drm/i915: Remove duplicated psr.active unset
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
509 }
510
511 /**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 __dev_remove_offload(po);
526
527 synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533 Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625 }
626
627 /*
628 * Saves at boot time configured settings for any netdevice.
629 */
630 int __init netdev_boot_setup(char *str)
631 {
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658 Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663 * __dev_get_by_name - find a device by its name
664 * @net: the applicable net namespace
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
678
679 hlist_for_each_entry(dev, head, name_hlist)
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
682
683 return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686
687 /**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
704 hlist_for_each_entry_rcu(dev, head, name_hlist)
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712 /**
713 * dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
730 if (dev)
731 dev_hold(dev);
732 rcu_read_unlock();
733 return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736
737 /**
738 * __dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
753
754 hlist_for_each_entry(dev, head, index_hlist)
755 if (dev->ifindex == ifindex)
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761
762 /**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
778 hlist_for_each_entry_rcu(dev, head, index_hlist)
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787 /**
788 * dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
804 if (dev)
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810
811 /**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 struct net_device *dev;
824 unsigned int seq;
825
826 retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843 }
844
845 /**
846 * dev_getbyhwaddr_rcu - find a device by its hardware address
847 * @net: the applicable net namespace
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
854 * The returned device has not had its ref count increased
855 * and the caller must therefore be careful about locking
856 *
857 */
858
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
861 {
862 struct net_device *dev;
863
864 for_each_netdev_rcu(net, dev)
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
867 return dev;
868
869 return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 struct net_device *dev;
876
877 ASSERT_RTNL();
878 for_each_netdev(net, dev)
879 if (dev->type == type)
880 return dev;
881
882 return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 struct net_device *dev, *ret = NULL;
889
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902 /**
903 * __dev_get_by_flags - find any device with given flags
904 * @net: the applicable net namespace
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
909 * is not found or a pointer to the device. Must be called inside
910 * rtnl_lock(), and result refcount is unchanged.
911 */
912
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
915 {
916 struct net_device *dev, *ret;
917
918 ASSERT_RTNL();
919
920 ret = NULL;
921 for_each_netdev(net, dev) {
922 if (((dev->flags ^ if_flags) & mask) == 0) {
923 ret = dev;
924 break;
925 }
926 }
927 return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930
931 /**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
938 */
939 bool dev_valid_name(const char *name)
940 {
941 if (*name == '\0')
942 return false;
943 if (strlen(name) >= IFNAMSIZ)
944 return false;
945 if (!strcmp(name, ".") || !strcmp(name, ".."))
946 return false;
947
948 while (*name) {
949 if (*name == '/' || *name == ':' || isspace(*name))
950 return false;
951 name++;
952 }
953 return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956
957 /**
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
960 * @name: name format string
961 * @buf: scratch buffer and result name string
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
970 */
971
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 int i = 0;
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
977 unsigned long *inuse;
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 if (!inuse)
993 return -ENOMEM;
994
995 for_each_netdev(net, d) {
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
1013 if (!__dev_get_by_name(net, buf))
1014 return i;
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021 }
1022
1023 /**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051
1052 static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
1055 {
1056 char buf[IFNAMSIZ];
1057 int ret;
1058
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063 }
1064
1065 static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068 {
1069 BUG_ON(!net);
1070
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1074 if (strchr(name, '%'))
1075 return dev_alloc_name_ns(net, dev, name);
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 unsigned char old_assign_type;
1095 char oldname[IFNAMSIZ];
1096 int err = 0;
1097 int ret;
1098 struct net *net;
1099
1100 ASSERT_RTNL();
1101 BUG_ON(!dev_net(dev));
1102
1103 net = dev_net(dev);
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
1107 write_seqcount_begin(&devnet_rename_seq);
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 write_seqcount_end(&devnet_rename_seq);
1111 return 0;
1112 }
1113
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116 err = dev_get_valid_name(net, dev, newname);
1117 if (err < 0) {
1118 write_seqcount_end(&devnet_rename_seq);
1119 return err;
1120 }
1121
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
1128 rollback:
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
1132 dev->name_assign_type = old_assign_type;
1133 write_seqcount_end(&devnet_rename_seq);
1134 return ret;
1135 }
1136
1137 write_seqcount_end(&devnet_rename_seq);
1138
1139 netdev_adjacent_rename_links(dev, oldname);
1140
1141 write_lock_bh(&dev_base_lock);
1142 hlist_del_rcu(&dev->name_hlist);
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 write_unlock_bh(&dev_base_lock);
1150
1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
1157 err = ret;
1158 write_seqcount_begin(&devnet_rename_seq);
1159 memcpy(dev->name, oldname, IFNAMSIZ);
1160 memcpy(oldname, newname, IFNAMSIZ);
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
1163 goto rollback;
1164 } else {
1165 pr_err("%s: name change rollback failed: %d\n",
1166 dev->name, ret);
1167 }
1168 }
1169
1170 return err;
1171 }
1172
1173 /**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
1177 * @len: limit of bytes to copy from info
1178 *
1179 * Set ifalias for a device,
1180 */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 char *new_ifalias;
1184
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
1190 if (!len) {
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
1193 return 0;
1194 }
1195
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
1198 return -ENOMEM;
1199 dev->ifalias = new_ifalias;
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203 }
1204
1205
1206 /**
1207 * netdev_features_change - device changes features
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217
1218 /**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 if (dev->flags & IFF_UP) {
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 }
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238
1239 /**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 const struct net_device_ops *ops = dev->netdev_ops;
1260 int ret;
1261
1262 ASSERT_RTNL();
1263
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
1271 netpoll_poll_disable(dev);
1272
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1278 set_bit(__LINK_STATE_START, &dev->state);
1279
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
1282
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1285
1286 netpoll_poll_enable(dev);
1287
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1291 dev->flags |= IFF_UP;
1292 dev_set_rx_mode(dev);
1293 dev_activate(dev);
1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1295 }
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1303 *
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1311 */
1312 int dev_open(struct net_device *dev)
1313 {
1314 int ret;
1315
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 struct net_device *dev;
1333
1334 ASSERT_RTNL();
1335 might_sleep();
1336
1337 list_for_each_entry(dev, head, close_list) {
1338 /* Temporarily disable netpoll until the interface is down */
1339 netpoll_poll_disable(dev);
1340
1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
1351 smp_mb__after_atomic(); /* Commit netif_running(). */
1352 }
1353
1354 dev_deactivate_many(head);
1355
1356 list_for_each_entry(dev, head, close_list) {
1357 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
1369 dev->flags &= ~IFF_UP;
1370 netpoll_poll_enable(dev);
1371 }
1372
1373 return 0;
1374 }
1375
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 int retval;
1379 LIST_HEAD(single);
1380
1381 list_add(&dev->close_list, &single);
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
1384
1385 return retval;
1386 }
1387
1388 static int dev_close_many(struct list_head *head)
1389 {
1390 struct net_device *dev, *tmp;
1391
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
1394 if (!(dev->flags & IFF_UP))
1395 list_del_init(&dev->close_list);
1396
1397 __dev_close_many(head);
1398
1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 list_del_init(&dev->close_list);
1403 }
1404
1405 return 0;
1406 }
1407
1408 /**
1409 * dev_close - shutdown an interface.
1410 * @dev: device to shutdown
1411 *
1412 * This function moves an active device into down state. A
1413 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415 * chain.
1416 */
1417 int dev_close(struct net_device *dev)
1418 {
1419 if (dev->flags & IFF_UP) {
1420 LIST_HEAD(single);
1421
1422 list_add(&dev->close_list, &single);
1423 dev_close_many(&single);
1424 list_del(&single);
1425 }
1426 return 0;
1427 }
1428 EXPORT_SYMBOL(dev_close);
1429
1430
1431 /**
1432 * dev_disable_lro - disable Large Receive Offload on a device
1433 * @dev: device
1434 *
1435 * Disable Large Receive Offload (LRO) on a net device. Must be
1436 * called under RTNL. This is needed if received packets may be
1437 * forwarded to another interface.
1438 */
1439 void dev_disable_lro(struct net_device *dev)
1440 {
1441 struct net_device *lower_dev;
1442 struct list_head *iter;
1443
1444 dev->wanted_features &= ~NETIF_F_LRO;
1445 netdev_update_features(dev);
1446
1447 if (unlikely(dev->features & NETIF_F_LRO))
1448 netdev_WARN(dev, "failed to disable LRO!\n");
1449
1450 netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 dev_disable_lro(lower_dev);
1452 }
1453 EXPORT_SYMBOL(dev_disable_lro);
1454
1455 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 struct net_device *dev)
1457 {
1458 struct netdev_notifier_info info;
1459
1460 netdev_notifier_info_init(&info, dev);
1461 return nb->notifier_call(nb, val, &info);
1462 }
1463
1464 static int dev_boot_phase = 1;
1465
1466 /**
1467 * register_netdevice_notifier - register a network notifier block
1468 * @nb: notifier
1469 *
1470 * Register a notifier to be called when network device events occur.
1471 * The notifier passed is linked into the kernel structures and must
1472 * not be reused until it has been unregistered. A negative errno code
1473 * is returned on a failure.
1474 *
1475 * When registered all registration and up events are replayed
1476 * to the new notifier to allow device to have a race free
1477 * view of the network device list.
1478 */
1479
1480 int register_netdevice_notifier(struct notifier_block *nb)
1481 {
1482 struct net_device *dev;
1483 struct net_device *last;
1484 struct net *net;
1485 int err;
1486
1487 rtnl_lock();
1488 err = raw_notifier_chain_register(&netdev_chain, nb);
1489 if (err)
1490 goto unlock;
1491 if (dev_boot_phase)
1492 goto unlock;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 err = notifier_to_errno(err);
1497 if (err)
1498 goto rollback;
1499
1500 if (!(dev->flags & IFF_UP))
1501 continue;
1502
1503 call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 }
1505 }
1506
1507 unlock:
1508 rtnl_unlock();
1509 return err;
1510
1511 rollback:
1512 last = dev;
1513 for_each_net(net) {
1514 for_each_netdev(net, dev) {
1515 if (dev == last)
1516 goto outroll;
1517
1518 if (dev->flags & IFF_UP) {
1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 dev);
1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 }
1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 }
1525 }
1526
1527 outroll:
1528 raw_notifier_chain_unregister(&netdev_chain, nb);
1529 goto unlock;
1530 }
1531 EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533 /**
1534 * unregister_netdevice_notifier - unregister a network notifier block
1535 * @nb: notifier
1536 *
1537 * Unregister a notifier previously registered by
1538 * register_netdevice_notifier(). The notifier is unlinked into the
1539 * kernel structures and may then be reused. A negative errno code
1540 * is returned on a failure.
1541 *
1542 * After unregistering unregister and down device events are synthesized
1543 * for all devices on the device list to the removed notifier to remove
1544 * the need for special case cleanup code.
1545 */
1546
1547 int unregister_netdevice_notifier(struct notifier_block *nb)
1548 {
1549 struct net_device *dev;
1550 struct net *net;
1551 int err;
1552
1553 rtnl_lock();
1554 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 if (err)
1556 goto unlock;
1557
1558 for_each_net(net) {
1559 for_each_netdev(net, dev) {
1560 if (dev->flags & IFF_UP) {
1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 dev);
1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 }
1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 }
1567 }
1568 unlock:
1569 rtnl_unlock();
1570 return err;
1571 }
1572 EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574 /**
1575 * call_netdevice_notifiers_info - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 * @info: notifier information data
1579 *
1580 * Call all network notifier blocks. Parameters and return value
1581 * are as for raw_notifier_call_chain().
1582 */
1583
1584 static int call_netdevice_notifiers_info(unsigned long val,
1585 struct net_device *dev,
1586 struct netdev_notifier_info *info)
1587 {
1588 ASSERT_RTNL();
1589 netdev_notifier_info_init(info, dev);
1590 return raw_notifier_call_chain(&netdev_chain, val, info);
1591 }
1592
1593 /**
1594 * call_netdevice_notifiers - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
1596 * @dev: net_device pointer passed unmodified to notifier function
1597 *
1598 * Call all network notifier blocks. Parameters and return value
1599 * are as for raw_notifier_call_chain().
1600 */
1601
1602 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603 {
1604 struct netdev_notifier_info info;
1605
1606 return call_netdevice_notifiers_info(val, dev, &info);
1607 }
1608 EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610 static struct static_key netstamp_needed __read_mostly;
1611 #ifdef HAVE_JUMP_LABEL
1612 /* We are not allowed to call static_key_slow_dec() from irq context
1613 * If net_disable_timestamp() is called from irq context, defer the
1614 * static_key_slow_dec() calls.
1615 */
1616 static atomic_t netstamp_needed_deferred;
1617 #endif
1618
1619 void net_enable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624 if (deferred) {
1625 while (--deferred)
1626 static_key_slow_dec(&netstamp_needed);
1627 return;
1628 }
1629 #endif
1630 static_key_slow_inc(&netstamp_needed);
1631 }
1632 EXPORT_SYMBOL(net_enable_timestamp);
1633
1634 void net_disable_timestamp(void)
1635 {
1636 #ifdef HAVE_JUMP_LABEL
1637 if (in_interrupt()) {
1638 atomic_inc(&netstamp_needed_deferred);
1639 return;
1640 }
1641 #endif
1642 static_key_slow_dec(&netstamp_needed);
1643 }
1644 EXPORT_SYMBOL(net_disable_timestamp);
1645
1646 static inline void net_timestamp_set(struct sk_buff *skb)
1647 {
1648 skb->tstamp.tv64 = 0;
1649 if (static_key_false(&netstamp_needed))
1650 __net_timestamp(skb);
1651 }
1652
1653 #define net_timestamp_check(COND, SKB) \
1654 if (static_key_false(&netstamp_needed)) { \
1655 if ((COND) && !(SKB)->tstamp.tv64) \
1656 __net_timestamp(SKB); \
1657 } \
1658
1659 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660 {
1661 unsigned int len;
1662
1663 if (!(dev->flags & IFF_UP))
1664 return false;
1665
1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 if (skb->len <= len)
1668 return true;
1669
1670 /* if TSO is enabled, we don't care about the length as the packet
1671 * could be forwarded without being segmented before
1672 */
1673 if (skb_is_gso(skb))
1674 return true;
1675
1676 return false;
1677 }
1678 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681 {
1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 atomic_long_inc(&dev->rx_dropped);
1685 kfree_skb(skb);
1686 return NET_RX_DROP;
1687 }
1688 }
1689
1690 if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695
1696 skb_scrub_packet(skb, true);
1697 skb->protocol = eth_type_trans(skb, dev);
1698 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699
1700 return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
1704 /**
1705 * dev_forward_skb - loopback an skb to another netif
1706 *
1707 * @dev: destination network device
1708 * @skb: buffer to forward
1709 *
1710 * return values:
1711 * NET_RX_SUCCESS (no congestion)
1712 * NET_RX_DROP (packet was dropped, but freed)
1713 *
1714 * dev_forward_skb can be used for injecting an skb from the
1715 * start_xmit function of one device into the receive queue
1716 * of another device.
1717 *
1718 * The receiving device may be in another namespace, so
1719 * we have to clear all information in the skb that could
1720 * impact namespace isolation.
1721 */
1722 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723 {
1724 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725 }
1726 EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
1728 static inline int deliver_skb(struct sk_buff *skb,
1729 struct packet_type *pt_prev,
1730 struct net_device *orig_dev)
1731 {
1732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 return -ENOMEM;
1734 atomic_inc(&skb->users);
1735 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736 }
1737
1738 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 struct packet_type **pt,
1740 struct net_device *dev, __be16 type,
1741 struct list_head *ptype_list)
1742 {
1743 struct packet_type *ptype, *pt_prev = *pt;
1744
1745 list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 if (ptype->type != type)
1747 continue;
1748 if (pt_prev)
1749 deliver_skb(skb, pt_prev, dev);
1750 pt_prev = ptype;
1751 }
1752 *pt = pt_prev;
1753 }
1754
1755 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756 {
1757 if (!ptype->af_packet_priv || !skb->sk)
1758 return false;
1759
1760 if (ptype->id_match)
1761 return ptype->id_match(ptype, skb->sk);
1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 return true;
1764
1765 return false;
1766 }
1767
1768 /*
1769 * Support routine. Sends outgoing frames to any network
1770 * taps currently in use.
1771 */
1772
1773 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 struct packet_type *ptype;
1776 struct sk_buff *skb2 = NULL;
1777 struct packet_type *pt_prev = NULL;
1778 struct list_head *ptype_list = &ptype_all;
1779
1780 rcu_read_lock();
1781 again:
1782 list_for_each_entry_rcu(ptype, ptype_list, list) {
1783 /* Never send packets back to the socket
1784 * they originated from - MvS (miquels@drinkel.ow.org)
1785 */
1786 if (skb_loop_sk(ptype, skb))
1787 continue;
1788
1789 if (pt_prev) {
1790 deliver_skb(skb2, pt_prev, skb->dev);
1791 pt_prev = ptype;
1792 continue;
1793 }
1794
1795 /* need to clone skb, done only once */
1796 skb2 = skb_clone(skb, GFP_ATOMIC);
1797 if (!skb2)
1798 goto out_unlock;
1799
1800 net_timestamp_set(skb2);
1801
1802 /* skb->nh should be correctly
1803 * set by sender, so that the second statement is
1804 * just protection against buggy protocols.
1805 */
1806 skb_reset_mac_header(skb2);
1807
1808 if (skb_network_header(skb2) < skb2->data ||
1809 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 ntohs(skb2->protocol),
1812 dev->name);
1813 skb_reset_network_header(skb2);
1814 }
1815
1816 skb2->transport_header = skb2->network_header;
1817 skb2->pkt_type = PACKET_OUTGOING;
1818 pt_prev = ptype;
1819 }
1820
1821 if (ptype_list == &ptype_all) {
1822 ptype_list = &dev->ptype_all;
1823 goto again;
1824 }
1825 out_unlock:
1826 if (pt_prev)
1827 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828 rcu_read_unlock();
1829 }
1830
1831 /**
1832 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833 * @dev: Network device
1834 * @txq: number of queues available
1835 *
1836 * If real_num_tx_queues is changed the tc mappings may no longer be
1837 * valid. To resolve this verify the tc mapping remains valid and if
1838 * not NULL the mapping. With no priorities mapping to this
1839 * offset/count pair it will no longer be used. In the worst case TC0
1840 * is invalid nothing can be done so disable priority mappings. If is
1841 * expected that drivers will fix this mapping if they can before
1842 * calling netif_set_real_num_tx_queues.
1843 */
1844 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845 {
1846 int i;
1847 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849 /* If TC0 is invalidated disable TC mapping */
1850 if (tc->offset + tc->count > txq) {
1851 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852 dev->num_tc = 0;
1853 return;
1854 }
1855
1856 /* Invalidated prio to tc mappings set to TC0 */
1857 for (i = 1; i < TC_BITMASK + 1; i++) {
1858 int q = netdev_get_prio_tc_map(dev, i);
1859
1860 tc = &dev->tc_to_txq[q];
1861 if (tc->offset + tc->count > txq) {
1862 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 i, q);
1864 netdev_set_prio_tc_map(dev, i, 0);
1865 }
1866 }
1867 }
1868
1869 #ifdef CONFIG_XPS
1870 static DEFINE_MUTEX(xps_map_mutex);
1871 #define xmap_dereference(P) \
1872 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
1874 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 int cpu, u16 index)
1876 {
1877 struct xps_map *map = NULL;
1878 int pos;
1879
1880 if (dev_maps)
1881 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882
1883 for (pos = 0; map && pos < map->len; pos++) {
1884 if (map->queues[pos] == index) {
1885 if (map->len > 1) {
1886 map->queues[pos] = map->queues[--map->len];
1887 } else {
1888 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889 kfree_rcu(map, rcu);
1890 map = NULL;
1891 }
1892 break;
1893 }
1894 }
1895
1896 return map;
1897 }
1898
1899 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900 {
1901 struct xps_dev_maps *dev_maps;
1902 int cpu, i;
1903 bool active = false;
1904
1905 mutex_lock(&xps_map_mutex);
1906 dev_maps = xmap_dereference(dev->xps_maps);
1907
1908 if (!dev_maps)
1909 goto out_no_maps;
1910
1911 for_each_possible_cpu(cpu) {
1912 for (i = index; i < dev->num_tx_queues; i++) {
1913 if (!remove_xps_queue(dev_maps, cpu, i))
1914 break;
1915 }
1916 if (i == dev->num_tx_queues)
1917 active = true;
1918 }
1919
1920 if (!active) {
1921 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 kfree_rcu(dev_maps, rcu);
1923 }
1924
1925 for (i = index; i < dev->num_tx_queues; i++)
1926 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 NUMA_NO_NODE);
1928
1929 out_no_maps:
1930 mutex_unlock(&xps_map_mutex);
1931 }
1932
1933 static struct xps_map *expand_xps_map(struct xps_map *map,
1934 int cpu, u16 index)
1935 {
1936 struct xps_map *new_map;
1937 int alloc_len = XPS_MIN_MAP_ALLOC;
1938 int i, pos;
1939
1940 for (pos = 0; map && pos < map->len; pos++) {
1941 if (map->queues[pos] != index)
1942 continue;
1943 return map;
1944 }
1945
1946 /* Need to add queue to this CPU's existing map */
1947 if (map) {
1948 if (pos < map->alloc_len)
1949 return map;
1950
1951 alloc_len = map->alloc_len * 2;
1952 }
1953
1954 /* Need to allocate new map to store queue on this CPU's map */
1955 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 cpu_to_node(cpu));
1957 if (!new_map)
1958 return NULL;
1959
1960 for (i = 0; i < pos; i++)
1961 new_map->queues[i] = map->queues[i];
1962 new_map->alloc_len = alloc_len;
1963 new_map->len = pos;
1964
1965 return new_map;
1966 }
1967
1968 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 u16 index)
1970 {
1971 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972 struct xps_map *map, *new_map;
1973 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974 int cpu, numa_node_id = -2;
1975 bool active = false;
1976
1977 mutex_lock(&xps_map_mutex);
1978
1979 dev_maps = xmap_dereference(dev->xps_maps);
1980
1981 /* allocate memory for queue storage */
1982 for_each_online_cpu(cpu) {
1983 if (!cpumask_test_cpu(cpu, mask))
1984 continue;
1985
1986 if (!new_dev_maps)
1987 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988 if (!new_dev_maps) {
1989 mutex_unlock(&xps_map_mutex);
1990 return -ENOMEM;
1991 }
1992
1993 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 NULL;
1995
1996 map = expand_xps_map(map, cpu, index);
1997 if (!map)
1998 goto error;
1999
2000 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 }
2002
2003 if (!new_dev_maps)
2004 goto out_no_new_maps;
2005
2006 for_each_possible_cpu(cpu) {
2007 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 /* add queue to CPU maps */
2009 int pos = 0;
2010
2011 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 while ((pos < map->len) && (map->queues[pos] != index))
2013 pos++;
2014
2015 if (pos == map->len)
2016 map->queues[map->len++] = index;
2017 #ifdef CONFIG_NUMA
2018 if (numa_node_id == -2)
2019 numa_node_id = cpu_to_node(cpu);
2020 else if (numa_node_id != cpu_to_node(cpu))
2021 numa_node_id = -1;
2022 #endif
2023 } else if (dev_maps) {
2024 /* fill in the new device map from the old device map */
2025 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027 }
2028
2029 }
2030
2031 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
2033 /* Cleanup old maps */
2034 if (dev_maps) {
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 if (map && map != new_map)
2039 kfree_rcu(map, rcu);
2040 }
2041
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045 dev_maps = new_dev_maps;
2046 active = true;
2047
2048 out_no_new_maps:
2049 /* update Tx queue numa node */
2050 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 (numa_node_id >= 0) ? numa_node_id :
2052 NUMA_NO_NODE);
2053
2054 if (!dev_maps)
2055 goto out_no_maps;
2056
2057 /* removes queue from unused CPUs */
2058 for_each_possible_cpu(cpu) {
2059 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 continue;
2061
2062 if (remove_xps_queue(dev_maps, cpu, index))
2063 active = true;
2064 }
2065
2066 /* free map if not active */
2067 if (!active) {
2068 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 kfree_rcu(dev_maps, rcu);
2070 }
2071
2072 out_no_maps:
2073 mutex_unlock(&xps_map_mutex);
2074
2075 return 0;
2076 error:
2077 /* remove any maps that we added */
2078 for_each_possible_cpu(cpu) {
2079 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 NULL;
2082 if (new_map && new_map != map)
2083 kfree(new_map);
2084 }
2085
2086 mutex_unlock(&xps_map_mutex);
2087
2088 kfree(new_dev_maps);
2089 return -ENOMEM;
2090 }
2091 EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093 #endif
2094 /*
2095 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097 */
2098 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099 {
2100 int rc;
2101
2102 if (txq < 1 || txq > dev->num_tx_queues)
2103 return -EINVAL;
2104
2105 if (dev->reg_state == NETREG_REGISTERED ||
2106 dev->reg_state == NETREG_UNREGISTERING) {
2107 ASSERT_RTNL();
2108
2109 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 txq);
2111 if (rc)
2112 return rc;
2113
2114 if (dev->num_tc)
2115 netif_setup_tc(dev, txq);
2116
2117 if (txq < dev->real_num_tx_queues) {
2118 qdisc_reset_all_tx_gt(dev, txq);
2119 #ifdef CONFIG_XPS
2120 netif_reset_xps_queues_gt(dev, txq);
2121 #endif
2122 }
2123 }
2124
2125 dev->real_num_tx_queues = txq;
2126 return 0;
2127 }
2128 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129
2130 #ifdef CONFIG_SYSFS
2131 /**
2132 * netif_set_real_num_rx_queues - set actual number of RX queues used
2133 * @dev: Network device
2134 * @rxq: Actual number of RX queues
2135 *
2136 * This must be called either with the rtnl_lock held or before
2137 * registration of the net device. Returns 0 on success, or a
2138 * negative error code. If called before registration, it always
2139 * succeeds.
2140 */
2141 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142 {
2143 int rc;
2144
2145 if (rxq < 1 || rxq > dev->num_rx_queues)
2146 return -EINVAL;
2147
2148 if (dev->reg_state == NETREG_REGISTERED) {
2149 ASSERT_RTNL();
2150
2151 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 rxq);
2153 if (rc)
2154 return rc;
2155 }
2156
2157 dev->real_num_rx_queues = rxq;
2158 return 0;
2159 }
2160 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161 #endif
2162
2163 /**
2164 * netif_get_num_default_rss_queues - default number of RSS queues
2165 *
2166 * This routine should set an upper limit on the number of RSS queues
2167 * used by default by multiqueue devices.
2168 */
2169 int netif_get_num_default_rss_queues(void)
2170 {
2171 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172 }
2173 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
2175 static inline void __netif_reschedule(struct Qdisc *q)
2176 {
2177 struct softnet_data *sd;
2178 unsigned long flags;
2179
2180 local_irq_save(flags);
2181 sd = this_cpu_ptr(&softnet_data);
2182 q->next_sched = NULL;
2183 *sd->output_queue_tailp = q;
2184 sd->output_queue_tailp = &q->next_sched;
2185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 local_irq_restore(flags);
2187 }
2188
2189 void __netif_schedule(struct Qdisc *q)
2190 {
2191 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 __netif_reschedule(q);
2193 }
2194 EXPORT_SYMBOL(__netif_schedule);
2195
2196 struct dev_kfree_skb_cb {
2197 enum skb_free_reason reason;
2198 };
2199
2200 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201 {
2202 return (struct dev_kfree_skb_cb *)skb->cb;
2203 }
2204
2205 void netif_schedule_queue(struct netdev_queue *txq)
2206 {
2207 rcu_read_lock();
2208 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211 __netif_schedule(q);
2212 }
2213 rcu_read_unlock();
2214 }
2215 EXPORT_SYMBOL(netif_schedule_queue);
2216
2217 /**
2218 * netif_wake_subqueue - allow sending packets on subqueue
2219 * @dev: network device
2220 * @queue_index: sub queue index
2221 *
2222 * Resume individual transmit queue of a device with multiple transmit queues.
2223 */
2224 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225 {
2226 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 struct Qdisc *q;
2230
2231 rcu_read_lock();
2232 q = rcu_dereference(txq->qdisc);
2233 __netif_schedule(q);
2234 rcu_read_unlock();
2235 }
2236 }
2237 EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240 {
2241 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 struct Qdisc *q;
2243
2244 rcu_read_lock();
2245 q = rcu_dereference(dev_queue->qdisc);
2246 __netif_schedule(q);
2247 rcu_read_unlock();
2248 }
2249 }
2250 EXPORT_SYMBOL(netif_tx_wake_queue);
2251
2252 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253 {
2254 unsigned long flags;
2255
2256 if (likely(atomic_read(&skb->users) == 1)) {
2257 smp_rmb();
2258 atomic_set(&skb->users, 0);
2259 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 return;
2261 }
2262 get_kfree_skb_cb(skb)->reason = reason;
2263 local_irq_save(flags);
2264 skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 __this_cpu_write(softnet_data.completion_queue, skb);
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
2268 }
2269 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270
2271 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272 {
2273 if (in_irq() || irqs_disabled())
2274 __dev_kfree_skb_irq(skb, reason);
2275 else
2276 dev_kfree_skb(skb);
2277 }
2278 EXPORT_SYMBOL(__dev_kfree_skb_any);
2279
2280
2281 /**
2282 * netif_device_detach - mark device as removed
2283 * @dev: network device
2284 *
2285 * Mark device as removed from system and therefore no longer available.
2286 */
2287 void netif_device_detach(struct net_device *dev)
2288 {
2289 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 netif_running(dev)) {
2291 netif_tx_stop_all_queues(dev);
2292 }
2293 }
2294 EXPORT_SYMBOL(netif_device_detach);
2295
2296 /**
2297 * netif_device_attach - mark device as attached
2298 * @dev: network device
2299 *
2300 * Mark device as attached from system and restart if needed.
2301 */
2302 void netif_device_attach(struct net_device *dev)
2303 {
2304 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 netif_running(dev)) {
2306 netif_tx_wake_all_queues(dev);
2307 __netdev_watchdog_up(dev);
2308 }
2309 }
2310 EXPORT_SYMBOL(netif_device_attach);
2311
2312 static void skb_warn_bad_offload(const struct sk_buff *skb)
2313 {
2314 static const netdev_features_t null_features = 0;
2315 struct net_device *dev = skb->dev;
2316 const char *driver = "";
2317
2318 if (!net_ratelimit())
2319 return;
2320
2321 if (dev && dev->dev.parent)
2322 driver = dev_driver_string(dev->dev.parent);
2323
2324 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 "gso_type=%d ip_summed=%d\n",
2326 driver, dev ? &dev->features : &null_features,
2327 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 skb_shinfo(skb)->gso_type, skb->ip_summed);
2330 }
2331
2332 /*
2333 * Invalidate hardware checksum when packet is to be mangled, and
2334 * complete checksum manually on outgoing path.
2335 */
2336 int skb_checksum_help(struct sk_buff *skb)
2337 {
2338 __wsum csum;
2339 int ret = 0, offset;
2340
2341 if (skb->ip_summed == CHECKSUM_COMPLETE)
2342 goto out_set_summed;
2343
2344 if (unlikely(skb_shinfo(skb)->gso_size)) {
2345 skb_warn_bad_offload(skb);
2346 return -EINVAL;
2347 }
2348
2349 /* Before computing a checksum, we should make sure no frag could
2350 * be modified by an external entity : checksum could be wrong.
2351 */
2352 if (skb_has_shared_frag(skb)) {
2353 ret = __skb_linearize(skb);
2354 if (ret)
2355 goto out;
2356 }
2357
2358 offset = skb_checksum_start_offset(skb);
2359 BUG_ON(offset >= skb_headlen(skb));
2360 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362 offset += skb->csum_offset;
2363 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365 if (skb_cloned(skb) &&
2366 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 if (ret)
2369 goto out;
2370 }
2371
2372 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373 out_set_summed:
2374 skb->ip_summed = CHECKSUM_NONE;
2375 out:
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(skb_checksum_help);
2379
2380 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381 {
2382 __be16 type = skb->protocol;
2383
2384 /* Tunnel gso handlers can set protocol to ethernet. */
2385 if (type == htons(ETH_P_TEB)) {
2386 struct ethhdr *eth;
2387
2388 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 return 0;
2390
2391 eth = (struct ethhdr *)skb_mac_header(skb);
2392 type = eth->h_proto;
2393 }
2394
2395 return __vlan_get_protocol(skb, type, depth);
2396 }
2397
2398 /**
2399 * skb_mac_gso_segment - mac layer segmentation handler.
2400 * @skb: buffer to segment
2401 * @features: features for the output path (see dev->features)
2402 */
2403 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 netdev_features_t features)
2405 {
2406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 struct packet_offload *ptype;
2408 int vlan_depth = skb->mac_len;
2409 __be16 type = skb_network_protocol(skb, &vlan_depth);
2410
2411 if (unlikely(!type))
2412 return ERR_PTR(-EINVAL);
2413
2414 __skb_pull(skb, vlan_depth);
2415
2416 rcu_read_lock();
2417 list_for_each_entry_rcu(ptype, &offload_base, list) {
2418 if (ptype->type == type && ptype->callbacks.gso_segment) {
2419 segs = ptype->callbacks.gso_segment(skb, features);
2420 break;
2421 }
2422 }
2423 rcu_read_unlock();
2424
2425 __skb_push(skb, skb->data - skb_mac_header(skb));
2426
2427 return segs;
2428 }
2429 EXPORT_SYMBOL(skb_mac_gso_segment);
2430
2431
2432 /* openvswitch calls this on rx path, so we need a different check.
2433 */
2434 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435 {
2436 if (tx_path)
2437 return skb->ip_summed != CHECKSUM_PARTIAL;
2438 else
2439 return skb->ip_summed == CHECKSUM_NONE;
2440 }
2441
2442 /**
2443 * __skb_gso_segment - Perform segmentation on skb.
2444 * @skb: buffer to segment
2445 * @features: features for the output path (see dev->features)
2446 * @tx_path: whether it is called in TX path
2447 *
2448 * This function segments the given skb and returns a list of segments.
2449 *
2450 * It may return NULL if the skb requires no segmentation. This is
2451 * only possible when GSO is used for verifying header integrity.
2452 */
2453 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 netdev_features_t features, bool tx_path)
2455 {
2456 if (unlikely(skb_needs_check(skb, tx_path))) {
2457 int err;
2458
2459 skb_warn_bad_offload(skb);
2460
2461 err = skb_cow_head(skb, 0);
2462 if (err < 0)
2463 return ERR_PTR(err);
2464 }
2465
2466 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467 SKB_GSO_CB(skb)->encap_level = 0;
2468
2469 skb_reset_mac_header(skb);
2470 skb_reset_mac_len(skb);
2471
2472 return skb_mac_gso_segment(skb, features);
2473 }
2474 EXPORT_SYMBOL(__skb_gso_segment);
2475
2476 /* Take action when hardware reception checksum errors are detected. */
2477 #ifdef CONFIG_BUG
2478 void netdev_rx_csum_fault(struct net_device *dev)
2479 {
2480 if (net_ratelimit()) {
2481 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482 dump_stack();
2483 }
2484 }
2485 EXPORT_SYMBOL(netdev_rx_csum_fault);
2486 #endif
2487
2488 /* Actually, we should eliminate this check as soon as we know, that:
2489 * 1. IOMMU is present and allows to map all the memory.
2490 * 2. No high memory really exists on this machine.
2491 */
2492
2493 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494 {
2495 #ifdef CONFIG_HIGHMEM
2496 int i;
2497 if (!(dev->features & NETIF_F_HIGHDMA)) {
2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 if (PageHighMem(skb_frag_page(frag)))
2501 return 1;
2502 }
2503 }
2504
2505 if (PCI_DMA_BUS_IS_PHYS) {
2506 struct device *pdev = dev->dev.parent;
2507
2508 if (!pdev)
2509 return 0;
2510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 return 1;
2515 }
2516 }
2517 #endif
2518 return 0;
2519 }
2520
2521 /* If MPLS offload request, verify we are testing hardware MPLS features
2522 * instead of standard features for the netdev.
2523 */
2524 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 netdev_features_t features,
2527 __be16 type)
2528 {
2529 if (eth_p_mpls(type))
2530 features &= skb->dev->mpls_features;
2531
2532 return features;
2533 }
2534 #else
2535 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 netdev_features_t features,
2537 __be16 type)
2538 {
2539 return features;
2540 }
2541 #endif
2542
2543 static netdev_features_t harmonize_features(struct sk_buff *skb,
2544 netdev_features_t features)
2545 {
2546 int tmp;
2547 __be16 type;
2548
2549 type = skb_network_protocol(skb, &tmp);
2550 features = net_mpls_features(skb, features, type);
2551
2552 if (skb->ip_summed != CHECKSUM_NONE &&
2553 !can_checksum_protocol(features, type)) {
2554 features &= ~NETIF_F_ALL_CSUM;
2555 } else if (illegal_highdma(skb->dev, skb)) {
2556 features &= ~NETIF_F_SG;
2557 }
2558
2559 return features;
2560 }
2561
2562 netdev_features_t netif_skb_features(struct sk_buff *skb)
2563 {
2564 struct net_device *dev = skb->dev;
2565 netdev_features_t features = dev->features;
2566 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567 __be16 protocol = skb->protocol;
2568
2569 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570 features &= ~NETIF_F_GSO_MASK;
2571
2572 /* If encapsulation offload request, verify we are testing
2573 * hardware encapsulation features instead of standard
2574 * features for the netdev
2575 */
2576 if (skb->encapsulation)
2577 features &= dev->hw_enc_features;
2578
2579 if (!skb_vlan_tag_present(skb)) {
2580 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 protocol == htons(ETH_P_8021AD))) {
2582 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 protocol = veh->h_vlan_encapsulated_proto;
2584 } else {
2585 goto finalize;
2586 }
2587 }
2588
2589 features = netdev_intersect_features(features,
2590 dev->vlan_features |
2591 NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX);
2593
2594 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595 features = netdev_intersect_features(features,
2596 NETIF_F_SG |
2597 NETIF_F_HIGHDMA |
2598 NETIF_F_FRAGLIST |
2599 NETIF_F_GEN_CSUM |
2600 NETIF_F_HW_VLAN_CTAG_TX |
2601 NETIF_F_HW_VLAN_STAG_TX);
2602
2603 finalize:
2604 if (dev->netdev_ops->ndo_features_check)
2605 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 features);
2607
2608 return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 struct netdev_queue *txq, bool more)
2614 {
2615 unsigned int len;
2616 int rc;
2617
2618 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 dev_queue_xmit_nit(skb, dev);
2620
2621 len = skb->len;
2622 trace_net_dev_start_xmit(skb, dev);
2623 rc = netdev_start_xmit(skb, dev, txq, more);
2624 trace_net_dev_xmit(skb, rc, dev, len);
2625
2626 return rc;
2627 }
2628
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 struct netdev_queue *txq, int *ret)
2631 {
2632 struct sk_buff *skb = first;
2633 int rc = NETDEV_TX_OK;
2634
2635 while (skb) {
2636 struct sk_buff *next = skb->next;
2637
2638 skb->next = NULL;
2639 rc = xmit_one(skb, dev, txq, next != NULL);
2640 if (unlikely(!dev_xmit_complete(rc))) {
2641 skb->next = next;
2642 goto out;
2643 }
2644
2645 skb = next;
2646 if (netif_xmit_stopped(txq) && skb) {
2647 rc = NETDEV_TX_BUSY;
2648 break;
2649 }
2650 }
2651
2652 out:
2653 *ret = rc;
2654 return skb;
2655 }
2656
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 netdev_features_t features)
2659 {
2660 if (skb_vlan_tag_present(skb) &&
2661 !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 skb = __vlan_hwaccel_push_inside(skb);
2663 return skb;
2664 }
2665
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 netdev_features_t features;
2669
2670 if (skb->next)
2671 return skb;
2672
2673 features = netif_skb_features(skb);
2674 skb = validate_xmit_vlan(skb, features);
2675 if (unlikely(!skb))
2676 goto out_null;
2677
2678 if (netif_needs_gso(dev, skb, features)) {
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
2682 if (IS_ERR(segs)) {
2683 goto out_kfree_skb;
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
2687 }
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
2692
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
2707 }
2708 }
2709
2710 return skb;
2711
2712 out_kfree_skb:
2713 kfree_skb(skb);
2714 out_null:
2715 return NULL;
2716 }
2717
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 struct sk_buff *next, *head = NULL, *tail;
2721
2722 for (; skb != NULL; skb = next) {
2723 next = skb->next;
2724 skb->next = NULL;
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
2729 skb = validate_xmit_skb(skb, dev);
2730 if (!skb)
2731 continue;
2732
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
2741 }
2742 return head;
2743 }
2744
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
2755 unsigned int hdr_len;
2756 u16 gso_segs = shinfo->gso_segs;
2757
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 }
2773 }
2774
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778 {
2779 spinlock_t *root_lock = qdisc_lock(q);
2780 bool contended;
2781 int rc;
2782
2783 qdisc_pkt_len_init(skb);
2784 qdisc_calculate_pkt_len(skb, q);
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
2790 */
2791 contended = qdisc_is_running(q);
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 qdisc_run_begin(q)) {
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
2806
2807 qdisc_bstats_update(q, skb);
2808
2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 } else
2816 qdisc_run_end(q);
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
2828 }
2829 spin_unlock(root_lock);
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
2832 return rc;
2833 }
2834
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853
2854 /**
2855 * dev_loopback_xmit - loop back @skb
2856 * @skb: buffer to transmit
2857 */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 skb_reset_mac_header(skb);
2861 __skb_pull(skb, skb_network_offset(skb));
2862 skb->pkt_type = PACKET_LOOPBACK;
2863 skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 WARN_ON(!skb_dst(skb));
2865 skb_dst_force(skb);
2866 netif_rx_ni(skb);
2867 return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870
2871 /**
2872 * __dev_queue_xmit - transmit a buffer
2873 * @skb: buffer to transmit
2874 * @accel_priv: private data used for L2 forwarding offload
2875 *
2876 * Queue a buffer for transmission to a network device. The caller must
2877 * have set the device and priority and built the buffer before calling
2878 * this function. The function can be called from an interrupt.
2879 *
2880 * A negative errno code is returned on a failure. A success does not
2881 * guarantee the frame will be transmitted as it may be dropped due
2882 * to congestion or traffic shaping.
2883 *
2884 * -----------------------------------------------------------------------------------
2885 * I notice this method can also return errors from the queue disciplines,
2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2887 * be positive.
2888 *
2889 * Regardless of the return value, the skb is consumed, so it is currently
2890 * difficult to retry a send to this method. (You can bump the ref count
2891 * before sending to hold a reference for retry if you are careful.)
2892 *
2893 * When calling this method, interrupts MUST be enabled. This is because
2894 * the BH enable code must have IRQs enabled so that it will not deadlock.
2895 * --BLG
2896 */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 struct net_device *dev = skb->dev;
2900 struct netdev_queue *txq;
2901 struct Qdisc *q;
2902 int rc = -ENOMEM;
2903
2904 skb_reset_mac_header(skb);
2905
2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
2909 /* Disable soft irqs for various locks below. Also
2910 * stops preemption for RCU.
2911 */
2912 rcu_read_lock_bh();
2913
2914 skb_update_prio(skb);
2915
2916 /* If device/qdisc don't need skb->dst, release it right now while
2917 * its hot in this cpu cache.
2918 */
2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 skb_dst_drop(skb);
2921 else
2922 skb_dst_force(skb);
2923
2924 txq = netdev_pick_tx(dev, skb, accel_priv);
2925 q = rcu_dereference_bh(txq->qdisc);
2926
2927 #ifdef CONFIG_NET_CLS_ACT
2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 trace_net_dev_queue(skb);
2931 if (q->enqueue) {
2932 rc = __dev_xmit_skb(skb, q, dev, txq);
2933 goto out;
2934 }
2935
2936 /* The device has no queue. Common case for software devices:
2937 loopback, all the sorts of tunnels...
2938
2939 Really, it is unlikely that netif_tx_lock protection is necessary
2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2941 counters.)
2942 However, it is possible, that they rely on protection
2943 made by us here.
2944
2945 Check this and shot the lock. It is not prone from deadlocks.
2946 Either shot noqueue qdisc, it is even simpler 8)
2947 */
2948 if (dev->flags & IFF_UP) {
2949 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
2951 if (txq->xmit_lock_owner != cpu) {
2952
2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 goto recursion_alert;
2955
2956 skb = validate_xmit_skb(skb, dev);
2957 if (!skb)
2958 goto drop;
2959
2960 HARD_TX_LOCK(dev, txq, cpu);
2961
2962 if (!netif_xmit_stopped(txq)) {
2963 __this_cpu_inc(xmit_recursion);
2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 __this_cpu_dec(xmit_recursion);
2966 if (dev_xmit_complete(rc)) {
2967 HARD_TX_UNLOCK(dev, txq);
2968 goto out;
2969 }
2970 }
2971 HARD_TX_UNLOCK(dev, txq);
2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 dev->name);
2974 } else {
2975 /* Recursion is detected! It is possible,
2976 * unfortunately
2977 */
2978 recursion_alert:
2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 dev->name);
2981 }
2982 }
2983
2984 rc = -ENETDOWN;
2985 drop:
2986 rcu_read_unlock_bh();
2987
2988 atomic_long_inc(&dev->tx_dropped);
2989 kfree_skb_list(skb);
2990 return rc;
2991 out:
2992 rcu_read_unlock_bh();
2993 return rc;
2994 }
2995
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
3008
3009 /*=======================================================================
3010 Receiver routines
3011 =======================================================================*/
3012
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64; /* old backlog weight */
3019
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 struct napi_struct *napi)
3023 {
3024 list_add_tail(&napi->poll_list, &sd->poll_list);
3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027
3028 #ifdef CONFIG_RPS
3029
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 u32 rps_cpu_mask __read_mostly;
3034 EXPORT_SYMBOL(rps_cpu_mask);
3035
3036 struct static_key rps_needed __read_mostly;
3037
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042 if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
3063 flow_id = skb_get_hash(skb) & flow_table->mask;
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074 #endif
3075 rflow->last_qtail =
3076 per_cpu(softnet_data, next_cpu).input_queue_head;
3077 }
3078
3079 rflow->cpu = next_cpu;
3080 return rflow;
3081 }
3082
3083 /*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090 {
3091 const struct rps_sock_flow_table *sock_flow_table;
3092 struct netdev_rx_queue *rxqueue = dev->_rx;
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_map *map;
3095 int cpu = -1;
3096 u32 tcpu;
3097 u32 hash;
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
3101
3102 if (unlikely(index >= dev->real_num_rx_queues)) {
3103 WARN_ONCE(dev->real_num_rx_queues > 1,
3104 "%s received packet on queue %u, but number "
3105 "of RX queues is %u\n",
3106 dev->name, index, dev->real_num_rx_queues);
3107 goto done;
3108 }
3109 rxqueue += index;
3110 }
3111
3112 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113
3114 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3115 map = rcu_dereference(rxqueue->rps_map);
3116 if (!flow_table && !map)
3117 goto done;
3118
3119 skb_reset_network_header(skb);
3120 hash = skb_get_hash(skb);
3121 if (!hash)
3122 goto done;
3123
3124 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125 if (flow_table && sock_flow_table) {
3126 struct rps_dev_flow *rflow;
3127 u32 next_cpu;
3128 u32 ident;
3129
3130 /* First check into global flow table if there is a match */
3131 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132 if ((ident ^ hash) & ~rps_cpu_mask)
3133 goto try_rps;
3134
3135 next_cpu = ident & rps_cpu_mask;
3136
3137 /* OK, now we know there is a match,
3138 * we can look at the local (per receive queue) flow table
3139 */
3140 rflow = &flow_table->flows[hash & flow_table->mask];
3141 tcpu = rflow->cpu;
3142
3143 /*
3144 * If the desired CPU (where last recvmsg was done) is
3145 * different from current CPU (one in the rx-queue flow
3146 * table entry), switch if one of the following holds:
3147 * - Current CPU is unset (equal to RPS_NO_CPU).
3148 * - Current CPU is offline.
3149 * - The current CPU's queue tail has advanced beyond the
3150 * last packet that was enqueued using this table entry.
3151 * This guarantees that all previous packets for the flow
3152 * have been dequeued, thus preserving in order delivery.
3153 */
3154 if (unlikely(tcpu != next_cpu) &&
3155 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3157 rflow->last_qtail)) >= 0)) {
3158 tcpu = next_cpu;
3159 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160 }
3161
3162 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163 *rflowp = rflow;
3164 cpu = tcpu;
3165 goto done;
3166 }
3167 }
3168
3169 try_rps:
3170
3171 if (map) {
3172 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3173 if (cpu_online(tcpu)) {
3174 cpu = tcpu;
3175 goto done;
3176 }
3177 }
3178
3179 done:
3180 return cpu;
3181 }
3182
3183 #ifdef CONFIG_RFS_ACCEL
3184
3185 /**
3186 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187 * @dev: Device on which the filter was set
3188 * @rxq_index: RX queue index
3189 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191 *
3192 * Drivers that implement ndo_rx_flow_steer() should periodically call
3193 * this function for each installed filter and remove the filters for
3194 * which it returns %true.
3195 */
3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197 u32 flow_id, u16 filter_id)
3198 {
3199 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200 struct rps_dev_flow_table *flow_table;
3201 struct rps_dev_flow *rflow;
3202 bool expire = true;
3203 int cpu;
3204
3205 rcu_read_lock();
3206 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207 if (flow_table && flow_id <= flow_table->mask) {
3208 rflow = &flow_table->flows[flow_id];
3209 cpu = ACCESS_ONCE(rflow->cpu);
3210 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212 rflow->last_qtail) <
3213 (int)(10 * flow_table->mask)))
3214 expire = false;
3215 }
3216 rcu_read_unlock();
3217 return expire;
3218 }
3219 EXPORT_SYMBOL(rps_may_expire_flow);
3220
3221 #endif /* CONFIG_RFS_ACCEL */
3222
3223 /* Called from hardirq (IPI) context */
3224 static void rps_trigger_softirq(void *data)
3225 {
3226 struct softnet_data *sd = data;
3227
3228 ____napi_schedule(sd, &sd->backlog);
3229 sd->received_rps++;
3230 }
3231
3232 #endif /* CONFIG_RPS */
3233
3234 /*
3235 * Check if this softnet_data structure is another cpu one
3236 * If yes, queue it to our IPI list and return 1
3237 * If no, return 0
3238 */
3239 static int rps_ipi_queued(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3243
3244 if (sd != mysd) {
3245 sd->rps_ipi_next = mysd->rps_ipi_list;
3246 mysd->rps_ipi_list = sd;
3247
3248 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249 return 1;
3250 }
3251 #endif /* CONFIG_RPS */
3252 return 0;
3253 }
3254
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257 #endif
3258
3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260 {
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262 struct sd_flow_limit *fl;
3263 struct softnet_data *sd;
3264 unsigned int old_flow, new_flow;
3265
3266 if (qlen < (netdev_max_backlog >> 1))
3267 return false;
3268
3269 sd = this_cpu_ptr(&softnet_data);
3270
3271 rcu_read_lock();
3272 fl = rcu_dereference(sd->flow_limit);
3273 if (fl) {
3274 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3275 old_flow = fl->history[fl->history_head];
3276 fl->history[fl->history_head] = new_flow;
3277
3278 fl->history_head++;
3279 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280
3281 if (likely(fl->buckets[old_flow]))
3282 fl->buckets[old_flow]--;
3283
3284 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285 fl->count++;
3286 rcu_read_unlock();
3287 return true;
3288 }
3289 }
3290 rcu_read_unlock();
3291 #endif
3292 return false;
3293 }
3294
3295 /*
3296 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297 * queue (may be a remote CPU queue).
3298 */
3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300 unsigned int *qtail)
3301 {
3302 struct softnet_data *sd;
3303 unsigned long flags;
3304 unsigned int qlen;
3305
3306 sd = &per_cpu(softnet_data, cpu);
3307
3308 local_irq_save(flags);
3309
3310 rps_lock(sd);
3311 qlen = skb_queue_len(&sd->input_pkt_queue);
3312 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3313 if (qlen) {
3314 enqueue:
3315 __skb_queue_tail(&sd->input_pkt_queue, skb);
3316 input_queue_tail_incr_save(sd, qtail);
3317 rps_unlock(sd);
3318 local_irq_restore(flags);
3319 return NET_RX_SUCCESS;
3320 }
3321
3322 /* Schedule NAPI for backlog device
3323 * We can use non atomic operation since we own the queue lock
3324 */
3325 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3326 if (!rps_ipi_queued(sd))
3327 ____napi_schedule(sd, &sd->backlog);
3328 }
3329 goto enqueue;
3330 }
3331
3332 sd->dropped++;
3333 rps_unlock(sd);
3334
3335 local_irq_restore(flags);
3336
3337 atomic_long_inc(&skb->dev->rx_dropped);
3338 kfree_skb(skb);
3339 return NET_RX_DROP;
3340 }
3341
3342 static int netif_rx_internal(struct sk_buff *skb)
3343 {
3344 int ret;
3345
3346 net_timestamp_check(netdev_tstamp_prequeue, skb);
3347
3348 trace_netif_rx(skb);
3349 #ifdef CONFIG_RPS
3350 if (static_key_false(&rps_needed)) {
3351 struct rps_dev_flow voidflow, *rflow = &voidflow;
3352 int cpu;
3353
3354 preempt_disable();
3355 rcu_read_lock();
3356
3357 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3358 if (cpu < 0)
3359 cpu = smp_processor_id();
3360
3361 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362
3363 rcu_read_unlock();
3364 preempt_enable();
3365 } else
3366 #endif
3367 {
3368 unsigned int qtail;
3369 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370 put_cpu();
3371 }
3372 return ret;
3373 }
3374
3375 /**
3376 * netif_rx - post buffer to the network code
3377 * @skb: buffer to post
3378 *
3379 * This function receives a packet from a device driver and queues it for
3380 * the upper (protocol) levels to process. It always succeeds. The buffer
3381 * may be dropped during processing for congestion control or by the
3382 * protocol layers.
3383 *
3384 * return values:
3385 * NET_RX_SUCCESS (no congestion)
3386 * NET_RX_DROP (packet was dropped)
3387 *
3388 */
3389
3390 int netif_rx(struct sk_buff *skb)
3391 {
3392 trace_netif_rx_entry(skb);
3393
3394 return netif_rx_internal(skb);
3395 }
3396 EXPORT_SYMBOL(netif_rx);
3397
3398 int netif_rx_ni(struct sk_buff *skb)
3399 {
3400 int err;
3401
3402 trace_netif_rx_ni_entry(skb);
3403
3404 preempt_disable();
3405 err = netif_rx_internal(skb);
3406 if (local_softirq_pending())
3407 do_softirq();
3408 preempt_enable();
3409
3410 return err;
3411 }
3412 EXPORT_SYMBOL(netif_rx_ni);
3413
3414 static void net_tx_action(struct softirq_action *h)
3415 {
3416 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3417
3418 if (sd->completion_queue) {
3419 struct sk_buff *clist;
3420
3421 local_irq_disable();
3422 clist = sd->completion_queue;
3423 sd->completion_queue = NULL;
3424 local_irq_enable();
3425
3426 while (clist) {
3427 struct sk_buff *skb = clist;
3428 clist = clist->next;
3429
3430 WARN_ON(atomic_read(&skb->users));
3431 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432 trace_consume_skb(skb);
3433 else
3434 trace_kfree_skb(skb, net_tx_action);
3435 __kfree_skb(skb);
3436 }
3437 }
3438
3439 if (sd->output_queue) {
3440 struct Qdisc *head;
3441
3442 local_irq_disable();
3443 head = sd->output_queue;
3444 sd->output_queue = NULL;
3445 sd->output_queue_tailp = &sd->output_queue;
3446 local_irq_enable();
3447
3448 while (head) {
3449 struct Qdisc *q = head;
3450 spinlock_t *root_lock;
3451
3452 head = head->next_sched;
3453
3454 root_lock = qdisc_lock(q);
3455 if (spin_trylock(root_lock)) {
3456 smp_mb__before_atomic();
3457 clear_bit(__QDISC_STATE_SCHED,
3458 &q->state);
3459 qdisc_run(q);
3460 spin_unlock(root_lock);
3461 } else {
3462 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3463 &q->state)) {
3464 __netif_reschedule(q);
3465 } else {
3466 smp_mb__before_atomic();
3467 clear_bit(__QDISC_STATE_SCHED,
3468 &q->state);
3469 }
3470 }
3471 }
3472 }
3473 }
3474
3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3477 /* This hook is defined here for ATM LANE */
3478 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479 unsigned char *addr) __read_mostly;
3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3481 #endif
3482
3483 #ifdef CONFIG_NET_CLS_ACT
3484 /* TODO: Maybe we should just force sch_ingress to be compiled in
3485 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486 * a compare and 2 stores extra right now if we dont have it on
3487 * but have CONFIG_NET_CLS_ACT
3488 * NOTE: This doesn't stop any functionality; if you dont have
3489 * the ingress scheduler, you just can't add policies on ingress.
3490 *
3491 */
3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3493 {
3494 struct net_device *dev = skb->dev;
3495 u32 ttl = G_TC_RTTL(skb->tc_verd);
3496 int result = TC_ACT_OK;
3497 struct Qdisc *q;
3498
3499 if (unlikely(MAX_RED_LOOP < ttl++)) {
3500 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501 skb->skb_iif, dev->ifindex);
3502 return TC_ACT_SHOT;
3503 }
3504
3505 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3507
3508 q = rcu_dereference(rxq->qdisc);
3509 if (q != &noop_qdisc) {
3510 spin_lock(qdisc_lock(q));
3511 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512 result = qdisc_enqueue_root(skb, q);
3513 spin_unlock(qdisc_lock(q));
3514 }
3515
3516 return result;
3517 }
3518
3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520 struct packet_type **pt_prev,
3521 int *ret, struct net_device *orig_dev)
3522 {
3523 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524
3525 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3526 goto out;
3527
3528 if (*pt_prev) {
3529 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3530 *pt_prev = NULL;
3531 }
3532
3533 switch (ing_filter(skb, rxq)) {
3534 case TC_ACT_SHOT:
3535 case TC_ACT_STOLEN:
3536 kfree_skb(skb);
3537 return NULL;
3538 }
3539
3540 out:
3541 skb->tc_verd = 0;
3542 return skb;
3543 }
3544 #endif
3545
3546 /**
3547 * netdev_rx_handler_register - register receive handler
3548 * @dev: device to register a handler for
3549 * @rx_handler: receive handler to register
3550 * @rx_handler_data: data pointer that is used by rx handler
3551 *
3552 * Register a receive handler for a device. This handler will then be
3553 * called from __netif_receive_skb. A negative errno code is returned
3554 * on a failure.
3555 *
3556 * The caller must hold the rtnl_mutex.
3557 *
3558 * For a general description of rx_handler, see enum rx_handler_result.
3559 */
3560 int netdev_rx_handler_register(struct net_device *dev,
3561 rx_handler_func_t *rx_handler,
3562 void *rx_handler_data)
3563 {
3564 ASSERT_RTNL();
3565
3566 if (dev->rx_handler)
3567 return -EBUSY;
3568
3569 /* Note: rx_handler_data must be set before rx_handler */
3570 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3571 rcu_assign_pointer(dev->rx_handler, rx_handler);
3572
3573 return 0;
3574 }
3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576
3577 /**
3578 * netdev_rx_handler_unregister - unregister receive handler
3579 * @dev: device to unregister a handler from
3580 *
3581 * Unregister a receive handler from a device.
3582 *
3583 * The caller must hold the rtnl_mutex.
3584 */
3585 void netdev_rx_handler_unregister(struct net_device *dev)
3586 {
3587
3588 ASSERT_RTNL();
3589 RCU_INIT_POINTER(dev->rx_handler, NULL);
3590 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591 * section has a guarantee to see a non NULL rx_handler_data
3592 * as well.
3593 */
3594 synchronize_net();
3595 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598
3599 /*
3600 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601 * the special handling of PFMEMALLOC skbs.
3602 */
3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604 {
3605 switch (skb->protocol) {
3606 case htons(ETH_P_ARP):
3607 case htons(ETH_P_IP):
3608 case htons(ETH_P_IPV6):
3609 case htons(ETH_P_8021Q):
3610 case htons(ETH_P_8021AD):
3611 return true;
3612 default:
3613 return false;
3614 }
3615 }
3616
3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3618 {
3619 struct packet_type *ptype, *pt_prev;
3620 rx_handler_func_t *rx_handler;
3621 struct net_device *orig_dev;
3622 bool deliver_exact = false;
3623 int ret = NET_RX_DROP;
3624 __be16 type;
3625
3626 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3627
3628 trace_netif_receive_skb(skb);
3629
3630 orig_dev = skb->dev;
3631
3632 skb_reset_network_header(skb);
3633 if (!skb_transport_header_was_set(skb))
3634 skb_reset_transport_header(skb);
3635 skb_reset_mac_len(skb);
3636
3637 pt_prev = NULL;
3638
3639 rcu_read_lock();
3640
3641 another_round:
3642 skb->skb_iif = skb->dev->ifindex;
3643
3644 __this_cpu_inc(softnet_data.processed);
3645
3646 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3648 skb = skb_vlan_untag(skb);
3649 if (unlikely(!skb))
3650 goto unlock;
3651 }
3652
3653 #ifdef CONFIG_NET_CLS_ACT
3654 if (skb->tc_verd & TC_NCLS) {
3655 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656 goto ncls;
3657 }
3658 #endif
3659
3660 if (pfmemalloc)
3661 goto skip_taps;
3662
3663 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3664 if (pt_prev)
3665 ret = deliver_skb(skb, pt_prev, orig_dev);
3666 pt_prev = ptype;
3667 }
3668
3669 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670 if (pt_prev)
3671 ret = deliver_skb(skb, pt_prev, orig_dev);
3672 pt_prev = ptype;
3673 }
3674
3675 skip_taps:
3676 #ifdef CONFIG_NET_CLS_ACT
3677 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678 if (!skb)
3679 goto unlock;
3680 ncls:
3681 #endif
3682
3683 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3684 goto drop;
3685
3686 if (skb_vlan_tag_present(skb)) {
3687 if (pt_prev) {
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = NULL;
3690 }
3691 if (vlan_do_receive(&skb))
3692 goto another_round;
3693 else if (unlikely(!skb))
3694 goto unlock;
3695 }
3696
3697 rx_handler = rcu_dereference(skb->dev->rx_handler);
3698 if (rx_handler) {
3699 if (pt_prev) {
3700 ret = deliver_skb(skb, pt_prev, orig_dev);
3701 pt_prev = NULL;
3702 }
3703 switch (rx_handler(&skb)) {
3704 case RX_HANDLER_CONSUMED:
3705 ret = NET_RX_SUCCESS;
3706 goto unlock;
3707 case RX_HANDLER_ANOTHER:
3708 goto another_round;
3709 case RX_HANDLER_EXACT:
3710 deliver_exact = true;
3711 case RX_HANDLER_PASS:
3712 break;
3713 default:
3714 BUG();
3715 }
3716 }
3717
3718 if (unlikely(skb_vlan_tag_present(skb))) {
3719 if (skb_vlan_tag_get_id(skb))
3720 skb->pkt_type = PACKET_OTHERHOST;
3721 /* Note: we might in the future use prio bits
3722 * and set skb->priority like in vlan_do_receive()
3723 * For the time being, just ignore Priority Code Point
3724 */
3725 skb->vlan_tci = 0;
3726 }
3727
3728 type = skb->protocol;
3729
3730 /* deliver only exact match when indicated */
3731 if (likely(!deliver_exact)) {
3732 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733 &ptype_base[ntohs(type) &
3734 PTYPE_HASH_MASK]);
3735 }
3736
3737 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738 &orig_dev->ptype_specific);
3739
3740 if (unlikely(skb->dev != orig_dev)) {
3741 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742 &skb->dev->ptype_specific);
3743 }
3744
3745 if (pt_prev) {
3746 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3747 goto drop;
3748 else
3749 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3750 } else {
3751 drop:
3752 atomic_long_inc(&skb->dev->rx_dropped);
3753 kfree_skb(skb);
3754 /* Jamal, now you will not able to escape explaining
3755 * me how you were going to use this. :-)
3756 */
3757 ret = NET_RX_DROP;
3758 }
3759
3760 unlock:
3761 rcu_read_unlock();
3762 return ret;
3763 }
3764
3765 static int __netif_receive_skb(struct sk_buff *skb)
3766 {
3767 int ret;
3768
3769 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770 unsigned long pflags = current->flags;
3771
3772 /*
3773 * PFMEMALLOC skbs are special, they should
3774 * - be delivered to SOCK_MEMALLOC sockets only
3775 * - stay away from userspace
3776 * - have bounded memory usage
3777 *
3778 * Use PF_MEMALLOC as this saves us from propagating the allocation
3779 * context down to all allocation sites.
3780 */
3781 current->flags |= PF_MEMALLOC;
3782 ret = __netif_receive_skb_core(skb, true);
3783 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784 } else
3785 ret = __netif_receive_skb_core(skb, false);
3786
3787 return ret;
3788 }
3789
3790 static int netif_receive_skb_internal(struct sk_buff *skb)
3791 {
3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794 if (skb_defer_rx_timestamp(skb))
3795 return NET_RX_SUCCESS;
3796
3797 #ifdef CONFIG_RPS
3798 if (static_key_false(&rps_needed)) {
3799 struct rps_dev_flow voidflow, *rflow = &voidflow;
3800 int cpu, ret;
3801
3802 rcu_read_lock();
3803
3804 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805
3806 if (cpu >= 0) {
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 rcu_read_unlock();
3809 return ret;
3810 }
3811 rcu_read_unlock();
3812 }
3813 #endif
3814 return __netif_receive_skb(skb);
3815 }
3816
3817 /**
3818 * netif_receive_skb - process receive buffer from network
3819 * @skb: buffer to process
3820 *
3821 * netif_receive_skb() is the main receive data processing function.
3822 * It always succeeds. The buffer may be dropped during processing
3823 * for congestion control or by the protocol layers.
3824 *
3825 * This function may only be called from softirq context and interrupts
3826 * should be enabled.
3827 *
3828 * Return values (usually ignored):
3829 * NET_RX_SUCCESS: no congestion
3830 * NET_RX_DROP: packet was dropped
3831 */
3832 int netif_receive_skb(struct sk_buff *skb)
3833 {
3834 trace_netif_receive_skb_entry(skb);
3835
3836 return netif_receive_skb_internal(skb);
3837 }
3838 EXPORT_SYMBOL(netif_receive_skb);
3839
3840 /* Network device is going away, flush any packets still pending
3841 * Called with irqs disabled.
3842 */
3843 static void flush_backlog(void *arg)
3844 {
3845 struct net_device *dev = arg;
3846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847 struct sk_buff *skb, *tmp;
3848
3849 rps_lock(sd);
3850 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->input_pkt_queue);
3853 kfree_skb(skb);
3854 input_queue_head_incr(sd);
3855 }
3856 }
3857 rps_unlock(sd);
3858
3859 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860 if (skb->dev == dev) {
3861 __skb_unlink(skb, &sd->process_queue);
3862 kfree_skb(skb);
3863 input_queue_head_incr(sd);
3864 }
3865 }
3866 }
3867
3868 static int napi_gro_complete(struct sk_buff *skb)
3869 {
3870 struct packet_offload *ptype;
3871 __be16 type = skb->protocol;
3872 struct list_head *head = &offload_base;
3873 int err = -ENOENT;
3874
3875 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876
3877 if (NAPI_GRO_CB(skb)->count == 1) {
3878 skb_shinfo(skb)->gso_size = 0;
3879 goto out;
3880 }
3881
3882 rcu_read_lock();
3883 list_for_each_entry_rcu(ptype, head, list) {
3884 if (ptype->type != type || !ptype->callbacks.gro_complete)
3885 continue;
3886
3887 err = ptype->callbacks.gro_complete(skb, 0);
3888 break;
3889 }
3890 rcu_read_unlock();
3891
3892 if (err) {
3893 WARN_ON(&ptype->list == head);
3894 kfree_skb(skb);
3895 return NET_RX_SUCCESS;
3896 }
3897
3898 out:
3899 return netif_receive_skb_internal(skb);
3900 }
3901
3902 /* napi->gro_list contains packets ordered by age.
3903 * youngest packets at the head of it.
3904 * Complete skbs in reverse order to reduce latencies.
3905 */
3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3907 {
3908 struct sk_buff *skb, *prev = NULL;
3909
3910 /* scan list and build reverse chain */
3911 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912 skb->prev = prev;
3913 prev = skb;
3914 }
3915
3916 for (skb = prev; skb; skb = prev) {
3917 skb->next = NULL;
3918
3919 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920 return;
3921
3922 prev = skb->prev;
3923 napi_gro_complete(skb);
3924 napi->gro_count--;
3925 }
3926
3927 napi->gro_list = NULL;
3928 }
3929 EXPORT_SYMBOL(napi_gro_flush);
3930
3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932 {
3933 struct sk_buff *p;
3934 unsigned int maclen = skb->dev->hard_header_len;
3935 u32 hash = skb_get_hash_raw(skb);
3936
3937 for (p = napi->gro_list; p; p = p->next) {
3938 unsigned long diffs;
3939
3940 NAPI_GRO_CB(p)->flush = 0;
3941
3942 if (hash != skb_get_hash_raw(p)) {
3943 NAPI_GRO_CB(p)->same_flow = 0;
3944 continue;
3945 }
3946
3947 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948 diffs |= p->vlan_tci ^ skb->vlan_tci;
3949 if (maclen == ETH_HLEN)
3950 diffs |= compare_ether_header(skb_mac_header(p),
3951 skb_mac_header(skb));
3952 else if (!diffs)
3953 diffs = memcmp(skb_mac_header(p),
3954 skb_mac_header(skb),
3955 maclen);
3956 NAPI_GRO_CB(p)->same_flow = !diffs;
3957 }
3958 }
3959
3960 static void skb_gro_reset_offset(struct sk_buff *skb)
3961 {
3962 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963 const skb_frag_t *frag0 = &pinfo->frags[0];
3964
3965 NAPI_GRO_CB(skb)->data_offset = 0;
3966 NAPI_GRO_CB(skb)->frag0 = NULL;
3967 NAPI_GRO_CB(skb)->frag0_len = 0;
3968
3969 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970 pinfo->nr_frags &&
3971 !PageHighMem(skb_frag_page(frag0))) {
3972 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3974 }
3975 }
3976
3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978 {
3979 struct skb_shared_info *pinfo = skb_shinfo(skb);
3980
3981 BUG_ON(skb->end - skb->tail < grow);
3982
3983 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984
3985 skb->data_len -= grow;
3986 skb->tail += grow;
3987
3988 pinfo->frags[0].page_offset += grow;
3989 skb_frag_size_sub(&pinfo->frags[0], grow);
3990
3991 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992 skb_frag_unref(skb, 0);
3993 memmove(pinfo->frags, pinfo->frags + 1,
3994 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995 }
3996 }
3997
3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000 struct sk_buff **pp = NULL;
4001 struct packet_offload *ptype;
4002 __be16 type = skb->protocol;
4003 struct list_head *head = &offload_base;
4004 int same_flow;
4005 enum gro_result ret;
4006 int grow;
4007
4008 if (!(skb->dev->features & NETIF_F_GRO))
4009 goto normal;
4010
4011 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4012 goto normal;
4013
4014 gro_list_prepare(napi, skb);
4015
4016 rcu_read_lock();
4017 list_for_each_entry_rcu(ptype, head, list) {
4018 if (ptype->type != type || !ptype->callbacks.gro_receive)
4019 continue;
4020
4021 skb_set_network_header(skb, skb_gro_offset(skb));
4022 skb_reset_mac_len(skb);
4023 NAPI_GRO_CB(skb)->same_flow = 0;
4024 NAPI_GRO_CB(skb)->flush = 0;
4025 NAPI_GRO_CB(skb)->free = 0;
4026 NAPI_GRO_CB(skb)->udp_mark = 0;
4027 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4028
4029 /* Setup for GRO checksum validation */
4030 switch (skb->ip_summed) {
4031 case CHECKSUM_COMPLETE:
4032 NAPI_GRO_CB(skb)->csum = skb->csum;
4033 NAPI_GRO_CB(skb)->csum_valid = 1;
4034 NAPI_GRO_CB(skb)->csum_cnt = 0;
4035 break;
4036 case CHECKSUM_UNNECESSARY:
4037 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4038 NAPI_GRO_CB(skb)->csum_valid = 0;
4039 break;
4040 default:
4041 NAPI_GRO_CB(skb)->csum_cnt = 0;
4042 NAPI_GRO_CB(skb)->csum_valid = 0;
4043 }
4044
4045 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4046 break;
4047 }
4048 rcu_read_unlock();
4049
4050 if (&ptype->list == head)
4051 goto normal;
4052
4053 same_flow = NAPI_GRO_CB(skb)->same_flow;
4054 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4055
4056 if (pp) {
4057 struct sk_buff *nskb = *pp;
4058
4059 *pp = nskb->next;
4060 nskb->next = NULL;
4061 napi_gro_complete(nskb);
4062 napi->gro_count--;
4063 }
4064
4065 if (same_flow)
4066 goto ok;
4067
4068 if (NAPI_GRO_CB(skb)->flush)
4069 goto normal;
4070
4071 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4072 struct sk_buff *nskb = napi->gro_list;
4073
4074 /* locate the end of the list to select the 'oldest' flow */
4075 while (nskb->next) {
4076 pp = &nskb->next;
4077 nskb = *pp;
4078 }
4079 *pp = NULL;
4080 nskb->next = NULL;
4081 napi_gro_complete(nskb);
4082 } else {
4083 napi->gro_count++;
4084 }
4085 NAPI_GRO_CB(skb)->count = 1;
4086 NAPI_GRO_CB(skb)->age = jiffies;
4087 NAPI_GRO_CB(skb)->last = skb;
4088 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4089 skb->next = napi->gro_list;
4090 napi->gro_list = skb;
4091 ret = GRO_HELD;
4092
4093 pull:
4094 grow = skb_gro_offset(skb) - skb_headlen(skb);
4095 if (grow > 0)
4096 gro_pull_from_frag0(skb, grow);
4097 ok:
4098 return ret;
4099
4100 normal:
4101 ret = GRO_NORMAL;
4102 goto pull;
4103 }
4104
4105 struct packet_offload *gro_find_receive_by_type(__be16 type)
4106 {
4107 struct list_head *offload_head = &offload_base;
4108 struct packet_offload *ptype;
4109
4110 list_for_each_entry_rcu(ptype, offload_head, list) {
4111 if (ptype->type != type || !ptype->callbacks.gro_receive)
4112 continue;
4113 return ptype;
4114 }
4115 return NULL;
4116 }
4117 EXPORT_SYMBOL(gro_find_receive_by_type);
4118
4119 struct packet_offload *gro_find_complete_by_type(__be16 type)
4120 {
4121 struct list_head *offload_head = &offload_base;
4122 struct packet_offload *ptype;
4123
4124 list_for_each_entry_rcu(ptype, offload_head, list) {
4125 if (ptype->type != type || !ptype->callbacks.gro_complete)
4126 continue;
4127 return ptype;
4128 }
4129 return NULL;
4130 }
4131 EXPORT_SYMBOL(gro_find_complete_by_type);
4132
4133 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4134 {
4135 switch (ret) {
4136 case GRO_NORMAL:
4137 if (netif_receive_skb_internal(skb))
4138 ret = GRO_DROP;
4139 break;
4140
4141 case GRO_DROP:
4142 kfree_skb(skb);
4143 break;
4144
4145 case GRO_MERGED_FREE:
4146 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4147 kmem_cache_free(skbuff_head_cache, skb);
4148 else
4149 __kfree_skb(skb);
4150 break;
4151
4152 case GRO_HELD:
4153 case GRO_MERGED:
4154 break;
4155 }
4156
4157 return ret;
4158 }
4159
4160 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162 trace_napi_gro_receive_entry(skb);
4163
4164 skb_gro_reset_offset(skb);
4165
4166 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4167 }
4168 EXPORT_SYMBOL(napi_gro_receive);
4169
4170 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4171 {
4172 if (unlikely(skb->pfmemalloc)) {
4173 consume_skb(skb);
4174 return;
4175 }
4176 __skb_pull(skb, skb_headlen(skb));
4177 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4178 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4179 skb->vlan_tci = 0;
4180 skb->dev = napi->dev;
4181 skb->skb_iif = 0;
4182 skb->encapsulation = 0;
4183 skb_shinfo(skb)->gso_type = 0;
4184 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4185
4186 napi->skb = skb;
4187 }
4188
4189 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4190 {
4191 struct sk_buff *skb = napi->skb;
4192
4193 if (!skb) {
4194 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4195 napi->skb = skb;
4196 }
4197 return skb;
4198 }
4199 EXPORT_SYMBOL(napi_get_frags);
4200
4201 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4202 struct sk_buff *skb,
4203 gro_result_t ret)
4204 {
4205 switch (ret) {
4206 case GRO_NORMAL:
4207 case GRO_HELD:
4208 __skb_push(skb, ETH_HLEN);
4209 skb->protocol = eth_type_trans(skb, skb->dev);
4210 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4211 ret = GRO_DROP;
4212 break;
4213
4214 case GRO_DROP:
4215 case GRO_MERGED_FREE:
4216 napi_reuse_skb(napi, skb);
4217 break;
4218
4219 case GRO_MERGED:
4220 break;
4221 }
4222
4223 return ret;
4224 }
4225
4226 /* Upper GRO stack assumes network header starts at gro_offset=0
4227 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4228 * We copy ethernet header into skb->data to have a common layout.
4229 */
4230 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4231 {
4232 struct sk_buff *skb = napi->skb;
4233 const struct ethhdr *eth;
4234 unsigned int hlen = sizeof(*eth);
4235
4236 napi->skb = NULL;
4237
4238 skb_reset_mac_header(skb);
4239 skb_gro_reset_offset(skb);
4240
4241 eth = skb_gro_header_fast(skb, 0);
4242 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4243 eth = skb_gro_header_slow(skb, hlen, 0);
4244 if (unlikely(!eth)) {
4245 napi_reuse_skb(napi, skb);
4246 return NULL;
4247 }
4248 } else {
4249 gro_pull_from_frag0(skb, hlen);
4250 NAPI_GRO_CB(skb)->frag0 += hlen;
4251 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4252 }
4253 __skb_pull(skb, hlen);
4254
4255 /*
4256 * This works because the only protocols we care about don't require
4257 * special handling.
4258 * We'll fix it up properly in napi_frags_finish()
4259 */
4260 skb->protocol = eth->h_proto;
4261
4262 return skb;
4263 }
4264
4265 gro_result_t napi_gro_frags(struct napi_struct *napi)
4266 {
4267 struct sk_buff *skb = napi_frags_skb(napi);
4268
4269 if (!skb)
4270 return GRO_DROP;
4271
4272 trace_napi_gro_frags_entry(skb);
4273
4274 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4275 }
4276 EXPORT_SYMBOL(napi_gro_frags);
4277
4278 /* Compute the checksum from gro_offset and return the folded value
4279 * after adding in any pseudo checksum.
4280 */
4281 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4282 {
4283 __wsum wsum;
4284 __sum16 sum;
4285
4286 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4287
4288 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4289 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4290 if (likely(!sum)) {
4291 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4292 !skb->csum_complete_sw)
4293 netdev_rx_csum_fault(skb->dev);
4294 }
4295
4296 NAPI_GRO_CB(skb)->csum = wsum;
4297 NAPI_GRO_CB(skb)->csum_valid = 1;
4298
4299 return sum;
4300 }
4301 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4302
4303 /*
4304 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4305 * Note: called with local irq disabled, but exits with local irq enabled.
4306 */
4307 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4308 {
4309 #ifdef CONFIG_RPS
4310 struct softnet_data *remsd = sd->rps_ipi_list;
4311
4312 if (remsd) {
4313 sd->rps_ipi_list = NULL;
4314
4315 local_irq_enable();
4316
4317 /* Send pending IPI's to kick RPS processing on remote cpus. */
4318 while (remsd) {
4319 struct softnet_data *next = remsd->rps_ipi_next;
4320
4321 if (cpu_online(remsd->cpu))
4322 smp_call_function_single_async(remsd->cpu,
4323 &remsd->csd);
4324 remsd = next;
4325 }
4326 } else
4327 #endif
4328 local_irq_enable();
4329 }
4330
4331 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4332 {
4333 #ifdef CONFIG_RPS
4334 return sd->rps_ipi_list != NULL;
4335 #else
4336 return false;
4337 #endif
4338 }
4339
4340 static int process_backlog(struct napi_struct *napi, int quota)
4341 {
4342 int work = 0;
4343 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4344
4345 /* Check if we have pending ipi, its better to send them now,
4346 * not waiting net_rx_action() end.
4347 */
4348 if (sd_has_rps_ipi_waiting(sd)) {
4349 local_irq_disable();
4350 net_rps_action_and_irq_enable(sd);
4351 }
4352
4353 napi->weight = weight_p;
4354 local_irq_disable();
4355 while (1) {
4356 struct sk_buff *skb;
4357
4358 while ((skb = __skb_dequeue(&sd->process_queue))) {
4359 local_irq_enable();
4360 __netif_receive_skb(skb);
4361 local_irq_disable();
4362 input_queue_head_incr(sd);
4363 if (++work >= quota) {
4364 local_irq_enable();
4365 return work;
4366 }
4367 }
4368
4369 rps_lock(sd);
4370 if (skb_queue_empty(&sd->input_pkt_queue)) {
4371 /*
4372 * Inline a custom version of __napi_complete().
4373 * only current cpu owns and manipulates this napi,
4374 * and NAPI_STATE_SCHED is the only possible flag set
4375 * on backlog.
4376 * We can use a plain write instead of clear_bit(),
4377 * and we dont need an smp_mb() memory barrier.
4378 */
4379 napi->state = 0;
4380 rps_unlock(sd);
4381
4382 break;
4383 }
4384
4385 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4386 &sd->process_queue);
4387 rps_unlock(sd);
4388 }
4389 local_irq_enable();
4390
4391 return work;
4392 }
4393
4394 /**
4395 * __napi_schedule - schedule for receive
4396 * @n: entry to schedule
4397 *
4398 * The entry's receive function will be scheduled to run.
4399 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4400 */
4401 void __napi_schedule(struct napi_struct *n)
4402 {
4403 unsigned long flags;
4404
4405 local_irq_save(flags);
4406 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4407 local_irq_restore(flags);
4408 }
4409 EXPORT_SYMBOL(__napi_schedule);
4410
4411 /**
4412 * __napi_schedule_irqoff - schedule for receive
4413 * @n: entry to schedule
4414 *
4415 * Variant of __napi_schedule() assuming hard irqs are masked
4416 */
4417 void __napi_schedule_irqoff(struct napi_struct *n)
4418 {
4419 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4420 }
4421 EXPORT_SYMBOL(__napi_schedule_irqoff);
4422
4423 void __napi_complete(struct napi_struct *n)
4424 {
4425 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4426
4427 list_del_init(&n->poll_list);
4428 smp_mb__before_atomic();
4429 clear_bit(NAPI_STATE_SCHED, &n->state);
4430 }
4431 EXPORT_SYMBOL(__napi_complete);
4432
4433 void napi_complete_done(struct napi_struct *n, int work_done)
4434 {
4435 unsigned long flags;
4436
4437 /*
4438 * don't let napi dequeue from the cpu poll list
4439 * just in case its running on a different cpu
4440 */
4441 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4442 return;
4443
4444 if (n->gro_list) {
4445 unsigned long timeout = 0;
4446
4447 if (work_done)
4448 timeout = n->dev->gro_flush_timeout;
4449
4450 if (timeout)
4451 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4452 HRTIMER_MODE_REL_PINNED);
4453 else
4454 napi_gro_flush(n, false);
4455 }
4456 if (likely(list_empty(&n->poll_list))) {
4457 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4458 } else {
4459 /* If n->poll_list is not empty, we need to mask irqs */
4460 local_irq_save(flags);
4461 __napi_complete(n);
4462 local_irq_restore(flags);
4463 }
4464 }
4465 EXPORT_SYMBOL(napi_complete_done);
4466
4467 /* must be called under rcu_read_lock(), as we dont take a reference */
4468 struct napi_struct *napi_by_id(unsigned int napi_id)
4469 {
4470 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4471 struct napi_struct *napi;
4472
4473 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4474 if (napi->napi_id == napi_id)
4475 return napi;
4476
4477 return NULL;
4478 }
4479 EXPORT_SYMBOL_GPL(napi_by_id);
4480
4481 void napi_hash_add(struct napi_struct *napi)
4482 {
4483 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4484
4485 spin_lock(&napi_hash_lock);
4486
4487 /* 0 is not a valid id, we also skip an id that is taken
4488 * we expect both events to be extremely rare
4489 */
4490 napi->napi_id = 0;
4491 while (!napi->napi_id) {
4492 napi->napi_id = ++napi_gen_id;
4493 if (napi_by_id(napi->napi_id))
4494 napi->napi_id = 0;
4495 }
4496
4497 hlist_add_head_rcu(&napi->napi_hash_node,
4498 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4499
4500 spin_unlock(&napi_hash_lock);
4501 }
4502 }
4503 EXPORT_SYMBOL_GPL(napi_hash_add);
4504
4505 /* Warning : caller is responsible to make sure rcu grace period
4506 * is respected before freeing memory containing @napi
4507 */
4508 void napi_hash_del(struct napi_struct *napi)
4509 {
4510 spin_lock(&napi_hash_lock);
4511
4512 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4513 hlist_del_rcu(&napi->napi_hash_node);
4514
4515 spin_unlock(&napi_hash_lock);
4516 }
4517 EXPORT_SYMBOL_GPL(napi_hash_del);
4518
4519 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4520 {
4521 struct napi_struct *napi;
4522
4523 napi = container_of(timer, struct napi_struct, timer);
4524 if (napi->gro_list)
4525 napi_schedule(napi);
4526
4527 return HRTIMER_NORESTART;
4528 }
4529
4530 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4531 int (*poll)(struct napi_struct *, int), int weight)
4532 {
4533 INIT_LIST_HEAD(&napi->poll_list);
4534 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4535 napi->timer.function = napi_watchdog;
4536 napi->gro_count = 0;
4537 napi->gro_list = NULL;
4538 napi->skb = NULL;
4539 napi->poll = poll;
4540 if (weight > NAPI_POLL_WEIGHT)
4541 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4542 weight, dev->name);
4543 napi->weight = weight;
4544 list_add(&napi->dev_list, &dev->napi_list);
4545 napi->dev = dev;
4546 #ifdef CONFIG_NETPOLL
4547 spin_lock_init(&napi->poll_lock);
4548 napi->poll_owner = -1;
4549 #endif
4550 set_bit(NAPI_STATE_SCHED, &napi->state);
4551 }
4552 EXPORT_SYMBOL(netif_napi_add);
4553
4554 void napi_disable(struct napi_struct *n)
4555 {
4556 might_sleep();
4557 set_bit(NAPI_STATE_DISABLE, &n->state);
4558
4559 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4560 msleep(1);
4561
4562 hrtimer_cancel(&n->timer);
4563
4564 clear_bit(NAPI_STATE_DISABLE, &n->state);
4565 }
4566 EXPORT_SYMBOL(napi_disable);
4567
4568 void netif_napi_del(struct napi_struct *napi)
4569 {
4570 list_del_init(&napi->dev_list);
4571 napi_free_frags(napi);
4572
4573 kfree_skb_list(napi->gro_list);
4574 napi->gro_list = NULL;
4575 napi->gro_count = 0;
4576 }
4577 EXPORT_SYMBOL(netif_napi_del);
4578
4579 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4580 {
4581 void *have;
4582 int work, weight;
4583
4584 list_del_init(&n->poll_list);
4585
4586 have = netpoll_poll_lock(n);
4587
4588 weight = n->weight;
4589
4590 /* This NAPI_STATE_SCHED test is for avoiding a race
4591 * with netpoll's poll_napi(). Only the entity which
4592 * obtains the lock and sees NAPI_STATE_SCHED set will
4593 * actually make the ->poll() call. Therefore we avoid
4594 * accidentally calling ->poll() when NAPI is not scheduled.
4595 */
4596 work = 0;
4597 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4598 work = n->poll(n, weight);
4599 trace_napi_poll(n);
4600 }
4601
4602 WARN_ON_ONCE(work > weight);
4603
4604 if (likely(work < weight))
4605 goto out_unlock;
4606
4607 /* Drivers must not modify the NAPI state if they
4608 * consume the entire weight. In such cases this code
4609 * still "owns" the NAPI instance and therefore can
4610 * move the instance around on the list at-will.
4611 */
4612 if (unlikely(napi_disable_pending(n))) {
4613 napi_complete(n);
4614 goto out_unlock;
4615 }
4616
4617 if (n->gro_list) {
4618 /* flush too old packets
4619 * If HZ < 1000, flush all packets.
4620 */
4621 napi_gro_flush(n, HZ >= 1000);
4622 }
4623
4624 /* Some drivers may have called napi_schedule
4625 * prior to exhausting their budget.
4626 */
4627 if (unlikely(!list_empty(&n->poll_list))) {
4628 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4629 n->dev ? n->dev->name : "backlog");
4630 goto out_unlock;
4631 }
4632
4633 list_add_tail(&n->poll_list, repoll);
4634
4635 out_unlock:
4636 netpoll_poll_unlock(have);
4637
4638 return work;
4639 }
4640
4641 static void net_rx_action(struct softirq_action *h)
4642 {
4643 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4644 unsigned long time_limit = jiffies + 2;
4645 int budget = netdev_budget;
4646 LIST_HEAD(list);
4647 LIST_HEAD(repoll);
4648
4649 local_irq_disable();
4650 list_splice_init(&sd->poll_list, &list);
4651 local_irq_enable();
4652
4653 for (;;) {
4654 struct napi_struct *n;
4655
4656 if (list_empty(&list)) {
4657 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4658 return;
4659 break;
4660 }
4661
4662 n = list_first_entry(&list, struct napi_struct, poll_list);
4663 budget -= napi_poll(n, &repoll);
4664
4665 /* If softirq window is exhausted then punt.
4666 * Allow this to run for 2 jiffies since which will allow
4667 * an average latency of 1.5/HZ.
4668 */
4669 if (unlikely(budget <= 0 ||
4670 time_after_eq(jiffies, time_limit))) {
4671 sd->time_squeeze++;
4672 break;
4673 }
4674 }
4675
4676 local_irq_disable();
4677
4678 list_splice_tail_init(&sd->poll_list, &list);
4679 list_splice_tail(&repoll, &list);
4680 list_splice(&list, &sd->poll_list);
4681 if (!list_empty(&sd->poll_list))
4682 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4683
4684 net_rps_action_and_irq_enable(sd);
4685 }
4686
4687 struct netdev_adjacent {
4688 struct net_device *dev;
4689
4690 /* upper master flag, there can only be one master device per list */
4691 bool master;
4692
4693 /* counter for the number of times this device was added to us */
4694 u16 ref_nr;
4695
4696 /* private field for the users */
4697 void *private;
4698
4699 struct list_head list;
4700 struct rcu_head rcu;
4701 };
4702
4703 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4704 struct net_device *adj_dev,
4705 struct list_head *adj_list)
4706 {
4707 struct netdev_adjacent *adj;
4708
4709 list_for_each_entry(adj, adj_list, list) {
4710 if (adj->dev == adj_dev)
4711 return adj;
4712 }
4713 return NULL;
4714 }
4715
4716 /**
4717 * netdev_has_upper_dev - Check if device is linked to an upper device
4718 * @dev: device
4719 * @upper_dev: upper device to check
4720 *
4721 * Find out if a device is linked to specified upper device and return true
4722 * in case it is. Note that this checks only immediate upper device,
4723 * not through a complete stack of devices. The caller must hold the RTNL lock.
4724 */
4725 bool netdev_has_upper_dev(struct net_device *dev,
4726 struct net_device *upper_dev)
4727 {
4728 ASSERT_RTNL();
4729
4730 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4731 }
4732 EXPORT_SYMBOL(netdev_has_upper_dev);
4733
4734 /**
4735 * netdev_has_any_upper_dev - Check if device is linked to some device
4736 * @dev: device
4737 *
4738 * Find out if a device is linked to an upper device and return true in case
4739 * it is. The caller must hold the RTNL lock.
4740 */
4741 static bool netdev_has_any_upper_dev(struct net_device *dev)
4742 {
4743 ASSERT_RTNL();
4744
4745 return !list_empty(&dev->all_adj_list.upper);
4746 }
4747
4748 /**
4749 * netdev_master_upper_dev_get - Get master upper device
4750 * @dev: device
4751 *
4752 * Find a master upper device and return pointer to it or NULL in case
4753 * it's not there. The caller must hold the RTNL lock.
4754 */
4755 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4756 {
4757 struct netdev_adjacent *upper;
4758
4759 ASSERT_RTNL();
4760
4761 if (list_empty(&dev->adj_list.upper))
4762 return NULL;
4763
4764 upper = list_first_entry(&dev->adj_list.upper,
4765 struct netdev_adjacent, list);
4766 if (likely(upper->master))
4767 return upper->dev;
4768 return NULL;
4769 }
4770 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4771
4772 void *netdev_adjacent_get_private(struct list_head *adj_list)
4773 {
4774 struct netdev_adjacent *adj;
4775
4776 adj = list_entry(adj_list, struct netdev_adjacent, list);
4777
4778 return adj->private;
4779 }
4780 EXPORT_SYMBOL(netdev_adjacent_get_private);
4781
4782 /**
4783 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4784 * @dev: device
4785 * @iter: list_head ** of the current position
4786 *
4787 * Gets the next device from the dev's upper list, starting from iter
4788 * position. The caller must hold RCU read lock.
4789 */
4790 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4791 struct list_head **iter)
4792 {
4793 struct netdev_adjacent *upper;
4794
4795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4796
4797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4798
4799 if (&upper->list == &dev->adj_list.upper)
4800 return NULL;
4801
4802 *iter = &upper->list;
4803
4804 return upper->dev;
4805 }
4806 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4807
4808 /**
4809 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4810 * @dev: device
4811 * @iter: list_head ** of the current position
4812 *
4813 * Gets the next device from the dev's upper list, starting from iter
4814 * position. The caller must hold RCU read lock.
4815 */
4816 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4817 struct list_head **iter)
4818 {
4819 struct netdev_adjacent *upper;
4820
4821 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4822
4823 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4824
4825 if (&upper->list == &dev->all_adj_list.upper)
4826 return NULL;
4827
4828 *iter = &upper->list;
4829
4830 return upper->dev;
4831 }
4832 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4833
4834 /**
4835 * netdev_lower_get_next_private - Get the next ->private from the
4836 * lower neighbour list
4837 * @dev: device
4838 * @iter: list_head ** of the current position
4839 *
4840 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4841 * list, starting from iter position. The caller must hold either hold the
4842 * RTNL lock or its own locking that guarantees that the neighbour lower
4843 * list will remain unchainged.
4844 */
4845 void *netdev_lower_get_next_private(struct net_device *dev,
4846 struct list_head **iter)
4847 {
4848 struct netdev_adjacent *lower;
4849
4850 lower = list_entry(*iter, struct netdev_adjacent, list);
4851
4852 if (&lower->list == &dev->adj_list.lower)
4853 return NULL;
4854
4855 *iter = lower->list.next;
4856
4857 return lower->private;
4858 }
4859 EXPORT_SYMBOL(netdev_lower_get_next_private);
4860
4861 /**
4862 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4863 * lower neighbour list, RCU
4864 * variant
4865 * @dev: device
4866 * @iter: list_head ** of the current position
4867 *
4868 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4869 * list, starting from iter position. The caller must hold RCU read lock.
4870 */
4871 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4872 struct list_head **iter)
4873 {
4874 struct netdev_adjacent *lower;
4875
4876 WARN_ON_ONCE(!rcu_read_lock_held());
4877
4878 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4879
4880 if (&lower->list == &dev->adj_list.lower)
4881 return NULL;
4882
4883 *iter = &lower->list;
4884
4885 return lower->private;
4886 }
4887 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4888
4889 /**
4890 * netdev_lower_get_next - Get the next device from the lower neighbour
4891 * list
4892 * @dev: device
4893 * @iter: list_head ** of the current position
4894 *
4895 * Gets the next netdev_adjacent from the dev's lower neighbour
4896 * list, starting from iter position. The caller must hold RTNL lock or
4897 * its own locking that guarantees that the neighbour lower
4898 * list will remain unchainged.
4899 */
4900 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4901 {
4902 struct netdev_adjacent *lower;
4903
4904 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4905
4906 if (&lower->list == &dev->adj_list.lower)
4907 return NULL;
4908
4909 *iter = &lower->list;
4910
4911 return lower->dev;
4912 }
4913 EXPORT_SYMBOL(netdev_lower_get_next);
4914
4915 /**
4916 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4917 * lower neighbour list, RCU
4918 * variant
4919 * @dev: device
4920 *
4921 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4922 * list. The caller must hold RCU read lock.
4923 */
4924 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4925 {
4926 struct netdev_adjacent *lower;
4927
4928 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4929 struct netdev_adjacent, list);
4930 if (lower)
4931 return lower->private;
4932 return NULL;
4933 }
4934 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4935
4936 /**
4937 * netdev_master_upper_dev_get_rcu - Get master upper device
4938 * @dev: device
4939 *
4940 * Find a master upper device and return pointer to it or NULL in case
4941 * it's not there. The caller must hold the RCU read lock.
4942 */
4943 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4944 {
4945 struct netdev_adjacent *upper;
4946
4947 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4948 struct netdev_adjacent, list);
4949 if (upper && likely(upper->master))
4950 return upper->dev;
4951 return NULL;
4952 }
4953 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4954
4955 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4956 struct net_device *adj_dev,
4957 struct list_head *dev_list)
4958 {
4959 char linkname[IFNAMSIZ+7];
4960 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 "upper_%s" : "lower_%s", adj_dev->name);
4962 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4963 linkname);
4964 }
4965 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4966 char *name,
4967 struct list_head *dev_list)
4968 {
4969 char linkname[IFNAMSIZ+7];
4970 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4971 "upper_%s" : "lower_%s", name);
4972 sysfs_remove_link(&(dev->dev.kobj), linkname);
4973 }
4974
4975 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4976 struct net_device *adj_dev,
4977 struct list_head *dev_list)
4978 {
4979 return (dev_list == &dev->adj_list.upper ||
4980 dev_list == &dev->adj_list.lower) &&
4981 net_eq(dev_net(dev), dev_net(adj_dev));
4982 }
4983
4984 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4985 struct net_device *adj_dev,
4986 struct list_head *dev_list,
4987 void *private, bool master)
4988 {
4989 struct netdev_adjacent *adj;
4990 int ret;
4991
4992 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4993
4994 if (adj) {
4995 adj->ref_nr++;
4996 return 0;
4997 }
4998
4999 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5000 if (!adj)
5001 return -ENOMEM;
5002
5003 adj->dev = adj_dev;
5004 adj->master = master;
5005 adj->ref_nr = 1;
5006 adj->private = private;
5007 dev_hold(adj_dev);
5008
5009 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5010 adj_dev->name, dev->name, adj_dev->name);
5011
5012 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5013 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5014 if (ret)
5015 goto free_adj;
5016 }
5017
5018 /* Ensure that master link is always the first item in list. */
5019 if (master) {
5020 ret = sysfs_create_link(&(dev->dev.kobj),
5021 &(adj_dev->dev.kobj), "master");
5022 if (ret)
5023 goto remove_symlinks;
5024
5025 list_add_rcu(&adj->list, dev_list);
5026 } else {
5027 list_add_tail_rcu(&adj->list, dev_list);
5028 }
5029
5030 return 0;
5031
5032 remove_symlinks:
5033 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5034 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5035 free_adj:
5036 kfree(adj);
5037 dev_put(adj_dev);
5038
5039 return ret;
5040 }
5041
5042 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5043 struct net_device *adj_dev,
5044 struct list_head *dev_list)
5045 {
5046 struct netdev_adjacent *adj;
5047
5048 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5049
5050 if (!adj) {
5051 pr_err("tried to remove device %s from %s\n",
5052 dev->name, adj_dev->name);
5053 BUG();
5054 }
5055
5056 if (adj->ref_nr > 1) {
5057 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5058 adj->ref_nr-1);
5059 adj->ref_nr--;
5060 return;
5061 }
5062
5063 if (adj->master)
5064 sysfs_remove_link(&(dev->dev.kobj), "master");
5065
5066 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5067 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5068
5069 list_del_rcu(&adj->list);
5070 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5071 adj_dev->name, dev->name, adj_dev->name);
5072 dev_put(adj_dev);
5073 kfree_rcu(adj, rcu);
5074 }
5075
5076 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5077 struct net_device *upper_dev,
5078 struct list_head *up_list,
5079 struct list_head *down_list,
5080 void *private, bool master)
5081 {
5082 int ret;
5083
5084 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5085 master);
5086 if (ret)
5087 return ret;
5088
5089 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5090 false);
5091 if (ret) {
5092 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5093 return ret;
5094 }
5095
5096 return 0;
5097 }
5098
5099 static int __netdev_adjacent_dev_link(struct net_device *dev,
5100 struct net_device *upper_dev)
5101 {
5102 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5103 &dev->all_adj_list.upper,
5104 &upper_dev->all_adj_list.lower,
5105 NULL, false);
5106 }
5107
5108 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5109 struct net_device *upper_dev,
5110 struct list_head *up_list,
5111 struct list_head *down_list)
5112 {
5113 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5114 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5115 }
5116
5117 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5118 struct net_device *upper_dev)
5119 {
5120 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5121 &dev->all_adj_list.upper,
5122 &upper_dev->all_adj_list.lower);
5123 }
5124
5125 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5126 struct net_device *upper_dev,
5127 void *private, bool master)
5128 {
5129 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5130
5131 if (ret)
5132 return ret;
5133
5134 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5135 &dev->adj_list.upper,
5136 &upper_dev->adj_list.lower,
5137 private, master);
5138 if (ret) {
5139 __netdev_adjacent_dev_unlink(dev, upper_dev);
5140 return ret;
5141 }
5142
5143 return 0;
5144 }
5145
5146 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5147 struct net_device *upper_dev)
5148 {
5149 __netdev_adjacent_dev_unlink(dev, upper_dev);
5150 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5151 &dev->adj_list.upper,
5152 &upper_dev->adj_list.lower);
5153 }
5154
5155 static int __netdev_upper_dev_link(struct net_device *dev,
5156 struct net_device *upper_dev, bool master,
5157 void *private)
5158 {
5159 struct netdev_adjacent *i, *j, *to_i, *to_j;
5160 int ret = 0;
5161
5162 ASSERT_RTNL();
5163
5164 if (dev == upper_dev)
5165 return -EBUSY;
5166
5167 /* To prevent loops, check if dev is not upper device to upper_dev. */
5168 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5169 return -EBUSY;
5170
5171 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5172 return -EEXIST;
5173
5174 if (master && netdev_master_upper_dev_get(dev))
5175 return -EBUSY;
5176
5177 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5178 master);
5179 if (ret)
5180 return ret;
5181
5182 /* Now that we linked these devs, make all the upper_dev's
5183 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5184 * versa, and don't forget the devices itself. All of these
5185 * links are non-neighbours.
5186 */
5187 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5188 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5189 pr_debug("Interlinking %s with %s, non-neighbour\n",
5190 i->dev->name, j->dev->name);
5191 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5192 if (ret)
5193 goto rollback_mesh;
5194 }
5195 }
5196
5197 /* add dev to every upper_dev's upper device */
5198 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5199 pr_debug("linking %s's upper device %s with %s\n",
5200 upper_dev->name, i->dev->name, dev->name);
5201 ret = __netdev_adjacent_dev_link(dev, i->dev);
5202 if (ret)
5203 goto rollback_upper_mesh;
5204 }
5205
5206 /* add upper_dev to every dev's lower device */
5207 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5208 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5209 i->dev->name, upper_dev->name);
5210 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5211 if (ret)
5212 goto rollback_lower_mesh;
5213 }
5214
5215 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5216 return 0;
5217
5218 rollback_lower_mesh:
5219 to_i = i;
5220 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5221 if (i == to_i)
5222 break;
5223 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5224 }
5225
5226 i = NULL;
5227
5228 rollback_upper_mesh:
5229 to_i = i;
5230 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5231 if (i == to_i)
5232 break;
5233 __netdev_adjacent_dev_unlink(dev, i->dev);
5234 }
5235
5236 i = j = NULL;
5237
5238 rollback_mesh:
5239 to_i = i;
5240 to_j = j;
5241 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5243 if (i == to_i && j == to_j)
5244 break;
5245 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5246 }
5247 if (i == to_i)
5248 break;
5249 }
5250
5251 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5252
5253 return ret;
5254 }
5255
5256 /**
5257 * netdev_upper_dev_link - Add a link to the upper device
5258 * @dev: device
5259 * @upper_dev: new upper device
5260 *
5261 * Adds a link to device which is upper to this one. The caller must hold
5262 * the RTNL lock. On a failure a negative errno code is returned.
5263 * On success the reference counts are adjusted and the function
5264 * returns zero.
5265 */
5266 int netdev_upper_dev_link(struct net_device *dev,
5267 struct net_device *upper_dev)
5268 {
5269 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5270 }
5271 EXPORT_SYMBOL(netdev_upper_dev_link);
5272
5273 /**
5274 * netdev_master_upper_dev_link - Add a master link to the upper device
5275 * @dev: device
5276 * @upper_dev: new upper device
5277 *
5278 * Adds a link to device which is upper to this one. In this case, only
5279 * one master upper device can be linked, although other non-master devices
5280 * might be linked as well. The caller must hold the RTNL lock.
5281 * On a failure a negative errno code is returned. On success the reference
5282 * counts are adjusted and the function returns zero.
5283 */
5284 int netdev_master_upper_dev_link(struct net_device *dev,
5285 struct net_device *upper_dev)
5286 {
5287 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5288 }
5289 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5290
5291 int netdev_master_upper_dev_link_private(struct net_device *dev,
5292 struct net_device *upper_dev,
5293 void *private)
5294 {
5295 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5296 }
5297 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5298
5299 /**
5300 * netdev_upper_dev_unlink - Removes a link to upper device
5301 * @dev: device
5302 * @upper_dev: new upper device
5303 *
5304 * Removes a link to device which is upper to this one. The caller must hold
5305 * the RTNL lock.
5306 */
5307 void netdev_upper_dev_unlink(struct net_device *dev,
5308 struct net_device *upper_dev)
5309 {
5310 struct netdev_adjacent *i, *j;
5311 ASSERT_RTNL();
5312
5313 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5314
5315 /* Here is the tricky part. We must remove all dev's lower
5316 * devices from all upper_dev's upper devices and vice
5317 * versa, to maintain the graph relationship.
5318 */
5319 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5320 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5321 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5322
5323 /* remove also the devices itself from lower/upper device
5324 * list
5325 */
5326 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5327 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5328
5329 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5330 __netdev_adjacent_dev_unlink(dev, i->dev);
5331
5332 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5333 }
5334 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5335
5336 /**
5337 * netdev_bonding_info_change - Dispatch event about slave change
5338 * @dev: device
5339 * @bonding_info: info to dispatch
5340 *
5341 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5342 * The caller must hold the RTNL lock.
5343 */
5344 void netdev_bonding_info_change(struct net_device *dev,
5345 struct netdev_bonding_info *bonding_info)
5346 {
5347 struct netdev_notifier_bonding_info info;
5348
5349 memcpy(&info.bonding_info, bonding_info,
5350 sizeof(struct netdev_bonding_info));
5351 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5352 &info.info);
5353 }
5354 EXPORT_SYMBOL(netdev_bonding_info_change);
5355
5356 static void netdev_adjacent_add_links(struct net_device *dev)
5357 {
5358 struct netdev_adjacent *iter;
5359
5360 struct net *net = dev_net(dev);
5361
5362 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5363 if (!net_eq(net,dev_net(iter->dev)))
5364 continue;
5365 netdev_adjacent_sysfs_add(iter->dev, dev,
5366 &iter->dev->adj_list.lower);
5367 netdev_adjacent_sysfs_add(dev, iter->dev,
5368 &dev->adj_list.upper);
5369 }
5370
5371 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5372 if (!net_eq(net,dev_net(iter->dev)))
5373 continue;
5374 netdev_adjacent_sysfs_add(iter->dev, dev,
5375 &iter->dev->adj_list.upper);
5376 netdev_adjacent_sysfs_add(dev, iter->dev,
5377 &dev->adj_list.lower);
5378 }
5379 }
5380
5381 static void netdev_adjacent_del_links(struct net_device *dev)
5382 {
5383 struct netdev_adjacent *iter;
5384
5385 struct net *net = dev_net(dev);
5386
5387 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5388 if (!net_eq(net,dev_net(iter->dev)))
5389 continue;
5390 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5391 &iter->dev->adj_list.lower);
5392 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5393 &dev->adj_list.upper);
5394 }
5395
5396 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5397 if (!net_eq(net,dev_net(iter->dev)))
5398 continue;
5399 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5400 &iter->dev->adj_list.upper);
5401 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5402 &dev->adj_list.lower);
5403 }
5404 }
5405
5406 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5407 {
5408 struct netdev_adjacent *iter;
5409
5410 struct net *net = dev_net(dev);
5411
5412 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5413 if (!net_eq(net,dev_net(iter->dev)))
5414 continue;
5415 netdev_adjacent_sysfs_del(iter->dev, oldname,
5416 &iter->dev->adj_list.lower);
5417 netdev_adjacent_sysfs_add(iter->dev, dev,
5418 &iter->dev->adj_list.lower);
5419 }
5420
5421 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5422 if (!net_eq(net,dev_net(iter->dev)))
5423 continue;
5424 netdev_adjacent_sysfs_del(iter->dev, oldname,
5425 &iter->dev->adj_list.upper);
5426 netdev_adjacent_sysfs_add(iter->dev, dev,
5427 &iter->dev->adj_list.upper);
5428 }
5429 }
5430
5431 void *netdev_lower_dev_get_private(struct net_device *dev,
5432 struct net_device *lower_dev)
5433 {
5434 struct netdev_adjacent *lower;
5435
5436 if (!lower_dev)
5437 return NULL;
5438 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5439 if (!lower)
5440 return NULL;
5441
5442 return lower->private;
5443 }
5444 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5445
5446
5447 int dev_get_nest_level(struct net_device *dev,
5448 bool (*type_check)(struct net_device *dev))
5449 {
5450 struct net_device *lower = NULL;
5451 struct list_head *iter;
5452 int max_nest = -1;
5453 int nest;
5454
5455 ASSERT_RTNL();
5456
5457 netdev_for_each_lower_dev(dev, lower, iter) {
5458 nest = dev_get_nest_level(lower, type_check);
5459 if (max_nest < nest)
5460 max_nest = nest;
5461 }
5462
5463 if (type_check(dev))
5464 max_nest++;
5465
5466 return max_nest;
5467 }
5468 EXPORT_SYMBOL(dev_get_nest_level);
5469
5470 static void dev_change_rx_flags(struct net_device *dev, int flags)
5471 {
5472 const struct net_device_ops *ops = dev->netdev_ops;
5473
5474 if (ops->ndo_change_rx_flags)
5475 ops->ndo_change_rx_flags(dev, flags);
5476 }
5477
5478 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5479 {
5480 unsigned int old_flags = dev->flags;
5481 kuid_t uid;
5482 kgid_t gid;
5483
5484 ASSERT_RTNL();
5485
5486 dev->flags |= IFF_PROMISC;
5487 dev->promiscuity += inc;
5488 if (dev->promiscuity == 0) {
5489 /*
5490 * Avoid overflow.
5491 * If inc causes overflow, untouch promisc and return error.
5492 */
5493 if (inc < 0)
5494 dev->flags &= ~IFF_PROMISC;
5495 else {
5496 dev->promiscuity -= inc;
5497 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5498 dev->name);
5499 return -EOVERFLOW;
5500 }
5501 }
5502 if (dev->flags != old_flags) {
5503 pr_info("device %s %s promiscuous mode\n",
5504 dev->name,
5505 dev->flags & IFF_PROMISC ? "entered" : "left");
5506 if (audit_enabled) {
5507 current_uid_gid(&uid, &gid);
5508 audit_log(current->audit_context, GFP_ATOMIC,
5509 AUDIT_ANOM_PROMISCUOUS,
5510 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5511 dev->name, (dev->flags & IFF_PROMISC),
5512 (old_flags & IFF_PROMISC),
5513 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5514 from_kuid(&init_user_ns, uid),
5515 from_kgid(&init_user_ns, gid),
5516 audit_get_sessionid(current));
5517 }
5518
5519 dev_change_rx_flags(dev, IFF_PROMISC);
5520 }
5521 if (notify)
5522 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5523 return 0;
5524 }
5525
5526 /**
5527 * dev_set_promiscuity - update promiscuity count on a device
5528 * @dev: device
5529 * @inc: modifier
5530 *
5531 * Add or remove promiscuity from a device. While the count in the device
5532 * remains above zero the interface remains promiscuous. Once it hits zero
5533 * the device reverts back to normal filtering operation. A negative inc
5534 * value is used to drop promiscuity on the device.
5535 * Return 0 if successful or a negative errno code on error.
5536 */
5537 int dev_set_promiscuity(struct net_device *dev, int inc)
5538 {
5539 unsigned int old_flags = dev->flags;
5540 int err;
5541
5542 err = __dev_set_promiscuity(dev, inc, true);
5543 if (err < 0)
5544 return err;
5545 if (dev->flags != old_flags)
5546 dev_set_rx_mode(dev);
5547 return err;
5548 }
5549 EXPORT_SYMBOL(dev_set_promiscuity);
5550
5551 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5552 {
5553 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5554
5555 ASSERT_RTNL();
5556
5557 dev->flags |= IFF_ALLMULTI;
5558 dev->allmulti += inc;
5559 if (dev->allmulti == 0) {
5560 /*
5561 * Avoid overflow.
5562 * If inc causes overflow, untouch allmulti and return error.
5563 */
5564 if (inc < 0)
5565 dev->flags &= ~IFF_ALLMULTI;
5566 else {
5567 dev->allmulti -= inc;
5568 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5569 dev->name);
5570 return -EOVERFLOW;
5571 }
5572 }
5573 if (dev->flags ^ old_flags) {
5574 dev_change_rx_flags(dev, IFF_ALLMULTI);
5575 dev_set_rx_mode(dev);
5576 if (notify)
5577 __dev_notify_flags(dev, old_flags,
5578 dev->gflags ^ old_gflags);
5579 }
5580 return 0;
5581 }
5582
5583 /**
5584 * dev_set_allmulti - update allmulti count on a device
5585 * @dev: device
5586 * @inc: modifier
5587 *
5588 * Add or remove reception of all multicast frames to a device. While the
5589 * count in the device remains above zero the interface remains listening
5590 * to all interfaces. Once it hits zero the device reverts back to normal
5591 * filtering operation. A negative @inc value is used to drop the counter
5592 * when releasing a resource needing all multicasts.
5593 * Return 0 if successful or a negative errno code on error.
5594 */
5595
5596 int dev_set_allmulti(struct net_device *dev, int inc)
5597 {
5598 return __dev_set_allmulti(dev, inc, true);
5599 }
5600 EXPORT_SYMBOL(dev_set_allmulti);
5601
5602 /*
5603 * Upload unicast and multicast address lists to device and
5604 * configure RX filtering. When the device doesn't support unicast
5605 * filtering it is put in promiscuous mode while unicast addresses
5606 * are present.
5607 */
5608 void __dev_set_rx_mode(struct net_device *dev)
5609 {
5610 const struct net_device_ops *ops = dev->netdev_ops;
5611
5612 /* dev_open will call this function so the list will stay sane. */
5613 if (!(dev->flags&IFF_UP))
5614 return;
5615
5616 if (!netif_device_present(dev))
5617 return;
5618
5619 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5620 /* Unicast addresses changes may only happen under the rtnl,
5621 * therefore calling __dev_set_promiscuity here is safe.
5622 */
5623 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5624 __dev_set_promiscuity(dev, 1, false);
5625 dev->uc_promisc = true;
5626 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5627 __dev_set_promiscuity(dev, -1, false);
5628 dev->uc_promisc = false;
5629 }
5630 }
5631
5632 if (ops->ndo_set_rx_mode)
5633 ops->ndo_set_rx_mode(dev);
5634 }
5635
5636 void dev_set_rx_mode(struct net_device *dev)
5637 {
5638 netif_addr_lock_bh(dev);
5639 __dev_set_rx_mode(dev);
5640 netif_addr_unlock_bh(dev);
5641 }
5642
5643 /**
5644 * dev_get_flags - get flags reported to userspace
5645 * @dev: device
5646 *
5647 * Get the combination of flag bits exported through APIs to userspace.
5648 */
5649 unsigned int dev_get_flags(const struct net_device *dev)
5650 {
5651 unsigned int flags;
5652
5653 flags = (dev->flags & ~(IFF_PROMISC |
5654 IFF_ALLMULTI |
5655 IFF_RUNNING |
5656 IFF_LOWER_UP |
5657 IFF_DORMANT)) |
5658 (dev->gflags & (IFF_PROMISC |
5659 IFF_ALLMULTI));
5660
5661 if (netif_running(dev)) {
5662 if (netif_oper_up(dev))
5663 flags |= IFF_RUNNING;
5664 if (netif_carrier_ok(dev))
5665 flags |= IFF_LOWER_UP;
5666 if (netif_dormant(dev))
5667 flags |= IFF_DORMANT;
5668 }
5669
5670 return flags;
5671 }
5672 EXPORT_SYMBOL(dev_get_flags);
5673
5674 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5675 {
5676 unsigned int old_flags = dev->flags;
5677 int ret;
5678
5679 ASSERT_RTNL();
5680
5681 /*
5682 * Set the flags on our device.
5683 */
5684
5685 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5686 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5687 IFF_AUTOMEDIA)) |
5688 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5689 IFF_ALLMULTI));
5690
5691 /*
5692 * Load in the correct multicast list now the flags have changed.
5693 */
5694
5695 if ((old_flags ^ flags) & IFF_MULTICAST)
5696 dev_change_rx_flags(dev, IFF_MULTICAST);
5697
5698 dev_set_rx_mode(dev);
5699
5700 /*
5701 * Have we downed the interface. We handle IFF_UP ourselves
5702 * according to user attempts to set it, rather than blindly
5703 * setting it.
5704 */
5705
5706 ret = 0;
5707 if ((old_flags ^ flags) & IFF_UP)
5708 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5709
5710 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5711 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5712 unsigned int old_flags = dev->flags;
5713
5714 dev->gflags ^= IFF_PROMISC;
5715
5716 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5717 if (dev->flags != old_flags)
5718 dev_set_rx_mode(dev);
5719 }
5720
5721 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5722 is important. Some (broken) drivers set IFF_PROMISC, when
5723 IFF_ALLMULTI is requested not asking us and not reporting.
5724 */
5725 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5726 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5727
5728 dev->gflags ^= IFF_ALLMULTI;
5729 __dev_set_allmulti(dev, inc, false);
5730 }
5731
5732 return ret;
5733 }
5734
5735 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5736 unsigned int gchanges)
5737 {
5738 unsigned int changes = dev->flags ^ old_flags;
5739
5740 if (gchanges)
5741 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5742
5743 if (changes & IFF_UP) {
5744 if (dev->flags & IFF_UP)
5745 call_netdevice_notifiers(NETDEV_UP, dev);
5746 else
5747 call_netdevice_notifiers(NETDEV_DOWN, dev);
5748 }
5749
5750 if (dev->flags & IFF_UP &&
5751 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5752 struct netdev_notifier_change_info change_info;
5753
5754 change_info.flags_changed = changes;
5755 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5756 &change_info.info);
5757 }
5758 }
5759
5760 /**
5761 * dev_change_flags - change device settings
5762 * @dev: device
5763 * @flags: device state flags
5764 *
5765 * Change settings on device based state flags. The flags are
5766 * in the userspace exported format.
5767 */
5768 int dev_change_flags(struct net_device *dev, unsigned int flags)
5769 {
5770 int ret;
5771 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5772
5773 ret = __dev_change_flags(dev, flags);
5774 if (ret < 0)
5775 return ret;
5776
5777 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5778 __dev_notify_flags(dev, old_flags, changes);
5779 return ret;
5780 }
5781 EXPORT_SYMBOL(dev_change_flags);
5782
5783 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5784 {
5785 const struct net_device_ops *ops = dev->netdev_ops;
5786
5787 if (ops->ndo_change_mtu)
5788 return ops->ndo_change_mtu(dev, new_mtu);
5789
5790 dev->mtu = new_mtu;
5791 return 0;
5792 }
5793
5794 /**
5795 * dev_set_mtu - Change maximum transfer unit
5796 * @dev: device
5797 * @new_mtu: new transfer unit
5798 *
5799 * Change the maximum transfer size of the network device.
5800 */
5801 int dev_set_mtu(struct net_device *dev, int new_mtu)
5802 {
5803 int err, orig_mtu;
5804
5805 if (new_mtu == dev->mtu)
5806 return 0;
5807
5808 /* MTU must be positive. */
5809 if (new_mtu < 0)
5810 return -EINVAL;
5811
5812 if (!netif_device_present(dev))
5813 return -ENODEV;
5814
5815 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5816 err = notifier_to_errno(err);
5817 if (err)
5818 return err;
5819
5820 orig_mtu = dev->mtu;
5821 err = __dev_set_mtu(dev, new_mtu);
5822
5823 if (!err) {
5824 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5825 err = notifier_to_errno(err);
5826 if (err) {
5827 /* setting mtu back and notifying everyone again,
5828 * so that they have a chance to revert changes.
5829 */
5830 __dev_set_mtu(dev, orig_mtu);
5831 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5832 }
5833 }
5834 return err;
5835 }
5836 EXPORT_SYMBOL(dev_set_mtu);
5837
5838 /**
5839 * dev_set_group - Change group this device belongs to
5840 * @dev: device
5841 * @new_group: group this device should belong to
5842 */
5843 void dev_set_group(struct net_device *dev, int new_group)
5844 {
5845 dev->group = new_group;
5846 }
5847 EXPORT_SYMBOL(dev_set_group);
5848
5849 /**
5850 * dev_set_mac_address - Change Media Access Control Address
5851 * @dev: device
5852 * @sa: new address
5853 *
5854 * Change the hardware (MAC) address of the device
5855 */
5856 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5857 {
5858 const struct net_device_ops *ops = dev->netdev_ops;
5859 int err;
5860
5861 if (!ops->ndo_set_mac_address)
5862 return -EOPNOTSUPP;
5863 if (sa->sa_family != dev->type)
5864 return -EINVAL;
5865 if (!netif_device_present(dev))
5866 return -ENODEV;
5867 err = ops->ndo_set_mac_address(dev, sa);
5868 if (err)
5869 return err;
5870 dev->addr_assign_type = NET_ADDR_SET;
5871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5872 add_device_randomness(dev->dev_addr, dev->addr_len);
5873 return 0;
5874 }
5875 EXPORT_SYMBOL(dev_set_mac_address);
5876
5877 /**
5878 * dev_change_carrier - Change device carrier
5879 * @dev: device
5880 * @new_carrier: new value
5881 *
5882 * Change device carrier
5883 */
5884 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5885 {
5886 const struct net_device_ops *ops = dev->netdev_ops;
5887
5888 if (!ops->ndo_change_carrier)
5889 return -EOPNOTSUPP;
5890 if (!netif_device_present(dev))
5891 return -ENODEV;
5892 return ops->ndo_change_carrier(dev, new_carrier);
5893 }
5894 EXPORT_SYMBOL(dev_change_carrier);
5895
5896 /**
5897 * dev_get_phys_port_id - Get device physical port ID
5898 * @dev: device
5899 * @ppid: port ID
5900 *
5901 * Get device physical port ID
5902 */
5903 int dev_get_phys_port_id(struct net_device *dev,
5904 struct netdev_phys_item_id *ppid)
5905 {
5906 const struct net_device_ops *ops = dev->netdev_ops;
5907
5908 if (!ops->ndo_get_phys_port_id)
5909 return -EOPNOTSUPP;
5910 return ops->ndo_get_phys_port_id(dev, ppid);
5911 }
5912 EXPORT_SYMBOL(dev_get_phys_port_id);
5913
5914 /**
5915 * dev_new_index - allocate an ifindex
5916 * @net: the applicable net namespace
5917 *
5918 * Returns a suitable unique value for a new device interface
5919 * number. The caller must hold the rtnl semaphore or the
5920 * dev_base_lock to be sure it remains unique.
5921 */
5922 static int dev_new_index(struct net *net)
5923 {
5924 int ifindex = net->ifindex;
5925 for (;;) {
5926 if (++ifindex <= 0)
5927 ifindex = 1;
5928 if (!__dev_get_by_index(net, ifindex))
5929 return net->ifindex = ifindex;
5930 }
5931 }
5932
5933 /* Delayed registration/unregisteration */
5934 static LIST_HEAD(net_todo_list);
5935 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5936
5937 static void net_set_todo(struct net_device *dev)
5938 {
5939 list_add_tail(&dev->todo_list, &net_todo_list);
5940 dev_net(dev)->dev_unreg_count++;
5941 }
5942
5943 static void rollback_registered_many(struct list_head *head)
5944 {
5945 struct net_device *dev, *tmp;
5946 LIST_HEAD(close_head);
5947
5948 BUG_ON(dev_boot_phase);
5949 ASSERT_RTNL();
5950
5951 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5952 /* Some devices call without registering
5953 * for initialization unwind. Remove those
5954 * devices and proceed with the remaining.
5955 */
5956 if (dev->reg_state == NETREG_UNINITIALIZED) {
5957 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5958 dev->name, dev);
5959
5960 WARN_ON(1);
5961 list_del(&dev->unreg_list);
5962 continue;
5963 }
5964 dev->dismantle = true;
5965 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5966 }
5967
5968 /* If device is running, close it first. */
5969 list_for_each_entry(dev, head, unreg_list)
5970 list_add_tail(&dev->close_list, &close_head);
5971 dev_close_many(&close_head);
5972
5973 list_for_each_entry(dev, head, unreg_list) {
5974 /* And unlink it from device chain. */
5975 unlist_netdevice(dev);
5976
5977 dev->reg_state = NETREG_UNREGISTERING;
5978 }
5979
5980 synchronize_net();
5981
5982 list_for_each_entry(dev, head, unreg_list) {
5983 struct sk_buff *skb = NULL;
5984
5985 /* Shutdown queueing discipline. */
5986 dev_shutdown(dev);
5987
5988
5989 /* Notify protocols, that we are about to destroy
5990 this device. They should clean all the things.
5991 */
5992 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5993
5994 if (!dev->rtnl_link_ops ||
5995 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5996 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5997 GFP_KERNEL);
5998
5999 /*
6000 * Flush the unicast and multicast chains
6001 */
6002 dev_uc_flush(dev);
6003 dev_mc_flush(dev);
6004
6005 if (dev->netdev_ops->ndo_uninit)
6006 dev->netdev_ops->ndo_uninit(dev);
6007
6008 if (skb)
6009 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6010
6011 /* Notifier chain MUST detach us all upper devices. */
6012 WARN_ON(netdev_has_any_upper_dev(dev));
6013
6014 /* Remove entries from kobject tree */
6015 netdev_unregister_kobject(dev);
6016 #ifdef CONFIG_XPS
6017 /* Remove XPS queueing entries */
6018 netif_reset_xps_queues_gt(dev, 0);
6019 #endif
6020 }
6021
6022 synchronize_net();
6023
6024 list_for_each_entry(dev, head, unreg_list)
6025 dev_put(dev);
6026 }
6027
6028 static void rollback_registered(struct net_device *dev)
6029 {
6030 LIST_HEAD(single);
6031
6032 list_add(&dev->unreg_list, &single);
6033 rollback_registered_many(&single);
6034 list_del(&single);
6035 }
6036
6037 static netdev_features_t netdev_fix_features(struct net_device *dev,
6038 netdev_features_t features)
6039 {
6040 /* Fix illegal checksum combinations */
6041 if ((features & NETIF_F_HW_CSUM) &&
6042 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6043 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6044 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6045 }
6046
6047 /* TSO requires that SG is present as well. */
6048 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6049 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6050 features &= ~NETIF_F_ALL_TSO;
6051 }
6052
6053 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6054 !(features & NETIF_F_IP_CSUM)) {
6055 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6056 features &= ~NETIF_F_TSO;
6057 features &= ~NETIF_F_TSO_ECN;
6058 }
6059
6060 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6061 !(features & NETIF_F_IPV6_CSUM)) {
6062 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6063 features &= ~NETIF_F_TSO6;
6064 }
6065
6066 /* TSO ECN requires that TSO is present as well. */
6067 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6068 features &= ~NETIF_F_TSO_ECN;
6069
6070 /* Software GSO depends on SG. */
6071 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6072 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6073 features &= ~NETIF_F_GSO;
6074 }
6075
6076 /* UFO needs SG and checksumming */
6077 if (features & NETIF_F_UFO) {
6078 /* maybe split UFO into V4 and V6? */
6079 if (!((features & NETIF_F_GEN_CSUM) ||
6080 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6081 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6082 netdev_dbg(dev,
6083 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6084 features &= ~NETIF_F_UFO;
6085 }
6086
6087 if (!(features & NETIF_F_SG)) {
6088 netdev_dbg(dev,
6089 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6090 features &= ~NETIF_F_UFO;
6091 }
6092 }
6093
6094 #ifdef CONFIG_NET_RX_BUSY_POLL
6095 if (dev->netdev_ops->ndo_busy_poll)
6096 features |= NETIF_F_BUSY_POLL;
6097 else
6098 #endif
6099 features &= ~NETIF_F_BUSY_POLL;
6100
6101 return features;
6102 }
6103
6104 int __netdev_update_features(struct net_device *dev)
6105 {
6106 netdev_features_t features;
6107 int err = 0;
6108
6109 ASSERT_RTNL();
6110
6111 features = netdev_get_wanted_features(dev);
6112
6113 if (dev->netdev_ops->ndo_fix_features)
6114 features = dev->netdev_ops->ndo_fix_features(dev, features);
6115
6116 /* driver might be less strict about feature dependencies */
6117 features = netdev_fix_features(dev, features);
6118
6119 if (dev->features == features)
6120 return 0;
6121
6122 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6123 &dev->features, &features);
6124
6125 if (dev->netdev_ops->ndo_set_features)
6126 err = dev->netdev_ops->ndo_set_features(dev, features);
6127
6128 if (unlikely(err < 0)) {
6129 netdev_err(dev,
6130 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6131 err, &features, &dev->features);
6132 return -1;
6133 }
6134
6135 if (!err)
6136 dev->features = features;
6137
6138 return 1;
6139 }
6140
6141 /**
6142 * netdev_update_features - recalculate device features
6143 * @dev: the device to check
6144 *
6145 * Recalculate dev->features set and send notifications if it
6146 * has changed. Should be called after driver or hardware dependent
6147 * conditions might have changed that influence the features.
6148 */
6149 void netdev_update_features(struct net_device *dev)
6150 {
6151 if (__netdev_update_features(dev))
6152 netdev_features_change(dev);
6153 }
6154 EXPORT_SYMBOL(netdev_update_features);
6155
6156 /**
6157 * netdev_change_features - recalculate device features
6158 * @dev: the device to check
6159 *
6160 * Recalculate dev->features set and send notifications even
6161 * if they have not changed. Should be called instead of
6162 * netdev_update_features() if also dev->vlan_features might
6163 * have changed to allow the changes to be propagated to stacked
6164 * VLAN devices.
6165 */
6166 void netdev_change_features(struct net_device *dev)
6167 {
6168 __netdev_update_features(dev);
6169 netdev_features_change(dev);
6170 }
6171 EXPORT_SYMBOL(netdev_change_features);
6172
6173 /**
6174 * netif_stacked_transfer_operstate - transfer operstate
6175 * @rootdev: the root or lower level device to transfer state from
6176 * @dev: the device to transfer operstate to
6177 *
6178 * Transfer operational state from root to device. This is normally
6179 * called when a stacking relationship exists between the root
6180 * device and the device(a leaf device).
6181 */
6182 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6183 struct net_device *dev)
6184 {
6185 if (rootdev->operstate == IF_OPER_DORMANT)
6186 netif_dormant_on(dev);
6187 else
6188 netif_dormant_off(dev);
6189
6190 if (netif_carrier_ok(rootdev)) {
6191 if (!netif_carrier_ok(dev))
6192 netif_carrier_on(dev);
6193 } else {
6194 if (netif_carrier_ok(dev))
6195 netif_carrier_off(dev);
6196 }
6197 }
6198 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6199
6200 #ifdef CONFIG_SYSFS
6201 static int netif_alloc_rx_queues(struct net_device *dev)
6202 {
6203 unsigned int i, count = dev->num_rx_queues;
6204 struct netdev_rx_queue *rx;
6205 size_t sz = count * sizeof(*rx);
6206
6207 BUG_ON(count < 1);
6208
6209 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6210 if (!rx) {
6211 rx = vzalloc(sz);
6212 if (!rx)
6213 return -ENOMEM;
6214 }
6215 dev->_rx = rx;
6216
6217 for (i = 0; i < count; i++)
6218 rx[i].dev = dev;
6219 return 0;
6220 }
6221 #endif
6222
6223 static void netdev_init_one_queue(struct net_device *dev,
6224 struct netdev_queue *queue, void *_unused)
6225 {
6226 /* Initialize queue lock */
6227 spin_lock_init(&queue->_xmit_lock);
6228 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6229 queue->xmit_lock_owner = -1;
6230 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6231 queue->dev = dev;
6232 #ifdef CONFIG_BQL
6233 dql_init(&queue->dql, HZ);
6234 #endif
6235 }
6236
6237 static void netif_free_tx_queues(struct net_device *dev)
6238 {
6239 kvfree(dev->_tx);
6240 }
6241
6242 static int netif_alloc_netdev_queues(struct net_device *dev)
6243 {
6244 unsigned int count = dev->num_tx_queues;
6245 struct netdev_queue *tx;
6246 size_t sz = count * sizeof(*tx);
6247
6248 BUG_ON(count < 1 || count > 0xffff);
6249
6250 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6251 if (!tx) {
6252 tx = vzalloc(sz);
6253 if (!tx)
6254 return -ENOMEM;
6255 }
6256 dev->_tx = tx;
6257
6258 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6259 spin_lock_init(&dev->tx_global_lock);
6260
6261 return 0;
6262 }
6263
6264 /**
6265 * register_netdevice - register a network device
6266 * @dev: device to register
6267 *
6268 * Take a completed network device structure and add it to the kernel
6269 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6270 * chain. 0 is returned on success. A negative errno code is returned
6271 * on a failure to set up the device, or if the name is a duplicate.
6272 *
6273 * Callers must hold the rtnl semaphore. You may want
6274 * register_netdev() instead of this.
6275 *
6276 * BUGS:
6277 * The locking appears insufficient to guarantee two parallel registers
6278 * will not get the same name.
6279 */
6280
6281 int register_netdevice(struct net_device *dev)
6282 {
6283 int ret;
6284 struct net *net = dev_net(dev);
6285
6286 BUG_ON(dev_boot_phase);
6287 ASSERT_RTNL();
6288
6289 might_sleep();
6290
6291 /* When net_device's are persistent, this will be fatal. */
6292 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6293 BUG_ON(!net);
6294
6295 spin_lock_init(&dev->addr_list_lock);
6296 netdev_set_addr_lockdep_class(dev);
6297
6298 dev->iflink = -1;
6299
6300 ret = dev_get_valid_name(net, dev, dev->name);
6301 if (ret < 0)
6302 goto out;
6303
6304 /* Init, if this function is available */
6305 if (dev->netdev_ops->ndo_init) {
6306 ret = dev->netdev_ops->ndo_init(dev);
6307 if (ret) {
6308 if (ret > 0)
6309 ret = -EIO;
6310 goto out;
6311 }
6312 }
6313
6314 if (((dev->hw_features | dev->features) &
6315 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6316 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6317 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6318 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6319 ret = -EINVAL;
6320 goto err_uninit;
6321 }
6322
6323 ret = -EBUSY;
6324 if (!dev->ifindex)
6325 dev->ifindex = dev_new_index(net);
6326 else if (__dev_get_by_index(net, dev->ifindex))
6327 goto err_uninit;
6328
6329 if (dev->iflink == -1)
6330 dev->iflink = dev->ifindex;
6331
6332 /* Transfer changeable features to wanted_features and enable
6333 * software offloads (GSO and GRO).
6334 */
6335 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6336 dev->features |= NETIF_F_SOFT_FEATURES;
6337 dev->wanted_features = dev->features & dev->hw_features;
6338
6339 if (!(dev->flags & IFF_LOOPBACK)) {
6340 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6341 }
6342
6343 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6344 */
6345 dev->vlan_features |= NETIF_F_HIGHDMA;
6346
6347 /* Make NETIF_F_SG inheritable to tunnel devices.
6348 */
6349 dev->hw_enc_features |= NETIF_F_SG;
6350
6351 /* Make NETIF_F_SG inheritable to MPLS.
6352 */
6353 dev->mpls_features |= NETIF_F_SG;
6354
6355 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6356 ret = notifier_to_errno(ret);
6357 if (ret)
6358 goto err_uninit;
6359
6360 ret = netdev_register_kobject(dev);
6361 if (ret)
6362 goto err_uninit;
6363 dev->reg_state = NETREG_REGISTERED;
6364
6365 __netdev_update_features(dev);
6366
6367 /*
6368 * Default initial state at registry is that the
6369 * device is present.
6370 */
6371
6372 set_bit(__LINK_STATE_PRESENT, &dev->state);
6373
6374 linkwatch_init_dev(dev);
6375
6376 dev_init_scheduler(dev);
6377 dev_hold(dev);
6378 list_netdevice(dev);
6379 add_device_randomness(dev->dev_addr, dev->addr_len);
6380
6381 /* If the device has permanent device address, driver should
6382 * set dev_addr and also addr_assign_type should be set to
6383 * NET_ADDR_PERM (default value).
6384 */
6385 if (dev->addr_assign_type == NET_ADDR_PERM)
6386 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6387
6388 /* Notify protocols, that a new device appeared. */
6389 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6390 ret = notifier_to_errno(ret);
6391 if (ret) {
6392 rollback_registered(dev);
6393 dev->reg_state = NETREG_UNREGISTERED;
6394 }
6395 /*
6396 * Prevent userspace races by waiting until the network
6397 * device is fully setup before sending notifications.
6398 */
6399 if (!dev->rtnl_link_ops ||
6400 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6401 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6402
6403 out:
6404 return ret;
6405
6406 err_uninit:
6407 if (dev->netdev_ops->ndo_uninit)
6408 dev->netdev_ops->ndo_uninit(dev);
6409 goto out;
6410 }
6411 EXPORT_SYMBOL(register_netdevice);
6412
6413 /**
6414 * init_dummy_netdev - init a dummy network device for NAPI
6415 * @dev: device to init
6416 *
6417 * This takes a network device structure and initialize the minimum
6418 * amount of fields so it can be used to schedule NAPI polls without
6419 * registering a full blown interface. This is to be used by drivers
6420 * that need to tie several hardware interfaces to a single NAPI
6421 * poll scheduler due to HW limitations.
6422 */
6423 int init_dummy_netdev(struct net_device *dev)
6424 {
6425 /* Clear everything. Note we don't initialize spinlocks
6426 * are they aren't supposed to be taken by any of the
6427 * NAPI code and this dummy netdev is supposed to be
6428 * only ever used for NAPI polls
6429 */
6430 memset(dev, 0, sizeof(struct net_device));
6431
6432 /* make sure we BUG if trying to hit standard
6433 * register/unregister code path
6434 */
6435 dev->reg_state = NETREG_DUMMY;
6436
6437 /* NAPI wants this */
6438 INIT_LIST_HEAD(&dev->napi_list);
6439
6440 /* a dummy interface is started by default */
6441 set_bit(__LINK_STATE_PRESENT, &dev->state);
6442 set_bit(__LINK_STATE_START, &dev->state);
6443
6444 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6445 * because users of this 'device' dont need to change
6446 * its refcount.
6447 */
6448
6449 return 0;
6450 }
6451 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6452
6453
6454 /**
6455 * register_netdev - register a network device
6456 * @dev: device to register
6457 *
6458 * Take a completed network device structure and add it to the kernel
6459 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6460 * chain. 0 is returned on success. A negative errno code is returned
6461 * on a failure to set up the device, or if the name is a duplicate.
6462 *
6463 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6464 * and expands the device name if you passed a format string to
6465 * alloc_netdev.
6466 */
6467 int register_netdev(struct net_device *dev)
6468 {
6469 int err;
6470
6471 rtnl_lock();
6472 err = register_netdevice(dev);
6473 rtnl_unlock();
6474 return err;
6475 }
6476 EXPORT_SYMBOL(register_netdev);
6477
6478 int netdev_refcnt_read(const struct net_device *dev)
6479 {
6480 int i, refcnt = 0;
6481
6482 for_each_possible_cpu(i)
6483 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6484 return refcnt;
6485 }
6486 EXPORT_SYMBOL(netdev_refcnt_read);
6487
6488 /**
6489 * netdev_wait_allrefs - wait until all references are gone.
6490 * @dev: target net_device
6491 *
6492 * This is called when unregistering network devices.
6493 *
6494 * Any protocol or device that holds a reference should register
6495 * for netdevice notification, and cleanup and put back the
6496 * reference if they receive an UNREGISTER event.
6497 * We can get stuck here if buggy protocols don't correctly
6498 * call dev_put.
6499 */
6500 static void netdev_wait_allrefs(struct net_device *dev)
6501 {
6502 unsigned long rebroadcast_time, warning_time;
6503 int refcnt;
6504
6505 linkwatch_forget_dev(dev);
6506
6507 rebroadcast_time = warning_time = jiffies;
6508 refcnt = netdev_refcnt_read(dev);
6509
6510 while (refcnt != 0) {
6511 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6512 rtnl_lock();
6513
6514 /* Rebroadcast unregister notification */
6515 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6516
6517 __rtnl_unlock();
6518 rcu_barrier();
6519 rtnl_lock();
6520
6521 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6522 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6523 &dev->state)) {
6524 /* We must not have linkwatch events
6525 * pending on unregister. If this
6526 * happens, we simply run the queue
6527 * unscheduled, resulting in a noop
6528 * for this device.
6529 */
6530 linkwatch_run_queue();
6531 }
6532
6533 __rtnl_unlock();
6534
6535 rebroadcast_time = jiffies;
6536 }
6537
6538 msleep(250);
6539
6540 refcnt = netdev_refcnt_read(dev);
6541
6542 if (time_after(jiffies, warning_time + 10 * HZ)) {
6543 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6544 dev->name, refcnt);
6545 warning_time = jiffies;
6546 }
6547 }
6548 }
6549
6550 /* The sequence is:
6551 *
6552 * rtnl_lock();
6553 * ...
6554 * register_netdevice(x1);
6555 * register_netdevice(x2);
6556 * ...
6557 * unregister_netdevice(y1);
6558 * unregister_netdevice(y2);
6559 * ...
6560 * rtnl_unlock();
6561 * free_netdev(y1);
6562 * free_netdev(y2);
6563 *
6564 * We are invoked by rtnl_unlock().
6565 * This allows us to deal with problems:
6566 * 1) We can delete sysfs objects which invoke hotplug
6567 * without deadlocking with linkwatch via keventd.
6568 * 2) Since we run with the RTNL semaphore not held, we can sleep
6569 * safely in order to wait for the netdev refcnt to drop to zero.
6570 *
6571 * We must not return until all unregister events added during
6572 * the interval the lock was held have been completed.
6573 */
6574 void netdev_run_todo(void)
6575 {
6576 struct list_head list;
6577
6578 /* Snapshot list, allow later requests */
6579 list_replace_init(&net_todo_list, &list);
6580
6581 __rtnl_unlock();
6582
6583
6584 /* Wait for rcu callbacks to finish before next phase */
6585 if (!list_empty(&list))
6586 rcu_barrier();
6587
6588 while (!list_empty(&list)) {
6589 struct net_device *dev
6590 = list_first_entry(&list, struct net_device, todo_list);
6591 list_del(&dev->todo_list);
6592
6593 rtnl_lock();
6594 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6595 __rtnl_unlock();
6596
6597 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6598 pr_err("network todo '%s' but state %d\n",
6599 dev->name, dev->reg_state);
6600 dump_stack();
6601 continue;
6602 }
6603
6604 dev->reg_state = NETREG_UNREGISTERED;
6605
6606 on_each_cpu(flush_backlog, dev, 1);
6607
6608 netdev_wait_allrefs(dev);
6609
6610 /* paranoia */
6611 BUG_ON(netdev_refcnt_read(dev));
6612 BUG_ON(!list_empty(&dev->ptype_all));
6613 BUG_ON(!list_empty(&dev->ptype_specific));
6614 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6615 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6616 WARN_ON(dev->dn_ptr);
6617
6618 if (dev->destructor)
6619 dev->destructor(dev);
6620
6621 /* Report a network device has been unregistered */
6622 rtnl_lock();
6623 dev_net(dev)->dev_unreg_count--;
6624 __rtnl_unlock();
6625 wake_up(&netdev_unregistering_wq);
6626
6627 /* Free network device */
6628 kobject_put(&dev->dev.kobj);
6629 }
6630 }
6631
6632 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6633 * fields in the same order, with only the type differing.
6634 */
6635 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6636 const struct net_device_stats *netdev_stats)
6637 {
6638 #if BITS_PER_LONG == 64
6639 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6640 memcpy(stats64, netdev_stats, sizeof(*stats64));
6641 #else
6642 size_t i, n = sizeof(*stats64) / sizeof(u64);
6643 const unsigned long *src = (const unsigned long *)netdev_stats;
6644 u64 *dst = (u64 *)stats64;
6645
6646 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6647 sizeof(*stats64) / sizeof(u64));
6648 for (i = 0; i < n; i++)
6649 dst[i] = src[i];
6650 #endif
6651 }
6652 EXPORT_SYMBOL(netdev_stats_to_stats64);
6653
6654 /**
6655 * dev_get_stats - get network device statistics
6656 * @dev: device to get statistics from
6657 * @storage: place to store stats
6658 *
6659 * Get network statistics from device. Return @storage.
6660 * The device driver may provide its own method by setting
6661 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6662 * otherwise the internal statistics structure is used.
6663 */
6664 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6665 struct rtnl_link_stats64 *storage)
6666 {
6667 const struct net_device_ops *ops = dev->netdev_ops;
6668
6669 if (ops->ndo_get_stats64) {
6670 memset(storage, 0, sizeof(*storage));
6671 ops->ndo_get_stats64(dev, storage);
6672 } else if (ops->ndo_get_stats) {
6673 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6674 } else {
6675 netdev_stats_to_stats64(storage, &dev->stats);
6676 }
6677 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6678 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6679 return storage;
6680 }
6681 EXPORT_SYMBOL(dev_get_stats);
6682
6683 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6684 {
6685 struct netdev_queue *queue = dev_ingress_queue(dev);
6686
6687 #ifdef CONFIG_NET_CLS_ACT
6688 if (queue)
6689 return queue;
6690 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6691 if (!queue)
6692 return NULL;
6693 netdev_init_one_queue(dev, queue, NULL);
6694 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6695 queue->qdisc_sleeping = &noop_qdisc;
6696 rcu_assign_pointer(dev->ingress_queue, queue);
6697 #endif
6698 return queue;
6699 }
6700
6701 static const struct ethtool_ops default_ethtool_ops;
6702
6703 void netdev_set_default_ethtool_ops(struct net_device *dev,
6704 const struct ethtool_ops *ops)
6705 {
6706 if (dev->ethtool_ops == &default_ethtool_ops)
6707 dev->ethtool_ops = ops;
6708 }
6709 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6710
6711 void netdev_freemem(struct net_device *dev)
6712 {
6713 char *addr = (char *)dev - dev->padded;
6714
6715 kvfree(addr);
6716 }
6717
6718 /**
6719 * alloc_netdev_mqs - allocate network device
6720 * @sizeof_priv: size of private data to allocate space for
6721 * @name: device name format string
6722 * @name_assign_type: origin of device name
6723 * @setup: callback to initialize device
6724 * @txqs: the number of TX subqueues to allocate
6725 * @rxqs: the number of RX subqueues to allocate
6726 *
6727 * Allocates a struct net_device with private data area for driver use
6728 * and performs basic initialization. Also allocates subqueue structs
6729 * for each queue on the device.
6730 */
6731 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6732 unsigned char name_assign_type,
6733 void (*setup)(struct net_device *),
6734 unsigned int txqs, unsigned int rxqs)
6735 {
6736 struct net_device *dev;
6737 size_t alloc_size;
6738 struct net_device *p;
6739
6740 BUG_ON(strlen(name) >= sizeof(dev->name));
6741
6742 if (txqs < 1) {
6743 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6744 return NULL;
6745 }
6746
6747 #ifdef CONFIG_SYSFS
6748 if (rxqs < 1) {
6749 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6750 return NULL;
6751 }
6752 #endif
6753
6754 alloc_size = sizeof(struct net_device);
6755 if (sizeof_priv) {
6756 /* ensure 32-byte alignment of private area */
6757 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6758 alloc_size += sizeof_priv;
6759 }
6760 /* ensure 32-byte alignment of whole construct */
6761 alloc_size += NETDEV_ALIGN - 1;
6762
6763 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6764 if (!p)
6765 p = vzalloc(alloc_size);
6766 if (!p)
6767 return NULL;
6768
6769 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6770 dev->padded = (char *)dev - (char *)p;
6771
6772 dev->pcpu_refcnt = alloc_percpu(int);
6773 if (!dev->pcpu_refcnt)
6774 goto free_dev;
6775
6776 if (dev_addr_init(dev))
6777 goto free_pcpu;
6778
6779 dev_mc_init(dev);
6780 dev_uc_init(dev);
6781
6782 dev_net_set(dev, &init_net);
6783
6784 dev->gso_max_size = GSO_MAX_SIZE;
6785 dev->gso_max_segs = GSO_MAX_SEGS;
6786 dev->gso_min_segs = 0;
6787
6788 INIT_LIST_HEAD(&dev->napi_list);
6789 INIT_LIST_HEAD(&dev->unreg_list);
6790 INIT_LIST_HEAD(&dev->close_list);
6791 INIT_LIST_HEAD(&dev->link_watch_list);
6792 INIT_LIST_HEAD(&dev->adj_list.upper);
6793 INIT_LIST_HEAD(&dev->adj_list.lower);
6794 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6795 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6796 INIT_LIST_HEAD(&dev->ptype_all);
6797 INIT_LIST_HEAD(&dev->ptype_specific);
6798 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6799 setup(dev);
6800
6801 dev->num_tx_queues = txqs;
6802 dev->real_num_tx_queues = txqs;
6803 if (netif_alloc_netdev_queues(dev))
6804 goto free_all;
6805
6806 #ifdef CONFIG_SYSFS
6807 dev->num_rx_queues = rxqs;
6808 dev->real_num_rx_queues = rxqs;
6809 if (netif_alloc_rx_queues(dev))
6810 goto free_all;
6811 #endif
6812
6813 strcpy(dev->name, name);
6814 dev->name_assign_type = name_assign_type;
6815 dev->group = INIT_NETDEV_GROUP;
6816 if (!dev->ethtool_ops)
6817 dev->ethtool_ops = &default_ethtool_ops;
6818 return dev;
6819
6820 free_all:
6821 free_netdev(dev);
6822 return NULL;
6823
6824 free_pcpu:
6825 free_percpu(dev->pcpu_refcnt);
6826 free_dev:
6827 netdev_freemem(dev);
6828 return NULL;
6829 }
6830 EXPORT_SYMBOL(alloc_netdev_mqs);
6831
6832 /**
6833 * free_netdev - free network device
6834 * @dev: device
6835 *
6836 * This function does the last stage of destroying an allocated device
6837 * interface. The reference to the device object is released.
6838 * If this is the last reference then it will be freed.
6839 */
6840 void free_netdev(struct net_device *dev)
6841 {
6842 struct napi_struct *p, *n;
6843
6844 release_net(dev_net(dev));
6845
6846 netif_free_tx_queues(dev);
6847 #ifdef CONFIG_SYSFS
6848 kvfree(dev->_rx);
6849 #endif
6850
6851 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6852
6853 /* Flush device addresses */
6854 dev_addr_flush(dev);
6855
6856 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6857 netif_napi_del(p);
6858
6859 free_percpu(dev->pcpu_refcnt);
6860 dev->pcpu_refcnt = NULL;
6861
6862 /* Compatibility with error handling in drivers */
6863 if (dev->reg_state == NETREG_UNINITIALIZED) {
6864 netdev_freemem(dev);
6865 return;
6866 }
6867
6868 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6869 dev->reg_state = NETREG_RELEASED;
6870
6871 /* will free via device release */
6872 put_device(&dev->dev);
6873 }
6874 EXPORT_SYMBOL(free_netdev);
6875
6876 /**
6877 * synchronize_net - Synchronize with packet receive processing
6878 *
6879 * Wait for packets currently being received to be done.
6880 * Does not block later packets from starting.
6881 */
6882 void synchronize_net(void)
6883 {
6884 might_sleep();
6885 if (rtnl_is_locked())
6886 synchronize_rcu_expedited();
6887 else
6888 synchronize_rcu();
6889 }
6890 EXPORT_SYMBOL(synchronize_net);
6891
6892 /**
6893 * unregister_netdevice_queue - remove device from the kernel
6894 * @dev: device
6895 * @head: list
6896 *
6897 * This function shuts down a device interface and removes it
6898 * from the kernel tables.
6899 * If head not NULL, device is queued to be unregistered later.
6900 *
6901 * Callers must hold the rtnl semaphore. You may want
6902 * unregister_netdev() instead of this.
6903 */
6904
6905 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6906 {
6907 ASSERT_RTNL();
6908
6909 if (head) {
6910 list_move_tail(&dev->unreg_list, head);
6911 } else {
6912 rollback_registered(dev);
6913 /* Finish processing unregister after unlock */
6914 net_set_todo(dev);
6915 }
6916 }
6917 EXPORT_SYMBOL(unregister_netdevice_queue);
6918
6919 /**
6920 * unregister_netdevice_many - unregister many devices
6921 * @head: list of devices
6922 *
6923 * Note: As most callers use a stack allocated list_head,
6924 * we force a list_del() to make sure stack wont be corrupted later.
6925 */
6926 void unregister_netdevice_many(struct list_head *head)
6927 {
6928 struct net_device *dev;
6929
6930 if (!list_empty(head)) {
6931 rollback_registered_many(head);
6932 list_for_each_entry(dev, head, unreg_list)
6933 net_set_todo(dev);
6934 list_del(head);
6935 }
6936 }
6937 EXPORT_SYMBOL(unregister_netdevice_many);
6938
6939 /**
6940 * unregister_netdev - remove device from the kernel
6941 * @dev: device
6942 *
6943 * This function shuts down a device interface and removes it
6944 * from the kernel tables.
6945 *
6946 * This is just a wrapper for unregister_netdevice that takes
6947 * the rtnl semaphore. In general you want to use this and not
6948 * unregister_netdevice.
6949 */
6950 void unregister_netdev(struct net_device *dev)
6951 {
6952 rtnl_lock();
6953 unregister_netdevice(dev);
6954 rtnl_unlock();
6955 }
6956 EXPORT_SYMBOL(unregister_netdev);
6957
6958 /**
6959 * dev_change_net_namespace - move device to different nethost namespace
6960 * @dev: device
6961 * @net: network namespace
6962 * @pat: If not NULL name pattern to try if the current device name
6963 * is already taken in the destination network namespace.
6964 *
6965 * This function shuts down a device interface and moves it
6966 * to a new network namespace. On success 0 is returned, on
6967 * a failure a netagive errno code is returned.
6968 *
6969 * Callers must hold the rtnl semaphore.
6970 */
6971
6972 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6973 {
6974 int err;
6975
6976 ASSERT_RTNL();
6977
6978 /* Don't allow namespace local devices to be moved. */
6979 err = -EINVAL;
6980 if (dev->features & NETIF_F_NETNS_LOCAL)
6981 goto out;
6982
6983 /* Ensure the device has been registrered */
6984 if (dev->reg_state != NETREG_REGISTERED)
6985 goto out;
6986
6987 /* Get out if there is nothing todo */
6988 err = 0;
6989 if (net_eq(dev_net(dev), net))
6990 goto out;
6991
6992 /* Pick the destination device name, and ensure
6993 * we can use it in the destination network namespace.
6994 */
6995 err = -EEXIST;
6996 if (__dev_get_by_name(net, dev->name)) {
6997 /* We get here if we can't use the current device name */
6998 if (!pat)
6999 goto out;
7000 if (dev_get_valid_name(net, dev, pat) < 0)
7001 goto out;
7002 }
7003
7004 /*
7005 * And now a mini version of register_netdevice unregister_netdevice.
7006 */
7007
7008 /* If device is running close it first. */
7009 dev_close(dev);
7010
7011 /* And unlink it from device chain */
7012 err = -ENODEV;
7013 unlist_netdevice(dev);
7014
7015 synchronize_net();
7016
7017 /* Shutdown queueing discipline. */
7018 dev_shutdown(dev);
7019
7020 /* Notify protocols, that we are about to destroy
7021 this device. They should clean all the things.
7022
7023 Note that dev->reg_state stays at NETREG_REGISTERED.
7024 This is wanted because this way 8021q and macvlan know
7025 the device is just moving and can keep their slaves up.
7026 */
7027 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7028 rcu_barrier();
7029 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7030 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7031
7032 /*
7033 * Flush the unicast and multicast chains
7034 */
7035 dev_uc_flush(dev);
7036 dev_mc_flush(dev);
7037
7038 /* Send a netdev-removed uevent to the old namespace */
7039 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7040 netdev_adjacent_del_links(dev);
7041
7042 /* Actually switch the network namespace */
7043 dev_net_set(dev, net);
7044
7045 /* If there is an ifindex conflict assign a new one */
7046 if (__dev_get_by_index(net, dev->ifindex)) {
7047 int iflink = (dev->iflink == dev->ifindex);
7048 dev->ifindex = dev_new_index(net);
7049 if (iflink)
7050 dev->iflink = dev->ifindex;
7051 }
7052
7053 /* Send a netdev-add uevent to the new namespace */
7054 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7055 netdev_adjacent_add_links(dev);
7056
7057 /* Fixup kobjects */
7058 err = device_rename(&dev->dev, dev->name);
7059 WARN_ON(err);
7060
7061 /* Add the device back in the hashes */
7062 list_netdevice(dev);
7063
7064 /* Notify protocols, that a new device appeared. */
7065 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7066
7067 /*
7068 * Prevent userspace races by waiting until the network
7069 * device is fully setup before sending notifications.
7070 */
7071 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7072
7073 synchronize_net();
7074 err = 0;
7075 out:
7076 return err;
7077 }
7078 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7079
7080 static int dev_cpu_callback(struct notifier_block *nfb,
7081 unsigned long action,
7082 void *ocpu)
7083 {
7084 struct sk_buff **list_skb;
7085 struct sk_buff *skb;
7086 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7087 struct softnet_data *sd, *oldsd;
7088
7089 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7090 return NOTIFY_OK;
7091
7092 local_irq_disable();
7093 cpu = smp_processor_id();
7094 sd = &per_cpu(softnet_data, cpu);
7095 oldsd = &per_cpu(softnet_data, oldcpu);
7096
7097 /* Find end of our completion_queue. */
7098 list_skb = &sd->completion_queue;
7099 while (*list_skb)
7100 list_skb = &(*list_skb)->next;
7101 /* Append completion queue from offline CPU. */
7102 *list_skb = oldsd->completion_queue;
7103 oldsd->completion_queue = NULL;
7104
7105 /* Append output queue from offline CPU. */
7106 if (oldsd->output_queue) {
7107 *sd->output_queue_tailp = oldsd->output_queue;
7108 sd->output_queue_tailp = oldsd->output_queue_tailp;
7109 oldsd->output_queue = NULL;
7110 oldsd->output_queue_tailp = &oldsd->output_queue;
7111 }
7112 /* Append NAPI poll list from offline CPU, with one exception :
7113 * process_backlog() must be called by cpu owning percpu backlog.
7114 * We properly handle process_queue & input_pkt_queue later.
7115 */
7116 while (!list_empty(&oldsd->poll_list)) {
7117 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7118 struct napi_struct,
7119 poll_list);
7120
7121 list_del_init(&napi->poll_list);
7122 if (napi->poll == process_backlog)
7123 napi->state = 0;
7124 else
7125 ____napi_schedule(sd, napi);
7126 }
7127
7128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7129 local_irq_enable();
7130
7131 /* Process offline CPU's input_pkt_queue */
7132 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7133 netif_rx_ni(skb);
7134 input_queue_head_incr(oldsd);
7135 }
7136 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7137 netif_rx_ni(skb);
7138 input_queue_head_incr(oldsd);
7139 }
7140
7141 return NOTIFY_OK;
7142 }
7143
7144
7145 /**
7146 * netdev_increment_features - increment feature set by one
7147 * @all: current feature set
7148 * @one: new feature set
7149 * @mask: mask feature set
7150 *
7151 * Computes a new feature set after adding a device with feature set
7152 * @one to the master device with current feature set @all. Will not
7153 * enable anything that is off in @mask. Returns the new feature set.
7154 */
7155 netdev_features_t netdev_increment_features(netdev_features_t all,
7156 netdev_features_t one, netdev_features_t mask)
7157 {
7158 if (mask & NETIF_F_GEN_CSUM)
7159 mask |= NETIF_F_ALL_CSUM;
7160 mask |= NETIF_F_VLAN_CHALLENGED;
7161
7162 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7163 all &= one | ~NETIF_F_ALL_FOR_ALL;
7164
7165 /* If one device supports hw checksumming, set for all. */
7166 if (all & NETIF_F_GEN_CSUM)
7167 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7168
7169 return all;
7170 }
7171 EXPORT_SYMBOL(netdev_increment_features);
7172
7173 static struct hlist_head * __net_init netdev_create_hash(void)
7174 {
7175 int i;
7176 struct hlist_head *hash;
7177
7178 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7179 if (hash != NULL)
7180 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7181 INIT_HLIST_HEAD(&hash[i]);
7182
7183 return hash;
7184 }
7185
7186 /* Initialize per network namespace state */
7187 static int __net_init netdev_init(struct net *net)
7188 {
7189 if (net != &init_net)
7190 INIT_LIST_HEAD(&net->dev_base_head);
7191
7192 net->dev_name_head = netdev_create_hash();
7193 if (net->dev_name_head == NULL)
7194 goto err_name;
7195
7196 net->dev_index_head = netdev_create_hash();
7197 if (net->dev_index_head == NULL)
7198 goto err_idx;
7199
7200 return 0;
7201
7202 err_idx:
7203 kfree(net->dev_name_head);
7204 err_name:
7205 return -ENOMEM;
7206 }
7207
7208 /**
7209 * netdev_drivername - network driver for the device
7210 * @dev: network device
7211 *
7212 * Determine network driver for device.
7213 */
7214 const char *netdev_drivername(const struct net_device *dev)
7215 {
7216 const struct device_driver *driver;
7217 const struct device *parent;
7218 const char *empty = "";
7219
7220 parent = dev->dev.parent;
7221 if (!parent)
7222 return empty;
7223
7224 driver = parent->driver;
7225 if (driver && driver->name)
7226 return driver->name;
7227 return empty;
7228 }
7229
7230 static void __netdev_printk(const char *level, const struct net_device *dev,
7231 struct va_format *vaf)
7232 {
7233 if (dev && dev->dev.parent) {
7234 dev_printk_emit(level[1] - '0',
7235 dev->dev.parent,
7236 "%s %s %s%s: %pV",
7237 dev_driver_string(dev->dev.parent),
7238 dev_name(dev->dev.parent),
7239 netdev_name(dev), netdev_reg_state(dev),
7240 vaf);
7241 } else if (dev) {
7242 printk("%s%s%s: %pV",
7243 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7244 } else {
7245 printk("%s(NULL net_device): %pV", level, vaf);
7246 }
7247 }
7248
7249 void netdev_printk(const char *level, const struct net_device *dev,
7250 const char *format, ...)
7251 {
7252 struct va_format vaf;
7253 va_list args;
7254
7255 va_start(args, format);
7256
7257 vaf.fmt = format;
7258 vaf.va = &args;
7259
7260 __netdev_printk(level, dev, &vaf);
7261
7262 va_end(args);
7263 }
7264 EXPORT_SYMBOL(netdev_printk);
7265
7266 #define define_netdev_printk_level(func, level) \
7267 void func(const struct net_device *dev, const char *fmt, ...) \
7268 { \
7269 struct va_format vaf; \
7270 va_list args; \
7271 \
7272 va_start(args, fmt); \
7273 \
7274 vaf.fmt = fmt; \
7275 vaf.va = &args; \
7276 \
7277 __netdev_printk(level, dev, &vaf); \
7278 \
7279 va_end(args); \
7280 } \
7281 EXPORT_SYMBOL(func);
7282
7283 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7284 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7285 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7286 define_netdev_printk_level(netdev_err, KERN_ERR);
7287 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7288 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7289 define_netdev_printk_level(netdev_info, KERN_INFO);
7290
7291 static void __net_exit netdev_exit(struct net *net)
7292 {
7293 kfree(net->dev_name_head);
7294 kfree(net->dev_index_head);
7295 }
7296
7297 static struct pernet_operations __net_initdata netdev_net_ops = {
7298 .init = netdev_init,
7299 .exit = netdev_exit,
7300 };
7301
7302 static void __net_exit default_device_exit(struct net *net)
7303 {
7304 struct net_device *dev, *aux;
7305 /*
7306 * Push all migratable network devices back to the
7307 * initial network namespace
7308 */
7309 rtnl_lock();
7310 for_each_netdev_safe(net, dev, aux) {
7311 int err;
7312 char fb_name[IFNAMSIZ];
7313
7314 /* Ignore unmoveable devices (i.e. loopback) */
7315 if (dev->features & NETIF_F_NETNS_LOCAL)
7316 continue;
7317
7318 /* Leave virtual devices for the generic cleanup */
7319 if (dev->rtnl_link_ops)
7320 continue;
7321
7322 /* Push remaining network devices to init_net */
7323 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7324 err = dev_change_net_namespace(dev, &init_net, fb_name);
7325 if (err) {
7326 pr_emerg("%s: failed to move %s to init_net: %d\n",
7327 __func__, dev->name, err);
7328 BUG();
7329 }
7330 }
7331 rtnl_unlock();
7332 }
7333
7334 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7335 {
7336 /* Return with the rtnl_lock held when there are no network
7337 * devices unregistering in any network namespace in net_list.
7338 */
7339 struct net *net;
7340 bool unregistering;
7341 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7342
7343 add_wait_queue(&netdev_unregistering_wq, &wait);
7344 for (;;) {
7345 unregistering = false;
7346 rtnl_lock();
7347 list_for_each_entry(net, net_list, exit_list) {
7348 if (net->dev_unreg_count > 0) {
7349 unregistering = true;
7350 break;
7351 }
7352 }
7353 if (!unregistering)
7354 break;
7355 __rtnl_unlock();
7356
7357 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7358 }
7359 remove_wait_queue(&netdev_unregistering_wq, &wait);
7360 }
7361
7362 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7363 {
7364 /* At exit all network devices most be removed from a network
7365 * namespace. Do this in the reverse order of registration.
7366 * Do this across as many network namespaces as possible to
7367 * improve batching efficiency.
7368 */
7369 struct net_device *dev;
7370 struct net *net;
7371 LIST_HEAD(dev_kill_list);
7372
7373 /* To prevent network device cleanup code from dereferencing
7374 * loopback devices or network devices that have been freed
7375 * wait here for all pending unregistrations to complete,
7376 * before unregistring the loopback device and allowing the
7377 * network namespace be freed.
7378 *
7379 * The netdev todo list containing all network devices
7380 * unregistrations that happen in default_device_exit_batch
7381 * will run in the rtnl_unlock() at the end of
7382 * default_device_exit_batch.
7383 */
7384 rtnl_lock_unregistering(net_list);
7385 list_for_each_entry(net, net_list, exit_list) {
7386 for_each_netdev_reverse(net, dev) {
7387 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7388 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7389 else
7390 unregister_netdevice_queue(dev, &dev_kill_list);
7391 }
7392 }
7393 unregister_netdevice_many(&dev_kill_list);
7394 rtnl_unlock();
7395 }
7396
7397 static struct pernet_operations __net_initdata default_device_ops = {
7398 .exit = default_device_exit,
7399 .exit_batch = default_device_exit_batch,
7400 };
7401
7402 /*
7403 * Initialize the DEV module. At boot time this walks the device list and
7404 * unhooks any devices that fail to initialise (normally hardware not
7405 * present) and leaves us with a valid list of present and active devices.
7406 *
7407 */
7408
7409 /*
7410 * This is called single threaded during boot, so no need
7411 * to take the rtnl semaphore.
7412 */
7413 static int __init net_dev_init(void)
7414 {
7415 int i, rc = -ENOMEM;
7416
7417 BUG_ON(!dev_boot_phase);
7418
7419 if (dev_proc_init())
7420 goto out;
7421
7422 if (netdev_kobject_init())
7423 goto out;
7424
7425 INIT_LIST_HEAD(&ptype_all);
7426 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7427 INIT_LIST_HEAD(&ptype_base[i]);
7428
7429 INIT_LIST_HEAD(&offload_base);
7430
7431 if (register_pernet_subsys(&netdev_net_ops))
7432 goto out;
7433
7434 /*
7435 * Initialise the packet receive queues.
7436 */
7437
7438 for_each_possible_cpu(i) {
7439 struct softnet_data *sd = &per_cpu(softnet_data, i);
7440
7441 skb_queue_head_init(&sd->input_pkt_queue);
7442 skb_queue_head_init(&sd->process_queue);
7443 INIT_LIST_HEAD(&sd->poll_list);
7444 sd->output_queue_tailp = &sd->output_queue;
7445 #ifdef CONFIG_RPS
7446 sd->csd.func = rps_trigger_softirq;
7447 sd->csd.info = sd;
7448 sd->cpu = i;
7449 #endif
7450
7451 sd->backlog.poll = process_backlog;
7452 sd->backlog.weight = weight_p;
7453 }
7454
7455 dev_boot_phase = 0;
7456
7457 /* The loopback device is special if any other network devices
7458 * is present in a network namespace the loopback device must
7459 * be present. Since we now dynamically allocate and free the
7460 * loopback device ensure this invariant is maintained by
7461 * keeping the loopback device as the first device on the
7462 * list of network devices. Ensuring the loopback devices
7463 * is the first device that appears and the last network device
7464 * that disappears.
7465 */
7466 if (register_pernet_device(&loopback_net_ops))
7467 goto out;
7468
7469 if (register_pernet_device(&default_device_ops))
7470 goto out;
7471
7472 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7473 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7474
7475 hotcpu_notifier(dev_cpu_callback, 0);
7476 dst_init();
7477 rc = 0;
7478 out:
7479 return rc;
7480 }
7481
7482 subsys_initcall(net_dev_init);
This page took 0.195144 seconds and 5 git commands to generate.