8b500c3e02971e9a2abe7edcd16e51938554ca6a
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold the
753 * rtnl semaphore. The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 * BUGS:
757 * If the API was consistent this would be __dev_get_by_hwaddr
758 */
759
760 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765
766 for_each_netdev(net, dev)
767 if (dev->type == type &&
768 !memcmp(dev->dev_addr, ha, dev->addr_len))
769 return dev;
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(dev_getbyhwaddr);
774
775 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 {
777 struct net_device *dev;
778
779 ASSERT_RTNL();
780 for_each_netdev(net, dev)
781 if (dev->type == type)
782 return dev;
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787
788 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 {
790 struct net_device *dev, *ret = NULL;
791
792 rcu_read_lock();
793 for_each_netdev_rcu(net, dev)
794 if (dev->type == type) {
795 dev_hold(dev);
796 ret = dev;
797 break;
798 }
799 rcu_read_unlock();
800 return ret;
801 }
802 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803
804 /**
805 * dev_get_by_flags_rcu - find any device with given flags
806 * @net: the applicable net namespace
807 * @if_flags: IFF_* values
808 * @mask: bitmask of bits in if_flags to check
809 *
810 * Search for any interface with the given flags. Returns NULL if a device
811 * is not found or a pointer to the device. Must be called inside
812 * rcu_read_lock(), and result refcount is unchanged.
813 */
814
815 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 unsigned short mask)
817 {
818 struct net_device *dev, *ret;
819
820 ret = NULL;
821 for_each_netdev_rcu(net, dev) {
822 if (((dev->flags ^ if_flags) & mask) == 0) {
823 ret = dev;
824 break;
825 }
826 }
827 return ret;
828 }
829 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830
831 /**
832 * dev_valid_name - check if name is okay for network device
833 * @name: name string
834 *
835 * Network device names need to be valid file names to
836 * to allow sysfs to work. We also disallow any kind of
837 * whitespace.
838 */
839 int dev_valid_name(const char *name)
840 {
841 if (*name == '\0')
842 return 0;
843 if (strlen(name) >= IFNAMSIZ)
844 return 0;
845 if (!strcmp(name, ".") || !strcmp(name, ".."))
846 return 0;
847
848 while (*name) {
849 if (*name == '/' || isspace(*name))
850 return 0;
851 name++;
852 }
853 return 1;
854 }
855 EXPORT_SYMBOL(dev_valid_name);
856
857 /**
858 * __dev_alloc_name - allocate a name for a device
859 * @net: network namespace to allocate the device name in
860 * @name: name format string
861 * @buf: scratch buffer and result name string
862 *
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
870 */
871
872 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 {
874 int i = 0;
875 const char *p;
876 const int max_netdevices = 8*PAGE_SIZE;
877 unsigned long *inuse;
878 struct net_device *d;
879
880 p = strnchr(name, IFNAMSIZ-1, '%');
881 if (p) {
882 /*
883 * Verify the string as this thing may have come from
884 * the user. There must be either one "%d" and no other "%"
885 * characters.
886 */
887 if (p[1] != 'd' || strchr(p + 2, '%'))
888 return -EINVAL;
889
890 /* Use one page as a bit array of possible slots */
891 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 if (!inuse)
893 return -ENOMEM;
894
895 for_each_netdev(net, d) {
896 if (!sscanf(d->name, name, &i))
897 continue;
898 if (i < 0 || i >= max_netdevices)
899 continue;
900
901 /* avoid cases where sscanf is not exact inverse of printf */
902 snprintf(buf, IFNAMSIZ, name, i);
903 if (!strncmp(buf, d->name, IFNAMSIZ))
904 set_bit(i, inuse);
905 }
906
907 i = find_first_zero_bit(inuse, max_netdevices);
908 free_page((unsigned long) inuse);
909 }
910
911 if (buf != name)
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!__dev_get_by_name(net, buf))
914 return i;
915
916 /* It is possible to run out of possible slots
917 * when the name is long and there isn't enough space left
918 * for the digits, or if all bits are used.
919 */
920 return -ENFILE;
921 }
922
923 /**
924 * dev_alloc_name - allocate a name for a device
925 * @dev: device
926 * @name: name format string
927 *
928 * Passed a format string - eg "lt%d" it will try and find a suitable
929 * id. It scans list of devices to build up a free map, then chooses
930 * the first empty slot. The caller must hold the dev_base or rtnl lock
931 * while allocating the name and adding the device in order to avoid
932 * duplicates.
933 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934 * Returns the number of the unit assigned or a negative errno code.
935 */
936
937 int dev_alloc_name(struct net_device *dev, const char *name)
938 {
939 char buf[IFNAMSIZ];
940 struct net *net;
941 int ret;
942
943 BUG_ON(!dev_net(dev));
944 net = dev_net(dev);
945 ret = __dev_alloc_name(net, name, buf);
946 if (ret >= 0)
947 strlcpy(dev->name, buf, IFNAMSIZ);
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_alloc_name);
951
952 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 {
954 struct net *net;
955
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958
959 if (!dev_valid_name(name))
960 return -EINVAL;
961
962 if (fmt && strchr(name, '%'))
963 return dev_alloc_name(dev, name);
964 else if (__dev_get_by_name(net, name))
965 return -EEXIST;
966 else if (dev->name != name)
967 strlcpy(dev->name, name, IFNAMSIZ);
968
969 return 0;
970 }
971
972 /**
973 * dev_change_name - change name of a device
974 * @dev: device
975 * @newname: name (or format string) must be at least IFNAMSIZ
976 *
977 * Change name of a device, can pass format strings "eth%d".
978 * for wildcarding.
979 */
980 int dev_change_name(struct net_device *dev, const char *newname)
981 {
982 char oldname[IFNAMSIZ];
983 int err = 0;
984 int ret;
985 struct net *net;
986
987 ASSERT_RTNL();
988 BUG_ON(!dev_net(dev));
989
990 net = dev_net(dev);
991 if (dev->flags & IFF_UP)
992 return -EBUSY;
993
994 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 return 0;
996
997 memcpy(oldname, dev->name, IFNAMSIZ);
998
999 err = dev_get_valid_name(dev, newname, 1);
1000 if (err < 0)
1001 return err;
1002
1003 rollback:
1004 ret = device_rename(&dev->dev, dev->name);
1005 if (ret) {
1006 memcpy(dev->name, oldname, IFNAMSIZ);
1007 return ret;
1008 }
1009
1010 write_lock_bh(&dev_base_lock);
1011 hlist_del(&dev->name_hlist);
1012 write_unlock_bh(&dev_base_lock);
1013
1014 synchronize_rcu();
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 write_unlock_bh(&dev_base_lock);
1019
1020 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 ret = notifier_to_errno(ret);
1022
1023 if (ret) {
1024 /* err >= 0 after dev_alloc_name() or stores the first errno */
1025 if (err >= 0) {
1026 err = ret;
1027 memcpy(dev->name, oldname, IFNAMSIZ);
1028 goto rollback;
1029 } else {
1030 printk(KERN_ERR
1031 "%s: name change rollback failed: %d.\n",
1032 dev->name, ret);
1033 }
1034 }
1035
1036 return err;
1037 }
1038
1039 /**
1040 * dev_set_alias - change ifalias of a device
1041 * @dev: device
1042 * @alias: name up to IFALIASZ
1043 * @len: limit of bytes to copy from info
1044 *
1045 * Set ifalias for a device,
1046 */
1047 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 {
1049 ASSERT_RTNL();
1050
1051 if (len >= IFALIASZ)
1052 return -EINVAL;
1053
1054 if (!len) {
1055 if (dev->ifalias) {
1056 kfree(dev->ifalias);
1057 dev->ifalias = NULL;
1058 }
1059 return 0;
1060 }
1061
1062 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 if (!dev->ifalias)
1064 return -ENOMEM;
1065
1066 strlcpy(dev->ifalias, alias, len+1);
1067 return len;
1068 }
1069
1070
1071 /**
1072 * netdev_features_change - device changes features
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed features.
1076 */
1077 void netdev_features_change(struct net_device *dev)
1078 {
1079 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 }
1081 EXPORT_SYMBOL(netdev_features_change);
1082
1083 /**
1084 * netdev_state_change - device changes state
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed state. This function calls
1088 * the notifier chains for netdev_chain and sends a NEWLINK message
1089 * to the routing socket.
1090 */
1091 void netdev_state_change(struct net_device *dev)
1092 {
1093 if (dev->flags & IFF_UP) {
1094 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 }
1097 }
1098 EXPORT_SYMBOL(netdev_state_change);
1099
1100 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 {
1102 return call_netdevice_notifiers(event, dev);
1103 }
1104 EXPORT_SYMBOL(netdev_bonding_change);
1105
1106 /**
1107 * dev_load - load a network module
1108 * @net: the applicable net namespace
1109 * @name: name of interface
1110 *
1111 * If a network interface is not present and the process has suitable
1112 * privileges this function loads the module. If module loading is not
1113 * available in this kernel then it becomes a nop.
1114 */
1115
1116 void dev_load(struct net *net, const char *name)
1117 {
1118 struct net_device *dev;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 if (!dev && capable(CAP_NET_ADMIN))
1125 request_module("%s", name);
1126 }
1127 EXPORT_SYMBOL(dev_load);
1128
1129 static int __dev_open(struct net_device *dev)
1130 {
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 int ret;
1133
1134 ASSERT_RTNL();
1135
1136 /*
1137 * Is it even present?
1138 */
1139 if (!netif_device_present(dev))
1140 return -ENODEV;
1141
1142 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 ret = notifier_to_errno(ret);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * Call device private open method
1149 */
1150 set_bit(__LINK_STATE_START, &dev->state);
1151
1152 if (ops->ndo_validate_addr)
1153 ret = ops->ndo_validate_addr(dev);
1154
1155 if (!ret && ops->ndo_open)
1156 ret = ops->ndo_open(dev);
1157
1158 /*
1159 * If it went open OK then:
1160 */
1161
1162 if (ret)
1163 clear_bit(__LINK_STATE_START, &dev->state);
1164 else {
1165 /*
1166 * Set the flags.
1167 */
1168 dev->flags |= IFF_UP;
1169
1170 /*
1171 * Enable NET_DMA
1172 */
1173 net_dmaengine_get();
1174
1175 /*
1176 * Initialize multicasting status
1177 */
1178 dev_set_rx_mode(dev);
1179
1180 /*
1181 * Wakeup transmit queue engine
1182 */
1183 dev_activate(dev);
1184 }
1185
1186 return ret;
1187 }
1188
1189 /**
1190 * dev_open - prepare an interface for use.
1191 * @dev: device to open
1192 *
1193 * Takes a device from down to up state. The device's private open
1194 * function is invoked and then the multicast lists are loaded. Finally
1195 * the device is moved into the up state and a %NETDEV_UP message is
1196 * sent to the netdev notifier chain.
1197 *
1198 * Calling this function on an active interface is a nop. On a failure
1199 * a negative errno code is returned.
1200 */
1201 int dev_open(struct net_device *dev)
1202 {
1203 int ret;
1204
1205 /*
1206 * Is it already up?
1207 */
1208 if (dev->flags & IFF_UP)
1209 return 0;
1210
1211 /*
1212 * Open device
1213 */
1214 ret = __dev_open(dev);
1215 if (ret < 0)
1216 return ret;
1217
1218 /*
1219 * ... and announce new interface.
1220 */
1221 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 call_netdevice_notifiers(NETDEV_UP, dev);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(dev_open);
1227
1228 static int __dev_close(struct net_device *dev)
1229 {
1230 const struct net_device_ops *ops = dev->netdev_ops;
1231
1232 ASSERT_RTNL();
1233 might_sleep();
1234
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list,
1244 * it can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250
1251 dev_deactivate(dev);
1252
1253 /*
1254 * Call the device specific close. This cannot fail.
1255 * Only if device is UP
1256 *
1257 * We allow it to be called even after a DETACH hot-plug
1258 * event.
1259 */
1260 if (ops->ndo_stop)
1261 ops->ndo_stop(dev);
1262
1263 /*
1264 * Device is now down.
1265 */
1266
1267 dev->flags &= ~IFF_UP;
1268
1269 /*
1270 * Shutdown NET_DMA
1271 */
1272 net_dmaengine_put();
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * dev_close - shutdown an interface.
1279 * @dev: device to shutdown
1280 *
1281 * This function moves an active device into down state. A
1282 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284 * chain.
1285 */
1286 int dev_close(struct net_device *dev)
1287 {
1288 if (!(dev->flags & IFF_UP))
1289 return 0;
1290
1291 __dev_close(dev);
1292
1293 /*
1294 * Tell people we are down
1295 */
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(dev_close);
1302
1303
1304 /**
1305 * dev_disable_lro - disable Large Receive Offload on a device
1306 * @dev: device
1307 *
1308 * Disable Large Receive Offload (LRO) on a net device. Must be
1309 * called under RTNL. This is needed if received packets may be
1310 * forwarded to another interface.
1311 */
1312 void dev_disable_lro(struct net_device *dev)
1313 {
1314 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 dev->ethtool_ops->set_flags) {
1316 u32 flags = dev->ethtool_ops->get_flags(dev);
1317 if (flags & ETH_FLAG_LRO) {
1318 flags &= ~ETH_FLAG_LRO;
1319 dev->ethtool_ops->set_flags(dev, flags);
1320 }
1321 }
1322 WARN_ON(dev->features & NETIF_F_LRO);
1323 }
1324 EXPORT_SYMBOL(dev_disable_lro);
1325
1326
1327 static int dev_boot_phase = 1;
1328
1329 /*
1330 * Device change register/unregister. These are not inline or static
1331 * as we export them to the world.
1332 */
1333
1334 /**
1335 * register_netdevice_notifier - register a network notifier block
1336 * @nb: notifier
1337 *
1338 * Register a notifier to be called when network device events occur.
1339 * The notifier passed is linked into the kernel structures and must
1340 * not be reused until it has been unregistered. A negative errno code
1341 * is returned on a failure.
1342 *
1343 * When registered all registration and up events are replayed
1344 * to the new notifier to allow device to have a race free
1345 * view of the network device list.
1346 */
1347
1348 int register_netdevice_notifier(struct notifier_block *nb)
1349 {
1350 struct net_device *dev;
1351 struct net_device *last;
1352 struct net *net;
1353 int err;
1354
1355 rtnl_lock();
1356 err = raw_notifier_chain_register(&netdev_chain, nb);
1357 if (err)
1358 goto unlock;
1359 if (dev_boot_phase)
1360 goto unlock;
1361 for_each_net(net) {
1362 for_each_netdev(net, dev) {
1363 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 err = notifier_to_errno(err);
1365 if (err)
1366 goto rollback;
1367
1368 if (!(dev->flags & IFF_UP))
1369 continue;
1370
1371 nb->notifier_call(nb, NETDEV_UP, dev);
1372 }
1373 }
1374
1375 unlock:
1376 rtnl_unlock();
1377 return err;
1378
1379 rollback:
1380 last = dev;
1381 for_each_net(net) {
1382 for_each_netdev(net, dev) {
1383 if (dev == last)
1384 break;
1385
1386 if (dev->flags & IFF_UP) {
1387 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 }
1390 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 }
1393 }
1394
1395 raw_notifier_chain_unregister(&netdev_chain, nb);
1396 goto unlock;
1397 }
1398 EXPORT_SYMBOL(register_netdevice_notifier);
1399
1400 /**
1401 * unregister_netdevice_notifier - unregister a network notifier block
1402 * @nb: notifier
1403 *
1404 * Unregister a notifier previously registered by
1405 * register_netdevice_notifier(). The notifier is unlinked into the
1406 * kernel structures and may then be reused. A negative errno code
1407 * is returned on a failure.
1408 */
1409
1410 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 {
1412 int err;
1413
1414 rtnl_lock();
1415 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 rtnl_unlock();
1417 return err;
1418 }
1419 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420
1421 /**
1422 * call_netdevice_notifiers - call all network notifier blocks
1423 * @val: value passed unmodified to notifier function
1424 * @dev: net_device pointer passed unmodified to notifier function
1425 *
1426 * Call all network notifier blocks. Parameters and return value
1427 * are as for raw_notifier_call_chain().
1428 */
1429
1430 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 {
1432 ASSERT_RTNL();
1433 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 }
1435
1436 /* When > 0 there are consumers of rx skb time stamps */
1437 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438
1439 void net_enable_timestamp(void)
1440 {
1441 atomic_inc(&netstamp_needed);
1442 }
1443 EXPORT_SYMBOL(net_enable_timestamp);
1444
1445 void net_disable_timestamp(void)
1446 {
1447 atomic_dec(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_disable_timestamp);
1450
1451 static inline void net_timestamp_set(struct sk_buff *skb)
1452 {
1453 if (atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 else
1456 skb->tstamp.tv64 = 0;
1457 }
1458
1459 static inline void net_timestamp_check(struct sk_buff *skb)
1460 {
1461 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 __net_timestamp(skb);
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped, but freed)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486 nf_reset(skb);
1487
1488 if (unlikely(!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 atomic_long_inc(&dev->rx_dropped);
1491 kfree_skb(skb);
1492 return NET_RX_DROP;
1493 }
1494 skb_set_dev(skb, dev);
1495 skb->tstamp.tv64 = 0;
1496 skb->pkt_type = PACKET_HOST;
1497 skb->protocol = eth_type_trans(skb, dev);
1498 return netif_rx(skb);
1499 }
1500 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501
1502 /*
1503 * Support routine. Sends outgoing frames to any network
1504 * taps currently in use.
1505 */
1506
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 struct packet_type *ptype;
1510
1511 #ifdef CONFIG_NET_CLS_ACT
1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 net_timestamp_set(skb);
1514 #else
1515 net_timestamp_set(skb);
1516 #endif
1517
1518 rcu_read_lock();
1519 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 /* Never send packets back to the socket
1521 * they originated from - MvS (miquels@drinkel.ow.org)
1522 */
1523 if ((ptype->dev == dev || !ptype->dev) &&
1524 (ptype->af_packet_priv == NULL ||
1525 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 /* skb->nh should be correctly
1531 set by sender, so that the second statement is
1532 just protection against buggy protocols.
1533 */
1534 skb_reset_mac_header(skb2);
1535
1536 if (skb_network_header(skb2) < skb2->data ||
1537 skb2->network_header > skb2->tail) {
1538 if (net_ratelimit())
1539 printk(KERN_CRIT "protocol %04x is "
1540 "buggy, dev %s\n",
1541 ntohs(skb2->protocol),
1542 dev->name);
1543 skb_reset_network_header(skb2);
1544 }
1545
1546 skb2->transport_header = skb2->network_header;
1547 skb2->pkt_type = PACKET_OUTGOING;
1548 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 }
1550 }
1551 rcu_read_unlock();
1552 }
1553
1554 /*
1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557 */
1558 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559 {
1560 if (txq < 1 || txq > dev->num_tx_queues)
1561 return -EINVAL;
1562
1563 if (dev->reg_state == NETREG_REGISTERED) {
1564 ASSERT_RTNL();
1565
1566 if (txq < dev->real_num_tx_queues)
1567 qdisc_reset_all_tx_gt(dev, txq);
1568 }
1569
1570 dev->real_num_tx_queues = txq;
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574
1575 #ifdef CONFIG_RPS
1576 /**
1577 * netif_set_real_num_rx_queues - set actual number of RX queues used
1578 * @dev: Network device
1579 * @rxq: Actual number of RX queues
1580 *
1581 * This must be called either with the rtnl_lock held or before
1582 * registration of the net device. Returns 0 on success, or a
1583 * negative error code. If called before registration, it always
1584 * succeeds.
1585 */
1586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1587 {
1588 int rc;
1589
1590 if (rxq < 1 || rxq > dev->num_rx_queues)
1591 return -EINVAL;
1592
1593 if (dev->reg_state == NETREG_REGISTERED) {
1594 ASSERT_RTNL();
1595
1596 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1597 rxq);
1598 if (rc)
1599 return rc;
1600 }
1601
1602 dev->real_num_rx_queues = rxq;
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1606 #endif
1607
1608 static inline void __netif_reschedule(struct Qdisc *q)
1609 {
1610 struct softnet_data *sd;
1611 unsigned long flags;
1612
1613 local_irq_save(flags);
1614 sd = &__get_cpu_var(softnet_data);
1615 q->next_sched = NULL;
1616 *sd->output_queue_tailp = q;
1617 sd->output_queue_tailp = &q->next_sched;
1618 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1619 local_irq_restore(flags);
1620 }
1621
1622 void __netif_schedule(struct Qdisc *q)
1623 {
1624 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1625 __netif_reschedule(q);
1626 }
1627 EXPORT_SYMBOL(__netif_schedule);
1628
1629 void dev_kfree_skb_irq(struct sk_buff *skb)
1630 {
1631 if (atomic_dec_and_test(&skb->users)) {
1632 struct softnet_data *sd;
1633 unsigned long flags;
1634
1635 local_irq_save(flags);
1636 sd = &__get_cpu_var(softnet_data);
1637 skb->next = sd->completion_queue;
1638 sd->completion_queue = skb;
1639 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1640 local_irq_restore(flags);
1641 }
1642 }
1643 EXPORT_SYMBOL(dev_kfree_skb_irq);
1644
1645 void dev_kfree_skb_any(struct sk_buff *skb)
1646 {
1647 if (in_irq() || irqs_disabled())
1648 dev_kfree_skb_irq(skb);
1649 else
1650 dev_kfree_skb(skb);
1651 }
1652 EXPORT_SYMBOL(dev_kfree_skb_any);
1653
1654
1655 /**
1656 * netif_device_detach - mark device as removed
1657 * @dev: network device
1658 *
1659 * Mark device as removed from system and therefore no longer available.
1660 */
1661 void netif_device_detach(struct net_device *dev)
1662 {
1663 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1664 netif_running(dev)) {
1665 netif_tx_stop_all_queues(dev);
1666 }
1667 }
1668 EXPORT_SYMBOL(netif_device_detach);
1669
1670 /**
1671 * netif_device_attach - mark device as attached
1672 * @dev: network device
1673 *
1674 * Mark device as attached from system and restart if needed.
1675 */
1676 void netif_device_attach(struct net_device *dev)
1677 {
1678 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1679 netif_running(dev)) {
1680 netif_tx_wake_all_queues(dev);
1681 __netdev_watchdog_up(dev);
1682 }
1683 }
1684 EXPORT_SYMBOL(netif_device_attach);
1685
1686 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1687 {
1688 return ((features & NETIF_F_NO_CSUM) ||
1689 ((features & NETIF_F_V4_CSUM) &&
1690 protocol == htons(ETH_P_IP)) ||
1691 ((features & NETIF_F_V6_CSUM) &&
1692 protocol == htons(ETH_P_IPV6)) ||
1693 ((features & NETIF_F_FCOE_CRC) &&
1694 protocol == htons(ETH_P_FCOE)));
1695 }
1696
1697 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1698 {
1699 __be16 protocol = skb->protocol;
1700 int features = dev->features;
1701
1702 if (vlan_tx_tag_present(skb)) {
1703 features &= dev->vlan_features;
1704 } else if (protocol == htons(ETH_P_8021Q)) {
1705 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1706 protocol = veh->h_vlan_encapsulated_proto;
1707 features &= dev->vlan_features;
1708 }
1709
1710 return can_checksum_protocol(features, protocol);
1711 }
1712
1713 /**
1714 * skb_dev_set -- assign a new device to a buffer
1715 * @skb: buffer for the new device
1716 * @dev: network device
1717 *
1718 * If an skb is owned by a device already, we have to reset
1719 * all data private to the namespace a device belongs to
1720 * before assigning it a new device.
1721 */
1722 #ifdef CONFIG_NET_NS
1723 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1724 {
1725 skb_dst_drop(skb);
1726 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1727 secpath_reset(skb);
1728 nf_reset(skb);
1729 skb_init_secmark(skb);
1730 skb->mark = 0;
1731 skb->priority = 0;
1732 skb->nf_trace = 0;
1733 skb->ipvs_property = 0;
1734 #ifdef CONFIG_NET_SCHED
1735 skb->tc_index = 0;
1736 #endif
1737 }
1738 skb->dev = dev;
1739 }
1740 EXPORT_SYMBOL(skb_set_dev);
1741 #endif /* CONFIG_NET_NS */
1742
1743 /*
1744 * Invalidate hardware checksum when packet is to be mangled, and
1745 * complete checksum manually on outgoing path.
1746 */
1747 int skb_checksum_help(struct sk_buff *skb)
1748 {
1749 __wsum csum;
1750 int ret = 0, offset;
1751
1752 if (skb->ip_summed == CHECKSUM_COMPLETE)
1753 goto out_set_summed;
1754
1755 if (unlikely(skb_shinfo(skb)->gso_size)) {
1756 /* Let GSO fix up the checksum. */
1757 goto out_set_summed;
1758 }
1759
1760 offset = skb->csum_start - skb_headroom(skb);
1761 BUG_ON(offset >= skb_headlen(skb));
1762 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1763
1764 offset += skb->csum_offset;
1765 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1766
1767 if (skb_cloned(skb) &&
1768 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1769 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1770 if (ret)
1771 goto out;
1772 }
1773
1774 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1775 out_set_summed:
1776 skb->ip_summed = CHECKSUM_NONE;
1777 out:
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(skb_checksum_help);
1781
1782 /**
1783 * skb_gso_segment - Perform segmentation on skb.
1784 * @skb: buffer to segment
1785 * @features: features for the output path (see dev->features)
1786 *
1787 * This function segments the given skb and returns a list of segments.
1788 *
1789 * It may return NULL if the skb requires no segmentation. This is
1790 * only possible when GSO is used for verifying header integrity.
1791 */
1792 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1793 {
1794 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1795 struct packet_type *ptype;
1796 __be16 type = skb->protocol;
1797 int vlan_depth = ETH_HLEN;
1798 int err;
1799
1800 while (type == htons(ETH_P_8021Q)) {
1801 struct vlan_hdr *vh;
1802
1803 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1804 return ERR_PTR(-EINVAL);
1805
1806 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1807 type = vh->h_vlan_encapsulated_proto;
1808 vlan_depth += VLAN_HLEN;
1809 }
1810
1811 skb_reset_mac_header(skb);
1812 skb->mac_len = skb->network_header - skb->mac_header;
1813 __skb_pull(skb, skb->mac_len);
1814
1815 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1816 struct net_device *dev = skb->dev;
1817 struct ethtool_drvinfo info = {};
1818
1819 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1820 dev->ethtool_ops->get_drvinfo(dev, &info);
1821
1822 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1823 info.driver, dev ? dev->features : 0L,
1824 skb->sk ? skb->sk->sk_route_caps : 0L,
1825 skb->len, skb->data_len, skb->ip_summed);
1826
1827 if (skb_header_cloned(skb) &&
1828 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1829 return ERR_PTR(err);
1830 }
1831
1832 rcu_read_lock();
1833 list_for_each_entry_rcu(ptype,
1834 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1835 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1836 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1837 err = ptype->gso_send_check(skb);
1838 segs = ERR_PTR(err);
1839 if (err || skb_gso_ok(skb, features))
1840 break;
1841 __skb_push(skb, (skb->data -
1842 skb_network_header(skb)));
1843 }
1844 segs = ptype->gso_segment(skb, features);
1845 break;
1846 }
1847 }
1848 rcu_read_unlock();
1849
1850 __skb_push(skb, skb->data - skb_mac_header(skb));
1851
1852 return segs;
1853 }
1854 EXPORT_SYMBOL(skb_gso_segment);
1855
1856 /* Take action when hardware reception checksum errors are detected. */
1857 #ifdef CONFIG_BUG
1858 void netdev_rx_csum_fault(struct net_device *dev)
1859 {
1860 if (net_ratelimit()) {
1861 printk(KERN_ERR "%s: hw csum failure.\n",
1862 dev ? dev->name : "<unknown>");
1863 dump_stack();
1864 }
1865 }
1866 EXPORT_SYMBOL(netdev_rx_csum_fault);
1867 #endif
1868
1869 /* Actually, we should eliminate this check as soon as we know, that:
1870 * 1. IOMMU is present and allows to map all the memory.
1871 * 2. No high memory really exists on this machine.
1872 */
1873
1874 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 #ifdef CONFIG_HIGHMEM
1877 int i;
1878 if (!(dev->features & NETIF_F_HIGHDMA)) {
1879 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1880 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1881 return 1;
1882 }
1883
1884 if (PCI_DMA_BUS_IS_PHYS) {
1885 struct device *pdev = dev->dev.parent;
1886
1887 if (!pdev)
1888 return 0;
1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1891 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1892 return 1;
1893 }
1894 }
1895 #endif
1896 return 0;
1897 }
1898
1899 struct dev_gso_cb {
1900 void (*destructor)(struct sk_buff *skb);
1901 };
1902
1903 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1904
1905 static void dev_gso_skb_destructor(struct sk_buff *skb)
1906 {
1907 struct dev_gso_cb *cb;
1908
1909 do {
1910 struct sk_buff *nskb = skb->next;
1911
1912 skb->next = nskb->next;
1913 nskb->next = NULL;
1914 kfree_skb(nskb);
1915 } while (skb->next);
1916
1917 cb = DEV_GSO_CB(skb);
1918 if (cb->destructor)
1919 cb->destructor(skb);
1920 }
1921
1922 /**
1923 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1924 * @skb: buffer to segment
1925 *
1926 * This function segments the given skb and stores the list of segments
1927 * in skb->next.
1928 */
1929 static int dev_gso_segment(struct sk_buff *skb)
1930 {
1931 struct net_device *dev = skb->dev;
1932 struct sk_buff *segs;
1933 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1934 NETIF_F_SG : 0);
1935
1936 segs = skb_gso_segment(skb, features);
1937
1938 /* Verifying header integrity only. */
1939 if (!segs)
1940 return 0;
1941
1942 if (IS_ERR(segs))
1943 return PTR_ERR(segs);
1944
1945 skb->next = segs;
1946 DEV_GSO_CB(skb)->destructor = skb->destructor;
1947 skb->destructor = dev_gso_skb_destructor;
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * Try to orphan skb early, right before transmission by the device.
1954 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1955 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1956 */
1957 static inline void skb_orphan_try(struct sk_buff *skb)
1958 {
1959 struct sock *sk = skb->sk;
1960
1961 if (sk && !skb_shinfo(skb)->tx_flags) {
1962 /* skb_tx_hash() wont be able to get sk.
1963 * We copy sk_hash into skb->rxhash
1964 */
1965 if (!skb->rxhash)
1966 skb->rxhash = sk->sk_hash;
1967 skb_orphan(skb);
1968 }
1969 }
1970
1971 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
1972 {
1973 __be16 protocol = skb->protocol;
1974
1975 if (protocol == htons(ETH_P_8021Q)) {
1976 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1977 protocol = veh->h_vlan_encapsulated_proto;
1978 } else if (!skb->vlan_tci)
1979 return dev->features;
1980
1981 if (protocol != htons(ETH_P_8021Q))
1982 return dev->features & dev->vlan_features;
1983 else
1984 return 0;
1985 }
1986
1987 /*
1988 * Returns true if either:
1989 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1990 * 2. skb is fragmented and the device does not support SG, or if
1991 * at least one of fragments is in highmem and device does not
1992 * support DMA from it.
1993 */
1994 static inline int skb_needs_linearize(struct sk_buff *skb,
1995 struct net_device *dev)
1996 {
1997 if (skb_is_nonlinear(skb)) {
1998 int features = dev->features;
1999
2000 if (vlan_tx_tag_present(skb))
2001 features &= dev->vlan_features;
2002
2003 return (skb_has_frag_list(skb) &&
2004 !(features & NETIF_F_FRAGLIST)) ||
2005 (skb_shinfo(skb)->nr_frags &&
2006 (!(features & NETIF_F_SG) ||
2007 illegal_highdma(dev, skb)));
2008 }
2009
2010 return 0;
2011 }
2012
2013 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2014 struct netdev_queue *txq)
2015 {
2016 const struct net_device_ops *ops = dev->netdev_ops;
2017 int rc = NETDEV_TX_OK;
2018
2019 if (likely(!skb->next)) {
2020 if (!list_empty(&ptype_all))
2021 dev_queue_xmit_nit(skb, dev);
2022
2023 /*
2024 * If device doesnt need skb->dst, release it right now while
2025 * its hot in this cpu cache
2026 */
2027 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2028 skb_dst_drop(skb);
2029
2030 skb_orphan_try(skb);
2031
2032 if (vlan_tx_tag_present(skb) &&
2033 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2034 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2035 if (unlikely(!skb))
2036 goto out;
2037
2038 skb->vlan_tci = 0;
2039 }
2040
2041 if (netif_needs_gso(dev, skb)) {
2042 if (unlikely(dev_gso_segment(skb)))
2043 goto out_kfree_skb;
2044 if (skb->next)
2045 goto gso;
2046 } else {
2047 if (skb_needs_linearize(skb, dev) &&
2048 __skb_linearize(skb))
2049 goto out_kfree_skb;
2050
2051 /* If packet is not checksummed and device does not
2052 * support checksumming for this protocol, complete
2053 * checksumming here.
2054 */
2055 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2056 skb_set_transport_header(skb, skb->csum_start -
2057 skb_headroom(skb));
2058 if (!dev_can_checksum(dev, skb) &&
2059 skb_checksum_help(skb))
2060 goto out_kfree_skb;
2061 }
2062 }
2063
2064 rc = ops->ndo_start_xmit(skb, dev);
2065 trace_net_dev_xmit(skb, rc);
2066 if (rc == NETDEV_TX_OK)
2067 txq_trans_update(txq);
2068 return rc;
2069 }
2070
2071 gso:
2072 do {
2073 struct sk_buff *nskb = skb->next;
2074
2075 skb->next = nskb->next;
2076 nskb->next = NULL;
2077
2078 /*
2079 * If device doesnt need nskb->dst, release it right now while
2080 * its hot in this cpu cache
2081 */
2082 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2083 skb_dst_drop(nskb);
2084
2085 rc = ops->ndo_start_xmit(nskb, dev);
2086 trace_net_dev_xmit(nskb, rc);
2087 if (unlikely(rc != NETDEV_TX_OK)) {
2088 if (rc & ~NETDEV_TX_MASK)
2089 goto out_kfree_gso_skb;
2090 nskb->next = skb->next;
2091 skb->next = nskb;
2092 return rc;
2093 }
2094 txq_trans_update(txq);
2095 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2096 return NETDEV_TX_BUSY;
2097 } while (skb->next);
2098
2099 out_kfree_gso_skb:
2100 if (likely(skb->next == NULL))
2101 skb->destructor = DEV_GSO_CB(skb)->destructor;
2102 out_kfree_skb:
2103 kfree_skb(skb);
2104 out:
2105 return rc;
2106 }
2107
2108 static u32 hashrnd __read_mostly;
2109
2110 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2111 {
2112 u32 hash;
2113
2114 if (skb_rx_queue_recorded(skb)) {
2115 hash = skb_get_rx_queue(skb);
2116 while (unlikely(hash >= dev->real_num_tx_queues))
2117 hash -= dev->real_num_tx_queues;
2118 return hash;
2119 }
2120
2121 if (skb->sk && skb->sk->sk_hash)
2122 hash = skb->sk->sk_hash;
2123 else
2124 hash = (__force u16) skb->protocol ^ skb->rxhash;
2125 hash = jhash_1word(hash, hashrnd);
2126
2127 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2128 }
2129 EXPORT_SYMBOL(skb_tx_hash);
2130
2131 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2132 {
2133 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2134 if (net_ratelimit()) {
2135 pr_warning("%s selects TX queue %d, but "
2136 "real number of TX queues is %d\n",
2137 dev->name, queue_index, dev->real_num_tx_queues);
2138 }
2139 return 0;
2140 }
2141 return queue_index;
2142 }
2143
2144 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2145 struct sk_buff *skb)
2146 {
2147 int queue_index;
2148 const struct net_device_ops *ops = dev->netdev_ops;
2149
2150 if (ops->ndo_select_queue) {
2151 queue_index = ops->ndo_select_queue(dev, skb);
2152 queue_index = dev_cap_txqueue(dev, queue_index);
2153 } else {
2154 struct sock *sk = skb->sk;
2155 queue_index = sk_tx_queue_get(sk);
2156 if (queue_index < 0 || queue_index >= dev->real_num_tx_queues) {
2157
2158 queue_index = 0;
2159 if (dev->real_num_tx_queues > 1)
2160 queue_index = skb_tx_hash(dev, skb);
2161
2162 if (sk) {
2163 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2164
2165 if (dst && skb_dst(skb) == dst)
2166 sk_tx_queue_set(sk, queue_index);
2167 }
2168 }
2169 }
2170
2171 skb_set_queue_mapping(skb, queue_index);
2172 return netdev_get_tx_queue(dev, queue_index);
2173 }
2174
2175 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2176 struct net_device *dev,
2177 struct netdev_queue *txq)
2178 {
2179 spinlock_t *root_lock = qdisc_lock(q);
2180 bool contended = qdisc_is_running(q);
2181 int rc;
2182
2183 /*
2184 * Heuristic to force contended enqueues to serialize on a
2185 * separate lock before trying to get qdisc main lock.
2186 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2187 * and dequeue packets faster.
2188 */
2189 if (unlikely(contended))
2190 spin_lock(&q->busylock);
2191
2192 spin_lock(root_lock);
2193 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2194 kfree_skb(skb);
2195 rc = NET_XMIT_DROP;
2196 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2197 qdisc_run_begin(q)) {
2198 /*
2199 * This is a work-conserving queue; there are no old skbs
2200 * waiting to be sent out; and the qdisc is not running -
2201 * xmit the skb directly.
2202 */
2203 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2204 skb_dst_force(skb);
2205 __qdisc_update_bstats(q, skb->len);
2206 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2207 if (unlikely(contended)) {
2208 spin_unlock(&q->busylock);
2209 contended = false;
2210 }
2211 __qdisc_run(q);
2212 } else
2213 qdisc_run_end(q);
2214
2215 rc = NET_XMIT_SUCCESS;
2216 } else {
2217 skb_dst_force(skb);
2218 rc = qdisc_enqueue_root(skb, q);
2219 if (qdisc_run_begin(q)) {
2220 if (unlikely(contended)) {
2221 spin_unlock(&q->busylock);
2222 contended = false;
2223 }
2224 __qdisc_run(q);
2225 }
2226 }
2227 spin_unlock(root_lock);
2228 if (unlikely(contended))
2229 spin_unlock(&q->busylock);
2230 return rc;
2231 }
2232
2233 static DEFINE_PER_CPU(int, xmit_recursion);
2234 #define RECURSION_LIMIT 10
2235
2236 /**
2237 * dev_queue_xmit - transmit a buffer
2238 * @skb: buffer to transmit
2239 *
2240 * Queue a buffer for transmission to a network device. The caller must
2241 * have set the device and priority and built the buffer before calling
2242 * this function. The function can be called from an interrupt.
2243 *
2244 * A negative errno code is returned on a failure. A success does not
2245 * guarantee the frame will be transmitted as it may be dropped due
2246 * to congestion or traffic shaping.
2247 *
2248 * -----------------------------------------------------------------------------------
2249 * I notice this method can also return errors from the queue disciplines,
2250 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2251 * be positive.
2252 *
2253 * Regardless of the return value, the skb is consumed, so it is currently
2254 * difficult to retry a send to this method. (You can bump the ref count
2255 * before sending to hold a reference for retry if you are careful.)
2256 *
2257 * When calling this method, interrupts MUST be enabled. This is because
2258 * the BH enable code must have IRQs enabled so that it will not deadlock.
2259 * --BLG
2260 */
2261 int dev_queue_xmit(struct sk_buff *skb)
2262 {
2263 struct net_device *dev = skb->dev;
2264 struct netdev_queue *txq;
2265 struct Qdisc *q;
2266 int rc = -ENOMEM;
2267
2268 /* Disable soft irqs for various locks below. Also
2269 * stops preemption for RCU.
2270 */
2271 rcu_read_lock_bh();
2272
2273 txq = dev_pick_tx(dev, skb);
2274 q = rcu_dereference_bh(txq->qdisc);
2275
2276 #ifdef CONFIG_NET_CLS_ACT
2277 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2278 #endif
2279 trace_net_dev_queue(skb);
2280 if (q->enqueue) {
2281 rc = __dev_xmit_skb(skb, q, dev, txq);
2282 goto out;
2283 }
2284
2285 /* The device has no queue. Common case for software devices:
2286 loopback, all the sorts of tunnels...
2287
2288 Really, it is unlikely that netif_tx_lock protection is necessary
2289 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2290 counters.)
2291 However, it is possible, that they rely on protection
2292 made by us here.
2293
2294 Check this and shot the lock. It is not prone from deadlocks.
2295 Either shot noqueue qdisc, it is even simpler 8)
2296 */
2297 if (dev->flags & IFF_UP) {
2298 int cpu = smp_processor_id(); /* ok because BHs are off */
2299
2300 if (txq->xmit_lock_owner != cpu) {
2301
2302 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2303 goto recursion_alert;
2304
2305 HARD_TX_LOCK(dev, txq, cpu);
2306
2307 if (!netif_tx_queue_stopped(txq)) {
2308 __this_cpu_inc(xmit_recursion);
2309 rc = dev_hard_start_xmit(skb, dev, txq);
2310 __this_cpu_dec(xmit_recursion);
2311 if (dev_xmit_complete(rc)) {
2312 HARD_TX_UNLOCK(dev, txq);
2313 goto out;
2314 }
2315 }
2316 HARD_TX_UNLOCK(dev, txq);
2317 if (net_ratelimit())
2318 printk(KERN_CRIT "Virtual device %s asks to "
2319 "queue packet!\n", dev->name);
2320 } else {
2321 /* Recursion is detected! It is possible,
2322 * unfortunately
2323 */
2324 recursion_alert:
2325 if (net_ratelimit())
2326 printk(KERN_CRIT "Dead loop on virtual device "
2327 "%s, fix it urgently!\n", dev->name);
2328 }
2329 }
2330
2331 rc = -ENETDOWN;
2332 rcu_read_unlock_bh();
2333
2334 kfree_skb(skb);
2335 return rc;
2336 out:
2337 rcu_read_unlock_bh();
2338 return rc;
2339 }
2340 EXPORT_SYMBOL(dev_queue_xmit);
2341
2342
2343 /*=======================================================================
2344 Receiver routines
2345 =======================================================================*/
2346
2347 int netdev_max_backlog __read_mostly = 1000;
2348 int netdev_tstamp_prequeue __read_mostly = 1;
2349 int netdev_budget __read_mostly = 300;
2350 int weight_p __read_mostly = 64; /* old backlog weight */
2351
2352 /* Called with irq disabled */
2353 static inline void ____napi_schedule(struct softnet_data *sd,
2354 struct napi_struct *napi)
2355 {
2356 list_add_tail(&napi->poll_list, &sd->poll_list);
2357 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2358 }
2359
2360 /*
2361 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2362 * and src/dst port numbers. Returns a non-zero hash number on success
2363 * and 0 on failure.
2364 */
2365 __u32 __skb_get_rxhash(struct sk_buff *skb)
2366 {
2367 int nhoff, hash = 0, poff;
2368 struct ipv6hdr *ip6;
2369 struct iphdr *ip;
2370 u8 ip_proto;
2371 u32 addr1, addr2, ihl;
2372 union {
2373 u32 v32;
2374 u16 v16[2];
2375 } ports;
2376
2377 nhoff = skb_network_offset(skb);
2378
2379 switch (skb->protocol) {
2380 case __constant_htons(ETH_P_IP):
2381 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2382 goto done;
2383
2384 ip = (struct iphdr *) (skb->data + nhoff);
2385 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2386 ip_proto = 0;
2387 else
2388 ip_proto = ip->protocol;
2389 addr1 = (__force u32) ip->saddr;
2390 addr2 = (__force u32) ip->daddr;
2391 ihl = ip->ihl;
2392 break;
2393 case __constant_htons(ETH_P_IPV6):
2394 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2395 goto done;
2396
2397 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2398 ip_proto = ip6->nexthdr;
2399 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2400 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2401 ihl = (40 >> 2);
2402 break;
2403 default:
2404 goto done;
2405 }
2406
2407 ports.v32 = 0;
2408 poff = proto_ports_offset(ip_proto);
2409 if (poff >= 0) {
2410 nhoff += ihl * 4 + poff;
2411 if (pskb_may_pull(skb, nhoff + 4)) {
2412 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2413 if (ports.v16[1] < ports.v16[0])
2414 swap(ports.v16[0], ports.v16[1]);
2415 }
2416 }
2417
2418 /* get a consistent hash (same value on both flow directions) */
2419 if (addr2 < addr1)
2420 swap(addr1, addr2);
2421
2422 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2423 if (!hash)
2424 hash = 1;
2425
2426 done:
2427 return hash;
2428 }
2429 EXPORT_SYMBOL(__skb_get_rxhash);
2430
2431 #ifdef CONFIG_RPS
2432
2433 /* One global table that all flow-based protocols share. */
2434 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2435 EXPORT_SYMBOL(rps_sock_flow_table);
2436
2437 /*
2438 * get_rps_cpu is called from netif_receive_skb and returns the target
2439 * CPU from the RPS map of the receiving queue for a given skb.
2440 * rcu_read_lock must be held on entry.
2441 */
2442 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2443 struct rps_dev_flow **rflowp)
2444 {
2445 struct netdev_rx_queue *rxqueue;
2446 struct rps_map *map;
2447 struct rps_dev_flow_table *flow_table;
2448 struct rps_sock_flow_table *sock_flow_table;
2449 int cpu = -1;
2450 u16 tcpu;
2451
2452 if (skb_rx_queue_recorded(skb)) {
2453 u16 index = skb_get_rx_queue(skb);
2454 if (unlikely(index >= dev->real_num_rx_queues)) {
2455 WARN_ONCE(dev->real_num_rx_queues > 1,
2456 "%s received packet on queue %u, but number "
2457 "of RX queues is %u\n",
2458 dev->name, index, dev->real_num_rx_queues);
2459 goto done;
2460 }
2461 rxqueue = dev->_rx + index;
2462 } else
2463 rxqueue = dev->_rx;
2464
2465 map = rcu_dereference(rxqueue->rps_map);
2466 if (map) {
2467 if (map->len == 1) {
2468 tcpu = map->cpus[0];
2469 if (cpu_online(tcpu))
2470 cpu = tcpu;
2471 goto done;
2472 }
2473 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2474 goto done;
2475 }
2476
2477 skb_reset_network_header(skb);
2478 if (!skb_get_rxhash(skb))
2479 goto done;
2480
2481 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2482 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2483 if (flow_table && sock_flow_table) {
2484 u16 next_cpu;
2485 struct rps_dev_flow *rflow;
2486
2487 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2488 tcpu = rflow->cpu;
2489
2490 next_cpu = sock_flow_table->ents[skb->rxhash &
2491 sock_flow_table->mask];
2492
2493 /*
2494 * If the desired CPU (where last recvmsg was done) is
2495 * different from current CPU (one in the rx-queue flow
2496 * table entry), switch if one of the following holds:
2497 * - Current CPU is unset (equal to RPS_NO_CPU).
2498 * - Current CPU is offline.
2499 * - The current CPU's queue tail has advanced beyond the
2500 * last packet that was enqueued using this table entry.
2501 * This guarantees that all previous packets for the flow
2502 * have been dequeued, thus preserving in order delivery.
2503 */
2504 if (unlikely(tcpu != next_cpu) &&
2505 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2506 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2507 rflow->last_qtail)) >= 0)) {
2508 tcpu = rflow->cpu = next_cpu;
2509 if (tcpu != RPS_NO_CPU)
2510 rflow->last_qtail = per_cpu(softnet_data,
2511 tcpu).input_queue_head;
2512 }
2513 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2514 *rflowp = rflow;
2515 cpu = tcpu;
2516 goto done;
2517 }
2518 }
2519
2520 if (map) {
2521 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2522
2523 if (cpu_online(tcpu)) {
2524 cpu = tcpu;
2525 goto done;
2526 }
2527 }
2528
2529 done:
2530 return cpu;
2531 }
2532
2533 /* Called from hardirq (IPI) context */
2534 static void rps_trigger_softirq(void *data)
2535 {
2536 struct softnet_data *sd = data;
2537
2538 ____napi_schedule(sd, &sd->backlog);
2539 sd->received_rps++;
2540 }
2541
2542 #endif /* CONFIG_RPS */
2543
2544 /*
2545 * Check if this softnet_data structure is another cpu one
2546 * If yes, queue it to our IPI list and return 1
2547 * If no, return 0
2548 */
2549 static int rps_ipi_queued(struct softnet_data *sd)
2550 {
2551 #ifdef CONFIG_RPS
2552 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2553
2554 if (sd != mysd) {
2555 sd->rps_ipi_next = mysd->rps_ipi_list;
2556 mysd->rps_ipi_list = sd;
2557
2558 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2559 return 1;
2560 }
2561 #endif /* CONFIG_RPS */
2562 return 0;
2563 }
2564
2565 /*
2566 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2567 * queue (may be a remote CPU queue).
2568 */
2569 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2570 unsigned int *qtail)
2571 {
2572 struct softnet_data *sd;
2573 unsigned long flags;
2574
2575 sd = &per_cpu(softnet_data, cpu);
2576
2577 local_irq_save(flags);
2578
2579 rps_lock(sd);
2580 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2581 if (skb_queue_len(&sd->input_pkt_queue)) {
2582 enqueue:
2583 __skb_queue_tail(&sd->input_pkt_queue, skb);
2584 input_queue_tail_incr_save(sd, qtail);
2585 rps_unlock(sd);
2586 local_irq_restore(flags);
2587 return NET_RX_SUCCESS;
2588 }
2589
2590 /* Schedule NAPI for backlog device
2591 * We can use non atomic operation since we own the queue lock
2592 */
2593 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2594 if (!rps_ipi_queued(sd))
2595 ____napi_schedule(sd, &sd->backlog);
2596 }
2597 goto enqueue;
2598 }
2599
2600 sd->dropped++;
2601 rps_unlock(sd);
2602
2603 local_irq_restore(flags);
2604
2605 atomic_long_inc(&skb->dev->rx_dropped);
2606 kfree_skb(skb);
2607 return NET_RX_DROP;
2608 }
2609
2610 /**
2611 * netif_rx - post buffer to the network code
2612 * @skb: buffer to post
2613 *
2614 * This function receives a packet from a device driver and queues it for
2615 * the upper (protocol) levels to process. It always succeeds. The buffer
2616 * may be dropped during processing for congestion control or by the
2617 * protocol layers.
2618 *
2619 * return values:
2620 * NET_RX_SUCCESS (no congestion)
2621 * NET_RX_DROP (packet was dropped)
2622 *
2623 */
2624
2625 int netif_rx(struct sk_buff *skb)
2626 {
2627 int ret;
2628
2629 /* if netpoll wants it, pretend we never saw it */
2630 if (netpoll_rx(skb))
2631 return NET_RX_DROP;
2632
2633 if (netdev_tstamp_prequeue)
2634 net_timestamp_check(skb);
2635
2636 trace_netif_rx(skb);
2637 #ifdef CONFIG_RPS
2638 {
2639 struct rps_dev_flow voidflow, *rflow = &voidflow;
2640 int cpu;
2641
2642 preempt_disable();
2643 rcu_read_lock();
2644
2645 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2646 if (cpu < 0)
2647 cpu = smp_processor_id();
2648
2649 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2650
2651 rcu_read_unlock();
2652 preempt_enable();
2653 }
2654 #else
2655 {
2656 unsigned int qtail;
2657 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2658 put_cpu();
2659 }
2660 #endif
2661 return ret;
2662 }
2663 EXPORT_SYMBOL(netif_rx);
2664
2665 int netif_rx_ni(struct sk_buff *skb)
2666 {
2667 int err;
2668
2669 preempt_disable();
2670 err = netif_rx(skb);
2671 if (local_softirq_pending())
2672 do_softirq();
2673 preempt_enable();
2674
2675 return err;
2676 }
2677 EXPORT_SYMBOL(netif_rx_ni);
2678
2679 static void net_tx_action(struct softirq_action *h)
2680 {
2681 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2682
2683 if (sd->completion_queue) {
2684 struct sk_buff *clist;
2685
2686 local_irq_disable();
2687 clist = sd->completion_queue;
2688 sd->completion_queue = NULL;
2689 local_irq_enable();
2690
2691 while (clist) {
2692 struct sk_buff *skb = clist;
2693 clist = clist->next;
2694
2695 WARN_ON(atomic_read(&skb->users));
2696 trace_kfree_skb(skb, net_tx_action);
2697 __kfree_skb(skb);
2698 }
2699 }
2700
2701 if (sd->output_queue) {
2702 struct Qdisc *head;
2703
2704 local_irq_disable();
2705 head = sd->output_queue;
2706 sd->output_queue = NULL;
2707 sd->output_queue_tailp = &sd->output_queue;
2708 local_irq_enable();
2709
2710 while (head) {
2711 struct Qdisc *q = head;
2712 spinlock_t *root_lock;
2713
2714 head = head->next_sched;
2715
2716 root_lock = qdisc_lock(q);
2717 if (spin_trylock(root_lock)) {
2718 smp_mb__before_clear_bit();
2719 clear_bit(__QDISC_STATE_SCHED,
2720 &q->state);
2721 qdisc_run(q);
2722 spin_unlock(root_lock);
2723 } else {
2724 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2725 &q->state)) {
2726 __netif_reschedule(q);
2727 } else {
2728 smp_mb__before_clear_bit();
2729 clear_bit(__QDISC_STATE_SCHED,
2730 &q->state);
2731 }
2732 }
2733 }
2734 }
2735 }
2736
2737 static inline int deliver_skb(struct sk_buff *skb,
2738 struct packet_type *pt_prev,
2739 struct net_device *orig_dev)
2740 {
2741 atomic_inc(&skb->users);
2742 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2743 }
2744
2745 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2746 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2747 /* This hook is defined here for ATM LANE */
2748 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2749 unsigned char *addr) __read_mostly;
2750 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2751 #endif
2752
2753 #ifdef CONFIG_NET_CLS_ACT
2754 /* TODO: Maybe we should just force sch_ingress to be compiled in
2755 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2756 * a compare and 2 stores extra right now if we dont have it on
2757 * but have CONFIG_NET_CLS_ACT
2758 * NOTE: This doesnt stop any functionality; if you dont have
2759 * the ingress scheduler, you just cant add policies on ingress.
2760 *
2761 */
2762 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2763 {
2764 struct net_device *dev = skb->dev;
2765 u32 ttl = G_TC_RTTL(skb->tc_verd);
2766 int result = TC_ACT_OK;
2767 struct Qdisc *q;
2768
2769 if (unlikely(MAX_RED_LOOP < ttl++)) {
2770 if (net_ratelimit())
2771 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2772 skb->skb_iif, dev->ifindex);
2773 return TC_ACT_SHOT;
2774 }
2775
2776 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2777 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2778
2779 q = rxq->qdisc;
2780 if (q != &noop_qdisc) {
2781 spin_lock(qdisc_lock(q));
2782 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2783 result = qdisc_enqueue_root(skb, q);
2784 spin_unlock(qdisc_lock(q));
2785 }
2786
2787 return result;
2788 }
2789
2790 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2791 struct packet_type **pt_prev,
2792 int *ret, struct net_device *orig_dev)
2793 {
2794 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2795
2796 if (!rxq || rxq->qdisc == &noop_qdisc)
2797 goto out;
2798
2799 if (*pt_prev) {
2800 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2801 *pt_prev = NULL;
2802 }
2803
2804 switch (ing_filter(skb, rxq)) {
2805 case TC_ACT_SHOT:
2806 case TC_ACT_STOLEN:
2807 kfree_skb(skb);
2808 return NULL;
2809 }
2810
2811 out:
2812 skb->tc_verd = 0;
2813 return skb;
2814 }
2815 #endif
2816
2817 /**
2818 * netdev_rx_handler_register - register receive handler
2819 * @dev: device to register a handler for
2820 * @rx_handler: receive handler to register
2821 * @rx_handler_data: data pointer that is used by rx handler
2822 *
2823 * Register a receive hander for a device. This handler will then be
2824 * called from __netif_receive_skb. A negative errno code is returned
2825 * on a failure.
2826 *
2827 * The caller must hold the rtnl_mutex.
2828 */
2829 int netdev_rx_handler_register(struct net_device *dev,
2830 rx_handler_func_t *rx_handler,
2831 void *rx_handler_data)
2832 {
2833 ASSERT_RTNL();
2834
2835 if (dev->rx_handler)
2836 return -EBUSY;
2837
2838 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2839 rcu_assign_pointer(dev->rx_handler, rx_handler);
2840
2841 return 0;
2842 }
2843 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2844
2845 /**
2846 * netdev_rx_handler_unregister - unregister receive handler
2847 * @dev: device to unregister a handler from
2848 *
2849 * Unregister a receive hander from a device.
2850 *
2851 * The caller must hold the rtnl_mutex.
2852 */
2853 void netdev_rx_handler_unregister(struct net_device *dev)
2854 {
2855
2856 ASSERT_RTNL();
2857 rcu_assign_pointer(dev->rx_handler, NULL);
2858 rcu_assign_pointer(dev->rx_handler_data, NULL);
2859 }
2860 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2861
2862 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2863 struct net_device *master)
2864 {
2865 if (skb->pkt_type == PACKET_HOST) {
2866 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2867
2868 memcpy(dest, master->dev_addr, ETH_ALEN);
2869 }
2870 }
2871
2872 /* On bonding slaves other than the currently active slave, suppress
2873 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2874 * ARP on active-backup slaves with arp_validate enabled.
2875 */
2876 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2877 {
2878 struct net_device *dev = skb->dev;
2879
2880 if (master->priv_flags & IFF_MASTER_ARPMON)
2881 dev->last_rx = jiffies;
2882
2883 if ((master->priv_flags & IFF_MASTER_ALB) &&
2884 (master->priv_flags & IFF_BRIDGE_PORT)) {
2885 /* Do address unmangle. The local destination address
2886 * will be always the one master has. Provides the right
2887 * functionality in a bridge.
2888 */
2889 skb_bond_set_mac_by_master(skb, master);
2890 }
2891
2892 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2893 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2894 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2895 return 0;
2896
2897 if (master->priv_flags & IFF_MASTER_ALB) {
2898 if (skb->pkt_type != PACKET_BROADCAST &&
2899 skb->pkt_type != PACKET_MULTICAST)
2900 return 0;
2901 }
2902 if (master->priv_flags & IFF_MASTER_8023AD &&
2903 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2904 return 0;
2905
2906 return 1;
2907 }
2908 return 0;
2909 }
2910 EXPORT_SYMBOL(__skb_bond_should_drop);
2911
2912 static int __netif_receive_skb(struct sk_buff *skb)
2913 {
2914 struct packet_type *ptype, *pt_prev;
2915 rx_handler_func_t *rx_handler;
2916 struct net_device *orig_dev;
2917 struct net_device *master;
2918 struct net_device *null_or_orig;
2919 struct net_device *orig_or_bond;
2920 int ret = NET_RX_DROP;
2921 __be16 type;
2922
2923 if (!netdev_tstamp_prequeue)
2924 net_timestamp_check(skb);
2925
2926 trace_netif_receive_skb(skb);
2927
2928 /* if we've gotten here through NAPI, check netpoll */
2929 if (netpoll_receive_skb(skb))
2930 return NET_RX_DROP;
2931
2932 if (!skb->skb_iif)
2933 skb->skb_iif = skb->dev->ifindex;
2934
2935 /*
2936 * bonding note: skbs received on inactive slaves should only
2937 * be delivered to pkt handlers that are exact matches. Also
2938 * the deliver_no_wcard flag will be set. If packet handlers
2939 * are sensitive to duplicate packets these skbs will need to
2940 * be dropped at the handler.
2941 */
2942 null_or_orig = NULL;
2943 orig_dev = skb->dev;
2944 master = ACCESS_ONCE(orig_dev->master);
2945 if (skb->deliver_no_wcard)
2946 null_or_orig = orig_dev;
2947 else if (master) {
2948 if (skb_bond_should_drop(skb, master)) {
2949 skb->deliver_no_wcard = 1;
2950 null_or_orig = orig_dev; /* deliver only exact match */
2951 } else
2952 skb->dev = master;
2953 }
2954
2955 __this_cpu_inc(softnet_data.processed);
2956 skb_reset_network_header(skb);
2957 skb_reset_transport_header(skb);
2958 skb->mac_len = skb->network_header - skb->mac_header;
2959
2960 pt_prev = NULL;
2961
2962 rcu_read_lock();
2963
2964 #ifdef CONFIG_NET_CLS_ACT
2965 if (skb->tc_verd & TC_NCLS) {
2966 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2967 goto ncls;
2968 }
2969 #endif
2970
2971 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2972 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2973 ptype->dev == orig_dev) {
2974 if (pt_prev)
2975 ret = deliver_skb(skb, pt_prev, orig_dev);
2976 pt_prev = ptype;
2977 }
2978 }
2979
2980 #ifdef CONFIG_NET_CLS_ACT
2981 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2982 if (!skb)
2983 goto out;
2984 ncls:
2985 #endif
2986
2987 /* Handle special case of bridge or macvlan */
2988 rx_handler = rcu_dereference(skb->dev->rx_handler);
2989 if (rx_handler) {
2990 if (pt_prev) {
2991 ret = deliver_skb(skb, pt_prev, orig_dev);
2992 pt_prev = NULL;
2993 }
2994 skb = rx_handler(skb);
2995 if (!skb)
2996 goto out;
2997 }
2998
2999 if (vlan_tx_tag_present(skb)) {
3000 if (pt_prev) {
3001 ret = deliver_skb(skb, pt_prev, orig_dev);
3002 pt_prev = NULL;
3003 }
3004 if (vlan_hwaccel_do_receive(&skb)) {
3005 ret = __netif_receive_skb(skb);
3006 goto out;
3007 } else if (unlikely(!skb))
3008 goto out;
3009 }
3010
3011 /*
3012 * Make sure frames received on VLAN interfaces stacked on
3013 * bonding interfaces still make their way to any base bonding
3014 * device that may have registered for a specific ptype. The
3015 * handler may have to adjust skb->dev and orig_dev.
3016 */
3017 orig_or_bond = orig_dev;
3018 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3019 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3020 orig_or_bond = vlan_dev_real_dev(skb->dev);
3021 }
3022
3023 type = skb->protocol;
3024 list_for_each_entry_rcu(ptype,
3025 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3026 if (ptype->type == type && (ptype->dev == null_or_orig ||
3027 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3028 ptype->dev == orig_or_bond)) {
3029 if (pt_prev)
3030 ret = deliver_skb(skb, pt_prev, orig_dev);
3031 pt_prev = ptype;
3032 }
3033 }
3034
3035 if (pt_prev) {
3036 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3037 } else {
3038 atomic_long_inc(&skb->dev->rx_dropped);
3039 kfree_skb(skb);
3040 /* Jamal, now you will not able to escape explaining
3041 * me how you were going to use this. :-)
3042 */
3043 ret = NET_RX_DROP;
3044 }
3045
3046 out:
3047 rcu_read_unlock();
3048 return ret;
3049 }
3050
3051 /**
3052 * netif_receive_skb - process receive buffer from network
3053 * @skb: buffer to process
3054 *
3055 * netif_receive_skb() is the main receive data processing function.
3056 * It always succeeds. The buffer may be dropped during processing
3057 * for congestion control or by the protocol layers.
3058 *
3059 * This function may only be called from softirq context and interrupts
3060 * should be enabled.
3061 *
3062 * Return values (usually ignored):
3063 * NET_RX_SUCCESS: no congestion
3064 * NET_RX_DROP: packet was dropped
3065 */
3066 int netif_receive_skb(struct sk_buff *skb)
3067 {
3068 if (netdev_tstamp_prequeue)
3069 net_timestamp_check(skb);
3070
3071 if (skb_defer_rx_timestamp(skb))
3072 return NET_RX_SUCCESS;
3073
3074 #ifdef CONFIG_RPS
3075 {
3076 struct rps_dev_flow voidflow, *rflow = &voidflow;
3077 int cpu, ret;
3078
3079 rcu_read_lock();
3080
3081 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3082
3083 if (cpu >= 0) {
3084 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3085 rcu_read_unlock();
3086 } else {
3087 rcu_read_unlock();
3088 ret = __netif_receive_skb(skb);
3089 }
3090
3091 return ret;
3092 }
3093 #else
3094 return __netif_receive_skb(skb);
3095 #endif
3096 }
3097 EXPORT_SYMBOL(netif_receive_skb);
3098
3099 /* Network device is going away, flush any packets still pending
3100 * Called with irqs disabled.
3101 */
3102 static void flush_backlog(void *arg)
3103 {
3104 struct net_device *dev = arg;
3105 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3106 struct sk_buff *skb, *tmp;
3107
3108 rps_lock(sd);
3109 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3110 if (skb->dev == dev) {
3111 __skb_unlink(skb, &sd->input_pkt_queue);
3112 kfree_skb(skb);
3113 input_queue_head_incr(sd);
3114 }
3115 }
3116 rps_unlock(sd);
3117
3118 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3119 if (skb->dev == dev) {
3120 __skb_unlink(skb, &sd->process_queue);
3121 kfree_skb(skb);
3122 input_queue_head_incr(sd);
3123 }
3124 }
3125 }
3126
3127 static int napi_gro_complete(struct sk_buff *skb)
3128 {
3129 struct packet_type *ptype;
3130 __be16 type = skb->protocol;
3131 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3132 int err = -ENOENT;
3133
3134 if (NAPI_GRO_CB(skb)->count == 1) {
3135 skb_shinfo(skb)->gso_size = 0;
3136 goto out;
3137 }
3138
3139 rcu_read_lock();
3140 list_for_each_entry_rcu(ptype, head, list) {
3141 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3142 continue;
3143
3144 err = ptype->gro_complete(skb);
3145 break;
3146 }
3147 rcu_read_unlock();
3148
3149 if (err) {
3150 WARN_ON(&ptype->list == head);
3151 kfree_skb(skb);
3152 return NET_RX_SUCCESS;
3153 }
3154
3155 out:
3156 return netif_receive_skb(skb);
3157 }
3158
3159 inline void napi_gro_flush(struct napi_struct *napi)
3160 {
3161 struct sk_buff *skb, *next;
3162
3163 for (skb = napi->gro_list; skb; skb = next) {
3164 next = skb->next;
3165 skb->next = NULL;
3166 napi_gro_complete(skb);
3167 }
3168
3169 napi->gro_count = 0;
3170 napi->gro_list = NULL;
3171 }
3172 EXPORT_SYMBOL(napi_gro_flush);
3173
3174 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3175 {
3176 struct sk_buff **pp = NULL;
3177 struct packet_type *ptype;
3178 __be16 type = skb->protocol;
3179 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3180 int same_flow;
3181 int mac_len;
3182 enum gro_result ret;
3183
3184 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3185 goto normal;
3186
3187 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3188 goto normal;
3189
3190 rcu_read_lock();
3191 list_for_each_entry_rcu(ptype, head, list) {
3192 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3193 continue;
3194
3195 skb_set_network_header(skb, skb_gro_offset(skb));
3196 mac_len = skb->network_header - skb->mac_header;
3197 skb->mac_len = mac_len;
3198 NAPI_GRO_CB(skb)->same_flow = 0;
3199 NAPI_GRO_CB(skb)->flush = 0;
3200 NAPI_GRO_CB(skb)->free = 0;
3201
3202 pp = ptype->gro_receive(&napi->gro_list, skb);
3203 break;
3204 }
3205 rcu_read_unlock();
3206
3207 if (&ptype->list == head)
3208 goto normal;
3209
3210 same_flow = NAPI_GRO_CB(skb)->same_flow;
3211 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3212
3213 if (pp) {
3214 struct sk_buff *nskb = *pp;
3215
3216 *pp = nskb->next;
3217 nskb->next = NULL;
3218 napi_gro_complete(nskb);
3219 napi->gro_count--;
3220 }
3221
3222 if (same_flow)
3223 goto ok;
3224
3225 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3226 goto normal;
3227
3228 napi->gro_count++;
3229 NAPI_GRO_CB(skb)->count = 1;
3230 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3231 skb->next = napi->gro_list;
3232 napi->gro_list = skb;
3233 ret = GRO_HELD;
3234
3235 pull:
3236 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3237 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3238
3239 BUG_ON(skb->end - skb->tail < grow);
3240
3241 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3242
3243 skb->tail += grow;
3244 skb->data_len -= grow;
3245
3246 skb_shinfo(skb)->frags[0].page_offset += grow;
3247 skb_shinfo(skb)->frags[0].size -= grow;
3248
3249 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3250 put_page(skb_shinfo(skb)->frags[0].page);
3251 memmove(skb_shinfo(skb)->frags,
3252 skb_shinfo(skb)->frags + 1,
3253 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3254 }
3255 }
3256
3257 ok:
3258 return ret;
3259
3260 normal:
3261 ret = GRO_NORMAL;
3262 goto pull;
3263 }
3264 EXPORT_SYMBOL(dev_gro_receive);
3265
3266 static inline gro_result_t
3267 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3268 {
3269 struct sk_buff *p;
3270
3271 for (p = napi->gro_list; p; p = p->next) {
3272 unsigned long diffs;
3273
3274 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3275 diffs |= p->vlan_tci ^ skb->vlan_tci;
3276 diffs |= compare_ether_header(skb_mac_header(p),
3277 skb_gro_mac_header(skb));
3278 NAPI_GRO_CB(p)->same_flow = !diffs;
3279 NAPI_GRO_CB(p)->flush = 0;
3280 }
3281
3282 return dev_gro_receive(napi, skb);
3283 }
3284
3285 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3286 {
3287 switch (ret) {
3288 case GRO_NORMAL:
3289 if (netif_receive_skb(skb))
3290 ret = GRO_DROP;
3291 break;
3292
3293 case GRO_DROP:
3294 case GRO_MERGED_FREE:
3295 kfree_skb(skb);
3296 break;
3297
3298 case GRO_HELD:
3299 case GRO_MERGED:
3300 break;
3301 }
3302
3303 return ret;
3304 }
3305 EXPORT_SYMBOL(napi_skb_finish);
3306
3307 void skb_gro_reset_offset(struct sk_buff *skb)
3308 {
3309 NAPI_GRO_CB(skb)->data_offset = 0;
3310 NAPI_GRO_CB(skb)->frag0 = NULL;
3311 NAPI_GRO_CB(skb)->frag0_len = 0;
3312
3313 if (skb->mac_header == skb->tail &&
3314 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3315 NAPI_GRO_CB(skb)->frag0 =
3316 page_address(skb_shinfo(skb)->frags[0].page) +
3317 skb_shinfo(skb)->frags[0].page_offset;
3318 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3319 }
3320 }
3321 EXPORT_SYMBOL(skb_gro_reset_offset);
3322
3323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3324 {
3325 skb_gro_reset_offset(skb);
3326
3327 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3328 }
3329 EXPORT_SYMBOL(napi_gro_receive);
3330
3331 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3332 {
3333 __skb_pull(skb, skb_headlen(skb));
3334 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3335 skb->vlan_tci = 0;
3336
3337 napi->skb = skb;
3338 }
3339
3340 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3341 {
3342 struct sk_buff *skb = napi->skb;
3343
3344 if (!skb) {
3345 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3346 if (skb)
3347 napi->skb = skb;
3348 }
3349 return skb;
3350 }
3351 EXPORT_SYMBOL(napi_get_frags);
3352
3353 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3354 gro_result_t ret)
3355 {
3356 switch (ret) {
3357 case GRO_NORMAL:
3358 case GRO_HELD:
3359 skb->protocol = eth_type_trans(skb, skb->dev);
3360
3361 if (ret == GRO_HELD)
3362 skb_gro_pull(skb, -ETH_HLEN);
3363 else if (netif_receive_skb(skb))
3364 ret = GRO_DROP;
3365 break;
3366
3367 case GRO_DROP:
3368 case GRO_MERGED_FREE:
3369 napi_reuse_skb(napi, skb);
3370 break;
3371
3372 case GRO_MERGED:
3373 break;
3374 }
3375
3376 return ret;
3377 }
3378 EXPORT_SYMBOL(napi_frags_finish);
3379
3380 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3381 {
3382 struct sk_buff *skb = napi->skb;
3383 struct ethhdr *eth;
3384 unsigned int hlen;
3385 unsigned int off;
3386
3387 napi->skb = NULL;
3388
3389 skb_reset_mac_header(skb);
3390 skb_gro_reset_offset(skb);
3391
3392 off = skb_gro_offset(skb);
3393 hlen = off + sizeof(*eth);
3394 eth = skb_gro_header_fast(skb, off);
3395 if (skb_gro_header_hard(skb, hlen)) {
3396 eth = skb_gro_header_slow(skb, hlen, off);
3397 if (unlikely(!eth)) {
3398 napi_reuse_skb(napi, skb);
3399 skb = NULL;
3400 goto out;
3401 }
3402 }
3403
3404 skb_gro_pull(skb, sizeof(*eth));
3405
3406 /*
3407 * This works because the only protocols we care about don't require
3408 * special handling. We'll fix it up properly at the end.
3409 */
3410 skb->protocol = eth->h_proto;
3411
3412 out:
3413 return skb;
3414 }
3415 EXPORT_SYMBOL(napi_frags_skb);
3416
3417 gro_result_t napi_gro_frags(struct napi_struct *napi)
3418 {
3419 struct sk_buff *skb = napi_frags_skb(napi);
3420
3421 if (!skb)
3422 return GRO_DROP;
3423
3424 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3425 }
3426 EXPORT_SYMBOL(napi_gro_frags);
3427
3428 /*
3429 * net_rps_action sends any pending IPI's for rps.
3430 * Note: called with local irq disabled, but exits with local irq enabled.
3431 */
3432 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3433 {
3434 #ifdef CONFIG_RPS
3435 struct softnet_data *remsd = sd->rps_ipi_list;
3436
3437 if (remsd) {
3438 sd->rps_ipi_list = NULL;
3439
3440 local_irq_enable();
3441
3442 /* Send pending IPI's to kick RPS processing on remote cpus. */
3443 while (remsd) {
3444 struct softnet_data *next = remsd->rps_ipi_next;
3445
3446 if (cpu_online(remsd->cpu))
3447 __smp_call_function_single(remsd->cpu,
3448 &remsd->csd, 0);
3449 remsd = next;
3450 }
3451 } else
3452 #endif
3453 local_irq_enable();
3454 }
3455
3456 static int process_backlog(struct napi_struct *napi, int quota)
3457 {
3458 int work = 0;
3459 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3460
3461 #ifdef CONFIG_RPS
3462 /* Check if we have pending ipi, its better to send them now,
3463 * not waiting net_rx_action() end.
3464 */
3465 if (sd->rps_ipi_list) {
3466 local_irq_disable();
3467 net_rps_action_and_irq_enable(sd);
3468 }
3469 #endif
3470 napi->weight = weight_p;
3471 local_irq_disable();
3472 while (work < quota) {
3473 struct sk_buff *skb;
3474 unsigned int qlen;
3475
3476 while ((skb = __skb_dequeue(&sd->process_queue))) {
3477 local_irq_enable();
3478 __netif_receive_skb(skb);
3479 local_irq_disable();
3480 input_queue_head_incr(sd);
3481 if (++work >= quota) {
3482 local_irq_enable();
3483 return work;
3484 }
3485 }
3486
3487 rps_lock(sd);
3488 qlen = skb_queue_len(&sd->input_pkt_queue);
3489 if (qlen)
3490 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3491 &sd->process_queue);
3492
3493 if (qlen < quota - work) {
3494 /*
3495 * Inline a custom version of __napi_complete().
3496 * only current cpu owns and manipulates this napi,
3497 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3498 * we can use a plain write instead of clear_bit(),
3499 * and we dont need an smp_mb() memory barrier.
3500 */
3501 list_del(&napi->poll_list);
3502 napi->state = 0;
3503
3504 quota = work + qlen;
3505 }
3506 rps_unlock(sd);
3507 }
3508 local_irq_enable();
3509
3510 return work;
3511 }
3512
3513 /**
3514 * __napi_schedule - schedule for receive
3515 * @n: entry to schedule
3516 *
3517 * The entry's receive function will be scheduled to run
3518 */
3519 void __napi_schedule(struct napi_struct *n)
3520 {
3521 unsigned long flags;
3522
3523 local_irq_save(flags);
3524 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3525 local_irq_restore(flags);
3526 }
3527 EXPORT_SYMBOL(__napi_schedule);
3528
3529 void __napi_complete(struct napi_struct *n)
3530 {
3531 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3532 BUG_ON(n->gro_list);
3533
3534 list_del(&n->poll_list);
3535 smp_mb__before_clear_bit();
3536 clear_bit(NAPI_STATE_SCHED, &n->state);
3537 }
3538 EXPORT_SYMBOL(__napi_complete);
3539
3540 void napi_complete(struct napi_struct *n)
3541 {
3542 unsigned long flags;
3543
3544 /*
3545 * don't let napi dequeue from the cpu poll list
3546 * just in case its running on a different cpu
3547 */
3548 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3549 return;
3550
3551 napi_gro_flush(n);
3552 local_irq_save(flags);
3553 __napi_complete(n);
3554 local_irq_restore(flags);
3555 }
3556 EXPORT_SYMBOL(napi_complete);
3557
3558 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3559 int (*poll)(struct napi_struct *, int), int weight)
3560 {
3561 INIT_LIST_HEAD(&napi->poll_list);
3562 napi->gro_count = 0;
3563 napi->gro_list = NULL;
3564 napi->skb = NULL;
3565 napi->poll = poll;
3566 napi->weight = weight;
3567 list_add(&napi->dev_list, &dev->napi_list);
3568 napi->dev = dev;
3569 #ifdef CONFIG_NETPOLL
3570 spin_lock_init(&napi->poll_lock);
3571 napi->poll_owner = -1;
3572 #endif
3573 set_bit(NAPI_STATE_SCHED, &napi->state);
3574 }
3575 EXPORT_SYMBOL(netif_napi_add);
3576
3577 void netif_napi_del(struct napi_struct *napi)
3578 {
3579 struct sk_buff *skb, *next;
3580
3581 list_del_init(&napi->dev_list);
3582 napi_free_frags(napi);
3583
3584 for (skb = napi->gro_list; skb; skb = next) {
3585 next = skb->next;
3586 skb->next = NULL;
3587 kfree_skb(skb);
3588 }
3589
3590 napi->gro_list = NULL;
3591 napi->gro_count = 0;
3592 }
3593 EXPORT_SYMBOL(netif_napi_del);
3594
3595 static void net_rx_action(struct softirq_action *h)
3596 {
3597 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3598 unsigned long time_limit = jiffies + 2;
3599 int budget = netdev_budget;
3600 void *have;
3601
3602 local_irq_disable();
3603
3604 while (!list_empty(&sd->poll_list)) {
3605 struct napi_struct *n;
3606 int work, weight;
3607
3608 /* If softirq window is exhuasted then punt.
3609 * Allow this to run for 2 jiffies since which will allow
3610 * an average latency of 1.5/HZ.
3611 */
3612 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3613 goto softnet_break;
3614
3615 local_irq_enable();
3616
3617 /* Even though interrupts have been re-enabled, this
3618 * access is safe because interrupts can only add new
3619 * entries to the tail of this list, and only ->poll()
3620 * calls can remove this head entry from the list.
3621 */
3622 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3623
3624 have = netpoll_poll_lock(n);
3625
3626 weight = n->weight;
3627
3628 /* This NAPI_STATE_SCHED test is for avoiding a race
3629 * with netpoll's poll_napi(). Only the entity which
3630 * obtains the lock and sees NAPI_STATE_SCHED set will
3631 * actually make the ->poll() call. Therefore we avoid
3632 * accidently calling ->poll() when NAPI is not scheduled.
3633 */
3634 work = 0;
3635 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3636 work = n->poll(n, weight);
3637 trace_napi_poll(n);
3638 }
3639
3640 WARN_ON_ONCE(work > weight);
3641
3642 budget -= work;
3643
3644 local_irq_disable();
3645
3646 /* Drivers must not modify the NAPI state if they
3647 * consume the entire weight. In such cases this code
3648 * still "owns" the NAPI instance and therefore can
3649 * move the instance around on the list at-will.
3650 */
3651 if (unlikely(work == weight)) {
3652 if (unlikely(napi_disable_pending(n))) {
3653 local_irq_enable();
3654 napi_complete(n);
3655 local_irq_disable();
3656 } else
3657 list_move_tail(&n->poll_list, &sd->poll_list);
3658 }
3659
3660 netpoll_poll_unlock(have);
3661 }
3662 out:
3663 net_rps_action_and_irq_enable(sd);
3664
3665 #ifdef CONFIG_NET_DMA
3666 /*
3667 * There may not be any more sk_buffs coming right now, so push
3668 * any pending DMA copies to hardware
3669 */
3670 dma_issue_pending_all();
3671 #endif
3672
3673 return;
3674
3675 softnet_break:
3676 sd->time_squeeze++;
3677 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3678 goto out;
3679 }
3680
3681 static gifconf_func_t *gifconf_list[NPROTO];
3682
3683 /**
3684 * register_gifconf - register a SIOCGIF handler
3685 * @family: Address family
3686 * @gifconf: Function handler
3687 *
3688 * Register protocol dependent address dumping routines. The handler
3689 * that is passed must not be freed or reused until it has been replaced
3690 * by another handler.
3691 */
3692 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3693 {
3694 if (family >= NPROTO)
3695 return -EINVAL;
3696 gifconf_list[family] = gifconf;
3697 return 0;
3698 }
3699 EXPORT_SYMBOL(register_gifconf);
3700
3701
3702 /*
3703 * Map an interface index to its name (SIOCGIFNAME)
3704 */
3705
3706 /*
3707 * We need this ioctl for efficient implementation of the
3708 * if_indextoname() function required by the IPv6 API. Without
3709 * it, we would have to search all the interfaces to find a
3710 * match. --pb
3711 */
3712
3713 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3714 {
3715 struct net_device *dev;
3716 struct ifreq ifr;
3717
3718 /*
3719 * Fetch the caller's info block.
3720 */
3721
3722 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3723 return -EFAULT;
3724
3725 rcu_read_lock();
3726 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3727 if (!dev) {
3728 rcu_read_unlock();
3729 return -ENODEV;
3730 }
3731
3732 strcpy(ifr.ifr_name, dev->name);
3733 rcu_read_unlock();
3734
3735 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3736 return -EFAULT;
3737 return 0;
3738 }
3739
3740 /*
3741 * Perform a SIOCGIFCONF call. This structure will change
3742 * size eventually, and there is nothing I can do about it.
3743 * Thus we will need a 'compatibility mode'.
3744 */
3745
3746 static int dev_ifconf(struct net *net, char __user *arg)
3747 {
3748 struct ifconf ifc;
3749 struct net_device *dev;
3750 char __user *pos;
3751 int len;
3752 int total;
3753 int i;
3754
3755 /*
3756 * Fetch the caller's info block.
3757 */
3758
3759 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3760 return -EFAULT;
3761
3762 pos = ifc.ifc_buf;
3763 len = ifc.ifc_len;
3764
3765 /*
3766 * Loop over the interfaces, and write an info block for each.
3767 */
3768
3769 total = 0;
3770 for_each_netdev(net, dev) {
3771 for (i = 0; i < NPROTO; i++) {
3772 if (gifconf_list[i]) {
3773 int done;
3774 if (!pos)
3775 done = gifconf_list[i](dev, NULL, 0);
3776 else
3777 done = gifconf_list[i](dev, pos + total,
3778 len - total);
3779 if (done < 0)
3780 return -EFAULT;
3781 total += done;
3782 }
3783 }
3784 }
3785
3786 /*
3787 * All done. Write the updated control block back to the caller.
3788 */
3789 ifc.ifc_len = total;
3790
3791 /*
3792 * Both BSD and Solaris return 0 here, so we do too.
3793 */
3794 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3795 }
3796
3797 #ifdef CONFIG_PROC_FS
3798 /*
3799 * This is invoked by the /proc filesystem handler to display a device
3800 * in detail.
3801 */
3802 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3803 __acquires(RCU)
3804 {
3805 struct net *net = seq_file_net(seq);
3806 loff_t off;
3807 struct net_device *dev;
3808
3809 rcu_read_lock();
3810 if (!*pos)
3811 return SEQ_START_TOKEN;
3812
3813 off = 1;
3814 for_each_netdev_rcu(net, dev)
3815 if (off++ == *pos)
3816 return dev;
3817
3818 return NULL;
3819 }
3820
3821 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3822 {
3823 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3824 first_net_device(seq_file_net(seq)) :
3825 next_net_device((struct net_device *)v);
3826
3827 ++*pos;
3828 return rcu_dereference(dev);
3829 }
3830
3831 void dev_seq_stop(struct seq_file *seq, void *v)
3832 __releases(RCU)
3833 {
3834 rcu_read_unlock();
3835 }
3836
3837 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3838 {
3839 struct rtnl_link_stats64 temp;
3840 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3841
3842 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3843 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3844 dev->name, stats->rx_bytes, stats->rx_packets,
3845 stats->rx_errors,
3846 stats->rx_dropped + stats->rx_missed_errors,
3847 stats->rx_fifo_errors,
3848 stats->rx_length_errors + stats->rx_over_errors +
3849 stats->rx_crc_errors + stats->rx_frame_errors,
3850 stats->rx_compressed, stats->multicast,
3851 stats->tx_bytes, stats->tx_packets,
3852 stats->tx_errors, stats->tx_dropped,
3853 stats->tx_fifo_errors, stats->collisions,
3854 stats->tx_carrier_errors +
3855 stats->tx_aborted_errors +
3856 stats->tx_window_errors +
3857 stats->tx_heartbeat_errors,
3858 stats->tx_compressed);
3859 }
3860
3861 /*
3862 * Called from the PROCfs module. This now uses the new arbitrary sized
3863 * /proc/net interface to create /proc/net/dev
3864 */
3865 static int dev_seq_show(struct seq_file *seq, void *v)
3866 {
3867 if (v == SEQ_START_TOKEN)
3868 seq_puts(seq, "Inter-| Receive "
3869 " | Transmit\n"
3870 " face |bytes packets errs drop fifo frame "
3871 "compressed multicast|bytes packets errs "
3872 "drop fifo colls carrier compressed\n");
3873 else
3874 dev_seq_printf_stats(seq, v);
3875 return 0;
3876 }
3877
3878 static struct softnet_data *softnet_get_online(loff_t *pos)
3879 {
3880 struct softnet_data *sd = NULL;
3881
3882 while (*pos < nr_cpu_ids)
3883 if (cpu_online(*pos)) {
3884 sd = &per_cpu(softnet_data, *pos);
3885 break;
3886 } else
3887 ++*pos;
3888 return sd;
3889 }
3890
3891 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3892 {
3893 return softnet_get_online(pos);
3894 }
3895
3896 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3897 {
3898 ++*pos;
3899 return softnet_get_online(pos);
3900 }
3901
3902 static void softnet_seq_stop(struct seq_file *seq, void *v)
3903 {
3904 }
3905
3906 static int softnet_seq_show(struct seq_file *seq, void *v)
3907 {
3908 struct softnet_data *sd = v;
3909
3910 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3911 sd->processed, sd->dropped, sd->time_squeeze, 0,
3912 0, 0, 0, 0, /* was fastroute */
3913 sd->cpu_collision, sd->received_rps);
3914 return 0;
3915 }
3916
3917 static const struct seq_operations dev_seq_ops = {
3918 .start = dev_seq_start,
3919 .next = dev_seq_next,
3920 .stop = dev_seq_stop,
3921 .show = dev_seq_show,
3922 };
3923
3924 static int dev_seq_open(struct inode *inode, struct file *file)
3925 {
3926 return seq_open_net(inode, file, &dev_seq_ops,
3927 sizeof(struct seq_net_private));
3928 }
3929
3930 static const struct file_operations dev_seq_fops = {
3931 .owner = THIS_MODULE,
3932 .open = dev_seq_open,
3933 .read = seq_read,
3934 .llseek = seq_lseek,
3935 .release = seq_release_net,
3936 };
3937
3938 static const struct seq_operations softnet_seq_ops = {
3939 .start = softnet_seq_start,
3940 .next = softnet_seq_next,
3941 .stop = softnet_seq_stop,
3942 .show = softnet_seq_show,
3943 };
3944
3945 static int softnet_seq_open(struct inode *inode, struct file *file)
3946 {
3947 return seq_open(file, &softnet_seq_ops);
3948 }
3949
3950 static const struct file_operations softnet_seq_fops = {
3951 .owner = THIS_MODULE,
3952 .open = softnet_seq_open,
3953 .read = seq_read,
3954 .llseek = seq_lseek,
3955 .release = seq_release,
3956 };
3957
3958 static void *ptype_get_idx(loff_t pos)
3959 {
3960 struct packet_type *pt = NULL;
3961 loff_t i = 0;
3962 int t;
3963
3964 list_for_each_entry_rcu(pt, &ptype_all, list) {
3965 if (i == pos)
3966 return pt;
3967 ++i;
3968 }
3969
3970 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3971 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3972 if (i == pos)
3973 return pt;
3974 ++i;
3975 }
3976 }
3977 return NULL;
3978 }
3979
3980 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3981 __acquires(RCU)
3982 {
3983 rcu_read_lock();
3984 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3985 }
3986
3987 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3988 {
3989 struct packet_type *pt;
3990 struct list_head *nxt;
3991 int hash;
3992
3993 ++*pos;
3994 if (v == SEQ_START_TOKEN)
3995 return ptype_get_idx(0);
3996
3997 pt = v;
3998 nxt = pt->list.next;
3999 if (pt->type == htons(ETH_P_ALL)) {
4000 if (nxt != &ptype_all)
4001 goto found;
4002 hash = 0;
4003 nxt = ptype_base[0].next;
4004 } else
4005 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4006
4007 while (nxt == &ptype_base[hash]) {
4008 if (++hash >= PTYPE_HASH_SIZE)
4009 return NULL;
4010 nxt = ptype_base[hash].next;
4011 }
4012 found:
4013 return list_entry(nxt, struct packet_type, list);
4014 }
4015
4016 static void ptype_seq_stop(struct seq_file *seq, void *v)
4017 __releases(RCU)
4018 {
4019 rcu_read_unlock();
4020 }
4021
4022 static int ptype_seq_show(struct seq_file *seq, void *v)
4023 {
4024 struct packet_type *pt = v;
4025
4026 if (v == SEQ_START_TOKEN)
4027 seq_puts(seq, "Type Device Function\n");
4028 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4029 if (pt->type == htons(ETH_P_ALL))
4030 seq_puts(seq, "ALL ");
4031 else
4032 seq_printf(seq, "%04x", ntohs(pt->type));
4033
4034 seq_printf(seq, " %-8s %pF\n",
4035 pt->dev ? pt->dev->name : "", pt->func);
4036 }
4037
4038 return 0;
4039 }
4040
4041 static const struct seq_operations ptype_seq_ops = {
4042 .start = ptype_seq_start,
4043 .next = ptype_seq_next,
4044 .stop = ptype_seq_stop,
4045 .show = ptype_seq_show,
4046 };
4047
4048 static int ptype_seq_open(struct inode *inode, struct file *file)
4049 {
4050 return seq_open_net(inode, file, &ptype_seq_ops,
4051 sizeof(struct seq_net_private));
4052 }
4053
4054 static const struct file_operations ptype_seq_fops = {
4055 .owner = THIS_MODULE,
4056 .open = ptype_seq_open,
4057 .read = seq_read,
4058 .llseek = seq_lseek,
4059 .release = seq_release_net,
4060 };
4061
4062
4063 static int __net_init dev_proc_net_init(struct net *net)
4064 {
4065 int rc = -ENOMEM;
4066
4067 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4068 goto out;
4069 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4070 goto out_dev;
4071 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4072 goto out_softnet;
4073
4074 if (wext_proc_init(net))
4075 goto out_ptype;
4076 rc = 0;
4077 out:
4078 return rc;
4079 out_ptype:
4080 proc_net_remove(net, "ptype");
4081 out_softnet:
4082 proc_net_remove(net, "softnet_stat");
4083 out_dev:
4084 proc_net_remove(net, "dev");
4085 goto out;
4086 }
4087
4088 static void __net_exit dev_proc_net_exit(struct net *net)
4089 {
4090 wext_proc_exit(net);
4091
4092 proc_net_remove(net, "ptype");
4093 proc_net_remove(net, "softnet_stat");
4094 proc_net_remove(net, "dev");
4095 }
4096
4097 static struct pernet_operations __net_initdata dev_proc_ops = {
4098 .init = dev_proc_net_init,
4099 .exit = dev_proc_net_exit,
4100 };
4101
4102 static int __init dev_proc_init(void)
4103 {
4104 return register_pernet_subsys(&dev_proc_ops);
4105 }
4106 #else
4107 #define dev_proc_init() 0
4108 #endif /* CONFIG_PROC_FS */
4109
4110
4111 /**
4112 * netdev_set_master - set up master/slave pair
4113 * @slave: slave device
4114 * @master: new master device
4115 *
4116 * Changes the master device of the slave. Pass %NULL to break the
4117 * bonding. The caller must hold the RTNL semaphore. On a failure
4118 * a negative errno code is returned. On success the reference counts
4119 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4120 * function returns zero.
4121 */
4122 int netdev_set_master(struct net_device *slave, struct net_device *master)
4123 {
4124 struct net_device *old = slave->master;
4125
4126 ASSERT_RTNL();
4127
4128 if (master) {
4129 if (old)
4130 return -EBUSY;
4131 dev_hold(master);
4132 }
4133
4134 slave->master = master;
4135
4136 if (old) {
4137 synchronize_net();
4138 dev_put(old);
4139 }
4140 if (master)
4141 slave->flags |= IFF_SLAVE;
4142 else
4143 slave->flags &= ~IFF_SLAVE;
4144
4145 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4146 return 0;
4147 }
4148 EXPORT_SYMBOL(netdev_set_master);
4149
4150 static void dev_change_rx_flags(struct net_device *dev, int flags)
4151 {
4152 const struct net_device_ops *ops = dev->netdev_ops;
4153
4154 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4155 ops->ndo_change_rx_flags(dev, flags);
4156 }
4157
4158 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4159 {
4160 unsigned short old_flags = dev->flags;
4161 uid_t uid;
4162 gid_t gid;
4163
4164 ASSERT_RTNL();
4165
4166 dev->flags |= IFF_PROMISC;
4167 dev->promiscuity += inc;
4168 if (dev->promiscuity == 0) {
4169 /*
4170 * Avoid overflow.
4171 * If inc causes overflow, untouch promisc and return error.
4172 */
4173 if (inc < 0)
4174 dev->flags &= ~IFF_PROMISC;
4175 else {
4176 dev->promiscuity -= inc;
4177 printk(KERN_WARNING "%s: promiscuity touches roof, "
4178 "set promiscuity failed, promiscuity feature "
4179 "of device might be broken.\n", dev->name);
4180 return -EOVERFLOW;
4181 }
4182 }
4183 if (dev->flags != old_flags) {
4184 printk(KERN_INFO "device %s %s promiscuous mode\n",
4185 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4186 "left");
4187 if (audit_enabled) {
4188 current_uid_gid(&uid, &gid);
4189 audit_log(current->audit_context, GFP_ATOMIC,
4190 AUDIT_ANOM_PROMISCUOUS,
4191 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4192 dev->name, (dev->flags & IFF_PROMISC),
4193 (old_flags & IFF_PROMISC),
4194 audit_get_loginuid(current),
4195 uid, gid,
4196 audit_get_sessionid(current));
4197 }
4198
4199 dev_change_rx_flags(dev, IFF_PROMISC);
4200 }
4201 return 0;
4202 }
4203
4204 /**
4205 * dev_set_promiscuity - update promiscuity count on a device
4206 * @dev: device
4207 * @inc: modifier
4208 *
4209 * Add or remove promiscuity from a device. While the count in the device
4210 * remains above zero the interface remains promiscuous. Once it hits zero
4211 * the device reverts back to normal filtering operation. A negative inc
4212 * value is used to drop promiscuity on the device.
4213 * Return 0 if successful or a negative errno code on error.
4214 */
4215 int dev_set_promiscuity(struct net_device *dev, int inc)
4216 {
4217 unsigned short old_flags = dev->flags;
4218 int err;
4219
4220 err = __dev_set_promiscuity(dev, inc);
4221 if (err < 0)
4222 return err;
4223 if (dev->flags != old_flags)
4224 dev_set_rx_mode(dev);
4225 return err;
4226 }
4227 EXPORT_SYMBOL(dev_set_promiscuity);
4228
4229 /**
4230 * dev_set_allmulti - update allmulti count on a device
4231 * @dev: device
4232 * @inc: modifier
4233 *
4234 * Add or remove reception of all multicast frames to a device. While the
4235 * count in the device remains above zero the interface remains listening
4236 * to all interfaces. Once it hits zero the device reverts back to normal
4237 * filtering operation. A negative @inc value is used to drop the counter
4238 * when releasing a resource needing all multicasts.
4239 * Return 0 if successful or a negative errno code on error.
4240 */
4241
4242 int dev_set_allmulti(struct net_device *dev, int inc)
4243 {
4244 unsigned short old_flags = dev->flags;
4245
4246 ASSERT_RTNL();
4247
4248 dev->flags |= IFF_ALLMULTI;
4249 dev->allmulti += inc;
4250 if (dev->allmulti == 0) {
4251 /*
4252 * Avoid overflow.
4253 * If inc causes overflow, untouch allmulti and return error.
4254 */
4255 if (inc < 0)
4256 dev->flags &= ~IFF_ALLMULTI;
4257 else {
4258 dev->allmulti -= inc;
4259 printk(KERN_WARNING "%s: allmulti touches roof, "
4260 "set allmulti failed, allmulti feature of "
4261 "device might be broken.\n", dev->name);
4262 return -EOVERFLOW;
4263 }
4264 }
4265 if (dev->flags ^ old_flags) {
4266 dev_change_rx_flags(dev, IFF_ALLMULTI);
4267 dev_set_rx_mode(dev);
4268 }
4269 return 0;
4270 }
4271 EXPORT_SYMBOL(dev_set_allmulti);
4272
4273 /*
4274 * Upload unicast and multicast address lists to device and
4275 * configure RX filtering. When the device doesn't support unicast
4276 * filtering it is put in promiscuous mode while unicast addresses
4277 * are present.
4278 */
4279 void __dev_set_rx_mode(struct net_device *dev)
4280 {
4281 const struct net_device_ops *ops = dev->netdev_ops;
4282
4283 /* dev_open will call this function so the list will stay sane. */
4284 if (!(dev->flags&IFF_UP))
4285 return;
4286
4287 if (!netif_device_present(dev))
4288 return;
4289
4290 if (ops->ndo_set_rx_mode)
4291 ops->ndo_set_rx_mode(dev);
4292 else {
4293 /* Unicast addresses changes may only happen under the rtnl,
4294 * therefore calling __dev_set_promiscuity here is safe.
4295 */
4296 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4297 __dev_set_promiscuity(dev, 1);
4298 dev->uc_promisc = 1;
4299 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4300 __dev_set_promiscuity(dev, -1);
4301 dev->uc_promisc = 0;
4302 }
4303
4304 if (ops->ndo_set_multicast_list)
4305 ops->ndo_set_multicast_list(dev);
4306 }
4307 }
4308
4309 void dev_set_rx_mode(struct net_device *dev)
4310 {
4311 netif_addr_lock_bh(dev);
4312 __dev_set_rx_mode(dev);
4313 netif_addr_unlock_bh(dev);
4314 }
4315
4316 /**
4317 * dev_get_flags - get flags reported to userspace
4318 * @dev: device
4319 *
4320 * Get the combination of flag bits exported through APIs to userspace.
4321 */
4322 unsigned dev_get_flags(const struct net_device *dev)
4323 {
4324 unsigned flags;
4325
4326 flags = (dev->flags & ~(IFF_PROMISC |
4327 IFF_ALLMULTI |
4328 IFF_RUNNING |
4329 IFF_LOWER_UP |
4330 IFF_DORMANT)) |
4331 (dev->gflags & (IFF_PROMISC |
4332 IFF_ALLMULTI));
4333
4334 if (netif_running(dev)) {
4335 if (netif_oper_up(dev))
4336 flags |= IFF_RUNNING;
4337 if (netif_carrier_ok(dev))
4338 flags |= IFF_LOWER_UP;
4339 if (netif_dormant(dev))
4340 flags |= IFF_DORMANT;
4341 }
4342
4343 return flags;
4344 }
4345 EXPORT_SYMBOL(dev_get_flags);
4346
4347 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4348 {
4349 int old_flags = dev->flags;
4350 int ret;
4351
4352 ASSERT_RTNL();
4353
4354 /*
4355 * Set the flags on our device.
4356 */
4357
4358 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4359 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4360 IFF_AUTOMEDIA)) |
4361 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4362 IFF_ALLMULTI));
4363
4364 /*
4365 * Load in the correct multicast list now the flags have changed.
4366 */
4367
4368 if ((old_flags ^ flags) & IFF_MULTICAST)
4369 dev_change_rx_flags(dev, IFF_MULTICAST);
4370
4371 dev_set_rx_mode(dev);
4372
4373 /*
4374 * Have we downed the interface. We handle IFF_UP ourselves
4375 * according to user attempts to set it, rather than blindly
4376 * setting it.
4377 */
4378
4379 ret = 0;
4380 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4381 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4382
4383 if (!ret)
4384 dev_set_rx_mode(dev);
4385 }
4386
4387 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4388 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4389
4390 dev->gflags ^= IFF_PROMISC;
4391 dev_set_promiscuity(dev, inc);
4392 }
4393
4394 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4395 is important. Some (broken) drivers set IFF_PROMISC, when
4396 IFF_ALLMULTI is requested not asking us and not reporting.
4397 */
4398 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4399 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4400
4401 dev->gflags ^= IFF_ALLMULTI;
4402 dev_set_allmulti(dev, inc);
4403 }
4404
4405 return ret;
4406 }
4407
4408 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4409 {
4410 unsigned int changes = dev->flags ^ old_flags;
4411
4412 if (changes & IFF_UP) {
4413 if (dev->flags & IFF_UP)
4414 call_netdevice_notifiers(NETDEV_UP, dev);
4415 else
4416 call_netdevice_notifiers(NETDEV_DOWN, dev);
4417 }
4418
4419 if (dev->flags & IFF_UP &&
4420 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4421 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4422 }
4423
4424 /**
4425 * dev_change_flags - change device settings
4426 * @dev: device
4427 * @flags: device state flags
4428 *
4429 * Change settings on device based state flags. The flags are
4430 * in the userspace exported format.
4431 */
4432 int dev_change_flags(struct net_device *dev, unsigned flags)
4433 {
4434 int ret, changes;
4435 int old_flags = dev->flags;
4436
4437 ret = __dev_change_flags(dev, flags);
4438 if (ret < 0)
4439 return ret;
4440
4441 changes = old_flags ^ dev->flags;
4442 if (changes)
4443 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4444
4445 __dev_notify_flags(dev, old_flags);
4446 return ret;
4447 }
4448 EXPORT_SYMBOL(dev_change_flags);
4449
4450 /**
4451 * dev_set_mtu - Change maximum transfer unit
4452 * @dev: device
4453 * @new_mtu: new transfer unit
4454 *
4455 * Change the maximum transfer size of the network device.
4456 */
4457 int dev_set_mtu(struct net_device *dev, int new_mtu)
4458 {
4459 const struct net_device_ops *ops = dev->netdev_ops;
4460 int err;
4461
4462 if (new_mtu == dev->mtu)
4463 return 0;
4464
4465 /* MTU must be positive. */
4466 if (new_mtu < 0)
4467 return -EINVAL;
4468
4469 if (!netif_device_present(dev))
4470 return -ENODEV;
4471
4472 err = 0;
4473 if (ops->ndo_change_mtu)
4474 err = ops->ndo_change_mtu(dev, new_mtu);
4475 else
4476 dev->mtu = new_mtu;
4477
4478 if (!err && dev->flags & IFF_UP)
4479 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4480 return err;
4481 }
4482 EXPORT_SYMBOL(dev_set_mtu);
4483
4484 /**
4485 * dev_set_mac_address - Change Media Access Control Address
4486 * @dev: device
4487 * @sa: new address
4488 *
4489 * Change the hardware (MAC) address of the device
4490 */
4491 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4492 {
4493 const struct net_device_ops *ops = dev->netdev_ops;
4494 int err;
4495
4496 if (!ops->ndo_set_mac_address)
4497 return -EOPNOTSUPP;
4498 if (sa->sa_family != dev->type)
4499 return -EINVAL;
4500 if (!netif_device_present(dev))
4501 return -ENODEV;
4502 err = ops->ndo_set_mac_address(dev, sa);
4503 if (!err)
4504 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4505 return err;
4506 }
4507 EXPORT_SYMBOL(dev_set_mac_address);
4508
4509 /*
4510 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4511 */
4512 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4513 {
4514 int err;
4515 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4516
4517 if (!dev)
4518 return -ENODEV;
4519
4520 switch (cmd) {
4521 case SIOCGIFFLAGS: /* Get interface flags */
4522 ifr->ifr_flags = (short) dev_get_flags(dev);
4523 return 0;
4524
4525 case SIOCGIFMETRIC: /* Get the metric on the interface
4526 (currently unused) */
4527 ifr->ifr_metric = 0;
4528 return 0;
4529
4530 case SIOCGIFMTU: /* Get the MTU of a device */
4531 ifr->ifr_mtu = dev->mtu;
4532 return 0;
4533
4534 case SIOCGIFHWADDR:
4535 if (!dev->addr_len)
4536 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4537 else
4538 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4539 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4540 ifr->ifr_hwaddr.sa_family = dev->type;
4541 return 0;
4542
4543 case SIOCGIFSLAVE:
4544 err = -EINVAL;
4545 break;
4546
4547 case SIOCGIFMAP:
4548 ifr->ifr_map.mem_start = dev->mem_start;
4549 ifr->ifr_map.mem_end = dev->mem_end;
4550 ifr->ifr_map.base_addr = dev->base_addr;
4551 ifr->ifr_map.irq = dev->irq;
4552 ifr->ifr_map.dma = dev->dma;
4553 ifr->ifr_map.port = dev->if_port;
4554 return 0;
4555
4556 case SIOCGIFINDEX:
4557 ifr->ifr_ifindex = dev->ifindex;
4558 return 0;
4559
4560 case SIOCGIFTXQLEN:
4561 ifr->ifr_qlen = dev->tx_queue_len;
4562 return 0;
4563
4564 default:
4565 /* dev_ioctl() should ensure this case
4566 * is never reached
4567 */
4568 WARN_ON(1);
4569 err = -EINVAL;
4570 break;
4571
4572 }
4573 return err;
4574 }
4575
4576 /*
4577 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4578 */
4579 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4580 {
4581 int err;
4582 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4583 const struct net_device_ops *ops;
4584
4585 if (!dev)
4586 return -ENODEV;
4587
4588 ops = dev->netdev_ops;
4589
4590 switch (cmd) {
4591 case SIOCSIFFLAGS: /* Set interface flags */
4592 return dev_change_flags(dev, ifr->ifr_flags);
4593
4594 case SIOCSIFMETRIC: /* Set the metric on the interface
4595 (currently unused) */
4596 return -EOPNOTSUPP;
4597
4598 case SIOCSIFMTU: /* Set the MTU of a device */
4599 return dev_set_mtu(dev, ifr->ifr_mtu);
4600
4601 case SIOCSIFHWADDR:
4602 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4603
4604 case SIOCSIFHWBROADCAST:
4605 if (ifr->ifr_hwaddr.sa_family != dev->type)
4606 return -EINVAL;
4607 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4608 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4610 return 0;
4611
4612 case SIOCSIFMAP:
4613 if (ops->ndo_set_config) {
4614 if (!netif_device_present(dev))
4615 return -ENODEV;
4616 return ops->ndo_set_config(dev, &ifr->ifr_map);
4617 }
4618 return -EOPNOTSUPP;
4619
4620 case SIOCADDMULTI:
4621 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4622 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4623 return -EINVAL;
4624 if (!netif_device_present(dev))
4625 return -ENODEV;
4626 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4627
4628 case SIOCDELMULTI:
4629 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4630 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4631 return -EINVAL;
4632 if (!netif_device_present(dev))
4633 return -ENODEV;
4634 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4635
4636 case SIOCSIFTXQLEN:
4637 if (ifr->ifr_qlen < 0)
4638 return -EINVAL;
4639 dev->tx_queue_len = ifr->ifr_qlen;
4640 return 0;
4641
4642 case SIOCSIFNAME:
4643 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4644 return dev_change_name(dev, ifr->ifr_newname);
4645
4646 /*
4647 * Unknown or private ioctl
4648 */
4649 default:
4650 if ((cmd >= SIOCDEVPRIVATE &&
4651 cmd <= SIOCDEVPRIVATE + 15) ||
4652 cmd == SIOCBONDENSLAVE ||
4653 cmd == SIOCBONDRELEASE ||
4654 cmd == SIOCBONDSETHWADDR ||
4655 cmd == SIOCBONDSLAVEINFOQUERY ||
4656 cmd == SIOCBONDINFOQUERY ||
4657 cmd == SIOCBONDCHANGEACTIVE ||
4658 cmd == SIOCGMIIPHY ||
4659 cmd == SIOCGMIIREG ||
4660 cmd == SIOCSMIIREG ||
4661 cmd == SIOCBRADDIF ||
4662 cmd == SIOCBRDELIF ||
4663 cmd == SIOCSHWTSTAMP ||
4664 cmd == SIOCWANDEV) {
4665 err = -EOPNOTSUPP;
4666 if (ops->ndo_do_ioctl) {
4667 if (netif_device_present(dev))
4668 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4669 else
4670 err = -ENODEV;
4671 }
4672 } else
4673 err = -EINVAL;
4674
4675 }
4676 return err;
4677 }
4678
4679 /*
4680 * This function handles all "interface"-type I/O control requests. The actual
4681 * 'doing' part of this is dev_ifsioc above.
4682 */
4683
4684 /**
4685 * dev_ioctl - network device ioctl
4686 * @net: the applicable net namespace
4687 * @cmd: command to issue
4688 * @arg: pointer to a struct ifreq in user space
4689 *
4690 * Issue ioctl functions to devices. This is normally called by the
4691 * user space syscall interfaces but can sometimes be useful for
4692 * other purposes. The return value is the return from the syscall if
4693 * positive or a negative errno code on error.
4694 */
4695
4696 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4697 {
4698 struct ifreq ifr;
4699 int ret;
4700 char *colon;
4701
4702 /* One special case: SIOCGIFCONF takes ifconf argument
4703 and requires shared lock, because it sleeps writing
4704 to user space.
4705 */
4706
4707 if (cmd == SIOCGIFCONF) {
4708 rtnl_lock();
4709 ret = dev_ifconf(net, (char __user *) arg);
4710 rtnl_unlock();
4711 return ret;
4712 }
4713 if (cmd == SIOCGIFNAME)
4714 return dev_ifname(net, (struct ifreq __user *)arg);
4715
4716 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4717 return -EFAULT;
4718
4719 ifr.ifr_name[IFNAMSIZ-1] = 0;
4720
4721 colon = strchr(ifr.ifr_name, ':');
4722 if (colon)
4723 *colon = 0;
4724
4725 /*
4726 * See which interface the caller is talking about.
4727 */
4728
4729 switch (cmd) {
4730 /*
4731 * These ioctl calls:
4732 * - can be done by all.
4733 * - atomic and do not require locking.
4734 * - return a value
4735 */
4736 case SIOCGIFFLAGS:
4737 case SIOCGIFMETRIC:
4738 case SIOCGIFMTU:
4739 case SIOCGIFHWADDR:
4740 case SIOCGIFSLAVE:
4741 case SIOCGIFMAP:
4742 case SIOCGIFINDEX:
4743 case SIOCGIFTXQLEN:
4744 dev_load(net, ifr.ifr_name);
4745 rcu_read_lock();
4746 ret = dev_ifsioc_locked(net, &ifr, cmd);
4747 rcu_read_unlock();
4748 if (!ret) {
4749 if (colon)
4750 *colon = ':';
4751 if (copy_to_user(arg, &ifr,
4752 sizeof(struct ifreq)))
4753 ret = -EFAULT;
4754 }
4755 return ret;
4756
4757 case SIOCETHTOOL:
4758 dev_load(net, ifr.ifr_name);
4759 rtnl_lock();
4760 ret = dev_ethtool(net, &ifr);
4761 rtnl_unlock();
4762 if (!ret) {
4763 if (colon)
4764 *colon = ':';
4765 if (copy_to_user(arg, &ifr,
4766 sizeof(struct ifreq)))
4767 ret = -EFAULT;
4768 }
4769 return ret;
4770
4771 /*
4772 * These ioctl calls:
4773 * - require superuser power.
4774 * - require strict serialization.
4775 * - return a value
4776 */
4777 case SIOCGMIIPHY:
4778 case SIOCGMIIREG:
4779 case SIOCSIFNAME:
4780 if (!capable(CAP_NET_ADMIN))
4781 return -EPERM;
4782 dev_load(net, ifr.ifr_name);
4783 rtnl_lock();
4784 ret = dev_ifsioc(net, &ifr, cmd);
4785 rtnl_unlock();
4786 if (!ret) {
4787 if (colon)
4788 *colon = ':';
4789 if (copy_to_user(arg, &ifr,
4790 sizeof(struct ifreq)))
4791 ret = -EFAULT;
4792 }
4793 return ret;
4794
4795 /*
4796 * These ioctl calls:
4797 * - require superuser power.
4798 * - require strict serialization.
4799 * - do not return a value
4800 */
4801 case SIOCSIFFLAGS:
4802 case SIOCSIFMETRIC:
4803 case SIOCSIFMTU:
4804 case SIOCSIFMAP:
4805 case SIOCSIFHWADDR:
4806 case SIOCSIFSLAVE:
4807 case SIOCADDMULTI:
4808 case SIOCDELMULTI:
4809 case SIOCSIFHWBROADCAST:
4810 case SIOCSIFTXQLEN:
4811 case SIOCSMIIREG:
4812 case SIOCBONDENSLAVE:
4813 case SIOCBONDRELEASE:
4814 case SIOCBONDSETHWADDR:
4815 case SIOCBONDCHANGEACTIVE:
4816 case SIOCBRADDIF:
4817 case SIOCBRDELIF:
4818 case SIOCSHWTSTAMP:
4819 if (!capable(CAP_NET_ADMIN))
4820 return -EPERM;
4821 /* fall through */
4822 case SIOCBONDSLAVEINFOQUERY:
4823 case SIOCBONDINFOQUERY:
4824 dev_load(net, ifr.ifr_name);
4825 rtnl_lock();
4826 ret = dev_ifsioc(net, &ifr, cmd);
4827 rtnl_unlock();
4828 return ret;
4829
4830 case SIOCGIFMEM:
4831 /* Get the per device memory space. We can add this but
4832 * currently do not support it */
4833 case SIOCSIFMEM:
4834 /* Set the per device memory buffer space.
4835 * Not applicable in our case */
4836 case SIOCSIFLINK:
4837 return -EINVAL;
4838
4839 /*
4840 * Unknown or private ioctl.
4841 */
4842 default:
4843 if (cmd == SIOCWANDEV ||
4844 (cmd >= SIOCDEVPRIVATE &&
4845 cmd <= SIOCDEVPRIVATE + 15)) {
4846 dev_load(net, ifr.ifr_name);
4847 rtnl_lock();
4848 ret = dev_ifsioc(net, &ifr, cmd);
4849 rtnl_unlock();
4850 if (!ret && copy_to_user(arg, &ifr,
4851 sizeof(struct ifreq)))
4852 ret = -EFAULT;
4853 return ret;
4854 }
4855 /* Take care of Wireless Extensions */
4856 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4857 return wext_handle_ioctl(net, &ifr, cmd, arg);
4858 return -EINVAL;
4859 }
4860 }
4861
4862
4863 /**
4864 * dev_new_index - allocate an ifindex
4865 * @net: the applicable net namespace
4866 *
4867 * Returns a suitable unique value for a new device interface
4868 * number. The caller must hold the rtnl semaphore or the
4869 * dev_base_lock to be sure it remains unique.
4870 */
4871 static int dev_new_index(struct net *net)
4872 {
4873 static int ifindex;
4874 for (;;) {
4875 if (++ifindex <= 0)
4876 ifindex = 1;
4877 if (!__dev_get_by_index(net, ifindex))
4878 return ifindex;
4879 }
4880 }
4881
4882 /* Delayed registration/unregisteration */
4883 static LIST_HEAD(net_todo_list);
4884
4885 static void net_set_todo(struct net_device *dev)
4886 {
4887 list_add_tail(&dev->todo_list, &net_todo_list);
4888 }
4889
4890 static void rollback_registered_many(struct list_head *head)
4891 {
4892 struct net_device *dev, *tmp;
4893
4894 BUG_ON(dev_boot_phase);
4895 ASSERT_RTNL();
4896
4897 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4898 /* Some devices call without registering
4899 * for initialization unwind. Remove those
4900 * devices and proceed with the remaining.
4901 */
4902 if (dev->reg_state == NETREG_UNINITIALIZED) {
4903 pr_debug("unregister_netdevice: device %s/%p never "
4904 "was registered\n", dev->name, dev);
4905
4906 WARN_ON(1);
4907 list_del(&dev->unreg_list);
4908 continue;
4909 }
4910
4911 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4912
4913 /* If device is running, close it first. */
4914 dev_close(dev);
4915
4916 /* And unlink it from device chain. */
4917 unlist_netdevice(dev);
4918
4919 dev->reg_state = NETREG_UNREGISTERING;
4920 }
4921
4922 synchronize_net();
4923
4924 list_for_each_entry(dev, head, unreg_list) {
4925 /* Shutdown queueing discipline. */
4926 dev_shutdown(dev);
4927
4928
4929 /* Notify protocols, that we are about to destroy
4930 this device. They should clean all the things.
4931 */
4932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4933
4934 if (!dev->rtnl_link_ops ||
4935 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4936 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4937
4938 /*
4939 * Flush the unicast and multicast chains
4940 */
4941 dev_uc_flush(dev);
4942 dev_mc_flush(dev);
4943
4944 if (dev->netdev_ops->ndo_uninit)
4945 dev->netdev_ops->ndo_uninit(dev);
4946
4947 /* Notifier chain MUST detach us from master device. */
4948 WARN_ON(dev->master);
4949
4950 /* Remove entries from kobject tree */
4951 netdev_unregister_kobject(dev);
4952 }
4953
4954 /* Process any work delayed until the end of the batch */
4955 dev = list_first_entry(head, struct net_device, unreg_list);
4956 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4957
4958 rcu_barrier();
4959
4960 list_for_each_entry(dev, head, unreg_list)
4961 dev_put(dev);
4962 }
4963
4964 static void rollback_registered(struct net_device *dev)
4965 {
4966 LIST_HEAD(single);
4967
4968 list_add(&dev->unreg_list, &single);
4969 rollback_registered_many(&single);
4970 }
4971
4972 unsigned long netdev_fix_features(unsigned long features, const char *name)
4973 {
4974 /* Fix illegal SG+CSUM combinations. */
4975 if ((features & NETIF_F_SG) &&
4976 !(features & NETIF_F_ALL_CSUM)) {
4977 if (name)
4978 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4979 "checksum feature.\n", name);
4980 features &= ~NETIF_F_SG;
4981 }
4982
4983 /* TSO requires that SG is present as well. */
4984 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4985 if (name)
4986 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4987 "SG feature.\n", name);
4988 features &= ~NETIF_F_TSO;
4989 }
4990
4991 if (features & NETIF_F_UFO) {
4992 if (!(features & NETIF_F_GEN_CSUM)) {
4993 if (name)
4994 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4995 "since no NETIF_F_HW_CSUM feature.\n",
4996 name);
4997 features &= ~NETIF_F_UFO;
4998 }
4999
5000 if (!(features & NETIF_F_SG)) {
5001 if (name)
5002 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5003 "since no NETIF_F_SG feature.\n", name);
5004 features &= ~NETIF_F_UFO;
5005 }
5006 }
5007
5008 return features;
5009 }
5010 EXPORT_SYMBOL(netdev_fix_features);
5011
5012 /**
5013 * netif_stacked_transfer_operstate - transfer operstate
5014 * @rootdev: the root or lower level device to transfer state from
5015 * @dev: the device to transfer operstate to
5016 *
5017 * Transfer operational state from root to device. This is normally
5018 * called when a stacking relationship exists between the root
5019 * device and the device(a leaf device).
5020 */
5021 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5022 struct net_device *dev)
5023 {
5024 if (rootdev->operstate == IF_OPER_DORMANT)
5025 netif_dormant_on(dev);
5026 else
5027 netif_dormant_off(dev);
5028
5029 if (netif_carrier_ok(rootdev)) {
5030 if (!netif_carrier_ok(dev))
5031 netif_carrier_on(dev);
5032 } else {
5033 if (netif_carrier_ok(dev))
5034 netif_carrier_off(dev);
5035 }
5036 }
5037 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5038
5039 static int netif_alloc_rx_queues(struct net_device *dev)
5040 {
5041 #ifdef CONFIG_RPS
5042 unsigned int i, count = dev->num_rx_queues;
5043 struct netdev_rx_queue *rx;
5044
5045 BUG_ON(count < 1);
5046
5047 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5048 if (!rx) {
5049 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5050 return -ENOMEM;
5051 }
5052 dev->_rx = rx;
5053
5054 /*
5055 * Set a pointer to first element in the array which holds the
5056 * reference count.
5057 */
5058 for (i = 0; i < count; i++)
5059 rx[i].first = rx;
5060 #endif
5061 return 0;
5062 }
5063
5064 static int netif_alloc_netdev_queues(struct net_device *dev)
5065 {
5066 unsigned int count = dev->num_tx_queues;
5067 struct netdev_queue *tx;
5068
5069 BUG_ON(count < 1);
5070
5071 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5072 if (!tx) {
5073 pr_err("netdev: Unable to allocate %u tx queues.\n",
5074 count);
5075 return -ENOMEM;
5076 }
5077 dev->_tx = tx;
5078 return 0;
5079 }
5080
5081 static void netdev_init_one_queue(struct net_device *dev,
5082 struct netdev_queue *queue,
5083 void *_unused)
5084 {
5085 queue->dev = dev;
5086
5087 /* Initialize queue lock */
5088 spin_lock_init(&queue->_xmit_lock);
5089 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5090 queue->xmit_lock_owner = -1;
5091 }
5092
5093 static void netdev_init_queues(struct net_device *dev)
5094 {
5095 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5096 spin_lock_init(&dev->tx_global_lock);
5097 }
5098
5099 /**
5100 * register_netdevice - register a network device
5101 * @dev: device to register
5102 *
5103 * Take a completed network device structure and add it to the kernel
5104 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5105 * chain. 0 is returned on success. A negative errno code is returned
5106 * on a failure to set up the device, or if the name is a duplicate.
5107 *
5108 * Callers must hold the rtnl semaphore. You may want
5109 * register_netdev() instead of this.
5110 *
5111 * BUGS:
5112 * The locking appears insufficient to guarantee two parallel registers
5113 * will not get the same name.
5114 */
5115
5116 int register_netdevice(struct net_device *dev)
5117 {
5118 int ret;
5119 struct net *net = dev_net(dev);
5120
5121 BUG_ON(dev_boot_phase);
5122 ASSERT_RTNL();
5123
5124 might_sleep();
5125
5126 /* When net_device's are persistent, this will be fatal. */
5127 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5128 BUG_ON(!net);
5129
5130 spin_lock_init(&dev->addr_list_lock);
5131 netdev_set_addr_lockdep_class(dev);
5132
5133 dev->iflink = -1;
5134
5135 ret = netif_alloc_rx_queues(dev);
5136 if (ret)
5137 goto out;
5138
5139 ret = netif_alloc_netdev_queues(dev);
5140 if (ret)
5141 goto out;
5142
5143 netdev_init_queues(dev);
5144
5145 /* Init, if this function is available */
5146 if (dev->netdev_ops->ndo_init) {
5147 ret = dev->netdev_ops->ndo_init(dev);
5148 if (ret) {
5149 if (ret > 0)
5150 ret = -EIO;
5151 goto out;
5152 }
5153 }
5154
5155 ret = dev_get_valid_name(dev, dev->name, 0);
5156 if (ret)
5157 goto err_uninit;
5158
5159 dev->ifindex = dev_new_index(net);
5160 if (dev->iflink == -1)
5161 dev->iflink = dev->ifindex;
5162
5163 /* Fix illegal checksum combinations */
5164 if ((dev->features & NETIF_F_HW_CSUM) &&
5165 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5166 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5167 dev->name);
5168 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5169 }
5170
5171 if ((dev->features & NETIF_F_NO_CSUM) &&
5172 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5173 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5174 dev->name);
5175 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5176 }
5177
5178 dev->features = netdev_fix_features(dev->features, dev->name);
5179
5180 /* Enable software GSO if SG is supported. */
5181 if (dev->features & NETIF_F_SG)
5182 dev->features |= NETIF_F_GSO;
5183
5184 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5185 * vlan_dev_init() will do the dev->features check, so these features
5186 * are enabled only if supported by underlying device.
5187 */
5188 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5189
5190 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5191 ret = notifier_to_errno(ret);
5192 if (ret)
5193 goto err_uninit;
5194
5195 ret = netdev_register_kobject(dev);
5196 if (ret)
5197 goto err_uninit;
5198 dev->reg_state = NETREG_REGISTERED;
5199
5200 /*
5201 * Default initial state at registry is that the
5202 * device is present.
5203 */
5204
5205 set_bit(__LINK_STATE_PRESENT, &dev->state);
5206
5207 dev_init_scheduler(dev);
5208 dev_hold(dev);
5209 list_netdevice(dev);
5210
5211 /* Notify protocols, that a new device appeared. */
5212 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5213 ret = notifier_to_errno(ret);
5214 if (ret) {
5215 rollback_registered(dev);
5216 dev->reg_state = NETREG_UNREGISTERED;
5217 }
5218 /*
5219 * Prevent userspace races by waiting until the network
5220 * device is fully setup before sending notifications.
5221 */
5222 if (!dev->rtnl_link_ops ||
5223 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5224 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5225
5226 out:
5227 return ret;
5228
5229 err_uninit:
5230 if (dev->netdev_ops->ndo_uninit)
5231 dev->netdev_ops->ndo_uninit(dev);
5232 goto out;
5233 }
5234 EXPORT_SYMBOL(register_netdevice);
5235
5236 /**
5237 * init_dummy_netdev - init a dummy network device for NAPI
5238 * @dev: device to init
5239 *
5240 * This takes a network device structure and initialize the minimum
5241 * amount of fields so it can be used to schedule NAPI polls without
5242 * registering a full blown interface. This is to be used by drivers
5243 * that need to tie several hardware interfaces to a single NAPI
5244 * poll scheduler due to HW limitations.
5245 */
5246 int init_dummy_netdev(struct net_device *dev)
5247 {
5248 /* Clear everything. Note we don't initialize spinlocks
5249 * are they aren't supposed to be taken by any of the
5250 * NAPI code and this dummy netdev is supposed to be
5251 * only ever used for NAPI polls
5252 */
5253 memset(dev, 0, sizeof(struct net_device));
5254
5255 /* make sure we BUG if trying to hit standard
5256 * register/unregister code path
5257 */
5258 dev->reg_state = NETREG_DUMMY;
5259
5260 /* NAPI wants this */
5261 INIT_LIST_HEAD(&dev->napi_list);
5262
5263 /* a dummy interface is started by default */
5264 set_bit(__LINK_STATE_PRESENT, &dev->state);
5265 set_bit(__LINK_STATE_START, &dev->state);
5266
5267 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5268 * because users of this 'device' dont need to change
5269 * its refcount.
5270 */
5271
5272 return 0;
5273 }
5274 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5275
5276
5277 /**
5278 * register_netdev - register a network device
5279 * @dev: device to register
5280 *
5281 * Take a completed network device structure and add it to the kernel
5282 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5283 * chain. 0 is returned on success. A negative errno code is returned
5284 * on a failure to set up the device, or if the name is a duplicate.
5285 *
5286 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5287 * and expands the device name if you passed a format string to
5288 * alloc_netdev.
5289 */
5290 int register_netdev(struct net_device *dev)
5291 {
5292 int err;
5293
5294 rtnl_lock();
5295
5296 /*
5297 * If the name is a format string the caller wants us to do a
5298 * name allocation.
5299 */
5300 if (strchr(dev->name, '%')) {
5301 err = dev_alloc_name(dev, dev->name);
5302 if (err < 0)
5303 goto out;
5304 }
5305
5306 err = register_netdevice(dev);
5307 out:
5308 rtnl_unlock();
5309 return err;
5310 }
5311 EXPORT_SYMBOL(register_netdev);
5312
5313 int netdev_refcnt_read(const struct net_device *dev)
5314 {
5315 int i, refcnt = 0;
5316
5317 for_each_possible_cpu(i)
5318 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5319 return refcnt;
5320 }
5321 EXPORT_SYMBOL(netdev_refcnt_read);
5322
5323 /*
5324 * netdev_wait_allrefs - wait until all references are gone.
5325 *
5326 * This is called when unregistering network devices.
5327 *
5328 * Any protocol or device that holds a reference should register
5329 * for netdevice notification, and cleanup and put back the
5330 * reference if they receive an UNREGISTER event.
5331 * We can get stuck here if buggy protocols don't correctly
5332 * call dev_put.
5333 */
5334 static void netdev_wait_allrefs(struct net_device *dev)
5335 {
5336 unsigned long rebroadcast_time, warning_time;
5337 int refcnt;
5338
5339 linkwatch_forget_dev(dev);
5340
5341 rebroadcast_time = warning_time = jiffies;
5342 refcnt = netdev_refcnt_read(dev);
5343
5344 while (refcnt != 0) {
5345 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5346 rtnl_lock();
5347
5348 /* Rebroadcast unregister notification */
5349 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5350 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5351 * should have already handle it the first time */
5352
5353 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5354 &dev->state)) {
5355 /* We must not have linkwatch events
5356 * pending on unregister. If this
5357 * happens, we simply run the queue
5358 * unscheduled, resulting in a noop
5359 * for this device.
5360 */
5361 linkwatch_run_queue();
5362 }
5363
5364 __rtnl_unlock();
5365
5366 rebroadcast_time = jiffies;
5367 }
5368
5369 msleep(250);
5370
5371 refcnt = netdev_refcnt_read(dev);
5372
5373 if (time_after(jiffies, warning_time + 10 * HZ)) {
5374 printk(KERN_EMERG "unregister_netdevice: "
5375 "waiting for %s to become free. Usage "
5376 "count = %d\n",
5377 dev->name, refcnt);
5378 warning_time = jiffies;
5379 }
5380 }
5381 }
5382
5383 /* The sequence is:
5384 *
5385 * rtnl_lock();
5386 * ...
5387 * register_netdevice(x1);
5388 * register_netdevice(x2);
5389 * ...
5390 * unregister_netdevice(y1);
5391 * unregister_netdevice(y2);
5392 * ...
5393 * rtnl_unlock();
5394 * free_netdev(y1);
5395 * free_netdev(y2);
5396 *
5397 * We are invoked by rtnl_unlock().
5398 * This allows us to deal with problems:
5399 * 1) We can delete sysfs objects which invoke hotplug
5400 * without deadlocking with linkwatch via keventd.
5401 * 2) Since we run with the RTNL semaphore not held, we can sleep
5402 * safely in order to wait for the netdev refcnt to drop to zero.
5403 *
5404 * We must not return until all unregister events added during
5405 * the interval the lock was held have been completed.
5406 */
5407 void netdev_run_todo(void)
5408 {
5409 struct list_head list;
5410
5411 /* Snapshot list, allow later requests */
5412 list_replace_init(&net_todo_list, &list);
5413
5414 __rtnl_unlock();
5415
5416 while (!list_empty(&list)) {
5417 struct net_device *dev
5418 = list_first_entry(&list, struct net_device, todo_list);
5419 list_del(&dev->todo_list);
5420
5421 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5422 printk(KERN_ERR "network todo '%s' but state %d\n",
5423 dev->name, dev->reg_state);
5424 dump_stack();
5425 continue;
5426 }
5427
5428 dev->reg_state = NETREG_UNREGISTERED;
5429
5430 on_each_cpu(flush_backlog, dev, 1);
5431
5432 netdev_wait_allrefs(dev);
5433
5434 /* paranoia */
5435 BUG_ON(netdev_refcnt_read(dev));
5436 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5437 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5438 WARN_ON(dev->dn_ptr);
5439
5440 if (dev->destructor)
5441 dev->destructor(dev);
5442
5443 /* Free network device */
5444 kobject_put(&dev->dev.kobj);
5445 }
5446 }
5447
5448 /**
5449 * dev_txq_stats_fold - fold tx_queues stats
5450 * @dev: device to get statistics from
5451 * @stats: struct rtnl_link_stats64 to hold results
5452 */
5453 void dev_txq_stats_fold(const struct net_device *dev,
5454 struct rtnl_link_stats64 *stats)
5455 {
5456 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5457 unsigned int i;
5458 struct netdev_queue *txq;
5459
5460 for (i = 0; i < dev->num_tx_queues; i++) {
5461 txq = netdev_get_tx_queue(dev, i);
5462 spin_lock_bh(&txq->_xmit_lock);
5463 tx_bytes += txq->tx_bytes;
5464 tx_packets += txq->tx_packets;
5465 tx_dropped += txq->tx_dropped;
5466 spin_unlock_bh(&txq->_xmit_lock);
5467 }
5468 if (tx_bytes || tx_packets || tx_dropped) {
5469 stats->tx_bytes = tx_bytes;
5470 stats->tx_packets = tx_packets;
5471 stats->tx_dropped = tx_dropped;
5472 }
5473 }
5474 EXPORT_SYMBOL(dev_txq_stats_fold);
5475
5476 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5477 * fields in the same order, with only the type differing.
5478 */
5479 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5480 const struct net_device_stats *netdev_stats)
5481 {
5482 #if BITS_PER_LONG == 64
5483 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5484 memcpy(stats64, netdev_stats, sizeof(*stats64));
5485 #else
5486 size_t i, n = sizeof(*stats64) / sizeof(u64);
5487 const unsigned long *src = (const unsigned long *)netdev_stats;
5488 u64 *dst = (u64 *)stats64;
5489
5490 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5491 sizeof(*stats64) / sizeof(u64));
5492 for (i = 0; i < n; i++)
5493 dst[i] = src[i];
5494 #endif
5495 }
5496
5497 /**
5498 * dev_get_stats - get network device statistics
5499 * @dev: device to get statistics from
5500 * @storage: place to store stats
5501 *
5502 * Get network statistics from device. Return @storage.
5503 * The device driver may provide its own method by setting
5504 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5505 * otherwise the internal statistics structure is used.
5506 */
5507 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5508 struct rtnl_link_stats64 *storage)
5509 {
5510 const struct net_device_ops *ops = dev->netdev_ops;
5511
5512 if (ops->ndo_get_stats64) {
5513 memset(storage, 0, sizeof(*storage));
5514 ops->ndo_get_stats64(dev, storage);
5515 } else if (ops->ndo_get_stats) {
5516 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5517 } else {
5518 netdev_stats_to_stats64(storage, &dev->stats);
5519 dev_txq_stats_fold(dev, storage);
5520 }
5521 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5522 return storage;
5523 }
5524 EXPORT_SYMBOL(dev_get_stats);
5525
5526 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5527 {
5528 struct netdev_queue *queue = dev_ingress_queue(dev);
5529
5530 #ifdef CONFIG_NET_CLS_ACT
5531 if (queue)
5532 return queue;
5533 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5534 if (!queue)
5535 return NULL;
5536 netdev_init_one_queue(dev, queue, NULL);
5537 queue->qdisc = &noop_qdisc;
5538 queue->qdisc_sleeping = &noop_qdisc;
5539 rcu_assign_pointer(dev->ingress_queue, queue);
5540 #endif
5541 return queue;
5542 }
5543
5544 /**
5545 * alloc_netdev_mq - allocate network device
5546 * @sizeof_priv: size of private data to allocate space for
5547 * @name: device name format string
5548 * @setup: callback to initialize device
5549 * @queue_count: the number of subqueues to allocate
5550 *
5551 * Allocates a struct net_device with private data area for driver use
5552 * and performs basic initialization. Also allocates subquue structs
5553 * for each queue on the device at the end of the netdevice.
5554 */
5555 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5556 void (*setup)(struct net_device *), unsigned int queue_count)
5557 {
5558 struct net_device *dev;
5559 size_t alloc_size;
5560 struct net_device *p;
5561
5562 BUG_ON(strlen(name) >= sizeof(dev->name));
5563
5564 if (queue_count < 1) {
5565 pr_err("alloc_netdev: Unable to allocate device "
5566 "with zero queues.\n");
5567 return NULL;
5568 }
5569
5570 alloc_size = sizeof(struct net_device);
5571 if (sizeof_priv) {
5572 /* ensure 32-byte alignment of private area */
5573 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5574 alloc_size += sizeof_priv;
5575 }
5576 /* ensure 32-byte alignment of whole construct */
5577 alloc_size += NETDEV_ALIGN - 1;
5578
5579 p = kzalloc(alloc_size, GFP_KERNEL);
5580 if (!p) {
5581 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5582 return NULL;
5583 }
5584
5585 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5586 dev->padded = (char *)dev - (char *)p;
5587
5588 dev->pcpu_refcnt = alloc_percpu(int);
5589 if (!dev->pcpu_refcnt)
5590 goto free_p;
5591
5592 if (dev_addr_init(dev))
5593 goto free_pcpu;
5594
5595 dev_mc_init(dev);
5596 dev_uc_init(dev);
5597
5598 dev_net_set(dev, &init_net);
5599
5600 dev->num_tx_queues = queue_count;
5601 dev->real_num_tx_queues = queue_count;
5602
5603 #ifdef CONFIG_RPS
5604 dev->num_rx_queues = queue_count;
5605 dev->real_num_rx_queues = queue_count;
5606 #endif
5607
5608 dev->gso_max_size = GSO_MAX_SIZE;
5609
5610 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5611 dev->ethtool_ntuple_list.count = 0;
5612 INIT_LIST_HEAD(&dev->napi_list);
5613 INIT_LIST_HEAD(&dev->unreg_list);
5614 INIT_LIST_HEAD(&dev->link_watch_list);
5615 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5616 setup(dev);
5617 strcpy(dev->name, name);
5618 return dev;
5619
5620 free_pcpu:
5621 free_percpu(dev->pcpu_refcnt);
5622 free_p:
5623 kfree(p);
5624 return NULL;
5625 }
5626 EXPORT_SYMBOL(alloc_netdev_mq);
5627
5628 /**
5629 * free_netdev - free network device
5630 * @dev: device
5631 *
5632 * This function does the last stage of destroying an allocated device
5633 * interface. The reference to the device object is released.
5634 * If this is the last reference then it will be freed.
5635 */
5636 void free_netdev(struct net_device *dev)
5637 {
5638 struct napi_struct *p, *n;
5639
5640 release_net(dev_net(dev));
5641
5642 kfree(dev->_tx);
5643
5644 kfree(rcu_dereference_raw(dev->ingress_queue));
5645
5646 /* Flush device addresses */
5647 dev_addr_flush(dev);
5648
5649 /* Clear ethtool n-tuple list */
5650 ethtool_ntuple_flush(dev);
5651
5652 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5653 netif_napi_del(p);
5654
5655 free_percpu(dev->pcpu_refcnt);
5656 dev->pcpu_refcnt = NULL;
5657
5658 /* Compatibility with error handling in drivers */
5659 if (dev->reg_state == NETREG_UNINITIALIZED) {
5660 kfree((char *)dev - dev->padded);
5661 return;
5662 }
5663
5664 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5665 dev->reg_state = NETREG_RELEASED;
5666
5667 /* will free via device release */
5668 put_device(&dev->dev);
5669 }
5670 EXPORT_SYMBOL(free_netdev);
5671
5672 /**
5673 * synchronize_net - Synchronize with packet receive processing
5674 *
5675 * Wait for packets currently being received to be done.
5676 * Does not block later packets from starting.
5677 */
5678 void synchronize_net(void)
5679 {
5680 might_sleep();
5681 synchronize_rcu();
5682 }
5683 EXPORT_SYMBOL(synchronize_net);
5684
5685 /**
5686 * unregister_netdevice_queue - remove device from the kernel
5687 * @dev: device
5688 * @head: list
5689 *
5690 * This function shuts down a device interface and removes it
5691 * from the kernel tables.
5692 * If head not NULL, device is queued to be unregistered later.
5693 *
5694 * Callers must hold the rtnl semaphore. You may want
5695 * unregister_netdev() instead of this.
5696 */
5697
5698 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5699 {
5700 ASSERT_RTNL();
5701
5702 if (head) {
5703 list_move_tail(&dev->unreg_list, head);
5704 } else {
5705 rollback_registered(dev);
5706 /* Finish processing unregister after unlock */
5707 net_set_todo(dev);
5708 }
5709 }
5710 EXPORT_SYMBOL(unregister_netdevice_queue);
5711
5712 /**
5713 * unregister_netdevice_many - unregister many devices
5714 * @head: list of devices
5715 */
5716 void unregister_netdevice_many(struct list_head *head)
5717 {
5718 struct net_device *dev;
5719
5720 if (!list_empty(head)) {
5721 rollback_registered_many(head);
5722 list_for_each_entry(dev, head, unreg_list)
5723 net_set_todo(dev);
5724 }
5725 }
5726 EXPORT_SYMBOL(unregister_netdevice_many);
5727
5728 /**
5729 * unregister_netdev - remove device from the kernel
5730 * @dev: device
5731 *
5732 * This function shuts down a device interface and removes it
5733 * from the kernel tables.
5734 *
5735 * This is just a wrapper for unregister_netdevice that takes
5736 * the rtnl semaphore. In general you want to use this and not
5737 * unregister_netdevice.
5738 */
5739 void unregister_netdev(struct net_device *dev)
5740 {
5741 rtnl_lock();
5742 unregister_netdevice(dev);
5743 rtnl_unlock();
5744 }
5745 EXPORT_SYMBOL(unregister_netdev);
5746
5747 /**
5748 * dev_change_net_namespace - move device to different nethost namespace
5749 * @dev: device
5750 * @net: network namespace
5751 * @pat: If not NULL name pattern to try if the current device name
5752 * is already taken in the destination network namespace.
5753 *
5754 * This function shuts down a device interface and moves it
5755 * to a new network namespace. On success 0 is returned, on
5756 * a failure a netagive errno code is returned.
5757 *
5758 * Callers must hold the rtnl semaphore.
5759 */
5760
5761 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5762 {
5763 int err;
5764
5765 ASSERT_RTNL();
5766
5767 /* Don't allow namespace local devices to be moved. */
5768 err = -EINVAL;
5769 if (dev->features & NETIF_F_NETNS_LOCAL)
5770 goto out;
5771
5772 /* Ensure the device has been registrered */
5773 err = -EINVAL;
5774 if (dev->reg_state != NETREG_REGISTERED)
5775 goto out;
5776
5777 /* Get out if there is nothing todo */
5778 err = 0;
5779 if (net_eq(dev_net(dev), net))
5780 goto out;
5781
5782 /* Pick the destination device name, and ensure
5783 * we can use it in the destination network namespace.
5784 */
5785 err = -EEXIST;
5786 if (__dev_get_by_name(net, dev->name)) {
5787 /* We get here if we can't use the current device name */
5788 if (!pat)
5789 goto out;
5790 if (dev_get_valid_name(dev, pat, 1))
5791 goto out;
5792 }
5793
5794 /*
5795 * And now a mini version of register_netdevice unregister_netdevice.
5796 */
5797
5798 /* If device is running close it first. */
5799 dev_close(dev);
5800
5801 /* And unlink it from device chain */
5802 err = -ENODEV;
5803 unlist_netdevice(dev);
5804
5805 synchronize_net();
5806
5807 /* Shutdown queueing discipline. */
5808 dev_shutdown(dev);
5809
5810 /* Notify protocols, that we are about to destroy
5811 this device. They should clean all the things.
5812
5813 Note that dev->reg_state stays at NETREG_REGISTERED.
5814 This is wanted because this way 8021q and macvlan know
5815 the device is just moving and can keep their slaves up.
5816 */
5817 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5818 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5819
5820 /*
5821 * Flush the unicast and multicast chains
5822 */
5823 dev_uc_flush(dev);
5824 dev_mc_flush(dev);
5825
5826 /* Actually switch the network namespace */
5827 dev_net_set(dev, net);
5828
5829 /* If there is an ifindex conflict assign a new one */
5830 if (__dev_get_by_index(net, dev->ifindex)) {
5831 int iflink = (dev->iflink == dev->ifindex);
5832 dev->ifindex = dev_new_index(net);
5833 if (iflink)
5834 dev->iflink = dev->ifindex;
5835 }
5836
5837 /* Fixup kobjects */
5838 err = device_rename(&dev->dev, dev->name);
5839 WARN_ON(err);
5840
5841 /* Add the device back in the hashes */
5842 list_netdevice(dev);
5843
5844 /* Notify protocols, that a new device appeared. */
5845 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5846
5847 /*
5848 * Prevent userspace races by waiting until the network
5849 * device is fully setup before sending notifications.
5850 */
5851 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5852
5853 synchronize_net();
5854 err = 0;
5855 out:
5856 return err;
5857 }
5858 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5859
5860 static int dev_cpu_callback(struct notifier_block *nfb,
5861 unsigned long action,
5862 void *ocpu)
5863 {
5864 struct sk_buff **list_skb;
5865 struct sk_buff *skb;
5866 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5867 struct softnet_data *sd, *oldsd;
5868
5869 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5870 return NOTIFY_OK;
5871
5872 local_irq_disable();
5873 cpu = smp_processor_id();
5874 sd = &per_cpu(softnet_data, cpu);
5875 oldsd = &per_cpu(softnet_data, oldcpu);
5876
5877 /* Find end of our completion_queue. */
5878 list_skb = &sd->completion_queue;
5879 while (*list_skb)
5880 list_skb = &(*list_skb)->next;
5881 /* Append completion queue from offline CPU. */
5882 *list_skb = oldsd->completion_queue;
5883 oldsd->completion_queue = NULL;
5884
5885 /* Append output queue from offline CPU. */
5886 if (oldsd->output_queue) {
5887 *sd->output_queue_tailp = oldsd->output_queue;
5888 sd->output_queue_tailp = oldsd->output_queue_tailp;
5889 oldsd->output_queue = NULL;
5890 oldsd->output_queue_tailp = &oldsd->output_queue;
5891 }
5892
5893 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5894 local_irq_enable();
5895
5896 /* Process offline CPU's input_pkt_queue */
5897 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5898 netif_rx(skb);
5899 input_queue_head_incr(oldsd);
5900 }
5901 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5902 netif_rx(skb);
5903 input_queue_head_incr(oldsd);
5904 }
5905
5906 return NOTIFY_OK;
5907 }
5908
5909
5910 /**
5911 * netdev_increment_features - increment feature set by one
5912 * @all: current feature set
5913 * @one: new feature set
5914 * @mask: mask feature set
5915 *
5916 * Computes a new feature set after adding a device with feature set
5917 * @one to the master device with current feature set @all. Will not
5918 * enable anything that is off in @mask. Returns the new feature set.
5919 */
5920 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5921 unsigned long mask)
5922 {
5923 /* If device needs checksumming, downgrade to it. */
5924 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5925 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5926 else if (mask & NETIF_F_ALL_CSUM) {
5927 /* If one device supports v4/v6 checksumming, set for all. */
5928 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5929 !(all & NETIF_F_GEN_CSUM)) {
5930 all &= ~NETIF_F_ALL_CSUM;
5931 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5932 }
5933
5934 /* If one device supports hw checksumming, set for all. */
5935 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5936 all &= ~NETIF_F_ALL_CSUM;
5937 all |= NETIF_F_HW_CSUM;
5938 }
5939 }
5940
5941 one |= NETIF_F_ALL_CSUM;
5942
5943 one |= all & NETIF_F_ONE_FOR_ALL;
5944 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5945 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5946
5947 return all;
5948 }
5949 EXPORT_SYMBOL(netdev_increment_features);
5950
5951 static struct hlist_head *netdev_create_hash(void)
5952 {
5953 int i;
5954 struct hlist_head *hash;
5955
5956 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5957 if (hash != NULL)
5958 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5959 INIT_HLIST_HEAD(&hash[i]);
5960
5961 return hash;
5962 }
5963
5964 /* Initialize per network namespace state */
5965 static int __net_init netdev_init(struct net *net)
5966 {
5967 INIT_LIST_HEAD(&net->dev_base_head);
5968
5969 net->dev_name_head = netdev_create_hash();
5970 if (net->dev_name_head == NULL)
5971 goto err_name;
5972
5973 net->dev_index_head = netdev_create_hash();
5974 if (net->dev_index_head == NULL)
5975 goto err_idx;
5976
5977 return 0;
5978
5979 err_idx:
5980 kfree(net->dev_name_head);
5981 err_name:
5982 return -ENOMEM;
5983 }
5984
5985 /**
5986 * netdev_drivername - network driver for the device
5987 * @dev: network device
5988 * @buffer: buffer for resulting name
5989 * @len: size of buffer
5990 *
5991 * Determine network driver for device.
5992 */
5993 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5994 {
5995 const struct device_driver *driver;
5996 const struct device *parent;
5997
5998 if (len <= 0 || !buffer)
5999 return buffer;
6000 buffer[0] = 0;
6001
6002 parent = dev->dev.parent;
6003
6004 if (!parent)
6005 return buffer;
6006
6007 driver = parent->driver;
6008 if (driver && driver->name)
6009 strlcpy(buffer, driver->name, len);
6010 return buffer;
6011 }
6012
6013 static int __netdev_printk(const char *level, const struct net_device *dev,
6014 struct va_format *vaf)
6015 {
6016 int r;
6017
6018 if (dev && dev->dev.parent)
6019 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6020 netdev_name(dev), vaf);
6021 else if (dev)
6022 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6023 else
6024 r = printk("%s(NULL net_device): %pV", level, vaf);
6025
6026 return r;
6027 }
6028
6029 int netdev_printk(const char *level, const struct net_device *dev,
6030 const char *format, ...)
6031 {
6032 struct va_format vaf;
6033 va_list args;
6034 int r;
6035
6036 va_start(args, format);
6037
6038 vaf.fmt = format;
6039 vaf.va = &args;
6040
6041 r = __netdev_printk(level, dev, &vaf);
6042 va_end(args);
6043
6044 return r;
6045 }
6046 EXPORT_SYMBOL(netdev_printk);
6047
6048 #define define_netdev_printk_level(func, level) \
6049 int func(const struct net_device *dev, const char *fmt, ...) \
6050 { \
6051 int r; \
6052 struct va_format vaf; \
6053 va_list args; \
6054 \
6055 va_start(args, fmt); \
6056 \
6057 vaf.fmt = fmt; \
6058 vaf.va = &args; \
6059 \
6060 r = __netdev_printk(level, dev, &vaf); \
6061 va_end(args); \
6062 \
6063 return r; \
6064 } \
6065 EXPORT_SYMBOL(func);
6066
6067 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6068 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6069 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6070 define_netdev_printk_level(netdev_err, KERN_ERR);
6071 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6072 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6073 define_netdev_printk_level(netdev_info, KERN_INFO);
6074
6075 static void __net_exit netdev_exit(struct net *net)
6076 {
6077 kfree(net->dev_name_head);
6078 kfree(net->dev_index_head);
6079 }
6080
6081 static struct pernet_operations __net_initdata netdev_net_ops = {
6082 .init = netdev_init,
6083 .exit = netdev_exit,
6084 };
6085
6086 static void __net_exit default_device_exit(struct net *net)
6087 {
6088 struct net_device *dev, *aux;
6089 /*
6090 * Push all migratable network devices back to the
6091 * initial network namespace
6092 */
6093 rtnl_lock();
6094 for_each_netdev_safe(net, dev, aux) {
6095 int err;
6096 char fb_name[IFNAMSIZ];
6097
6098 /* Ignore unmoveable devices (i.e. loopback) */
6099 if (dev->features & NETIF_F_NETNS_LOCAL)
6100 continue;
6101
6102 /* Leave virtual devices for the generic cleanup */
6103 if (dev->rtnl_link_ops)
6104 continue;
6105
6106 /* Push remaing network devices to init_net */
6107 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6108 err = dev_change_net_namespace(dev, &init_net, fb_name);
6109 if (err) {
6110 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6111 __func__, dev->name, err);
6112 BUG();
6113 }
6114 }
6115 rtnl_unlock();
6116 }
6117
6118 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6119 {
6120 /* At exit all network devices most be removed from a network
6121 * namespace. Do this in the reverse order of registeration.
6122 * Do this across as many network namespaces as possible to
6123 * improve batching efficiency.
6124 */
6125 struct net_device *dev;
6126 struct net *net;
6127 LIST_HEAD(dev_kill_list);
6128
6129 rtnl_lock();
6130 list_for_each_entry(net, net_list, exit_list) {
6131 for_each_netdev_reverse(net, dev) {
6132 if (dev->rtnl_link_ops)
6133 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6134 else
6135 unregister_netdevice_queue(dev, &dev_kill_list);
6136 }
6137 }
6138 unregister_netdevice_many(&dev_kill_list);
6139 rtnl_unlock();
6140 }
6141
6142 static struct pernet_operations __net_initdata default_device_ops = {
6143 .exit = default_device_exit,
6144 .exit_batch = default_device_exit_batch,
6145 };
6146
6147 /*
6148 * Initialize the DEV module. At boot time this walks the device list and
6149 * unhooks any devices that fail to initialise (normally hardware not
6150 * present) and leaves us with a valid list of present and active devices.
6151 *
6152 */
6153
6154 /*
6155 * This is called single threaded during boot, so no need
6156 * to take the rtnl semaphore.
6157 */
6158 static int __init net_dev_init(void)
6159 {
6160 int i, rc = -ENOMEM;
6161
6162 BUG_ON(!dev_boot_phase);
6163
6164 if (dev_proc_init())
6165 goto out;
6166
6167 if (netdev_kobject_init())
6168 goto out;
6169
6170 INIT_LIST_HEAD(&ptype_all);
6171 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6172 INIT_LIST_HEAD(&ptype_base[i]);
6173
6174 if (register_pernet_subsys(&netdev_net_ops))
6175 goto out;
6176
6177 /*
6178 * Initialise the packet receive queues.
6179 */
6180
6181 for_each_possible_cpu(i) {
6182 struct softnet_data *sd = &per_cpu(softnet_data, i);
6183
6184 memset(sd, 0, sizeof(*sd));
6185 skb_queue_head_init(&sd->input_pkt_queue);
6186 skb_queue_head_init(&sd->process_queue);
6187 sd->completion_queue = NULL;
6188 INIT_LIST_HEAD(&sd->poll_list);
6189 sd->output_queue = NULL;
6190 sd->output_queue_tailp = &sd->output_queue;
6191 #ifdef CONFIG_RPS
6192 sd->csd.func = rps_trigger_softirq;
6193 sd->csd.info = sd;
6194 sd->csd.flags = 0;
6195 sd->cpu = i;
6196 #endif
6197
6198 sd->backlog.poll = process_backlog;
6199 sd->backlog.weight = weight_p;
6200 sd->backlog.gro_list = NULL;
6201 sd->backlog.gro_count = 0;
6202 }
6203
6204 dev_boot_phase = 0;
6205
6206 /* The loopback device is special if any other network devices
6207 * is present in a network namespace the loopback device must
6208 * be present. Since we now dynamically allocate and free the
6209 * loopback device ensure this invariant is maintained by
6210 * keeping the loopback device as the first device on the
6211 * list of network devices. Ensuring the loopback devices
6212 * is the first device that appears and the last network device
6213 * that disappears.
6214 */
6215 if (register_pernet_device(&loopback_net_ops))
6216 goto out;
6217
6218 if (register_pernet_device(&default_device_ops))
6219 goto out;
6220
6221 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6222 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6223
6224 hotcpu_notifier(dev_cpu_callback, 0);
6225 dst_init();
6226 dev_mcast_init();
6227 rc = 0;
6228 out:
6229 return rc;
6230 }
6231
6232 subsys_initcall(net_dev_init);
6233
6234 static int __init initialize_hashrnd(void)
6235 {
6236 get_random_bytes(&hashrnd, sizeof(hashrnd));
6237 return 0;
6238 }
6239
6240 late_initcall_sync(initialize_hashrnd);
6241
This page took 0.15039 seconds and 4 git commands to generate.