Merge tag 'iommu-updates-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1911
1912 /**
1913 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1914 * @dev: Network device
1915 * @txq: number of queues available
1916 *
1917 * If real_num_tx_queues is changed the tc mappings may no longer be
1918 * valid. To resolve this verify the tc mapping remains valid and if
1919 * not NULL the mapping. With no priorities mapping to this
1920 * offset/count pair it will no longer be used. In the worst case TC0
1921 * is invalid nothing can be done so disable priority mappings. If is
1922 * expected that drivers will fix this mapping if they can before
1923 * calling netif_set_real_num_tx_queues.
1924 */
1925 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1926 {
1927 int i;
1928 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1929
1930 /* If TC0 is invalidated disable TC mapping */
1931 if (tc->offset + tc->count > txq) {
1932 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1933 dev->num_tc = 0;
1934 return;
1935 }
1936
1937 /* Invalidated prio to tc mappings set to TC0 */
1938 for (i = 1; i < TC_BITMASK + 1; i++) {
1939 int q = netdev_get_prio_tc_map(dev, i);
1940
1941 tc = &dev->tc_to_txq[q];
1942 if (tc->offset + tc->count > txq) {
1943 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1944 i, q);
1945 netdev_set_prio_tc_map(dev, i, 0);
1946 }
1947 }
1948 }
1949
1950 #ifdef CONFIG_XPS
1951 static DEFINE_MUTEX(xps_map_mutex);
1952 #define xmap_dereference(P) \
1953 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1954
1955 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1956 int cpu, u16 index)
1957 {
1958 struct xps_map *map = NULL;
1959 int pos;
1960
1961 if (dev_maps)
1962 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1963
1964 for (pos = 0; map && pos < map->len; pos++) {
1965 if (map->queues[pos] == index) {
1966 if (map->len > 1) {
1967 map->queues[pos] = map->queues[--map->len];
1968 } else {
1969 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1970 kfree_rcu(map, rcu);
1971 map = NULL;
1972 }
1973 break;
1974 }
1975 }
1976
1977 return map;
1978 }
1979
1980 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1981 {
1982 struct xps_dev_maps *dev_maps;
1983 int cpu, i;
1984 bool active = false;
1985
1986 mutex_lock(&xps_map_mutex);
1987 dev_maps = xmap_dereference(dev->xps_maps);
1988
1989 if (!dev_maps)
1990 goto out_no_maps;
1991
1992 for_each_possible_cpu(cpu) {
1993 for (i = index; i < dev->num_tx_queues; i++) {
1994 if (!remove_xps_queue(dev_maps, cpu, i))
1995 break;
1996 }
1997 if (i == dev->num_tx_queues)
1998 active = true;
1999 }
2000
2001 if (!active) {
2002 RCU_INIT_POINTER(dev->xps_maps, NULL);
2003 kfree_rcu(dev_maps, rcu);
2004 }
2005
2006 for (i = index; i < dev->num_tx_queues; i++)
2007 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2008 NUMA_NO_NODE);
2009
2010 out_no_maps:
2011 mutex_unlock(&xps_map_mutex);
2012 }
2013
2014 static struct xps_map *expand_xps_map(struct xps_map *map,
2015 int cpu, u16 index)
2016 {
2017 struct xps_map *new_map;
2018 int alloc_len = XPS_MIN_MAP_ALLOC;
2019 int i, pos;
2020
2021 for (pos = 0; map && pos < map->len; pos++) {
2022 if (map->queues[pos] != index)
2023 continue;
2024 return map;
2025 }
2026
2027 /* Need to add queue to this CPU's existing map */
2028 if (map) {
2029 if (pos < map->alloc_len)
2030 return map;
2031
2032 alloc_len = map->alloc_len * 2;
2033 }
2034
2035 /* Need to allocate new map to store queue on this CPU's map */
2036 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2037 cpu_to_node(cpu));
2038 if (!new_map)
2039 return NULL;
2040
2041 for (i = 0; i < pos; i++)
2042 new_map->queues[i] = map->queues[i];
2043 new_map->alloc_len = alloc_len;
2044 new_map->len = pos;
2045
2046 return new_map;
2047 }
2048
2049 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2050 u16 index)
2051 {
2052 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2053 struct xps_map *map, *new_map;
2054 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2055 int cpu, numa_node_id = -2;
2056 bool active = false;
2057
2058 mutex_lock(&xps_map_mutex);
2059
2060 dev_maps = xmap_dereference(dev->xps_maps);
2061
2062 /* allocate memory for queue storage */
2063 for_each_online_cpu(cpu) {
2064 if (!cpumask_test_cpu(cpu, mask))
2065 continue;
2066
2067 if (!new_dev_maps)
2068 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2069 if (!new_dev_maps) {
2070 mutex_unlock(&xps_map_mutex);
2071 return -ENOMEM;
2072 }
2073
2074 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2075 NULL;
2076
2077 map = expand_xps_map(map, cpu, index);
2078 if (!map)
2079 goto error;
2080
2081 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2082 }
2083
2084 if (!new_dev_maps)
2085 goto out_no_new_maps;
2086
2087 for_each_possible_cpu(cpu) {
2088 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2089 /* add queue to CPU maps */
2090 int pos = 0;
2091
2092 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2093 while ((pos < map->len) && (map->queues[pos] != index))
2094 pos++;
2095
2096 if (pos == map->len)
2097 map->queues[map->len++] = index;
2098 #ifdef CONFIG_NUMA
2099 if (numa_node_id == -2)
2100 numa_node_id = cpu_to_node(cpu);
2101 else if (numa_node_id != cpu_to_node(cpu))
2102 numa_node_id = -1;
2103 #endif
2104 } else if (dev_maps) {
2105 /* fill in the new device map from the old device map */
2106 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2107 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2108 }
2109
2110 }
2111
2112 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2113
2114 /* Cleanup old maps */
2115 if (dev_maps) {
2116 for_each_possible_cpu(cpu) {
2117 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2118 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2119 if (map && map != new_map)
2120 kfree_rcu(map, rcu);
2121 }
2122
2123 kfree_rcu(dev_maps, rcu);
2124 }
2125
2126 dev_maps = new_dev_maps;
2127 active = true;
2128
2129 out_no_new_maps:
2130 /* update Tx queue numa node */
2131 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2132 (numa_node_id >= 0) ? numa_node_id :
2133 NUMA_NO_NODE);
2134
2135 if (!dev_maps)
2136 goto out_no_maps;
2137
2138 /* removes queue from unused CPUs */
2139 for_each_possible_cpu(cpu) {
2140 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2141 continue;
2142
2143 if (remove_xps_queue(dev_maps, cpu, index))
2144 active = true;
2145 }
2146
2147 /* free map if not active */
2148 if (!active) {
2149 RCU_INIT_POINTER(dev->xps_maps, NULL);
2150 kfree_rcu(dev_maps, rcu);
2151 }
2152
2153 out_no_maps:
2154 mutex_unlock(&xps_map_mutex);
2155
2156 return 0;
2157 error:
2158 /* remove any maps that we added */
2159 for_each_possible_cpu(cpu) {
2160 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2161 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2162 NULL;
2163 if (new_map && new_map != map)
2164 kfree(new_map);
2165 }
2166
2167 mutex_unlock(&xps_map_mutex);
2168
2169 kfree(new_dev_maps);
2170 return -ENOMEM;
2171 }
2172 EXPORT_SYMBOL(netif_set_xps_queue);
2173
2174 #endif
2175 /*
2176 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2177 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2178 */
2179 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2180 {
2181 int rc;
2182
2183 if (txq < 1 || txq > dev->num_tx_queues)
2184 return -EINVAL;
2185
2186 if (dev->reg_state == NETREG_REGISTERED ||
2187 dev->reg_state == NETREG_UNREGISTERING) {
2188 ASSERT_RTNL();
2189
2190 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2191 txq);
2192 if (rc)
2193 return rc;
2194
2195 if (dev->num_tc)
2196 netif_setup_tc(dev, txq);
2197
2198 if (txq < dev->real_num_tx_queues) {
2199 qdisc_reset_all_tx_gt(dev, txq);
2200 #ifdef CONFIG_XPS
2201 netif_reset_xps_queues_gt(dev, txq);
2202 #endif
2203 }
2204 }
2205
2206 dev->real_num_tx_queues = txq;
2207 return 0;
2208 }
2209 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2210
2211 #ifdef CONFIG_SYSFS
2212 /**
2213 * netif_set_real_num_rx_queues - set actual number of RX queues used
2214 * @dev: Network device
2215 * @rxq: Actual number of RX queues
2216 *
2217 * This must be called either with the rtnl_lock held or before
2218 * registration of the net device. Returns 0 on success, or a
2219 * negative error code. If called before registration, it always
2220 * succeeds.
2221 */
2222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2223 {
2224 int rc;
2225
2226 if (rxq < 1 || rxq > dev->num_rx_queues)
2227 return -EINVAL;
2228
2229 if (dev->reg_state == NETREG_REGISTERED) {
2230 ASSERT_RTNL();
2231
2232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2233 rxq);
2234 if (rc)
2235 return rc;
2236 }
2237
2238 dev->real_num_rx_queues = rxq;
2239 return 0;
2240 }
2241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2242 #endif
2243
2244 /**
2245 * netif_get_num_default_rss_queues - default number of RSS queues
2246 *
2247 * This routine should set an upper limit on the number of RSS queues
2248 * used by default by multiqueue devices.
2249 */
2250 int netif_get_num_default_rss_queues(void)
2251 {
2252 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2253 }
2254 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2255
2256 static inline void __netif_reschedule(struct Qdisc *q)
2257 {
2258 struct softnet_data *sd;
2259 unsigned long flags;
2260
2261 local_irq_save(flags);
2262 sd = this_cpu_ptr(&softnet_data);
2263 q->next_sched = NULL;
2264 *sd->output_queue_tailp = q;
2265 sd->output_queue_tailp = &q->next_sched;
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
2268 }
2269
2270 void __netif_schedule(struct Qdisc *q)
2271 {
2272 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2273 __netif_reschedule(q);
2274 }
2275 EXPORT_SYMBOL(__netif_schedule);
2276
2277 struct dev_kfree_skb_cb {
2278 enum skb_free_reason reason;
2279 };
2280
2281 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2282 {
2283 return (struct dev_kfree_skb_cb *)skb->cb;
2284 }
2285
2286 void netif_schedule_queue(struct netdev_queue *txq)
2287 {
2288 rcu_read_lock();
2289 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2290 struct Qdisc *q = rcu_dereference(txq->qdisc);
2291
2292 __netif_schedule(q);
2293 }
2294 rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL(netif_schedule_queue);
2297
2298 /**
2299 * netif_wake_subqueue - allow sending packets on subqueue
2300 * @dev: network device
2301 * @queue_index: sub queue index
2302 *
2303 * Resume individual transmit queue of a device with multiple transmit queues.
2304 */
2305 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2306 {
2307 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2308
2309 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2310 struct Qdisc *q;
2311
2312 rcu_read_lock();
2313 q = rcu_dereference(txq->qdisc);
2314 __netif_schedule(q);
2315 rcu_read_unlock();
2316 }
2317 }
2318 EXPORT_SYMBOL(netif_wake_subqueue);
2319
2320 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2321 {
2322 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2323 struct Qdisc *q;
2324
2325 rcu_read_lock();
2326 q = rcu_dereference(dev_queue->qdisc);
2327 __netif_schedule(q);
2328 rcu_read_unlock();
2329 }
2330 }
2331 EXPORT_SYMBOL(netif_tx_wake_queue);
2332
2333 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 unsigned long flags;
2336
2337 if (likely(atomic_read(&skb->users) == 1)) {
2338 smp_rmb();
2339 atomic_set(&skb->users, 0);
2340 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2341 return;
2342 }
2343 get_kfree_skb_cb(skb)->reason = reason;
2344 local_irq_save(flags);
2345 skb->next = __this_cpu_read(softnet_data.completion_queue);
2346 __this_cpu_write(softnet_data.completion_queue, skb);
2347 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2348 local_irq_restore(flags);
2349 }
2350 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2351
2352 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2353 {
2354 if (in_irq() || irqs_disabled())
2355 __dev_kfree_skb_irq(skb, reason);
2356 else
2357 dev_kfree_skb(skb);
2358 }
2359 EXPORT_SYMBOL(__dev_kfree_skb_any);
2360
2361
2362 /**
2363 * netif_device_detach - mark device as removed
2364 * @dev: network device
2365 *
2366 * Mark device as removed from system and therefore no longer available.
2367 */
2368 void netif_device_detach(struct net_device *dev)
2369 {
2370 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2371 netif_running(dev)) {
2372 netif_tx_stop_all_queues(dev);
2373 }
2374 }
2375 EXPORT_SYMBOL(netif_device_detach);
2376
2377 /**
2378 * netif_device_attach - mark device as attached
2379 * @dev: network device
2380 *
2381 * Mark device as attached from system and restart if needed.
2382 */
2383 void netif_device_attach(struct net_device *dev)
2384 {
2385 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2386 netif_running(dev)) {
2387 netif_tx_wake_all_queues(dev);
2388 __netdev_watchdog_up(dev);
2389 }
2390 }
2391 EXPORT_SYMBOL(netif_device_attach);
2392
2393 /*
2394 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2395 * to be used as a distribution range.
2396 */
2397 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2398 unsigned int num_tx_queues)
2399 {
2400 u32 hash;
2401 u16 qoffset = 0;
2402 u16 qcount = num_tx_queues;
2403
2404 if (skb_rx_queue_recorded(skb)) {
2405 hash = skb_get_rx_queue(skb);
2406 while (unlikely(hash >= num_tx_queues))
2407 hash -= num_tx_queues;
2408 return hash;
2409 }
2410
2411 if (dev->num_tc) {
2412 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2413 qoffset = dev->tc_to_txq[tc].offset;
2414 qcount = dev->tc_to_txq[tc].count;
2415 }
2416
2417 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2418 }
2419 EXPORT_SYMBOL(__skb_tx_hash);
2420
2421 static void skb_warn_bad_offload(const struct sk_buff *skb)
2422 {
2423 static const netdev_features_t null_features = 0;
2424 struct net_device *dev = skb->dev;
2425 const char *name = "";
2426
2427 if (!net_ratelimit())
2428 return;
2429
2430 if (dev) {
2431 if (dev->dev.parent)
2432 name = dev_driver_string(dev->dev.parent);
2433 else
2434 name = netdev_name(dev);
2435 }
2436 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2437 "gso_type=%d ip_summed=%d\n",
2438 name, dev ? &dev->features : &null_features,
2439 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2440 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2441 skb_shinfo(skb)->gso_type, skb->ip_summed);
2442 }
2443
2444 /*
2445 * Invalidate hardware checksum when packet is to be mangled, and
2446 * complete checksum manually on outgoing path.
2447 */
2448 int skb_checksum_help(struct sk_buff *skb)
2449 {
2450 __wsum csum;
2451 int ret = 0, offset;
2452
2453 if (skb->ip_summed == CHECKSUM_COMPLETE)
2454 goto out_set_summed;
2455
2456 if (unlikely(skb_shinfo(skb)->gso_size)) {
2457 skb_warn_bad_offload(skb);
2458 return -EINVAL;
2459 }
2460
2461 /* Before computing a checksum, we should make sure no frag could
2462 * be modified by an external entity : checksum could be wrong.
2463 */
2464 if (skb_has_shared_frag(skb)) {
2465 ret = __skb_linearize(skb);
2466 if (ret)
2467 goto out;
2468 }
2469
2470 offset = skb_checksum_start_offset(skb);
2471 BUG_ON(offset >= skb_headlen(skb));
2472 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2473
2474 offset += skb->csum_offset;
2475 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2476
2477 if (skb_cloned(skb) &&
2478 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2479 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2480 if (ret)
2481 goto out;
2482 }
2483
2484 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2485 out_set_summed:
2486 skb->ip_summed = CHECKSUM_NONE;
2487 out:
2488 return ret;
2489 }
2490 EXPORT_SYMBOL(skb_checksum_help);
2491
2492 /* skb_csum_offload_check - Driver helper function to determine if a device
2493 * with limited checksum offload capabilities is able to offload the checksum
2494 * for a given packet.
2495 *
2496 * Arguments:
2497 * skb - sk_buff for the packet in question
2498 * spec - contains the description of what device can offload
2499 * csum_encapped - returns true if the checksum being offloaded is
2500 * encpasulated. That is it is checksum for the transport header
2501 * in the inner headers.
2502 * checksum_help - when set indicates that helper function should
2503 * call skb_checksum_help if offload checks fail
2504 *
2505 * Returns:
2506 * true: Packet has passed the checksum checks and should be offloadable to
2507 * the device (a driver may still need to check for additional
2508 * restrictions of its device)
2509 * false: Checksum is not offloadable. If checksum_help was set then
2510 * skb_checksum_help was called to resolve checksum for non-GSO
2511 * packets and when IP protocol is not SCTP
2512 */
2513 bool __skb_csum_offload_chk(struct sk_buff *skb,
2514 const struct skb_csum_offl_spec *spec,
2515 bool *csum_encapped,
2516 bool csum_help)
2517 {
2518 struct iphdr *iph;
2519 struct ipv6hdr *ipv6;
2520 void *nhdr;
2521 int protocol;
2522 u8 ip_proto;
2523
2524 if (skb->protocol == htons(ETH_P_8021Q) ||
2525 skb->protocol == htons(ETH_P_8021AD)) {
2526 if (!spec->vlan_okay)
2527 goto need_help;
2528 }
2529
2530 /* We check whether the checksum refers to a transport layer checksum in
2531 * the outermost header or an encapsulated transport layer checksum that
2532 * corresponds to the inner headers of the skb. If the checksum is for
2533 * something else in the packet we need help.
2534 */
2535 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2536 /* Non-encapsulated checksum */
2537 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2538 nhdr = skb_network_header(skb);
2539 *csum_encapped = false;
2540 if (spec->no_not_encapped)
2541 goto need_help;
2542 } else if (skb->encapsulation && spec->encap_okay &&
2543 skb_checksum_start_offset(skb) ==
2544 skb_inner_transport_offset(skb)) {
2545 /* Encapsulated checksum */
2546 *csum_encapped = true;
2547 switch (skb->inner_protocol_type) {
2548 case ENCAP_TYPE_ETHER:
2549 protocol = eproto_to_ipproto(skb->inner_protocol);
2550 break;
2551 case ENCAP_TYPE_IPPROTO:
2552 protocol = skb->inner_protocol;
2553 break;
2554 }
2555 nhdr = skb_inner_network_header(skb);
2556 } else {
2557 goto need_help;
2558 }
2559
2560 switch (protocol) {
2561 case IPPROTO_IP:
2562 if (!spec->ipv4_okay)
2563 goto need_help;
2564 iph = nhdr;
2565 ip_proto = iph->protocol;
2566 if (iph->ihl != 5 && !spec->ip_options_okay)
2567 goto need_help;
2568 break;
2569 case IPPROTO_IPV6:
2570 if (!spec->ipv6_okay)
2571 goto need_help;
2572 if (spec->no_encapped_ipv6 && *csum_encapped)
2573 goto need_help;
2574 ipv6 = nhdr;
2575 nhdr += sizeof(*ipv6);
2576 ip_proto = ipv6->nexthdr;
2577 break;
2578 default:
2579 goto need_help;
2580 }
2581
2582 ip_proto_again:
2583 switch (ip_proto) {
2584 case IPPROTO_TCP:
2585 if (!spec->tcp_okay ||
2586 skb->csum_offset != offsetof(struct tcphdr, check))
2587 goto need_help;
2588 break;
2589 case IPPROTO_UDP:
2590 if (!spec->udp_okay ||
2591 skb->csum_offset != offsetof(struct udphdr, check))
2592 goto need_help;
2593 break;
2594 case IPPROTO_SCTP:
2595 if (!spec->sctp_okay ||
2596 skb->csum_offset != offsetof(struct sctphdr, checksum))
2597 goto cant_help;
2598 break;
2599 case NEXTHDR_HOP:
2600 case NEXTHDR_ROUTING:
2601 case NEXTHDR_DEST: {
2602 u8 *opthdr = nhdr;
2603
2604 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2605 goto need_help;
2606
2607 ip_proto = opthdr[0];
2608 nhdr += (opthdr[1] + 1) << 3;
2609
2610 goto ip_proto_again;
2611 }
2612 default:
2613 goto need_help;
2614 }
2615
2616 /* Passed the tests for offloading checksum */
2617 return true;
2618
2619 need_help:
2620 if (csum_help && !skb_shinfo(skb)->gso_size)
2621 skb_checksum_help(skb);
2622 cant_help:
2623 return false;
2624 }
2625 EXPORT_SYMBOL(__skb_csum_offload_chk);
2626
2627 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2628 {
2629 __be16 type = skb->protocol;
2630
2631 /* Tunnel gso handlers can set protocol to ethernet. */
2632 if (type == htons(ETH_P_TEB)) {
2633 struct ethhdr *eth;
2634
2635 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2636 return 0;
2637
2638 eth = (struct ethhdr *)skb_mac_header(skb);
2639 type = eth->h_proto;
2640 }
2641
2642 return __vlan_get_protocol(skb, type, depth);
2643 }
2644
2645 /**
2646 * skb_mac_gso_segment - mac layer segmentation handler.
2647 * @skb: buffer to segment
2648 * @features: features for the output path (see dev->features)
2649 */
2650 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2651 netdev_features_t features)
2652 {
2653 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2654 struct packet_offload *ptype;
2655 int vlan_depth = skb->mac_len;
2656 __be16 type = skb_network_protocol(skb, &vlan_depth);
2657
2658 if (unlikely(!type))
2659 return ERR_PTR(-EINVAL);
2660
2661 __skb_pull(skb, vlan_depth);
2662
2663 rcu_read_lock();
2664 list_for_each_entry_rcu(ptype, &offload_base, list) {
2665 if (ptype->type == type && ptype->callbacks.gso_segment) {
2666 segs = ptype->callbacks.gso_segment(skb, features);
2667 break;
2668 }
2669 }
2670 rcu_read_unlock();
2671
2672 __skb_push(skb, skb->data - skb_mac_header(skb));
2673
2674 return segs;
2675 }
2676 EXPORT_SYMBOL(skb_mac_gso_segment);
2677
2678
2679 /* openvswitch calls this on rx path, so we need a different check.
2680 */
2681 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2682 {
2683 if (tx_path)
2684 return skb->ip_summed != CHECKSUM_PARTIAL;
2685 else
2686 return skb->ip_summed == CHECKSUM_NONE;
2687 }
2688
2689 /**
2690 * __skb_gso_segment - Perform segmentation on skb.
2691 * @skb: buffer to segment
2692 * @features: features for the output path (see dev->features)
2693 * @tx_path: whether it is called in TX path
2694 *
2695 * This function segments the given skb and returns a list of segments.
2696 *
2697 * It may return NULL if the skb requires no segmentation. This is
2698 * only possible when GSO is used for verifying header integrity.
2699 *
2700 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2701 */
2702 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2703 netdev_features_t features, bool tx_path)
2704 {
2705 if (unlikely(skb_needs_check(skb, tx_path))) {
2706 int err;
2707
2708 skb_warn_bad_offload(skb);
2709
2710 err = skb_cow_head(skb, 0);
2711 if (err < 0)
2712 return ERR_PTR(err);
2713 }
2714
2715 /* Only report GSO partial support if it will enable us to
2716 * support segmentation on this frame without needing additional
2717 * work.
2718 */
2719 if (features & NETIF_F_GSO_PARTIAL) {
2720 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2721 struct net_device *dev = skb->dev;
2722
2723 partial_features |= dev->features & dev->gso_partial_features;
2724 if (!skb_gso_ok(skb, features | partial_features))
2725 features &= ~NETIF_F_GSO_PARTIAL;
2726 }
2727
2728 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2729 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2730
2731 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2732 SKB_GSO_CB(skb)->encap_level = 0;
2733
2734 skb_reset_mac_header(skb);
2735 skb_reset_mac_len(skb);
2736
2737 return skb_mac_gso_segment(skb, features);
2738 }
2739 EXPORT_SYMBOL(__skb_gso_segment);
2740
2741 /* Take action when hardware reception checksum errors are detected. */
2742 #ifdef CONFIG_BUG
2743 void netdev_rx_csum_fault(struct net_device *dev)
2744 {
2745 if (net_ratelimit()) {
2746 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2747 dump_stack();
2748 }
2749 }
2750 EXPORT_SYMBOL(netdev_rx_csum_fault);
2751 #endif
2752
2753 /* Actually, we should eliminate this check as soon as we know, that:
2754 * 1. IOMMU is present and allows to map all the memory.
2755 * 2. No high memory really exists on this machine.
2756 */
2757
2758 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2759 {
2760 #ifdef CONFIG_HIGHMEM
2761 int i;
2762 if (!(dev->features & NETIF_F_HIGHDMA)) {
2763 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2764 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2765 if (PageHighMem(skb_frag_page(frag)))
2766 return 1;
2767 }
2768 }
2769
2770 if (PCI_DMA_BUS_IS_PHYS) {
2771 struct device *pdev = dev->dev.parent;
2772
2773 if (!pdev)
2774 return 0;
2775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2777 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2778 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2779 return 1;
2780 }
2781 }
2782 #endif
2783 return 0;
2784 }
2785
2786 /* If MPLS offload request, verify we are testing hardware MPLS features
2787 * instead of standard features for the netdev.
2788 */
2789 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2790 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2791 netdev_features_t features,
2792 __be16 type)
2793 {
2794 if (eth_p_mpls(type))
2795 features &= skb->dev->mpls_features;
2796
2797 return features;
2798 }
2799 #else
2800 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2801 netdev_features_t features,
2802 __be16 type)
2803 {
2804 return features;
2805 }
2806 #endif
2807
2808 static netdev_features_t harmonize_features(struct sk_buff *skb,
2809 netdev_features_t features)
2810 {
2811 int tmp;
2812 __be16 type;
2813
2814 type = skb_network_protocol(skb, &tmp);
2815 features = net_mpls_features(skb, features, type);
2816
2817 if (skb->ip_summed != CHECKSUM_NONE &&
2818 !can_checksum_protocol(features, type)) {
2819 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2820 } else if (illegal_highdma(skb->dev, skb)) {
2821 features &= ~NETIF_F_SG;
2822 }
2823
2824 return features;
2825 }
2826
2827 netdev_features_t passthru_features_check(struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830 {
2831 return features;
2832 }
2833 EXPORT_SYMBOL(passthru_features_check);
2834
2835 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2836 struct net_device *dev,
2837 netdev_features_t features)
2838 {
2839 return vlan_features_check(skb, features);
2840 }
2841
2842 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2843 struct net_device *dev,
2844 netdev_features_t features)
2845 {
2846 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2847
2848 if (gso_segs > dev->gso_max_segs)
2849 return features & ~NETIF_F_GSO_MASK;
2850
2851 /* Support for GSO partial features requires software
2852 * intervention before we can actually process the packets
2853 * so we need to strip support for any partial features now
2854 * and we can pull them back in after we have partially
2855 * segmented the frame.
2856 */
2857 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2858 features &= ~dev->gso_partial_features;
2859
2860 /* Make sure to clear the IPv4 ID mangling feature if the
2861 * IPv4 header has the potential to be fragmented.
2862 */
2863 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2864 struct iphdr *iph = skb->encapsulation ?
2865 inner_ip_hdr(skb) : ip_hdr(skb);
2866
2867 if (!(iph->frag_off & htons(IP_DF)))
2868 features &= ~NETIF_F_TSO_MANGLEID;
2869 }
2870
2871 return features;
2872 }
2873
2874 netdev_features_t netif_skb_features(struct sk_buff *skb)
2875 {
2876 struct net_device *dev = skb->dev;
2877 netdev_features_t features = dev->features;
2878
2879 if (skb_is_gso(skb))
2880 features = gso_features_check(skb, dev, features);
2881
2882 /* If encapsulation offload request, verify we are testing
2883 * hardware encapsulation features instead of standard
2884 * features for the netdev
2885 */
2886 if (skb->encapsulation)
2887 features &= dev->hw_enc_features;
2888
2889 if (skb_vlan_tagged(skb))
2890 features = netdev_intersect_features(features,
2891 dev->vlan_features |
2892 NETIF_F_HW_VLAN_CTAG_TX |
2893 NETIF_F_HW_VLAN_STAG_TX);
2894
2895 if (dev->netdev_ops->ndo_features_check)
2896 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2897 features);
2898 else
2899 features &= dflt_features_check(skb, dev, features);
2900
2901 return harmonize_features(skb, features);
2902 }
2903 EXPORT_SYMBOL(netif_skb_features);
2904
2905 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2906 struct netdev_queue *txq, bool more)
2907 {
2908 unsigned int len;
2909 int rc;
2910
2911 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2912 dev_queue_xmit_nit(skb, dev);
2913
2914 len = skb->len;
2915 trace_net_dev_start_xmit(skb, dev);
2916 rc = netdev_start_xmit(skb, dev, txq, more);
2917 trace_net_dev_xmit(skb, rc, dev, len);
2918
2919 return rc;
2920 }
2921
2922 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2923 struct netdev_queue *txq, int *ret)
2924 {
2925 struct sk_buff *skb = first;
2926 int rc = NETDEV_TX_OK;
2927
2928 while (skb) {
2929 struct sk_buff *next = skb->next;
2930
2931 skb->next = NULL;
2932 rc = xmit_one(skb, dev, txq, next != NULL);
2933 if (unlikely(!dev_xmit_complete(rc))) {
2934 skb->next = next;
2935 goto out;
2936 }
2937
2938 skb = next;
2939 if (netif_xmit_stopped(txq) && skb) {
2940 rc = NETDEV_TX_BUSY;
2941 break;
2942 }
2943 }
2944
2945 out:
2946 *ret = rc;
2947 return skb;
2948 }
2949
2950 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2951 netdev_features_t features)
2952 {
2953 if (skb_vlan_tag_present(skb) &&
2954 !vlan_hw_offload_capable(features, skb->vlan_proto))
2955 skb = __vlan_hwaccel_push_inside(skb);
2956 return skb;
2957 }
2958
2959 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2960 {
2961 netdev_features_t features;
2962
2963 features = netif_skb_features(skb);
2964 skb = validate_xmit_vlan(skb, features);
2965 if (unlikely(!skb))
2966 goto out_null;
2967
2968 if (netif_needs_gso(skb, features)) {
2969 struct sk_buff *segs;
2970
2971 segs = skb_gso_segment(skb, features);
2972 if (IS_ERR(segs)) {
2973 goto out_kfree_skb;
2974 } else if (segs) {
2975 consume_skb(skb);
2976 skb = segs;
2977 }
2978 } else {
2979 if (skb_needs_linearize(skb, features) &&
2980 __skb_linearize(skb))
2981 goto out_kfree_skb;
2982
2983 /* If packet is not checksummed and device does not
2984 * support checksumming for this protocol, complete
2985 * checksumming here.
2986 */
2987 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988 if (skb->encapsulation)
2989 skb_set_inner_transport_header(skb,
2990 skb_checksum_start_offset(skb));
2991 else
2992 skb_set_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 if (!(features & NETIF_F_CSUM_MASK) &&
2995 skb_checksum_help(skb))
2996 goto out_kfree_skb;
2997 }
2998 }
2999
3000 return skb;
3001
3002 out_kfree_skb:
3003 kfree_skb(skb);
3004 out_null:
3005 atomic_long_inc(&dev->tx_dropped);
3006 return NULL;
3007 }
3008
3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010 {
3011 struct sk_buff *next, *head = NULL, *tail;
3012
3013 for (; skb != NULL; skb = next) {
3014 next = skb->next;
3015 skb->next = NULL;
3016
3017 /* in case skb wont be segmented, point to itself */
3018 skb->prev = skb;
3019
3020 skb = validate_xmit_skb(skb, dev);
3021 if (!skb)
3022 continue;
3023
3024 if (!head)
3025 head = skb;
3026 else
3027 tail->next = skb;
3028 /* If skb was segmented, skb->prev points to
3029 * the last segment. If not, it still contains skb.
3030 */
3031 tail = skb->prev;
3032 }
3033 return head;
3034 }
3035
3036 static void qdisc_pkt_len_init(struct sk_buff *skb)
3037 {
3038 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3039
3040 qdisc_skb_cb(skb)->pkt_len = skb->len;
3041
3042 /* To get more precise estimation of bytes sent on wire,
3043 * we add to pkt_len the headers size of all segments
3044 */
3045 if (shinfo->gso_size) {
3046 unsigned int hdr_len;
3047 u16 gso_segs = shinfo->gso_segs;
3048
3049 /* mac layer + network layer */
3050 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3051
3052 /* + transport layer */
3053 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3054 hdr_len += tcp_hdrlen(skb);
3055 else
3056 hdr_len += sizeof(struct udphdr);
3057
3058 if (shinfo->gso_type & SKB_GSO_DODGY)
3059 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3060 shinfo->gso_size);
3061
3062 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3063 }
3064 }
3065
3066 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3067 struct net_device *dev,
3068 struct netdev_queue *txq)
3069 {
3070 spinlock_t *root_lock = qdisc_lock(q);
3071 bool contended;
3072 int rc;
3073
3074 qdisc_calculate_pkt_len(skb, q);
3075 /*
3076 * Heuristic to force contended enqueues to serialize on a
3077 * separate lock before trying to get qdisc main lock.
3078 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3079 * often and dequeue packets faster.
3080 */
3081 contended = qdisc_is_running(q);
3082 if (unlikely(contended))
3083 spin_lock(&q->busylock);
3084
3085 spin_lock(root_lock);
3086 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3087 kfree_skb(skb);
3088 rc = NET_XMIT_DROP;
3089 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3090 qdisc_run_begin(q)) {
3091 /*
3092 * This is a work-conserving queue; there are no old skbs
3093 * waiting to be sent out; and the qdisc is not running -
3094 * xmit the skb directly.
3095 */
3096
3097 qdisc_bstats_update(q, skb);
3098
3099 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3100 if (unlikely(contended)) {
3101 spin_unlock(&q->busylock);
3102 contended = false;
3103 }
3104 __qdisc_run(q);
3105 } else
3106 qdisc_run_end(q);
3107
3108 rc = NET_XMIT_SUCCESS;
3109 } else {
3110 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3111 if (qdisc_run_begin(q)) {
3112 if (unlikely(contended)) {
3113 spin_unlock(&q->busylock);
3114 contended = false;
3115 }
3116 __qdisc_run(q);
3117 }
3118 }
3119 spin_unlock(root_lock);
3120 if (unlikely(contended))
3121 spin_unlock(&q->busylock);
3122 return rc;
3123 }
3124
3125 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3126 static void skb_update_prio(struct sk_buff *skb)
3127 {
3128 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3129
3130 if (!skb->priority && skb->sk && map) {
3131 unsigned int prioidx =
3132 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3133
3134 if (prioidx < map->priomap_len)
3135 skb->priority = map->priomap[prioidx];
3136 }
3137 }
3138 #else
3139 #define skb_update_prio(skb)
3140 #endif
3141
3142 DEFINE_PER_CPU(int, xmit_recursion);
3143 EXPORT_SYMBOL(xmit_recursion);
3144
3145 #define RECURSION_LIMIT 10
3146
3147 /**
3148 * dev_loopback_xmit - loop back @skb
3149 * @net: network namespace this loopback is happening in
3150 * @sk: sk needed to be a netfilter okfn
3151 * @skb: buffer to transmit
3152 */
3153 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3154 {
3155 skb_reset_mac_header(skb);
3156 __skb_pull(skb, skb_network_offset(skb));
3157 skb->pkt_type = PACKET_LOOPBACK;
3158 skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 WARN_ON(!skb_dst(skb));
3160 skb_dst_force(skb);
3161 netif_rx_ni(skb);
3162 return 0;
3163 }
3164 EXPORT_SYMBOL(dev_loopback_xmit);
3165
3166 #ifdef CONFIG_NET_EGRESS
3167 static struct sk_buff *
3168 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169 {
3170 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 struct tcf_result cl_res;
3172
3173 if (!cl)
3174 return skb;
3175
3176 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 * earlier by the caller.
3178 */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3180
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3182 case TC_ACT_OK:
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3185 break;
3186 case TC_ACT_SHOT:
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
3189 kfree_skb(skb);
3190 return NULL;
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
3194 consume_skb(skb);
3195 return NULL;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3200 return NULL;
3201 default:
3202 break;
3203 }
3204
3205 return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3215
3216 rcu_read_lock();
3217 dev_maps = rcu_dereference(dev->xps_maps);
3218 if (dev_maps) {
3219 map = rcu_dereference(
3220 dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 if (map) {
3222 if (map->len == 1)
3223 queue_index = map->queues[0];
3224 else
3225 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 map->len)];
3227 if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 queue_index = -1;
3229 }
3230 }
3231 rcu_read_unlock();
3232
3233 return queue_index;
3234 #else
3235 return -1;
3236 #endif
3237 }
3238
3239 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240 {
3241 struct sock *sk = skb->sk;
3242 int queue_index = sk_tx_queue_get(sk);
3243
3244 if (queue_index < 0 || skb->ooo_okay ||
3245 queue_index >= dev->real_num_tx_queues) {
3246 int new_index = get_xps_queue(dev, skb);
3247 if (new_index < 0)
3248 new_index = skb_tx_hash(dev, skb);
3249
3250 if (queue_index != new_index && sk &&
3251 sk_fullsock(sk) &&
3252 rcu_access_pointer(sk->sk_dst_cache))
3253 sk_tx_queue_set(sk, new_index);
3254
3255 queue_index = new_index;
3256 }
3257
3258 return queue_index;
3259 }
3260
3261 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 struct sk_buff *skb,
3263 void *accel_priv)
3264 {
3265 int queue_index = 0;
3266
3267 #ifdef CONFIG_XPS
3268 u32 sender_cpu = skb->sender_cpu - 1;
3269
3270 if (sender_cpu >= (u32)NR_CPUS)
3271 skb->sender_cpu = raw_smp_processor_id() + 1;
3272 #endif
3273
3274 if (dev->real_num_tx_queues != 1) {
3275 const struct net_device_ops *ops = dev->netdev_ops;
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288 }
3289
3290 /**
3291 * __dev_queue_xmit - transmit a buffer
3292 * @skb: buffer to transmit
3293 * @accel_priv: private data used for L2 forwarding offload
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318 struct net_device *dev = skb->dev;
3319 struct netdev_queue *txq;
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
3323 skb_reset_mac_header(skb);
3324
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
3330 */
3331 rcu_read_lock_bh();
3332
3333 skb_update_prio(skb);
3334
3335 qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338 # ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344 # endif
3345 #endif
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
3354 #ifdef CONFIG_NET_SWITCHDEV
3355 /* Don't forward if offload device already forwarded */
3356 if (skb->offload_fwd_mark &&
3357 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3358 consume_skb(skb);
3359 rc = NET_XMIT_SUCCESS;
3360 goto out;
3361 }
3362 #endif
3363
3364 txq = netdev_pick_tx(dev, skb, accel_priv);
3365 q = rcu_dereference_bh(txq->qdisc);
3366
3367 trace_net_dev_queue(skb);
3368 if (q->enqueue) {
3369 rc = __dev_xmit_skb(skb, q, dev, txq);
3370 goto out;
3371 }
3372
3373 /* The device has no queue. Common case for software devices:
3374 loopback, all the sorts of tunnels...
3375
3376 Really, it is unlikely that netif_tx_lock protection is necessary
3377 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3378 counters.)
3379 However, it is possible, that they rely on protection
3380 made by us here.
3381
3382 Check this and shot the lock. It is not prone from deadlocks.
3383 Either shot noqueue qdisc, it is even simpler 8)
3384 */
3385 if (dev->flags & IFF_UP) {
3386 int cpu = smp_processor_id(); /* ok because BHs are off */
3387
3388 if (txq->xmit_lock_owner != cpu) {
3389
3390 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3391 goto recursion_alert;
3392
3393 skb = validate_xmit_skb(skb, dev);
3394 if (!skb)
3395 goto out;
3396
3397 HARD_TX_LOCK(dev, txq, cpu);
3398
3399 if (!netif_xmit_stopped(txq)) {
3400 __this_cpu_inc(xmit_recursion);
3401 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3402 __this_cpu_dec(xmit_recursion);
3403 if (dev_xmit_complete(rc)) {
3404 HARD_TX_UNLOCK(dev, txq);
3405 goto out;
3406 }
3407 }
3408 HARD_TX_UNLOCK(dev, txq);
3409 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3410 dev->name);
3411 } else {
3412 /* Recursion is detected! It is possible,
3413 * unfortunately
3414 */
3415 recursion_alert:
3416 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3417 dev->name);
3418 }
3419 }
3420
3421 rc = -ENETDOWN;
3422 rcu_read_unlock_bh();
3423
3424 atomic_long_inc(&dev->tx_dropped);
3425 kfree_skb_list(skb);
3426 return rc;
3427 out:
3428 rcu_read_unlock_bh();
3429 return rc;
3430 }
3431
3432 int dev_queue_xmit(struct sk_buff *skb)
3433 {
3434 return __dev_queue_xmit(skb, NULL);
3435 }
3436 EXPORT_SYMBOL(dev_queue_xmit);
3437
3438 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3439 {
3440 return __dev_queue_xmit(skb, accel_priv);
3441 }
3442 EXPORT_SYMBOL(dev_queue_xmit_accel);
3443
3444
3445 /*=======================================================================
3446 Receiver routines
3447 =======================================================================*/
3448
3449 int netdev_max_backlog __read_mostly = 1000;
3450 EXPORT_SYMBOL(netdev_max_backlog);
3451
3452 int netdev_tstamp_prequeue __read_mostly = 1;
3453 int netdev_budget __read_mostly = 300;
3454 int weight_p __read_mostly = 64; /* old backlog weight */
3455
3456 /* Called with irq disabled */
3457 static inline void ____napi_schedule(struct softnet_data *sd,
3458 struct napi_struct *napi)
3459 {
3460 list_add_tail(&napi->poll_list, &sd->poll_list);
3461 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3462 }
3463
3464 #ifdef CONFIG_RPS
3465
3466 /* One global table that all flow-based protocols share. */
3467 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3468 EXPORT_SYMBOL(rps_sock_flow_table);
3469 u32 rps_cpu_mask __read_mostly;
3470 EXPORT_SYMBOL(rps_cpu_mask);
3471
3472 struct static_key rps_needed __read_mostly;
3473 EXPORT_SYMBOL(rps_needed);
3474
3475 static struct rps_dev_flow *
3476 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3477 struct rps_dev_flow *rflow, u16 next_cpu)
3478 {
3479 if (next_cpu < nr_cpu_ids) {
3480 #ifdef CONFIG_RFS_ACCEL
3481 struct netdev_rx_queue *rxqueue;
3482 struct rps_dev_flow_table *flow_table;
3483 struct rps_dev_flow *old_rflow;
3484 u32 flow_id;
3485 u16 rxq_index;
3486 int rc;
3487
3488 /* Should we steer this flow to a different hardware queue? */
3489 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3490 !(dev->features & NETIF_F_NTUPLE))
3491 goto out;
3492 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3493 if (rxq_index == skb_get_rx_queue(skb))
3494 goto out;
3495
3496 rxqueue = dev->_rx + rxq_index;
3497 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3498 if (!flow_table)
3499 goto out;
3500 flow_id = skb_get_hash(skb) & flow_table->mask;
3501 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3502 rxq_index, flow_id);
3503 if (rc < 0)
3504 goto out;
3505 old_rflow = rflow;
3506 rflow = &flow_table->flows[flow_id];
3507 rflow->filter = rc;
3508 if (old_rflow->filter == rflow->filter)
3509 old_rflow->filter = RPS_NO_FILTER;
3510 out:
3511 #endif
3512 rflow->last_qtail =
3513 per_cpu(softnet_data, next_cpu).input_queue_head;
3514 }
3515
3516 rflow->cpu = next_cpu;
3517 return rflow;
3518 }
3519
3520 /*
3521 * get_rps_cpu is called from netif_receive_skb and returns the target
3522 * CPU from the RPS map of the receiving queue for a given skb.
3523 * rcu_read_lock must be held on entry.
3524 */
3525 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3526 struct rps_dev_flow **rflowp)
3527 {
3528 const struct rps_sock_flow_table *sock_flow_table;
3529 struct netdev_rx_queue *rxqueue = dev->_rx;
3530 struct rps_dev_flow_table *flow_table;
3531 struct rps_map *map;
3532 int cpu = -1;
3533 u32 tcpu;
3534 u32 hash;
3535
3536 if (skb_rx_queue_recorded(skb)) {
3537 u16 index = skb_get_rx_queue(skb);
3538
3539 if (unlikely(index >= dev->real_num_rx_queues)) {
3540 WARN_ONCE(dev->real_num_rx_queues > 1,
3541 "%s received packet on queue %u, but number "
3542 "of RX queues is %u\n",
3543 dev->name, index, dev->real_num_rx_queues);
3544 goto done;
3545 }
3546 rxqueue += index;
3547 }
3548
3549 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3550
3551 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3552 map = rcu_dereference(rxqueue->rps_map);
3553 if (!flow_table && !map)
3554 goto done;
3555
3556 skb_reset_network_header(skb);
3557 hash = skb_get_hash(skb);
3558 if (!hash)
3559 goto done;
3560
3561 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3562 if (flow_table && sock_flow_table) {
3563 struct rps_dev_flow *rflow;
3564 u32 next_cpu;
3565 u32 ident;
3566
3567 /* First check into global flow table if there is a match */
3568 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3569 if ((ident ^ hash) & ~rps_cpu_mask)
3570 goto try_rps;
3571
3572 next_cpu = ident & rps_cpu_mask;
3573
3574 /* OK, now we know there is a match,
3575 * we can look at the local (per receive queue) flow table
3576 */
3577 rflow = &flow_table->flows[hash & flow_table->mask];
3578 tcpu = rflow->cpu;
3579
3580 /*
3581 * If the desired CPU (where last recvmsg was done) is
3582 * different from current CPU (one in the rx-queue flow
3583 * table entry), switch if one of the following holds:
3584 * - Current CPU is unset (>= nr_cpu_ids).
3585 * - Current CPU is offline.
3586 * - The current CPU's queue tail has advanced beyond the
3587 * last packet that was enqueued using this table entry.
3588 * This guarantees that all previous packets for the flow
3589 * have been dequeued, thus preserving in order delivery.
3590 */
3591 if (unlikely(tcpu != next_cpu) &&
3592 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3593 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3594 rflow->last_qtail)) >= 0)) {
3595 tcpu = next_cpu;
3596 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3597 }
3598
3599 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3600 *rflowp = rflow;
3601 cpu = tcpu;
3602 goto done;
3603 }
3604 }
3605
3606 try_rps:
3607
3608 if (map) {
3609 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3610 if (cpu_online(tcpu)) {
3611 cpu = tcpu;
3612 goto done;
3613 }
3614 }
3615
3616 done:
3617 return cpu;
3618 }
3619
3620 #ifdef CONFIG_RFS_ACCEL
3621
3622 /**
3623 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3624 * @dev: Device on which the filter was set
3625 * @rxq_index: RX queue index
3626 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3627 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3628 *
3629 * Drivers that implement ndo_rx_flow_steer() should periodically call
3630 * this function for each installed filter and remove the filters for
3631 * which it returns %true.
3632 */
3633 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3634 u32 flow_id, u16 filter_id)
3635 {
3636 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3637 struct rps_dev_flow_table *flow_table;
3638 struct rps_dev_flow *rflow;
3639 bool expire = true;
3640 unsigned int cpu;
3641
3642 rcu_read_lock();
3643 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3644 if (flow_table && flow_id <= flow_table->mask) {
3645 rflow = &flow_table->flows[flow_id];
3646 cpu = ACCESS_ONCE(rflow->cpu);
3647 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3648 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3649 rflow->last_qtail) <
3650 (int)(10 * flow_table->mask)))
3651 expire = false;
3652 }
3653 rcu_read_unlock();
3654 return expire;
3655 }
3656 EXPORT_SYMBOL(rps_may_expire_flow);
3657
3658 #endif /* CONFIG_RFS_ACCEL */
3659
3660 /* Called from hardirq (IPI) context */
3661 static void rps_trigger_softirq(void *data)
3662 {
3663 struct softnet_data *sd = data;
3664
3665 ____napi_schedule(sd, &sd->backlog);
3666 sd->received_rps++;
3667 }
3668
3669 #endif /* CONFIG_RPS */
3670
3671 /*
3672 * Check if this softnet_data structure is another cpu one
3673 * If yes, queue it to our IPI list and return 1
3674 * If no, return 0
3675 */
3676 static int rps_ipi_queued(struct softnet_data *sd)
3677 {
3678 #ifdef CONFIG_RPS
3679 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3680
3681 if (sd != mysd) {
3682 sd->rps_ipi_next = mysd->rps_ipi_list;
3683 mysd->rps_ipi_list = sd;
3684
3685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3686 return 1;
3687 }
3688 #endif /* CONFIG_RPS */
3689 return 0;
3690 }
3691
3692 #ifdef CONFIG_NET_FLOW_LIMIT
3693 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3694 #endif
3695
3696 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3697 {
3698 #ifdef CONFIG_NET_FLOW_LIMIT
3699 struct sd_flow_limit *fl;
3700 struct softnet_data *sd;
3701 unsigned int old_flow, new_flow;
3702
3703 if (qlen < (netdev_max_backlog >> 1))
3704 return false;
3705
3706 sd = this_cpu_ptr(&softnet_data);
3707
3708 rcu_read_lock();
3709 fl = rcu_dereference(sd->flow_limit);
3710 if (fl) {
3711 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3712 old_flow = fl->history[fl->history_head];
3713 fl->history[fl->history_head] = new_flow;
3714
3715 fl->history_head++;
3716 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3717
3718 if (likely(fl->buckets[old_flow]))
3719 fl->buckets[old_flow]--;
3720
3721 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3722 fl->count++;
3723 rcu_read_unlock();
3724 return true;
3725 }
3726 }
3727 rcu_read_unlock();
3728 #endif
3729 return false;
3730 }
3731
3732 /*
3733 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3734 * queue (may be a remote CPU queue).
3735 */
3736 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3737 unsigned int *qtail)
3738 {
3739 struct softnet_data *sd;
3740 unsigned long flags;
3741 unsigned int qlen;
3742
3743 sd = &per_cpu(softnet_data, cpu);
3744
3745 local_irq_save(flags);
3746
3747 rps_lock(sd);
3748 if (!netif_running(skb->dev))
3749 goto drop;
3750 qlen = skb_queue_len(&sd->input_pkt_queue);
3751 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3752 if (qlen) {
3753 enqueue:
3754 __skb_queue_tail(&sd->input_pkt_queue, skb);
3755 input_queue_tail_incr_save(sd, qtail);
3756 rps_unlock(sd);
3757 local_irq_restore(flags);
3758 return NET_RX_SUCCESS;
3759 }
3760
3761 /* Schedule NAPI for backlog device
3762 * We can use non atomic operation since we own the queue lock
3763 */
3764 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3765 if (!rps_ipi_queued(sd))
3766 ____napi_schedule(sd, &sd->backlog);
3767 }
3768 goto enqueue;
3769 }
3770
3771 drop:
3772 sd->dropped++;
3773 rps_unlock(sd);
3774
3775 local_irq_restore(flags);
3776
3777 atomic_long_inc(&skb->dev->rx_dropped);
3778 kfree_skb(skb);
3779 return NET_RX_DROP;
3780 }
3781
3782 static int netif_rx_internal(struct sk_buff *skb)
3783 {
3784 int ret;
3785
3786 net_timestamp_check(netdev_tstamp_prequeue, skb);
3787
3788 trace_netif_rx(skb);
3789 #ifdef CONFIG_RPS
3790 if (static_key_false(&rps_needed)) {
3791 struct rps_dev_flow voidflow, *rflow = &voidflow;
3792 int cpu;
3793
3794 preempt_disable();
3795 rcu_read_lock();
3796
3797 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3798 if (cpu < 0)
3799 cpu = smp_processor_id();
3800
3801 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3802
3803 rcu_read_unlock();
3804 preempt_enable();
3805 } else
3806 #endif
3807 {
3808 unsigned int qtail;
3809 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3810 put_cpu();
3811 }
3812 return ret;
3813 }
3814
3815 /**
3816 * netif_rx - post buffer to the network code
3817 * @skb: buffer to post
3818 *
3819 * This function receives a packet from a device driver and queues it for
3820 * the upper (protocol) levels to process. It always succeeds. The buffer
3821 * may be dropped during processing for congestion control or by the
3822 * protocol layers.
3823 *
3824 * return values:
3825 * NET_RX_SUCCESS (no congestion)
3826 * NET_RX_DROP (packet was dropped)
3827 *
3828 */
3829
3830 int netif_rx(struct sk_buff *skb)
3831 {
3832 trace_netif_rx_entry(skb);
3833
3834 return netif_rx_internal(skb);
3835 }
3836 EXPORT_SYMBOL(netif_rx);
3837
3838 int netif_rx_ni(struct sk_buff *skb)
3839 {
3840 int err;
3841
3842 trace_netif_rx_ni_entry(skb);
3843
3844 preempt_disable();
3845 err = netif_rx_internal(skb);
3846 if (local_softirq_pending())
3847 do_softirq();
3848 preempt_enable();
3849
3850 return err;
3851 }
3852 EXPORT_SYMBOL(netif_rx_ni);
3853
3854 static void net_tx_action(struct softirq_action *h)
3855 {
3856 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3857
3858 if (sd->completion_queue) {
3859 struct sk_buff *clist;
3860
3861 local_irq_disable();
3862 clist = sd->completion_queue;
3863 sd->completion_queue = NULL;
3864 local_irq_enable();
3865
3866 while (clist) {
3867 struct sk_buff *skb = clist;
3868 clist = clist->next;
3869
3870 WARN_ON(atomic_read(&skb->users));
3871 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3872 trace_consume_skb(skb);
3873 else
3874 trace_kfree_skb(skb, net_tx_action);
3875
3876 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3877 __kfree_skb(skb);
3878 else
3879 __kfree_skb_defer(skb);
3880 }
3881
3882 __kfree_skb_flush();
3883 }
3884
3885 if (sd->output_queue) {
3886 struct Qdisc *head;
3887
3888 local_irq_disable();
3889 head = sd->output_queue;
3890 sd->output_queue = NULL;
3891 sd->output_queue_tailp = &sd->output_queue;
3892 local_irq_enable();
3893
3894 while (head) {
3895 struct Qdisc *q = head;
3896 spinlock_t *root_lock;
3897
3898 head = head->next_sched;
3899
3900 root_lock = qdisc_lock(q);
3901 if (spin_trylock(root_lock)) {
3902 smp_mb__before_atomic();
3903 clear_bit(__QDISC_STATE_SCHED,
3904 &q->state);
3905 qdisc_run(q);
3906 spin_unlock(root_lock);
3907 } else {
3908 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3909 &q->state)) {
3910 __netif_reschedule(q);
3911 } else {
3912 smp_mb__before_atomic();
3913 clear_bit(__QDISC_STATE_SCHED,
3914 &q->state);
3915 }
3916 }
3917 }
3918 }
3919 }
3920
3921 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3922 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3923 /* This hook is defined here for ATM LANE */
3924 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3925 unsigned char *addr) __read_mostly;
3926 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3927 #endif
3928
3929 static inline struct sk_buff *
3930 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3931 struct net_device *orig_dev)
3932 {
3933 #ifdef CONFIG_NET_CLS_ACT
3934 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3935 struct tcf_result cl_res;
3936
3937 /* If there's at least one ingress present somewhere (so
3938 * we get here via enabled static key), remaining devices
3939 * that are not configured with an ingress qdisc will bail
3940 * out here.
3941 */
3942 if (!cl)
3943 return skb;
3944 if (*pt_prev) {
3945 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3946 *pt_prev = NULL;
3947 }
3948
3949 qdisc_skb_cb(skb)->pkt_len = skb->len;
3950 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3951 qdisc_bstats_cpu_update(cl->q, skb);
3952
3953 switch (tc_classify(skb, cl, &cl_res, false)) {
3954 case TC_ACT_OK:
3955 case TC_ACT_RECLASSIFY:
3956 skb->tc_index = TC_H_MIN(cl_res.classid);
3957 break;
3958 case TC_ACT_SHOT:
3959 qdisc_qstats_cpu_drop(cl->q);
3960 kfree_skb(skb);
3961 return NULL;
3962 case TC_ACT_STOLEN:
3963 case TC_ACT_QUEUED:
3964 consume_skb(skb);
3965 return NULL;
3966 case TC_ACT_REDIRECT:
3967 /* skb_mac_header check was done by cls/act_bpf, so
3968 * we can safely push the L2 header back before
3969 * redirecting to another netdev
3970 */
3971 __skb_push(skb, skb->mac_len);
3972 skb_do_redirect(skb);
3973 return NULL;
3974 default:
3975 break;
3976 }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 return skb;
3979 }
3980
3981 /**
3982 * netdev_rx_handler_register - register receive handler
3983 * @dev: device to register a handler for
3984 * @rx_handler: receive handler to register
3985 * @rx_handler_data: data pointer that is used by rx handler
3986 *
3987 * Register a receive handler for a device. This handler will then be
3988 * called from __netif_receive_skb. A negative errno code is returned
3989 * on a failure.
3990 *
3991 * The caller must hold the rtnl_mutex.
3992 *
3993 * For a general description of rx_handler, see enum rx_handler_result.
3994 */
3995 int netdev_rx_handler_register(struct net_device *dev,
3996 rx_handler_func_t *rx_handler,
3997 void *rx_handler_data)
3998 {
3999 ASSERT_RTNL();
4000
4001 if (dev->rx_handler)
4002 return -EBUSY;
4003
4004 /* Note: rx_handler_data must be set before rx_handler */
4005 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4006 rcu_assign_pointer(dev->rx_handler, rx_handler);
4007
4008 return 0;
4009 }
4010 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4011
4012 /**
4013 * netdev_rx_handler_unregister - unregister receive handler
4014 * @dev: device to unregister a handler from
4015 *
4016 * Unregister a receive handler from a device.
4017 *
4018 * The caller must hold the rtnl_mutex.
4019 */
4020 void netdev_rx_handler_unregister(struct net_device *dev)
4021 {
4022
4023 ASSERT_RTNL();
4024 RCU_INIT_POINTER(dev->rx_handler, NULL);
4025 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4026 * section has a guarantee to see a non NULL rx_handler_data
4027 * as well.
4028 */
4029 synchronize_net();
4030 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4031 }
4032 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4033
4034 /*
4035 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4036 * the special handling of PFMEMALLOC skbs.
4037 */
4038 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4039 {
4040 switch (skb->protocol) {
4041 case htons(ETH_P_ARP):
4042 case htons(ETH_P_IP):
4043 case htons(ETH_P_IPV6):
4044 case htons(ETH_P_8021Q):
4045 case htons(ETH_P_8021AD):
4046 return true;
4047 default:
4048 return false;
4049 }
4050 }
4051
4052 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4053 int *ret, struct net_device *orig_dev)
4054 {
4055 #ifdef CONFIG_NETFILTER_INGRESS
4056 if (nf_hook_ingress_active(skb)) {
4057 if (*pt_prev) {
4058 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 *pt_prev = NULL;
4060 }
4061
4062 return nf_hook_ingress(skb);
4063 }
4064 #endif /* CONFIG_NETFILTER_INGRESS */
4065 return 0;
4066 }
4067
4068 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4069 {
4070 struct packet_type *ptype, *pt_prev;
4071 rx_handler_func_t *rx_handler;
4072 struct net_device *orig_dev;
4073 bool deliver_exact = false;
4074 int ret = NET_RX_DROP;
4075 __be16 type;
4076
4077 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4078
4079 trace_netif_receive_skb(skb);
4080
4081 orig_dev = skb->dev;
4082
4083 skb_reset_network_header(skb);
4084 if (!skb_transport_header_was_set(skb))
4085 skb_reset_transport_header(skb);
4086 skb_reset_mac_len(skb);
4087
4088 pt_prev = NULL;
4089
4090 another_round:
4091 skb->skb_iif = skb->dev->ifindex;
4092
4093 __this_cpu_inc(softnet_data.processed);
4094
4095 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4096 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4097 skb = skb_vlan_untag(skb);
4098 if (unlikely(!skb))
4099 goto out;
4100 }
4101
4102 #ifdef CONFIG_NET_CLS_ACT
4103 if (skb->tc_verd & TC_NCLS) {
4104 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4105 goto ncls;
4106 }
4107 #endif
4108
4109 if (pfmemalloc)
4110 goto skip_taps;
4111
4112 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4113 if (pt_prev)
4114 ret = deliver_skb(skb, pt_prev, orig_dev);
4115 pt_prev = ptype;
4116 }
4117
4118 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4119 if (pt_prev)
4120 ret = deliver_skb(skb, pt_prev, orig_dev);
4121 pt_prev = ptype;
4122 }
4123
4124 skip_taps:
4125 #ifdef CONFIG_NET_INGRESS
4126 if (static_key_false(&ingress_needed)) {
4127 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4128 if (!skb)
4129 goto out;
4130
4131 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4132 goto out;
4133 }
4134 #endif
4135 #ifdef CONFIG_NET_CLS_ACT
4136 skb->tc_verd = 0;
4137 ncls:
4138 #endif
4139 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4140 goto drop;
4141
4142 if (skb_vlan_tag_present(skb)) {
4143 if (pt_prev) {
4144 ret = deliver_skb(skb, pt_prev, orig_dev);
4145 pt_prev = NULL;
4146 }
4147 if (vlan_do_receive(&skb))
4148 goto another_round;
4149 else if (unlikely(!skb))
4150 goto out;
4151 }
4152
4153 rx_handler = rcu_dereference(skb->dev->rx_handler);
4154 if (rx_handler) {
4155 if (pt_prev) {
4156 ret = deliver_skb(skb, pt_prev, orig_dev);
4157 pt_prev = NULL;
4158 }
4159 switch (rx_handler(&skb)) {
4160 case RX_HANDLER_CONSUMED:
4161 ret = NET_RX_SUCCESS;
4162 goto out;
4163 case RX_HANDLER_ANOTHER:
4164 goto another_round;
4165 case RX_HANDLER_EXACT:
4166 deliver_exact = true;
4167 case RX_HANDLER_PASS:
4168 break;
4169 default:
4170 BUG();
4171 }
4172 }
4173
4174 if (unlikely(skb_vlan_tag_present(skb))) {
4175 if (skb_vlan_tag_get_id(skb))
4176 skb->pkt_type = PACKET_OTHERHOST;
4177 /* Note: we might in the future use prio bits
4178 * and set skb->priority like in vlan_do_receive()
4179 * For the time being, just ignore Priority Code Point
4180 */
4181 skb->vlan_tci = 0;
4182 }
4183
4184 type = skb->protocol;
4185
4186 /* deliver only exact match when indicated */
4187 if (likely(!deliver_exact)) {
4188 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 &ptype_base[ntohs(type) &
4190 PTYPE_HASH_MASK]);
4191 }
4192
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &orig_dev->ptype_specific);
4195
4196 if (unlikely(skb->dev != orig_dev)) {
4197 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4198 &skb->dev->ptype_specific);
4199 }
4200
4201 if (pt_prev) {
4202 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4203 goto drop;
4204 else
4205 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4206 } else {
4207 drop:
4208 if (!deliver_exact)
4209 atomic_long_inc(&skb->dev->rx_dropped);
4210 else
4211 atomic_long_inc(&skb->dev->rx_nohandler);
4212 kfree_skb(skb);
4213 /* Jamal, now you will not able to escape explaining
4214 * me how you were going to use this. :-)
4215 */
4216 ret = NET_RX_DROP;
4217 }
4218
4219 out:
4220 return ret;
4221 }
4222
4223 static int __netif_receive_skb(struct sk_buff *skb)
4224 {
4225 int ret;
4226
4227 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4228 unsigned long pflags = current->flags;
4229
4230 /*
4231 * PFMEMALLOC skbs are special, they should
4232 * - be delivered to SOCK_MEMALLOC sockets only
4233 * - stay away from userspace
4234 * - have bounded memory usage
4235 *
4236 * Use PF_MEMALLOC as this saves us from propagating the allocation
4237 * context down to all allocation sites.
4238 */
4239 current->flags |= PF_MEMALLOC;
4240 ret = __netif_receive_skb_core(skb, true);
4241 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4242 } else
4243 ret = __netif_receive_skb_core(skb, false);
4244
4245 return ret;
4246 }
4247
4248 static int netif_receive_skb_internal(struct sk_buff *skb)
4249 {
4250 int ret;
4251
4252 net_timestamp_check(netdev_tstamp_prequeue, skb);
4253
4254 if (skb_defer_rx_timestamp(skb))
4255 return NET_RX_SUCCESS;
4256
4257 rcu_read_lock();
4258
4259 #ifdef CONFIG_RPS
4260 if (static_key_false(&rps_needed)) {
4261 struct rps_dev_flow voidflow, *rflow = &voidflow;
4262 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4263
4264 if (cpu >= 0) {
4265 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4266 rcu_read_unlock();
4267 return ret;
4268 }
4269 }
4270 #endif
4271 ret = __netif_receive_skb(skb);
4272 rcu_read_unlock();
4273 return ret;
4274 }
4275
4276 /**
4277 * netif_receive_skb - process receive buffer from network
4278 * @skb: buffer to process
4279 *
4280 * netif_receive_skb() is the main receive data processing function.
4281 * It always succeeds. The buffer may be dropped during processing
4282 * for congestion control or by the protocol layers.
4283 *
4284 * This function may only be called from softirq context and interrupts
4285 * should be enabled.
4286 *
4287 * Return values (usually ignored):
4288 * NET_RX_SUCCESS: no congestion
4289 * NET_RX_DROP: packet was dropped
4290 */
4291 int netif_receive_skb(struct sk_buff *skb)
4292 {
4293 trace_netif_receive_skb_entry(skb);
4294
4295 return netif_receive_skb_internal(skb);
4296 }
4297 EXPORT_SYMBOL(netif_receive_skb);
4298
4299 /* Network device is going away, flush any packets still pending
4300 * Called with irqs disabled.
4301 */
4302 static void flush_backlog(void *arg)
4303 {
4304 struct net_device *dev = arg;
4305 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4306 struct sk_buff *skb, *tmp;
4307
4308 rps_lock(sd);
4309 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4310 if (skb->dev == dev) {
4311 __skb_unlink(skb, &sd->input_pkt_queue);
4312 kfree_skb(skb);
4313 input_queue_head_incr(sd);
4314 }
4315 }
4316 rps_unlock(sd);
4317
4318 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4319 if (skb->dev == dev) {
4320 __skb_unlink(skb, &sd->process_queue);
4321 kfree_skb(skb);
4322 input_queue_head_incr(sd);
4323 }
4324 }
4325 }
4326
4327 static int napi_gro_complete(struct sk_buff *skb)
4328 {
4329 struct packet_offload *ptype;
4330 __be16 type = skb->protocol;
4331 struct list_head *head = &offload_base;
4332 int err = -ENOENT;
4333
4334 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4335
4336 if (NAPI_GRO_CB(skb)->count == 1) {
4337 skb_shinfo(skb)->gso_size = 0;
4338 goto out;
4339 }
4340
4341 rcu_read_lock();
4342 list_for_each_entry_rcu(ptype, head, list) {
4343 if (ptype->type != type || !ptype->callbacks.gro_complete)
4344 continue;
4345
4346 err = ptype->callbacks.gro_complete(skb, 0);
4347 break;
4348 }
4349 rcu_read_unlock();
4350
4351 if (err) {
4352 WARN_ON(&ptype->list == head);
4353 kfree_skb(skb);
4354 return NET_RX_SUCCESS;
4355 }
4356
4357 out:
4358 return netif_receive_skb_internal(skb);
4359 }
4360
4361 /* napi->gro_list contains packets ordered by age.
4362 * youngest packets at the head of it.
4363 * Complete skbs in reverse order to reduce latencies.
4364 */
4365 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4366 {
4367 struct sk_buff *skb, *prev = NULL;
4368
4369 /* scan list and build reverse chain */
4370 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4371 skb->prev = prev;
4372 prev = skb;
4373 }
4374
4375 for (skb = prev; skb; skb = prev) {
4376 skb->next = NULL;
4377
4378 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4379 return;
4380
4381 prev = skb->prev;
4382 napi_gro_complete(skb);
4383 napi->gro_count--;
4384 }
4385
4386 napi->gro_list = NULL;
4387 }
4388 EXPORT_SYMBOL(napi_gro_flush);
4389
4390 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4391 {
4392 struct sk_buff *p;
4393 unsigned int maclen = skb->dev->hard_header_len;
4394 u32 hash = skb_get_hash_raw(skb);
4395
4396 for (p = napi->gro_list; p; p = p->next) {
4397 unsigned long diffs;
4398
4399 NAPI_GRO_CB(p)->flush = 0;
4400
4401 if (hash != skb_get_hash_raw(p)) {
4402 NAPI_GRO_CB(p)->same_flow = 0;
4403 continue;
4404 }
4405
4406 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4407 diffs |= p->vlan_tci ^ skb->vlan_tci;
4408 diffs |= skb_metadata_dst_cmp(p, skb);
4409 if (maclen == ETH_HLEN)
4410 diffs |= compare_ether_header(skb_mac_header(p),
4411 skb_mac_header(skb));
4412 else if (!diffs)
4413 diffs = memcmp(skb_mac_header(p),
4414 skb_mac_header(skb),
4415 maclen);
4416 NAPI_GRO_CB(p)->same_flow = !diffs;
4417 }
4418 }
4419
4420 static void skb_gro_reset_offset(struct sk_buff *skb)
4421 {
4422 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4423 const skb_frag_t *frag0 = &pinfo->frags[0];
4424
4425 NAPI_GRO_CB(skb)->data_offset = 0;
4426 NAPI_GRO_CB(skb)->frag0 = NULL;
4427 NAPI_GRO_CB(skb)->frag0_len = 0;
4428
4429 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4430 pinfo->nr_frags &&
4431 !PageHighMem(skb_frag_page(frag0))) {
4432 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4433 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4434 }
4435 }
4436
4437 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4438 {
4439 struct skb_shared_info *pinfo = skb_shinfo(skb);
4440
4441 BUG_ON(skb->end - skb->tail < grow);
4442
4443 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4444
4445 skb->data_len -= grow;
4446 skb->tail += grow;
4447
4448 pinfo->frags[0].page_offset += grow;
4449 skb_frag_size_sub(&pinfo->frags[0], grow);
4450
4451 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4452 skb_frag_unref(skb, 0);
4453 memmove(pinfo->frags, pinfo->frags + 1,
4454 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4455 }
4456 }
4457
4458 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4459 {
4460 struct sk_buff **pp = NULL;
4461 struct packet_offload *ptype;
4462 __be16 type = skb->protocol;
4463 struct list_head *head = &offload_base;
4464 int same_flow;
4465 enum gro_result ret;
4466 int grow;
4467
4468 if (!(skb->dev->features & NETIF_F_GRO))
4469 goto normal;
4470
4471 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4472 goto normal;
4473
4474 gro_list_prepare(napi, skb);
4475
4476 rcu_read_lock();
4477 list_for_each_entry_rcu(ptype, head, list) {
4478 if (ptype->type != type || !ptype->callbacks.gro_receive)
4479 continue;
4480
4481 skb_set_network_header(skb, skb_gro_offset(skb));
4482 skb_reset_mac_len(skb);
4483 NAPI_GRO_CB(skb)->same_flow = 0;
4484 NAPI_GRO_CB(skb)->flush = 0;
4485 NAPI_GRO_CB(skb)->free = 0;
4486 NAPI_GRO_CB(skb)->encap_mark = 0;
4487 NAPI_GRO_CB(skb)->is_fou = 0;
4488 NAPI_GRO_CB(skb)->is_atomic = 1;
4489 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4490
4491 /* Setup for GRO checksum validation */
4492 switch (skb->ip_summed) {
4493 case CHECKSUM_COMPLETE:
4494 NAPI_GRO_CB(skb)->csum = skb->csum;
4495 NAPI_GRO_CB(skb)->csum_valid = 1;
4496 NAPI_GRO_CB(skb)->csum_cnt = 0;
4497 break;
4498 case CHECKSUM_UNNECESSARY:
4499 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4501 break;
4502 default:
4503 NAPI_GRO_CB(skb)->csum_cnt = 0;
4504 NAPI_GRO_CB(skb)->csum_valid = 0;
4505 }
4506
4507 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4508 break;
4509 }
4510 rcu_read_unlock();
4511
4512 if (&ptype->list == head)
4513 goto normal;
4514
4515 same_flow = NAPI_GRO_CB(skb)->same_flow;
4516 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4517
4518 if (pp) {
4519 struct sk_buff *nskb = *pp;
4520
4521 *pp = nskb->next;
4522 nskb->next = NULL;
4523 napi_gro_complete(nskb);
4524 napi->gro_count--;
4525 }
4526
4527 if (same_flow)
4528 goto ok;
4529
4530 if (NAPI_GRO_CB(skb)->flush)
4531 goto normal;
4532
4533 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4534 struct sk_buff *nskb = napi->gro_list;
4535
4536 /* locate the end of the list to select the 'oldest' flow */
4537 while (nskb->next) {
4538 pp = &nskb->next;
4539 nskb = *pp;
4540 }
4541 *pp = NULL;
4542 nskb->next = NULL;
4543 napi_gro_complete(nskb);
4544 } else {
4545 napi->gro_count++;
4546 }
4547 NAPI_GRO_CB(skb)->count = 1;
4548 NAPI_GRO_CB(skb)->age = jiffies;
4549 NAPI_GRO_CB(skb)->last = skb;
4550 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4551 skb->next = napi->gro_list;
4552 napi->gro_list = skb;
4553 ret = GRO_HELD;
4554
4555 pull:
4556 grow = skb_gro_offset(skb) - skb_headlen(skb);
4557 if (grow > 0)
4558 gro_pull_from_frag0(skb, grow);
4559 ok:
4560 return ret;
4561
4562 normal:
4563 ret = GRO_NORMAL;
4564 goto pull;
4565 }
4566
4567 struct packet_offload *gro_find_receive_by_type(__be16 type)
4568 {
4569 struct list_head *offload_head = &offload_base;
4570 struct packet_offload *ptype;
4571
4572 list_for_each_entry_rcu(ptype, offload_head, list) {
4573 if (ptype->type != type || !ptype->callbacks.gro_receive)
4574 continue;
4575 return ptype;
4576 }
4577 return NULL;
4578 }
4579 EXPORT_SYMBOL(gro_find_receive_by_type);
4580
4581 struct packet_offload *gro_find_complete_by_type(__be16 type)
4582 {
4583 struct list_head *offload_head = &offload_base;
4584 struct packet_offload *ptype;
4585
4586 list_for_each_entry_rcu(ptype, offload_head, list) {
4587 if (ptype->type != type || !ptype->callbacks.gro_complete)
4588 continue;
4589 return ptype;
4590 }
4591 return NULL;
4592 }
4593 EXPORT_SYMBOL(gro_find_complete_by_type);
4594
4595 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4596 {
4597 switch (ret) {
4598 case GRO_NORMAL:
4599 if (netif_receive_skb_internal(skb))
4600 ret = GRO_DROP;
4601 break;
4602
4603 case GRO_DROP:
4604 kfree_skb(skb);
4605 break;
4606
4607 case GRO_MERGED_FREE:
4608 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4609 skb_dst_drop(skb);
4610 kmem_cache_free(skbuff_head_cache, skb);
4611 } else {
4612 __kfree_skb(skb);
4613 }
4614 break;
4615
4616 case GRO_HELD:
4617 case GRO_MERGED:
4618 break;
4619 }
4620
4621 return ret;
4622 }
4623
4624 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4625 {
4626 skb_mark_napi_id(skb, napi);
4627 trace_napi_gro_receive_entry(skb);
4628
4629 skb_gro_reset_offset(skb);
4630
4631 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4632 }
4633 EXPORT_SYMBOL(napi_gro_receive);
4634
4635 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4636 {
4637 if (unlikely(skb->pfmemalloc)) {
4638 consume_skb(skb);
4639 return;
4640 }
4641 __skb_pull(skb, skb_headlen(skb));
4642 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4643 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4644 skb->vlan_tci = 0;
4645 skb->dev = napi->dev;
4646 skb->skb_iif = 0;
4647 skb->encapsulation = 0;
4648 skb_shinfo(skb)->gso_type = 0;
4649 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4650
4651 napi->skb = skb;
4652 }
4653
4654 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4655 {
4656 struct sk_buff *skb = napi->skb;
4657
4658 if (!skb) {
4659 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4660 if (skb) {
4661 napi->skb = skb;
4662 skb_mark_napi_id(skb, napi);
4663 }
4664 }
4665 return skb;
4666 }
4667 EXPORT_SYMBOL(napi_get_frags);
4668
4669 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4670 struct sk_buff *skb,
4671 gro_result_t ret)
4672 {
4673 switch (ret) {
4674 case GRO_NORMAL:
4675 case GRO_HELD:
4676 __skb_push(skb, ETH_HLEN);
4677 skb->protocol = eth_type_trans(skb, skb->dev);
4678 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4679 ret = GRO_DROP;
4680 break;
4681
4682 case GRO_DROP:
4683 case GRO_MERGED_FREE:
4684 napi_reuse_skb(napi, skb);
4685 break;
4686
4687 case GRO_MERGED:
4688 break;
4689 }
4690
4691 return ret;
4692 }
4693
4694 /* Upper GRO stack assumes network header starts at gro_offset=0
4695 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4696 * We copy ethernet header into skb->data to have a common layout.
4697 */
4698 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4699 {
4700 struct sk_buff *skb = napi->skb;
4701 const struct ethhdr *eth;
4702 unsigned int hlen = sizeof(*eth);
4703
4704 napi->skb = NULL;
4705
4706 skb_reset_mac_header(skb);
4707 skb_gro_reset_offset(skb);
4708
4709 eth = skb_gro_header_fast(skb, 0);
4710 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4711 eth = skb_gro_header_slow(skb, hlen, 0);
4712 if (unlikely(!eth)) {
4713 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4714 __func__, napi->dev->name);
4715 napi_reuse_skb(napi, skb);
4716 return NULL;
4717 }
4718 } else {
4719 gro_pull_from_frag0(skb, hlen);
4720 NAPI_GRO_CB(skb)->frag0 += hlen;
4721 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4722 }
4723 __skb_pull(skb, hlen);
4724
4725 /*
4726 * This works because the only protocols we care about don't require
4727 * special handling.
4728 * We'll fix it up properly in napi_frags_finish()
4729 */
4730 skb->protocol = eth->h_proto;
4731
4732 return skb;
4733 }
4734
4735 gro_result_t napi_gro_frags(struct napi_struct *napi)
4736 {
4737 struct sk_buff *skb = napi_frags_skb(napi);
4738
4739 if (!skb)
4740 return GRO_DROP;
4741
4742 trace_napi_gro_frags_entry(skb);
4743
4744 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4745 }
4746 EXPORT_SYMBOL(napi_gro_frags);
4747
4748 /* Compute the checksum from gro_offset and return the folded value
4749 * after adding in any pseudo checksum.
4750 */
4751 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4752 {
4753 __wsum wsum;
4754 __sum16 sum;
4755
4756 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4757
4758 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4759 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4760 if (likely(!sum)) {
4761 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4762 !skb->csum_complete_sw)
4763 netdev_rx_csum_fault(skb->dev);
4764 }
4765
4766 NAPI_GRO_CB(skb)->csum = wsum;
4767 NAPI_GRO_CB(skb)->csum_valid = 1;
4768
4769 return sum;
4770 }
4771 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4772
4773 /*
4774 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4775 * Note: called with local irq disabled, but exits with local irq enabled.
4776 */
4777 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4778 {
4779 #ifdef CONFIG_RPS
4780 struct softnet_data *remsd = sd->rps_ipi_list;
4781
4782 if (remsd) {
4783 sd->rps_ipi_list = NULL;
4784
4785 local_irq_enable();
4786
4787 /* Send pending IPI's to kick RPS processing on remote cpus. */
4788 while (remsd) {
4789 struct softnet_data *next = remsd->rps_ipi_next;
4790
4791 if (cpu_online(remsd->cpu))
4792 smp_call_function_single_async(remsd->cpu,
4793 &remsd->csd);
4794 remsd = next;
4795 }
4796 } else
4797 #endif
4798 local_irq_enable();
4799 }
4800
4801 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4802 {
4803 #ifdef CONFIG_RPS
4804 return sd->rps_ipi_list != NULL;
4805 #else
4806 return false;
4807 #endif
4808 }
4809
4810 static int process_backlog(struct napi_struct *napi, int quota)
4811 {
4812 int work = 0;
4813 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4814
4815 /* Check if we have pending ipi, its better to send them now,
4816 * not waiting net_rx_action() end.
4817 */
4818 if (sd_has_rps_ipi_waiting(sd)) {
4819 local_irq_disable();
4820 net_rps_action_and_irq_enable(sd);
4821 }
4822
4823 napi->weight = weight_p;
4824 local_irq_disable();
4825 while (1) {
4826 struct sk_buff *skb;
4827
4828 while ((skb = __skb_dequeue(&sd->process_queue))) {
4829 rcu_read_lock();
4830 local_irq_enable();
4831 __netif_receive_skb(skb);
4832 rcu_read_unlock();
4833 local_irq_disable();
4834 input_queue_head_incr(sd);
4835 if (++work >= quota) {
4836 local_irq_enable();
4837 return work;
4838 }
4839 }
4840
4841 rps_lock(sd);
4842 if (skb_queue_empty(&sd->input_pkt_queue)) {
4843 /*
4844 * Inline a custom version of __napi_complete().
4845 * only current cpu owns and manipulates this napi,
4846 * and NAPI_STATE_SCHED is the only possible flag set
4847 * on backlog.
4848 * We can use a plain write instead of clear_bit(),
4849 * and we dont need an smp_mb() memory barrier.
4850 */
4851 napi->state = 0;
4852 rps_unlock(sd);
4853
4854 break;
4855 }
4856
4857 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4858 &sd->process_queue);
4859 rps_unlock(sd);
4860 }
4861 local_irq_enable();
4862
4863 return work;
4864 }
4865
4866 /**
4867 * __napi_schedule - schedule for receive
4868 * @n: entry to schedule
4869 *
4870 * The entry's receive function will be scheduled to run.
4871 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4872 */
4873 void __napi_schedule(struct napi_struct *n)
4874 {
4875 unsigned long flags;
4876
4877 local_irq_save(flags);
4878 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4879 local_irq_restore(flags);
4880 }
4881 EXPORT_SYMBOL(__napi_schedule);
4882
4883 /**
4884 * __napi_schedule_irqoff - schedule for receive
4885 * @n: entry to schedule
4886 *
4887 * Variant of __napi_schedule() assuming hard irqs are masked
4888 */
4889 void __napi_schedule_irqoff(struct napi_struct *n)
4890 {
4891 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4892 }
4893 EXPORT_SYMBOL(__napi_schedule_irqoff);
4894
4895 void __napi_complete(struct napi_struct *n)
4896 {
4897 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4898
4899 list_del_init(&n->poll_list);
4900 smp_mb__before_atomic();
4901 clear_bit(NAPI_STATE_SCHED, &n->state);
4902 }
4903 EXPORT_SYMBOL(__napi_complete);
4904
4905 void napi_complete_done(struct napi_struct *n, int work_done)
4906 {
4907 unsigned long flags;
4908
4909 /*
4910 * don't let napi dequeue from the cpu poll list
4911 * just in case its running on a different cpu
4912 */
4913 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4914 return;
4915
4916 if (n->gro_list) {
4917 unsigned long timeout = 0;
4918
4919 if (work_done)
4920 timeout = n->dev->gro_flush_timeout;
4921
4922 if (timeout)
4923 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4924 HRTIMER_MODE_REL_PINNED);
4925 else
4926 napi_gro_flush(n, false);
4927 }
4928 if (likely(list_empty(&n->poll_list))) {
4929 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4930 } else {
4931 /* If n->poll_list is not empty, we need to mask irqs */
4932 local_irq_save(flags);
4933 __napi_complete(n);
4934 local_irq_restore(flags);
4935 }
4936 }
4937 EXPORT_SYMBOL(napi_complete_done);
4938
4939 /* must be called under rcu_read_lock(), as we dont take a reference */
4940 static struct napi_struct *napi_by_id(unsigned int napi_id)
4941 {
4942 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4943 struct napi_struct *napi;
4944
4945 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4946 if (napi->napi_id == napi_id)
4947 return napi;
4948
4949 return NULL;
4950 }
4951
4952 #if defined(CONFIG_NET_RX_BUSY_POLL)
4953 #define BUSY_POLL_BUDGET 8
4954 bool sk_busy_loop(struct sock *sk, int nonblock)
4955 {
4956 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4957 int (*busy_poll)(struct napi_struct *dev);
4958 struct napi_struct *napi;
4959 int rc = false;
4960
4961 rcu_read_lock();
4962
4963 napi = napi_by_id(sk->sk_napi_id);
4964 if (!napi)
4965 goto out;
4966
4967 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4968 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4969
4970 do {
4971 rc = 0;
4972 local_bh_disable();
4973 if (busy_poll) {
4974 rc = busy_poll(napi);
4975 } else if (napi_schedule_prep(napi)) {
4976 void *have = netpoll_poll_lock(napi);
4977
4978 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4979 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4980 trace_napi_poll(napi);
4981 if (rc == BUSY_POLL_BUDGET) {
4982 napi_complete_done(napi, rc);
4983 napi_schedule(napi);
4984 }
4985 }
4986 netpoll_poll_unlock(have);
4987 }
4988 if (rc > 0)
4989 __NET_ADD_STATS(sock_net(sk),
4990 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4991 local_bh_enable();
4992
4993 if (rc == LL_FLUSH_FAILED)
4994 break; /* permanent failure */
4995
4996 cpu_relax();
4997 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4998 !need_resched() && !busy_loop_timeout(end_time));
4999
5000 rc = !skb_queue_empty(&sk->sk_receive_queue);
5001 out:
5002 rcu_read_unlock();
5003 return rc;
5004 }
5005 EXPORT_SYMBOL(sk_busy_loop);
5006
5007 #endif /* CONFIG_NET_RX_BUSY_POLL */
5008
5009 void napi_hash_add(struct napi_struct *napi)
5010 {
5011 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5012 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5013 return;
5014
5015 spin_lock(&napi_hash_lock);
5016
5017 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5018 do {
5019 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5020 napi_gen_id = NR_CPUS + 1;
5021 } while (napi_by_id(napi_gen_id));
5022 napi->napi_id = napi_gen_id;
5023
5024 hlist_add_head_rcu(&napi->napi_hash_node,
5025 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5026
5027 spin_unlock(&napi_hash_lock);
5028 }
5029 EXPORT_SYMBOL_GPL(napi_hash_add);
5030
5031 /* Warning : caller is responsible to make sure rcu grace period
5032 * is respected before freeing memory containing @napi
5033 */
5034 bool napi_hash_del(struct napi_struct *napi)
5035 {
5036 bool rcu_sync_needed = false;
5037
5038 spin_lock(&napi_hash_lock);
5039
5040 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5041 rcu_sync_needed = true;
5042 hlist_del_rcu(&napi->napi_hash_node);
5043 }
5044 spin_unlock(&napi_hash_lock);
5045 return rcu_sync_needed;
5046 }
5047 EXPORT_SYMBOL_GPL(napi_hash_del);
5048
5049 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5050 {
5051 struct napi_struct *napi;
5052
5053 napi = container_of(timer, struct napi_struct, timer);
5054 if (napi->gro_list)
5055 napi_schedule(napi);
5056
5057 return HRTIMER_NORESTART;
5058 }
5059
5060 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5061 int (*poll)(struct napi_struct *, int), int weight)
5062 {
5063 INIT_LIST_HEAD(&napi->poll_list);
5064 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5065 napi->timer.function = napi_watchdog;
5066 napi->gro_count = 0;
5067 napi->gro_list = NULL;
5068 napi->skb = NULL;
5069 napi->poll = poll;
5070 if (weight > NAPI_POLL_WEIGHT)
5071 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5072 weight, dev->name);
5073 napi->weight = weight;
5074 list_add(&napi->dev_list, &dev->napi_list);
5075 napi->dev = dev;
5076 #ifdef CONFIG_NETPOLL
5077 spin_lock_init(&napi->poll_lock);
5078 napi->poll_owner = -1;
5079 #endif
5080 set_bit(NAPI_STATE_SCHED, &napi->state);
5081 napi_hash_add(napi);
5082 }
5083 EXPORT_SYMBOL(netif_napi_add);
5084
5085 void napi_disable(struct napi_struct *n)
5086 {
5087 might_sleep();
5088 set_bit(NAPI_STATE_DISABLE, &n->state);
5089
5090 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5091 msleep(1);
5092 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5093 msleep(1);
5094
5095 hrtimer_cancel(&n->timer);
5096
5097 clear_bit(NAPI_STATE_DISABLE, &n->state);
5098 }
5099 EXPORT_SYMBOL(napi_disable);
5100
5101 /* Must be called in process context */
5102 void netif_napi_del(struct napi_struct *napi)
5103 {
5104 might_sleep();
5105 if (napi_hash_del(napi))
5106 synchronize_net();
5107 list_del_init(&napi->dev_list);
5108 napi_free_frags(napi);
5109
5110 kfree_skb_list(napi->gro_list);
5111 napi->gro_list = NULL;
5112 napi->gro_count = 0;
5113 }
5114 EXPORT_SYMBOL(netif_napi_del);
5115
5116 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5117 {
5118 void *have;
5119 int work, weight;
5120
5121 list_del_init(&n->poll_list);
5122
5123 have = netpoll_poll_lock(n);
5124
5125 weight = n->weight;
5126
5127 /* This NAPI_STATE_SCHED test is for avoiding a race
5128 * with netpoll's poll_napi(). Only the entity which
5129 * obtains the lock and sees NAPI_STATE_SCHED set will
5130 * actually make the ->poll() call. Therefore we avoid
5131 * accidentally calling ->poll() when NAPI is not scheduled.
5132 */
5133 work = 0;
5134 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5135 work = n->poll(n, weight);
5136 trace_napi_poll(n);
5137 }
5138
5139 WARN_ON_ONCE(work > weight);
5140
5141 if (likely(work < weight))
5142 goto out_unlock;
5143
5144 /* Drivers must not modify the NAPI state if they
5145 * consume the entire weight. In such cases this code
5146 * still "owns" the NAPI instance and therefore can
5147 * move the instance around on the list at-will.
5148 */
5149 if (unlikely(napi_disable_pending(n))) {
5150 napi_complete(n);
5151 goto out_unlock;
5152 }
5153
5154 if (n->gro_list) {
5155 /* flush too old packets
5156 * If HZ < 1000, flush all packets.
5157 */
5158 napi_gro_flush(n, HZ >= 1000);
5159 }
5160
5161 /* Some drivers may have called napi_schedule
5162 * prior to exhausting their budget.
5163 */
5164 if (unlikely(!list_empty(&n->poll_list))) {
5165 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5166 n->dev ? n->dev->name : "backlog");
5167 goto out_unlock;
5168 }
5169
5170 list_add_tail(&n->poll_list, repoll);
5171
5172 out_unlock:
5173 netpoll_poll_unlock(have);
5174
5175 return work;
5176 }
5177
5178 static void net_rx_action(struct softirq_action *h)
5179 {
5180 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5181 unsigned long time_limit = jiffies + 2;
5182 int budget = netdev_budget;
5183 LIST_HEAD(list);
5184 LIST_HEAD(repoll);
5185
5186 local_irq_disable();
5187 list_splice_init(&sd->poll_list, &list);
5188 local_irq_enable();
5189
5190 for (;;) {
5191 struct napi_struct *n;
5192
5193 if (list_empty(&list)) {
5194 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5195 return;
5196 break;
5197 }
5198
5199 n = list_first_entry(&list, struct napi_struct, poll_list);
5200 budget -= napi_poll(n, &repoll);
5201
5202 /* If softirq window is exhausted then punt.
5203 * Allow this to run for 2 jiffies since which will allow
5204 * an average latency of 1.5/HZ.
5205 */
5206 if (unlikely(budget <= 0 ||
5207 time_after_eq(jiffies, time_limit))) {
5208 sd->time_squeeze++;
5209 break;
5210 }
5211 }
5212
5213 __kfree_skb_flush();
5214 local_irq_disable();
5215
5216 list_splice_tail_init(&sd->poll_list, &list);
5217 list_splice_tail(&repoll, &list);
5218 list_splice(&list, &sd->poll_list);
5219 if (!list_empty(&sd->poll_list))
5220 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5221
5222 net_rps_action_and_irq_enable(sd);
5223 }
5224
5225 struct netdev_adjacent {
5226 struct net_device *dev;
5227
5228 /* upper master flag, there can only be one master device per list */
5229 bool master;
5230
5231 /* counter for the number of times this device was added to us */
5232 u16 ref_nr;
5233
5234 /* private field for the users */
5235 void *private;
5236
5237 struct list_head list;
5238 struct rcu_head rcu;
5239 };
5240
5241 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5242 struct list_head *adj_list)
5243 {
5244 struct netdev_adjacent *adj;
5245
5246 list_for_each_entry(adj, adj_list, list) {
5247 if (adj->dev == adj_dev)
5248 return adj;
5249 }
5250 return NULL;
5251 }
5252
5253 /**
5254 * netdev_has_upper_dev - Check if device is linked to an upper device
5255 * @dev: device
5256 * @upper_dev: upper device to check
5257 *
5258 * Find out if a device is linked to specified upper device and return true
5259 * in case it is. Note that this checks only immediate upper device,
5260 * not through a complete stack of devices. The caller must hold the RTNL lock.
5261 */
5262 bool netdev_has_upper_dev(struct net_device *dev,
5263 struct net_device *upper_dev)
5264 {
5265 ASSERT_RTNL();
5266
5267 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5268 }
5269 EXPORT_SYMBOL(netdev_has_upper_dev);
5270
5271 /**
5272 * netdev_has_any_upper_dev - Check if device is linked to some device
5273 * @dev: device
5274 *
5275 * Find out if a device is linked to an upper device and return true in case
5276 * it is. The caller must hold the RTNL lock.
5277 */
5278 static bool netdev_has_any_upper_dev(struct net_device *dev)
5279 {
5280 ASSERT_RTNL();
5281
5282 return !list_empty(&dev->all_adj_list.upper);
5283 }
5284
5285 /**
5286 * netdev_master_upper_dev_get - Get master upper device
5287 * @dev: device
5288 *
5289 * Find a master upper device and return pointer to it or NULL in case
5290 * it's not there. The caller must hold the RTNL lock.
5291 */
5292 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5293 {
5294 struct netdev_adjacent *upper;
5295
5296 ASSERT_RTNL();
5297
5298 if (list_empty(&dev->adj_list.upper))
5299 return NULL;
5300
5301 upper = list_first_entry(&dev->adj_list.upper,
5302 struct netdev_adjacent, list);
5303 if (likely(upper->master))
5304 return upper->dev;
5305 return NULL;
5306 }
5307 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5308
5309 void *netdev_adjacent_get_private(struct list_head *adj_list)
5310 {
5311 struct netdev_adjacent *adj;
5312
5313 adj = list_entry(adj_list, struct netdev_adjacent, list);
5314
5315 return adj->private;
5316 }
5317 EXPORT_SYMBOL(netdev_adjacent_get_private);
5318
5319 /**
5320 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5321 * @dev: device
5322 * @iter: list_head ** of the current position
5323 *
5324 * Gets the next device from the dev's upper list, starting from iter
5325 * position. The caller must hold RCU read lock.
5326 */
5327 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5328 struct list_head **iter)
5329 {
5330 struct netdev_adjacent *upper;
5331
5332 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5333
5334 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5335
5336 if (&upper->list == &dev->adj_list.upper)
5337 return NULL;
5338
5339 *iter = &upper->list;
5340
5341 return upper->dev;
5342 }
5343 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5344
5345 /**
5346 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5347 * @dev: device
5348 * @iter: list_head ** of the current position
5349 *
5350 * Gets the next device from the dev's upper list, starting from iter
5351 * position. The caller must hold RCU read lock.
5352 */
5353 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5354 struct list_head **iter)
5355 {
5356 struct netdev_adjacent *upper;
5357
5358 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5359
5360 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5361
5362 if (&upper->list == &dev->all_adj_list.upper)
5363 return NULL;
5364
5365 *iter = &upper->list;
5366
5367 return upper->dev;
5368 }
5369 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5370
5371 /**
5372 * netdev_lower_get_next_private - Get the next ->private from the
5373 * lower neighbour list
5374 * @dev: device
5375 * @iter: list_head ** of the current position
5376 *
5377 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5378 * list, starting from iter position. The caller must hold either hold the
5379 * RTNL lock or its own locking that guarantees that the neighbour lower
5380 * list will remain unchanged.
5381 */
5382 void *netdev_lower_get_next_private(struct net_device *dev,
5383 struct list_head **iter)
5384 {
5385 struct netdev_adjacent *lower;
5386
5387 lower = list_entry(*iter, struct netdev_adjacent, list);
5388
5389 if (&lower->list == &dev->adj_list.lower)
5390 return NULL;
5391
5392 *iter = lower->list.next;
5393
5394 return lower->private;
5395 }
5396 EXPORT_SYMBOL(netdev_lower_get_next_private);
5397
5398 /**
5399 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5400 * lower neighbour list, RCU
5401 * variant
5402 * @dev: device
5403 * @iter: list_head ** of the current position
5404 *
5405 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5406 * list, starting from iter position. The caller must hold RCU read lock.
5407 */
5408 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5409 struct list_head **iter)
5410 {
5411 struct netdev_adjacent *lower;
5412
5413 WARN_ON_ONCE(!rcu_read_lock_held());
5414
5415 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5416
5417 if (&lower->list == &dev->adj_list.lower)
5418 return NULL;
5419
5420 *iter = &lower->list;
5421
5422 return lower->private;
5423 }
5424 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5425
5426 /**
5427 * netdev_lower_get_next - Get the next device from the lower neighbour
5428 * list
5429 * @dev: device
5430 * @iter: list_head ** of the current position
5431 *
5432 * Gets the next netdev_adjacent from the dev's lower neighbour
5433 * list, starting from iter position. The caller must hold RTNL lock or
5434 * its own locking that guarantees that the neighbour lower
5435 * list will remain unchanged.
5436 */
5437 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5438 {
5439 struct netdev_adjacent *lower;
5440
5441 lower = list_entry(*iter, struct netdev_adjacent, list);
5442
5443 if (&lower->list == &dev->adj_list.lower)
5444 return NULL;
5445
5446 *iter = lower->list.next;
5447
5448 return lower->dev;
5449 }
5450 EXPORT_SYMBOL(netdev_lower_get_next);
5451
5452 /**
5453 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5454 * lower neighbour list, RCU
5455 * variant
5456 * @dev: device
5457 *
5458 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5459 * list. The caller must hold RCU read lock.
5460 */
5461 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5462 {
5463 struct netdev_adjacent *lower;
5464
5465 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5466 struct netdev_adjacent, list);
5467 if (lower)
5468 return lower->private;
5469 return NULL;
5470 }
5471 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5472
5473 /**
5474 * netdev_master_upper_dev_get_rcu - Get master upper device
5475 * @dev: device
5476 *
5477 * Find a master upper device and return pointer to it or NULL in case
5478 * it's not there. The caller must hold the RCU read lock.
5479 */
5480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5481 {
5482 struct netdev_adjacent *upper;
5483
5484 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5485 struct netdev_adjacent, list);
5486 if (upper && likely(upper->master))
5487 return upper->dev;
5488 return NULL;
5489 }
5490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5491
5492 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5493 struct net_device *adj_dev,
5494 struct list_head *dev_list)
5495 {
5496 char linkname[IFNAMSIZ+7];
5497 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5498 "upper_%s" : "lower_%s", adj_dev->name);
5499 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5500 linkname);
5501 }
5502 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5503 char *name,
5504 struct list_head *dev_list)
5505 {
5506 char linkname[IFNAMSIZ+7];
5507 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5508 "upper_%s" : "lower_%s", name);
5509 sysfs_remove_link(&(dev->dev.kobj), linkname);
5510 }
5511
5512 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5513 struct net_device *adj_dev,
5514 struct list_head *dev_list)
5515 {
5516 return (dev_list == &dev->adj_list.upper ||
5517 dev_list == &dev->adj_list.lower) &&
5518 net_eq(dev_net(dev), dev_net(adj_dev));
5519 }
5520
5521 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5522 struct net_device *adj_dev,
5523 struct list_head *dev_list,
5524 void *private, bool master)
5525 {
5526 struct netdev_adjacent *adj;
5527 int ret;
5528
5529 adj = __netdev_find_adj(adj_dev, dev_list);
5530
5531 if (adj) {
5532 adj->ref_nr++;
5533 return 0;
5534 }
5535
5536 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5537 if (!adj)
5538 return -ENOMEM;
5539
5540 adj->dev = adj_dev;
5541 adj->master = master;
5542 adj->ref_nr = 1;
5543 adj->private = private;
5544 dev_hold(adj_dev);
5545
5546 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5547 adj_dev->name, dev->name, adj_dev->name);
5548
5549 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5550 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5551 if (ret)
5552 goto free_adj;
5553 }
5554
5555 /* Ensure that master link is always the first item in list. */
5556 if (master) {
5557 ret = sysfs_create_link(&(dev->dev.kobj),
5558 &(adj_dev->dev.kobj), "master");
5559 if (ret)
5560 goto remove_symlinks;
5561
5562 list_add_rcu(&adj->list, dev_list);
5563 } else {
5564 list_add_tail_rcu(&adj->list, dev_list);
5565 }
5566
5567 return 0;
5568
5569 remove_symlinks:
5570 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5571 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5572 free_adj:
5573 kfree(adj);
5574 dev_put(adj_dev);
5575
5576 return ret;
5577 }
5578
5579 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5580 struct net_device *adj_dev,
5581 struct list_head *dev_list)
5582 {
5583 struct netdev_adjacent *adj;
5584
5585 adj = __netdev_find_adj(adj_dev, dev_list);
5586
5587 if (!adj) {
5588 pr_err("tried to remove device %s from %s\n",
5589 dev->name, adj_dev->name);
5590 BUG();
5591 }
5592
5593 if (adj->ref_nr > 1) {
5594 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5595 adj->ref_nr-1);
5596 adj->ref_nr--;
5597 return;
5598 }
5599
5600 if (adj->master)
5601 sysfs_remove_link(&(dev->dev.kobj), "master");
5602
5603 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5604 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5605
5606 list_del_rcu(&adj->list);
5607 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5608 adj_dev->name, dev->name, adj_dev->name);
5609 dev_put(adj_dev);
5610 kfree_rcu(adj, rcu);
5611 }
5612
5613 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5614 struct net_device *upper_dev,
5615 struct list_head *up_list,
5616 struct list_head *down_list,
5617 void *private, bool master)
5618 {
5619 int ret;
5620
5621 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5622 master);
5623 if (ret)
5624 return ret;
5625
5626 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5627 false);
5628 if (ret) {
5629 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5630 return ret;
5631 }
5632
5633 return 0;
5634 }
5635
5636 static int __netdev_adjacent_dev_link(struct net_device *dev,
5637 struct net_device *upper_dev)
5638 {
5639 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5640 &dev->all_adj_list.upper,
5641 &upper_dev->all_adj_list.lower,
5642 NULL, false);
5643 }
5644
5645 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5646 struct net_device *upper_dev,
5647 struct list_head *up_list,
5648 struct list_head *down_list)
5649 {
5650 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5651 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5652 }
5653
5654 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5655 struct net_device *upper_dev)
5656 {
5657 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5658 &dev->all_adj_list.upper,
5659 &upper_dev->all_adj_list.lower);
5660 }
5661
5662 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5663 struct net_device *upper_dev,
5664 void *private, bool master)
5665 {
5666 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5667
5668 if (ret)
5669 return ret;
5670
5671 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5672 &dev->adj_list.upper,
5673 &upper_dev->adj_list.lower,
5674 private, master);
5675 if (ret) {
5676 __netdev_adjacent_dev_unlink(dev, upper_dev);
5677 return ret;
5678 }
5679
5680 return 0;
5681 }
5682
5683 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5684 struct net_device *upper_dev)
5685 {
5686 __netdev_adjacent_dev_unlink(dev, upper_dev);
5687 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5688 &dev->adj_list.upper,
5689 &upper_dev->adj_list.lower);
5690 }
5691
5692 static int __netdev_upper_dev_link(struct net_device *dev,
5693 struct net_device *upper_dev, bool master,
5694 void *upper_priv, void *upper_info)
5695 {
5696 struct netdev_notifier_changeupper_info changeupper_info;
5697 struct netdev_adjacent *i, *j, *to_i, *to_j;
5698 int ret = 0;
5699
5700 ASSERT_RTNL();
5701
5702 if (dev == upper_dev)
5703 return -EBUSY;
5704
5705 /* To prevent loops, check if dev is not upper device to upper_dev. */
5706 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5707 return -EBUSY;
5708
5709 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5710 return -EEXIST;
5711
5712 if (master && netdev_master_upper_dev_get(dev))
5713 return -EBUSY;
5714
5715 changeupper_info.upper_dev = upper_dev;
5716 changeupper_info.master = master;
5717 changeupper_info.linking = true;
5718 changeupper_info.upper_info = upper_info;
5719
5720 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5721 &changeupper_info.info);
5722 ret = notifier_to_errno(ret);
5723 if (ret)
5724 return ret;
5725
5726 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5727 master);
5728 if (ret)
5729 return ret;
5730
5731 /* Now that we linked these devs, make all the upper_dev's
5732 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5733 * versa, and don't forget the devices itself. All of these
5734 * links are non-neighbours.
5735 */
5736 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5737 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5738 pr_debug("Interlinking %s with %s, non-neighbour\n",
5739 i->dev->name, j->dev->name);
5740 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5741 if (ret)
5742 goto rollback_mesh;
5743 }
5744 }
5745
5746 /* add dev to every upper_dev's upper device */
5747 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5748 pr_debug("linking %s's upper device %s with %s\n",
5749 upper_dev->name, i->dev->name, dev->name);
5750 ret = __netdev_adjacent_dev_link(dev, i->dev);
5751 if (ret)
5752 goto rollback_upper_mesh;
5753 }
5754
5755 /* add upper_dev to every dev's lower device */
5756 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5757 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5758 i->dev->name, upper_dev->name);
5759 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5760 if (ret)
5761 goto rollback_lower_mesh;
5762 }
5763
5764 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5765 &changeupper_info.info);
5766 ret = notifier_to_errno(ret);
5767 if (ret)
5768 goto rollback_lower_mesh;
5769
5770 return 0;
5771
5772 rollback_lower_mesh:
5773 to_i = i;
5774 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5775 if (i == to_i)
5776 break;
5777 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5778 }
5779
5780 i = NULL;
5781
5782 rollback_upper_mesh:
5783 to_i = i;
5784 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5785 if (i == to_i)
5786 break;
5787 __netdev_adjacent_dev_unlink(dev, i->dev);
5788 }
5789
5790 i = j = NULL;
5791
5792 rollback_mesh:
5793 to_i = i;
5794 to_j = j;
5795 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5796 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5797 if (i == to_i && j == to_j)
5798 break;
5799 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5800 }
5801 if (i == to_i)
5802 break;
5803 }
5804
5805 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5806
5807 return ret;
5808 }
5809
5810 /**
5811 * netdev_upper_dev_link - Add a link to the upper device
5812 * @dev: device
5813 * @upper_dev: new upper device
5814 *
5815 * Adds a link to device which is upper to this one. The caller must hold
5816 * the RTNL lock. On a failure a negative errno code is returned.
5817 * On success the reference counts are adjusted and the function
5818 * returns zero.
5819 */
5820 int netdev_upper_dev_link(struct net_device *dev,
5821 struct net_device *upper_dev)
5822 {
5823 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5824 }
5825 EXPORT_SYMBOL(netdev_upper_dev_link);
5826
5827 /**
5828 * netdev_master_upper_dev_link - Add a master link to the upper device
5829 * @dev: device
5830 * @upper_dev: new upper device
5831 * @upper_priv: upper device private
5832 * @upper_info: upper info to be passed down via notifier
5833 *
5834 * Adds a link to device which is upper to this one. In this case, only
5835 * one master upper device can be linked, although other non-master devices
5836 * might be linked as well. The caller must hold the RTNL lock.
5837 * On a failure a negative errno code is returned. On success the reference
5838 * counts are adjusted and the function returns zero.
5839 */
5840 int netdev_master_upper_dev_link(struct net_device *dev,
5841 struct net_device *upper_dev,
5842 void *upper_priv, void *upper_info)
5843 {
5844 return __netdev_upper_dev_link(dev, upper_dev, true,
5845 upper_priv, upper_info);
5846 }
5847 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5848
5849 /**
5850 * netdev_upper_dev_unlink - Removes a link to upper device
5851 * @dev: device
5852 * @upper_dev: new upper device
5853 *
5854 * Removes a link to device which is upper to this one. The caller must hold
5855 * the RTNL lock.
5856 */
5857 void netdev_upper_dev_unlink(struct net_device *dev,
5858 struct net_device *upper_dev)
5859 {
5860 struct netdev_notifier_changeupper_info changeupper_info;
5861 struct netdev_adjacent *i, *j;
5862 ASSERT_RTNL();
5863
5864 changeupper_info.upper_dev = upper_dev;
5865 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5866 changeupper_info.linking = false;
5867
5868 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5869 &changeupper_info.info);
5870
5871 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5872
5873 /* Here is the tricky part. We must remove all dev's lower
5874 * devices from all upper_dev's upper devices and vice
5875 * versa, to maintain the graph relationship.
5876 */
5877 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5878 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5879 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5880
5881 /* remove also the devices itself from lower/upper device
5882 * list
5883 */
5884 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5885 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5886
5887 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5888 __netdev_adjacent_dev_unlink(dev, i->dev);
5889
5890 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5891 &changeupper_info.info);
5892 }
5893 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5894
5895 /**
5896 * netdev_bonding_info_change - Dispatch event about slave change
5897 * @dev: device
5898 * @bonding_info: info to dispatch
5899 *
5900 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5901 * The caller must hold the RTNL lock.
5902 */
5903 void netdev_bonding_info_change(struct net_device *dev,
5904 struct netdev_bonding_info *bonding_info)
5905 {
5906 struct netdev_notifier_bonding_info info;
5907
5908 memcpy(&info.bonding_info, bonding_info,
5909 sizeof(struct netdev_bonding_info));
5910 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5911 &info.info);
5912 }
5913 EXPORT_SYMBOL(netdev_bonding_info_change);
5914
5915 static void netdev_adjacent_add_links(struct net_device *dev)
5916 {
5917 struct netdev_adjacent *iter;
5918
5919 struct net *net = dev_net(dev);
5920
5921 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5922 if (!net_eq(net,dev_net(iter->dev)))
5923 continue;
5924 netdev_adjacent_sysfs_add(iter->dev, dev,
5925 &iter->dev->adj_list.lower);
5926 netdev_adjacent_sysfs_add(dev, iter->dev,
5927 &dev->adj_list.upper);
5928 }
5929
5930 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5931 if (!net_eq(net,dev_net(iter->dev)))
5932 continue;
5933 netdev_adjacent_sysfs_add(iter->dev, dev,
5934 &iter->dev->adj_list.upper);
5935 netdev_adjacent_sysfs_add(dev, iter->dev,
5936 &dev->adj_list.lower);
5937 }
5938 }
5939
5940 static void netdev_adjacent_del_links(struct net_device *dev)
5941 {
5942 struct netdev_adjacent *iter;
5943
5944 struct net *net = dev_net(dev);
5945
5946 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5947 if (!net_eq(net,dev_net(iter->dev)))
5948 continue;
5949 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5950 &iter->dev->adj_list.lower);
5951 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5952 &dev->adj_list.upper);
5953 }
5954
5955 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5956 if (!net_eq(net,dev_net(iter->dev)))
5957 continue;
5958 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5959 &iter->dev->adj_list.upper);
5960 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5961 &dev->adj_list.lower);
5962 }
5963 }
5964
5965 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5966 {
5967 struct netdev_adjacent *iter;
5968
5969 struct net *net = dev_net(dev);
5970
5971 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5972 if (!net_eq(net,dev_net(iter->dev)))
5973 continue;
5974 netdev_adjacent_sysfs_del(iter->dev, oldname,
5975 &iter->dev->adj_list.lower);
5976 netdev_adjacent_sysfs_add(iter->dev, dev,
5977 &iter->dev->adj_list.lower);
5978 }
5979
5980 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5981 if (!net_eq(net,dev_net(iter->dev)))
5982 continue;
5983 netdev_adjacent_sysfs_del(iter->dev, oldname,
5984 &iter->dev->adj_list.upper);
5985 netdev_adjacent_sysfs_add(iter->dev, dev,
5986 &iter->dev->adj_list.upper);
5987 }
5988 }
5989
5990 void *netdev_lower_dev_get_private(struct net_device *dev,
5991 struct net_device *lower_dev)
5992 {
5993 struct netdev_adjacent *lower;
5994
5995 if (!lower_dev)
5996 return NULL;
5997 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5998 if (!lower)
5999 return NULL;
6000
6001 return lower->private;
6002 }
6003 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6004
6005
6006 int dev_get_nest_level(struct net_device *dev,
6007 bool (*type_check)(const struct net_device *dev))
6008 {
6009 struct net_device *lower = NULL;
6010 struct list_head *iter;
6011 int max_nest = -1;
6012 int nest;
6013
6014 ASSERT_RTNL();
6015
6016 netdev_for_each_lower_dev(dev, lower, iter) {
6017 nest = dev_get_nest_level(lower, type_check);
6018 if (max_nest < nest)
6019 max_nest = nest;
6020 }
6021
6022 if (type_check(dev))
6023 max_nest++;
6024
6025 return max_nest;
6026 }
6027 EXPORT_SYMBOL(dev_get_nest_level);
6028
6029 /**
6030 * netdev_lower_change - Dispatch event about lower device state change
6031 * @lower_dev: device
6032 * @lower_state_info: state to dispatch
6033 *
6034 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6035 * The caller must hold the RTNL lock.
6036 */
6037 void netdev_lower_state_changed(struct net_device *lower_dev,
6038 void *lower_state_info)
6039 {
6040 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6041
6042 ASSERT_RTNL();
6043 changelowerstate_info.lower_state_info = lower_state_info;
6044 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6045 &changelowerstate_info.info);
6046 }
6047 EXPORT_SYMBOL(netdev_lower_state_changed);
6048
6049 static void dev_change_rx_flags(struct net_device *dev, int flags)
6050 {
6051 const struct net_device_ops *ops = dev->netdev_ops;
6052
6053 if (ops->ndo_change_rx_flags)
6054 ops->ndo_change_rx_flags(dev, flags);
6055 }
6056
6057 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6058 {
6059 unsigned int old_flags = dev->flags;
6060 kuid_t uid;
6061 kgid_t gid;
6062
6063 ASSERT_RTNL();
6064
6065 dev->flags |= IFF_PROMISC;
6066 dev->promiscuity += inc;
6067 if (dev->promiscuity == 0) {
6068 /*
6069 * Avoid overflow.
6070 * If inc causes overflow, untouch promisc and return error.
6071 */
6072 if (inc < 0)
6073 dev->flags &= ~IFF_PROMISC;
6074 else {
6075 dev->promiscuity -= inc;
6076 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6077 dev->name);
6078 return -EOVERFLOW;
6079 }
6080 }
6081 if (dev->flags != old_flags) {
6082 pr_info("device %s %s promiscuous mode\n",
6083 dev->name,
6084 dev->flags & IFF_PROMISC ? "entered" : "left");
6085 if (audit_enabled) {
6086 current_uid_gid(&uid, &gid);
6087 audit_log(current->audit_context, GFP_ATOMIC,
6088 AUDIT_ANOM_PROMISCUOUS,
6089 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6090 dev->name, (dev->flags & IFF_PROMISC),
6091 (old_flags & IFF_PROMISC),
6092 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6093 from_kuid(&init_user_ns, uid),
6094 from_kgid(&init_user_ns, gid),
6095 audit_get_sessionid(current));
6096 }
6097
6098 dev_change_rx_flags(dev, IFF_PROMISC);
6099 }
6100 if (notify)
6101 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6102 return 0;
6103 }
6104
6105 /**
6106 * dev_set_promiscuity - update promiscuity count on a device
6107 * @dev: device
6108 * @inc: modifier
6109 *
6110 * Add or remove promiscuity from a device. While the count in the device
6111 * remains above zero the interface remains promiscuous. Once it hits zero
6112 * the device reverts back to normal filtering operation. A negative inc
6113 * value is used to drop promiscuity on the device.
6114 * Return 0 if successful or a negative errno code on error.
6115 */
6116 int dev_set_promiscuity(struct net_device *dev, int inc)
6117 {
6118 unsigned int old_flags = dev->flags;
6119 int err;
6120
6121 err = __dev_set_promiscuity(dev, inc, true);
6122 if (err < 0)
6123 return err;
6124 if (dev->flags != old_flags)
6125 dev_set_rx_mode(dev);
6126 return err;
6127 }
6128 EXPORT_SYMBOL(dev_set_promiscuity);
6129
6130 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6131 {
6132 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6133
6134 ASSERT_RTNL();
6135
6136 dev->flags |= IFF_ALLMULTI;
6137 dev->allmulti += inc;
6138 if (dev->allmulti == 0) {
6139 /*
6140 * Avoid overflow.
6141 * If inc causes overflow, untouch allmulti and return error.
6142 */
6143 if (inc < 0)
6144 dev->flags &= ~IFF_ALLMULTI;
6145 else {
6146 dev->allmulti -= inc;
6147 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6148 dev->name);
6149 return -EOVERFLOW;
6150 }
6151 }
6152 if (dev->flags ^ old_flags) {
6153 dev_change_rx_flags(dev, IFF_ALLMULTI);
6154 dev_set_rx_mode(dev);
6155 if (notify)
6156 __dev_notify_flags(dev, old_flags,
6157 dev->gflags ^ old_gflags);
6158 }
6159 return 0;
6160 }
6161
6162 /**
6163 * dev_set_allmulti - update allmulti count on a device
6164 * @dev: device
6165 * @inc: modifier
6166 *
6167 * Add or remove reception of all multicast frames to a device. While the
6168 * count in the device remains above zero the interface remains listening
6169 * to all interfaces. Once it hits zero the device reverts back to normal
6170 * filtering operation. A negative @inc value is used to drop the counter
6171 * when releasing a resource needing all multicasts.
6172 * Return 0 if successful or a negative errno code on error.
6173 */
6174
6175 int dev_set_allmulti(struct net_device *dev, int inc)
6176 {
6177 return __dev_set_allmulti(dev, inc, true);
6178 }
6179 EXPORT_SYMBOL(dev_set_allmulti);
6180
6181 /*
6182 * Upload unicast and multicast address lists to device and
6183 * configure RX filtering. When the device doesn't support unicast
6184 * filtering it is put in promiscuous mode while unicast addresses
6185 * are present.
6186 */
6187 void __dev_set_rx_mode(struct net_device *dev)
6188 {
6189 const struct net_device_ops *ops = dev->netdev_ops;
6190
6191 /* dev_open will call this function so the list will stay sane. */
6192 if (!(dev->flags&IFF_UP))
6193 return;
6194
6195 if (!netif_device_present(dev))
6196 return;
6197
6198 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6199 /* Unicast addresses changes may only happen under the rtnl,
6200 * therefore calling __dev_set_promiscuity here is safe.
6201 */
6202 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6203 __dev_set_promiscuity(dev, 1, false);
6204 dev->uc_promisc = true;
6205 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6206 __dev_set_promiscuity(dev, -1, false);
6207 dev->uc_promisc = false;
6208 }
6209 }
6210
6211 if (ops->ndo_set_rx_mode)
6212 ops->ndo_set_rx_mode(dev);
6213 }
6214
6215 void dev_set_rx_mode(struct net_device *dev)
6216 {
6217 netif_addr_lock_bh(dev);
6218 __dev_set_rx_mode(dev);
6219 netif_addr_unlock_bh(dev);
6220 }
6221
6222 /**
6223 * dev_get_flags - get flags reported to userspace
6224 * @dev: device
6225 *
6226 * Get the combination of flag bits exported through APIs to userspace.
6227 */
6228 unsigned int dev_get_flags(const struct net_device *dev)
6229 {
6230 unsigned int flags;
6231
6232 flags = (dev->flags & ~(IFF_PROMISC |
6233 IFF_ALLMULTI |
6234 IFF_RUNNING |
6235 IFF_LOWER_UP |
6236 IFF_DORMANT)) |
6237 (dev->gflags & (IFF_PROMISC |
6238 IFF_ALLMULTI));
6239
6240 if (netif_running(dev)) {
6241 if (netif_oper_up(dev))
6242 flags |= IFF_RUNNING;
6243 if (netif_carrier_ok(dev))
6244 flags |= IFF_LOWER_UP;
6245 if (netif_dormant(dev))
6246 flags |= IFF_DORMANT;
6247 }
6248
6249 return flags;
6250 }
6251 EXPORT_SYMBOL(dev_get_flags);
6252
6253 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6254 {
6255 unsigned int old_flags = dev->flags;
6256 int ret;
6257
6258 ASSERT_RTNL();
6259
6260 /*
6261 * Set the flags on our device.
6262 */
6263
6264 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6265 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6266 IFF_AUTOMEDIA)) |
6267 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6268 IFF_ALLMULTI));
6269
6270 /*
6271 * Load in the correct multicast list now the flags have changed.
6272 */
6273
6274 if ((old_flags ^ flags) & IFF_MULTICAST)
6275 dev_change_rx_flags(dev, IFF_MULTICAST);
6276
6277 dev_set_rx_mode(dev);
6278
6279 /*
6280 * Have we downed the interface. We handle IFF_UP ourselves
6281 * according to user attempts to set it, rather than blindly
6282 * setting it.
6283 */
6284
6285 ret = 0;
6286 if ((old_flags ^ flags) & IFF_UP)
6287 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6288
6289 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6290 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6291 unsigned int old_flags = dev->flags;
6292
6293 dev->gflags ^= IFF_PROMISC;
6294
6295 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6296 if (dev->flags != old_flags)
6297 dev_set_rx_mode(dev);
6298 }
6299
6300 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6301 is important. Some (broken) drivers set IFF_PROMISC, when
6302 IFF_ALLMULTI is requested not asking us and not reporting.
6303 */
6304 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6305 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6306
6307 dev->gflags ^= IFF_ALLMULTI;
6308 __dev_set_allmulti(dev, inc, false);
6309 }
6310
6311 return ret;
6312 }
6313
6314 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6315 unsigned int gchanges)
6316 {
6317 unsigned int changes = dev->flags ^ old_flags;
6318
6319 if (gchanges)
6320 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6321
6322 if (changes & IFF_UP) {
6323 if (dev->flags & IFF_UP)
6324 call_netdevice_notifiers(NETDEV_UP, dev);
6325 else
6326 call_netdevice_notifiers(NETDEV_DOWN, dev);
6327 }
6328
6329 if (dev->flags & IFF_UP &&
6330 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6331 struct netdev_notifier_change_info change_info;
6332
6333 change_info.flags_changed = changes;
6334 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6335 &change_info.info);
6336 }
6337 }
6338
6339 /**
6340 * dev_change_flags - change device settings
6341 * @dev: device
6342 * @flags: device state flags
6343 *
6344 * Change settings on device based state flags. The flags are
6345 * in the userspace exported format.
6346 */
6347 int dev_change_flags(struct net_device *dev, unsigned int flags)
6348 {
6349 int ret;
6350 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6351
6352 ret = __dev_change_flags(dev, flags);
6353 if (ret < 0)
6354 return ret;
6355
6356 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6357 __dev_notify_flags(dev, old_flags, changes);
6358 return ret;
6359 }
6360 EXPORT_SYMBOL(dev_change_flags);
6361
6362 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6363 {
6364 const struct net_device_ops *ops = dev->netdev_ops;
6365
6366 if (ops->ndo_change_mtu)
6367 return ops->ndo_change_mtu(dev, new_mtu);
6368
6369 dev->mtu = new_mtu;
6370 return 0;
6371 }
6372
6373 /**
6374 * dev_set_mtu - Change maximum transfer unit
6375 * @dev: device
6376 * @new_mtu: new transfer unit
6377 *
6378 * Change the maximum transfer size of the network device.
6379 */
6380 int dev_set_mtu(struct net_device *dev, int new_mtu)
6381 {
6382 int err, orig_mtu;
6383
6384 if (new_mtu == dev->mtu)
6385 return 0;
6386
6387 /* MTU must be positive. */
6388 if (new_mtu < 0)
6389 return -EINVAL;
6390
6391 if (!netif_device_present(dev))
6392 return -ENODEV;
6393
6394 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6395 err = notifier_to_errno(err);
6396 if (err)
6397 return err;
6398
6399 orig_mtu = dev->mtu;
6400 err = __dev_set_mtu(dev, new_mtu);
6401
6402 if (!err) {
6403 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6404 err = notifier_to_errno(err);
6405 if (err) {
6406 /* setting mtu back and notifying everyone again,
6407 * so that they have a chance to revert changes.
6408 */
6409 __dev_set_mtu(dev, orig_mtu);
6410 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6411 }
6412 }
6413 return err;
6414 }
6415 EXPORT_SYMBOL(dev_set_mtu);
6416
6417 /**
6418 * dev_set_group - Change group this device belongs to
6419 * @dev: device
6420 * @new_group: group this device should belong to
6421 */
6422 void dev_set_group(struct net_device *dev, int new_group)
6423 {
6424 dev->group = new_group;
6425 }
6426 EXPORT_SYMBOL(dev_set_group);
6427
6428 /**
6429 * dev_set_mac_address - Change Media Access Control Address
6430 * @dev: device
6431 * @sa: new address
6432 *
6433 * Change the hardware (MAC) address of the device
6434 */
6435 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6436 {
6437 const struct net_device_ops *ops = dev->netdev_ops;
6438 int err;
6439
6440 if (!ops->ndo_set_mac_address)
6441 return -EOPNOTSUPP;
6442 if (sa->sa_family != dev->type)
6443 return -EINVAL;
6444 if (!netif_device_present(dev))
6445 return -ENODEV;
6446 err = ops->ndo_set_mac_address(dev, sa);
6447 if (err)
6448 return err;
6449 dev->addr_assign_type = NET_ADDR_SET;
6450 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6451 add_device_randomness(dev->dev_addr, dev->addr_len);
6452 return 0;
6453 }
6454 EXPORT_SYMBOL(dev_set_mac_address);
6455
6456 /**
6457 * dev_change_carrier - Change device carrier
6458 * @dev: device
6459 * @new_carrier: new value
6460 *
6461 * Change device carrier
6462 */
6463 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6464 {
6465 const struct net_device_ops *ops = dev->netdev_ops;
6466
6467 if (!ops->ndo_change_carrier)
6468 return -EOPNOTSUPP;
6469 if (!netif_device_present(dev))
6470 return -ENODEV;
6471 return ops->ndo_change_carrier(dev, new_carrier);
6472 }
6473 EXPORT_SYMBOL(dev_change_carrier);
6474
6475 /**
6476 * dev_get_phys_port_id - Get device physical port ID
6477 * @dev: device
6478 * @ppid: port ID
6479 *
6480 * Get device physical port ID
6481 */
6482 int dev_get_phys_port_id(struct net_device *dev,
6483 struct netdev_phys_item_id *ppid)
6484 {
6485 const struct net_device_ops *ops = dev->netdev_ops;
6486
6487 if (!ops->ndo_get_phys_port_id)
6488 return -EOPNOTSUPP;
6489 return ops->ndo_get_phys_port_id(dev, ppid);
6490 }
6491 EXPORT_SYMBOL(dev_get_phys_port_id);
6492
6493 /**
6494 * dev_get_phys_port_name - Get device physical port name
6495 * @dev: device
6496 * @name: port name
6497 * @len: limit of bytes to copy to name
6498 *
6499 * Get device physical port name
6500 */
6501 int dev_get_phys_port_name(struct net_device *dev,
6502 char *name, size_t len)
6503 {
6504 const struct net_device_ops *ops = dev->netdev_ops;
6505
6506 if (!ops->ndo_get_phys_port_name)
6507 return -EOPNOTSUPP;
6508 return ops->ndo_get_phys_port_name(dev, name, len);
6509 }
6510 EXPORT_SYMBOL(dev_get_phys_port_name);
6511
6512 /**
6513 * dev_change_proto_down - update protocol port state information
6514 * @dev: device
6515 * @proto_down: new value
6516 *
6517 * This info can be used by switch drivers to set the phys state of the
6518 * port.
6519 */
6520 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6521 {
6522 const struct net_device_ops *ops = dev->netdev_ops;
6523
6524 if (!ops->ndo_change_proto_down)
6525 return -EOPNOTSUPP;
6526 if (!netif_device_present(dev))
6527 return -ENODEV;
6528 return ops->ndo_change_proto_down(dev, proto_down);
6529 }
6530 EXPORT_SYMBOL(dev_change_proto_down);
6531
6532 /**
6533 * dev_new_index - allocate an ifindex
6534 * @net: the applicable net namespace
6535 *
6536 * Returns a suitable unique value for a new device interface
6537 * number. The caller must hold the rtnl semaphore or the
6538 * dev_base_lock to be sure it remains unique.
6539 */
6540 static int dev_new_index(struct net *net)
6541 {
6542 int ifindex = net->ifindex;
6543 for (;;) {
6544 if (++ifindex <= 0)
6545 ifindex = 1;
6546 if (!__dev_get_by_index(net, ifindex))
6547 return net->ifindex = ifindex;
6548 }
6549 }
6550
6551 /* Delayed registration/unregisteration */
6552 static LIST_HEAD(net_todo_list);
6553 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6554
6555 static void net_set_todo(struct net_device *dev)
6556 {
6557 list_add_tail(&dev->todo_list, &net_todo_list);
6558 dev_net(dev)->dev_unreg_count++;
6559 }
6560
6561 static void rollback_registered_many(struct list_head *head)
6562 {
6563 struct net_device *dev, *tmp;
6564 LIST_HEAD(close_head);
6565
6566 BUG_ON(dev_boot_phase);
6567 ASSERT_RTNL();
6568
6569 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6570 /* Some devices call without registering
6571 * for initialization unwind. Remove those
6572 * devices and proceed with the remaining.
6573 */
6574 if (dev->reg_state == NETREG_UNINITIALIZED) {
6575 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6576 dev->name, dev);
6577
6578 WARN_ON(1);
6579 list_del(&dev->unreg_list);
6580 continue;
6581 }
6582 dev->dismantle = true;
6583 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6584 }
6585
6586 /* If device is running, close it first. */
6587 list_for_each_entry(dev, head, unreg_list)
6588 list_add_tail(&dev->close_list, &close_head);
6589 dev_close_many(&close_head, true);
6590
6591 list_for_each_entry(dev, head, unreg_list) {
6592 /* And unlink it from device chain. */
6593 unlist_netdevice(dev);
6594
6595 dev->reg_state = NETREG_UNREGISTERING;
6596 on_each_cpu(flush_backlog, dev, 1);
6597 }
6598
6599 synchronize_net();
6600
6601 list_for_each_entry(dev, head, unreg_list) {
6602 struct sk_buff *skb = NULL;
6603
6604 /* Shutdown queueing discipline. */
6605 dev_shutdown(dev);
6606
6607
6608 /* Notify protocols, that we are about to destroy
6609 this device. They should clean all the things.
6610 */
6611 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6612
6613 if (!dev->rtnl_link_ops ||
6614 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6615 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6616 GFP_KERNEL);
6617
6618 /*
6619 * Flush the unicast and multicast chains
6620 */
6621 dev_uc_flush(dev);
6622 dev_mc_flush(dev);
6623
6624 if (dev->netdev_ops->ndo_uninit)
6625 dev->netdev_ops->ndo_uninit(dev);
6626
6627 if (skb)
6628 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6629
6630 /* Notifier chain MUST detach us all upper devices. */
6631 WARN_ON(netdev_has_any_upper_dev(dev));
6632
6633 /* Remove entries from kobject tree */
6634 netdev_unregister_kobject(dev);
6635 #ifdef CONFIG_XPS
6636 /* Remove XPS queueing entries */
6637 netif_reset_xps_queues_gt(dev, 0);
6638 #endif
6639 }
6640
6641 synchronize_net();
6642
6643 list_for_each_entry(dev, head, unreg_list)
6644 dev_put(dev);
6645 }
6646
6647 static void rollback_registered(struct net_device *dev)
6648 {
6649 LIST_HEAD(single);
6650
6651 list_add(&dev->unreg_list, &single);
6652 rollback_registered_many(&single);
6653 list_del(&single);
6654 }
6655
6656 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6657 struct net_device *upper, netdev_features_t features)
6658 {
6659 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6660 netdev_features_t feature;
6661 int feature_bit;
6662
6663 for_each_netdev_feature(&upper_disables, feature_bit) {
6664 feature = __NETIF_F_BIT(feature_bit);
6665 if (!(upper->wanted_features & feature)
6666 && (features & feature)) {
6667 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6668 &feature, upper->name);
6669 features &= ~feature;
6670 }
6671 }
6672
6673 return features;
6674 }
6675
6676 static void netdev_sync_lower_features(struct net_device *upper,
6677 struct net_device *lower, netdev_features_t features)
6678 {
6679 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6680 netdev_features_t feature;
6681 int feature_bit;
6682
6683 for_each_netdev_feature(&upper_disables, feature_bit) {
6684 feature = __NETIF_F_BIT(feature_bit);
6685 if (!(features & feature) && (lower->features & feature)) {
6686 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6687 &feature, lower->name);
6688 lower->wanted_features &= ~feature;
6689 netdev_update_features(lower);
6690
6691 if (unlikely(lower->features & feature))
6692 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6693 &feature, lower->name);
6694 }
6695 }
6696 }
6697
6698 static netdev_features_t netdev_fix_features(struct net_device *dev,
6699 netdev_features_t features)
6700 {
6701 /* Fix illegal checksum combinations */
6702 if ((features & NETIF_F_HW_CSUM) &&
6703 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6704 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6705 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6706 }
6707
6708 /* TSO requires that SG is present as well. */
6709 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6710 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6711 features &= ~NETIF_F_ALL_TSO;
6712 }
6713
6714 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6715 !(features & NETIF_F_IP_CSUM)) {
6716 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6717 features &= ~NETIF_F_TSO;
6718 features &= ~NETIF_F_TSO_ECN;
6719 }
6720
6721 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6722 !(features & NETIF_F_IPV6_CSUM)) {
6723 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6724 features &= ~NETIF_F_TSO6;
6725 }
6726
6727 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6728 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6729 features &= ~NETIF_F_TSO_MANGLEID;
6730
6731 /* TSO ECN requires that TSO is present as well. */
6732 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6733 features &= ~NETIF_F_TSO_ECN;
6734
6735 /* Software GSO depends on SG. */
6736 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6737 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6738 features &= ~NETIF_F_GSO;
6739 }
6740
6741 /* UFO needs SG and checksumming */
6742 if (features & NETIF_F_UFO) {
6743 /* maybe split UFO into V4 and V6? */
6744 if (!(features & NETIF_F_HW_CSUM) &&
6745 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6746 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6747 netdev_dbg(dev,
6748 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6749 features &= ~NETIF_F_UFO;
6750 }
6751
6752 if (!(features & NETIF_F_SG)) {
6753 netdev_dbg(dev,
6754 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6755 features &= ~NETIF_F_UFO;
6756 }
6757 }
6758
6759 /* GSO partial features require GSO partial be set */
6760 if ((features & dev->gso_partial_features) &&
6761 !(features & NETIF_F_GSO_PARTIAL)) {
6762 netdev_dbg(dev,
6763 "Dropping partially supported GSO features since no GSO partial.\n");
6764 features &= ~dev->gso_partial_features;
6765 }
6766
6767 #ifdef CONFIG_NET_RX_BUSY_POLL
6768 if (dev->netdev_ops->ndo_busy_poll)
6769 features |= NETIF_F_BUSY_POLL;
6770 else
6771 #endif
6772 features &= ~NETIF_F_BUSY_POLL;
6773
6774 return features;
6775 }
6776
6777 int __netdev_update_features(struct net_device *dev)
6778 {
6779 struct net_device *upper, *lower;
6780 netdev_features_t features;
6781 struct list_head *iter;
6782 int err = -1;
6783
6784 ASSERT_RTNL();
6785
6786 features = netdev_get_wanted_features(dev);
6787
6788 if (dev->netdev_ops->ndo_fix_features)
6789 features = dev->netdev_ops->ndo_fix_features(dev, features);
6790
6791 /* driver might be less strict about feature dependencies */
6792 features = netdev_fix_features(dev, features);
6793
6794 /* some features can't be enabled if they're off an an upper device */
6795 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6796 features = netdev_sync_upper_features(dev, upper, features);
6797
6798 if (dev->features == features)
6799 goto sync_lower;
6800
6801 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6802 &dev->features, &features);
6803
6804 if (dev->netdev_ops->ndo_set_features)
6805 err = dev->netdev_ops->ndo_set_features(dev, features);
6806 else
6807 err = 0;
6808
6809 if (unlikely(err < 0)) {
6810 netdev_err(dev,
6811 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6812 err, &features, &dev->features);
6813 /* return non-0 since some features might have changed and
6814 * it's better to fire a spurious notification than miss it
6815 */
6816 return -1;
6817 }
6818
6819 sync_lower:
6820 /* some features must be disabled on lower devices when disabled
6821 * on an upper device (think: bonding master or bridge)
6822 */
6823 netdev_for_each_lower_dev(dev, lower, iter)
6824 netdev_sync_lower_features(dev, lower, features);
6825
6826 if (!err)
6827 dev->features = features;
6828
6829 return err < 0 ? 0 : 1;
6830 }
6831
6832 /**
6833 * netdev_update_features - recalculate device features
6834 * @dev: the device to check
6835 *
6836 * Recalculate dev->features set and send notifications if it
6837 * has changed. Should be called after driver or hardware dependent
6838 * conditions might have changed that influence the features.
6839 */
6840 void netdev_update_features(struct net_device *dev)
6841 {
6842 if (__netdev_update_features(dev))
6843 netdev_features_change(dev);
6844 }
6845 EXPORT_SYMBOL(netdev_update_features);
6846
6847 /**
6848 * netdev_change_features - recalculate device features
6849 * @dev: the device to check
6850 *
6851 * Recalculate dev->features set and send notifications even
6852 * if they have not changed. Should be called instead of
6853 * netdev_update_features() if also dev->vlan_features might
6854 * have changed to allow the changes to be propagated to stacked
6855 * VLAN devices.
6856 */
6857 void netdev_change_features(struct net_device *dev)
6858 {
6859 __netdev_update_features(dev);
6860 netdev_features_change(dev);
6861 }
6862 EXPORT_SYMBOL(netdev_change_features);
6863
6864 /**
6865 * netif_stacked_transfer_operstate - transfer operstate
6866 * @rootdev: the root or lower level device to transfer state from
6867 * @dev: the device to transfer operstate to
6868 *
6869 * Transfer operational state from root to device. This is normally
6870 * called when a stacking relationship exists between the root
6871 * device and the device(a leaf device).
6872 */
6873 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6874 struct net_device *dev)
6875 {
6876 if (rootdev->operstate == IF_OPER_DORMANT)
6877 netif_dormant_on(dev);
6878 else
6879 netif_dormant_off(dev);
6880
6881 if (netif_carrier_ok(rootdev)) {
6882 if (!netif_carrier_ok(dev))
6883 netif_carrier_on(dev);
6884 } else {
6885 if (netif_carrier_ok(dev))
6886 netif_carrier_off(dev);
6887 }
6888 }
6889 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6890
6891 #ifdef CONFIG_SYSFS
6892 static int netif_alloc_rx_queues(struct net_device *dev)
6893 {
6894 unsigned int i, count = dev->num_rx_queues;
6895 struct netdev_rx_queue *rx;
6896 size_t sz = count * sizeof(*rx);
6897
6898 BUG_ON(count < 1);
6899
6900 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6901 if (!rx) {
6902 rx = vzalloc(sz);
6903 if (!rx)
6904 return -ENOMEM;
6905 }
6906 dev->_rx = rx;
6907
6908 for (i = 0; i < count; i++)
6909 rx[i].dev = dev;
6910 return 0;
6911 }
6912 #endif
6913
6914 static void netdev_init_one_queue(struct net_device *dev,
6915 struct netdev_queue *queue, void *_unused)
6916 {
6917 /* Initialize queue lock */
6918 spin_lock_init(&queue->_xmit_lock);
6919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6920 queue->xmit_lock_owner = -1;
6921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6922 queue->dev = dev;
6923 #ifdef CONFIG_BQL
6924 dql_init(&queue->dql, HZ);
6925 #endif
6926 }
6927
6928 static void netif_free_tx_queues(struct net_device *dev)
6929 {
6930 kvfree(dev->_tx);
6931 }
6932
6933 static int netif_alloc_netdev_queues(struct net_device *dev)
6934 {
6935 unsigned int count = dev->num_tx_queues;
6936 struct netdev_queue *tx;
6937 size_t sz = count * sizeof(*tx);
6938
6939 if (count < 1 || count > 0xffff)
6940 return -EINVAL;
6941
6942 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6943 if (!tx) {
6944 tx = vzalloc(sz);
6945 if (!tx)
6946 return -ENOMEM;
6947 }
6948 dev->_tx = tx;
6949
6950 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6951 spin_lock_init(&dev->tx_global_lock);
6952
6953 return 0;
6954 }
6955
6956 void netif_tx_stop_all_queues(struct net_device *dev)
6957 {
6958 unsigned int i;
6959
6960 for (i = 0; i < dev->num_tx_queues; i++) {
6961 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6962 netif_tx_stop_queue(txq);
6963 }
6964 }
6965 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6966
6967 /**
6968 * register_netdevice - register a network device
6969 * @dev: device to register
6970 *
6971 * Take a completed network device structure and add it to the kernel
6972 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6973 * chain. 0 is returned on success. A negative errno code is returned
6974 * on a failure to set up the device, or if the name is a duplicate.
6975 *
6976 * Callers must hold the rtnl semaphore. You may want
6977 * register_netdev() instead of this.
6978 *
6979 * BUGS:
6980 * The locking appears insufficient to guarantee two parallel registers
6981 * will not get the same name.
6982 */
6983
6984 int register_netdevice(struct net_device *dev)
6985 {
6986 int ret;
6987 struct net *net = dev_net(dev);
6988
6989 BUG_ON(dev_boot_phase);
6990 ASSERT_RTNL();
6991
6992 might_sleep();
6993
6994 /* When net_device's are persistent, this will be fatal. */
6995 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6996 BUG_ON(!net);
6997
6998 spin_lock_init(&dev->addr_list_lock);
6999 netdev_set_addr_lockdep_class(dev);
7000
7001 ret = dev_get_valid_name(net, dev, dev->name);
7002 if (ret < 0)
7003 goto out;
7004
7005 /* Init, if this function is available */
7006 if (dev->netdev_ops->ndo_init) {
7007 ret = dev->netdev_ops->ndo_init(dev);
7008 if (ret) {
7009 if (ret > 0)
7010 ret = -EIO;
7011 goto out;
7012 }
7013 }
7014
7015 if (((dev->hw_features | dev->features) &
7016 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7017 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7018 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7019 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7020 ret = -EINVAL;
7021 goto err_uninit;
7022 }
7023
7024 ret = -EBUSY;
7025 if (!dev->ifindex)
7026 dev->ifindex = dev_new_index(net);
7027 else if (__dev_get_by_index(net, dev->ifindex))
7028 goto err_uninit;
7029
7030 /* Transfer changeable features to wanted_features and enable
7031 * software offloads (GSO and GRO).
7032 */
7033 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7034 dev->features |= NETIF_F_SOFT_FEATURES;
7035 dev->wanted_features = dev->features & dev->hw_features;
7036
7037 if (!(dev->flags & IFF_LOOPBACK))
7038 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7039
7040 /* If IPv4 TCP segmentation offload is supported we should also
7041 * allow the device to enable segmenting the frame with the option
7042 * of ignoring a static IP ID value. This doesn't enable the
7043 * feature itself but allows the user to enable it later.
7044 */
7045 if (dev->hw_features & NETIF_F_TSO)
7046 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7047 if (dev->vlan_features & NETIF_F_TSO)
7048 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7049 if (dev->mpls_features & NETIF_F_TSO)
7050 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7051 if (dev->hw_enc_features & NETIF_F_TSO)
7052 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7053
7054 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7055 */
7056 dev->vlan_features |= NETIF_F_HIGHDMA;
7057
7058 /* Make NETIF_F_SG inheritable to tunnel devices.
7059 */
7060 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7061
7062 /* Make NETIF_F_SG inheritable to MPLS.
7063 */
7064 dev->mpls_features |= NETIF_F_SG;
7065
7066 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7067 ret = notifier_to_errno(ret);
7068 if (ret)
7069 goto err_uninit;
7070
7071 ret = netdev_register_kobject(dev);
7072 if (ret)
7073 goto err_uninit;
7074 dev->reg_state = NETREG_REGISTERED;
7075
7076 __netdev_update_features(dev);
7077
7078 /*
7079 * Default initial state at registry is that the
7080 * device is present.
7081 */
7082
7083 set_bit(__LINK_STATE_PRESENT, &dev->state);
7084
7085 linkwatch_init_dev(dev);
7086
7087 dev_init_scheduler(dev);
7088 dev_hold(dev);
7089 list_netdevice(dev);
7090 add_device_randomness(dev->dev_addr, dev->addr_len);
7091
7092 /* If the device has permanent device address, driver should
7093 * set dev_addr and also addr_assign_type should be set to
7094 * NET_ADDR_PERM (default value).
7095 */
7096 if (dev->addr_assign_type == NET_ADDR_PERM)
7097 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7098
7099 /* Notify protocols, that a new device appeared. */
7100 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7101 ret = notifier_to_errno(ret);
7102 if (ret) {
7103 rollback_registered(dev);
7104 dev->reg_state = NETREG_UNREGISTERED;
7105 }
7106 /*
7107 * Prevent userspace races by waiting until the network
7108 * device is fully setup before sending notifications.
7109 */
7110 if (!dev->rtnl_link_ops ||
7111 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7112 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7113
7114 out:
7115 return ret;
7116
7117 err_uninit:
7118 if (dev->netdev_ops->ndo_uninit)
7119 dev->netdev_ops->ndo_uninit(dev);
7120 goto out;
7121 }
7122 EXPORT_SYMBOL(register_netdevice);
7123
7124 /**
7125 * init_dummy_netdev - init a dummy network device for NAPI
7126 * @dev: device to init
7127 *
7128 * This takes a network device structure and initialize the minimum
7129 * amount of fields so it can be used to schedule NAPI polls without
7130 * registering a full blown interface. This is to be used by drivers
7131 * that need to tie several hardware interfaces to a single NAPI
7132 * poll scheduler due to HW limitations.
7133 */
7134 int init_dummy_netdev(struct net_device *dev)
7135 {
7136 /* Clear everything. Note we don't initialize spinlocks
7137 * are they aren't supposed to be taken by any of the
7138 * NAPI code and this dummy netdev is supposed to be
7139 * only ever used for NAPI polls
7140 */
7141 memset(dev, 0, sizeof(struct net_device));
7142
7143 /* make sure we BUG if trying to hit standard
7144 * register/unregister code path
7145 */
7146 dev->reg_state = NETREG_DUMMY;
7147
7148 /* NAPI wants this */
7149 INIT_LIST_HEAD(&dev->napi_list);
7150
7151 /* a dummy interface is started by default */
7152 set_bit(__LINK_STATE_PRESENT, &dev->state);
7153 set_bit(__LINK_STATE_START, &dev->state);
7154
7155 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7156 * because users of this 'device' dont need to change
7157 * its refcount.
7158 */
7159
7160 return 0;
7161 }
7162 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7163
7164
7165 /**
7166 * register_netdev - register a network device
7167 * @dev: device to register
7168 *
7169 * Take a completed network device structure and add it to the kernel
7170 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7171 * chain. 0 is returned on success. A negative errno code is returned
7172 * on a failure to set up the device, or if the name is a duplicate.
7173 *
7174 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7175 * and expands the device name if you passed a format string to
7176 * alloc_netdev.
7177 */
7178 int register_netdev(struct net_device *dev)
7179 {
7180 int err;
7181
7182 rtnl_lock();
7183 err = register_netdevice(dev);
7184 rtnl_unlock();
7185 return err;
7186 }
7187 EXPORT_SYMBOL(register_netdev);
7188
7189 int netdev_refcnt_read(const struct net_device *dev)
7190 {
7191 int i, refcnt = 0;
7192
7193 for_each_possible_cpu(i)
7194 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7195 return refcnt;
7196 }
7197 EXPORT_SYMBOL(netdev_refcnt_read);
7198
7199 /**
7200 * netdev_wait_allrefs - wait until all references are gone.
7201 * @dev: target net_device
7202 *
7203 * This is called when unregistering network devices.
7204 *
7205 * Any protocol or device that holds a reference should register
7206 * for netdevice notification, and cleanup and put back the
7207 * reference if they receive an UNREGISTER event.
7208 * We can get stuck here if buggy protocols don't correctly
7209 * call dev_put.
7210 */
7211 static void netdev_wait_allrefs(struct net_device *dev)
7212 {
7213 unsigned long rebroadcast_time, warning_time;
7214 int refcnt;
7215
7216 linkwatch_forget_dev(dev);
7217
7218 rebroadcast_time = warning_time = jiffies;
7219 refcnt = netdev_refcnt_read(dev);
7220
7221 while (refcnt != 0) {
7222 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7223 rtnl_lock();
7224
7225 /* Rebroadcast unregister notification */
7226 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7227
7228 __rtnl_unlock();
7229 rcu_barrier();
7230 rtnl_lock();
7231
7232 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7233 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7234 &dev->state)) {
7235 /* We must not have linkwatch events
7236 * pending on unregister. If this
7237 * happens, we simply run the queue
7238 * unscheduled, resulting in a noop
7239 * for this device.
7240 */
7241 linkwatch_run_queue();
7242 }
7243
7244 __rtnl_unlock();
7245
7246 rebroadcast_time = jiffies;
7247 }
7248
7249 msleep(250);
7250
7251 refcnt = netdev_refcnt_read(dev);
7252
7253 if (time_after(jiffies, warning_time + 10 * HZ)) {
7254 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7255 dev->name, refcnt);
7256 warning_time = jiffies;
7257 }
7258 }
7259 }
7260
7261 /* The sequence is:
7262 *
7263 * rtnl_lock();
7264 * ...
7265 * register_netdevice(x1);
7266 * register_netdevice(x2);
7267 * ...
7268 * unregister_netdevice(y1);
7269 * unregister_netdevice(y2);
7270 * ...
7271 * rtnl_unlock();
7272 * free_netdev(y1);
7273 * free_netdev(y2);
7274 *
7275 * We are invoked by rtnl_unlock().
7276 * This allows us to deal with problems:
7277 * 1) We can delete sysfs objects which invoke hotplug
7278 * without deadlocking with linkwatch via keventd.
7279 * 2) Since we run with the RTNL semaphore not held, we can sleep
7280 * safely in order to wait for the netdev refcnt to drop to zero.
7281 *
7282 * We must not return until all unregister events added during
7283 * the interval the lock was held have been completed.
7284 */
7285 void netdev_run_todo(void)
7286 {
7287 struct list_head list;
7288
7289 /* Snapshot list, allow later requests */
7290 list_replace_init(&net_todo_list, &list);
7291
7292 __rtnl_unlock();
7293
7294
7295 /* Wait for rcu callbacks to finish before next phase */
7296 if (!list_empty(&list))
7297 rcu_barrier();
7298
7299 while (!list_empty(&list)) {
7300 struct net_device *dev
7301 = list_first_entry(&list, struct net_device, todo_list);
7302 list_del(&dev->todo_list);
7303
7304 rtnl_lock();
7305 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7306 __rtnl_unlock();
7307
7308 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7309 pr_err("network todo '%s' but state %d\n",
7310 dev->name, dev->reg_state);
7311 dump_stack();
7312 continue;
7313 }
7314
7315 dev->reg_state = NETREG_UNREGISTERED;
7316
7317 netdev_wait_allrefs(dev);
7318
7319 /* paranoia */
7320 BUG_ON(netdev_refcnt_read(dev));
7321 BUG_ON(!list_empty(&dev->ptype_all));
7322 BUG_ON(!list_empty(&dev->ptype_specific));
7323 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7324 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7325 WARN_ON(dev->dn_ptr);
7326
7327 if (dev->destructor)
7328 dev->destructor(dev);
7329
7330 /* Report a network device has been unregistered */
7331 rtnl_lock();
7332 dev_net(dev)->dev_unreg_count--;
7333 __rtnl_unlock();
7334 wake_up(&netdev_unregistering_wq);
7335
7336 /* Free network device */
7337 kobject_put(&dev->dev.kobj);
7338 }
7339 }
7340
7341 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7342 * all the same fields in the same order as net_device_stats, with only
7343 * the type differing, but rtnl_link_stats64 may have additional fields
7344 * at the end for newer counters.
7345 */
7346 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7347 const struct net_device_stats *netdev_stats)
7348 {
7349 #if BITS_PER_LONG == 64
7350 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7351 memcpy(stats64, netdev_stats, sizeof(*stats64));
7352 /* zero out counters that only exist in rtnl_link_stats64 */
7353 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7354 sizeof(*stats64) - sizeof(*netdev_stats));
7355 #else
7356 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7357 const unsigned long *src = (const unsigned long *)netdev_stats;
7358 u64 *dst = (u64 *)stats64;
7359
7360 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7361 for (i = 0; i < n; i++)
7362 dst[i] = src[i];
7363 /* zero out counters that only exist in rtnl_link_stats64 */
7364 memset((char *)stats64 + n * sizeof(u64), 0,
7365 sizeof(*stats64) - n * sizeof(u64));
7366 #endif
7367 }
7368 EXPORT_SYMBOL(netdev_stats_to_stats64);
7369
7370 /**
7371 * dev_get_stats - get network device statistics
7372 * @dev: device to get statistics from
7373 * @storage: place to store stats
7374 *
7375 * Get network statistics from device. Return @storage.
7376 * The device driver may provide its own method by setting
7377 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7378 * otherwise the internal statistics structure is used.
7379 */
7380 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7381 struct rtnl_link_stats64 *storage)
7382 {
7383 const struct net_device_ops *ops = dev->netdev_ops;
7384
7385 if (ops->ndo_get_stats64) {
7386 memset(storage, 0, sizeof(*storage));
7387 ops->ndo_get_stats64(dev, storage);
7388 } else if (ops->ndo_get_stats) {
7389 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7390 } else {
7391 netdev_stats_to_stats64(storage, &dev->stats);
7392 }
7393 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7394 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7395 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7396 return storage;
7397 }
7398 EXPORT_SYMBOL(dev_get_stats);
7399
7400 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7401 {
7402 struct netdev_queue *queue = dev_ingress_queue(dev);
7403
7404 #ifdef CONFIG_NET_CLS_ACT
7405 if (queue)
7406 return queue;
7407 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7408 if (!queue)
7409 return NULL;
7410 netdev_init_one_queue(dev, queue, NULL);
7411 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7412 queue->qdisc_sleeping = &noop_qdisc;
7413 rcu_assign_pointer(dev->ingress_queue, queue);
7414 #endif
7415 return queue;
7416 }
7417
7418 static const struct ethtool_ops default_ethtool_ops;
7419
7420 void netdev_set_default_ethtool_ops(struct net_device *dev,
7421 const struct ethtool_ops *ops)
7422 {
7423 if (dev->ethtool_ops == &default_ethtool_ops)
7424 dev->ethtool_ops = ops;
7425 }
7426 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7427
7428 void netdev_freemem(struct net_device *dev)
7429 {
7430 char *addr = (char *)dev - dev->padded;
7431
7432 kvfree(addr);
7433 }
7434
7435 /**
7436 * alloc_netdev_mqs - allocate network device
7437 * @sizeof_priv: size of private data to allocate space for
7438 * @name: device name format string
7439 * @name_assign_type: origin of device name
7440 * @setup: callback to initialize device
7441 * @txqs: the number of TX subqueues to allocate
7442 * @rxqs: the number of RX subqueues to allocate
7443 *
7444 * Allocates a struct net_device with private data area for driver use
7445 * and performs basic initialization. Also allocates subqueue structs
7446 * for each queue on the device.
7447 */
7448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7449 unsigned char name_assign_type,
7450 void (*setup)(struct net_device *),
7451 unsigned int txqs, unsigned int rxqs)
7452 {
7453 struct net_device *dev;
7454 size_t alloc_size;
7455 struct net_device *p;
7456
7457 BUG_ON(strlen(name) >= sizeof(dev->name));
7458
7459 if (txqs < 1) {
7460 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7461 return NULL;
7462 }
7463
7464 #ifdef CONFIG_SYSFS
7465 if (rxqs < 1) {
7466 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7467 return NULL;
7468 }
7469 #endif
7470
7471 alloc_size = sizeof(struct net_device);
7472 if (sizeof_priv) {
7473 /* ensure 32-byte alignment of private area */
7474 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7475 alloc_size += sizeof_priv;
7476 }
7477 /* ensure 32-byte alignment of whole construct */
7478 alloc_size += NETDEV_ALIGN - 1;
7479
7480 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7481 if (!p)
7482 p = vzalloc(alloc_size);
7483 if (!p)
7484 return NULL;
7485
7486 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7487 dev->padded = (char *)dev - (char *)p;
7488
7489 dev->pcpu_refcnt = alloc_percpu(int);
7490 if (!dev->pcpu_refcnt)
7491 goto free_dev;
7492
7493 if (dev_addr_init(dev))
7494 goto free_pcpu;
7495
7496 dev_mc_init(dev);
7497 dev_uc_init(dev);
7498
7499 dev_net_set(dev, &init_net);
7500
7501 dev->gso_max_size = GSO_MAX_SIZE;
7502 dev->gso_max_segs = GSO_MAX_SEGS;
7503
7504 INIT_LIST_HEAD(&dev->napi_list);
7505 INIT_LIST_HEAD(&dev->unreg_list);
7506 INIT_LIST_HEAD(&dev->close_list);
7507 INIT_LIST_HEAD(&dev->link_watch_list);
7508 INIT_LIST_HEAD(&dev->adj_list.upper);
7509 INIT_LIST_HEAD(&dev->adj_list.lower);
7510 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7511 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7512 INIT_LIST_HEAD(&dev->ptype_all);
7513 INIT_LIST_HEAD(&dev->ptype_specific);
7514 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7515 setup(dev);
7516
7517 if (!dev->tx_queue_len) {
7518 dev->priv_flags |= IFF_NO_QUEUE;
7519 dev->tx_queue_len = 1;
7520 }
7521
7522 dev->num_tx_queues = txqs;
7523 dev->real_num_tx_queues = txqs;
7524 if (netif_alloc_netdev_queues(dev))
7525 goto free_all;
7526
7527 #ifdef CONFIG_SYSFS
7528 dev->num_rx_queues = rxqs;
7529 dev->real_num_rx_queues = rxqs;
7530 if (netif_alloc_rx_queues(dev))
7531 goto free_all;
7532 #endif
7533
7534 strcpy(dev->name, name);
7535 dev->name_assign_type = name_assign_type;
7536 dev->group = INIT_NETDEV_GROUP;
7537 if (!dev->ethtool_ops)
7538 dev->ethtool_ops = &default_ethtool_ops;
7539
7540 nf_hook_ingress_init(dev);
7541
7542 return dev;
7543
7544 free_all:
7545 free_netdev(dev);
7546 return NULL;
7547
7548 free_pcpu:
7549 free_percpu(dev->pcpu_refcnt);
7550 free_dev:
7551 netdev_freemem(dev);
7552 return NULL;
7553 }
7554 EXPORT_SYMBOL(alloc_netdev_mqs);
7555
7556 /**
7557 * free_netdev - free network device
7558 * @dev: device
7559 *
7560 * This function does the last stage of destroying an allocated device
7561 * interface. The reference to the device object is released.
7562 * If this is the last reference then it will be freed.
7563 * Must be called in process context.
7564 */
7565 void free_netdev(struct net_device *dev)
7566 {
7567 struct napi_struct *p, *n;
7568
7569 might_sleep();
7570 netif_free_tx_queues(dev);
7571 #ifdef CONFIG_SYSFS
7572 kvfree(dev->_rx);
7573 #endif
7574
7575 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7576
7577 /* Flush device addresses */
7578 dev_addr_flush(dev);
7579
7580 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7581 netif_napi_del(p);
7582
7583 free_percpu(dev->pcpu_refcnt);
7584 dev->pcpu_refcnt = NULL;
7585
7586 /* Compatibility with error handling in drivers */
7587 if (dev->reg_state == NETREG_UNINITIALIZED) {
7588 netdev_freemem(dev);
7589 return;
7590 }
7591
7592 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7593 dev->reg_state = NETREG_RELEASED;
7594
7595 /* will free via device release */
7596 put_device(&dev->dev);
7597 }
7598 EXPORT_SYMBOL(free_netdev);
7599
7600 /**
7601 * synchronize_net - Synchronize with packet receive processing
7602 *
7603 * Wait for packets currently being received to be done.
7604 * Does not block later packets from starting.
7605 */
7606 void synchronize_net(void)
7607 {
7608 might_sleep();
7609 if (rtnl_is_locked())
7610 synchronize_rcu_expedited();
7611 else
7612 synchronize_rcu();
7613 }
7614 EXPORT_SYMBOL(synchronize_net);
7615
7616 /**
7617 * unregister_netdevice_queue - remove device from the kernel
7618 * @dev: device
7619 * @head: list
7620 *
7621 * This function shuts down a device interface and removes it
7622 * from the kernel tables.
7623 * If head not NULL, device is queued to be unregistered later.
7624 *
7625 * Callers must hold the rtnl semaphore. You may want
7626 * unregister_netdev() instead of this.
7627 */
7628
7629 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7630 {
7631 ASSERT_RTNL();
7632
7633 if (head) {
7634 list_move_tail(&dev->unreg_list, head);
7635 } else {
7636 rollback_registered(dev);
7637 /* Finish processing unregister after unlock */
7638 net_set_todo(dev);
7639 }
7640 }
7641 EXPORT_SYMBOL(unregister_netdevice_queue);
7642
7643 /**
7644 * unregister_netdevice_many - unregister many devices
7645 * @head: list of devices
7646 *
7647 * Note: As most callers use a stack allocated list_head,
7648 * we force a list_del() to make sure stack wont be corrupted later.
7649 */
7650 void unregister_netdevice_many(struct list_head *head)
7651 {
7652 struct net_device *dev;
7653
7654 if (!list_empty(head)) {
7655 rollback_registered_many(head);
7656 list_for_each_entry(dev, head, unreg_list)
7657 net_set_todo(dev);
7658 list_del(head);
7659 }
7660 }
7661 EXPORT_SYMBOL(unregister_netdevice_many);
7662
7663 /**
7664 * unregister_netdev - remove device from the kernel
7665 * @dev: device
7666 *
7667 * This function shuts down a device interface and removes it
7668 * from the kernel tables.
7669 *
7670 * This is just a wrapper for unregister_netdevice that takes
7671 * the rtnl semaphore. In general you want to use this and not
7672 * unregister_netdevice.
7673 */
7674 void unregister_netdev(struct net_device *dev)
7675 {
7676 rtnl_lock();
7677 unregister_netdevice(dev);
7678 rtnl_unlock();
7679 }
7680 EXPORT_SYMBOL(unregister_netdev);
7681
7682 /**
7683 * dev_change_net_namespace - move device to different nethost namespace
7684 * @dev: device
7685 * @net: network namespace
7686 * @pat: If not NULL name pattern to try if the current device name
7687 * is already taken in the destination network namespace.
7688 *
7689 * This function shuts down a device interface and moves it
7690 * to a new network namespace. On success 0 is returned, on
7691 * a failure a netagive errno code is returned.
7692 *
7693 * Callers must hold the rtnl semaphore.
7694 */
7695
7696 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7697 {
7698 int err;
7699
7700 ASSERT_RTNL();
7701
7702 /* Don't allow namespace local devices to be moved. */
7703 err = -EINVAL;
7704 if (dev->features & NETIF_F_NETNS_LOCAL)
7705 goto out;
7706
7707 /* Ensure the device has been registrered */
7708 if (dev->reg_state != NETREG_REGISTERED)
7709 goto out;
7710
7711 /* Get out if there is nothing todo */
7712 err = 0;
7713 if (net_eq(dev_net(dev), net))
7714 goto out;
7715
7716 /* Pick the destination device name, and ensure
7717 * we can use it in the destination network namespace.
7718 */
7719 err = -EEXIST;
7720 if (__dev_get_by_name(net, dev->name)) {
7721 /* We get here if we can't use the current device name */
7722 if (!pat)
7723 goto out;
7724 if (dev_get_valid_name(net, dev, pat) < 0)
7725 goto out;
7726 }
7727
7728 /*
7729 * And now a mini version of register_netdevice unregister_netdevice.
7730 */
7731
7732 /* If device is running close it first. */
7733 dev_close(dev);
7734
7735 /* And unlink it from device chain */
7736 err = -ENODEV;
7737 unlist_netdevice(dev);
7738
7739 synchronize_net();
7740
7741 /* Shutdown queueing discipline. */
7742 dev_shutdown(dev);
7743
7744 /* Notify protocols, that we are about to destroy
7745 this device. They should clean all the things.
7746
7747 Note that dev->reg_state stays at NETREG_REGISTERED.
7748 This is wanted because this way 8021q and macvlan know
7749 the device is just moving and can keep their slaves up.
7750 */
7751 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7752 rcu_barrier();
7753 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7754 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7755
7756 /*
7757 * Flush the unicast and multicast chains
7758 */
7759 dev_uc_flush(dev);
7760 dev_mc_flush(dev);
7761
7762 /* Send a netdev-removed uevent to the old namespace */
7763 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7764 netdev_adjacent_del_links(dev);
7765
7766 /* Actually switch the network namespace */
7767 dev_net_set(dev, net);
7768
7769 /* If there is an ifindex conflict assign a new one */
7770 if (__dev_get_by_index(net, dev->ifindex))
7771 dev->ifindex = dev_new_index(net);
7772
7773 /* Send a netdev-add uevent to the new namespace */
7774 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7775 netdev_adjacent_add_links(dev);
7776
7777 /* Fixup kobjects */
7778 err = device_rename(&dev->dev, dev->name);
7779 WARN_ON(err);
7780
7781 /* Add the device back in the hashes */
7782 list_netdevice(dev);
7783
7784 /* Notify protocols, that a new device appeared. */
7785 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7786
7787 /*
7788 * Prevent userspace races by waiting until the network
7789 * device is fully setup before sending notifications.
7790 */
7791 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7792
7793 synchronize_net();
7794 err = 0;
7795 out:
7796 return err;
7797 }
7798 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7799
7800 static int dev_cpu_callback(struct notifier_block *nfb,
7801 unsigned long action,
7802 void *ocpu)
7803 {
7804 struct sk_buff **list_skb;
7805 struct sk_buff *skb;
7806 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7807 struct softnet_data *sd, *oldsd;
7808
7809 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7810 return NOTIFY_OK;
7811
7812 local_irq_disable();
7813 cpu = smp_processor_id();
7814 sd = &per_cpu(softnet_data, cpu);
7815 oldsd = &per_cpu(softnet_data, oldcpu);
7816
7817 /* Find end of our completion_queue. */
7818 list_skb = &sd->completion_queue;
7819 while (*list_skb)
7820 list_skb = &(*list_skb)->next;
7821 /* Append completion queue from offline CPU. */
7822 *list_skb = oldsd->completion_queue;
7823 oldsd->completion_queue = NULL;
7824
7825 /* Append output queue from offline CPU. */
7826 if (oldsd->output_queue) {
7827 *sd->output_queue_tailp = oldsd->output_queue;
7828 sd->output_queue_tailp = oldsd->output_queue_tailp;
7829 oldsd->output_queue = NULL;
7830 oldsd->output_queue_tailp = &oldsd->output_queue;
7831 }
7832 /* Append NAPI poll list from offline CPU, with one exception :
7833 * process_backlog() must be called by cpu owning percpu backlog.
7834 * We properly handle process_queue & input_pkt_queue later.
7835 */
7836 while (!list_empty(&oldsd->poll_list)) {
7837 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7838 struct napi_struct,
7839 poll_list);
7840
7841 list_del_init(&napi->poll_list);
7842 if (napi->poll == process_backlog)
7843 napi->state = 0;
7844 else
7845 ____napi_schedule(sd, napi);
7846 }
7847
7848 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7849 local_irq_enable();
7850
7851 /* Process offline CPU's input_pkt_queue */
7852 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7853 netif_rx_ni(skb);
7854 input_queue_head_incr(oldsd);
7855 }
7856 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7857 netif_rx_ni(skb);
7858 input_queue_head_incr(oldsd);
7859 }
7860
7861 return NOTIFY_OK;
7862 }
7863
7864
7865 /**
7866 * netdev_increment_features - increment feature set by one
7867 * @all: current feature set
7868 * @one: new feature set
7869 * @mask: mask feature set
7870 *
7871 * Computes a new feature set after adding a device with feature set
7872 * @one to the master device with current feature set @all. Will not
7873 * enable anything that is off in @mask. Returns the new feature set.
7874 */
7875 netdev_features_t netdev_increment_features(netdev_features_t all,
7876 netdev_features_t one, netdev_features_t mask)
7877 {
7878 if (mask & NETIF_F_HW_CSUM)
7879 mask |= NETIF_F_CSUM_MASK;
7880 mask |= NETIF_F_VLAN_CHALLENGED;
7881
7882 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7883 all &= one | ~NETIF_F_ALL_FOR_ALL;
7884
7885 /* If one device supports hw checksumming, set for all. */
7886 if (all & NETIF_F_HW_CSUM)
7887 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7888
7889 return all;
7890 }
7891 EXPORT_SYMBOL(netdev_increment_features);
7892
7893 static struct hlist_head * __net_init netdev_create_hash(void)
7894 {
7895 int i;
7896 struct hlist_head *hash;
7897
7898 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7899 if (hash != NULL)
7900 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7901 INIT_HLIST_HEAD(&hash[i]);
7902
7903 return hash;
7904 }
7905
7906 /* Initialize per network namespace state */
7907 static int __net_init netdev_init(struct net *net)
7908 {
7909 if (net != &init_net)
7910 INIT_LIST_HEAD(&net->dev_base_head);
7911
7912 net->dev_name_head = netdev_create_hash();
7913 if (net->dev_name_head == NULL)
7914 goto err_name;
7915
7916 net->dev_index_head = netdev_create_hash();
7917 if (net->dev_index_head == NULL)
7918 goto err_idx;
7919
7920 return 0;
7921
7922 err_idx:
7923 kfree(net->dev_name_head);
7924 err_name:
7925 return -ENOMEM;
7926 }
7927
7928 /**
7929 * netdev_drivername - network driver for the device
7930 * @dev: network device
7931 *
7932 * Determine network driver for device.
7933 */
7934 const char *netdev_drivername(const struct net_device *dev)
7935 {
7936 const struct device_driver *driver;
7937 const struct device *parent;
7938 const char *empty = "";
7939
7940 parent = dev->dev.parent;
7941 if (!parent)
7942 return empty;
7943
7944 driver = parent->driver;
7945 if (driver && driver->name)
7946 return driver->name;
7947 return empty;
7948 }
7949
7950 static void __netdev_printk(const char *level, const struct net_device *dev,
7951 struct va_format *vaf)
7952 {
7953 if (dev && dev->dev.parent) {
7954 dev_printk_emit(level[1] - '0',
7955 dev->dev.parent,
7956 "%s %s %s%s: %pV",
7957 dev_driver_string(dev->dev.parent),
7958 dev_name(dev->dev.parent),
7959 netdev_name(dev), netdev_reg_state(dev),
7960 vaf);
7961 } else if (dev) {
7962 printk("%s%s%s: %pV",
7963 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7964 } else {
7965 printk("%s(NULL net_device): %pV", level, vaf);
7966 }
7967 }
7968
7969 void netdev_printk(const char *level, const struct net_device *dev,
7970 const char *format, ...)
7971 {
7972 struct va_format vaf;
7973 va_list args;
7974
7975 va_start(args, format);
7976
7977 vaf.fmt = format;
7978 vaf.va = &args;
7979
7980 __netdev_printk(level, dev, &vaf);
7981
7982 va_end(args);
7983 }
7984 EXPORT_SYMBOL(netdev_printk);
7985
7986 #define define_netdev_printk_level(func, level) \
7987 void func(const struct net_device *dev, const char *fmt, ...) \
7988 { \
7989 struct va_format vaf; \
7990 va_list args; \
7991 \
7992 va_start(args, fmt); \
7993 \
7994 vaf.fmt = fmt; \
7995 vaf.va = &args; \
7996 \
7997 __netdev_printk(level, dev, &vaf); \
7998 \
7999 va_end(args); \
8000 } \
8001 EXPORT_SYMBOL(func);
8002
8003 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8004 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8005 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8006 define_netdev_printk_level(netdev_err, KERN_ERR);
8007 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8008 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8009 define_netdev_printk_level(netdev_info, KERN_INFO);
8010
8011 static void __net_exit netdev_exit(struct net *net)
8012 {
8013 kfree(net->dev_name_head);
8014 kfree(net->dev_index_head);
8015 }
8016
8017 static struct pernet_operations __net_initdata netdev_net_ops = {
8018 .init = netdev_init,
8019 .exit = netdev_exit,
8020 };
8021
8022 static void __net_exit default_device_exit(struct net *net)
8023 {
8024 struct net_device *dev, *aux;
8025 /*
8026 * Push all migratable network devices back to the
8027 * initial network namespace
8028 */
8029 rtnl_lock();
8030 for_each_netdev_safe(net, dev, aux) {
8031 int err;
8032 char fb_name[IFNAMSIZ];
8033
8034 /* Ignore unmoveable devices (i.e. loopback) */
8035 if (dev->features & NETIF_F_NETNS_LOCAL)
8036 continue;
8037
8038 /* Leave virtual devices for the generic cleanup */
8039 if (dev->rtnl_link_ops)
8040 continue;
8041
8042 /* Push remaining network devices to init_net */
8043 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8044 err = dev_change_net_namespace(dev, &init_net, fb_name);
8045 if (err) {
8046 pr_emerg("%s: failed to move %s to init_net: %d\n",
8047 __func__, dev->name, err);
8048 BUG();
8049 }
8050 }
8051 rtnl_unlock();
8052 }
8053
8054 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8055 {
8056 /* Return with the rtnl_lock held when there are no network
8057 * devices unregistering in any network namespace in net_list.
8058 */
8059 struct net *net;
8060 bool unregistering;
8061 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8062
8063 add_wait_queue(&netdev_unregistering_wq, &wait);
8064 for (;;) {
8065 unregistering = false;
8066 rtnl_lock();
8067 list_for_each_entry(net, net_list, exit_list) {
8068 if (net->dev_unreg_count > 0) {
8069 unregistering = true;
8070 break;
8071 }
8072 }
8073 if (!unregistering)
8074 break;
8075 __rtnl_unlock();
8076
8077 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8078 }
8079 remove_wait_queue(&netdev_unregistering_wq, &wait);
8080 }
8081
8082 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8083 {
8084 /* At exit all network devices most be removed from a network
8085 * namespace. Do this in the reverse order of registration.
8086 * Do this across as many network namespaces as possible to
8087 * improve batching efficiency.
8088 */
8089 struct net_device *dev;
8090 struct net *net;
8091 LIST_HEAD(dev_kill_list);
8092
8093 /* To prevent network device cleanup code from dereferencing
8094 * loopback devices or network devices that have been freed
8095 * wait here for all pending unregistrations to complete,
8096 * before unregistring the loopback device and allowing the
8097 * network namespace be freed.
8098 *
8099 * The netdev todo list containing all network devices
8100 * unregistrations that happen in default_device_exit_batch
8101 * will run in the rtnl_unlock() at the end of
8102 * default_device_exit_batch.
8103 */
8104 rtnl_lock_unregistering(net_list);
8105 list_for_each_entry(net, net_list, exit_list) {
8106 for_each_netdev_reverse(net, dev) {
8107 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8108 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8109 else
8110 unregister_netdevice_queue(dev, &dev_kill_list);
8111 }
8112 }
8113 unregister_netdevice_many(&dev_kill_list);
8114 rtnl_unlock();
8115 }
8116
8117 static struct pernet_operations __net_initdata default_device_ops = {
8118 .exit = default_device_exit,
8119 .exit_batch = default_device_exit_batch,
8120 };
8121
8122 /*
8123 * Initialize the DEV module. At boot time this walks the device list and
8124 * unhooks any devices that fail to initialise (normally hardware not
8125 * present) and leaves us with a valid list of present and active devices.
8126 *
8127 */
8128
8129 /*
8130 * This is called single threaded during boot, so no need
8131 * to take the rtnl semaphore.
8132 */
8133 static int __init net_dev_init(void)
8134 {
8135 int i, rc = -ENOMEM;
8136
8137 BUG_ON(!dev_boot_phase);
8138
8139 if (dev_proc_init())
8140 goto out;
8141
8142 if (netdev_kobject_init())
8143 goto out;
8144
8145 INIT_LIST_HEAD(&ptype_all);
8146 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8147 INIT_LIST_HEAD(&ptype_base[i]);
8148
8149 INIT_LIST_HEAD(&offload_base);
8150
8151 if (register_pernet_subsys(&netdev_net_ops))
8152 goto out;
8153
8154 /*
8155 * Initialise the packet receive queues.
8156 */
8157
8158 for_each_possible_cpu(i) {
8159 struct softnet_data *sd = &per_cpu(softnet_data, i);
8160
8161 skb_queue_head_init(&sd->input_pkt_queue);
8162 skb_queue_head_init(&sd->process_queue);
8163 INIT_LIST_HEAD(&sd->poll_list);
8164 sd->output_queue_tailp = &sd->output_queue;
8165 #ifdef CONFIG_RPS
8166 sd->csd.func = rps_trigger_softirq;
8167 sd->csd.info = sd;
8168 sd->cpu = i;
8169 #endif
8170
8171 sd->backlog.poll = process_backlog;
8172 sd->backlog.weight = weight_p;
8173 }
8174
8175 dev_boot_phase = 0;
8176
8177 /* The loopback device is special if any other network devices
8178 * is present in a network namespace the loopback device must
8179 * be present. Since we now dynamically allocate and free the
8180 * loopback device ensure this invariant is maintained by
8181 * keeping the loopback device as the first device on the
8182 * list of network devices. Ensuring the loopback devices
8183 * is the first device that appears and the last network device
8184 * that disappears.
8185 */
8186 if (register_pernet_device(&loopback_net_ops))
8187 goto out;
8188
8189 if (register_pernet_device(&default_device_ops))
8190 goto out;
8191
8192 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8193 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8194
8195 hotcpu_notifier(dev_cpu_callback, 0);
8196 dst_subsys_init();
8197 rc = 0;
8198 out:
8199 return rc;
8200 }
8201
8202 subsys_initcall(net_dev_init);
This page took 0.353107 seconds and 5 git commands to generate.