = skb_gro_header_slow(skb, hlen, off);
3701 if (unlikely(!eth)) {
3702 napi_reuse_skb(napi, skb);
3703 skb = NULL;
3704 goto out;
3705 }
3706 }
3707
3708 skb_gro_pull(skb, sizeof(*eth));
3709
3710 /*
3711 * This works because the only protocols we care about don't require
3712 * special handling. We'll fix it up properly at the end.
3713 */
3714 skb->protocol = eth->h_proto;
3715
3716 out:
3717 return skb;
3718 }
3719
3720 gro_result_t napi_gro_frags(struct napi_struct *napi)
3721 {
3722 struct sk_buff *skb = napi_frags_skb(napi);
3723
3724 if (!skb)
3725 return GRO_DROP;
3726
3727 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3728 }
3729 EXPORT_SYMBOL(napi_gro_frags);
3730
3731 /*
3732 * net_rps_action sends any pending IPI's for rps.
3733 * Note: called with local irq disabled, but exits with local irq enabled.
3734 */
3735 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3736 {
3737 #ifdef CONFIG_RPS
3738 struct softnet_data *remsd = sd->rps_ipi_list;
3739
3740 if (remsd) {
3741 sd->rps_ipi_list = NULL;
3742
3743 local_irq_enable();
3744
3745 /* Send pending IPI's to kick RPS processing on remote cpus. */
3746 while (remsd) {
3747 struct softnet_data *next = remsd->rps_ipi_next;
3748
3749 if (cpu_online(remsd->cpu))
3750 __smp_call_function_single(remsd->cpu,
3751 &remsd->csd, 0);
3752 remsd = next;
3753 }
3754 } else
3755 #endif
3756 local_irq_enable();
3757 }
3758
3759 static int process_backlog(struct napi_struct *napi, int quota)
3760 {
3761 int work = 0;
3762 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3763
3764 #ifdef CONFIG_RPS
3765 /* Check if we have pending ipi, its better to send them now,
3766 * not waiting net_rx_action() end.
3767 */
3768 if (sd->rps_ipi_list) {
3769 local_irq_disable();
3770 net_rps_action_and_irq_enable(sd);
3771 }
3772 #endif
3773 napi->weight = weight_p;
3774 local_irq_disable();
3775 while (work < quota) {
3776 struct sk_buff *skb;
3777 unsigned int qlen;
3778
3779 while ((skb = __skb_dequeue(&sd->process_queue))) {
3780 local_irq_enable();
3781 __netif_receive_skb(skb);
3782 local_irq_disable();
3783 input_queue_head_incr(sd);
3784 if (++work >= quota) {
3785 local_irq_enable();
3786 return work;
3787 }
3788 }
3789
3790 rps_lock(sd);
3791 qlen = skb_queue_len(&sd->input_pkt_queue);
3792 if (qlen)
3793 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3794 &sd->process_queue);
3795
3796 if (qlen < quota - work) {
3797 /*
3798 * Inline a custom version of __napi_complete().
3799 * only current cpu owns and manipulates this napi,
3800 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3801 * we can use a plain write instead of clear_bit(),
3802 * and we dont need an smp_mb() memory barrier.
3803 */
3804 list_del(&napi->poll_list);
3805 napi->state = 0;
3806
3807 quota = work + qlen;
3808 }
3809 rps_unlock(sd);
3810 }
3811 local_irq_enable();
3812
3813 return work;
3814 }
3815
3816 /**
3817 * __napi_schedule - schedule for receive
3818 * @n: entry to schedule
3819 *
3820 * The entry's receive function will be scheduled to run
3821 */
3822 void __napi_schedule(struct napi_struct *n)
3823 {
3824 unsigned long flags;
3825
3826 local_irq_save(flags);
3827 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3828 local_irq_restore(flags);
3829 }
3830 EXPORT_SYMBOL(__napi_schedule);
3831
3832 void __napi_complete(struct napi_struct *n)
3833 {
3834 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3835 BUG_ON(n->gro_list);
3836
3837 list_del(&n->poll_list);
3838 smp_mb__before_clear_bit();
3839 clear_bit(NAPI_STATE_SCHED, &n->state);
3840 }
3841 EXPORT_SYMBOL(__napi_complete);
3842
3843 void napi_complete(struct napi_struct *n)
3844 {
3845 unsigned long flags;
3846
3847 /*
3848 * don't let napi dequeue from the cpu poll list
3849 * just in case its running on a different cpu
3850 */
3851 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3852 return;
3853
3854 napi_gro_flush(n);
3855 local_irq_save(flags);
3856 __napi_complete(n);
3857 local_irq_restore(flags);
3858 }
3859 EXPORT_SYMBOL(napi_complete);
3860
3861 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3862 int (*poll)(struct napi_struct *, int), int weight)
3863 {
3864 INIT_LIST_HEAD(&napi->poll_list);
3865 napi->gro_count = 0;
3866 napi->gro_list = NULL;
3867 napi->skb = NULL;
3868 napi->poll = poll;
3869 napi->weight = weight;
3870 list_add(&napi->dev_list, &dev->napi_list);
3871 napi->dev = dev;
3872 #ifdef CONFIG_NETPOLL
3873 spin_lock_init(&napi->poll_lock);
3874 napi->poll_owner = -1;
3875 #endif
3876 set_bit(NAPI_STATE_SCHED, &napi->state);
3877 }
3878 EXPORT_SYMBOL(netif_napi_add);
3879
3880 void netif_napi_del(struct napi_struct *napi)
3881 {
3882 struct sk_buff *skb, *next;
3883
3884 list_del_init(&napi->dev_list);
3885 napi_free_frags(napi);
3886
3887 for (skb = napi->gro_list; skb; skb = next) {
3888 next = skb->next;
3889 skb->next = NULL;
3890 kfree_skb(skb);
3891 }
3892
3893 napi->gro_list = NULL;
3894 napi->gro_count = 0;
3895 }
3896 EXPORT_SYMBOL(netif_napi_del);
3897
3898 static void net_rx_action(struct softirq_action *h)
3899 {
3900 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3901 unsigned long time_limit = jiffies + 2;
3902 int budget = netdev_budget;
3903 void *have;
3904
3905 local_irq_disable();
3906
3907 while (!list_empty(&sd->poll_list)) {
3908 struct napi_struct *n;
3909 int work, weight;
3910
3911 /* If softirq window is exhuasted then punt.
3912 * Allow this to run for 2 jiffies since which will allow
3913 * an average latency of 1.5/HZ.
3914 */
3915 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3916 goto softnet_break;
3917
3918 local_irq_enable();
3919
3920 /* Even though interrupts have been re-enabled, this
3921 * access is safe because interrupts can only add new
3922 * entries to the tail of this list, and only ->poll()
3923 * calls can remove this head entry from the list.
3924 */
3925 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3926
3927 have = netpoll_poll_lock(n);
3928
3929 weight = n->weight;
3930
3931 /* This NAPI_STATE_SCHED test is for avoiding a race
3932 * with netpoll's poll_napi(). Only the entity which
3933 * obtains the lock and sees NAPI_STATE_SCHED set will
3934 * actually make the ->poll() call. Therefore we avoid
3935 * accidentally calling ->poll() when NAPI is not scheduled.
3936 */
3937 work = 0;
3938 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3939 work = n->poll(n, weight);
3940 trace_napi_poll(n);
3941 }
3942
3943 WARN_ON_ONCE(work > weight);
3944
3945 budget -= work;
3946
3947 local_irq_disable();
3948
3949 /* Drivers must not modify the NAPI state if they
3950 * consume the entire weight. In such cases this code
3951 * still "owns" the NAPI instance and therefore can
3952 * move the instance around on the list at-will.
3953 */
3954 if (unlikely(work == weight)) {
3955 if (unlikely(napi_disable_pending(n))) {
3956 local_irq_enable();
3957 napi_complete(n);
3958 local_irq_disable();
3959 } else
3960 list_move_tail(&n->poll_list, &sd->poll_list);
3961 }
3962
3963 netpoll_poll_unlock(have);
3964 }
3965 out:
3966 net_rps_action_and_irq_enable(sd);
3967
3968 #ifdef CONFIG_NET_DMA
3969 /*
3970 * There may not be any more sk_buffs coming right now, so push
3971 * any pending DMA copies to hardware
3972 */
3973 dma_issue_pending_all();
3974 #endif
3975
3976 return;
3977
3978 softnet_break:
3979 sd->time_squeeze++;
3980 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981 goto out;
3982 }
3983
3984 static gifconf_func_t *gifconf_list[NPROTO];
3985
3986 /**
3987 * register_gifconf - register a SIOCGIF handler
3988 * @family: Address family
3989 * @gifconf: Function handler
3990 *
3991 * Register protocol dependent address dumping routines. The handler
3992 * that is passed must not be freed or reused until it has been replaced
3993 * by another handler.
3994 */
3995 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3996 {
3997 if (family >= NPROTO)
3998 return -EINVAL;
3999 gifconf_list[family] = gifconf;
4000 return 0;
4001 }
4002 EXPORT_SYMBOL(register_gifconf);
4003
4004
4005 /*
4006 * Map an interface index to its name (SIOCGIFNAME)
4007 */
4008
4009 /*
4010 * We need this ioctl for efficient implementation of the
4011 * if_indextoname() function required by the IPv6 API. Without
4012 * it, we would have to search all the interfaces to find a
4013 * match. --pb
4014 */
4015
4016 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4017 {
4018 struct net_device *dev;
4019 struct ifreq ifr;
4020
4021 /*
4022 * Fetch the caller's info block.
4023 */
4024
4025 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4026 return -EFAULT;
4027
4028 rcu_read_lock();
4029 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4030 if (!dev) {
4031 rcu_read_unlock();
4032 return -ENODEV;
4033 }
4034
4035 strcpy(ifr.ifr_name, dev->name);
4036 rcu_read_unlock();
4037
4038 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4039 return -EFAULT;
4040 return 0;
4041 }
4042
4043 /*
4044 * Perform a SIOCGIFCONF call. This structure will change
4045 * size eventually, and there is nothing I can do about it.
4046 * Thus we will need a 'compatibility mode'.
4047 */
4048
4049 static int dev_ifconf(struct net *net, char __user *arg)
4050 {
4051 struct ifconf ifc;
4052 struct net_device *dev;
4053 char __user *pos;
4054 int len;
4055 int total;
4056 int i;
4057
4058 /*
4059 * Fetch the caller's info block.
4060 */
4061
4062 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4063 return -EFAULT;
4064
4065 pos = ifc.ifc_buf;
4066 len = ifc.ifc_len;
4067
4068 /*
4069 * Loop over the interfaces, and write an info block for each.
4070 */
4071
4072 total = 0;
4073 for_each_netdev(net, dev) {
4074 for (i = 0; i < NPROTO; i++) {
4075 if (gifconf_list[i]) {
4076 int done;
4077 if (!pos)
4078 done = gifconf_list[i](dev, NULL, 0);
4079 else
4080 done = gifconf_list[i](dev, pos + total,
4081 len - total);
4082 if (done < 0)
4083 return -EFAULT;
4084 total += done;
4085 }
4086 }
4087 }
4088
4089 /*
4090 * All done. Write the updated control block back to the caller.
4091 */
4092 ifc.ifc_len = total;
4093
4094 /*
4095 * Both BSD and Solaris return 0 here, so we do too.
4096 */
4097 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4098 }
4099
4100 #ifdef CONFIG_PROC_FS
4101
4102 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4103
4104 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4105 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4106 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4107
4108 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4109 {
4110 struct net *net = seq_file_net(seq);
4111 struct net_device *dev;
4112 struct hlist_node *p;
4113 struct hlist_head *h;
4114 unsigned int count = 0, offset = get_offset(*pos);
4115
4116 h = &net->dev_name_head[get_bucket(*pos)];
4117 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4118 if (++count == offset)
4119 return dev;
4120 }
4121
4122 return NULL;
4123 }
4124
4125 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4126 {
4127 struct net_device *dev;
4128 unsigned int bucket;
4129
4130 do {
4131 dev = dev_from_same_bucket(seq, pos);
4132 if (dev)
4133 return dev;
4134
4135 bucket = get_bucket(*pos) + 1;
4136 *pos = set_bucket_offset(bucket, 1);
4137 } while (bucket < NETDEV_HASHENTRIES);
4138
4139 return NULL;
4140 }
4141
4142 /*
4143 * This is invoked by the /proc filesystem handler to display a device
4144 * in detail.
4145 */
4146 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4147 __acquires(RCU)
4148 {
4149 rcu_read_lock();
4150 if (!*pos)
4151 return SEQ_START_TOKEN;
4152
4153 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4154 return NULL;
4155
4156 return dev_from_bucket(seq, pos);
4157 }
4158
4159 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4160 {
4161 ++*pos;
4162 return dev_from_bucket(seq, pos);
4163 }
4164
4165 void dev_seq_stop(struct seq_file *seq, void *v)
4166 __releases(RCU)
4167 {
4168 rcu_read_unlock();
4169 }
4170
4171 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4172 {
4173 struct rtnl_link_stats64 temp;
4174 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4175
4176 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4177 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4178 dev->name, stats->rx_bytes, stats->rx_packets,
4179 stats->rx_errors,
4180 stats->rx_dropped + stats->rx_missed_errors,
4181 stats->rx_fifo_errors,
4182 stats->rx_length_errors + stats->rx_over_errors +
4183 stats->rx_crc_errors + stats->rx_frame_errors,
4184 stats->rx_compressed, stats->multicast,
4185 stats->tx_bytes, stats->tx_packets,
4186 stats->tx_errors, stats->tx_dropped,
4187 stats->tx_fifo_errors, stats->collisions,
4188 stats->tx_carrier_errors +
4189 stats->tx_aborted_errors +
4190 stats->tx_window_errors +
4191 stats->tx_heartbeat_errors,
4192 stats->tx_compressed);
4193 }
4194
4195 /*
4196 * Called from the PROCfs module. This now uses the new arbitrary sized
4197 * /proc/net interface to create /proc/net/dev
4198 */
4199 static int dev_seq_show(struct seq_file *seq, void *v)
4200 {
4201 if (v == SEQ_START_TOKEN)
4202 seq_puts(seq, "Inter-| Receive "
4203 " | Transmit\n"
4204 " face |bytes packets errs drop fifo frame "
4205 "compressed multicast|bytes packets errs "
4206 "drop fifo colls carrier compressed\n");
4207 else
4208 dev_seq_printf_stats(seq, v);
4209 return 0;
4210 }
4211
4212 static struct softnet_data *softnet_get_online(loff_t *pos)
4213 {
4214 struct softnet_data *sd = NULL;
4215
4216 while (*pos < nr_cpu_ids)
4217 if (cpu_online(*pos)) {
4218 sd = &per_cpu(softnet_data, *pos);
4219 break;
4220 } else
4221 ++*pos;
4222 return sd;
4223 }
4224
4225 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4226 {
4227 return softnet_get_online(pos);
4228 }
4229
4230 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4231 {
4232 ++*pos;
4233 return softnet_get_online(pos);
4234 }
4235
4236 static void softnet_seq_stop(struct seq_file *seq, void *v)
4237 {
4238 }
4239
4240 static int softnet_seq_show(struct seq_file *seq, void *v)
4241 {
4242 struct softnet_data *sd = v;
4243
4244 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4245 sd->processed, sd->dropped, sd->time_squeeze, 0,
4246 0, 0, 0, 0, /* was fastroute */
4247 sd->cpu_collision, sd->received_rps);
4248 return 0;
4249 }
4250
4251 static const struct seq_operations dev_seq_ops = {
4252 .start = dev_seq_start,
4253 .next = dev_seq_next,
4254 .stop = dev_seq_stop,
4255 .show = dev_seq_show,
4256 };
4257
4258 static int dev_seq_open(struct inode *inode, struct file *file)
4259 {
4260 return seq_open_net(inode, file, &dev_seq_ops,
4261 sizeof(struct seq_net_private));
4262 }
4263
4264 static const struct file_operations dev_seq_fops = {
4265 .owner = THIS_MODULE,
4266 .open = dev_seq_open,
4267 .read = seq_read,
4268 .llseek = seq_lseek,
4269 .release = seq_release_net,
4270 };
4271
4272 static const struct seq_operations softnet_seq_ops = {
4273 .start = softnet_seq_start,
4274 .next = softnet_seq_next,
4275 .stop = softnet_seq_stop,
4276 .show = softnet_seq_show,
4277 };
4278
4279 static int softnet_seq_open(struct inode *inode, struct file *file)
4280 {
4281 return seq_open(file, &softnet_seq_ops);
4282 }
4283
4284 static const struct file_operations softnet_seq_fops = {
4285 .owner = THIS_MODULE,
4286 .open = softnet_seq_open,
4287 .read = seq_read,
4288 .llseek = seq_lseek,
4289 .release = seq_release,
4290 };
4291
4292 static void *ptype_get_idx(loff_t pos)
4293 {
4294 struct packet_type *pt = NULL;
4295 loff_t i = 0;
4296 int t;
4297
4298 list_for_each_entry_rcu(pt, &ptype_all, list) {
4299 if (i == pos)
4300 return pt;
4301 ++i;
4302 }
4303
4304 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4305 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4306 if (i == pos)
4307 return pt;
4308 ++i;
4309 }
4310 }
4311 return NULL;
4312 }
4313
4314 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4315 __acquires(RCU)
4316 {
4317 rcu_read_lock();
4318 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4319 }
4320
4321 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4322 {
4323 struct packet_type *pt;
4324 struct list_head *nxt;
4325 int hash;
4326
4327 ++*pos;
4328 if (v == SEQ_START_TOKEN)
4329 return ptype_get_idx(0);
4330
4331 pt = v;
4332 nxt = pt->list.next;
4333 if (pt->type == htons(ETH_P_ALL)) {
4334 if (nxt != &ptype_all)
4335 goto found;
4336 hash = 0;
4337 nxt = ptype_base[0].next;
4338 } else
4339 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4340
4341 while (nxt == &ptype_base[hash]) {
4342 if (++hash >= PTYPE_HASH_SIZE)
4343 return NULL;
4344 nxt = ptype_base[hash].next;
4345 }
4346 found:
4347 return list_entry(nxt, struct packet_type, list);
4348 }
4349
4350 static void ptype_seq_stop(struct seq_file *seq, void *v)
4351 __releases(RCU)
4352 {
4353 rcu_read_unlock();
4354 }
4355
4356 static int ptype_seq_show(struct seq_file *seq, void *v)
4357 {
4358 struct packet_type *pt = v;
4359
4360 if (v == SEQ_START_TOKEN)
4361 seq_puts(seq, "Type Device Function\n");
4362 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4363 if (pt->type == htons(ETH_P_ALL))
4364 seq_puts(seq, "ALL ");
4365 else
4366 seq_printf(seq, "%04x", ntohs(pt->type));
4367
4368 seq_printf(seq, " %-8s %pF\n",
4369 pt->dev ? pt->dev->name : "", pt->func);
4370 }
4371
4372 return 0;
4373 }
4374
4375 static const struct seq_operations ptype_seq_ops = {
4376 .start = ptype_seq_start,
4377 .next = ptype_seq_next,
4378 .stop = ptype_seq_stop,
4379 .show = ptype_seq_show,
4380 };
4381
4382 static int ptype_seq_open(struct inode *inode, struct file *file)
4383 {
4384 return seq_open_net(inode, file, &ptype_seq_ops,
4385 sizeof(struct seq_net_private));
4386 }
4387
4388 static const struct file_operations ptype_seq_fops = {
4389 .owner = THIS_MODULE,
4390 .open = ptype_seq_open,
4391 .read = seq_read,
4392 .llseek = seq_lseek,
4393 .release = seq_release_net,
4394 };
4395
4396
4397 static int __net_init dev_proc_net_init(struct net *net)
4398 {
4399 int rc = -ENOMEM;
4400
4401 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4402 goto out;
4403 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4404 goto out_dev;
4405 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4406 goto out_softnet;
4407
4408 if (wext_proc_init(net))
4409 goto out_ptype;
4410 rc = 0;
4411 out:
4412 return rc;
4413 out_ptype:
4414 proc_net_remove(net, "ptype");
4415 out_softnet:
4416 proc_net_remove(net, "softnet_stat");
4417 out_dev:
4418 proc_net_remove(net, "dev");
4419 goto out;
4420 }
4421
4422 static void __net_exit dev_proc_net_exit(struct net *net)
4423 {
4424 wext_proc_exit(net);
4425
4426 proc_net_remove(net, "ptype");
4427 proc_net_remove(net, "softnet_stat");
4428 proc_net_remove(net, "dev");
4429 }
4430
4431 static struct pernet_operations __net_initdata dev_proc_ops = {
4432 .init = dev_proc_net_init,
4433 .exit = dev_proc_net_exit,
4434 };
4435
4436 static int __init dev_proc_init(void)
4437 {
4438 return register_pernet_subsys(&dev_proc_ops);
4439 }
4440 #else
4441 #define dev_proc_init() 0
4442 #endif /* CONFIG_PROC_FS */
4443
4444
4445 /**
4446 * netdev_set_master - set up master pointer
4447 * @slave: slave device
4448 * @master: new master device
4449 *
4450 * Changes the master device of the slave. Pass %NULL to break the
4451 * bonding. The caller must hold the RTNL semaphore. On a failure
4452 * a negative errno code is returned. On success the reference counts
4453 * are adjusted and the function returns zero.
4454 */
4455 int netdev_set_master(struct net_device *slave, struct net_device *master)
4456 {
4457 struct net_device *old = slave->master;
4458
4459 ASSERT_RTNL();
4460
4461 if (master) {
4462 if (old)
4463 return -EBUSY;
4464 dev_hold(master);
4465 }
4466
4467 slave->master = master;
4468
4469 if (old)
4470 dev_put(old);
4471 return 0;
4472 }
4473 EXPORT_SYMBOL(netdev_set_master);
4474
4475 /**
4476 * netdev_set_bond_master - set up bonding master/slave pair
4477 * @slave: slave device
4478 * @master: new master device
4479 *
4480 * Changes the master device of the slave. Pass %NULL to break the
4481 * bonding. The caller must hold the RTNL semaphore. On a failure
4482 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4483 * to the routing socket and the function returns zero.
4484 */
4485 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4486 {
4487 int err;
4488
4489 ASSERT_RTNL();
4490
4491 err = netdev_set_master(slave, master);
4492 if (err)
4493 return err;
4494 if (master)
4495 slave->flags |= IFF_SLAVE;
4496 else
4497 slave->flags &= ~IFF_SLAVE;
4498
4499 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4500 return 0;
4501 }
4502 EXPORT_SYMBOL(netdev_set_bond_master);
4503
4504 static void dev_change_rx_flags(struct net_device *dev, int flags)
4505 {
4506 const struct net_device_ops *ops = dev->netdev_ops;
4507
4508 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4509 ops->ndo_change_rx_flags(dev, flags);
4510 }
4511
4512 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4513 {
4514 unsigned int old_flags = dev->flags;
4515 uid_t uid;
4516 gid_t gid;
4517
4518 ASSERT_RTNL();
4519
4520 dev->flags |= IFF_PROMISC;
4521 dev->promiscuity += inc;
4522 if (dev->promiscuity == 0) {
4523 /*
4524 * Avoid overflow.
4525 * If inc causes overflow, untouch promisc and return error.
4526 */
4527 if (inc < 0)
4528 dev->flags &= ~IFF_PROMISC;
4529 else {
4530 dev->promiscuity -= inc;
4531 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4532 dev->name);
4533 return -EOVERFLOW;
4534 }
4535 }
4536 if (dev->flags != old_flags) {
4537 pr_info("device %s %s promiscuous mode\n",
4538 dev->name,
4539 dev->flags & IFF_PROMISC ? "entered" : "left");
4540 if (audit_enabled) {
4541 current_uid_gid(&uid, &gid);
4542 audit_log(current->audit_context, GFP_ATOMIC,
4543 AUDIT_ANOM_PROMISCUOUS,
4544 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4545 dev->name, (dev->flags & IFF_PROMISC),
4546 (old_flags & IFF_PROMISC),
4547 audit_get_loginuid(current),
4548 uid, gid,
4549 audit_get_sessionid(current));
4550 }
4551
4552 dev_change_rx_flags(dev, IFF_PROMISC);
4553 }
4554 return 0;
4555 }
4556
4557 /**
4558 * dev_set_promiscuity - update promiscuity count on a device
4559 * @dev: device
4560 * @inc: modifier
4561 *
4562 * Add or remove promiscuity from a device. While the count in the device
4563 * remains above zero the interface remains promiscuous. Once it hits zero
4564 * the device reverts back to normal filtering operation. A negative inc
4565 * value is used to drop promiscuity on the device.
4566 * Return 0 if successful or a negative errno code on error.
4567 */
4568 int dev_set_promiscuity(struct net_device *dev, int inc)
4569 {
4570 unsigned int old_flags = dev->flags;
4571 int err;
4572
4573 err = __dev_set_promiscuity(dev, inc);
4574 if (err < 0)
4575 return err;
4576 if (dev->flags != old_flags)
4577 dev_set_rx_mode(dev);
4578 return err;
4579 }
4580 EXPORT_SYMBOL(dev_set_promiscuity);
4581
4582 /**
4583 * dev_set_allmulti - update allmulti count on a device
4584 * @dev: device
4585 * @inc: modifier
4586 *
4587 * Add or remove reception of all multicast frames to a device. While the
4588 * count in the device remains above zero the interface remains listening
4589 * to all interfaces. Once it hits zero the device reverts back to normal
4590 * filtering operation. A negative @inc value is used to drop the counter
4591 * when releasing a resource needing all multicasts.
4592 * Return 0 if successful or a negative errno code on error.
4593 */
4594
4595 int dev_set_allmulti(struct net_device *dev, int inc)
4596 {
4597 unsigned int old_flags = dev->flags;
4598
4599 ASSERT_RTNL();
4600
4601 dev->flags |= IFF_ALLMULTI;
4602 dev->allmulti += inc;
4603 if (dev->allmulti == 0) {
4604 /*
4605 * Avoid overflow.
4606 * If inc causes overflow, untouch allmulti and return error.
4607 */
4608 if (inc < 0)
4609 dev->flags &= ~IFF_ALLMULTI;
4610 else {
4611 dev->allmulti -= inc;
4612 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4613 dev->name);
4614 return -EOVERFLOW;
4615 }
4616 }
4617 if (dev->flags ^ old_flags) {
4618 dev_change_rx_flags(dev, IFF_ALLMULTI);
4619 dev_set_rx_mode(dev);
4620 }
4621 return 0;
4622 }
4623 EXPORT_SYMBOL(dev_set_allmulti);
4624
4625 /*
4626 * Upload unicast and multicast address lists to device and
4627 * configure RX filtering. When the device doesn't support unicast
4628 * filtering it is put in promiscuous mode while unicast addresses
4629 * are present.
4630 */
4631 void __dev_set_rx_mode(struct net_device *dev)
4632 {
4633 const struct net_device_ops *ops = dev->netdev_ops;
4634
4635 /* dev_open will call this function so the list will stay sane. */
4636 if (!(dev->flags&IFF_UP))
4637 return;
4638
4639 if (!netif_device_present(dev))
4640 return;
4641
4642 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4643 /* Unicast addresses changes may only happen under the rtnl,
4644 * therefore calling __dev_set_promiscuity here is safe.
4645 */
4646 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4647 __dev_set_promiscuity(dev, 1);
4648 dev->uc_promisc = true;
4649 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4650 __dev_set_promiscuity(dev, -1);
4651 dev->uc_promisc = false;
4652 }
4653 }
4654
4655 if (ops->ndo_set_rx_mode)
4656 ops->ndo_set_rx_mode(dev);
4657 }
4658
4659 void dev_set_rx_mode(struct net_device *dev)
4660 {
4661 netif_addr_lock_bh(dev);
4662 __dev_set_rx_mode(dev);
4663 netif_addr_unlock_bh(dev);
4664 }
4665
4666 /**
4667 * dev_get_flags - get flags reported to userspace
4668 * @dev: device
4669 *
4670 * Get the combination of flag bits exported through APIs to userspace.
4671 */
4672 unsigned int dev_get_flags(const struct net_device *dev)
4673 {
4674 unsigned int flags;
4675
4676 flags = (dev->flags & ~(IFF_PROMISC |
4677 IFF_ALLMULTI |
4678 IFF_RUNNING |
4679 IFF_LOWER_UP |
4680 IFF_DORMANT)) |
4681 (dev->gflags & (IFF_PROMISC |
4682 IFF_ALLMULTI));
4683
4684 if (netif_running(dev)) {
4685 if (netif_oper_up(dev))
4686 flags |= IFF_RUNNING;
4687 if (netif_carrier_ok(dev))
4688 flags |= IFF_LOWER_UP;
4689 if (netif_dormant(dev))
4690 flags |= IFF_DORMANT;
4691 }
4692
4693 return flags;
4694 }
4695 EXPORT_SYMBOL(dev_get_flags);
4696
4697 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4698 {
4699 unsigned int old_flags = dev->flags;
4700 int ret;
4701
4702 ASSERT_RTNL();
4703
4704 /*
4705 * Set the flags on our device.
4706 */
4707
4708 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4709 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4710 IFF_AUTOMEDIA)) |
4711 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4712 IFF_ALLMULTI));
4713
4714 /*
4715 * Load in the correct multicast list now the flags have changed.
4716 */
4717
4718 if ((old_flags ^ flags) & IFF_MULTICAST)
4719 dev_change_rx_flags(dev, IFF_MULTICAST);
4720
4721 dev_set_rx_mode(dev);
4722
4723 /*
4724 * Have we downed the interface. We handle IFF_UP ourselves
4725 * according to user attempts to set it, rather than blindly
4726 * setting it.
4727 */
4728
4729 ret = 0;
4730 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4731 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4732
4733 if (!ret)
4734 dev_set_rx_mode(dev);
4735 }
4736
4737 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4738 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4739
4740 dev->gflags ^= IFF_PROMISC;
4741 dev_set_promiscuity(dev, inc);
4742 }
4743
4744 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4745 is important. Some (broken) drivers set IFF_PROMISC, when
4746 IFF_ALLMULTI is requested not asking us and not reporting.
4747 */
4748 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4749 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4750
4751 dev->gflags ^= IFF_ALLMULTI;
4752 dev_set_allmulti(dev, inc);
4753 }
4754
4755 return ret;
4756 }
4757
4758 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4759 {
4760 unsigned int changes = dev->flags ^ old_flags;
4761
4762 if (changes & IFF_UP) {
4763 if (dev->flags & IFF_UP)
4764 call_netdevice_notifiers(NETDEV_UP, dev);
4765 else
4766 call_netdevice_notifiers(NETDEV_DOWN, dev);
4767 }
4768
4769 if (dev->flags & IFF_UP &&
4770 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4771 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4772 }
4773
4774 /**
4775 * dev_change_flags - change device settings
4776 * @dev: device
4777 * @flags: device state flags
4778 *
4779 * Change settings on device based state flags. The flags are
4780 * in the userspace exported format.
4781 */
4782 int dev_change_flags(struct net_device *dev, unsigned int flags)
4783 {
4784 int ret;
4785 unsigned int changes, old_flags = dev->flags;
4786
4787 ret = __dev_change_flags(dev, flags);
4788 if (ret < 0)
4789 return ret;
4790
4791 changes = old_flags ^ dev->flags;
4792 if (changes)
4793 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4794
4795 __dev_notify_flags(dev, old_flags);
4796 return ret;
4797 }
4798 EXPORT_SYMBOL(dev_change_flags);
4799
4800 /**
4801 * dev_set_mtu - Change maximum transfer unit
4802 * @dev: device
4803 * @new_mtu: new transfer unit
4804 *
4805 * Change the maximum transfer size of the network device.
4806 */
4807 int dev_set_mtu(struct net_device *dev, int new_mtu)
4808 {
4809 const struct net_device_ops *ops = dev->netdev_ops;
4810 int err;
4811
4812 if (new_mtu == dev->mtu)
4813 return 0;
4814
4815 /* MTU must be positive. */
4816 if (new_mtu < 0)
4817 return -EINVAL;
4818
4819 if (!netif_device_present(dev))
4820 return -ENODEV;
4821
4822 err = 0;
4823 if (ops->ndo_change_mtu)
4824 err = ops->ndo_change_mtu(dev, new_mtu);
4825 else
4826 dev->mtu = new_mtu;
4827
4828 if (!err && dev->flags & IFF_UP)
4829 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4830 return err;
4831 }
4832 EXPORT_SYMBOL(dev_set_mtu);
4833
4834 /**
4835 * dev_set_group - Change group this device belongs to
4836 * @dev: device
4837 * @new_group: group this device should belong to
4838 */
4839 void dev_set_group(struct net_device *dev, int new_group)
4840 {
4841 dev->group = new_group;
4842 }
4843 EXPORT_SYMBOL(dev_set_group);
4844
4845 /**
4846 * dev_set_mac_address - Change Media Access Control Address
4847 * @dev: device
4848 * @sa: new address
4849 *
4850 * Change the hardware (MAC) address of the device
4851 */
4852 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4853 {
4854 const struct net_device_ops *ops = dev->netdev_ops;
4855 int err;
4856
4857 if (!ops->ndo_set_mac_address)
4858 return -EOPNOTSUPP;
4859 if (sa->sa_family != dev->type)
4860 return -EINVAL;
4861 if (!netif_device_present(dev))
4862 return -ENODEV;
4863 err = ops->ndo_set_mac_address(dev, sa);
4864 if (!err)
4865 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4866 add_device_randomness(dev->dev_addr, dev->addr_len);
4867 return err;
4868 }
4869 EXPORT_SYMBOL(dev_set_mac_address);
4870
4871 /*
4872 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4873 */
4874 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4875 {
4876 int err;
4877 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4878
4879 if (!dev)
4880 return -ENODEV;
4881
4882 switch (cmd) {
4883 case SIOCGIFFLAGS: /* Get interface flags */
4884 ifr->ifr_flags = (short) dev_get_flags(dev);
4885 return 0;
4886
4887 case SIOCGIFMETRIC: /* Get the metric on the interface
4888 (currently unused) */
4889 ifr->ifr_metric = 0;
4890 return 0;
4891
4892 case SIOCGIFMTU: /* Get the MTU of a device */
4893 ifr->ifr_mtu = dev->mtu;
4894 return 0;
4895
4896 case SIOCGIFHWADDR:
4897 if (!dev->addr_len)
4898 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4899 else
4900 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4901 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4902 ifr->ifr_hwaddr.sa_family = dev->type;
4903 return 0;
4904
4905 case SIOCGIFSLAVE:
4906 err = -EINVAL;
4907 break;
4908
4909 case SIOCGIFMAP:
4910 ifr->ifr_map.mem_start = dev->mem_start;
4911 ifr->ifr_map.mem_end = dev->mem_end;
4912 ifr->ifr_map.base_addr = dev->base_addr;
4913 ifr->ifr_map.irq = dev->irq;
4914 ifr->ifr_map.dma = dev->dma;
4915 ifr->ifr_map.port = dev->if_port;
4916 return 0;
4917
4918 case SIOCGIFINDEX:
4919 ifr->ifr_ifindex = dev->ifindex;
4920 return 0;
4921
4922 case SIOCGIFTXQLEN:
4923 ifr->ifr_qlen = dev->tx_queue_len;
4924 return 0;
4925
4926 default:
4927 /* dev_ioctl() should ensure this case
4928 * is never reached
4929 */
4930 WARN_ON(1);
4931 err = -ENOTTY;
4932 break;
4933
4934 }
4935 return err;
4936 }
4937
4938 /*
4939 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4940 */
4941 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4942 {
4943 int err;
4944 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4945 const struct net_device_ops *ops;
4946
4947 if (!dev)
4948 return -ENODEV;
4949
4950 ops = dev->netdev_ops;
4951
4952 switch (cmd) {
4953 case SIOCSIFFLAGS: /* Set interface flags */
4954 return dev_change_flags(dev, ifr->ifr_flags);
4955
4956 case SIOCSIFMETRIC: /* Set the metric on the interface
4957 (currently unused) */
4958 return -EOPNOTSUPP;
4959
4960 case SIOCSIFMTU: /* Set the MTU of a device */
4961 return dev_set_mtu(dev, ifr->ifr_mtu);
4962
4963 case SIOCSIFHWADDR:
4964 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4965
4966 case SIOCSIFHWBROADCAST:
4967 if (ifr->ifr_hwaddr.sa_family != dev->type)
4968 return -EINVAL;
4969 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4970 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4971 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4972 return 0;
4973
4974 case SIOCSIFMAP:
4975 if (ops->ndo_set_config) {
4976 if (!netif_device_present(dev))
4977 return -ENODEV;
4978 return ops->ndo_set_config(dev, &ifr->ifr_map);
4979 }
4980 return -EOPNOTSUPP;
4981
4982 case SIOCADDMULTI:
4983 if (!ops->ndo_set_rx_mode ||
4984 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4985 return -EINVAL;
4986 if (!netif_device_present(dev))
4987 return -ENODEV;
4988 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4989
4990 case SIOCDELMULTI:
4991 if (!ops->ndo_set_rx_mode ||
4992 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4993 return -EINVAL;
4994 if (!netif_device_present(dev))
4995 return -ENODEV;
4996 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4997
4998 case SIOCSIFTXQLEN:
4999 if (ifr->ifr_qlen < 0)
5000 return -EINVAL;
5001 dev->tx_queue_len = ifr->ifr_qlen;
5002 return 0;
5003
5004 case SIOCSIFNAME:
5005 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5006 return dev_change_name(dev, ifr->ifr_newname);
5007
5008 case SIOCSHWTSTAMP:
5009 err = net_hwtstamp_validate(ifr);
5010 if (err)
5011 return err;
5012 /* fall through */
5013
5014 /*
5015 * Unknown or private ioctl
5016 */
5017 default:
5018 if ((cmd >= SIOCDEVPRIVATE &&
5019 cmd <= SIOCDEVPRIVATE + 15) ||
5020 cmd == SIOCBONDENSLAVE ||
5021 cmd == SIOCBONDRELEASE ||
5022 cmd == SIOCBONDSETHWADDR ||
5023 cmd == SIOCBONDSLAVEINFOQUERY ||
5024 cmd == SIOCBONDINFOQUERY ||
5025 cmd == SIOCBONDCHANGEACTIVE ||
5026 cmd == SIOCGMIIPHY ||
5027 cmd == SIOCGMIIREG ||
5028 cmd == SIOCSMIIREG ||
5029 cmd == SIOCBRADDIF ||
5030 cmd == SIOCBRDELIF ||
5031 cmd == SIOCSHWTSTAMP ||
5032 cmd == SIOCWANDEV) {
5033 err = -EOPNOTSUPP;
5034 if (ops->ndo_do_ioctl) {
5035 if (netif_device_present(dev))
5036 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5037 else
5038 err = -ENODEV;
5039 }
5040 } else
5041 err = -EINVAL;
5042
5043 }
5044 return err;
5045 }
5046
5047 /*
5048 * This function handles all "interface"-type I/O control requests. The actual
5049 * 'doing' part of this is dev_ifsioc above.
5050 */
5051
5052 /**
5053 * dev_ioctl - network device ioctl
5054 * @net: the applicable net namespace
5055 * @cmd: command to issue
5056 * @arg: pointer to a struct ifreq in user space
5057 *
5058 * Issue ioctl functions to devices. This is normally called by the
5059 * user space syscall interfaces but can sometimes be useful for
5060 * other purposes. The return value is the return from the syscall if
5061 * positive or a negative errno code on error.
5062 */
5063
5064 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5065 {
5066 struct ifreq ifr;
5067 int ret;
5068 char *colon;
5069
5070 /* One special case: SIOCGIFCONF takes ifconf argument
5071 and requires shared lock, because it sleeps writing
5072 to user space.
5073 */
5074
5075 if (cmd == SIOCGIFCONF) {
5076 rtnl_lock();
5077 ret = dev_ifconf(net, (char __user *) arg);
5078 rtnl_unlock();
5079 return ret;
5080 }
5081 if (cmd == SIOCGIFNAME)
5082 return dev_ifname(net, (struct ifreq __user *)arg);
5083
5084 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5085 return -EFAULT;
5086
5087 ifr.ifr_name[IFNAMSIZ-1] = 0;
5088
5089 colon = strchr(ifr.ifr_name, ':');
5090 if (colon)
5091 *colon = 0;
5092
5093 /*
5094 * See which interface the caller is talking about.
5095 */
5096
5097 switch (cmd) {
5098 /*
5099 * These ioctl calls:
5100 * - can be done by all.
5101 * - atomic and do not require locking.
5102 * - return a value
5103 */
5104 case SIOCGIFFLAGS:
5105 case SIOCGIFMETRIC:
5106 case SIOCGIFMTU:
5107 case SIOCGIFHWADDR:
5108 case SIOCGIFSLAVE:
5109 case SIOCGIFMAP:
5110 case SIOCGIFINDEX:
5111 case SIOCGIFTXQLEN:
5112 dev_load(net, ifr.ifr_name);
5113 rcu_read_lock();
5114 ret = dev_ifsioc_locked(net, &ifr, cmd);
5115 rcu_read_unlock();
5116 if (!ret) {
5117 if (colon)
5118 *colon = ':';
5119 if (copy_to_user(arg, &ifr,
5120 sizeof(struct ifreq)))
5121 ret = -EFAULT;
5122 }
5123 return ret;
5124
5125 case SIOCETHTOOL:
5126 dev_load(net, ifr.ifr_name);
5127 rtnl_lock();
5128 ret = dev_ethtool(net, &ifr);
5129 rtnl_unlock();
5130 if (!ret) {
5131 if (colon)
5132 *colon = ':';
5133 if (copy_to_user(arg, &ifr,
5134 sizeof(struct ifreq)))
5135 ret = -EFAULT;
5136 }
5137 return ret;
5138
5139 /*
5140 * These ioctl calls:
5141 * - require superuser power.
5142 * - require strict serialization.
5143 * - return a value
5144 */
5145 case SIOCGMIIPHY:
5146 case SIOCGMIIREG:
5147 case SIOCSIFNAME:
5148 if (!capable(CAP_NET_ADMIN))
5149 return -EPERM;
5150 dev_load(net, ifr.ifr_name);
5151 rtnl_lock();
5152 ret = dev_ifsioc(net, &ifr, cmd);
5153 rtnl_unlock();
5154 if (!ret) {
5155 if (colon)
5156 *colon = ':';
5157 if (copy_to_user(arg, &ifr,
5158 sizeof(struct ifreq)))
5159 ret = -EFAULT;
5160 }
5161 return ret;
5162
5163 /*
5164 * These ioctl calls:
5165 * - require superuser power.
5166 * - require strict serialization.
5167 * - do not return a value
5168 */
5169 case SIOCSIFFLAGS:
5170 case SIOCSIFMETRIC:
5171 case SIOCSIFMTU:
5172 case SIOCSIFMAP:
5173 case SIOCSIFHWADDR:
5174 case SIOCSIFSLAVE:
5175 case SIOCADDMULTI:
5176 case SIOCDELMULTI:
5177 case SIOCSIFHWBROADCAST:
5178 case SIOCSIFTXQLEN:
5179 case SIOCSMIIREG:
5180 case SIOCBONDENSLAVE:
5181 case SIOCBONDRELEASE:
5182 case SIOCBONDSETHWADDR:
5183 case SIOCBONDCHANGEACTIVE:
5184 case SIOCBRADDIF:
5185 case SIOCBRDELIF:
5186 case SIOCSHWTSTAMP:
5187 if (!capable(CAP_NET_ADMIN))
5188 return -EPERM;
5189 /* fall through */
5190 case SIOCBONDSLAVEINFOQUERY:
5191 case SIOCBONDINFOQUERY:
5192 dev_load(net, ifr.ifr_name);
5193 rtnl_lock();
5194 ret = dev_ifsioc(net, &ifr, cmd);
5195 rtnl_unlock();
5196 return ret;
5197
5198 case SIOCGIFMEM:
5199 /* Get the per device memory space. We can add this but
5200 * currently do not support it */
5201 case SIOCSIFMEM:
5202 /* Set the per device memory buffer space.
5203 * Not applicable in our case */
5204 case SIOCSIFLINK:
5205 return -ENOTTY;
5206
5207 /*
5208 * Unknown or private ioctl.
5209 */
5210 default:
5211 if (cmd == SIOCWANDEV ||
5212 (cmd >= SIOCDEVPRIVATE &&
5213 cmd <= SIOCDEVPRIVATE + 15)) {
5214 dev_load(net, ifr.ifr_name);
5215 rtnl_lock();
5216 ret = dev_ifsioc(net, &ifr, cmd);
5217 rtnl_unlock();
5218 if (!ret && copy_to_user(arg, &ifr,
5219 sizeof(struct ifreq)))
5220 ret = -EFAULT;
5221 return ret;
5222 }
5223 /* Take care of Wireless Extensions */
5224 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5225 return wext_handle_ioctl(net, &ifr, cmd, arg);
5226 return -ENOTTY;
5227 }
5228 }
5229
5230
5231 /**
5232 * dev_new_index - allocate an ifindex
5233 * @net: the applicable net namespace
5234 *
5235 * Returns a suitable unique value for a new device interface
5236 * number. The caller must hold the rtnl semaphore or the
5237 * dev_base_lock to be sure it remains unique.
5238 */
5239 static int dev_new_index(struct net *net)
5240 {
5241 static int ifindex;
5242 for (;;) {
5243 if (++ifindex <= 0)
5244 ifindex = 1;
5245 if (!__dev_get_by_index(net, ifindex))
5246 return ifindex;
5247 }
5248 }
5249
5250 /* Delayed registration/unregisteration */
5251 static LIST_HEAD(net_todo_list);
5252
5253 static void net_set_todo(struct net_device *dev)
5254 {
5255 list_add_tail(&dev->todo_list, &net_todo_list);
5256 }
5257
5258 static void rollback_registered_many(struct list_head *head)
5259 {
5260 struct net_device *dev, *tmp;
5261
5262 BUG_ON(dev_boot_phase);
5263 ASSERT_RTNL();
5264
5265 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5266 /* Some devices call without registering
5267 * for initialization unwind. Remove those
5268 * devices and proceed with the remaining.
5269 */
5270 if (dev->reg_state == NETREG_UNINITIALIZED) {
5271 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5272 dev->name, dev);
5273
5274 WARN_ON(1);
5275 list_del(&dev->unreg_list);
5276 continue;
5277 }
5278 dev->dismantle = true;
5279 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5280 }
5281
5282 /* If device is running, close it first. */
5283 dev_close_many(head);
5284
5285 list_for_each_entry(dev, head, unreg_list) {
5286 /* And unlink it from device chain. */
5287 unlist_netdevice(dev);
5288
5289 dev->reg_state = NETREG_UNREGISTERING;
5290 }
5291
5292 synchronize_net();
5293
5294 list_for_each_entry(dev, head, unreg_list) {
5295 /* Shutdown queueing discipline. */
5296 dev_shutdown(dev);
5297
5298
5299 /* Notify protocols, that we are about to destroy
5300 this device. They should clean all the things.
5301 */
5302 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5303
5304 if (!dev->rtnl_link_ops ||
5305 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5306 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5307
5308 /*
5309 * Flush the unicast and multicast chains
5310 */
5311 dev_uc_flush(dev);
5312 dev_mc_flush(dev);
5313
5314 if (dev->netdev_ops->ndo_uninit)
5315 dev->netdev_ops->ndo_uninit(dev);
5316
5317 /* Notifier chain MUST detach us from master device. */
5318 WARN_ON(dev->master);
5319
5320 /* Remove entries from kobject tree */
5321 netdev_unregister_kobject(dev);
5322 }
5323
5324 /* Process any work delayed until the end of the batch */
5325 dev = list_first_entry(head, struct net_device, unreg_list);
5326 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5327
5328 synchronize_net();
5329
5330 list_for_each_entry(dev, head, unreg_list)
5331 dev_put(dev);
5332 }
5333
5334 static void rollback_registered(struct net_device *dev)
5335 {
5336 LIST_HEAD(single);
5337
5338 list_add(&dev->unreg_list, &single);
5339 rollback_registered_many(&single);
5340 list_del(&single);
5341 }
5342
5343 static netdev_features_t netdev_fix_features(struct net_device *dev,
5344 netdev_features_t features)
5345 {
5346 /* Fix illegal checksum combinations */
5347 if ((features & NETIF_F_HW_CSUM) &&
5348 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5349 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5350 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5351 }
5352
5353 /* Fix illegal SG+CSUM combinations. */
5354 if ((features & NETIF_F_SG) &&
5355 !(features & NETIF_F_ALL_CSUM)) {
5356 netdev_dbg(dev,
5357 "Dropping NETIF_F_SG since no checksum feature.\n");
5358 features &= ~NETIF_F_SG;
5359 }
5360
5361 /* TSO requires that SG is present as well. */
5362 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5363 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5364 features &= ~NETIF_F_ALL_TSO;
5365 }
5366
5367 /* TSO ECN requires that TSO is present as well. */
5368 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5369 features &= ~NETIF_F_TSO_ECN;
5370
5371 /* Software GSO depends on SG. */
5372 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5373 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5374 features &= ~NETIF_F_GSO;
5375 }
5376
5377 /* UFO needs SG and checksumming */
5378 if (features & NETIF_F_UFO) {
5379 /* maybe split UFO into V4 and V6? */
5380 if (!((features & NETIF_F_GEN_CSUM) ||
5381 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5382 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5383 netdev_dbg(dev,
5384 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5385 features &= ~NETIF_F_UFO;
5386 }
5387
5388 if (!(features & NETIF_F_SG)) {
5389 netdev_dbg(dev,
5390 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5391 features &= ~NETIF_F_UFO;
5392 }
5393 }
5394
5395 return features;
5396 }
5397
5398 int __netdev_update_features(struct net_device *dev)
5399 {
5400 netdev_features_t features;
5401 int err = 0;
5402
5403 ASSERT_RTNL();
5404
5405 features = netdev_get_wanted_features(dev);
5406
5407 if (dev->netdev_ops->ndo_fix_features)
5408 features = dev->netdev_ops->ndo_fix_features(dev, features);
5409
5410 /* driver might be less strict about feature dependencies */
5411 features = netdev_fix_features(dev, features);
5412
5413 if (dev->features == features)
5414 return 0;
5415
5416 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5417 &dev->features, &features);
5418
5419 if (dev->netdev_ops->ndo_set_features)
5420 err = dev->netdev_ops->ndo_set_features(dev, features);
5421
5422 if (unlikely(err < 0)) {
5423 netdev_err(dev,
5424 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5425 err, &features, &dev->features);
5426 return -1;
5427 }
5428
5429 if (!err)
5430 dev->features = features;
5431
5432 return 1;
5433 }
5434
5435 /**
5436 * netdev_update_features - recalculate device features
5437 * @dev: the device to check
5438 *
5439 * Recalculate dev->features set and send notifications if it
5440 * has changed. Should be called after driver or hardware dependent
5441 * conditions might have changed that influence the features.
5442 */
5443 void netdev_update_features(struct net_device *dev)
5444 {
5445 if (__netdev_update_features(dev))
5446 netdev_features_change(dev);
5447 }
5448 EXPORT_SYMBOL(netdev_update_features);
5449
5450 /**
5451 * netdev_change_features - recalculate device features
5452 * @dev: the device to check
5453 *
5454 * Recalculate dev->features set and send notifications even
5455 * if they have not changed. Should be called instead of
5456 * netdev_update_features() if also dev->vlan_features might
5457 * have changed to allow the changes to be propagated to stacked
5458 * VLAN devices.
5459 */
5460 void netdev_change_features(struct net_device *dev)
5461 {
5462 __netdev_update_features(dev);
5463 netdev_features_change(dev);
5464 }
5465 EXPORT_SYMBOL(netdev_change_features);
5466
5467 /**
5468 * netif_stacked_transfer_operstate - transfer operstate
5469 * @rootdev: the root or lower level device to transfer state from
5470 * @dev: the device to transfer operstate to
5471 *
5472 * Transfer operational state from root to device. This is normally
5473 * called when a stacking relationship exists between the root
5474 * device and the device(a leaf device).
5475 */
5476 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5477 struct net_device *dev)
5478 {
5479 if (rootdev->operstate == IF_OPER_DORMANT)
5480 netif_dormant_on(dev);
5481 else
5482 netif_dormant_off(dev);
5483
5484 if (netif_carrier_ok(rootdev)) {
5485 if (!netif_carrier_ok(dev))
5486 netif_carrier_on(dev);
5487 } else {
5488 if (netif_carrier_ok(dev))
5489 netif_carrier_off(dev);
5490 }
5491 }
5492 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5493
5494 #ifdef CONFIG_RPS
5495 static int netif_alloc_rx_queues(struct net_device *dev)
5496 {
5497 unsigned int i, count = dev->num_rx_queues;
5498 struct netdev_rx_queue *rx;
5499
5500 BUG_ON(count < 1);
5501
5502 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5503 if (!rx) {
5504 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5505 return -ENOMEM;
5506 }
5507 dev->_rx = rx;
5508
5509 for (i = 0; i < count; i++)
5510 rx[i].dev = dev;
5511 return 0;
5512 }
5513 #endif
5514
5515 static void netdev_init_one_queue(struct net_device *dev,
5516 struct netdev_queue *queue, void *_unused)
5517 {
5518 /* Initialize queue lock */
5519 spin_lock_init(&queue->_xmit_lock);
5520 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5521 queue->xmit_lock_owner = -1;
5522 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5523 queue->dev = dev;
5524 #ifdef CONFIG_BQL
5525 dql_init(&queue->dql, HZ);
5526 #endif
5527 }
5528
5529 static int netif_alloc_netdev_queues(struct net_device *dev)
5530 {
5531 unsigned int count = dev->num_tx_queues;
5532 struct netdev_queue *tx;
5533
5534 BUG_ON(count < 1);
5535
5536 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5537 if (!tx) {
5538 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5539 return -ENOMEM;
5540 }
5541 dev->_tx = tx;
5542
5543 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5544 spin_lock_init(&dev->tx_global_lock);
5545
5546 return 0;
5547 }
5548
5549 /**
5550 * register_netdevice - register a network device
5551 * @dev: device to register
5552 *
5553 * Take a completed network device structure and add it to the kernel
5554 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5555 * chain. 0 is returned on success. A negative errno code is returned
5556 * on a failure to set up the device, or if the name is a duplicate.
5557 *
5558 * Callers must hold the rtnl semaphore. You may want
5559 * register_netdev() instead of this.
5560 *
5561 * BUGS:
5562 * The locking appears insufficient to guarantee two parallel registers
5563 * will not get the same name.
5564 */
5565
5566 int register_netdevice(struct net_device *dev)
5567 {
5568 int ret;
5569 struct net *net = dev_net(dev);
5570
5571 BUG_ON(dev_boot_phase);
5572 ASSERT_RTNL();
5573
5574 might_sleep();
5575
5576 /* When net_device's are persistent, this will be fatal. */
5577 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5578 BUG_ON(!net);
5579
5580 spin_lock_init(&dev->addr_list_lock);
5581 netdev_set_addr_lockdep_class(dev);
5582
5583 dev->iflink = -1;
5584
5585 ret = dev_get_valid_name(dev, dev->name);
5586 if (ret < 0)
5587 goto out;
5588
5589 /* Init, if this function is available */
5590 if (dev->netdev_ops->ndo_init) {
5591 ret = dev->netdev_ops->ndo_init(dev);
5592 if (ret) {
5593 if (ret > 0)
5594 ret = -EIO;
5595 goto out;
5596 }
5597 }
5598
5599 dev->ifindex = dev_new_index(net);
5600 if (dev->iflink == -1)
5601 dev->iflink = dev->ifindex;
5602
5603 /* Transfer changeable features to wanted_features and enable
5604 * software offloads (GSO and GRO).
5605 */
5606 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5607 dev->features |= NETIF_F_SOFT_FEATURES;
5608 dev->wanted_features = dev->features & dev->hw_features;
5609
5610 /* Turn on no cache copy if HW is doing checksum */
5611 if (!(dev->flags & IFF_LOOPBACK)) {
5612 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5613 if (dev->features & NETIF_F_ALL_CSUM) {
5614 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5615 dev->features |= NETIF_F_NOCACHE_COPY;
5616 }
5617 }
5618
5619 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5620 */
5621 dev->vlan_features |= NETIF_F_HIGHDMA;
5622
5623 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5624 ret = notifier_to_errno(ret);
5625 if (ret)
5626 goto err_uninit;
5627
5628 ret = netdev_register_kobject(dev);
5629 if (ret)
5630 goto err_uninit;
5631 dev->reg_state = NETREG_REGISTERED;
5632
5633 __netdev_update_features(dev);
5634
5635 /*
5636 * Default initial state at registry is that the
5637 * device is present.
5638 */
5639
5640 set_bit(__LINK_STATE_PRESENT, &dev->state);
5641
5642 dev_init_scheduler(dev);
5643 dev_hold(dev);
5644 list_netdevice(dev);
5645 add_device_randomness(dev->dev_addr, dev->addr_len);
5646
5647 /* Notify protocols, that a new device appeared. */
5648 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5649 ret = notifier_to_errno(ret);
5650 if (ret) {
5651 rollback_registered(dev);
5652 dev->reg_state = NETREG_UNREGISTERED;
5653 }
5654 /*
5655 * Prevent userspace races by waiting until the network
5656 * device is fully setup before sending notifications.
5657 */
5658 if (!dev->rtnl_link_ops ||
5659 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5660 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5661
5662 out:
5663 return ret;
5664
5665 err_uninit:
5666 if (dev->netdev_ops->ndo_uninit)
5667 dev->netdev_ops->ndo_uninit(dev);
5668 goto out;
5669 }
5670 EXPORT_SYMBOL(register_netdevice);
5671
5672 /**
5673 * init_dummy_netdev - init a dummy network device for NAPI
5674 * @dev: device to init
5675 *
5676 * This takes a network device structure and initialize the minimum
5677 * amount of fields so it can be used to schedule NAPI polls without
5678 * registering a full blown interface. This is to be used by drivers
5679 * that need to tie several hardware interfaces to a single NAPI
5680 * poll scheduler due to HW limitations.
5681 */
5682 int init_dummy_netdev(struct net_device *dev)
5683 {
5684 /* Clear everything. Note we don't initialize spinlocks
5685 * are they aren't supposed to be taken by any of the
5686 * NAPI code and this dummy netdev is supposed to be
5687 * only ever used for NAPI polls
5688 */
5689 memset(dev, 0, sizeof(struct net_device));
5690
5691 /* make sure we BUG if trying to hit standard
5692 * register/unregister code path
5693 */
5694 dev->reg_state = NETREG_DUMMY;
5695
5696 /* NAPI wants this */
5697 INIT_LIST_HEAD(&dev->napi_list);
5698
5699 /* a dummy interface is started by default */
5700 set_bit(__LINK_STATE_PRESENT, &dev->state);
5701 set_bit(__LINK_STATE_START, &dev->state);
5702
5703 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5704 * because users of this 'device' dont need to change
5705 * its refcount.
5706 */
5707
5708 return 0;
5709 }
5710 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5711
5712
5713 /**
5714 * register_netdev - register a network device
5715 * @dev: device to register
5716 *
5717 * Take a completed network device structure and add it to the kernel
5718 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5719 * chain. 0 is returned on success. A negative errno code is returned
5720 * on a failure to set up the device, or if the name is a duplicate.
5721 *
5722 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5723 * and expands the device name if you passed a format string to
5724 * alloc_netdev.
5725 */
5726 int register_netdev(struct net_device *dev)
5727 {
5728 int err;
5729
5730 rtnl_lock();
5731 err = register_netdevice(dev);
5732 rtnl_unlock();
5733 return err;
5734 }
5735 EXPORT_SYMBOL(register_netdev);
5736
5737 int netdev_refcnt_read(const struct net_device *dev)
5738 {
5739 int i, refcnt = 0;
5740
5741 for_each_possible_cpu(i)
5742 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5743 return refcnt;
5744 }
5745 EXPORT_SYMBOL(netdev_refcnt_read);
5746
5747 /**
5748 * netdev_wait_allrefs - wait until all references are gone.
5749 * @dev: target net_device
5750 *
5751 * This is called when unregistering network devices.
5752 *
5753 * Any protocol or device that holds a reference should register
5754 * for netdevice notification, and cleanup and put back the
5755 * reference if they receive an UNREGISTER event.
5756 * We can get stuck here if buggy protocols don't correctly
5757 * call dev_put.
5758 */
5759 static void netdev_wait_allrefs(struct net_device *dev)
5760 {
5761 unsigned long rebroadcast_time, warning_time;
5762 int refcnt;
5763
5764 linkwatch_forget_dev(dev);
5765
5766 rebroadcast_time = warning_time = jiffies;
5767 refcnt = netdev_refcnt_read(dev);
5768
5769 while (refcnt != 0) {
5770 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5771 rtnl_lock();
5772
5773 /* Rebroadcast unregister notification */
5774 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5775 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5776 * should have already handle it the first time */
5777
5778 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5779 &dev->state)) {
5780 /* We must not have linkwatch events
5781 * pending on unregister. If this
5782 * happens, we simply run the queue
5783 * unscheduled, resulting in a noop
5784 * for this device.
5785 */
5786 linkwatch_run_queue();
5787 }
5788
5789 __rtnl_unlock();
5790
5791 rebroadcast_time = jiffies;
5792 }
5793
5794 msleep(250);
5795
5796 refcnt = netdev_refcnt_read(dev);
5797
5798 if (time_after(jiffies, warning_time + 10 * HZ)) {
5799 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5800 dev->name, refcnt);
5801 warning_time = jiffies;
5802 }
5803 }
5804 }
5805
5806 /* The sequence is:
5807 *
5808 * rtnl_lock();
5809 * ...
5810 * register_netdevice(x1);
5811 * register_netdevice(x2);
5812 * ...
5813 * unregister_netdevice(y1);
5814 * unregister_netdevice(y2);
5815 * ...
5816 * rtnl_unlock();
5817 * free_netdev(y1);
5818 * free_netdev(y2);
5819 *
5820 * We are invoked by rtnl_unlock().
5821 * This allows us to deal with problems:
5822 * 1) We can delete sysfs objects which invoke hotplug
5823 * without deadlocking with linkwatch via keventd.
5824 * 2) Since we run with the RTNL semaphore not held, we can sleep
5825 * safely in order to wait for the netdev refcnt to drop to zero.
5826 *
5827 * We must not return until all unregister events added during
5828 * the interval the lock was held have been completed.
5829 */
5830 void netdev_run_todo(void)
5831 {
5832 struct list_head list;
5833
5834 /* Snapshot list, allow later requests */
5835 list_replace_init(&net_todo_list, &list);
5836
5837 __rtnl_unlock();
5838
5839 /* Wait for rcu callbacks to finish before attempting to drain
5840 * the device list. This usually avoids a 250ms wait.
5841 */
5842 if (!list_empty(&list))
5843 rcu_barrier();
5844
5845 while (!list_empty(&list)) {
5846 struct net_device *dev
5847 = list_first_entry(&list, struct net_device, todo_list);
5848 list_del(&dev->todo_list);
5849
5850 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5851 pr_err("network todo '%s' but state %d\n",
5852 dev->name, dev->reg_state);
5853 dump_stack();
5854 continue;
5855 }
5856
5857 dev->reg_state = NETREG_UNREGISTERED;
5858
5859 on_each_cpu(flush_backlog, dev, 1);
5860
5861 netdev_wait_allrefs(dev);
5862
5863 /* paranoia */
5864 BUG_ON(netdev_refcnt_read(dev));
5865 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5866 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5867 WARN_ON(dev->dn_ptr);
5868
5869 if (dev->destructor)
5870 dev->destructor(dev);
5871
5872 /* Free network device */
5873 kobject_put(&dev->dev.kobj);
5874 }
5875 }
5876
5877 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5878 * fields in the same order, with only the type differing.
5879 */
5880 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5881 const struct net_device_stats *netdev_stats)
5882 {
5883 #if BITS_PER_LONG == 64
5884 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5885 memcpy(stats64, netdev_stats, sizeof(*stats64));
5886 #else
5887 size_t i, n = sizeof(*stats64) / sizeof(u64);
5888 const unsigned long *src = (const unsigned long *)netdev_stats;
5889 u64 *dst = (u64 *)stats64;
5890
5891 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5892 sizeof(*stats64) / sizeof(u64));
5893 for (i = 0; i < n; i++)
5894 dst[i] = src[i];
5895 #endif
5896 }
5897 EXPORT_SYMBOL(netdev_stats_to_stats64);
5898
5899 /**
5900 * dev_get_stats - get network device statistics
5901 * @dev: device to get statistics from
5902 * @storage: place to store stats
5903 *
5904 * Get network statistics from device. Return @storage.
5905 * The device driver may provide its own method by setting
5906 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5907 * otherwise the internal statistics structure is used.
5908 */
5909 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5910 struct rtnl_link_stats64 *storage)
5911 {
5912 const struct net_device_ops *ops = dev->netdev_ops;
5913
5914 if (ops->ndo_get_stats64) {
5915 memset(storage, 0, sizeof(*storage));
5916 ops->ndo_get_stats64(dev, storage);
5917 } else if (ops->ndo_get_stats) {
5918 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5919 } else {
5920 netdev_stats_to_stats64(storage, &dev->stats);
5921 }
5922 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5923 return storage;
5924 }
5925 EXPORT_SYMBOL(dev_get_stats);
5926
5927 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5928 {
5929 struct netdev_queue *queue = dev_ingress_queue(dev);
5930
5931 #ifdef CONFIG_NET_CLS_ACT
5932 if (queue)
5933 return queue;
5934 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5935 if (!queue)
5936 return NULL;
5937 netdev_init_one_queue(dev, queue, NULL);
5938 queue->qdisc = &noop_qdisc;
5939 queue->qdisc_sleeping = &noop_qdisc;
5940 rcu_assign_pointer(dev->ingress_queue, queue);
5941 #endif
5942 return queue;
5943 }
5944
5945 /**
5946 * alloc_netdev_mqs - allocate network device
5947 * @sizeof_priv: size of private data to allocate space for
5948 * @name: device name format string
5949 * @setup: callback to initialize device
5950 * @txqs: the number of TX subqueues to allocate
5951 * @rxqs: the number of RX subqueues to allocate
5952 *
5953 * Allocates a struct net_device with private data area for driver use
5954 * and performs basic initialization. Also allocates subquue structs
5955 * for each queue on the device.
5956 */
5957 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5958 void (*setup)(struct net_device *),
5959 unsigned int txqs, unsigned int rxqs)
5960 {
5961 struct net_device *dev;
5962 size_t alloc_size;
5963 struct net_device *p;
5964
5965 BUG_ON(strlen(name) >= sizeof(dev->name));
5966
5967 if (txqs < 1) {
5968 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5969 return NULL;
5970 }
5971
5972 #ifdef CONFIG_RPS
5973 if (rxqs < 1) {
5974 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5975 return NULL;
5976 }
5977 #endif
5978
5979 alloc_size = sizeof(struct net_device);
5980 if (sizeof_priv) {
5981 /* ensure 32-byte alignment of private area */
5982 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5983 alloc_size += sizeof_priv;
5984 }
5985 /* ensure 32-byte alignment of whole construct */
5986 alloc_size += NETDEV_ALIGN - 1;
5987
5988 p = kzalloc(alloc_size, GFP_KERNEL);
5989 if (!p) {
5990 pr_err("alloc_netdev: Unable to allocate device\n");
5991 return NULL;
5992 }
5993
5994 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5995 dev->padded = (char *)dev - (char *)p;
5996
5997 dev->pcpu_refcnt = alloc_percpu(int);
5998 if (!dev->pcpu_refcnt)
5999 goto free_p;
6000
6001 if (dev_addr_init(dev))
6002 goto free_pcpu;
6003
6004 dev_mc_init(dev);
6005 dev_uc_init(dev);
6006
6007 dev_net_set(dev, &init_net);
6008
6009 dev->gso_max_size = GSO_MAX_SIZE;
6010 dev->gso_max_segs = GSO_MAX_SEGS;
6011
6012 INIT_LIST_HEAD(&dev->napi_list);
6013 INIT_LIST_HEAD(&dev->unreg_list);
6014 INIT_LIST_HEAD(&dev->link_watch_list);
6015 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6016 setup(dev);
6017
6018 dev->num_tx_queues = txqs;
6019 dev->real_num_tx_queues = txqs;
6020 if (netif_alloc_netdev_queues(dev))
6021 goto free_all;
6022
6023 #ifdef CONFIG_RPS
6024 dev->num_rx_queues = rxqs;
6025 dev->real_num_rx_queues = rxqs;
6026 if (netif_alloc_rx_queues(dev))
6027 goto free_all;
6028 #endif
6029
6030 strcpy(dev->name, name);
6031 dev->group = INIT_NETDEV_GROUP;
6032 return dev;
6033
6034 free_all:
6035 free_netdev(dev);
6036 return NULL;
6037
6038 free_pcpu:
6039 free_percpu(dev->pcpu_refcnt);
6040 kfree(dev->_tx);
6041 #ifdef CONFIG_RPS
6042 kfree(dev->_rx);
6043 #endif
6044
6045 free_p:
6046 kfree(p);
6047 return NULL;
6048 }
6049 EXPORT_SYMBOL(alloc_netdev_mqs);
6050
6051 /**
6052 * free_netdev - free network device
6053 * @dev: device
6054 *
6055 * This function does the last stage of destroying an allocated device
6056 * interface. The reference to the device object is released.
6057 * If this is the last reference then it will be freed.
6058 */
6059 void free_netdev(struct net_device *dev)
6060 {
6061 struct napi_struct *p, *n;
6062
6063 release_net(dev_net(dev));
6064
6065 kfree(dev->_tx);
6066 #ifdef CONFIG_RPS
6067 kfree(dev->_rx);
6068 #endif
6069
6070 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6071
6072 /* Flush device addresses */
6073 dev_addr_flush(dev);
6074
6075 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6076 netif_napi_del(p);
6077
6078 free_percpu(dev->pcpu_refcnt);
6079 dev->pcpu_refcnt = NULL;
6080
6081 /* Compatibility with error handling in drivers */
6082 if (dev->reg_state == NETREG_UNINITIALIZED) {
6083 kfree((char *)dev - dev->padded);
6084 return;
6085 }
6086
6087 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6088 dev->reg_state = NETREG_RELEASED;
6089
6090 /* will free via device release */
6091 put_device(&dev->dev);
6092 }
6093 EXPORT_SYMBOL(free_netdev);
6094
6095 /**
6096 * synchronize_net - Synchronize with packet receive processing
6097 *
6098 * Wait for packets currently being received to be done.
6099 * Does not block later packets from starting.
6100 */
6101 void synchronize_net(void)
6102 {
6103 might_sleep();
6104 if (rtnl_is_locked())
6105 synchronize_rcu_expedited();
6106 else
6107 synchronize_rcu();
6108 }
6109 EXPORT_SYMBOL(synchronize_net);
6110
6111 /**
6112 * unregister_netdevice_queue - remove device from the kernel
6113 * @dev: device
6114 * @head: list
6115 *
6116 * This function shuts down a device interface and removes it
6117 * from the kernel tables.
6118 * If head not NULL, device is queued to be unregistered later.
6119 *
6120 * Callers must hold the rtnl semaphore. You may want
6121 * unregister_netdev() instead of this.
6122 */
6123
6124 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6125 {
6126 ASSERT_RTNL();
6127
6128 if (head) {
6129 list_move_tail(&dev->unreg_list, head);
6130 } else {
6131 rollback_registered(dev);
6132 /* Finish processing unregister after unlock */
6133 net_set_todo(dev);
6134 }
6135 }
6136 EXPORT_SYMBOL(unregister_netdevice_queue);
6137
6138 /**
6139 * unregister_netdevice_many - unregister many devices
6140 * @head: list of devices
6141 */
6142 void unregister_netdevice_many(struct list_head *head)
6143 {
6144 struct net_device *dev;
6145
6146 if (!list_empty(head)) {
6147 rollback_registered_many(head);
6148 list_for_each_entry(dev, head, unreg_list)
6149 net_set_todo(dev);
6150 }
6151 }
6152 EXPORT_SYMBOL(unregister_netdevice_many);
6153
6154 /**
6155 * unregister_netdev - remove device from the kernel
6156 * @dev: device
6157 *
6158 * This function shuts down a device interface and removes it
6159 * from the kernel tables.
6160 *
6161 * This is just a wrapper for unregister_netdevice that takes
6162 * the rtnl semaphore. In general you want to use this and not
6163 * unregister_netdevice.
6164 */
6165 void unregister_netdev(struct net_device *dev)
6166 {
6167 rtnl_lock();
6168 unregister_netdevice(dev);
6169 rtnl_unlock();
6170 }
6171 EXPORT_SYMBOL(unregister_netdev);
6172
6173 /**
6174 * dev_change_net_namespace - move device to different nethost namespace
6175 * @dev: device
6176 * @net: network namespace
6177 * @pat: If not NULL name pattern to try if the current device name
6178 * is already taken in the destination network namespace.
6179 *
6180 * This function shuts down a device interface and moves it
6181 * to a new network namespace. On success 0 is returned, on
6182 * a failure a netagive errno code is returned.
6183 *
6184 * Callers must hold the rtnl semaphore.
6185 */
6186
6187 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6188 {
6189 int err;
6190
6191 ASSERT_RTNL();
6192
6193 /* Don't allow namespace local devices to be moved. */
6194 err = -EINVAL;
6195 if (dev->features & NETIF_F_NETNS_LOCAL)
6196 goto out;
6197
6198 /* Ensure the device has been registrered */
6199 err = -EINVAL;
6200 if (dev->reg_state != NETREG_REGISTERED)
6201 goto out;
6202
6203 /* Get out if there is nothing todo */
6204 err = 0;
6205 if (net_eq(dev_net(dev), net))
6206 goto out;
6207
6208 /* Pick the destination device name, and ensure
6209 * we can use it in the destination network namespace.
6210 */
6211 err = -EEXIST;
6212 if (__dev_get_by_name(net, dev->name)) {
6213 /* We get here if we can't use the current device name */
6214 if (!pat)
6215 goto out;
6216 if (dev_get_valid_name(dev, pat) < 0)
6217 goto out;
6218 }
6219
6220 /*
6221 * And now a mini version of register_netdevice unregister_netdevice.
6222 */
6223
6224 /* If device is running close it first. */
6225 dev_close(dev);
6226
6227 /* And unlink it from device chain */
6228 err = -ENODEV;
6229 unlist_netdevice(dev);
6230
6231 synchronize_net();
6232
6233 /* Shutdown queueing discipline. */
6234 dev_shutdown(dev);
6235
6236 /* Notify protocols, that we are about to destroy
6237 this device. They should clean all the things.
6238
6239 Note that dev->reg_state stays at NETREG_REGISTERED.
6240 This is wanted because this way 8021q and macvlan know
6241 the device is just moving and can keep their slaves up.
6242 */
6243 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6244 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6245 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6246
6247 /*
6248 * Flush the unicast and multicast chains
6249 */
6250 dev_uc_flush(dev);
6251 dev_mc_flush(dev);
6252
6253 /* Actually switch the network namespace */
6254 dev_net_set(dev, net);
6255
6256 /* If there is an ifindex conflict assign a new one */
6257 if (__dev_get_by_index(net, dev->ifindex)) {
6258 int iflink = (dev->iflink == dev->ifindex);
6259 dev->ifindex = dev_new_index(net);
6260 if (iflink)
6261 dev->iflink = dev->ifindex;
6262 }
6263
6264 /* Fixup kobjects */
6265 err = device_rename(&dev->dev, dev->name);
6266 WARN_ON(err);
6267
6268 /* Add the device back in the hashes */
6269 list_netdevice(dev);
6270
6271 /* Notify protocols, that a new device appeared. */
6272 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6273
6274 /*
6275 * Prevent userspace races by waiting until the network
6276 * device is fully setup before sending notifications.
6277 */
6278 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6279
6280 synchronize_net();
6281 err = 0;
6282 out:
6283 return err;
6284 }
6285 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6286
6287 static int dev_cpu_callback(struct notifier_block *nfb,
6288 unsigned long action,
6289 void *ocpu)
6290 {
6291 struct sk_buff **list_skb;
6292 struct sk_buff *skb;
6293 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6294 struct softnet_data *sd, *oldsd;
6295
6296 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6297 return NOTIFY_OK;
6298
6299 local_irq_disable();
6300 cpu = smp_processor_id();
6301 sd = &per_cpu(softnet_data, cpu);
6302 oldsd = &per_cpu(softnet_data, oldcpu);
6303
6304 /* Find end of our completion_queue. */
6305 list_skb = &sd->completion_queue;
6306 while (*list_skb)
6307 list_skb = &(*list_skb)->next;
6308 /* Append completion queue from offline CPU. */
6309 *list_skb = oldsd->completion_queue;
6310 oldsd->completion_queue = NULL;
6311
6312 /* Append output queue from offline CPU. */
6313 if (oldsd->output_queue) {
6314 *sd->output_queue_tailp = oldsd->output_queue;
6315 sd->output_queue_tailp = oldsd->output_queue_tailp;
6316 oldsd->output_queue = NULL;
6317 oldsd->output_queue_tailp = &oldsd->output_queue;
6318 }
6319 /* Append NAPI poll list from offline CPU. */
6320 if (!list_empty(&oldsd->poll_list)) {
6321 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6322 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6323 }
6324
6325 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6326 local_irq_enable();
6327
6328 /* Process offline CPU's input_pkt_queue */
6329 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6330 netif_rx(skb);
6331 input_queue_head_incr(oldsd);
6332 }
6333 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6334 netif_rx(skb);
6335 input_queue_head_incr(oldsd);
6336 }
6337
6338 return NOTIFY_OK;
6339 }
6340
6341
6342 /**
6343 * netdev_increment_features - increment feature set by one
6344 * @all: current feature set
6345 * @one: new feature set
6346 * @mask: mask feature set
6347 *
6348 * Computes a new feature set after adding a device with feature set
6349 * @one to the master device with current feature set @all. Will not
6350 * enable anything that is off in @mask. Returns the new feature set.
6351 */
6352 netdev_features_t netdev_increment_features(netdev_features_t all,
6353 netdev_features_t one, netdev_features_t mask)
6354 {
6355 if (mask & NETIF_F_GEN_CSUM)
6356 mask |= NETIF_F_ALL_CSUM;
6357 mask |= NETIF_F_VLAN_CHALLENGED;
6358
6359 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6360 all &= one | ~NETIF_F_ALL_FOR_ALL;
6361
6362 /* If one device supports hw checksumming, set for all. */
6363 if (all & NETIF_F_GEN_CSUM)
6364 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6365
6366 return all;
6367 }
6368 EXPORT_SYMBOL(netdev_increment_features);
6369
6370 static struct hlist_head *netdev_create_hash(void)
6371 {
6372 int i;
6373 struct hlist_head *hash;
6374
6375 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6376 if (hash != NULL)
6377 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6378 INIT_HLIST_HEAD(&hash[i]);
6379
6380 return hash;
6381 }
6382
6383 /* Initialize per network namespace state */
6384 static int __net_init netdev_init(struct net *net)
6385 {
6386 if (net != &init_net)
6387 INIT_LIST_HEAD(&net->dev_base_head);
6388
6389 net->dev_name_head = netdev_create_hash();
6390 if (net->dev_name_head == NULL)
6391 goto err_name;
6392
6393 net->dev_index_head = netdev_create_hash();
6394 if (net->dev_index_head == NULL)
6395 goto err_idx;
6396
6397 return 0;
6398
6399 err_idx:
6400 kfree(net->dev_name_head);
6401 err_name:
6402 return -ENOMEM;
6403 }
6404
6405 /**
6406 * netdev_drivername - network driver for the device
6407 * @dev: network device
6408 *
6409 * Determine network driver for device.
6410 */
6411 const char *netdev_drivername(const struct net_device *dev)
6412 {
6413 const struct device_driver *driver;
6414 const struct device *parent;
6415 const char *empty = "";
6416
6417 parent = dev->dev.parent;
6418 if (!parent)
6419 return empty;
6420
6421 driver = parent->driver;
6422 if (driver && driver->name)
6423 return driver->name;
6424 return empty;
6425 }
6426
6427 int __netdev_printk(const char *level, const struct net_device *dev,
6428 struct va_format *vaf)
6429 {
6430 int r;
6431
6432 if (dev && dev->dev.parent)
6433 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6434 netdev_name(dev), vaf);
6435 else if (dev)
6436 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6437 else
6438 r = printk("%s(NULL net_device): %pV", level, vaf);
6439
6440 return r;
6441 }
6442 EXPORT_SYMBOL(__netdev_printk);
6443
6444 int netdev_printk(const char *level, const struct net_device *dev,
6445 const char *format, ...)
6446 {
6447 struct va_format vaf;
6448 va_list args;
6449 int r;
6450
6451 va_start(args, format);
6452
6453 vaf.fmt = format;
6454 vaf.va = &args;
6455
6456 r = __netdev_printk(level, dev, &vaf);
6457 va_end(args);
6458
6459 return r;
6460 }
6461 EXPORT_SYMBOL(netdev_printk);
6462
6463 #define define_netdev_printk_level(func, level) \
6464 int func(const struct net_device *dev, const char *fmt, ...) \
6465 { \
6466 int r; \
6467 struct va_format vaf; \
6468 va_list args; \
6469 \
6470 va_start(args, fmt); \
6471 \
6472 vaf.fmt = fmt; \
6473 vaf.va = &args; \
6474 \
6475 r = __netdev_printk(level, dev, &vaf); \
6476 va_end(args); \
6477 \
6478 return r; \
6479 } \
6480 EXPORT_SYMBOL(func);
6481
6482 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6483 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6484 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6485 define_netdev_printk_level(netdev_err, KERN_ERR);
6486 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6487 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6488 define_netdev_printk_level(netdev_info, KERN_INFO);
6489
6490 static void __net_exit netdev_exit(struct net *net)
6491 {
6492 kfree(net->dev_name_head);
6493 kfree(net->dev_index_head);
6494 }
6495
6496 static struct pernet_operations __net_initdata netdev_net_ops = {
6497 .init = netdev_init,
6498 .exit = netdev_exit,
6499 };
6500
6501 static void __net_exit default_device_exit(struct net *net)
6502 {
6503 struct net_device *dev, *aux;
6504 /*
6505 * Push all migratable network devices back to the
6506 * initial network namespace
6507 */
6508 rtnl_lock();
6509 for_each_netdev_safe(net, dev, aux) {
6510 int err;
6511 char fb_name[IFNAMSIZ];
6512
6513 /* Ignore unmoveable devices (i.e. loopback) */
6514 if (dev->features & NETIF_F_NETNS_LOCAL)
6515 continue;
6516
6517 /* Leave virtual devices for the generic cleanup */
6518 if (dev->rtnl_link_ops)
6519 continue;
6520
6521 /* Push remaining network devices to init_net */
6522 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6523 err = dev_change_net_namespace(dev, &init_net, fb_name);
6524 if (err) {
6525 pr_emerg("%s: failed to move %s to init_net: %d\n",
6526 __func__, dev->name, err);
6527 BUG();
6528 }
6529 }
6530 rtnl_unlock();
6531 }
6532
6533 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6534 {
6535 /* At exit all network devices most be removed from a network
6536 * namespace. Do this in the reverse order of registration.
6537 * Do this across as many network namespaces as possible to
6538 * improve batching efficiency.
6539 */
6540 struct net_device *dev;
6541 struct net *net;
6542 LIST_HEAD(dev_kill_list);
6543
6544 rtnl_lock();
6545 list_for_each_entry(net, net_list, exit_list) {
6546 for_each_netdev_reverse(net, dev) {
6547 if (dev->rtnl_link_ops)
6548 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6549 else
6550 unregister_netdevice_queue(dev, &dev_kill_list);
6551 }
6552 }
6553 unregister_netdevice_many(&dev_kill_list);
6554 list_del(&dev_kill_list);
6555 rtnl_unlock();
6556 }
6557
6558 static struct pernet_operations __net_initdata default_device_ops = {
6559 .exit = default_device_exit,
6560 .exit_batch = default_device_exit_batch,
6561 };
6562
6563 /*
6564 * Initialize the DEV module. At boot time this walks the device list and
6565 * unhooks any devices that fail to initialise (normally hardware not
6566 * present) and leaves us with a valid list of present and active devices.
6567 *
6568 */
6569
6570 /*
6571 * This is called single threaded during boot, so no need
6572 * to take the rtnl semaphore.
6573 */
6574 static int __init net_dev_init(void)
6575 {
6576 int i, rc = -ENOMEM;
6577
6578 BUG_ON(!dev_boot_phase);
6579
6580 if (dev_proc_init())
6581 goto out;
6582
6583 if (netdev_kobject_init())
6584 goto out;
6585
6586 INIT_LIST_HEAD(&ptype_all);
6587 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6588 INIT_LIST_HEAD(&ptype_base[i]);
6589
6590 if (register_pernet_subsys(&netdev_net_ops))
6591 goto out;
6592
6593 /*
6594 * Initialise the packet receive queues.
6595 */
6596
6597 for_each_possible_cpu(i) {
6598 struct softnet_data *sd = &per_cpu(softnet_data, i);
6599
6600 memset(sd, 0, sizeof(*sd));
6601 skb_queue_head_init(&sd->input_pkt_queue);
6602 skb_queue_head_init(&sd->process_queue);
6603 sd->completion_queue = NULL;
6604 INIT_LIST_HEAD(&sd->poll_list);
6605 sd->output_queue = NULL;
6606 sd->output_queue_tailp = &sd->output_queue;
6607 #ifdef CONFIG_RPS
6608 sd->csd.func = rps_trigger_softirq;
6609 sd->csd.info = sd;
6610 sd->csd.flags = 0;
6611 sd->cpu = i;
6612 #endif
6613
6614 sd->backlog.poll = process_backlog;
6615 sd->backlog.weight = weight_p;
6616 sd->backlog.gro_list = NULL;
6617 sd->backlog.gro_count = 0;
6618 }
6619
6620 dev_boot_phase = 0;
6621
6622 /* The loopback device is special if any other network devices
6623 * is present in a network namespace the loopback device must
6624 * be present. Since we now dynamically allocate and free the
6625 * loopback device ensure this invariant is maintained by
6626 * keeping the loopback device as the first device on the
6627 * list of network devices. Ensuring the loopback devices
6628 * is the first device that appears and the last network device
6629 * that disappears.
6630 */
6631 if (register_pernet_device(&loopback_net_ops))
6632 goto out;
6633
6634 if (register_pernet_device(&default_device_ops))
6635 goto out;
6636
6637 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6638 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6639
6640 hotcpu_notifier(dev_cpu_callback, 0);
6641 dst_init();
6642 dev_mcast_init();
6643 rc = 0;
6644 out:
6645 return rc;
6646 }
6647
6648 subsys_initcall(net_dev_init);
6649
6650 static int __init initialize_hashrnd(void)
6651 {
6652 get_random_bytes(&hashrnd, sizeof(hashrnd));
6653 return 0;
6654 }
6655
6656 late_initcall_sync(initialize_hashrnd);
6657
This page took 0.163798 seconds and 5 git commands to generate.