net: Use skb_checksum_start_offset()
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 struct net_device *dev;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 list_for_each_entry(dev, head, unreg_list) {
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 }
1249
1250 dev_deactivate_many(head);
1251
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1254
1255 /*
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1258 *
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1261 */
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1264
1265 /*
1266 * Device is now down.
1267 */
1268
1269 dev->flags &= ~IFF_UP;
1270
1271 /*
1272 * Shutdown NET_DMA
1273 */
1274 net_dmaengine_put();
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 LIST_HEAD(single);
1283
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1286 }
1287
1288 int dev_close_many(struct list_head *head)
1289 {
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1292
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1296
1297 __dev_close_many(head);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 }
1306
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1310 }
1311
1312 /**
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1315 *
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1320 */
1321 int dev_close(struct net_device *dev)
1322 {
1323 LIST_HEAD(single);
1324
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331
1332
1333 /**
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1336 *
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1340 */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1349 }
1350 }
1351 WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354
1355
1356 static int dev_boot_phase = 1;
1357
1358 /*
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1361 */
1362
1363 /**
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1366 *
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1371 *
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1375 */
1376
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1383
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1396
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1399
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1401 }
1402 }
1403
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1407
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1414
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 }
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 }
1422 }
1423
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428
1429 /**
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1432 *
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1437 */
1438
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 int err;
1442
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449
1450 /**
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1454 *
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1457 */
1458
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467
1468 void net_enable_timestamp(void)
1469 {
1470 atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473
1474 void net_disable_timestamp(void)
1475 {
1476 atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1486 }
1487
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1492 }
1493
1494 /**
1495 * dev_forward_skb - loopback an skb to another netif
1496 *
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1499 *
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1503 *
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1507 *
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1511 */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 skb_orphan(skb);
1515 nf_reset(skb);
1516
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1522 }
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530
1531 /*
1532 * Support routine. Sends outgoing frames to any network
1533 * taps currently in use.
1534 */
1535
1536 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1537 {
1538 struct packet_type *ptype;
1539
1540 #ifdef CONFIG_NET_CLS_ACT
1541 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1542 net_timestamp_set(skb);
1543 #else
1544 net_timestamp_set(skb);
1545 #endif
1546
1547 rcu_read_lock();
1548 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1549 /* Never send packets back to the socket
1550 * they originated from - MvS (miquels@drinkel.ow.org)
1551 */
1552 if ((ptype->dev == dev || !ptype->dev) &&
1553 (ptype->af_packet_priv == NULL ||
1554 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1555 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1556 if (!skb2)
1557 break;
1558
1559 /* skb->nh should be correctly
1560 set by sender, so that the second statement is
1561 just protection against buggy protocols.
1562 */
1563 skb_reset_mac_header(skb2);
1564
1565 if (skb_network_header(skb2) < skb2->data ||
1566 skb2->network_header > skb2->tail) {
1567 if (net_ratelimit())
1568 printk(KERN_CRIT "protocol %04x is "
1569 "buggy, dev %s\n",
1570 ntohs(skb2->protocol),
1571 dev->name);
1572 skb_reset_network_header(skb2);
1573 }
1574
1575 skb2->transport_header = skb2->network_header;
1576 skb2->pkt_type = PACKET_OUTGOING;
1577 ptype->func(skb2, skb->dev, ptype, skb->dev);
1578 }
1579 }
1580 rcu_read_unlock();
1581 }
1582
1583 /*
1584 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1585 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1586 */
1587 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1588 {
1589 int rc;
1590
1591 if (txq < 1 || txq > dev->num_tx_queues)
1592 return -EINVAL;
1593
1594 if (dev->reg_state == NETREG_REGISTERED) {
1595 ASSERT_RTNL();
1596
1597 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1598 txq);
1599 if (rc)
1600 return rc;
1601
1602 if (txq < dev->real_num_tx_queues)
1603 qdisc_reset_all_tx_gt(dev, txq);
1604 }
1605
1606 dev->real_num_tx_queues = txq;
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1610
1611 #ifdef CONFIG_RPS
1612 /**
1613 * netif_set_real_num_rx_queues - set actual number of RX queues used
1614 * @dev: Network device
1615 * @rxq: Actual number of RX queues
1616 *
1617 * This must be called either with the rtnl_lock held or before
1618 * registration of the net device. Returns 0 on success, or a
1619 * negative error code. If called before registration, it always
1620 * succeeds.
1621 */
1622 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1623 {
1624 int rc;
1625
1626 if (rxq < 1 || rxq > dev->num_rx_queues)
1627 return -EINVAL;
1628
1629 if (dev->reg_state == NETREG_REGISTERED) {
1630 ASSERT_RTNL();
1631
1632 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1633 rxq);
1634 if (rc)
1635 return rc;
1636 }
1637
1638 dev->real_num_rx_queues = rxq;
1639 return 0;
1640 }
1641 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1642 #endif
1643
1644 static inline void __netif_reschedule(struct Qdisc *q)
1645 {
1646 struct softnet_data *sd;
1647 unsigned long flags;
1648
1649 local_irq_save(flags);
1650 sd = &__get_cpu_var(softnet_data);
1651 q->next_sched = NULL;
1652 *sd->output_queue_tailp = q;
1653 sd->output_queue_tailp = &q->next_sched;
1654 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1655 local_irq_restore(flags);
1656 }
1657
1658 void __netif_schedule(struct Qdisc *q)
1659 {
1660 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1661 __netif_reschedule(q);
1662 }
1663 EXPORT_SYMBOL(__netif_schedule);
1664
1665 void dev_kfree_skb_irq(struct sk_buff *skb)
1666 {
1667 if (atomic_dec_and_test(&skb->users)) {
1668 struct softnet_data *sd;
1669 unsigned long flags;
1670
1671 local_irq_save(flags);
1672 sd = &__get_cpu_var(softnet_data);
1673 skb->next = sd->completion_queue;
1674 sd->completion_queue = skb;
1675 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1676 local_irq_restore(flags);
1677 }
1678 }
1679 EXPORT_SYMBOL(dev_kfree_skb_irq);
1680
1681 void dev_kfree_skb_any(struct sk_buff *skb)
1682 {
1683 if (in_irq() || irqs_disabled())
1684 dev_kfree_skb_irq(skb);
1685 else
1686 dev_kfree_skb(skb);
1687 }
1688 EXPORT_SYMBOL(dev_kfree_skb_any);
1689
1690
1691 /**
1692 * netif_device_detach - mark device as removed
1693 * @dev: network device
1694 *
1695 * Mark device as removed from system and therefore no longer available.
1696 */
1697 void netif_device_detach(struct net_device *dev)
1698 {
1699 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1700 netif_running(dev)) {
1701 netif_tx_stop_all_queues(dev);
1702 }
1703 }
1704 EXPORT_SYMBOL(netif_device_detach);
1705
1706 /**
1707 * netif_device_attach - mark device as attached
1708 * @dev: network device
1709 *
1710 * Mark device as attached from system and restart if needed.
1711 */
1712 void netif_device_attach(struct net_device *dev)
1713 {
1714 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1715 netif_running(dev)) {
1716 netif_tx_wake_all_queues(dev);
1717 __netdev_watchdog_up(dev);
1718 }
1719 }
1720 EXPORT_SYMBOL(netif_device_attach);
1721
1722 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1723 {
1724 return ((features & NETIF_F_NO_CSUM) ||
1725 ((features & NETIF_F_V4_CSUM) &&
1726 protocol == htons(ETH_P_IP)) ||
1727 ((features & NETIF_F_V6_CSUM) &&
1728 protocol == htons(ETH_P_IPV6)) ||
1729 ((features & NETIF_F_FCOE_CRC) &&
1730 protocol == htons(ETH_P_FCOE)));
1731 }
1732
1733 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1734 {
1735 __be16 protocol = skb->protocol;
1736 int features = dev->features;
1737
1738 if (vlan_tx_tag_present(skb)) {
1739 features &= dev->vlan_features;
1740 } else if (protocol == htons(ETH_P_8021Q)) {
1741 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1742 protocol = veh->h_vlan_encapsulated_proto;
1743 features &= dev->vlan_features;
1744 }
1745
1746 return can_checksum_protocol(features, protocol);
1747 }
1748
1749 /**
1750 * skb_dev_set -- assign a new device to a buffer
1751 * @skb: buffer for the new device
1752 * @dev: network device
1753 *
1754 * If an skb is owned by a device already, we have to reset
1755 * all data private to the namespace a device belongs to
1756 * before assigning it a new device.
1757 */
1758 #ifdef CONFIG_NET_NS
1759 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1760 {
1761 skb_dst_drop(skb);
1762 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1763 secpath_reset(skb);
1764 nf_reset(skb);
1765 skb_init_secmark(skb);
1766 skb->mark = 0;
1767 skb->priority = 0;
1768 skb->nf_trace = 0;
1769 skb->ipvs_property = 0;
1770 #ifdef CONFIG_NET_SCHED
1771 skb->tc_index = 0;
1772 #endif
1773 }
1774 skb->dev = dev;
1775 }
1776 EXPORT_SYMBOL(skb_set_dev);
1777 #endif /* CONFIG_NET_NS */
1778
1779 /*
1780 * Invalidate hardware checksum when packet is to be mangled, and
1781 * complete checksum manually on outgoing path.
1782 */
1783 int skb_checksum_help(struct sk_buff *skb)
1784 {
1785 __wsum csum;
1786 int ret = 0, offset;
1787
1788 if (skb->ip_summed == CHECKSUM_COMPLETE)
1789 goto out_set_summed;
1790
1791 if (unlikely(skb_shinfo(skb)->gso_size)) {
1792 /* Let GSO fix up the checksum. */
1793 goto out_set_summed;
1794 }
1795
1796 offset = skb_checksum_start_offset(skb);
1797 BUG_ON(offset >= skb_headlen(skb));
1798 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1799
1800 offset += skb->csum_offset;
1801 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1802
1803 if (skb_cloned(skb) &&
1804 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1805 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1806 if (ret)
1807 goto out;
1808 }
1809
1810 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1811 out_set_summed:
1812 skb->ip_summed = CHECKSUM_NONE;
1813 out:
1814 return ret;
1815 }
1816 EXPORT_SYMBOL(skb_checksum_help);
1817
1818 /**
1819 * skb_gso_segment - Perform segmentation on skb.
1820 * @skb: buffer to segment
1821 * @features: features for the output path (see dev->features)
1822 *
1823 * This function segments the given skb and returns a list of segments.
1824 *
1825 * It may return NULL if the skb requires no segmentation. This is
1826 * only possible when GSO is used for verifying header integrity.
1827 */
1828 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1829 {
1830 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1831 struct packet_type *ptype;
1832 __be16 type = skb->protocol;
1833 int vlan_depth = ETH_HLEN;
1834 int err;
1835
1836 while (type == htons(ETH_P_8021Q)) {
1837 struct vlan_hdr *vh;
1838
1839 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1840 return ERR_PTR(-EINVAL);
1841
1842 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1843 type = vh->h_vlan_encapsulated_proto;
1844 vlan_depth += VLAN_HLEN;
1845 }
1846
1847 skb_reset_mac_header(skb);
1848 skb->mac_len = skb->network_header - skb->mac_header;
1849 __skb_pull(skb, skb->mac_len);
1850
1851 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1852 struct net_device *dev = skb->dev;
1853 struct ethtool_drvinfo info = {};
1854
1855 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1856 dev->ethtool_ops->get_drvinfo(dev, &info);
1857
1858 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1859 info.driver, dev ? dev->features : 0L,
1860 skb->sk ? skb->sk->sk_route_caps : 0L,
1861 skb->len, skb->data_len, skb->ip_summed);
1862
1863 if (skb_header_cloned(skb) &&
1864 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1865 return ERR_PTR(err);
1866 }
1867
1868 rcu_read_lock();
1869 list_for_each_entry_rcu(ptype,
1870 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1871 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1872 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1873 err = ptype->gso_send_check(skb);
1874 segs = ERR_PTR(err);
1875 if (err || skb_gso_ok(skb, features))
1876 break;
1877 __skb_push(skb, (skb->data -
1878 skb_network_header(skb)));
1879 }
1880 segs = ptype->gso_segment(skb, features);
1881 break;
1882 }
1883 }
1884 rcu_read_unlock();
1885
1886 __skb_push(skb, skb->data - skb_mac_header(skb));
1887
1888 return segs;
1889 }
1890 EXPORT_SYMBOL(skb_gso_segment);
1891
1892 /* Take action when hardware reception checksum errors are detected. */
1893 #ifdef CONFIG_BUG
1894 void netdev_rx_csum_fault(struct net_device *dev)
1895 {
1896 if (net_ratelimit()) {
1897 printk(KERN_ERR "%s: hw csum failure.\n",
1898 dev ? dev->name : "<unknown>");
1899 dump_stack();
1900 }
1901 }
1902 EXPORT_SYMBOL(netdev_rx_csum_fault);
1903 #endif
1904
1905 /* Actually, we should eliminate this check as soon as we know, that:
1906 * 1. IOMMU is present and allows to map all the memory.
1907 * 2. No high memory really exists on this machine.
1908 */
1909
1910 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1911 {
1912 #ifdef CONFIG_HIGHMEM
1913 int i;
1914 if (!(dev->features & NETIF_F_HIGHDMA)) {
1915 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1916 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1917 return 1;
1918 }
1919
1920 if (PCI_DMA_BUS_IS_PHYS) {
1921 struct device *pdev = dev->dev.parent;
1922
1923 if (!pdev)
1924 return 0;
1925 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1926 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1927 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1928 return 1;
1929 }
1930 }
1931 #endif
1932 return 0;
1933 }
1934
1935 struct dev_gso_cb {
1936 void (*destructor)(struct sk_buff *skb);
1937 };
1938
1939 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1940
1941 static void dev_gso_skb_destructor(struct sk_buff *skb)
1942 {
1943 struct dev_gso_cb *cb;
1944
1945 do {
1946 struct sk_buff *nskb = skb->next;
1947
1948 skb->next = nskb->next;
1949 nskb->next = NULL;
1950 kfree_skb(nskb);
1951 } while (skb->next);
1952
1953 cb = DEV_GSO_CB(skb);
1954 if (cb->destructor)
1955 cb->destructor(skb);
1956 }
1957
1958 /**
1959 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1960 * @skb: buffer to segment
1961 *
1962 * This function segments the given skb and stores the list of segments
1963 * in skb->next.
1964 */
1965 static int dev_gso_segment(struct sk_buff *skb)
1966 {
1967 struct net_device *dev = skb->dev;
1968 struct sk_buff *segs;
1969 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1970 NETIF_F_SG : 0);
1971
1972 segs = skb_gso_segment(skb, features);
1973
1974 /* Verifying header integrity only. */
1975 if (!segs)
1976 return 0;
1977
1978 if (IS_ERR(segs))
1979 return PTR_ERR(segs);
1980
1981 skb->next = segs;
1982 DEV_GSO_CB(skb)->destructor = skb->destructor;
1983 skb->destructor = dev_gso_skb_destructor;
1984
1985 return 0;
1986 }
1987
1988 /*
1989 * Try to orphan skb early, right before transmission by the device.
1990 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1991 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1992 */
1993 static inline void skb_orphan_try(struct sk_buff *skb)
1994 {
1995 struct sock *sk = skb->sk;
1996
1997 if (sk && !skb_shinfo(skb)->tx_flags) {
1998 /* skb_tx_hash() wont be able to get sk.
1999 * We copy sk_hash into skb->rxhash
2000 */
2001 if (!skb->rxhash)
2002 skb->rxhash = sk->sk_hash;
2003 skb_orphan(skb);
2004 }
2005 }
2006
2007 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
2008 {
2009 __be16 protocol = skb->protocol;
2010
2011 if (protocol == htons(ETH_P_8021Q)) {
2012 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2013 protocol = veh->h_vlan_encapsulated_proto;
2014 } else if (!skb->vlan_tci)
2015 return dev->features;
2016
2017 if (protocol != htons(ETH_P_8021Q))
2018 return dev->features & dev->vlan_features;
2019 else
2020 return 0;
2021 }
2022 EXPORT_SYMBOL(netif_get_vlan_features);
2023
2024 /*
2025 * Returns true if either:
2026 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2027 * 2. skb is fragmented and the device does not support SG, or if
2028 * at least one of fragments is in highmem and device does not
2029 * support DMA from it.
2030 */
2031 static inline int skb_needs_linearize(struct sk_buff *skb,
2032 struct net_device *dev)
2033 {
2034 if (skb_is_nonlinear(skb)) {
2035 int features = dev->features;
2036
2037 if (vlan_tx_tag_present(skb))
2038 features &= dev->vlan_features;
2039
2040 return (skb_has_frag_list(skb) &&
2041 !(features & NETIF_F_FRAGLIST)) ||
2042 (skb_shinfo(skb)->nr_frags &&
2043 (!(features & NETIF_F_SG) ||
2044 illegal_highdma(dev, skb)));
2045 }
2046
2047 return 0;
2048 }
2049
2050 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2051 struct netdev_queue *txq)
2052 {
2053 const struct net_device_ops *ops = dev->netdev_ops;
2054 int rc = NETDEV_TX_OK;
2055
2056 if (likely(!skb->next)) {
2057 /*
2058 * If device doesnt need skb->dst, release it right now while
2059 * its hot in this cpu cache
2060 */
2061 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2062 skb_dst_drop(skb);
2063
2064 if (!list_empty(&ptype_all))
2065 dev_queue_xmit_nit(skb, dev);
2066
2067 skb_orphan_try(skb);
2068
2069 if (vlan_tx_tag_present(skb) &&
2070 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2071 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2072 if (unlikely(!skb))
2073 goto out;
2074
2075 skb->vlan_tci = 0;
2076 }
2077
2078 if (netif_needs_gso(dev, skb)) {
2079 if (unlikely(dev_gso_segment(skb)))
2080 goto out_kfree_skb;
2081 if (skb->next)
2082 goto gso;
2083 } else {
2084 if (skb_needs_linearize(skb, dev) &&
2085 __skb_linearize(skb))
2086 goto out_kfree_skb;
2087
2088 /* If packet is not checksummed and device does not
2089 * support checksumming for this protocol, complete
2090 * checksumming here.
2091 */
2092 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2093 skb_set_transport_header(skb,
2094 skb_checksum_start_offset(skb));
2095 if (!dev_can_checksum(dev, skb) &&
2096 skb_checksum_help(skb))
2097 goto out_kfree_skb;
2098 }
2099 }
2100
2101 rc = ops->ndo_start_xmit(skb, dev);
2102 trace_net_dev_xmit(skb, rc);
2103 if (rc == NETDEV_TX_OK)
2104 txq_trans_update(txq);
2105 return rc;
2106 }
2107
2108 gso:
2109 do {
2110 struct sk_buff *nskb = skb->next;
2111
2112 skb->next = nskb->next;
2113 nskb->next = NULL;
2114
2115 /*
2116 * If device doesnt need nskb->dst, release it right now while
2117 * its hot in this cpu cache
2118 */
2119 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2120 skb_dst_drop(nskb);
2121
2122 rc = ops->ndo_start_xmit(nskb, dev);
2123 trace_net_dev_xmit(nskb, rc);
2124 if (unlikely(rc != NETDEV_TX_OK)) {
2125 if (rc & ~NETDEV_TX_MASK)
2126 goto out_kfree_gso_skb;
2127 nskb->next = skb->next;
2128 skb->next = nskb;
2129 return rc;
2130 }
2131 txq_trans_update(txq);
2132 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2133 return NETDEV_TX_BUSY;
2134 } while (skb->next);
2135
2136 out_kfree_gso_skb:
2137 if (likely(skb->next == NULL))
2138 skb->destructor = DEV_GSO_CB(skb)->destructor;
2139 out_kfree_skb:
2140 kfree_skb(skb);
2141 out:
2142 return rc;
2143 }
2144
2145 static u32 hashrnd __read_mostly;
2146
2147 /*
2148 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2149 * to be used as a distribution range.
2150 */
2151 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2152 unsigned int num_tx_queues)
2153 {
2154 u32 hash;
2155
2156 if (skb_rx_queue_recorded(skb)) {
2157 hash = skb_get_rx_queue(skb);
2158 while (unlikely(hash >= num_tx_queues))
2159 hash -= num_tx_queues;
2160 return hash;
2161 }
2162
2163 if (skb->sk && skb->sk->sk_hash)
2164 hash = skb->sk->sk_hash;
2165 else
2166 hash = (__force u16) skb->protocol ^ skb->rxhash;
2167 hash = jhash_1word(hash, hashrnd);
2168
2169 return (u16) (((u64) hash * num_tx_queues) >> 32);
2170 }
2171 EXPORT_SYMBOL(__skb_tx_hash);
2172
2173 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2174 {
2175 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2176 if (net_ratelimit()) {
2177 pr_warning("%s selects TX queue %d, but "
2178 "real number of TX queues is %d\n",
2179 dev->name, queue_index, dev->real_num_tx_queues);
2180 }
2181 return 0;
2182 }
2183 return queue_index;
2184 }
2185
2186 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2187 {
2188 #ifdef CONFIG_XPS
2189 struct xps_dev_maps *dev_maps;
2190 struct xps_map *map;
2191 int queue_index = -1;
2192
2193 rcu_read_lock();
2194 dev_maps = rcu_dereference(dev->xps_maps);
2195 if (dev_maps) {
2196 map = rcu_dereference(
2197 dev_maps->cpu_map[raw_smp_processor_id()]);
2198 if (map) {
2199 if (map->len == 1)
2200 queue_index = map->queues[0];
2201 else {
2202 u32 hash;
2203 if (skb->sk && skb->sk->sk_hash)
2204 hash = skb->sk->sk_hash;
2205 else
2206 hash = (__force u16) skb->protocol ^
2207 skb->rxhash;
2208 hash = jhash_1word(hash, hashrnd);
2209 queue_index = map->queues[
2210 ((u64)hash * map->len) >> 32];
2211 }
2212 if (unlikely(queue_index >= dev->real_num_tx_queues))
2213 queue_index = -1;
2214 }
2215 }
2216 rcu_read_unlock();
2217
2218 return queue_index;
2219 #else
2220 return -1;
2221 #endif
2222 }
2223
2224 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2225 struct sk_buff *skb)
2226 {
2227 int queue_index;
2228 const struct net_device_ops *ops = dev->netdev_ops;
2229
2230 if (dev->real_num_tx_queues == 1)
2231 queue_index = 0;
2232 else if (ops->ndo_select_queue) {
2233 queue_index = ops->ndo_select_queue(dev, skb);
2234 queue_index = dev_cap_txqueue(dev, queue_index);
2235 } else {
2236 struct sock *sk = skb->sk;
2237 queue_index = sk_tx_queue_get(sk);
2238
2239 if (queue_index < 0 || skb->ooo_okay ||
2240 queue_index >= dev->real_num_tx_queues) {
2241 int old_index = queue_index;
2242
2243 queue_index = get_xps_queue(dev, skb);
2244 if (queue_index < 0)
2245 queue_index = skb_tx_hash(dev, skb);
2246
2247 if (queue_index != old_index && sk) {
2248 struct dst_entry *dst =
2249 rcu_dereference_check(sk->sk_dst_cache, 1);
2250
2251 if (dst && skb_dst(skb) == dst)
2252 sk_tx_queue_set(sk, queue_index);
2253 }
2254 }
2255 }
2256
2257 skb_set_queue_mapping(skb, queue_index);
2258 return netdev_get_tx_queue(dev, queue_index);
2259 }
2260
2261 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2262 struct net_device *dev,
2263 struct netdev_queue *txq)
2264 {
2265 spinlock_t *root_lock = qdisc_lock(q);
2266 bool contended = qdisc_is_running(q);
2267 int rc;
2268
2269 /*
2270 * Heuristic to force contended enqueues to serialize on a
2271 * separate lock before trying to get qdisc main lock.
2272 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2273 * and dequeue packets faster.
2274 */
2275 if (unlikely(contended))
2276 spin_lock(&q->busylock);
2277
2278 spin_lock(root_lock);
2279 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2280 kfree_skb(skb);
2281 rc = NET_XMIT_DROP;
2282 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2283 qdisc_run_begin(q)) {
2284 /*
2285 * This is a work-conserving queue; there are no old skbs
2286 * waiting to be sent out; and the qdisc is not running -
2287 * xmit the skb directly.
2288 */
2289 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2290 skb_dst_force(skb);
2291 __qdisc_update_bstats(q, skb->len);
2292 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2293 if (unlikely(contended)) {
2294 spin_unlock(&q->busylock);
2295 contended = false;
2296 }
2297 __qdisc_run(q);
2298 } else
2299 qdisc_run_end(q);
2300
2301 rc = NET_XMIT_SUCCESS;
2302 } else {
2303 skb_dst_force(skb);
2304 rc = qdisc_enqueue_root(skb, q);
2305 if (qdisc_run_begin(q)) {
2306 if (unlikely(contended)) {
2307 spin_unlock(&q->busylock);
2308 contended = false;
2309 }
2310 __qdisc_run(q);
2311 }
2312 }
2313 spin_unlock(root_lock);
2314 if (unlikely(contended))
2315 spin_unlock(&q->busylock);
2316 return rc;
2317 }
2318
2319 static DEFINE_PER_CPU(int, xmit_recursion);
2320 #define RECURSION_LIMIT 10
2321
2322 /**
2323 * dev_queue_xmit - transmit a buffer
2324 * @skb: buffer to transmit
2325 *
2326 * Queue a buffer for transmission to a network device. The caller must
2327 * have set the device and priority and built the buffer before calling
2328 * this function. The function can be called from an interrupt.
2329 *
2330 * A negative errno code is returned on a failure. A success does not
2331 * guarantee the frame will be transmitted as it may be dropped due
2332 * to congestion or traffic shaping.
2333 *
2334 * -----------------------------------------------------------------------------------
2335 * I notice this method can also return errors from the queue disciplines,
2336 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2337 * be positive.
2338 *
2339 * Regardless of the return value, the skb is consumed, so it is currently
2340 * difficult to retry a send to this method. (You can bump the ref count
2341 * before sending to hold a reference for retry if you are careful.)
2342 *
2343 * When calling this method, interrupts MUST be enabled. This is because
2344 * the BH enable code must have IRQs enabled so that it will not deadlock.
2345 * --BLG
2346 */
2347 int dev_queue_xmit(struct sk_buff *skb)
2348 {
2349 struct net_device *dev = skb->dev;
2350 struct netdev_queue *txq;
2351 struct Qdisc *q;
2352 int rc = -ENOMEM;
2353
2354 /* Disable soft irqs for various locks below. Also
2355 * stops preemption for RCU.
2356 */
2357 rcu_read_lock_bh();
2358
2359 txq = dev_pick_tx(dev, skb);
2360 q = rcu_dereference_bh(txq->qdisc);
2361
2362 #ifdef CONFIG_NET_CLS_ACT
2363 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2364 #endif
2365 trace_net_dev_queue(skb);
2366 if (q->enqueue) {
2367 rc = __dev_xmit_skb(skb, q, dev, txq);
2368 goto out;
2369 }
2370
2371 /* The device has no queue. Common case for software devices:
2372 loopback, all the sorts of tunnels...
2373
2374 Really, it is unlikely that netif_tx_lock protection is necessary
2375 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2376 counters.)
2377 However, it is possible, that they rely on protection
2378 made by us here.
2379
2380 Check this and shot the lock. It is not prone from deadlocks.
2381 Either shot noqueue qdisc, it is even simpler 8)
2382 */
2383 if (dev->flags & IFF_UP) {
2384 int cpu = smp_processor_id(); /* ok because BHs are off */
2385
2386 if (txq->xmit_lock_owner != cpu) {
2387
2388 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2389 goto recursion_alert;
2390
2391 HARD_TX_LOCK(dev, txq, cpu);
2392
2393 if (!netif_tx_queue_stopped(txq)) {
2394 __this_cpu_inc(xmit_recursion);
2395 rc = dev_hard_start_xmit(skb, dev, txq);
2396 __this_cpu_dec(xmit_recursion);
2397 if (dev_xmit_complete(rc)) {
2398 HARD_TX_UNLOCK(dev, txq);
2399 goto out;
2400 }
2401 }
2402 HARD_TX_UNLOCK(dev, txq);
2403 if (net_ratelimit())
2404 printk(KERN_CRIT "Virtual device %s asks to "
2405 "queue packet!\n", dev->name);
2406 } else {
2407 /* Recursion is detected! It is possible,
2408 * unfortunately
2409 */
2410 recursion_alert:
2411 if (net_ratelimit())
2412 printk(KERN_CRIT "Dead loop on virtual device "
2413 "%s, fix it urgently!\n", dev->name);
2414 }
2415 }
2416
2417 rc = -ENETDOWN;
2418 rcu_read_unlock_bh();
2419
2420 kfree_skb(skb);
2421 return rc;
2422 out:
2423 rcu_read_unlock_bh();
2424 return rc;
2425 }
2426 EXPORT_SYMBOL(dev_queue_xmit);
2427
2428
2429 /*=======================================================================
2430 Receiver routines
2431 =======================================================================*/
2432
2433 int netdev_max_backlog __read_mostly = 1000;
2434 int netdev_tstamp_prequeue __read_mostly = 1;
2435 int netdev_budget __read_mostly = 300;
2436 int weight_p __read_mostly = 64; /* old backlog weight */
2437
2438 /* Called with irq disabled */
2439 static inline void ____napi_schedule(struct softnet_data *sd,
2440 struct napi_struct *napi)
2441 {
2442 list_add_tail(&napi->poll_list, &sd->poll_list);
2443 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2444 }
2445
2446 /*
2447 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2448 * and src/dst port numbers. Returns a non-zero hash number on success
2449 * and 0 on failure.
2450 */
2451 __u32 __skb_get_rxhash(struct sk_buff *skb)
2452 {
2453 int nhoff, hash = 0, poff;
2454 struct ipv6hdr *ip6;
2455 struct iphdr *ip;
2456 u8 ip_proto;
2457 u32 addr1, addr2, ihl;
2458 union {
2459 u32 v32;
2460 u16 v16[2];
2461 } ports;
2462
2463 nhoff = skb_network_offset(skb);
2464
2465 switch (skb->protocol) {
2466 case __constant_htons(ETH_P_IP):
2467 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2468 goto done;
2469
2470 ip = (struct iphdr *) (skb->data + nhoff);
2471 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2472 ip_proto = 0;
2473 else
2474 ip_proto = ip->protocol;
2475 addr1 = (__force u32) ip->saddr;
2476 addr2 = (__force u32) ip->daddr;
2477 ihl = ip->ihl;
2478 break;
2479 case __constant_htons(ETH_P_IPV6):
2480 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2481 goto done;
2482
2483 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2484 ip_proto = ip6->nexthdr;
2485 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2486 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2487 ihl = (40 >> 2);
2488 break;
2489 default:
2490 goto done;
2491 }
2492
2493 ports.v32 = 0;
2494 poff = proto_ports_offset(ip_proto);
2495 if (poff >= 0) {
2496 nhoff += ihl * 4 + poff;
2497 if (pskb_may_pull(skb, nhoff + 4)) {
2498 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2499 if (ports.v16[1] < ports.v16[0])
2500 swap(ports.v16[0], ports.v16[1]);
2501 }
2502 }
2503
2504 /* get a consistent hash (same value on both flow directions) */
2505 if (addr2 < addr1)
2506 swap(addr1, addr2);
2507
2508 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2509 if (!hash)
2510 hash = 1;
2511
2512 done:
2513 return hash;
2514 }
2515 EXPORT_SYMBOL(__skb_get_rxhash);
2516
2517 #ifdef CONFIG_RPS
2518
2519 /* One global table that all flow-based protocols share. */
2520 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2521 EXPORT_SYMBOL(rps_sock_flow_table);
2522
2523 /*
2524 * get_rps_cpu is called from netif_receive_skb and returns the target
2525 * CPU from the RPS map of the receiving queue for a given skb.
2526 * rcu_read_lock must be held on entry.
2527 */
2528 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2529 struct rps_dev_flow **rflowp)
2530 {
2531 struct netdev_rx_queue *rxqueue;
2532 struct rps_map *map;
2533 struct rps_dev_flow_table *flow_table;
2534 struct rps_sock_flow_table *sock_flow_table;
2535 int cpu = -1;
2536 u16 tcpu;
2537
2538 if (skb_rx_queue_recorded(skb)) {
2539 u16 index = skb_get_rx_queue(skb);
2540 if (unlikely(index >= dev->real_num_rx_queues)) {
2541 WARN_ONCE(dev->real_num_rx_queues > 1,
2542 "%s received packet on queue %u, but number "
2543 "of RX queues is %u\n",
2544 dev->name, index, dev->real_num_rx_queues);
2545 goto done;
2546 }
2547 rxqueue = dev->_rx + index;
2548 } else
2549 rxqueue = dev->_rx;
2550
2551 map = rcu_dereference(rxqueue->rps_map);
2552 if (map) {
2553 if (map->len == 1) {
2554 tcpu = map->cpus[0];
2555 if (cpu_online(tcpu))
2556 cpu = tcpu;
2557 goto done;
2558 }
2559 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2560 goto done;
2561 }
2562
2563 skb_reset_network_header(skb);
2564 if (!skb_get_rxhash(skb))
2565 goto done;
2566
2567 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2568 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2569 if (flow_table && sock_flow_table) {
2570 u16 next_cpu;
2571 struct rps_dev_flow *rflow;
2572
2573 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2574 tcpu = rflow->cpu;
2575
2576 next_cpu = sock_flow_table->ents[skb->rxhash &
2577 sock_flow_table->mask];
2578
2579 /*
2580 * If the desired CPU (where last recvmsg was done) is
2581 * different from current CPU (one in the rx-queue flow
2582 * table entry), switch if one of the following holds:
2583 * - Current CPU is unset (equal to RPS_NO_CPU).
2584 * - Current CPU is offline.
2585 * - The current CPU's queue tail has advanced beyond the
2586 * last packet that was enqueued using this table entry.
2587 * This guarantees that all previous packets for the flow
2588 * have been dequeued, thus preserving in order delivery.
2589 */
2590 if (unlikely(tcpu != next_cpu) &&
2591 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2592 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2593 rflow->last_qtail)) >= 0)) {
2594 tcpu = rflow->cpu = next_cpu;
2595 if (tcpu != RPS_NO_CPU)
2596 rflow->last_qtail = per_cpu(softnet_data,
2597 tcpu).input_queue_head;
2598 }
2599 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2600 *rflowp = rflow;
2601 cpu = tcpu;
2602 goto done;
2603 }
2604 }
2605
2606 if (map) {
2607 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2608
2609 if (cpu_online(tcpu)) {
2610 cpu = tcpu;
2611 goto done;
2612 }
2613 }
2614
2615 done:
2616 return cpu;
2617 }
2618
2619 /* Called from hardirq (IPI) context */
2620 static void rps_trigger_softirq(void *data)
2621 {
2622 struct softnet_data *sd = data;
2623
2624 ____napi_schedule(sd, &sd->backlog);
2625 sd->received_rps++;
2626 }
2627
2628 #endif /* CONFIG_RPS */
2629
2630 /*
2631 * Check if this softnet_data structure is another cpu one
2632 * If yes, queue it to our IPI list and return 1
2633 * If no, return 0
2634 */
2635 static int rps_ipi_queued(struct softnet_data *sd)
2636 {
2637 #ifdef CONFIG_RPS
2638 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2639
2640 if (sd != mysd) {
2641 sd->rps_ipi_next = mysd->rps_ipi_list;
2642 mysd->rps_ipi_list = sd;
2643
2644 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2645 return 1;
2646 }
2647 #endif /* CONFIG_RPS */
2648 return 0;
2649 }
2650
2651 /*
2652 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2653 * queue (may be a remote CPU queue).
2654 */
2655 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2656 unsigned int *qtail)
2657 {
2658 struct softnet_data *sd;
2659 unsigned long flags;
2660
2661 sd = &per_cpu(softnet_data, cpu);
2662
2663 local_irq_save(flags);
2664
2665 rps_lock(sd);
2666 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2667 if (skb_queue_len(&sd->input_pkt_queue)) {
2668 enqueue:
2669 __skb_queue_tail(&sd->input_pkt_queue, skb);
2670 input_queue_tail_incr_save(sd, qtail);
2671 rps_unlock(sd);
2672 local_irq_restore(flags);
2673 return NET_RX_SUCCESS;
2674 }
2675
2676 /* Schedule NAPI for backlog device
2677 * We can use non atomic operation since we own the queue lock
2678 */
2679 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2680 if (!rps_ipi_queued(sd))
2681 ____napi_schedule(sd, &sd->backlog);
2682 }
2683 goto enqueue;
2684 }
2685
2686 sd->dropped++;
2687 rps_unlock(sd);
2688
2689 local_irq_restore(flags);
2690
2691 atomic_long_inc(&skb->dev->rx_dropped);
2692 kfree_skb(skb);
2693 return NET_RX_DROP;
2694 }
2695
2696 /**
2697 * netif_rx - post buffer to the network code
2698 * @skb: buffer to post
2699 *
2700 * This function receives a packet from a device driver and queues it for
2701 * the upper (protocol) levels to process. It always succeeds. The buffer
2702 * may be dropped during processing for congestion control or by the
2703 * protocol layers.
2704 *
2705 * return values:
2706 * NET_RX_SUCCESS (no congestion)
2707 * NET_RX_DROP (packet was dropped)
2708 *
2709 */
2710
2711 int netif_rx(struct sk_buff *skb)
2712 {
2713 int ret;
2714
2715 /* if netpoll wants it, pretend we never saw it */
2716 if (netpoll_rx(skb))
2717 return NET_RX_DROP;
2718
2719 if (netdev_tstamp_prequeue)
2720 net_timestamp_check(skb);
2721
2722 trace_netif_rx(skb);
2723 #ifdef CONFIG_RPS
2724 {
2725 struct rps_dev_flow voidflow, *rflow = &voidflow;
2726 int cpu;
2727
2728 preempt_disable();
2729 rcu_read_lock();
2730
2731 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2732 if (cpu < 0)
2733 cpu = smp_processor_id();
2734
2735 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2736
2737 rcu_read_unlock();
2738 preempt_enable();
2739 }
2740 #else
2741 {
2742 unsigned int qtail;
2743 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2744 put_cpu();
2745 }
2746 #endif
2747 return ret;
2748 }
2749 EXPORT_SYMBOL(netif_rx);
2750
2751 int netif_rx_ni(struct sk_buff *skb)
2752 {
2753 int err;
2754
2755 preempt_disable();
2756 err = netif_rx(skb);
2757 if (local_softirq_pending())
2758 do_softirq();
2759 preempt_enable();
2760
2761 return err;
2762 }
2763 EXPORT_SYMBOL(netif_rx_ni);
2764
2765 static void net_tx_action(struct softirq_action *h)
2766 {
2767 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2768
2769 if (sd->completion_queue) {
2770 struct sk_buff *clist;
2771
2772 local_irq_disable();
2773 clist = sd->completion_queue;
2774 sd->completion_queue = NULL;
2775 local_irq_enable();
2776
2777 while (clist) {
2778 struct sk_buff *skb = clist;
2779 clist = clist->next;
2780
2781 WARN_ON(atomic_read(&skb->users));
2782 trace_kfree_skb(skb, net_tx_action);
2783 __kfree_skb(skb);
2784 }
2785 }
2786
2787 if (sd->output_queue) {
2788 struct Qdisc *head;
2789
2790 local_irq_disable();
2791 head = sd->output_queue;
2792 sd->output_queue = NULL;
2793 sd->output_queue_tailp = &sd->output_queue;
2794 local_irq_enable();
2795
2796 while (head) {
2797 struct Qdisc *q = head;
2798 spinlock_t *root_lock;
2799
2800 head = head->next_sched;
2801
2802 root_lock = qdisc_lock(q);
2803 if (spin_trylock(root_lock)) {
2804 smp_mb__before_clear_bit();
2805 clear_bit(__QDISC_STATE_SCHED,
2806 &q->state);
2807 qdisc_run(q);
2808 spin_unlock(root_lock);
2809 } else {
2810 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2811 &q->state)) {
2812 __netif_reschedule(q);
2813 } else {
2814 smp_mb__before_clear_bit();
2815 clear_bit(__QDISC_STATE_SCHED,
2816 &q->state);
2817 }
2818 }
2819 }
2820 }
2821 }
2822
2823 static inline int deliver_skb(struct sk_buff *skb,
2824 struct packet_type *pt_prev,
2825 struct net_device *orig_dev)
2826 {
2827 atomic_inc(&skb->users);
2828 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2829 }
2830
2831 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2832 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2833 /* This hook is defined here for ATM LANE */
2834 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2835 unsigned char *addr) __read_mostly;
2836 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2837 #endif
2838
2839 #ifdef CONFIG_NET_CLS_ACT
2840 /* TODO: Maybe we should just force sch_ingress to be compiled in
2841 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2842 * a compare and 2 stores extra right now if we dont have it on
2843 * but have CONFIG_NET_CLS_ACT
2844 * NOTE: This doesnt stop any functionality; if you dont have
2845 * the ingress scheduler, you just cant add policies on ingress.
2846 *
2847 */
2848 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2849 {
2850 struct net_device *dev = skb->dev;
2851 u32 ttl = G_TC_RTTL(skb->tc_verd);
2852 int result = TC_ACT_OK;
2853 struct Qdisc *q;
2854
2855 if (unlikely(MAX_RED_LOOP < ttl++)) {
2856 if (net_ratelimit())
2857 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2858 skb->skb_iif, dev->ifindex);
2859 return TC_ACT_SHOT;
2860 }
2861
2862 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2863 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2864
2865 q = rxq->qdisc;
2866 if (q != &noop_qdisc) {
2867 spin_lock(qdisc_lock(q));
2868 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2869 result = qdisc_enqueue_root(skb, q);
2870 spin_unlock(qdisc_lock(q));
2871 }
2872
2873 return result;
2874 }
2875
2876 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2877 struct packet_type **pt_prev,
2878 int *ret, struct net_device *orig_dev)
2879 {
2880 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2881
2882 if (!rxq || rxq->qdisc == &noop_qdisc)
2883 goto out;
2884
2885 if (*pt_prev) {
2886 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2887 *pt_prev = NULL;
2888 }
2889
2890 switch (ing_filter(skb, rxq)) {
2891 case TC_ACT_SHOT:
2892 case TC_ACT_STOLEN:
2893 kfree_skb(skb);
2894 return NULL;
2895 }
2896
2897 out:
2898 skb->tc_verd = 0;
2899 return skb;
2900 }
2901 #endif
2902
2903 /**
2904 * netdev_rx_handler_register - register receive handler
2905 * @dev: device to register a handler for
2906 * @rx_handler: receive handler to register
2907 * @rx_handler_data: data pointer that is used by rx handler
2908 *
2909 * Register a receive hander for a device. This handler will then be
2910 * called from __netif_receive_skb. A negative errno code is returned
2911 * on a failure.
2912 *
2913 * The caller must hold the rtnl_mutex.
2914 */
2915 int netdev_rx_handler_register(struct net_device *dev,
2916 rx_handler_func_t *rx_handler,
2917 void *rx_handler_data)
2918 {
2919 ASSERT_RTNL();
2920
2921 if (dev->rx_handler)
2922 return -EBUSY;
2923
2924 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2925 rcu_assign_pointer(dev->rx_handler, rx_handler);
2926
2927 return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2930
2931 /**
2932 * netdev_rx_handler_unregister - unregister receive handler
2933 * @dev: device to unregister a handler from
2934 *
2935 * Unregister a receive hander from a device.
2936 *
2937 * The caller must hold the rtnl_mutex.
2938 */
2939 void netdev_rx_handler_unregister(struct net_device *dev)
2940 {
2941
2942 ASSERT_RTNL();
2943 rcu_assign_pointer(dev->rx_handler, NULL);
2944 rcu_assign_pointer(dev->rx_handler_data, NULL);
2945 }
2946 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2947
2948 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2949 struct net_device *master)
2950 {
2951 if (skb->pkt_type == PACKET_HOST) {
2952 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2953
2954 memcpy(dest, master->dev_addr, ETH_ALEN);
2955 }
2956 }
2957
2958 /* On bonding slaves other than the currently active slave, suppress
2959 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2960 * ARP on active-backup slaves with arp_validate enabled.
2961 */
2962 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2963 {
2964 struct net_device *dev = skb->dev;
2965
2966 if (master->priv_flags & IFF_MASTER_ARPMON)
2967 dev->last_rx = jiffies;
2968
2969 if ((master->priv_flags & IFF_MASTER_ALB) &&
2970 (master->priv_flags & IFF_BRIDGE_PORT)) {
2971 /* Do address unmangle. The local destination address
2972 * will be always the one master has. Provides the right
2973 * functionality in a bridge.
2974 */
2975 skb_bond_set_mac_by_master(skb, master);
2976 }
2977
2978 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2979 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2980 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2981 return 0;
2982
2983 if (master->priv_flags & IFF_MASTER_ALB) {
2984 if (skb->pkt_type != PACKET_BROADCAST &&
2985 skb->pkt_type != PACKET_MULTICAST)
2986 return 0;
2987 }
2988 if (master->priv_flags & IFF_MASTER_8023AD &&
2989 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2990 return 0;
2991
2992 return 1;
2993 }
2994 return 0;
2995 }
2996 EXPORT_SYMBOL(__skb_bond_should_drop);
2997
2998 static int __netif_receive_skb(struct sk_buff *skb)
2999 {
3000 struct packet_type *ptype, *pt_prev;
3001 rx_handler_func_t *rx_handler;
3002 struct net_device *orig_dev;
3003 struct net_device *master;
3004 struct net_device *null_or_orig;
3005 struct net_device *orig_or_bond;
3006 int ret = NET_RX_DROP;
3007 __be16 type;
3008
3009 if (!netdev_tstamp_prequeue)
3010 net_timestamp_check(skb);
3011
3012 trace_netif_receive_skb(skb);
3013
3014 /* if we've gotten here through NAPI, check netpoll */
3015 if (netpoll_receive_skb(skb))
3016 return NET_RX_DROP;
3017
3018 if (!skb->skb_iif)
3019 skb->skb_iif = skb->dev->ifindex;
3020
3021 /*
3022 * bonding note: skbs received on inactive slaves should only
3023 * be delivered to pkt handlers that are exact matches. Also
3024 * the deliver_no_wcard flag will be set. If packet handlers
3025 * are sensitive to duplicate packets these skbs will need to
3026 * be dropped at the handler.
3027 */
3028 null_or_orig = NULL;
3029 orig_dev = skb->dev;
3030 master = ACCESS_ONCE(orig_dev->master);
3031 if (skb->deliver_no_wcard)
3032 null_or_orig = orig_dev;
3033 else if (master) {
3034 if (skb_bond_should_drop(skb, master)) {
3035 skb->deliver_no_wcard = 1;
3036 null_or_orig = orig_dev; /* deliver only exact match */
3037 } else
3038 skb->dev = master;
3039 }
3040
3041 __this_cpu_inc(softnet_data.processed);
3042 skb_reset_network_header(skb);
3043 skb_reset_transport_header(skb);
3044 skb->mac_len = skb->network_header - skb->mac_header;
3045
3046 pt_prev = NULL;
3047
3048 rcu_read_lock();
3049
3050 #ifdef CONFIG_NET_CLS_ACT
3051 if (skb->tc_verd & TC_NCLS) {
3052 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3053 goto ncls;
3054 }
3055 #endif
3056
3057 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3058 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3059 ptype->dev == orig_dev) {
3060 if (pt_prev)
3061 ret = deliver_skb(skb, pt_prev, orig_dev);
3062 pt_prev = ptype;
3063 }
3064 }
3065
3066 #ifdef CONFIG_NET_CLS_ACT
3067 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3068 if (!skb)
3069 goto out;
3070 ncls:
3071 #endif
3072
3073 /* Handle special case of bridge or macvlan */
3074 rx_handler = rcu_dereference(skb->dev->rx_handler);
3075 if (rx_handler) {
3076 if (pt_prev) {
3077 ret = deliver_skb(skb, pt_prev, orig_dev);
3078 pt_prev = NULL;
3079 }
3080 skb = rx_handler(skb);
3081 if (!skb)
3082 goto out;
3083 }
3084
3085 if (vlan_tx_tag_present(skb)) {
3086 if (pt_prev) {
3087 ret = deliver_skb(skb, pt_prev, orig_dev);
3088 pt_prev = NULL;
3089 }
3090 if (vlan_hwaccel_do_receive(&skb)) {
3091 ret = __netif_receive_skb(skb);
3092 goto out;
3093 } else if (unlikely(!skb))
3094 goto out;
3095 }
3096
3097 /*
3098 * Make sure frames received on VLAN interfaces stacked on
3099 * bonding interfaces still make their way to any base bonding
3100 * device that may have registered for a specific ptype. The
3101 * handler may have to adjust skb->dev and orig_dev.
3102 */
3103 orig_or_bond = orig_dev;
3104 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3105 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3106 orig_or_bond = vlan_dev_real_dev(skb->dev);
3107 }
3108
3109 type = skb->protocol;
3110 list_for_each_entry_rcu(ptype,
3111 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3112 if (ptype->type == type && (ptype->dev == null_or_orig ||
3113 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3114 ptype->dev == orig_or_bond)) {
3115 if (pt_prev)
3116 ret = deliver_skb(skb, pt_prev, orig_dev);
3117 pt_prev = ptype;
3118 }
3119 }
3120
3121 if (pt_prev) {
3122 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3123 } else {
3124 atomic_long_inc(&skb->dev->rx_dropped);
3125 kfree_skb(skb);
3126 /* Jamal, now you will not able to escape explaining
3127 * me how you were going to use this. :-)
3128 */
3129 ret = NET_RX_DROP;
3130 }
3131
3132 out:
3133 rcu_read_unlock();
3134 return ret;
3135 }
3136
3137 /**
3138 * netif_receive_skb - process receive buffer from network
3139 * @skb: buffer to process
3140 *
3141 * netif_receive_skb() is the main receive data processing function.
3142 * It always succeeds. The buffer may be dropped during processing
3143 * for congestion control or by the protocol layers.
3144 *
3145 * This function may only be called from softirq context and interrupts
3146 * should be enabled.
3147 *
3148 * Return values (usually ignored):
3149 * NET_RX_SUCCESS: no congestion
3150 * NET_RX_DROP: packet was dropped
3151 */
3152 int netif_receive_skb(struct sk_buff *skb)
3153 {
3154 if (netdev_tstamp_prequeue)
3155 net_timestamp_check(skb);
3156
3157 if (skb_defer_rx_timestamp(skb))
3158 return NET_RX_SUCCESS;
3159
3160 #ifdef CONFIG_RPS
3161 {
3162 struct rps_dev_flow voidflow, *rflow = &voidflow;
3163 int cpu, ret;
3164
3165 rcu_read_lock();
3166
3167 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3168
3169 if (cpu >= 0) {
3170 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3171 rcu_read_unlock();
3172 } else {
3173 rcu_read_unlock();
3174 ret = __netif_receive_skb(skb);
3175 }
3176
3177 return ret;
3178 }
3179 #else
3180 return __netif_receive_skb(skb);
3181 #endif
3182 }
3183 EXPORT_SYMBOL(netif_receive_skb);
3184
3185 /* Network device is going away, flush any packets still pending
3186 * Called with irqs disabled.
3187 */
3188 static void flush_backlog(void *arg)
3189 {
3190 struct net_device *dev = arg;
3191 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3192 struct sk_buff *skb, *tmp;
3193
3194 rps_lock(sd);
3195 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3196 if (skb->dev == dev) {
3197 __skb_unlink(skb, &sd->input_pkt_queue);
3198 kfree_skb(skb);
3199 input_queue_head_incr(sd);
3200 }
3201 }
3202 rps_unlock(sd);
3203
3204 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3205 if (skb->dev == dev) {
3206 __skb_unlink(skb, &sd->process_queue);
3207 kfree_skb(skb);
3208 input_queue_head_incr(sd);
3209 }
3210 }
3211 }
3212
3213 static int napi_gro_complete(struct sk_buff *skb)
3214 {
3215 struct packet_type *ptype;
3216 __be16 type = skb->protocol;
3217 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3218 int err = -ENOENT;
3219
3220 if (NAPI_GRO_CB(skb)->count == 1) {
3221 skb_shinfo(skb)->gso_size = 0;
3222 goto out;
3223 }
3224
3225 rcu_read_lock();
3226 list_for_each_entry_rcu(ptype, head, list) {
3227 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3228 continue;
3229
3230 err = ptype->gro_complete(skb);
3231 break;
3232 }
3233 rcu_read_unlock();
3234
3235 if (err) {
3236 WARN_ON(&ptype->list == head);
3237 kfree_skb(skb);
3238 return NET_RX_SUCCESS;
3239 }
3240
3241 out:
3242 return netif_receive_skb(skb);
3243 }
3244
3245 inline void napi_gro_flush(struct napi_struct *napi)
3246 {
3247 struct sk_buff *skb, *next;
3248
3249 for (skb = napi->gro_list; skb; skb = next) {
3250 next = skb->next;
3251 skb->next = NULL;
3252 napi_gro_complete(skb);
3253 }
3254
3255 napi->gro_count = 0;
3256 napi->gro_list = NULL;
3257 }
3258 EXPORT_SYMBOL(napi_gro_flush);
3259
3260 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3261 {
3262 struct sk_buff **pp = NULL;
3263 struct packet_type *ptype;
3264 __be16 type = skb->protocol;
3265 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3266 int same_flow;
3267 int mac_len;
3268 enum gro_result ret;
3269
3270 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3271 goto normal;
3272
3273 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3274 goto normal;
3275
3276 rcu_read_lock();
3277 list_for_each_entry_rcu(ptype, head, list) {
3278 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3279 continue;
3280
3281 skb_set_network_header(skb, skb_gro_offset(skb));
3282 mac_len = skb->network_header - skb->mac_header;
3283 skb->mac_len = mac_len;
3284 NAPI_GRO_CB(skb)->same_flow = 0;
3285 NAPI_GRO_CB(skb)->flush = 0;
3286 NAPI_GRO_CB(skb)->free = 0;
3287
3288 pp = ptype->gro_receive(&napi->gro_list, skb);
3289 break;
3290 }
3291 rcu_read_unlock();
3292
3293 if (&ptype->list == head)
3294 goto normal;
3295
3296 same_flow = NAPI_GRO_CB(skb)->same_flow;
3297 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3298
3299 if (pp) {
3300 struct sk_buff *nskb = *pp;
3301
3302 *pp = nskb->next;
3303 nskb->next = NULL;
3304 napi_gro_complete(nskb);
3305 napi->gro_count--;
3306 }
3307
3308 if (same_flow)
3309 goto ok;
3310
3311 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3312 goto normal;
3313
3314 napi->gro_count++;
3315 NAPI_GRO_CB(skb)->count = 1;
3316 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3317 skb->next = napi->gro_list;
3318 napi->gro_list = skb;
3319 ret = GRO_HELD;
3320
3321 pull:
3322 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3323 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3324
3325 BUG_ON(skb->end - skb->tail < grow);
3326
3327 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3328
3329 skb->tail += grow;
3330 skb->data_len -= grow;
3331
3332 skb_shinfo(skb)->frags[0].page_offset += grow;
3333 skb_shinfo(skb)->frags[0].size -= grow;
3334
3335 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3336 put_page(skb_shinfo(skb)->frags[0].page);
3337 memmove(skb_shinfo(skb)->frags,
3338 skb_shinfo(skb)->frags + 1,
3339 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3340 }
3341 }
3342
3343 ok:
3344 return ret;
3345
3346 normal:
3347 ret = GRO_NORMAL;
3348 goto pull;
3349 }
3350 EXPORT_SYMBOL(dev_gro_receive);
3351
3352 static inline gro_result_t
3353 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3354 {
3355 struct sk_buff *p;
3356
3357 for (p = napi->gro_list; p; p = p->next) {
3358 unsigned long diffs;
3359
3360 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3361 diffs |= p->vlan_tci ^ skb->vlan_tci;
3362 diffs |= compare_ether_header(skb_mac_header(p),
3363 skb_gro_mac_header(skb));
3364 NAPI_GRO_CB(p)->same_flow = !diffs;
3365 NAPI_GRO_CB(p)->flush = 0;
3366 }
3367
3368 return dev_gro_receive(napi, skb);
3369 }
3370
3371 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3372 {
3373 switch (ret) {
3374 case GRO_NORMAL:
3375 if (netif_receive_skb(skb))
3376 ret = GRO_DROP;
3377 break;
3378
3379 case GRO_DROP:
3380 case GRO_MERGED_FREE:
3381 kfree_skb(skb);
3382 break;
3383
3384 case GRO_HELD:
3385 case GRO_MERGED:
3386 break;
3387 }
3388
3389 return ret;
3390 }
3391 EXPORT_SYMBOL(napi_skb_finish);
3392
3393 void skb_gro_reset_offset(struct sk_buff *skb)
3394 {
3395 NAPI_GRO_CB(skb)->data_offset = 0;
3396 NAPI_GRO_CB(skb)->frag0 = NULL;
3397 NAPI_GRO_CB(skb)->frag0_len = 0;
3398
3399 if (skb->mac_header == skb->tail &&
3400 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3401 NAPI_GRO_CB(skb)->frag0 =
3402 page_address(skb_shinfo(skb)->frags[0].page) +
3403 skb_shinfo(skb)->frags[0].page_offset;
3404 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3405 }
3406 }
3407 EXPORT_SYMBOL(skb_gro_reset_offset);
3408
3409 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3410 {
3411 skb_gro_reset_offset(skb);
3412
3413 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3414 }
3415 EXPORT_SYMBOL(napi_gro_receive);
3416
3417 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3418 {
3419 __skb_pull(skb, skb_headlen(skb));
3420 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3421 skb->vlan_tci = 0;
3422
3423 napi->skb = skb;
3424 }
3425
3426 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3427 {
3428 struct sk_buff *skb = napi->skb;
3429
3430 if (!skb) {
3431 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3432 if (skb)
3433 napi->skb = skb;
3434 }
3435 return skb;
3436 }
3437 EXPORT_SYMBOL(napi_get_frags);
3438
3439 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3440 gro_result_t ret)
3441 {
3442 switch (ret) {
3443 case GRO_NORMAL:
3444 case GRO_HELD:
3445 skb->protocol = eth_type_trans(skb, skb->dev);
3446
3447 if (ret == GRO_HELD)
3448 skb_gro_pull(skb, -ETH_HLEN);
3449 else if (netif_receive_skb(skb))
3450 ret = GRO_DROP;
3451 break;
3452
3453 case GRO_DROP:
3454 case GRO_MERGED_FREE:
3455 napi_reuse_skb(napi, skb);
3456 break;
3457
3458 case GRO_MERGED:
3459 break;
3460 }
3461
3462 return ret;
3463 }
3464 EXPORT_SYMBOL(napi_frags_finish);
3465
3466 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3467 {
3468 struct sk_buff *skb = napi->skb;
3469 struct ethhdr *eth;
3470 unsigned int hlen;
3471 unsigned int off;
3472
3473 napi->skb = NULL;
3474
3475 skb_reset_mac_header(skb);
3476 skb_gro_reset_offset(skb);
3477
3478 off = skb_gro_offset(skb);
3479 hlen = off + sizeof(*eth);
3480 eth = skb_gro_header_fast(skb, off);
3481 if (skb_gro_header_hard(skb, hlen)) {
3482 eth = skb_gro_header_slow(skb, hlen, off);
3483 if (unlikely(!eth)) {
3484 napi_reuse_skb(napi, skb);
3485 skb = NULL;
3486 goto out;
3487 }
3488 }
3489
3490 skb_gro_pull(skb, sizeof(*eth));
3491
3492 /*
3493 * This works because the only protocols we care about don't require
3494 * special handling. We'll fix it up properly at the end.
3495 */
3496 skb->protocol = eth->h_proto;
3497
3498 out:
3499 return skb;
3500 }
3501 EXPORT_SYMBOL(napi_frags_skb);
3502
3503 gro_result_t napi_gro_frags(struct napi_struct *napi)
3504 {
3505 struct sk_buff *skb = napi_frags_skb(napi);
3506
3507 if (!skb)
3508 return GRO_DROP;
3509
3510 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3511 }
3512 EXPORT_SYMBOL(napi_gro_frags);
3513
3514 /*
3515 * net_rps_action sends any pending IPI's for rps.
3516 * Note: called with local irq disabled, but exits with local irq enabled.
3517 */
3518 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3519 {
3520 #ifdef CONFIG_RPS
3521 struct softnet_data *remsd = sd->rps_ipi_list;
3522
3523 if (remsd) {
3524 sd->rps_ipi_list = NULL;
3525
3526 local_irq_enable();
3527
3528 /* Send pending IPI's to kick RPS processing on remote cpus. */
3529 while (remsd) {
3530 struct softnet_data *next = remsd->rps_ipi_next;
3531
3532 if (cpu_online(remsd->cpu))
3533 __smp_call_function_single(remsd->cpu,
3534 &remsd->csd, 0);
3535 remsd = next;
3536 }
3537 } else
3538 #endif
3539 local_irq_enable();
3540 }
3541
3542 static int process_backlog(struct napi_struct *napi, int quota)
3543 {
3544 int work = 0;
3545 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3546
3547 #ifdef CONFIG_RPS
3548 /* Check if we have pending ipi, its better to send them now,
3549 * not waiting net_rx_action() end.
3550 */
3551 if (sd->rps_ipi_list) {
3552 local_irq_disable();
3553 net_rps_action_and_irq_enable(sd);
3554 }
3555 #endif
3556 napi->weight = weight_p;
3557 local_irq_disable();
3558 while (work < quota) {
3559 struct sk_buff *skb;
3560 unsigned int qlen;
3561
3562 while ((skb = __skb_dequeue(&sd->process_queue))) {
3563 local_irq_enable();
3564 __netif_receive_skb(skb);
3565 local_irq_disable();
3566 input_queue_head_incr(sd);
3567 if (++work >= quota) {
3568 local_irq_enable();
3569 return work;
3570 }
3571 }
3572
3573 rps_lock(sd);
3574 qlen = skb_queue_len(&sd->input_pkt_queue);
3575 if (qlen)
3576 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3577 &sd->process_queue);
3578
3579 if (qlen < quota - work) {
3580 /*
3581 * Inline a custom version of __napi_complete().
3582 * only current cpu owns and manipulates this napi,
3583 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3584 * we can use a plain write instead of clear_bit(),
3585 * and we dont need an smp_mb() memory barrier.
3586 */
3587 list_del(&napi->poll_list);
3588 napi->state = 0;
3589
3590 quota = work + qlen;
3591 }
3592 rps_unlock(sd);
3593 }
3594 local_irq_enable();
3595
3596 return work;
3597 }
3598
3599 /**
3600 * __napi_schedule - schedule for receive
3601 * @n: entry to schedule
3602 *
3603 * The entry's receive function will be scheduled to run
3604 */
3605 void __napi_schedule(struct napi_struct *n)
3606 {
3607 unsigned long flags;
3608
3609 local_irq_save(flags);
3610 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3611 local_irq_restore(flags);
3612 }
3613 EXPORT_SYMBOL(__napi_schedule);
3614
3615 void __napi_complete(struct napi_struct *n)
3616 {
3617 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3618 BUG_ON(n->gro_list);
3619
3620 list_del(&n->poll_list);
3621 smp_mb__before_clear_bit();
3622 clear_bit(NAPI_STATE_SCHED, &n->state);
3623 }
3624 EXPORT_SYMBOL(__napi_complete);
3625
3626 void napi_complete(struct napi_struct *n)
3627 {
3628 unsigned long flags;
3629
3630 /*
3631 * don't let napi dequeue from the cpu poll list
3632 * just in case its running on a different cpu
3633 */
3634 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3635 return;
3636
3637 napi_gro_flush(n);
3638 local_irq_save(flags);
3639 __napi_complete(n);
3640 local_irq_restore(flags);
3641 }
3642 EXPORT_SYMBOL(napi_complete);
3643
3644 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3645 int (*poll)(struct napi_struct *, int), int weight)
3646 {
3647 INIT_LIST_HEAD(&napi->poll_list);
3648 napi->gro_count = 0;
3649 napi->gro_list = NULL;
3650 napi->skb = NULL;
3651 napi->poll = poll;
3652 napi->weight = weight;
3653 list_add(&napi->dev_list, &dev->napi_list);
3654 napi->dev = dev;
3655 #ifdef CONFIG_NETPOLL
3656 spin_lock_init(&napi->poll_lock);
3657 napi->poll_owner = -1;
3658 #endif
3659 set_bit(NAPI_STATE_SCHED, &napi->state);
3660 }
3661 EXPORT_SYMBOL(netif_napi_add);
3662
3663 void netif_napi_del(struct napi_struct *napi)
3664 {
3665 struct sk_buff *skb, *next;
3666
3667 list_del_init(&napi->dev_list);
3668 napi_free_frags(napi);
3669
3670 for (skb = napi->gro_list; skb; skb = next) {
3671 next = skb->next;
3672 skb->next = NULL;
3673 kfree_skb(skb);
3674 }
3675
3676 napi->gro_list = NULL;
3677 napi->gro_count = 0;
3678 }
3679 EXPORT_SYMBOL(netif_napi_del);
3680
3681 static void net_rx_action(struct softirq_action *h)
3682 {
3683 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3684 unsigned long time_limit = jiffies + 2;
3685 int budget = netdev_budget;
3686 void *have;
3687
3688 local_irq_disable();
3689
3690 while (!list_empty(&sd->poll_list)) {
3691 struct napi_struct *n;
3692 int work, weight;
3693
3694 /* If softirq window is exhuasted then punt.
3695 * Allow this to run for 2 jiffies since which will allow
3696 * an average latency of 1.5/HZ.
3697 */
3698 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3699 goto softnet_break;
3700
3701 local_irq_enable();
3702
3703 /* Even though interrupts have been re-enabled, this
3704 * access is safe because interrupts can only add new
3705 * entries to the tail of this list, and only ->poll()
3706 * calls can remove this head entry from the list.
3707 */
3708 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3709
3710 have = netpoll_poll_lock(n);
3711
3712 weight = n->weight;
3713
3714 /* This NAPI_STATE_SCHED test is for avoiding a race
3715 * with netpoll's poll_napi(). Only the entity which
3716 * obtains the lock and sees NAPI_STATE_SCHED set will
3717 * actually make the ->poll() call. Therefore we avoid
3718 * accidently calling ->poll() when NAPI is not scheduled.
3719 */
3720 work = 0;
3721 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3722 work = n->poll(n, weight);
3723 trace_napi_poll(n);
3724 }
3725
3726 WARN_ON_ONCE(work > weight);
3727
3728 budget -= work;
3729
3730 local_irq_disable();
3731
3732 /* Drivers must not modify the NAPI state if they
3733 * consume the entire weight. In such cases this code
3734 * still "owns" the NAPI instance and therefore can
3735 * move the instance around on the list at-will.
3736 */
3737 if (unlikely(work == weight)) {
3738 if (unlikely(napi_disable_pending(n))) {
3739 local_irq_enable();
3740 napi_complete(n);
3741 local_irq_disable();
3742 } else
3743 list_move_tail(&n->poll_list, &sd->poll_list);
3744 }
3745
3746 netpoll_poll_unlock(have);
3747 }
3748 out:
3749 net_rps_action_and_irq_enable(sd);
3750
3751 #ifdef CONFIG_NET_DMA
3752 /*
3753 * There may not be any more sk_buffs coming right now, so push
3754 * any pending DMA copies to hardware
3755 */
3756 dma_issue_pending_all();
3757 #endif
3758
3759 return;
3760
3761 softnet_break:
3762 sd->time_squeeze++;
3763 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3764 goto out;
3765 }
3766
3767 static gifconf_func_t *gifconf_list[NPROTO];
3768
3769 /**
3770 * register_gifconf - register a SIOCGIF handler
3771 * @family: Address family
3772 * @gifconf: Function handler
3773 *
3774 * Register protocol dependent address dumping routines. The handler
3775 * that is passed must not be freed or reused until it has been replaced
3776 * by another handler.
3777 */
3778 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3779 {
3780 if (family >= NPROTO)
3781 return -EINVAL;
3782 gifconf_list[family] = gifconf;
3783 return 0;
3784 }
3785 EXPORT_SYMBOL(register_gifconf);
3786
3787
3788 /*
3789 * Map an interface index to its name (SIOCGIFNAME)
3790 */
3791
3792 /*
3793 * We need this ioctl for efficient implementation of the
3794 * if_indextoname() function required by the IPv6 API. Without
3795 * it, we would have to search all the interfaces to find a
3796 * match. --pb
3797 */
3798
3799 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3800 {
3801 struct net_device *dev;
3802 struct ifreq ifr;
3803
3804 /*
3805 * Fetch the caller's info block.
3806 */
3807
3808 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3809 return -EFAULT;
3810
3811 rcu_read_lock();
3812 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3813 if (!dev) {
3814 rcu_read_unlock();
3815 return -ENODEV;
3816 }
3817
3818 strcpy(ifr.ifr_name, dev->name);
3819 rcu_read_unlock();
3820
3821 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3822 return -EFAULT;
3823 return 0;
3824 }
3825
3826 /*
3827 * Perform a SIOCGIFCONF call. This structure will change
3828 * size eventually, and there is nothing I can do about it.
3829 * Thus we will need a 'compatibility mode'.
3830 */
3831
3832 static int dev_ifconf(struct net *net, char __user *arg)
3833 {
3834 struct ifconf ifc;
3835 struct net_device *dev;
3836 char __user *pos;
3837 int len;
3838 int total;
3839 int i;
3840
3841 /*
3842 * Fetch the caller's info block.
3843 */
3844
3845 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3846 return -EFAULT;
3847
3848 pos = ifc.ifc_buf;
3849 len = ifc.ifc_len;
3850
3851 /*
3852 * Loop over the interfaces, and write an info block for each.
3853 */
3854
3855 total = 0;
3856 for_each_netdev(net, dev) {
3857 for (i = 0; i < NPROTO; i++) {
3858 if (gifconf_list[i]) {
3859 int done;
3860 if (!pos)
3861 done = gifconf_list[i](dev, NULL, 0);
3862 else
3863 done = gifconf_list[i](dev, pos + total,
3864 len - total);
3865 if (done < 0)
3866 return -EFAULT;
3867 total += done;
3868 }
3869 }
3870 }
3871
3872 /*
3873 * All done. Write the updated control block back to the caller.
3874 */
3875 ifc.ifc_len = total;
3876
3877 /*
3878 * Both BSD and Solaris return 0 here, so we do too.
3879 */
3880 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3881 }
3882
3883 #ifdef CONFIG_PROC_FS
3884 /*
3885 * This is invoked by the /proc filesystem handler to display a device
3886 * in detail.
3887 */
3888 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3889 __acquires(RCU)
3890 {
3891 struct net *net = seq_file_net(seq);
3892 loff_t off;
3893 struct net_device *dev;
3894
3895 rcu_read_lock();
3896 if (!*pos)
3897 return SEQ_START_TOKEN;
3898
3899 off = 1;
3900 for_each_netdev_rcu(net, dev)
3901 if (off++ == *pos)
3902 return dev;
3903
3904 return NULL;
3905 }
3906
3907 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3908 {
3909 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3910 first_net_device(seq_file_net(seq)) :
3911 next_net_device((struct net_device *)v);
3912
3913 ++*pos;
3914 return rcu_dereference(dev);
3915 }
3916
3917 void dev_seq_stop(struct seq_file *seq, void *v)
3918 __releases(RCU)
3919 {
3920 rcu_read_unlock();
3921 }
3922
3923 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3924 {
3925 struct rtnl_link_stats64 temp;
3926 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3927
3928 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3929 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3930 dev->name, stats->rx_bytes, stats->rx_packets,
3931 stats->rx_errors,
3932 stats->rx_dropped + stats->rx_missed_errors,
3933 stats->rx_fifo_errors,
3934 stats->rx_length_errors + stats->rx_over_errors +
3935 stats->rx_crc_errors + stats->rx_frame_errors,
3936 stats->rx_compressed, stats->multicast,
3937 stats->tx_bytes, stats->tx_packets,
3938 stats->tx_errors, stats->tx_dropped,
3939 stats->tx_fifo_errors, stats->collisions,
3940 stats->tx_carrier_errors +
3941 stats->tx_aborted_errors +
3942 stats->tx_window_errors +
3943 stats->tx_heartbeat_errors,
3944 stats->tx_compressed);
3945 }
3946
3947 /*
3948 * Called from the PROCfs module. This now uses the new arbitrary sized
3949 * /proc/net interface to create /proc/net/dev
3950 */
3951 static int dev_seq_show(struct seq_file *seq, void *v)
3952 {
3953 if (v == SEQ_START_TOKEN)
3954 seq_puts(seq, "Inter-| Receive "
3955 " | Transmit\n"
3956 " face |bytes packets errs drop fifo frame "
3957 "compressed multicast|bytes packets errs "
3958 "drop fifo colls carrier compressed\n");
3959 else
3960 dev_seq_printf_stats(seq, v);
3961 return 0;
3962 }
3963
3964 static struct softnet_data *softnet_get_online(loff_t *pos)
3965 {
3966 struct softnet_data *sd = NULL;
3967
3968 while (*pos < nr_cpu_ids)
3969 if (cpu_online(*pos)) {
3970 sd = &per_cpu(softnet_data, *pos);
3971 break;
3972 } else
3973 ++*pos;
3974 return sd;
3975 }
3976
3977 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3978 {
3979 return softnet_get_online(pos);
3980 }
3981
3982 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3983 {
3984 ++*pos;
3985 return softnet_get_online(pos);
3986 }
3987
3988 static void softnet_seq_stop(struct seq_file *seq, void *v)
3989 {
3990 }
3991
3992 static int softnet_seq_show(struct seq_file *seq, void *v)
3993 {
3994 struct softnet_data *sd = v;
3995
3996 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3997 sd->processed, sd->dropped, sd->time_squeeze, 0,
3998 0, 0, 0, 0, /* was fastroute */
3999 sd->cpu_collision, sd->received_rps);
4000 return 0;
4001 }
4002
4003 static const struct seq_operations dev_seq_ops = {
4004 .start = dev_seq_start,
4005 .next = dev_seq_next,
4006 .stop = dev_seq_stop,
4007 .show = dev_seq_show,
4008 };
4009
4010 static int dev_seq_open(struct inode *inode, struct file *file)
4011 {
4012 return seq_open_net(inode, file, &dev_seq_ops,
4013 sizeof(struct seq_net_private));
4014 }
4015
4016 static const struct file_operations dev_seq_fops = {
4017 .owner = THIS_MODULE,
4018 .open = dev_seq_open,
4019 .read = seq_read,
4020 .llseek = seq_lseek,
4021 .release = seq_release_net,
4022 };
4023
4024 static const struct seq_operations softnet_seq_ops = {
4025 .start = softnet_seq_start,
4026 .next = softnet_seq_next,
4027 .stop = softnet_seq_stop,
4028 .show = softnet_seq_show,
4029 };
4030
4031 static int softnet_seq_open(struct inode *inode, struct file *file)
4032 {
4033 return seq_open(file, &softnet_seq_ops);
4034 }
4035
4036 static const struct file_operations softnet_seq_fops = {
4037 .owner = THIS_MODULE,
4038 .open = softnet_seq_open,
4039 .read = seq_read,
4040 .llseek = seq_lseek,
4041 .release = seq_release,
4042 };
4043
4044 static void *ptype_get_idx(loff_t pos)
4045 {
4046 struct packet_type *pt = NULL;
4047 loff_t i = 0;
4048 int t;
4049
4050 list_for_each_entry_rcu(pt, &ptype_all, list) {
4051 if (i == pos)
4052 return pt;
4053 ++i;
4054 }
4055
4056 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4057 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4058 if (i == pos)
4059 return pt;
4060 ++i;
4061 }
4062 }
4063 return NULL;
4064 }
4065
4066 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4067 __acquires(RCU)
4068 {
4069 rcu_read_lock();
4070 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4071 }
4072
4073 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4074 {
4075 struct packet_type *pt;
4076 struct list_head *nxt;
4077 int hash;
4078
4079 ++*pos;
4080 if (v == SEQ_START_TOKEN)
4081 return ptype_get_idx(0);
4082
4083 pt = v;
4084 nxt = pt->list.next;
4085 if (pt->type == htons(ETH_P_ALL)) {
4086 if (nxt != &ptype_all)
4087 goto found;
4088 hash = 0;
4089 nxt = ptype_base[0].next;
4090 } else
4091 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4092
4093 while (nxt == &ptype_base[hash]) {
4094 if (++hash >= PTYPE_HASH_SIZE)
4095 return NULL;
4096 nxt = ptype_base[hash].next;
4097 }
4098 found:
4099 return list_entry(nxt, struct packet_type, list);
4100 }
4101
4102 static void ptype_seq_stop(struct seq_file *seq, void *v)
4103 __releases(RCU)
4104 {
4105 rcu_read_unlock();
4106 }
4107
4108 static int ptype_seq_show(struct seq_file *seq, void *v)
4109 {
4110 struct packet_type *pt = v;
4111
4112 if (v == SEQ_START_TOKEN)
4113 seq_puts(seq, "Type Device Function\n");
4114 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4115 if (pt->type == htons(ETH_P_ALL))
4116 seq_puts(seq, "ALL ");
4117 else
4118 seq_printf(seq, "%04x", ntohs(pt->type));
4119
4120 seq_printf(seq, " %-8s %pF\n",
4121 pt->dev ? pt->dev->name : "", pt->func);
4122 }
4123
4124 return 0;
4125 }
4126
4127 static const struct seq_operations ptype_seq_ops = {
4128 .start = ptype_seq_start,
4129 .next = ptype_seq_next,
4130 .stop = ptype_seq_stop,
4131 .show = ptype_seq_show,
4132 };
4133
4134 static int ptype_seq_open(struct inode *inode, struct file *file)
4135 {
4136 return seq_open_net(inode, file, &ptype_seq_ops,
4137 sizeof(struct seq_net_private));
4138 }
4139
4140 static const struct file_operations ptype_seq_fops = {
4141 .owner = THIS_MODULE,
4142 .open = ptype_seq_open,
4143 .read = seq_read,
4144 .llseek = seq_lseek,
4145 .release = seq_release_net,
4146 };
4147
4148
4149 static int __net_init dev_proc_net_init(struct net *net)
4150 {
4151 int rc = -ENOMEM;
4152
4153 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4154 goto out;
4155 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4156 goto out_dev;
4157 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4158 goto out_softnet;
4159
4160 if (wext_proc_init(net))
4161 goto out_ptype;
4162 rc = 0;
4163 out:
4164 return rc;
4165 out_ptype:
4166 proc_net_remove(net, "ptype");
4167 out_softnet:
4168 proc_net_remove(net, "softnet_stat");
4169 out_dev:
4170 proc_net_remove(net, "dev");
4171 goto out;
4172 }
4173
4174 static void __net_exit dev_proc_net_exit(struct net *net)
4175 {
4176 wext_proc_exit(net);
4177
4178 proc_net_remove(net, "ptype");
4179 proc_net_remove(net, "softnet_stat");
4180 proc_net_remove(net, "dev");
4181 }
4182
4183 static struct pernet_operations __net_initdata dev_proc_ops = {
4184 .init = dev_proc_net_init,
4185 .exit = dev_proc_net_exit,
4186 };
4187
4188 static int __init dev_proc_init(void)
4189 {
4190 return register_pernet_subsys(&dev_proc_ops);
4191 }
4192 #else
4193 #define dev_proc_init() 0
4194 #endif /* CONFIG_PROC_FS */
4195
4196
4197 /**
4198 * netdev_set_master - set up master/slave pair
4199 * @slave: slave device
4200 * @master: new master device
4201 *
4202 * Changes the master device of the slave. Pass %NULL to break the
4203 * bonding. The caller must hold the RTNL semaphore. On a failure
4204 * a negative errno code is returned. On success the reference counts
4205 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4206 * function returns zero.
4207 */
4208 int netdev_set_master(struct net_device *slave, struct net_device *master)
4209 {
4210 struct net_device *old = slave->master;
4211
4212 ASSERT_RTNL();
4213
4214 if (master) {
4215 if (old)
4216 return -EBUSY;
4217 dev_hold(master);
4218 }
4219
4220 slave->master = master;
4221
4222 if (old) {
4223 synchronize_net();
4224 dev_put(old);
4225 }
4226 if (master)
4227 slave->flags |= IFF_SLAVE;
4228 else
4229 slave->flags &= ~IFF_SLAVE;
4230
4231 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4232 return 0;
4233 }
4234 EXPORT_SYMBOL(netdev_set_master);
4235
4236 static void dev_change_rx_flags(struct net_device *dev, int flags)
4237 {
4238 const struct net_device_ops *ops = dev->netdev_ops;
4239
4240 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4241 ops->ndo_change_rx_flags(dev, flags);
4242 }
4243
4244 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4245 {
4246 unsigned short old_flags = dev->flags;
4247 uid_t uid;
4248 gid_t gid;
4249
4250 ASSERT_RTNL();
4251
4252 dev->flags |= IFF_PROMISC;
4253 dev->promiscuity += inc;
4254 if (dev->promiscuity == 0) {
4255 /*
4256 * Avoid overflow.
4257 * If inc causes overflow, untouch promisc and return error.
4258 */
4259 if (inc < 0)
4260 dev->flags &= ~IFF_PROMISC;
4261 else {
4262 dev->promiscuity -= inc;
4263 printk(KERN_WARNING "%s: promiscuity touches roof, "
4264 "set promiscuity failed, promiscuity feature "
4265 "of device might be broken.\n", dev->name);
4266 return -EOVERFLOW;
4267 }
4268 }
4269 if (dev->flags != old_flags) {
4270 printk(KERN_INFO "device %s %s promiscuous mode\n",
4271 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4272 "left");
4273 if (audit_enabled) {
4274 current_uid_gid(&uid, &gid);
4275 audit_log(current->audit_context, GFP_ATOMIC,
4276 AUDIT_ANOM_PROMISCUOUS,
4277 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4278 dev->name, (dev->flags & IFF_PROMISC),
4279 (old_flags & IFF_PROMISC),
4280 audit_get_loginuid(current),
4281 uid, gid,
4282 audit_get_sessionid(current));
4283 }
4284
4285 dev_change_rx_flags(dev, IFF_PROMISC);
4286 }
4287 return 0;
4288 }
4289
4290 /**
4291 * dev_set_promiscuity - update promiscuity count on a device
4292 * @dev: device
4293 * @inc: modifier
4294 *
4295 * Add or remove promiscuity from a device. While the count in the device
4296 * remains above zero the interface remains promiscuous. Once it hits zero
4297 * the device reverts back to normal filtering operation. A negative inc
4298 * value is used to drop promiscuity on the device.
4299 * Return 0 if successful or a negative errno code on error.
4300 */
4301 int dev_set_promiscuity(struct net_device *dev, int inc)
4302 {
4303 unsigned short old_flags = dev->flags;
4304 int err;
4305
4306 err = __dev_set_promiscuity(dev, inc);
4307 if (err < 0)
4308 return err;
4309 if (dev->flags != old_flags)
4310 dev_set_rx_mode(dev);
4311 return err;
4312 }
4313 EXPORT_SYMBOL(dev_set_promiscuity);
4314
4315 /**
4316 * dev_set_allmulti - update allmulti count on a device
4317 * @dev: device
4318 * @inc: modifier
4319 *
4320 * Add or remove reception of all multicast frames to a device. While the
4321 * count in the device remains above zero the interface remains listening
4322 * to all interfaces. Once it hits zero the device reverts back to normal
4323 * filtering operation. A negative @inc value is used to drop the counter
4324 * when releasing a resource needing all multicasts.
4325 * Return 0 if successful or a negative errno code on error.
4326 */
4327
4328 int dev_set_allmulti(struct net_device *dev, int inc)
4329 {
4330 unsigned short old_flags = dev->flags;
4331
4332 ASSERT_RTNL();
4333
4334 dev->flags |= IFF_ALLMULTI;
4335 dev->allmulti += inc;
4336 if (dev->allmulti == 0) {
4337 /*
4338 * Avoid overflow.
4339 * If inc causes overflow, untouch allmulti and return error.
4340 */
4341 if (inc < 0)
4342 dev->flags &= ~IFF_ALLMULTI;
4343 else {
4344 dev->allmulti -= inc;
4345 printk(KERN_WARNING "%s: allmulti touches roof, "
4346 "set allmulti failed, allmulti feature of "
4347 "device might be broken.\n", dev->name);
4348 return -EOVERFLOW;
4349 }
4350 }
4351 if (dev->flags ^ old_flags) {
4352 dev_change_rx_flags(dev, IFF_ALLMULTI);
4353 dev_set_rx_mode(dev);
4354 }
4355 return 0;
4356 }
4357 EXPORT_SYMBOL(dev_set_allmulti);
4358
4359 /*
4360 * Upload unicast and multicast address lists to device and
4361 * configure RX filtering. When the device doesn't support unicast
4362 * filtering it is put in promiscuous mode while unicast addresses
4363 * are present.
4364 */
4365 void __dev_set_rx_mode(struct net_device *dev)
4366 {
4367 const struct net_device_ops *ops = dev->netdev_ops;
4368
4369 /* dev_open will call this function so the list will stay sane. */
4370 if (!(dev->flags&IFF_UP))
4371 return;
4372
4373 if (!netif_device_present(dev))
4374 return;
4375
4376 if (ops->ndo_set_rx_mode)
4377 ops->ndo_set_rx_mode(dev);
4378 else {
4379 /* Unicast addresses changes may only happen under the rtnl,
4380 * therefore calling __dev_set_promiscuity here is safe.
4381 */
4382 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4383 __dev_set_promiscuity(dev, 1);
4384 dev->uc_promisc = 1;
4385 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4386 __dev_set_promiscuity(dev, -1);
4387 dev->uc_promisc = 0;
4388 }
4389
4390 if (ops->ndo_set_multicast_list)
4391 ops->ndo_set_multicast_list(dev);
4392 }
4393 }
4394
4395 void dev_set_rx_mode(struct net_device *dev)
4396 {
4397 netif_addr_lock_bh(dev);
4398 __dev_set_rx_mode(dev);
4399 netif_addr_unlock_bh(dev);
4400 }
4401
4402 /**
4403 * dev_get_flags - get flags reported to userspace
4404 * @dev: device
4405 *
4406 * Get the combination of flag bits exported through APIs to userspace.
4407 */
4408 unsigned dev_get_flags(const struct net_device *dev)
4409 {
4410 unsigned flags;
4411
4412 flags = (dev->flags & ~(IFF_PROMISC |
4413 IFF_ALLMULTI |
4414 IFF_RUNNING |
4415 IFF_LOWER_UP |
4416 IFF_DORMANT)) |
4417 (dev->gflags & (IFF_PROMISC |
4418 IFF_ALLMULTI));
4419
4420 if (netif_running(dev)) {
4421 if (netif_oper_up(dev))
4422 flags |= IFF_RUNNING;
4423 if (netif_carrier_ok(dev))
4424 flags |= IFF_LOWER_UP;
4425 if (netif_dormant(dev))
4426 flags |= IFF_DORMANT;
4427 }
4428
4429 return flags;
4430 }
4431 EXPORT_SYMBOL(dev_get_flags);
4432
4433 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4434 {
4435 int old_flags = dev->flags;
4436 int ret;
4437
4438 ASSERT_RTNL();
4439
4440 /*
4441 * Set the flags on our device.
4442 */
4443
4444 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4445 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4446 IFF_AUTOMEDIA)) |
4447 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4448 IFF_ALLMULTI));
4449
4450 /*
4451 * Load in the correct multicast list now the flags have changed.
4452 */
4453
4454 if ((old_flags ^ flags) & IFF_MULTICAST)
4455 dev_change_rx_flags(dev, IFF_MULTICAST);
4456
4457 dev_set_rx_mode(dev);
4458
4459 /*
4460 * Have we downed the interface. We handle IFF_UP ourselves
4461 * according to user attempts to set it, rather than blindly
4462 * setting it.
4463 */
4464
4465 ret = 0;
4466 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4467 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4468
4469 if (!ret)
4470 dev_set_rx_mode(dev);
4471 }
4472
4473 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4474 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4475
4476 dev->gflags ^= IFF_PROMISC;
4477 dev_set_promiscuity(dev, inc);
4478 }
4479
4480 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4481 is important. Some (broken) drivers set IFF_PROMISC, when
4482 IFF_ALLMULTI is requested not asking us and not reporting.
4483 */
4484 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4485 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4486
4487 dev->gflags ^= IFF_ALLMULTI;
4488 dev_set_allmulti(dev, inc);
4489 }
4490
4491 return ret;
4492 }
4493
4494 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4495 {
4496 unsigned int changes = dev->flags ^ old_flags;
4497
4498 if (changes & IFF_UP) {
4499 if (dev->flags & IFF_UP)
4500 call_netdevice_notifiers(NETDEV_UP, dev);
4501 else
4502 call_netdevice_notifiers(NETDEV_DOWN, dev);
4503 }
4504
4505 if (dev->flags & IFF_UP &&
4506 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4507 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4508 }
4509
4510 /**
4511 * dev_change_flags - change device settings
4512 * @dev: device
4513 * @flags: device state flags
4514 *
4515 * Change settings on device based state flags. The flags are
4516 * in the userspace exported format.
4517 */
4518 int dev_change_flags(struct net_device *dev, unsigned flags)
4519 {
4520 int ret, changes;
4521 int old_flags = dev->flags;
4522
4523 ret = __dev_change_flags(dev, flags);
4524 if (ret < 0)
4525 return ret;
4526
4527 changes = old_flags ^ dev->flags;
4528 if (changes)
4529 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4530
4531 __dev_notify_flags(dev, old_flags);
4532 return ret;
4533 }
4534 EXPORT_SYMBOL(dev_change_flags);
4535
4536 /**
4537 * dev_set_mtu - Change maximum transfer unit
4538 * @dev: device
4539 * @new_mtu: new transfer unit
4540 *
4541 * Change the maximum transfer size of the network device.
4542 */
4543 int dev_set_mtu(struct net_device *dev, int new_mtu)
4544 {
4545 const struct net_device_ops *ops = dev->netdev_ops;
4546 int err;
4547
4548 if (new_mtu == dev->mtu)
4549 return 0;
4550
4551 /* MTU must be positive. */
4552 if (new_mtu < 0)
4553 return -EINVAL;
4554
4555 if (!netif_device_present(dev))
4556 return -ENODEV;
4557
4558 err = 0;
4559 if (ops->ndo_change_mtu)
4560 err = ops->ndo_change_mtu(dev, new_mtu);
4561 else
4562 dev->mtu = new_mtu;
4563
4564 if (!err && dev->flags & IFF_UP)
4565 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4566 return err;
4567 }
4568 EXPORT_SYMBOL(dev_set_mtu);
4569
4570 /**
4571 * dev_set_mac_address - Change Media Access Control Address
4572 * @dev: device
4573 * @sa: new address
4574 *
4575 * Change the hardware (MAC) address of the device
4576 */
4577 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4578 {
4579 const struct net_device_ops *ops = dev->netdev_ops;
4580 int err;
4581
4582 if (!ops->ndo_set_mac_address)
4583 return -EOPNOTSUPP;
4584 if (sa->sa_family != dev->type)
4585 return -EINVAL;
4586 if (!netif_device_present(dev))
4587 return -ENODEV;
4588 err = ops->ndo_set_mac_address(dev, sa);
4589 if (!err)
4590 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4591 return err;
4592 }
4593 EXPORT_SYMBOL(dev_set_mac_address);
4594
4595 /*
4596 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4597 */
4598 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4599 {
4600 int err;
4601 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4602
4603 if (!dev)
4604 return -ENODEV;
4605
4606 switch (cmd) {
4607 case SIOCGIFFLAGS: /* Get interface flags */
4608 ifr->ifr_flags = (short) dev_get_flags(dev);
4609 return 0;
4610
4611 case SIOCGIFMETRIC: /* Get the metric on the interface
4612 (currently unused) */
4613 ifr->ifr_metric = 0;
4614 return 0;
4615
4616 case SIOCGIFMTU: /* Get the MTU of a device */
4617 ifr->ifr_mtu = dev->mtu;
4618 return 0;
4619
4620 case SIOCGIFHWADDR:
4621 if (!dev->addr_len)
4622 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4623 else
4624 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4625 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4626 ifr->ifr_hwaddr.sa_family = dev->type;
4627 return 0;
4628
4629 case SIOCGIFSLAVE:
4630 err = -EINVAL;
4631 break;
4632
4633 case SIOCGIFMAP:
4634 ifr->ifr_map.mem_start = dev->mem_start;
4635 ifr->ifr_map.mem_end = dev->mem_end;
4636 ifr->ifr_map.base_addr = dev->base_addr;
4637 ifr->ifr_map.irq = dev->irq;
4638 ifr->ifr_map.dma = dev->dma;
4639 ifr->ifr_map.port = dev->if_port;
4640 return 0;
4641
4642 case SIOCGIFINDEX:
4643 ifr->ifr_ifindex = dev->ifindex;
4644 return 0;
4645
4646 case SIOCGIFTXQLEN:
4647 ifr->ifr_qlen = dev->tx_queue_len;
4648 return 0;
4649
4650 default:
4651 /* dev_ioctl() should ensure this case
4652 * is never reached
4653 */
4654 WARN_ON(1);
4655 err = -EINVAL;
4656 break;
4657
4658 }
4659 return err;
4660 }
4661
4662 /*
4663 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4664 */
4665 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4666 {
4667 int err;
4668 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4669 const struct net_device_ops *ops;
4670
4671 if (!dev)
4672 return -ENODEV;
4673
4674 ops = dev->netdev_ops;
4675
4676 switch (cmd) {
4677 case SIOCSIFFLAGS: /* Set interface flags */
4678 return dev_change_flags(dev, ifr->ifr_flags);
4679
4680 case SIOCSIFMETRIC: /* Set the metric on the interface
4681 (currently unused) */
4682 return -EOPNOTSUPP;
4683
4684 case SIOCSIFMTU: /* Set the MTU of a device */
4685 return dev_set_mtu(dev, ifr->ifr_mtu);
4686
4687 case SIOCSIFHWADDR:
4688 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4689
4690 case SIOCSIFHWBROADCAST:
4691 if (ifr->ifr_hwaddr.sa_family != dev->type)
4692 return -EINVAL;
4693 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4694 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4695 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4696 return 0;
4697
4698 case SIOCSIFMAP:
4699 if (ops->ndo_set_config) {
4700 if (!netif_device_present(dev))
4701 return -ENODEV;
4702 return ops->ndo_set_config(dev, &ifr->ifr_map);
4703 }
4704 return -EOPNOTSUPP;
4705
4706 case SIOCADDMULTI:
4707 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4708 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4709 return -EINVAL;
4710 if (!netif_device_present(dev))
4711 return -ENODEV;
4712 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4713
4714 case SIOCDELMULTI:
4715 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4716 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4717 return -EINVAL;
4718 if (!netif_device_present(dev))
4719 return -ENODEV;
4720 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4721
4722 case SIOCSIFTXQLEN:
4723 if (ifr->ifr_qlen < 0)
4724 return -EINVAL;
4725 dev->tx_queue_len = ifr->ifr_qlen;
4726 return 0;
4727
4728 case SIOCSIFNAME:
4729 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4730 return dev_change_name(dev, ifr->ifr_newname);
4731
4732 /*
4733 * Unknown or private ioctl
4734 */
4735 default:
4736 if ((cmd >= SIOCDEVPRIVATE &&
4737 cmd <= SIOCDEVPRIVATE + 15) ||
4738 cmd == SIOCBONDENSLAVE ||
4739 cmd == SIOCBONDRELEASE ||
4740 cmd == SIOCBONDSETHWADDR ||
4741 cmd == SIOCBONDSLAVEINFOQUERY ||
4742 cmd == SIOCBONDINFOQUERY ||
4743 cmd == SIOCBONDCHANGEACTIVE ||
4744 cmd == SIOCGMIIPHY ||
4745 cmd == SIOCGMIIREG ||
4746 cmd == SIOCSMIIREG ||
4747 cmd == SIOCBRADDIF ||
4748 cmd == SIOCBRDELIF ||
4749 cmd == SIOCSHWTSTAMP ||
4750 cmd == SIOCWANDEV) {
4751 err = -EOPNOTSUPP;
4752 if (ops->ndo_do_ioctl) {
4753 if (netif_device_present(dev))
4754 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4755 else
4756 err = -ENODEV;
4757 }
4758 } else
4759 err = -EINVAL;
4760
4761 }
4762 return err;
4763 }
4764
4765 /*
4766 * This function handles all "interface"-type I/O control requests. The actual
4767 * 'doing' part of this is dev_ifsioc above.
4768 */
4769
4770 /**
4771 * dev_ioctl - network device ioctl
4772 * @net: the applicable net namespace
4773 * @cmd: command to issue
4774 * @arg: pointer to a struct ifreq in user space
4775 *
4776 * Issue ioctl functions to devices. This is normally called by the
4777 * user space syscall interfaces but can sometimes be useful for
4778 * other purposes. The return value is the return from the syscall if
4779 * positive or a negative errno code on error.
4780 */
4781
4782 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4783 {
4784 struct ifreq ifr;
4785 int ret;
4786 char *colon;
4787
4788 /* One special case: SIOCGIFCONF takes ifconf argument
4789 and requires shared lock, because it sleeps writing
4790 to user space.
4791 */
4792
4793 if (cmd == SIOCGIFCONF) {
4794 rtnl_lock();
4795 ret = dev_ifconf(net, (char __user *) arg);
4796 rtnl_unlock();
4797 return ret;
4798 }
4799 if (cmd == SIOCGIFNAME)
4800 return dev_ifname(net, (struct ifreq __user *)arg);
4801
4802 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4803 return -EFAULT;
4804
4805 ifr.ifr_name[IFNAMSIZ-1] = 0;
4806
4807 colon = strchr(ifr.ifr_name, ':');
4808 if (colon)
4809 *colon = 0;
4810
4811 /*
4812 * See which interface the caller is talking about.
4813 */
4814
4815 switch (cmd) {
4816 /*
4817 * These ioctl calls:
4818 * - can be done by all.
4819 * - atomic and do not require locking.
4820 * - return a value
4821 */
4822 case SIOCGIFFLAGS:
4823 case SIOCGIFMETRIC:
4824 case SIOCGIFMTU:
4825 case SIOCGIFHWADDR:
4826 case SIOCGIFSLAVE:
4827 case SIOCGIFMAP:
4828 case SIOCGIFINDEX:
4829 case SIOCGIFTXQLEN:
4830 dev_load(net, ifr.ifr_name);
4831 rcu_read_lock();
4832 ret = dev_ifsioc_locked(net, &ifr, cmd);
4833 rcu_read_unlock();
4834 if (!ret) {
4835 if (colon)
4836 *colon = ':';
4837 if (copy_to_user(arg, &ifr,
4838 sizeof(struct ifreq)))
4839 ret = -EFAULT;
4840 }
4841 return ret;
4842
4843 case SIOCETHTOOL:
4844 dev_load(net, ifr.ifr_name);
4845 rtnl_lock();
4846 ret = dev_ethtool(net, &ifr);
4847 rtnl_unlock();
4848 if (!ret) {
4849 if (colon)
4850 *colon = ':';
4851 if (copy_to_user(arg, &ifr,
4852 sizeof(struct ifreq)))
4853 ret = -EFAULT;
4854 }
4855 return ret;
4856
4857 /*
4858 * These ioctl calls:
4859 * - require superuser power.
4860 * - require strict serialization.
4861 * - return a value
4862 */
4863 case SIOCGMIIPHY:
4864 case SIOCGMIIREG:
4865 case SIOCSIFNAME:
4866 if (!capable(CAP_NET_ADMIN))
4867 return -EPERM;
4868 dev_load(net, ifr.ifr_name);
4869 rtnl_lock();
4870 ret = dev_ifsioc(net, &ifr, cmd);
4871 rtnl_unlock();
4872 if (!ret) {
4873 if (colon)
4874 *colon = ':';
4875 if (copy_to_user(arg, &ifr,
4876 sizeof(struct ifreq)))
4877 ret = -EFAULT;
4878 }
4879 return ret;
4880
4881 /*
4882 * These ioctl calls:
4883 * - require superuser power.
4884 * - require strict serialization.
4885 * - do not return a value
4886 */
4887 case SIOCSIFFLAGS:
4888 case SIOCSIFMETRIC:
4889 case SIOCSIFMTU:
4890 case SIOCSIFMAP:
4891 case SIOCSIFHWADDR:
4892 case SIOCSIFSLAVE:
4893 case SIOCADDMULTI:
4894 case SIOCDELMULTI:
4895 case SIOCSIFHWBROADCAST:
4896 case SIOCSIFTXQLEN:
4897 case SIOCSMIIREG:
4898 case SIOCBONDENSLAVE:
4899 case SIOCBONDRELEASE:
4900 case SIOCBONDSETHWADDR:
4901 case SIOCBONDCHANGEACTIVE:
4902 case SIOCBRADDIF:
4903 case SIOCBRDELIF:
4904 case SIOCSHWTSTAMP:
4905 if (!capable(CAP_NET_ADMIN))
4906 return -EPERM;
4907 /* fall through */
4908 case SIOCBONDSLAVEINFOQUERY:
4909 case SIOCBONDINFOQUERY:
4910 dev_load(net, ifr.ifr_name);
4911 rtnl_lock();
4912 ret = dev_ifsioc(net, &ifr, cmd);
4913 rtnl_unlock();
4914 return ret;
4915
4916 case SIOCGIFMEM:
4917 /* Get the per device memory space. We can add this but
4918 * currently do not support it */
4919 case SIOCSIFMEM:
4920 /* Set the per device memory buffer space.
4921 * Not applicable in our case */
4922 case SIOCSIFLINK:
4923 return -EINVAL;
4924
4925 /*
4926 * Unknown or private ioctl.
4927 */
4928 default:
4929 if (cmd == SIOCWANDEV ||
4930 (cmd >= SIOCDEVPRIVATE &&
4931 cmd <= SIOCDEVPRIVATE + 15)) {
4932 dev_load(net, ifr.ifr_name);
4933 rtnl_lock();
4934 ret = dev_ifsioc(net, &ifr, cmd);
4935 rtnl_unlock();
4936 if (!ret && copy_to_user(arg, &ifr,
4937 sizeof(struct ifreq)))
4938 ret = -EFAULT;
4939 return ret;
4940 }
4941 /* Take care of Wireless Extensions */
4942 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4943 return wext_handle_ioctl(net, &ifr, cmd, arg);
4944 return -EINVAL;
4945 }
4946 }
4947
4948
4949 /**
4950 * dev_new_index - allocate an ifindex
4951 * @net: the applicable net namespace
4952 *
4953 * Returns a suitable unique value for a new device interface
4954 * number. The caller must hold the rtnl semaphore or the
4955 * dev_base_lock to be sure it remains unique.
4956 */
4957 static int dev_new_index(struct net *net)
4958 {
4959 static int ifindex;
4960 for (;;) {
4961 if (++ifindex <= 0)
4962 ifindex = 1;
4963 if (!__dev_get_by_index(net, ifindex))
4964 return ifindex;
4965 }
4966 }
4967
4968 /* Delayed registration/unregisteration */
4969 static LIST_HEAD(net_todo_list);
4970
4971 static void net_set_todo(struct net_device *dev)
4972 {
4973 list_add_tail(&dev->todo_list, &net_todo_list);
4974 }
4975
4976 static void rollback_registered_many(struct list_head *head)
4977 {
4978 struct net_device *dev, *tmp;
4979
4980 BUG_ON(dev_boot_phase);
4981 ASSERT_RTNL();
4982
4983 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4984 /* Some devices call without registering
4985 * for initialization unwind. Remove those
4986 * devices and proceed with the remaining.
4987 */
4988 if (dev->reg_state == NETREG_UNINITIALIZED) {
4989 pr_debug("unregister_netdevice: device %s/%p never "
4990 "was registered\n", dev->name, dev);
4991
4992 WARN_ON(1);
4993 list_del(&dev->unreg_list);
4994 continue;
4995 }
4996
4997 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4998 }
4999
5000 /* If device is running, close it first. */
5001 dev_close_many(head);
5002
5003 list_for_each_entry(dev, head, unreg_list) {
5004 /* And unlink it from device chain. */
5005 unlist_netdevice(dev);
5006
5007 dev->reg_state = NETREG_UNREGISTERING;
5008 }
5009
5010 synchronize_net();
5011
5012 list_for_each_entry(dev, head, unreg_list) {
5013 /* Shutdown queueing discipline. */
5014 dev_shutdown(dev);
5015
5016
5017 /* Notify protocols, that we are about to destroy
5018 this device. They should clean all the things.
5019 */
5020 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5021
5022 if (!dev->rtnl_link_ops ||
5023 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5024 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5025
5026 /*
5027 * Flush the unicast and multicast chains
5028 */
5029 dev_uc_flush(dev);
5030 dev_mc_flush(dev);
5031
5032 if (dev->netdev_ops->ndo_uninit)
5033 dev->netdev_ops->ndo_uninit(dev);
5034
5035 /* Notifier chain MUST detach us from master device. */
5036 WARN_ON(dev->master);
5037
5038 /* Remove entries from kobject tree */
5039 netdev_unregister_kobject(dev);
5040 }
5041
5042 /* Process any work delayed until the end of the batch */
5043 dev = list_first_entry(head, struct net_device, unreg_list);
5044 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5045
5046 rcu_barrier();
5047
5048 list_for_each_entry(dev, head, unreg_list)
5049 dev_put(dev);
5050 }
5051
5052 static void rollback_registered(struct net_device *dev)
5053 {
5054 LIST_HEAD(single);
5055
5056 list_add(&dev->unreg_list, &single);
5057 rollback_registered_many(&single);
5058 }
5059
5060 unsigned long netdev_fix_features(unsigned long features, const char *name)
5061 {
5062 /* Fix illegal SG+CSUM combinations. */
5063 if ((features & NETIF_F_SG) &&
5064 !(features & NETIF_F_ALL_CSUM)) {
5065 if (name)
5066 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5067 "checksum feature.\n", name);
5068 features &= ~NETIF_F_SG;
5069 }
5070
5071 /* TSO requires that SG is present as well. */
5072 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5073 if (name)
5074 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5075 "SG feature.\n", name);
5076 features &= ~NETIF_F_TSO;
5077 }
5078
5079 if (features & NETIF_F_UFO) {
5080 /* maybe split UFO into V4 and V6? */
5081 if (!((features & NETIF_F_GEN_CSUM) ||
5082 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5083 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5084 if (name)
5085 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5086 "since no checksum offload features.\n",
5087 name);
5088 features &= ~NETIF_F_UFO;
5089 }
5090
5091 if (!(features & NETIF_F_SG)) {
5092 if (name)
5093 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5094 "since no NETIF_F_SG feature.\n", name);
5095 features &= ~NETIF_F_UFO;
5096 }
5097 }
5098
5099 return features;
5100 }
5101 EXPORT_SYMBOL(netdev_fix_features);
5102
5103 /**
5104 * netif_stacked_transfer_operstate - transfer operstate
5105 * @rootdev: the root or lower level device to transfer state from
5106 * @dev: the device to transfer operstate to
5107 *
5108 * Transfer operational state from root to device. This is normally
5109 * called when a stacking relationship exists between the root
5110 * device and the device(a leaf device).
5111 */
5112 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5113 struct net_device *dev)
5114 {
5115 if (rootdev->operstate == IF_OPER_DORMANT)
5116 netif_dormant_on(dev);
5117 else
5118 netif_dormant_off(dev);
5119
5120 if (netif_carrier_ok(rootdev)) {
5121 if (!netif_carrier_ok(dev))
5122 netif_carrier_on(dev);
5123 } else {
5124 if (netif_carrier_ok(dev))
5125 netif_carrier_off(dev);
5126 }
5127 }
5128 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5129
5130 #ifdef CONFIG_RPS
5131 static int netif_alloc_rx_queues(struct net_device *dev)
5132 {
5133 unsigned int i, count = dev->num_rx_queues;
5134 struct netdev_rx_queue *rx;
5135
5136 BUG_ON(count < 1);
5137
5138 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5139 if (!rx) {
5140 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5141 return -ENOMEM;
5142 }
5143 dev->_rx = rx;
5144
5145 for (i = 0; i < count; i++)
5146 rx[i].dev = dev;
5147 return 0;
5148 }
5149 #endif
5150
5151 static void netdev_init_one_queue(struct net_device *dev,
5152 struct netdev_queue *queue, void *_unused)
5153 {
5154 /* Initialize queue lock */
5155 spin_lock_init(&queue->_xmit_lock);
5156 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5157 queue->xmit_lock_owner = -1;
5158 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5159 queue->dev = dev;
5160 }
5161
5162 static int netif_alloc_netdev_queues(struct net_device *dev)
5163 {
5164 unsigned int count = dev->num_tx_queues;
5165 struct netdev_queue *tx;
5166
5167 BUG_ON(count < 1);
5168
5169 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5170 if (!tx) {
5171 pr_err("netdev: Unable to allocate %u tx queues.\n",
5172 count);
5173 return -ENOMEM;
5174 }
5175 dev->_tx = tx;
5176
5177 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5178 spin_lock_init(&dev->tx_global_lock);
5179
5180 return 0;
5181 }
5182
5183 /**
5184 * register_netdevice - register a network device
5185 * @dev: device to register
5186 *
5187 * Take a completed network device structure and add it to the kernel
5188 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5189 * chain. 0 is returned on success. A negative errno code is returned
5190 * on a failure to set up the device, or if the name is a duplicate.
5191 *
5192 * Callers must hold the rtnl semaphore. You may want
5193 * register_netdev() instead of this.
5194 *
5195 * BUGS:
5196 * The locking appears insufficient to guarantee two parallel registers
5197 * will not get the same name.
5198 */
5199
5200 int register_netdevice(struct net_device *dev)
5201 {
5202 int ret;
5203 struct net *net = dev_net(dev);
5204
5205 BUG_ON(dev_boot_phase);
5206 ASSERT_RTNL();
5207
5208 might_sleep();
5209
5210 /* When net_device's are persistent, this will be fatal. */
5211 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5212 BUG_ON(!net);
5213
5214 spin_lock_init(&dev->addr_list_lock);
5215 netdev_set_addr_lockdep_class(dev);
5216
5217 dev->iflink = -1;
5218
5219 /* Init, if this function is available */
5220 if (dev->netdev_ops->ndo_init) {
5221 ret = dev->netdev_ops->ndo_init(dev);
5222 if (ret) {
5223 if (ret > 0)
5224 ret = -EIO;
5225 goto out;
5226 }
5227 }
5228
5229 ret = dev_get_valid_name(dev, dev->name, 0);
5230 if (ret)
5231 goto err_uninit;
5232
5233 dev->ifindex = dev_new_index(net);
5234 if (dev->iflink == -1)
5235 dev->iflink = dev->ifindex;
5236
5237 /* Fix illegal checksum combinations */
5238 if ((dev->features & NETIF_F_HW_CSUM) &&
5239 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5240 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5241 dev->name);
5242 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5243 }
5244
5245 if ((dev->features & NETIF_F_NO_CSUM) &&
5246 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5247 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5248 dev->name);
5249 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5250 }
5251
5252 dev->features = netdev_fix_features(dev->features, dev->name);
5253
5254 /* Enable software GSO if SG is supported. */
5255 if (dev->features & NETIF_F_SG)
5256 dev->features |= NETIF_F_GSO;
5257
5258 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5259 * vlan_dev_init() will do the dev->features check, so these features
5260 * are enabled only if supported by underlying device.
5261 */
5262 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5263
5264 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5265 ret = notifier_to_errno(ret);
5266 if (ret)
5267 goto err_uninit;
5268
5269 ret = netdev_register_kobject(dev);
5270 if (ret)
5271 goto err_uninit;
5272 dev->reg_state = NETREG_REGISTERED;
5273
5274 /*
5275 * Default initial state at registry is that the
5276 * device is present.
5277 */
5278
5279 set_bit(__LINK_STATE_PRESENT, &dev->state);
5280
5281 dev_init_scheduler(dev);
5282 dev_hold(dev);
5283 list_netdevice(dev);
5284
5285 /* Notify protocols, that a new device appeared. */
5286 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5287 ret = notifier_to_errno(ret);
5288 if (ret) {
5289 rollback_registered(dev);
5290 dev->reg_state = NETREG_UNREGISTERED;
5291 }
5292 /*
5293 * Prevent userspace races by waiting until the network
5294 * device is fully setup before sending notifications.
5295 */
5296 if (!dev->rtnl_link_ops ||
5297 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5298 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5299
5300 out:
5301 return ret;
5302
5303 err_uninit:
5304 if (dev->netdev_ops->ndo_uninit)
5305 dev->netdev_ops->ndo_uninit(dev);
5306 goto out;
5307 }
5308 EXPORT_SYMBOL(register_netdevice);
5309
5310 /**
5311 * init_dummy_netdev - init a dummy network device for NAPI
5312 * @dev: device to init
5313 *
5314 * This takes a network device structure and initialize the minimum
5315 * amount of fields so it can be used to schedule NAPI polls without
5316 * registering a full blown interface. This is to be used by drivers
5317 * that need to tie several hardware interfaces to a single NAPI
5318 * poll scheduler due to HW limitations.
5319 */
5320 int init_dummy_netdev(struct net_device *dev)
5321 {
5322 /* Clear everything. Note we don't initialize spinlocks
5323 * are they aren't supposed to be taken by any of the
5324 * NAPI code and this dummy netdev is supposed to be
5325 * only ever used for NAPI polls
5326 */
5327 memset(dev, 0, sizeof(struct net_device));
5328
5329 /* make sure we BUG if trying to hit standard
5330 * register/unregister code path
5331 */
5332 dev->reg_state = NETREG_DUMMY;
5333
5334 /* NAPI wants this */
5335 INIT_LIST_HEAD(&dev->napi_list);
5336
5337 /* a dummy interface is started by default */
5338 set_bit(__LINK_STATE_PRESENT, &dev->state);
5339 set_bit(__LINK_STATE_START, &dev->state);
5340
5341 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5342 * because users of this 'device' dont need to change
5343 * its refcount.
5344 */
5345
5346 return 0;
5347 }
5348 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5349
5350
5351 /**
5352 * register_netdev - register a network device
5353 * @dev: device to register
5354 *
5355 * Take a completed network device structure and add it to the kernel
5356 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5357 * chain. 0 is returned on success. A negative errno code is returned
5358 * on a failure to set up the device, or if the name is a duplicate.
5359 *
5360 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5361 * and expands the device name if you passed a format string to
5362 * alloc_netdev.
5363 */
5364 int register_netdev(struct net_device *dev)
5365 {
5366 int err;
5367
5368 rtnl_lock();
5369
5370 /*
5371 * If the name is a format string the caller wants us to do a
5372 * name allocation.
5373 */
5374 if (strchr(dev->name, '%')) {
5375 err = dev_alloc_name(dev, dev->name);
5376 if (err < 0)
5377 goto out;
5378 }
5379
5380 err = register_netdevice(dev);
5381 out:
5382 rtnl_unlock();
5383 return err;
5384 }
5385 EXPORT_SYMBOL(register_netdev);
5386
5387 int netdev_refcnt_read(const struct net_device *dev)
5388 {
5389 int i, refcnt = 0;
5390
5391 for_each_possible_cpu(i)
5392 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5393 return refcnt;
5394 }
5395 EXPORT_SYMBOL(netdev_refcnt_read);
5396
5397 /*
5398 * netdev_wait_allrefs - wait until all references are gone.
5399 *
5400 * This is called when unregistering network devices.
5401 *
5402 * Any protocol or device that holds a reference should register
5403 * for netdevice notification, and cleanup and put back the
5404 * reference if they receive an UNREGISTER event.
5405 * We can get stuck here if buggy protocols don't correctly
5406 * call dev_put.
5407 */
5408 static void netdev_wait_allrefs(struct net_device *dev)
5409 {
5410 unsigned long rebroadcast_time, warning_time;
5411 int refcnt;
5412
5413 linkwatch_forget_dev(dev);
5414
5415 rebroadcast_time = warning_time = jiffies;
5416 refcnt = netdev_refcnt_read(dev);
5417
5418 while (refcnt != 0) {
5419 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5420 rtnl_lock();
5421
5422 /* Rebroadcast unregister notification */
5423 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5424 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5425 * should have already handle it the first time */
5426
5427 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5428 &dev->state)) {
5429 /* We must not have linkwatch events
5430 * pending on unregister. If this
5431 * happens, we simply run the queue
5432 * unscheduled, resulting in a noop
5433 * for this device.
5434 */
5435 linkwatch_run_queue();
5436 }
5437
5438 __rtnl_unlock();
5439
5440 rebroadcast_time = jiffies;
5441 }
5442
5443 msleep(250);
5444
5445 refcnt = netdev_refcnt_read(dev);
5446
5447 if (time_after(jiffies, warning_time + 10 * HZ)) {
5448 printk(KERN_EMERG "unregister_netdevice: "
5449 "waiting for %s to become free. Usage "
5450 "count = %d\n",
5451 dev->name, refcnt);
5452 warning_time = jiffies;
5453 }
5454 }
5455 }
5456
5457 /* The sequence is:
5458 *
5459 * rtnl_lock();
5460 * ...
5461 * register_netdevice(x1);
5462 * register_netdevice(x2);
5463 * ...
5464 * unregister_netdevice(y1);
5465 * unregister_netdevice(y2);
5466 * ...
5467 * rtnl_unlock();
5468 * free_netdev(y1);
5469 * free_netdev(y2);
5470 *
5471 * We are invoked by rtnl_unlock().
5472 * This allows us to deal with problems:
5473 * 1) We can delete sysfs objects which invoke hotplug
5474 * without deadlocking with linkwatch via keventd.
5475 * 2) Since we run with the RTNL semaphore not held, we can sleep
5476 * safely in order to wait for the netdev refcnt to drop to zero.
5477 *
5478 * We must not return until all unregister events added during
5479 * the interval the lock was held have been completed.
5480 */
5481 void netdev_run_todo(void)
5482 {
5483 struct list_head list;
5484
5485 /* Snapshot list, allow later requests */
5486 list_replace_init(&net_todo_list, &list);
5487
5488 __rtnl_unlock();
5489
5490 while (!list_empty(&list)) {
5491 struct net_device *dev
5492 = list_first_entry(&list, struct net_device, todo_list);
5493 list_del(&dev->todo_list);
5494
5495 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5496 printk(KERN_ERR "network todo '%s' but state %d\n",
5497 dev->name, dev->reg_state);
5498 dump_stack();
5499 continue;
5500 }
5501
5502 dev->reg_state = NETREG_UNREGISTERED;
5503
5504 on_each_cpu(flush_backlog, dev, 1);
5505
5506 netdev_wait_allrefs(dev);
5507
5508 /* paranoia */
5509 BUG_ON(netdev_refcnt_read(dev));
5510 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5511 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5512 WARN_ON(dev->dn_ptr);
5513
5514 if (dev->destructor)
5515 dev->destructor(dev);
5516
5517 /* Free network device */
5518 kobject_put(&dev->dev.kobj);
5519 }
5520 }
5521
5522 /**
5523 * dev_txq_stats_fold - fold tx_queues stats
5524 * @dev: device to get statistics from
5525 * @stats: struct rtnl_link_stats64 to hold results
5526 */
5527 void dev_txq_stats_fold(const struct net_device *dev,
5528 struct rtnl_link_stats64 *stats)
5529 {
5530 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5531 unsigned int i;
5532 struct netdev_queue *txq;
5533
5534 for (i = 0; i < dev->num_tx_queues; i++) {
5535 txq = netdev_get_tx_queue(dev, i);
5536 spin_lock_bh(&txq->_xmit_lock);
5537 tx_bytes += txq->tx_bytes;
5538 tx_packets += txq->tx_packets;
5539 tx_dropped += txq->tx_dropped;
5540 spin_unlock_bh(&txq->_xmit_lock);
5541 }
5542 if (tx_bytes || tx_packets || tx_dropped) {
5543 stats->tx_bytes = tx_bytes;
5544 stats->tx_packets = tx_packets;
5545 stats->tx_dropped = tx_dropped;
5546 }
5547 }
5548 EXPORT_SYMBOL(dev_txq_stats_fold);
5549
5550 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5551 * fields in the same order, with only the type differing.
5552 */
5553 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5554 const struct net_device_stats *netdev_stats)
5555 {
5556 #if BITS_PER_LONG == 64
5557 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5558 memcpy(stats64, netdev_stats, sizeof(*stats64));
5559 #else
5560 size_t i, n = sizeof(*stats64) / sizeof(u64);
5561 const unsigned long *src = (const unsigned long *)netdev_stats;
5562 u64 *dst = (u64 *)stats64;
5563
5564 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5565 sizeof(*stats64) / sizeof(u64));
5566 for (i = 0; i < n; i++)
5567 dst[i] = src[i];
5568 #endif
5569 }
5570
5571 /**
5572 * dev_get_stats - get network device statistics
5573 * @dev: device to get statistics from
5574 * @storage: place to store stats
5575 *
5576 * Get network statistics from device. Return @storage.
5577 * The device driver may provide its own method by setting
5578 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5579 * otherwise the internal statistics structure is used.
5580 */
5581 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5582 struct rtnl_link_stats64 *storage)
5583 {
5584 const struct net_device_ops *ops = dev->netdev_ops;
5585
5586 if (ops->ndo_get_stats64) {
5587 memset(storage, 0, sizeof(*storage));
5588 ops->ndo_get_stats64(dev, storage);
5589 } else if (ops->ndo_get_stats) {
5590 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5591 } else {
5592 netdev_stats_to_stats64(storage, &dev->stats);
5593 dev_txq_stats_fold(dev, storage);
5594 }
5595 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5596 return storage;
5597 }
5598 EXPORT_SYMBOL(dev_get_stats);
5599
5600 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5601 {
5602 struct netdev_queue *queue = dev_ingress_queue(dev);
5603
5604 #ifdef CONFIG_NET_CLS_ACT
5605 if (queue)
5606 return queue;
5607 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5608 if (!queue)
5609 return NULL;
5610 netdev_init_one_queue(dev, queue, NULL);
5611 queue->qdisc = &noop_qdisc;
5612 queue->qdisc_sleeping = &noop_qdisc;
5613 rcu_assign_pointer(dev->ingress_queue, queue);
5614 #endif
5615 return queue;
5616 }
5617
5618 /**
5619 * alloc_netdev_mq - allocate network device
5620 * @sizeof_priv: size of private data to allocate space for
5621 * @name: device name format string
5622 * @setup: callback to initialize device
5623 * @queue_count: the number of subqueues to allocate
5624 *
5625 * Allocates a struct net_device with private data area for driver use
5626 * and performs basic initialization. Also allocates subquue structs
5627 * for each queue on the device at the end of the netdevice.
5628 */
5629 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5630 void (*setup)(struct net_device *), unsigned int queue_count)
5631 {
5632 struct net_device *dev;
5633 size_t alloc_size;
5634 struct net_device *p;
5635
5636 BUG_ON(strlen(name) >= sizeof(dev->name));
5637
5638 if (queue_count < 1) {
5639 pr_err("alloc_netdev: Unable to allocate device "
5640 "with zero queues.\n");
5641 return NULL;
5642 }
5643
5644 alloc_size = sizeof(struct net_device);
5645 if (sizeof_priv) {
5646 /* ensure 32-byte alignment of private area */
5647 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5648 alloc_size += sizeof_priv;
5649 }
5650 /* ensure 32-byte alignment of whole construct */
5651 alloc_size += NETDEV_ALIGN - 1;
5652
5653 p = kzalloc(alloc_size, GFP_KERNEL);
5654 if (!p) {
5655 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5656 return NULL;
5657 }
5658
5659 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5660 dev->padded = (char *)dev - (char *)p;
5661
5662 dev->pcpu_refcnt = alloc_percpu(int);
5663 if (!dev->pcpu_refcnt)
5664 goto free_p;
5665
5666 if (dev_addr_init(dev))
5667 goto free_pcpu;
5668
5669 dev_mc_init(dev);
5670 dev_uc_init(dev);
5671
5672 dev_net_set(dev, &init_net);
5673
5674 dev->num_tx_queues = queue_count;
5675 dev->real_num_tx_queues = queue_count;
5676 if (netif_alloc_netdev_queues(dev))
5677 goto free_pcpu;
5678
5679 #ifdef CONFIG_RPS
5680 dev->num_rx_queues = queue_count;
5681 dev->real_num_rx_queues = queue_count;
5682 if (netif_alloc_rx_queues(dev))
5683 goto free_pcpu;
5684 #endif
5685
5686 dev->gso_max_size = GSO_MAX_SIZE;
5687
5688 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5689 dev->ethtool_ntuple_list.count = 0;
5690 INIT_LIST_HEAD(&dev->napi_list);
5691 INIT_LIST_HEAD(&dev->unreg_list);
5692 INIT_LIST_HEAD(&dev->link_watch_list);
5693 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5694 setup(dev);
5695 strcpy(dev->name, name);
5696 return dev;
5697
5698 free_pcpu:
5699 free_percpu(dev->pcpu_refcnt);
5700 kfree(dev->_tx);
5701 #ifdef CONFIG_RPS
5702 kfree(dev->_rx);
5703 #endif
5704
5705 free_p:
5706 kfree(p);
5707 return NULL;
5708 }
5709 EXPORT_SYMBOL(alloc_netdev_mq);
5710
5711 /**
5712 * free_netdev - free network device
5713 * @dev: device
5714 *
5715 * This function does the last stage of destroying an allocated device
5716 * interface. The reference to the device object is released.
5717 * If this is the last reference then it will be freed.
5718 */
5719 void free_netdev(struct net_device *dev)
5720 {
5721 struct napi_struct *p, *n;
5722
5723 release_net(dev_net(dev));
5724
5725 kfree(dev->_tx);
5726 #ifdef CONFIG_RPS
5727 kfree(dev->_rx);
5728 #endif
5729
5730 kfree(rcu_dereference_raw(dev->ingress_queue));
5731
5732 /* Flush device addresses */
5733 dev_addr_flush(dev);
5734
5735 /* Clear ethtool n-tuple list */
5736 ethtool_ntuple_flush(dev);
5737
5738 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5739 netif_napi_del(p);
5740
5741 free_percpu(dev->pcpu_refcnt);
5742 dev->pcpu_refcnt = NULL;
5743
5744 /* Compatibility with error handling in drivers */
5745 if (dev->reg_state == NETREG_UNINITIALIZED) {
5746 kfree((char *)dev - dev->padded);
5747 return;
5748 }
5749
5750 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5751 dev->reg_state = NETREG_RELEASED;
5752
5753 /* will free via device release */
5754 put_device(&dev->dev);
5755 }
5756 EXPORT_SYMBOL(free_netdev);
5757
5758 /**
5759 * synchronize_net - Synchronize with packet receive processing
5760 *
5761 * Wait for packets currently being received to be done.
5762 * Does not block later packets from starting.
5763 */
5764 void synchronize_net(void)
5765 {
5766 might_sleep();
5767 synchronize_rcu();
5768 }
5769 EXPORT_SYMBOL(synchronize_net);
5770
5771 /**
5772 * unregister_netdevice_queue - remove device from the kernel
5773 * @dev: device
5774 * @head: list
5775 *
5776 * This function shuts down a device interface and removes it
5777 * from the kernel tables.
5778 * If head not NULL, device is queued to be unregistered later.
5779 *
5780 * Callers must hold the rtnl semaphore. You may want
5781 * unregister_netdev() instead of this.
5782 */
5783
5784 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5785 {
5786 ASSERT_RTNL();
5787
5788 if (head) {
5789 list_move_tail(&dev->unreg_list, head);
5790 } else {
5791 rollback_registered(dev);
5792 /* Finish processing unregister after unlock */
5793 net_set_todo(dev);
5794 }
5795 }
5796 EXPORT_SYMBOL(unregister_netdevice_queue);
5797
5798 /**
5799 * unregister_netdevice_many - unregister many devices
5800 * @head: list of devices
5801 */
5802 void unregister_netdevice_many(struct list_head *head)
5803 {
5804 struct net_device *dev;
5805
5806 if (!list_empty(head)) {
5807 rollback_registered_many(head);
5808 list_for_each_entry(dev, head, unreg_list)
5809 net_set_todo(dev);
5810 }
5811 }
5812 EXPORT_SYMBOL(unregister_netdevice_many);
5813
5814 /**
5815 * unregister_netdev - remove device from the kernel
5816 * @dev: device
5817 *
5818 * This function shuts down a device interface and removes it
5819 * from the kernel tables.
5820 *
5821 * This is just a wrapper for unregister_netdevice that takes
5822 * the rtnl semaphore. In general you want to use this and not
5823 * unregister_netdevice.
5824 */
5825 void unregister_netdev(struct net_device *dev)
5826 {
5827 rtnl_lock();
5828 unregister_netdevice(dev);
5829 rtnl_unlock();
5830 }
5831 EXPORT_SYMBOL(unregister_netdev);
5832
5833 /**
5834 * dev_change_net_namespace - move device to different nethost namespace
5835 * @dev: device
5836 * @net: network namespace
5837 * @pat: If not NULL name pattern to try if the current device name
5838 * is already taken in the destination network namespace.
5839 *
5840 * This function shuts down a device interface and moves it
5841 * to a new network namespace. On success 0 is returned, on
5842 * a failure a netagive errno code is returned.
5843 *
5844 * Callers must hold the rtnl semaphore.
5845 */
5846
5847 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5848 {
5849 int err;
5850
5851 ASSERT_RTNL();
5852
5853 /* Don't allow namespace local devices to be moved. */
5854 err = -EINVAL;
5855 if (dev->features & NETIF_F_NETNS_LOCAL)
5856 goto out;
5857
5858 /* Ensure the device has been registrered */
5859 err = -EINVAL;
5860 if (dev->reg_state != NETREG_REGISTERED)
5861 goto out;
5862
5863 /* Get out if there is nothing todo */
5864 err = 0;
5865 if (net_eq(dev_net(dev), net))
5866 goto out;
5867
5868 /* Pick the destination device name, and ensure
5869 * we can use it in the destination network namespace.
5870 */
5871 err = -EEXIST;
5872 if (__dev_get_by_name(net, dev->name)) {
5873 /* We get here if we can't use the current device name */
5874 if (!pat)
5875 goto out;
5876 if (dev_get_valid_name(dev, pat, 1))
5877 goto out;
5878 }
5879
5880 /*
5881 * And now a mini version of register_netdevice unregister_netdevice.
5882 */
5883
5884 /* If device is running close it first. */
5885 dev_close(dev);
5886
5887 /* And unlink it from device chain */
5888 err = -ENODEV;
5889 unlist_netdevice(dev);
5890
5891 synchronize_net();
5892
5893 /* Shutdown queueing discipline. */
5894 dev_shutdown(dev);
5895
5896 /* Notify protocols, that we are about to destroy
5897 this device. They should clean all the things.
5898
5899 Note that dev->reg_state stays at NETREG_REGISTERED.
5900 This is wanted because this way 8021q and macvlan know
5901 the device is just moving and can keep their slaves up.
5902 */
5903 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5904 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5905
5906 /*
5907 * Flush the unicast and multicast chains
5908 */
5909 dev_uc_flush(dev);
5910 dev_mc_flush(dev);
5911
5912 /* Actually switch the network namespace */
5913 dev_net_set(dev, net);
5914
5915 /* If there is an ifindex conflict assign a new one */
5916 if (__dev_get_by_index(net, dev->ifindex)) {
5917 int iflink = (dev->iflink == dev->ifindex);
5918 dev->ifindex = dev_new_index(net);
5919 if (iflink)
5920 dev->iflink = dev->ifindex;
5921 }
5922
5923 /* Fixup kobjects */
5924 err = device_rename(&dev->dev, dev->name);
5925 WARN_ON(err);
5926
5927 /* Add the device back in the hashes */
5928 list_netdevice(dev);
5929
5930 /* Notify protocols, that a new device appeared. */
5931 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5932
5933 /*
5934 * Prevent userspace races by waiting until the network
5935 * device is fully setup before sending notifications.
5936 */
5937 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5938
5939 synchronize_net();
5940 err = 0;
5941 out:
5942 return err;
5943 }
5944 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5945
5946 static int dev_cpu_callback(struct notifier_block *nfb,
5947 unsigned long action,
5948 void *ocpu)
5949 {
5950 struct sk_buff **list_skb;
5951 struct sk_buff *skb;
5952 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5953 struct softnet_data *sd, *oldsd;
5954
5955 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5956 return NOTIFY_OK;
5957
5958 local_irq_disable();
5959 cpu = smp_processor_id();
5960 sd = &per_cpu(softnet_data, cpu);
5961 oldsd = &per_cpu(softnet_data, oldcpu);
5962
5963 /* Find end of our completion_queue. */
5964 list_skb = &sd->completion_queue;
5965 while (*list_skb)
5966 list_skb = &(*list_skb)->next;
5967 /* Append completion queue from offline CPU. */
5968 *list_skb = oldsd->completion_queue;
5969 oldsd->completion_queue = NULL;
5970
5971 /* Append output queue from offline CPU. */
5972 if (oldsd->output_queue) {
5973 *sd->output_queue_tailp = oldsd->output_queue;
5974 sd->output_queue_tailp = oldsd->output_queue_tailp;
5975 oldsd->output_queue = NULL;
5976 oldsd->output_queue_tailp = &oldsd->output_queue;
5977 }
5978
5979 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5980 local_irq_enable();
5981
5982 /* Process offline CPU's input_pkt_queue */
5983 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5984 netif_rx(skb);
5985 input_queue_head_incr(oldsd);
5986 }
5987 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5988 netif_rx(skb);
5989 input_queue_head_incr(oldsd);
5990 }
5991
5992 return NOTIFY_OK;
5993 }
5994
5995
5996 /**
5997 * netdev_increment_features - increment feature set by one
5998 * @all: current feature set
5999 * @one: new feature set
6000 * @mask: mask feature set
6001 *
6002 * Computes a new feature set after adding a device with feature set
6003 * @one to the master device with current feature set @all. Will not
6004 * enable anything that is off in @mask. Returns the new feature set.
6005 */
6006 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6007 unsigned long mask)
6008 {
6009 /* If device needs checksumming, downgrade to it. */
6010 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6011 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6012 else if (mask & NETIF_F_ALL_CSUM) {
6013 /* If one device supports v4/v6 checksumming, set for all. */
6014 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6015 !(all & NETIF_F_GEN_CSUM)) {
6016 all &= ~NETIF_F_ALL_CSUM;
6017 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6018 }
6019
6020 /* If one device supports hw checksumming, set for all. */
6021 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6022 all &= ~NETIF_F_ALL_CSUM;
6023 all |= NETIF_F_HW_CSUM;
6024 }
6025 }
6026
6027 one |= NETIF_F_ALL_CSUM;
6028
6029 one |= all & NETIF_F_ONE_FOR_ALL;
6030 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6031 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6032
6033 return all;
6034 }
6035 EXPORT_SYMBOL(netdev_increment_features);
6036
6037 static struct hlist_head *netdev_create_hash(void)
6038 {
6039 int i;
6040 struct hlist_head *hash;
6041
6042 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6043 if (hash != NULL)
6044 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6045 INIT_HLIST_HEAD(&hash[i]);
6046
6047 return hash;
6048 }
6049
6050 /* Initialize per network namespace state */
6051 static int __net_init netdev_init(struct net *net)
6052 {
6053 INIT_LIST_HEAD(&net->dev_base_head);
6054
6055 net->dev_name_head = netdev_create_hash();
6056 if (net->dev_name_head == NULL)
6057 goto err_name;
6058
6059 net->dev_index_head = netdev_create_hash();
6060 if (net->dev_index_head == NULL)
6061 goto err_idx;
6062
6063 return 0;
6064
6065 err_idx:
6066 kfree(net->dev_name_head);
6067 err_name:
6068 return -ENOMEM;
6069 }
6070
6071 /**
6072 * netdev_drivername - network driver for the device
6073 * @dev: network device
6074 * @buffer: buffer for resulting name
6075 * @len: size of buffer
6076 *
6077 * Determine network driver for device.
6078 */
6079 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6080 {
6081 const struct device_driver *driver;
6082 const struct device *parent;
6083
6084 if (len <= 0 || !buffer)
6085 return buffer;
6086 buffer[0] = 0;
6087
6088 parent = dev->dev.parent;
6089
6090 if (!parent)
6091 return buffer;
6092
6093 driver = parent->driver;
6094 if (driver && driver->name)
6095 strlcpy(buffer, driver->name, len);
6096 return buffer;
6097 }
6098
6099 static int __netdev_printk(const char *level, const struct net_device *dev,
6100 struct va_format *vaf)
6101 {
6102 int r;
6103
6104 if (dev && dev->dev.parent)
6105 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6106 netdev_name(dev), vaf);
6107 else if (dev)
6108 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6109 else
6110 r = printk("%s(NULL net_device): %pV", level, vaf);
6111
6112 return r;
6113 }
6114
6115 int netdev_printk(const char *level, const struct net_device *dev,
6116 const char *format, ...)
6117 {
6118 struct va_format vaf;
6119 va_list args;
6120 int r;
6121
6122 va_start(args, format);
6123
6124 vaf.fmt = format;
6125 vaf.va = &args;
6126
6127 r = __netdev_printk(level, dev, &vaf);
6128 va_end(args);
6129
6130 return r;
6131 }
6132 EXPORT_SYMBOL(netdev_printk);
6133
6134 #define define_netdev_printk_level(func, level) \
6135 int func(const struct net_device *dev, const char *fmt, ...) \
6136 { \
6137 int r; \
6138 struct va_format vaf; \
6139 va_list args; \
6140 \
6141 va_start(args, fmt); \
6142 \
6143 vaf.fmt = fmt; \
6144 vaf.va = &args; \
6145 \
6146 r = __netdev_printk(level, dev, &vaf); \
6147 va_end(args); \
6148 \
6149 return r; \
6150 } \
6151 EXPORT_SYMBOL(func);
6152
6153 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6154 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6155 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6156 define_netdev_printk_level(netdev_err, KERN_ERR);
6157 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6158 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6159 define_netdev_printk_level(netdev_info, KERN_INFO);
6160
6161 static void __net_exit netdev_exit(struct net *net)
6162 {
6163 kfree(net->dev_name_head);
6164 kfree(net->dev_index_head);
6165 }
6166
6167 static struct pernet_operations __net_initdata netdev_net_ops = {
6168 .init = netdev_init,
6169 .exit = netdev_exit,
6170 };
6171
6172 static void __net_exit default_device_exit(struct net *net)
6173 {
6174 struct net_device *dev, *aux;
6175 /*
6176 * Push all migratable network devices back to the
6177 * initial network namespace
6178 */
6179 rtnl_lock();
6180 for_each_netdev_safe(net, dev, aux) {
6181 int err;
6182 char fb_name[IFNAMSIZ];
6183
6184 /* Ignore unmoveable devices (i.e. loopback) */
6185 if (dev->features & NETIF_F_NETNS_LOCAL)
6186 continue;
6187
6188 /* Leave virtual devices for the generic cleanup */
6189 if (dev->rtnl_link_ops)
6190 continue;
6191
6192 /* Push remaing network devices to init_net */
6193 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6194 err = dev_change_net_namespace(dev, &init_net, fb_name);
6195 if (err) {
6196 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6197 __func__, dev->name, err);
6198 BUG();
6199 }
6200 }
6201 rtnl_unlock();
6202 }
6203
6204 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6205 {
6206 /* At exit all network devices most be removed from a network
6207 * namespace. Do this in the reverse order of registeration.
6208 * Do this across as many network namespaces as possible to
6209 * improve batching efficiency.
6210 */
6211 struct net_device *dev;
6212 struct net *net;
6213 LIST_HEAD(dev_kill_list);
6214
6215 rtnl_lock();
6216 list_for_each_entry(net, net_list, exit_list) {
6217 for_each_netdev_reverse(net, dev) {
6218 if (dev->rtnl_link_ops)
6219 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6220 else
6221 unregister_netdevice_queue(dev, &dev_kill_list);
6222 }
6223 }
6224 unregister_netdevice_many(&dev_kill_list);
6225 rtnl_unlock();
6226 }
6227
6228 static struct pernet_operations __net_initdata default_device_ops = {
6229 .exit = default_device_exit,
6230 .exit_batch = default_device_exit_batch,
6231 };
6232
6233 /*
6234 * Initialize the DEV module. At boot time this walks the device list and
6235 * unhooks any devices that fail to initialise (normally hardware not
6236 * present) and leaves us with a valid list of present and active devices.
6237 *
6238 */
6239
6240 /*
6241 * This is called single threaded during boot, so no need
6242 * to take the rtnl semaphore.
6243 */
6244 static int __init net_dev_init(void)
6245 {
6246 int i, rc = -ENOMEM;
6247
6248 BUG_ON(!dev_boot_phase);
6249
6250 if (dev_proc_init())
6251 goto out;
6252
6253 if (netdev_kobject_init())
6254 goto out;
6255
6256 INIT_LIST_HEAD(&ptype_all);
6257 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6258 INIT_LIST_HEAD(&ptype_base[i]);
6259
6260 if (register_pernet_subsys(&netdev_net_ops))
6261 goto out;
6262
6263 /*
6264 * Initialise the packet receive queues.
6265 */
6266
6267 for_each_possible_cpu(i) {
6268 struct softnet_data *sd = &per_cpu(softnet_data, i);
6269
6270 memset(sd, 0, sizeof(*sd));
6271 skb_queue_head_init(&sd->input_pkt_queue);
6272 skb_queue_head_init(&sd->process_queue);
6273 sd->completion_queue = NULL;
6274 INIT_LIST_HEAD(&sd->poll_list);
6275 sd->output_queue = NULL;
6276 sd->output_queue_tailp = &sd->output_queue;
6277 #ifdef CONFIG_RPS
6278 sd->csd.func = rps_trigger_softirq;
6279 sd->csd.info = sd;
6280 sd->csd.flags = 0;
6281 sd->cpu = i;
6282 #endif
6283
6284 sd->backlog.poll = process_backlog;
6285 sd->backlog.weight = weight_p;
6286 sd->backlog.gro_list = NULL;
6287 sd->backlog.gro_count = 0;
6288 }
6289
6290 dev_boot_phase = 0;
6291
6292 /* The loopback device is special if any other network devices
6293 * is present in a network namespace the loopback device must
6294 * be present. Since we now dynamically allocate and free the
6295 * loopback device ensure this invariant is maintained by
6296 * keeping the loopback device as the first device on the
6297 * list of network devices. Ensuring the loopback devices
6298 * is the first device that appears and the last network device
6299 * that disappears.
6300 */
6301 if (register_pernet_device(&loopback_net_ops))
6302 goto out;
6303
6304 if (register_pernet_device(&default_device_ops))
6305 goto out;
6306
6307 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6308 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6309
6310 hotcpu_notifier(dev_cpu_callback, 0);
6311 dst_init();
6312 dev_mcast_init();
6313 rc = 0;
6314 out:
6315 return rc;
6316 }
6317
6318 subsys_initcall(net_dev_init);
6319
6320 static int __init initialize_hashrnd(void)
6321 {
6322 get_random_bytes(&hashrnd, sizeof(hashrnd));
6323 return 0;
6324 }
6325
6326 late_initcall_sync(initialize_hashrnd);
6327
This page took 0.182048 seconds and 5 git commands to generate.