ASoC: Add mc13783 codec
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251 }
252
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268 }
269
270 /*
271 * Our notifier list
272 */
273
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275
276 /*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284 #ifdef CONFIG_LOCKDEP
285 /*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341 {
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347 }
348
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367
368 /*******************************************************************************
369
370 Protocol management and registration routines
371
372 *******************************************************************************/
373
374 /*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397
398 /**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411 void dev_add_pack(struct packet_type *pt)
412 {
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420
421 /**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 pr_warn("dev_remove_pack: %p not found\n", pt);
449 out:
450 spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453
454 /**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473
474 /******************************************************************************
475
476 Device Boot-time Settings Routines
477
478 *******************************************************************************/
479
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483 /**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509
510 /**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539 /**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568 }
569
570 /*
571 * Saves at boot time configured settings for any netdevice.
572 */
573 int __init netdev_boot_setup(char *str)
574 {
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595 }
596
597 __setup("netdev=", netdev_boot_setup);
598
599 /*******************************************************************************
600
601 Device Interface Subroutines
602
603 *******************************************************************************/
604
605 /**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630
631 /**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657 /**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681
682 /**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707
708 /**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734 /**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757
758 /**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774 {
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815 /**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828 {
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842 /**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
850 bool dev_valid_name(const char *name)
851 {
852 if (*name == '\0')
853 return false;
854 if (strlen(name) >= IFNAMSIZ)
855 return false;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return false;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return false;
862 name++;
863 }
864 return true;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867
868 /**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932 }
933
934 /**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981 }
982
983 /**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014 rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 pr_err("%s: name change rollback failed: %d\n",
1042 dev->name, ret);
1043 }
1044 }
1045
1046 return err;
1047 }
1048
1049 /**
1050 * dev_set_alias - change ifalias of a device
1051 * @dev: device
1052 * @alias: name up to IFALIASZ
1053 * @len: limit of bytes to copy from info
1054 *
1055 * Set ifalias for a device,
1056 */
1057 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1058 {
1059 ASSERT_RTNL();
1060
1061 if (len >= IFALIASZ)
1062 return -EINVAL;
1063
1064 if (!len) {
1065 if (dev->ifalias) {
1066 kfree(dev->ifalias);
1067 dev->ifalias = NULL;
1068 }
1069 return 0;
1070 }
1071
1072 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1073 if (!dev->ifalias)
1074 return -ENOMEM;
1075
1076 strlcpy(dev->ifalias, alias, len+1);
1077 return len;
1078 }
1079
1080
1081 /**
1082 * netdev_features_change - device changes features
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed features.
1086 */
1087 void netdev_features_change(struct net_device *dev)
1088 {
1089 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_features_change);
1092
1093 /**
1094 * netdev_state_change - device changes state
1095 * @dev: device to cause notification
1096 *
1097 * Called to indicate a device has changed state. This function calls
1098 * the notifier chains for netdev_chain and sends a NEWLINK message
1099 * to the routing socket.
1100 */
1101 void netdev_state_change(struct net_device *dev)
1102 {
1103 if (dev->flags & IFF_UP) {
1104 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1105 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1106 }
1107 }
1108 EXPORT_SYMBOL(netdev_state_change);
1109
1110 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1111 {
1112 return call_netdevice_notifiers(event, dev);
1113 }
1114 EXPORT_SYMBOL(netdev_bonding_change);
1115
1116 /**
1117 * dev_load - load a network module
1118 * @net: the applicable net namespace
1119 * @name: name of interface
1120 *
1121 * If a network interface is not present and the process has suitable
1122 * privileges this function loads the module. If module loading is not
1123 * available in this kernel then it becomes a nop.
1124 */
1125
1126 void dev_load(struct net *net, const char *name)
1127 {
1128 struct net_device *dev;
1129 int no_module;
1130
1131 rcu_read_lock();
1132 dev = dev_get_by_name_rcu(net, name);
1133 rcu_read_unlock();
1134
1135 no_module = !dev;
1136 if (no_module && capable(CAP_NET_ADMIN))
1137 no_module = request_module("netdev-%s", name);
1138 if (no_module && capable(CAP_SYS_MODULE)) {
1139 if (!request_module("%s", name))
1140 pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1141 name);
1142 }
1143 }
1144 EXPORT_SYMBOL(dev_load);
1145
1146 static int __dev_open(struct net_device *dev)
1147 {
1148 const struct net_device_ops *ops = dev->netdev_ops;
1149 int ret;
1150
1151 ASSERT_RTNL();
1152
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1155
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1160
1161 set_bit(__LINK_STATE_START, &dev->state);
1162
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1165
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1175 dev_activate(dev);
1176 }
1177
1178 return ret;
1179 }
1180
1181 /**
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1184 *
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1189 *
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1192 */
1193 int dev_open(struct net_device *dev)
1194 {
1195 int ret;
1196
1197 if (dev->flags & IFF_UP)
1198 return 0;
1199
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1203
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 struct net_device *dev;
1214
1215 ASSERT_RTNL();
1216 might_sleep();
1217
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1225 *
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1228 */
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 }
1231
1232 dev_deactivate_many(head);
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 /*
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1240 *
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1243 */
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1246
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 int retval;
1257 LIST_HEAD(single);
1258
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1263 }
1264
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1269
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1273
1274 __dev_close_many(head);
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 }
1280
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1284 }
1285
1286 /**
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1289 *
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1294 */
1295 int dev_close(struct net_device *dev)
1296 {
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1299
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1303 }
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 /*
1320 * If we're trying to disable lro on a vlan device
1321 * use the underlying physical device instead
1322 */
1323 if (is_vlan_dev(dev))
1324 dev = vlan_dev_real_dev(dev);
1325
1326 dev->wanted_features &= ~NETIF_F_LRO;
1327 netdev_update_features(dev);
1328
1329 if (unlikely(dev->features & NETIF_F_LRO))
1330 netdev_WARN(dev, "failed to disable LRO!\n");
1331 }
1332 EXPORT_SYMBOL(dev_disable_lro);
1333
1334
1335 static int dev_boot_phase = 1;
1336
1337 /**
1338 * register_netdevice_notifier - register a network notifier block
1339 * @nb: notifier
1340 *
1341 * Register a notifier to be called when network device events occur.
1342 * The notifier passed is linked into the kernel structures and must
1343 * not be reused until it has been unregistered. A negative errno code
1344 * is returned on a failure.
1345 *
1346 * When registered all registration and up events are replayed
1347 * to the new notifier to allow device to have a race free
1348 * view of the network device list.
1349 */
1350
1351 int register_netdevice_notifier(struct notifier_block *nb)
1352 {
1353 struct net_device *dev;
1354 struct net_device *last;
1355 struct net *net;
1356 int err;
1357
1358 rtnl_lock();
1359 err = raw_notifier_chain_register(&netdev_chain, nb);
1360 if (err)
1361 goto unlock;
1362 if (dev_boot_phase)
1363 goto unlock;
1364 for_each_net(net) {
1365 for_each_netdev(net, dev) {
1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1367 err = notifier_to_errno(err);
1368 if (err)
1369 goto rollback;
1370
1371 if (!(dev->flags & IFF_UP))
1372 continue;
1373
1374 nb->notifier_call(nb, NETDEV_UP, dev);
1375 }
1376 }
1377
1378 unlock:
1379 rtnl_unlock();
1380 return err;
1381
1382 rollback:
1383 last = dev;
1384 for_each_net(net) {
1385 for_each_netdev(net, dev) {
1386 if (dev == last)
1387 goto outroll;
1388
1389 if (dev->flags & IFF_UP) {
1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1391 nb->notifier_call(nb, NETDEV_DOWN, dev);
1392 }
1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1395 }
1396 }
1397
1398 outroll:
1399 raw_notifier_chain_unregister(&netdev_chain, nb);
1400 goto unlock;
1401 }
1402 EXPORT_SYMBOL(register_netdevice_notifier);
1403
1404 /**
1405 * unregister_netdevice_notifier - unregister a network notifier block
1406 * @nb: notifier
1407 *
1408 * Unregister a notifier previously registered by
1409 * register_netdevice_notifier(). The notifier is unlinked into the
1410 * kernel structures and may then be reused. A negative errno code
1411 * is returned on a failure.
1412 *
1413 * After unregistering unregister and down device events are synthesized
1414 * for all devices on the device list to the removed notifier to remove
1415 * the need for special case cleanup code.
1416 */
1417
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 struct net_device *dev;
1421 struct net *net;
1422 int err;
1423
1424 rtnl_lock();
1425 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1426 if (err)
1427 goto unlock;
1428
1429 for_each_net(net) {
1430 for_each_netdev(net, dev) {
1431 if (dev->flags & IFF_UP) {
1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 }
1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 }
1438 }
1439 unlock:
1440 rtnl_unlock();
1441 return err;
1442 }
1443 EXPORT_SYMBOL(unregister_netdevice_notifier);
1444
1445 /**
1446 * call_netdevice_notifiers - call all network notifier blocks
1447 * @val: value passed unmodified to notifier function
1448 * @dev: net_device pointer passed unmodified to notifier function
1449 *
1450 * Call all network notifier blocks. Parameters and return value
1451 * are as for raw_notifier_call_chain().
1452 */
1453
1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1455 {
1456 ASSERT_RTNL();
1457 return raw_notifier_call_chain(&netdev_chain, val, dev);
1458 }
1459 EXPORT_SYMBOL(call_netdevice_notifiers);
1460
1461 static struct static_key netstamp_needed __read_mostly;
1462 #ifdef HAVE_JUMP_LABEL
1463 /* We are not allowed to call static_key_slow_dec() from irq context
1464 * If net_disable_timestamp() is called from irq context, defer the
1465 * static_key_slow_dec() calls.
1466 */
1467 static atomic_t netstamp_needed_deferred;
1468 #endif
1469
1470 void net_enable_timestamp(void)
1471 {
1472 #ifdef HAVE_JUMP_LABEL
1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1474
1475 if (deferred) {
1476 while (--deferred)
1477 static_key_slow_dec(&netstamp_needed);
1478 return;
1479 }
1480 #endif
1481 WARN_ON(in_interrupt());
1482 static_key_slow_inc(&netstamp_needed);
1483 }
1484 EXPORT_SYMBOL(net_enable_timestamp);
1485
1486 void net_disable_timestamp(void)
1487 {
1488 #ifdef HAVE_JUMP_LABEL
1489 if (in_interrupt()) {
1490 atomic_inc(&netstamp_needed_deferred);
1491 return;
1492 }
1493 #endif
1494 static_key_slow_dec(&netstamp_needed);
1495 }
1496 EXPORT_SYMBOL(net_disable_timestamp);
1497
1498 static inline void net_timestamp_set(struct sk_buff *skb)
1499 {
1500 skb->tstamp.tv64 = 0;
1501 if (static_key_false(&netstamp_needed))
1502 __net_timestamp(skb);
1503 }
1504
1505 #define net_timestamp_check(COND, SKB) \
1506 if (static_key_false(&netstamp_needed)) { \
1507 if ((COND) && !(SKB)->tstamp.tv64) \
1508 __net_timestamp(SKB); \
1509 } \
1510
1511 static int net_hwtstamp_validate(struct ifreq *ifr)
1512 {
1513 struct hwtstamp_config cfg;
1514 enum hwtstamp_tx_types tx_type;
1515 enum hwtstamp_rx_filters rx_filter;
1516 int tx_type_valid = 0;
1517 int rx_filter_valid = 0;
1518
1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1520 return -EFAULT;
1521
1522 if (cfg.flags) /* reserved for future extensions */
1523 return -EINVAL;
1524
1525 tx_type = cfg.tx_type;
1526 rx_filter = cfg.rx_filter;
1527
1528 switch (tx_type) {
1529 case HWTSTAMP_TX_OFF:
1530 case HWTSTAMP_TX_ON:
1531 case HWTSTAMP_TX_ONESTEP_SYNC:
1532 tx_type_valid = 1;
1533 break;
1534 }
1535
1536 switch (rx_filter) {
1537 case HWTSTAMP_FILTER_NONE:
1538 case HWTSTAMP_FILTER_ALL:
1539 case HWTSTAMP_FILTER_SOME:
1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1549 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1550 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1552 rx_filter_valid = 1;
1553 break;
1554 }
1555
1556 if (!tx_type_valid || !rx_filter_valid)
1557 return -ERANGE;
1558
1559 return 0;
1560 }
1561
1562 static inline bool is_skb_forwardable(struct net_device *dev,
1563 struct sk_buff *skb)
1564 {
1565 unsigned int len;
1566
1567 if (!(dev->flags & IFF_UP))
1568 return false;
1569
1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1571 if (skb->len <= len)
1572 return true;
1573
1574 /* if TSO is enabled, we don't care about the length as the packet
1575 * could be forwarded without being segmented before
1576 */
1577 if (skb_is_gso(skb))
1578 return true;
1579
1580 return false;
1581 }
1582
1583 /**
1584 * dev_forward_skb - loopback an skb to another netif
1585 *
1586 * @dev: destination network device
1587 * @skb: buffer to forward
1588 *
1589 * return values:
1590 * NET_RX_SUCCESS (no congestion)
1591 * NET_RX_DROP (packet was dropped, but freed)
1592 *
1593 * dev_forward_skb can be used for injecting an skb from the
1594 * start_xmit function of one device into the receive queue
1595 * of another device.
1596 *
1597 * The receiving device may be in another namespace, so
1598 * we have to clear all information in the skb that could
1599 * impact namespace isolation.
1600 */
1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1602 {
1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1605 atomic_long_inc(&dev->rx_dropped);
1606 kfree_skb(skb);
1607 return NET_RX_DROP;
1608 }
1609 }
1610
1611 skb_orphan(skb);
1612 nf_reset(skb);
1613
1614 if (unlikely(!is_skb_forwardable(dev, skb))) {
1615 atomic_long_inc(&dev->rx_dropped);
1616 kfree_skb(skb);
1617 return NET_RX_DROP;
1618 }
1619 skb->skb_iif = 0;
1620 skb->dev = dev;
1621 skb_dst_drop(skb);
1622 skb->tstamp.tv64 = 0;
1623 skb->pkt_type = PACKET_HOST;
1624 skb->protocol = eth_type_trans(skb, dev);
1625 skb->mark = 0;
1626 secpath_reset(skb);
1627 nf_reset(skb);
1628 return netif_rx(skb);
1629 }
1630 EXPORT_SYMBOL_GPL(dev_forward_skb);
1631
1632 static inline int deliver_skb(struct sk_buff *skb,
1633 struct packet_type *pt_prev,
1634 struct net_device *orig_dev)
1635 {
1636 atomic_inc(&skb->users);
1637 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1638 }
1639
1640 /*
1641 * Support routine. Sends outgoing frames to any network
1642 * taps currently in use.
1643 */
1644
1645 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1646 {
1647 struct packet_type *ptype;
1648 struct sk_buff *skb2 = NULL;
1649 struct packet_type *pt_prev = NULL;
1650
1651 rcu_read_lock();
1652 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1653 /* Never send packets back to the socket
1654 * they originated from - MvS (miquels@drinkel.ow.org)
1655 */
1656 if ((ptype->dev == dev || !ptype->dev) &&
1657 (ptype->af_packet_priv == NULL ||
1658 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1659 if (pt_prev) {
1660 deliver_skb(skb2, pt_prev, skb->dev);
1661 pt_prev = ptype;
1662 continue;
1663 }
1664
1665 skb2 = skb_clone(skb, GFP_ATOMIC);
1666 if (!skb2)
1667 break;
1668
1669 net_timestamp_set(skb2);
1670
1671 /* skb->nh should be correctly
1672 set by sender, so that the second statement is
1673 just protection against buggy protocols.
1674 */
1675 skb_reset_mac_header(skb2);
1676
1677 if (skb_network_header(skb2) < skb2->data ||
1678 skb2->network_header > skb2->tail) {
1679 if (net_ratelimit())
1680 pr_crit("protocol %04x is buggy, dev %s\n",
1681 ntohs(skb2->protocol),
1682 dev->name);
1683 skb_reset_network_header(skb2);
1684 }
1685
1686 skb2->transport_header = skb2->network_header;
1687 skb2->pkt_type = PACKET_OUTGOING;
1688 pt_prev = ptype;
1689 }
1690 }
1691 if (pt_prev)
1692 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1693 rcu_read_unlock();
1694 }
1695
1696 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1697 * @dev: Network device
1698 * @txq: number of queues available
1699 *
1700 * If real_num_tx_queues is changed the tc mappings may no longer be
1701 * valid. To resolve this verify the tc mapping remains valid and if
1702 * not NULL the mapping. With no priorities mapping to this
1703 * offset/count pair it will no longer be used. In the worst case TC0
1704 * is invalid nothing can be done so disable priority mappings. If is
1705 * expected that drivers will fix this mapping if they can before
1706 * calling netif_set_real_num_tx_queues.
1707 */
1708 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1709 {
1710 int i;
1711 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1712
1713 /* If TC0 is invalidated disable TC mapping */
1714 if (tc->offset + tc->count > txq) {
1715 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1716 dev->num_tc = 0;
1717 return;
1718 }
1719
1720 /* Invalidated prio to tc mappings set to TC0 */
1721 for (i = 1; i < TC_BITMASK + 1; i++) {
1722 int q = netdev_get_prio_tc_map(dev, i);
1723
1724 tc = &dev->tc_to_txq[q];
1725 if (tc->offset + tc->count > txq) {
1726 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1727 i, q);
1728 netdev_set_prio_tc_map(dev, i, 0);
1729 }
1730 }
1731 }
1732
1733 /*
1734 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1735 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1736 */
1737 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1738 {
1739 int rc;
1740
1741 if (txq < 1 || txq > dev->num_tx_queues)
1742 return -EINVAL;
1743
1744 if (dev->reg_state == NETREG_REGISTERED ||
1745 dev->reg_state == NETREG_UNREGISTERING) {
1746 ASSERT_RTNL();
1747
1748 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1749 txq);
1750 if (rc)
1751 return rc;
1752
1753 if (dev->num_tc)
1754 netif_setup_tc(dev, txq);
1755
1756 if (txq < dev->real_num_tx_queues)
1757 qdisc_reset_all_tx_gt(dev, txq);
1758 }
1759
1760 dev->real_num_tx_queues = txq;
1761 return 0;
1762 }
1763 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1764
1765 #ifdef CONFIG_RPS
1766 /**
1767 * netif_set_real_num_rx_queues - set actual number of RX queues used
1768 * @dev: Network device
1769 * @rxq: Actual number of RX queues
1770 *
1771 * This must be called either with the rtnl_lock held or before
1772 * registration of the net device. Returns 0 on success, or a
1773 * negative error code. If called before registration, it always
1774 * succeeds.
1775 */
1776 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1777 {
1778 int rc;
1779
1780 if (rxq < 1 || rxq > dev->num_rx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED) {
1784 ASSERT_RTNL();
1785
1786 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1787 rxq);
1788 if (rc)
1789 return rc;
1790 }
1791
1792 dev->real_num_rx_queues = rxq;
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1796 #endif
1797
1798 static inline void __netif_reschedule(struct Qdisc *q)
1799 {
1800 struct softnet_data *sd;
1801 unsigned long flags;
1802
1803 local_irq_save(flags);
1804 sd = &__get_cpu_var(softnet_data);
1805 q->next_sched = NULL;
1806 *sd->output_queue_tailp = q;
1807 sd->output_queue_tailp = &q->next_sched;
1808 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1809 local_irq_restore(flags);
1810 }
1811
1812 void __netif_schedule(struct Qdisc *q)
1813 {
1814 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1815 __netif_reschedule(q);
1816 }
1817 EXPORT_SYMBOL(__netif_schedule);
1818
1819 void dev_kfree_skb_irq(struct sk_buff *skb)
1820 {
1821 if (atomic_dec_and_test(&skb->users)) {
1822 struct softnet_data *sd;
1823 unsigned long flags;
1824
1825 local_irq_save(flags);
1826 sd = &__get_cpu_var(softnet_data);
1827 skb->next = sd->completion_queue;
1828 sd->completion_queue = skb;
1829 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1830 local_irq_restore(flags);
1831 }
1832 }
1833 EXPORT_SYMBOL(dev_kfree_skb_irq);
1834
1835 void dev_kfree_skb_any(struct sk_buff *skb)
1836 {
1837 if (in_irq() || irqs_disabled())
1838 dev_kfree_skb_irq(skb);
1839 else
1840 dev_kfree_skb(skb);
1841 }
1842 EXPORT_SYMBOL(dev_kfree_skb_any);
1843
1844
1845 /**
1846 * netif_device_detach - mark device as removed
1847 * @dev: network device
1848 *
1849 * Mark device as removed from system and therefore no longer available.
1850 */
1851 void netif_device_detach(struct net_device *dev)
1852 {
1853 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1854 netif_running(dev)) {
1855 netif_tx_stop_all_queues(dev);
1856 }
1857 }
1858 EXPORT_SYMBOL(netif_device_detach);
1859
1860 /**
1861 * netif_device_attach - mark device as attached
1862 * @dev: network device
1863 *
1864 * Mark device as attached from system and restart if needed.
1865 */
1866 void netif_device_attach(struct net_device *dev)
1867 {
1868 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1869 netif_running(dev)) {
1870 netif_tx_wake_all_queues(dev);
1871 __netdev_watchdog_up(dev);
1872 }
1873 }
1874 EXPORT_SYMBOL(netif_device_attach);
1875
1876 static void skb_warn_bad_offload(const struct sk_buff *skb)
1877 {
1878 static const netdev_features_t null_features = 0;
1879 struct net_device *dev = skb->dev;
1880 const char *driver = "";
1881
1882 if (dev && dev->dev.parent)
1883 driver = dev_driver_string(dev->dev.parent);
1884
1885 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1886 "gso_type=%d ip_summed=%d\n",
1887 driver, dev ? &dev->features : &null_features,
1888 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1889 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1890 skb_shinfo(skb)->gso_type, skb->ip_summed);
1891 }
1892
1893 /*
1894 * Invalidate hardware checksum when packet is to be mangled, and
1895 * complete checksum manually on outgoing path.
1896 */
1897 int skb_checksum_help(struct sk_buff *skb)
1898 {
1899 __wsum csum;
1900 int ret = 0, offset;
1901
1902 if (skb->ip_summed == CHECKSUM_COMPLETE)
1903 goto out_set_summed;
1904
1905 if (unlikely(skb_shinfo(skb)->gso_size)) {
1906 skb_warn_bad_offload(skb);
1907 return -EINVAL;
1908 }
1909
1910 offset = skb_checksum_start_offset(skb);
1911 BUG_ON(offset >= skb_headlen(skb));
1912 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1913
1914 offset += skb->csum_offset;
1915 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1916
1917 if (skb_cloned(skb) &&
1918 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1919 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1920 if (ret)
1921 goto out;
1922 }
1923
1924 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1925 out_set_summed:
1926 skb->ip_summed = CHECKSUM_NONE;
1927 out:
1928 return ret;
1929 }
1930 EXPORT_SYMBOL(skb_checksum_help);
1931
1932 /**
1933 * skb_gso_segment - Perform segmentation on skb.
1934 * @skb: buffer to segment
1935 * @features: features for the output path (see dev->features)
1936 *
1937 * This function segments the given skb and returns a list of segments.
1938 *
1939 * It may return NULL if the skb requires no segmentation. This is
1940 * only possible when GSO is used for verifying header integrity.
1941 */
1942 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1943 netdev_features_t features)
1944 {
1945 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1946 struct packet_type *ptype;
1947 __be16 type = skb->protocol;
1948 int vlan_depth = ETH_HLEN;
1949 int err;
1950
1951 while (type == htons(ETH_P_8021Q)) {
1952 struct vlan_hdr *vh;
1953
1954 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1955 return ERR_PTR(-EINVAL);
1956
1957 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1958 type = vh->h_vlan_encapsulated_proto;
1959 vlan_depth += VLAN_HLEN;
1960 }
1961
1962 skb_reset_mac_header(skb);
1963 skb->mac_len = skb->network_header - skb->mac_header;
1964 __skb_pull(skb, skb->mac_len);
1965
1966 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1967 skb_warn_bad_offload(skb);
1968
1969 if (skb_header_cloned(skb) &&
1970 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1971 return ERR_PTR(err);
1972 }
1973
1974 rcu_read_lock();
1975 list_for_each_entry_rcu(ptype,
1976 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1977 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1978 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1979 err = ptype->gso_send_check(skb);
1980 segs = ERR_PTR(err);
1981 if (err || skb_gso_ok(skb, features))
1982 break;
1983 __skb_push(skb, (skb->data -
1984 skb_network_header(skb)));
1985 }
1986 segs = ptype->gso_segment(skb, features);
1987 break;
1988 }
1989 }
1990 rcu_read_unlock();
1991
1992 __skb_push(skb, skb->data - skb_mac_header(skb));
1993
1994 return segs;
1995 }
1996 EXPORT_SYMBOL(skb_gso_segment);
1997
1998 /* Take action when hardware reception checksum errors are detected. */
1999 #ifdef CONFIG_BUG
2000 void netdev_rx_csum_fault(struct net_device *dev)
2001 {
2002 if (net_ratelimit()) {
2003 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2004 dump_stack();
2005 }
2006 }
2007 EXPORT_SYMBOL(netdev_rx_csum_fault);
2008 #endif
2009
2010 /* Actually, we should eliminate this check as soon as we know, that:
2011 * 1. IOMMU is present and allows to map all the memory.
2012 * 2. No high memory really exists on this machine.
2013 */
2014
2015 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2016 {
2017 #ifdef CONFIG_HIGHMEM
2018 int i;
2019 if (!(dev->features & NETIF_F_HIGHDMA)) {
2020 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2021 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2022 if (PageHighMem(skb_frag_page(frag)))
2023 return 1;
2024 }
2025 }
2026
2027 if (PCI_DMA_BUS_IS_PHYS) {
2028 struct device *pdev = dev->dev.parent;
2029
2030 if (!pdev)
2031 return 0;
2032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2033 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2034 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2035 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2036 return 1;
2037 }
2038 }
2039 #endif
2040 return 0;
2041 }
2042
2043 struct dev_gso_cb {
2044 void (*destructor)(struct sk_buff *skb);
2045 };
2046
2047 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2048
2049 static void dev_gso_skb_destructor(struct sk_buff *skb)
2050 {
2051 struct dev_gso_cb *cb;
2052
2053 do {
2054 struct sk_buff *nskb = skb->next;
2055
2056 skb->next = nskb->next;
2057 nskb->next = NULL;
2058 kfree_skb(nskb);
2059 } while (skb->next);
2060
2061 cb = DEV_GSO_CB(skb);
2062 if (cb->destructor)
2063 cb->destructor(skb);
2064 }
2065
2066 /**
2067 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2068 * @skb: buffer to segment
2069 * @features: device features as applicable to this skb
2070 *
2071 * This function segments the given skb and stores the list of segments
2072 * in skb->next.
2073 */
2074 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2075 {
2076 struct sk_buff *segs;
2077
2078 segs = skb_gso_segment(skb, features);
2079
2080 /* Verifying header integrity only. */
2081 if (!segs)
2082 return 0;
2083
2084 if (IS_ERR(segs))
2085 return PTR_ERR(segs);
2086
2087 skb->next = segs;
2088 DEV_GSO_CB(skb)->destructor = skb->destructor;
2089 skb->destructor = dev_gso_skb_destructor;
2090
2091 return 0;
2092 }
2093
2094 /*
2095 * Try to orphan skb early, right before transmission by the device.
2096 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2097 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2098 */
2099 static inline void skb_orphan_try(struct sk_buff *skb)
2100 {
2101 struct sock *sk = skb->sk;
2102
2103 if (sk && !skb_shinfo(skb)->tx_flags) {
2104 /* skb_tx_hash() wont be able to get sk.
2105 * We copy sk_hash into skb->rxhash
2106 */
2107 if (!skb->rxhash)
2108 skb->rxhash = sk->sk_hash;
2109 skb_orphan(skb);
2110 }
2111 }
2112
2113 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2114 {
2115 return ((features & NETIF_F_GEN_CSUM) ||
2116 ((features & NETIF_F_V4_CSUM) &&
2117 protocol == htons(ETH_P_IP)) ||
2118 ((features & NETIF_F_V6_CSUM) &&
2119 protocol == htons(ETH_P_IPV6)) ||
2120 ((features & NETIF_F_FCOE_CRC) &&
2121 protocol == htons(ETH_P_FCOE)));
2122 }
2123
2124 static netdev_features_t harmonize_features(struct sk_buff *skb,
2125 __be16 protocol, netdev_features_t features)
2126 {
2127 if (!can_checksum_protocol(features, protocol)) {
2128 features &= ~NETIF_F_ALL_CSUM;
2129 features &= ~NETIF_F_SG;
2130 } else if (illegal_highdma(skb->dev, skb)) {
2131 features &= ~NETIF_F_SG;
2132 }
2133
2134 return features;
2135 }
2136
2137 netdev_features_t netif_skb_features(struct sk_buff *skb)
2138 {
2139 __be16 protocol = skb->protocol;
2140 netdev_features_t features = skb->dev->features;
2141
2142 if (protocol == htons(ETH_P_8021Q)) {
2143 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2144 protocol = veh->h_vlan_encapsulated_proto;
2145 } else if (!vlan_tx_tag_present(skb)) {
2146 return harmonize_features(skb, protocol, features);
2147 }
2148
2149 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2150
2151 if (protocol != htons(ETH_P_8021Q)) {
2152 return harmonize_features(skb, protocol, features);
2153 } else {
2154 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2155 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2156 return harmonize_features(skb, protocol, features);
2157 }
2158 }
2159 EXPORT_SYMBOL(netif_skb_features);
2160
2161 /*
2162 * Returns true if either:
2163 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2164 * 2. skb is fragmented and the device does not support SG, or if
2165 * at least one of fragments is in highmem and device does not
2166 * support DMA from it.
2167 */
2168 static inline int skb_needs_linearize(struct sk_buff *skb,
2169 int features)
2170 {
2171 return skb_is_nonlinear(skb) &&
2172 ((skb_has_frag_list(skb) &&
2173 !(features & NETIF_F_FRAGLIST)) ||
2174 (skb_shinfo(skb)->nr_frags &&
2175 !(features & NETIF_F_SG)));
2176 }
2177
2178 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2179 struct netdev_queue *txq)
2180 {
2181 const struct net_device_ops *ops = dev->netdev_ops;
2182 int rc = NETDEV_TX_OK;
2183 unsigned int skb_len;
2184
2185 if (likely(!skb->next)) {
2186 netdev_features_t features;
2187
2188 /*
2189 * If device doesn't need skb->dst, release it right now while
2190 * its hot in this cpu cache
2191 */
2192 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2193 skb_dst_drop(skb);
2194
2195 if (!list_empty(&ptype_all))
2196 dev_queue_xmit_nit(skb, dev);
2197
2198 skb_orphan_try(skb);
2199
2200 features = netif_skb_features(skb);
2201
2202 if (vlan_tx_tag_present(skb) &&
2203 !(features & NETIF_F_HW_VLAN_TX)) {
2204 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2205 if (unlikely(!skb))
2206 goto out;
2207
2208 skb->vlan_tci = 0;
2209 }
2210
2211 if (netif_needs_gso(skb, features)) {
2212 if (unlikely(dev_gso_segment(skb, features)))
2213 goto out_kfree_skb;
2214 if (skb->next)
2215 goto gso;
2216 } else {
2217 if (skb_needs_linearize(skb, features) &&
2218 __skb_linearize(skb))
2219 goto out_kfree_skb;
2220
2221 /* If packet is not checksummed and device does not
2222 * support checksumming for this protocol, complete
2223 * checksumming here.
2224 */
2225 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2226 skb_set_transport_header(skb,
2227 skb_checksum_start_offset(skb));
2228 if (!(features & NETIF_F_ALL_CSUM) &&
2229 skb_checksum_help(skb))
2230 goto out_kfree_skb;
2231 }
2232 }
2233
2234 skb_len = skb->len;
2235 rc = ops->ndo_start_xmit(skb, dev);
2236 trace_net_dev_xmit(skb, rc, dev, skb_len);
2237 if (rc == NETDEV_TX_OK)
2238 txq_trans_update(txq);
2239 return rc;
2240 }
2241
2242 gso:
2243 do {
2244 struct sk_buff *nskb = skb->next;
2245
2246 skb->next = nskb->next;
2247 nskb->next = NULL;
2248
2249 /*
2250 * If device doesn't need nskb->dst, release it right now while
2251 * its hot in this cpu cache
2252 */
2253 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2254 skb_dst_drop(nskb);
2255
2256 skb_len = nskb->len;
2257 rc = ops->ndo_start_xmit(nskb, dev);
2258 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2259 if (unlikely(rc != NETDEV_TX_OK)) {
2260 if (rc & ~NETDEV_TX_MASK)
2261 goto out_kfree_gso_skb;
2262 nskb->next = skb->next;
2263 skb->next = nskb;
2264 return rc;
2265 }
2266 txq_trans_update(txq);
2267 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2268 return NETDEV_TX_BUSY;
2269 } while (skb->next);
2270
2271 out_kfree_gso_skb:
2272 if (likely(skb->next == NULL))
2273 skb->destructor = DEV_GSO_CB(skb)->destructor;
2274 out_kfree_skb:
2275 kfree_skb(skb);
2276 out:
2277 return rc;
2278 }
2279
2280 static u32 hashrnd __read_mostly;
2281
2282 /*
2283 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2284 * to be used as a distribution range.
2285 */
2286 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2287 unsigned int num_tx_queues)
2288 {
2289 u32 hash;
2290 u16 qoffset = 0;
2291 u16 qcount = num_tx_queues;
2292
2293 if (skb_rx_queue_recorded(skb)) {
2294 hash = skb_get_rx_queue(skb);
2295 while (unlikely(hash >= num_tx_queues))
2296 hash -= num_tx_queues;
2297 return hash;
2298 }
2299
2300 if (dev->num_tc) {
2301 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2302 qoffset = dev->tc_to_txq[tc].offset;
2303 qcount = dev->tc_to_txq[tc].count;
2304 }
2305
2306 if (skb->sk && skb->sk->sk_hash)
2307 hash = skb->sk->sk_hash;
2308 else
2309 hash = (__force u16) skb->protocol ^ skb->rxhash;
2310 hash = jhash_1word(hash, hashrnd);
2311
2312 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2313 }
2314 EXPORT_SYMBOL(__skb_tx_hash);
2315
2316 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2317 {
2318 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2319 if (net_ratelimit()) {
2320 pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2321 dev->name, queue_index,
2322 dev->real_num_tx_queues);
2323 }
2324 return 0;
2325 }
2326 return queue_index;
2327 }
2328
2329 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2330 {
2331 #ifdef CONFIG_XPS
2332 struct xps_dev_maps *dev_maps;
2333 struct xps_map *map;
2334 int queue_index = -1;
2335
2336 rcu_read_lock();
2337 dev_maps = rcu_dereference(dev->xps_maps);
2338 if (dev_maps) {
2339 map = rcu_dereference(
2340 dev_maps->cpu_map[raw_smp_processor_id()]);
2341 if (map) {
2342 if (map->len == 1)
2343 queue_index = map->queues[0];
2344 else {
2345 u32 hash;
2346 if (skb->sk && skb->sk->sk_hash)
2347 hash = skb->sk->sk_hash;
2348 else
2349 hash = (__force u16) skb->protocol ^
2350 skb->rxhash;
2351 hash = jhash_1word(hash, hashrnd);
2352 queue_index = map->queues[
2353 ((u64)hash * map->len) >> 32];
2354 }
2355 if (unlikely(queue_index >= dev->real_num_tx_queues))
2356 queue_index = -1;
2357 }
2358 }
2359 rcu_read_unlock();
2360
2361 return queue_index;
2362 #else
2363 return -1;
2364 #endif
2365 }
2366
2367 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2368 struct sk_buff *skb)
2369 {
2370 int queue_index;
2371 const struct net_device_ops *ops = dev->netdev_ops;
2372
2373 if (dev->real_num_tx_queues == 1)
2374 queue_index = 0;
2375 else if (ops->ndo_select_queue) {
2376 queue_index = ops->ndo_select_queue(dev, skb);
2377 queue_index = dev_cap_txqueue(dev, queue_index);
2378 } else {
2379 struct sock *sk = skb->sk;
2380 queue_index = sk_tx_queue_get(sk);
2381
2382 if (queue_index < 0 || skb->ooo_okay ||
2383 queue_index >= dev->real_num_tx_queues) {
2384 int old_index = queue_index;
2385
2386 queue_index = get_xps_queue(dev, skb);
2387 if (queue_index < 0)
2388 queue_index = skb_tx_hash(dev, skb);
2389
2390 if (queue_index != old_index && sk) {
2391 struct dst_entry *dst =
2392 rcu_dereference_check(sk->sk_dst_cache, 1);
2393
2394 if (dst && skb_dst(skb) == dst)
2395 sk_tx_queue_set(sk, queue_index);
2396 }
2397 }
2398 }
2399
2400 skb_set_queue_mapping(skb, queue_index);
2401 return netdev_get_tx_queue(dev, queue_index);
2402 }
2403
2404 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2405 struct net_device *dev,
2406 struct netdev_queue *txq)
2407 {
2408 spinlock_t *root_lock = qdisc_lock(q);
2409 bool contended;
2410 int rc;
2411
2412 qdisc_skb_cb(skb)->pkt_len = skb->len;
2413 qdisc_calculate_pkt_len(skb, q);
2414 /*
2415 * Heuristic to force contended enqueues to serialize on a
2416 * separate lock before trying to get qdisc main lock.
2417 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2418 * and dequeue packets faster.
2419 */
2420 contended = qdisc_is_running(q);
2421 if (unlikely(contended))
2422 spin_lock(&q->busylock);
2423
2424 spin_lock(root_lock);
2425 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2426 kfree_skb(skb);
2427 rc = NET_XMIT_DROP;
2428 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2429 qdisc_run_begin(q)) {
2430 /*
2431 * This is a work-conserving queue; there are no old skbs
2432 * waiting to be sent out; and the qdisc is not running -
2433 * xmit the skb directly.
2434 */
2435 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2436 skb_dst_force(skb);
2437
2438 qdisc_bstats_update(q, skb);
2439
2440 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2441 if (unlikely(contended)) {
2442 spin_unlock(&q->busylock);
2443 contended = false;
2444 }
2445 __qdisc_run(q);
2446 } else
2447 qdisc_run_end(q);
2448
2449 rc = NET_XMIT_SUCCESS;
2450 } else {
2451 skb_dst_force(skb);
2452 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2453 if (qdisc_run_begin(q)) {
2454 if (unlikely(contended)) {
2455 spin_unlock(&q->busylock);
2456 contended = false;
2457 }
2458 __qdisc_run(q);
2459 }
2460 }
2461 spin_unlock(root_lock);
2462 if (unlikely(contended))
2463 spin_unlock(&q->busylock);
2464 return rc;
2465 }
2466
2467 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2468 static void skb_update_prio(struct sk_buff *skb)
2469 {
2470 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2471
2472 if ((!skb->priority) && (skb->sk) && map)
2473 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2474 }
2475 #else
2476 #define skb_update_prio(skb)
2477 #endif
2478
2479 static DEFINE_PER_CPU(int, xmit_recursion);
2480 #define RECURSION_LIMIT 10
2481
2482 /**
2483 * dev_queue_xmit - transmit a buffer
2484 * @skb: buffer to transmit
2485 *
2486 * Queue a buffer for transmission to a network device. The caller must
2487 * have set the device and priority and built the buffer before calling
2488 * this function. The function can be called from an interrupt.
2489 *
2490 * A negative errno code is returned on a failure. A success does not
2491 * guarantee the frame will be transmitted as it may be dropped due
2492 * to congestion or traffic shaping.
2493 *
2494 * -----------------------------------------------------------------------------------
2495 * I notice this method can also return errors from the queue disciplines,
2496 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2497 * be positive.
2498 *
2499 * Regardless of the return value, the skb is consumed, so it is currently
2500 * difficult to retry a send to this method. (You can bump the ref count
2501 * before sending to hold a reference for retry if you are careful.)
2502 *
2503 * When calling this method, interrupts MUST be enabled. This is because
2504 * the BH enable code must have IRQs enabled so that it will not deadlock.
2505 * --BLG
2506 */
2507 int dev_queue_xmit(struct sk_buff *skb)
2508 {
2509 struct net_device *dev = skb->dev;
2510 struct netdev_queue *txq;
2511 struct Qdisc *q;
2512 int rc = -ENOMEM;
2513
2514 /* Disable soft irqs for various locks below. Also
2515 * stops preemption for RCU.
2516 */
2517 rcu_read_lock_bh();
2518
2519 skb_update_prio(skb);
2520
2521 txq = dev_pick_tx(dev, skb);
2522 q = rcu_dereference_bh(txq->qdisc);
2523
2524 #ifdef CONFIG_NET_CLS_ACT
2525 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2526 #endif
2527 trace_net_dev_queue(skb);
2528 if (q->enqueue) {
2529 rc = __dev_xmit_skb(skb, q, dev, txq);
2530 goto out;
2531 }
2532
2533 /* The device has no queue. Common case for software devices:
2534 loopback, all the sorts of tunnels...
2535
2536 Really, it is unlikely that netif_tx_lock protection is necessary
2537 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2538 counters.)
2539 However, it is possible, that they rely on protection
2540 made by us here.
2541
2542 Check this and shot the lock. It is not prone from deadlocks.
2543 Either shot noqueue qdisc, it is even simpler 8)
2544 */
2545 if (dev->flags & IFF_UP) {
2546 int cpu = smp_processor_id(); /* ok because BHs are off */
2547
2548 if (txq->xmit_lock_owner != cpu) {
2549
2550 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2551 goto recursion_alert;
2552
2553 HARD_TX_LOCK(dev, txq, cpu);
2554
2555 if (!netif_xmit_stopped(txq)) {
2556 __this_cpu_inc(xmit_recursion);
2557 rc = dev_hard_start_xmit(skb, dev, txq);
2558 __this_cpu_dec(xmit_recursion);
2559 if (dev_xmit_complete(rc)) {
2560 HARD_TX_UNLOCK(dev, txq);
2561 goto out;
2562 }
2563 }
2564 HARD_TX_UNLOCK(dev, txq);
2565 if (net_ratelimit())
2566 pr_crit("Virtual device %s asks to queue packet!\n",
2567 dev->name);
2568 } else {
2569 /* Recursion is detected! It is possible,
2570 * unfortunately
2571 */
2572 recursion_alert:
2573 if (net_ratelimit())
2574 pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2575 dev->name);
2576 }
2577 }
2578
2579 rc = -ENETDOWN;
2580 rcu_read_unlock_bh();
2581
2582 kfree_skb(skb);
2583 return rc;
2584 out:
2585 rcu_read_unlock_bh();
2586 return rc;
2587 }
2588 EXPORT_SYMBOL(dev_queue_xmit);
2589
2590
2591 /*=======================================================================
2592 Receiver routines
2593 =======================================================================*/
2594
2595 int netdev_max_backlog __read_mostly = 1000;
2596 int netdev_tstamp_prequeue __read_mostly = 1;
2597 int netdev_budget __read_mostly = 300;
2598 int weight_p __read_mostly = 64; /* old backlog weight */
2599
2600 /* Called with irq disabled */
2601 static inline void ____napi_schedule(struct softnet_data *sd,
2602 struct napi_struct *napi)
2603 {
2604 list_add_tail(&napi->poll_list, &sd->poll_list);
2605 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2606 }
2607
2608 /*
2609 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2610 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2611 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2612 * if hash is a canonical 4-tuple hash over transport ports.
2613 */
2614 void __skb_get_rxhash(struct sk_buff *skb)
2615 {
2616 struct flow_keys keys;
2617 u32 hash;
2618
2619 if (!skb_flow_dissect(skb, &keys))
2620 return;
2621
2622 if (keys.ports) {
2623 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2624 swap(keys.port16[0], keys.port16[1]);
2625 skb->l4_rxhash = 1;
2626 }
2627
2628 /* get a consistent hash (same value on both flow directions) */
2629 if ((__force u32)keys.dst < (__force u32)keys.src)
2630 swap(keys.dst, keys.src);
2631
2632 hash = jhash_3words((__force u32)keys.dst,
2633 (__force u32)keys.src,
2634 (__force u32)keys.ports, hashrnd);
2635 if (!hash)
2636 hash = 1;
2637
2638 skb->rxhash = hash;
2639 }
2640 EXPORT_SYMBOL(__skb_get_rxhash);
2641
2642 #ifdef CONFIG_RPS
2643
2644 /* One global table that all flow-based protocols share. */
2645 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2646 EXPORT_SYMBOL(rps_sock_flow_table);
2647
2648 struct static_key rps_needed __read_mostly;
2649
2650 static struct rps_dev_flow *
2651 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2652 struct rps_dev_flow *rflow, u16 next_cpu)
2653 {
2654 if (next_cpu != RPS_NO_CPU) {
2655 #ifdef CONFIG_RFS_ACCEL
2656 struct netdev_rx_queue *rxqueue;
2657 struct rps_dev_flow_table *flow_table;
2658 struct rps_dev_flow *old_rflow;
2659 u32 flow_id;
2660 u16 rxq_index;
2661 int rc;
2662
2663 /* Should we steer this flow to a different hardware queue? */
2664 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2665 !(dev->features & NETIF_F_NTUPLE))
2666 goto out;
2667 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2668 if (rxq_index == skb_get_rx_queue(skb))
2669 goto out;
2670
2671 rxqueue = dev->_rx + rxq_index;
2672 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2673 if (!flow_table)
2674 goto out;
2675 flow_id = skb->rxhash & flow_table->mask;
2676 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2677 rxq_index, flow_id);
2678 if (rc < 0)
2679 goto out;
2680 old_rflow = rflow;
2681 rflow = &flow_table->flows[flow_id];
2682 rflow->filter = rc;
2683 if (old_rflow->filter == rflow->filter)
2684 old_rflow->filter = RPS_NO_FILTER;
2685 out:
2686 #endif
2687 rflow->last_qtail =
2688 per_cpu(softnet_data, next_cpu).input_queue_head;
2689 }
2690
2691 rflow->cpu = next_cpu;
2692 return rflow;
2693 }
2694
2695 /*
2696 * get_rps_cpu is called from netif_receive_skb and returns the target
2697 * CPU from the RPS map of the receiving queue for a given skb.
2698 * rcu_read_lock must be held on entry.
2699 */
2700 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2701 struct rps_dev_flow **rflowp)
2702 {
2703 struct netdev_rx_queue *rxqueue;
2704 struct rps_map *map;
2705 struct rps_dev_flow_table *flow_table;
2706 struct rps_sock_flow_table *sock_flow_table;
2707 int cpu = -1;
2708 u16 tcpu;
2709
2710 if (skb_rx_queue_recorded(skb)) {
2711 u16 index = skb_get_rx_queue(skb);
2712 if (unlikely(index >= dev->real_num_rx_queues)) {
2713 WARN_ONCE(dev->real_num_rx_queues > 1,
2714 "%s received packet on queue %u, but number "
2715 "of RX queues is %u\n",
2716 dev->name, index, dev->real_num_rx_queues);
2717 goto done;
2718 }
2719 rxqueue = dev->_rx + index;
2720 } else
2721 rxqueue = dev->_rx;
2722
2723 map = rcu_dereference(rxqueue->rps_map);
2724 if (map) {
2725 if (map->len == 1 &&
2726 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2727 tcpu = map->cpus[0];
2728 if (cpu_online(tcpu))
2729 cpu = tcpu;
2730 goto done;
2731 }
2732 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2733 goto done;
2734 }
2735
2736 skb_reset_network_header(skb);
2737 if (!skb_get_rxhash(skb))
2738 goto done;
2739
2740 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2741 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2742 if (flow_table && sock_flow_table) {
2743 u16 next_cpu;
2744 struct rps_dev_flow *rflow;
2745
2746 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2747 tcpu = rflow->cpu;
2748
2749 next_cpu = sock_flow_table->ents[skb->rxhash &
2750 sock_flow_table->mask];
2751
2752 /*
2753 * If the desired CPU (where last recvmsg was done) is
2754 * different from current CPU (one in the rx-queue flow
2755 * table entry), switch if one of the following holds:
2756 * - Current CPU is unset (equal to RPS_NO_CPU).
2757 * - Current CPU is offline.
2758 * - The current CPU's queue tail has advanced beyond the
2759 * last packet that was enqueued using this table entry.
2760 * This guarantees that all previous packets for the flow
2761 * have been dequeued, thus preserving in order delivery.
2762 */
2763 if (unlikely(tcpu != next_cpu) &&
2764 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2765 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2766 rflow->last_qtail)) >= 0))
2767 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2768
2769 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2770 *rflowp = rflow;
2771 cpu = tcpu;
2772 goto done;
2773 }
2774 }
2775
2776 if (map) {
2777 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2778
2779 if (cpu_online(tcpu)) {
2780 cpu = tcpu;
2781 goto done;
2782 }
2783 }
2784
2785 done:
2786 return cpu;
2787 }
2788
2789 #ifdef CONFIG_RFS_ACCEL
2790
2791 /**
2792 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2793 * @dev: Device on which the filter was set
2794 * @rxq_index: RX queue index
2795 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2796 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2797 *
2798 * Drivers that implement ndo_rx_flow_steer() should periodically call
2799 * this function for each installed filter and remove the filters for
2800 * which it returns %true.
2801 */
2802 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2803 u32 flow_id, u16 filter_id)
2804 {
2805 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2806 struct rps_dev_flow_table *flow_table;
2807 struct rps_dev_flow *rflow;
2808 bool expire = true;
2809 int cpu;
2810
2811 rcu_read_lock();
2812 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2813 if (flow_table && flow_id <= flow_table->mask) {
2814 rflow = &flow_table->flows[flow_id];
2815 cpu = ACCESS_ONCE(rflow->cpu);
2816 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2817 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2818 rflow->last_qtail) <
2819 (int)(10 * flow_table->mask)))
2820 expire = false;
2821 }
2822 rcu_read_unlock();
2823 return expire;
2824 }
2825 EXPORT_SYMBOL(rps_may_expire_flow);
2826
2827 #endif /* CONFIG_RFS_ACCEL */
2828
2829 /* Called from hardirq (IPI) context */
2830 static void rps_trigger_softirq(void *data)
2831 {
2832 struct softnet_data *sd = data;
2833
2834 ____napi_schedule(sd, &sd->backlog);
2835 sd->received_rps++;
2836 }
2837
2838 #endif /* CONFIG_RPS */
2839
2840 /*
2841 * Check if this softnet_data structure is another cpu one
2842 * If yes, queue it to our IPI list and return 1
2843 * If no, return 0
2844 */
2845 static int rps_ipi_queued(struct softnet_data *sd)
2846 {
2847 #ifdef CONFIG_RPS
2848 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2849
2850 if (sd != mysd) {
2851 sd->rps_ipi_next = mysd->rps_ipi_list;
2852 mysd->rps_ipi_list = sd;
2853
2854 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2855 return 1;
2856 }
2857 #endif /* CONFIG_RPS */
2858 return 0;
2859 }
2860
2861 /*
2862 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2863 * queue (may be a remote CPU queue).
2864 */
2865 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2866 unsigned int *qtail)
2867 {
2868 struct softnet_data *sd;
2869 unsigned long flags;
2870
2871 sd = &per_cpu(softnet_data, cpu);
2872
2873 local_irq_save(flags);
2874
2875 rps_lock(sd);
2876 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2877 if (skb_queue_len(&sd->input_pkt_queue)) {
2878 enqueue:
2879 __skb_queue_tail(&sd->input_pkt_queue, skb);
2880 input_queue_tail_incr_save(sd, qtail);
2881 rps_unlock(sd);
2882 local_irq_restore(flags);
2883 return NET_RX_SUCCESS;
2884 }
2885
2886 /* Schedule NAPI for backlog device
2887 * We can use non atomic operation since we own the queue lock
2888 */
2889 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2890 if (!rps_ipi_queued(sd))
2891 ____napi_schedule(sd, &sd->backlog);
2892 }
2893 goto enqueue;
2894 }
2895
2896 sd->dropped++;
2897 rps_unlock(sd);
2898
2899 local_irq_restore(flags);
2900
2901 atomic_long_inc(&skb->dev->rx_dropped);
2902 kfree_skb(skb);
2903 return NET_RX_DROP;
2904 }
2905
2906 /**
2907 * netif_rx - post buffer to the network code
2908 * @skb: buffer to post
2909 *
2910 * This function receives a packet from a device driver and queues it for
2911 * the upper (protocol) levels to process. It always succeeds. The buffer
2912 * may be dropped during processing for congestion control or by the
2913 * protocol layers.
2914 *
2915 * return values:
2916 * NET_RX_SUCCESS (no congestion)
2917 * NET_RX_DROP (packet was dropped)
2918 *
2919 */
2920
2921 int netif_rx(struct sk_buff *skb)
2922 {
2923 int ret;
2924
2925 /* if netpoll wants it, pretend we never saw it */
2926 if (netpoll_rx(skb))
2927 return NET_RX_DROP;
2928
2929 net_timestamp_check(netdev_tstamp_prequeue, skb);
2930
2931 trace_netif_rx(skb);
2932 #ifdef CONFIG_RPS
2933 if (static_key_false(&rps_needed)) {
2934 struct rps_dev_flow voidflow, *rflow = &voidflow;
2935 int cpu;
2936
2937 preempt_disable();
2938 rcu_read_lock();
2939
2940 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2941 if (cpu < 0)
2942 cpu = smp_processor_id();
2943
2944 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2945
2946 rcu_read_unlock();
2947 preempt_enable();
2948 } else
2949 #endif
2950 {
2951 unsigned int qtail;
2952 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2953 put_cpu();
2954 }
2955 return ret;
2956 }
2957 EXPORT_SYMBOL(netif_rx);
2958
2959 int netif_rx_ni(struct sk_buff *skb)
2960 {
2961 int err;
2962
2963 preempt_disable();
2964 err = netif_rx(skb);
2965 if (local_softirq_pending())
2966 do_softirq();
2967 preempt_enable();
2968
2969 return err;
2970 }
2971 EXPORT_SYMBOL(netif_rx_ni);
2972
2973 static void net_tx_action(struct softirq_action *h)
2974 {
2975 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2976
2977 if (sd->completion_queue) {
2978 struct sk_buff *clist;
2979
2980 local_irq_disable();
2981 clist = sd->completion_queue;
2982 sd->completion_queue = NULL;
2983 local_irq_enable();
2984
2985 while (clist) {
2986 struct sk_buff *skb = clist;
2987 clist = clist->next;
2988
2989 WARN_ON(atomic_read(&skb->users));
2990 trace_kfree_skb(skb, net_tx_action);
2991 __kfree_skb(skb);
2992 }
2993 }
2994
2995 if (sd->output_queue) {
2996 struct Qdisc *head;
2997
2998 local_irq_disable();
2999 head = sd->output_queue;
3000 sd->output_queue = NULL;
3001 sd->output_queue_tailp = &sd->output_queue;
3002 local_irq_enable();
3003
3004 while (head) {
3005 struct Qdisc *q = head;
3006 spinlock_t *root_lock;
3007
3008 head = head->next_sched;
3009
3010 root_lock = qdisc_lock(q);
3011 if (spin_trylock(root_lock)) {
3012 smp_mb__before_clear_bit();
3013 clear_bit(__QDISC_STATE_SCHED,
3014 &q->state);
3015 qdisc_run(q);
3016 spin_unlock(root_lock);
3017 } else {
3018 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3019 &q->state)) {
3020 __netif_reschedule(q);
3021 } else {
3022 smp_mb__before_clear_bit();
3023 clear_bit(__QDISC_STATE_SCHED,
3024 &q->state);
3025 }
3026 }
3027 }
3028 }
3029 }
3030
3031 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3032 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3033 /* This hook is defined here for ATM LANE */
3034 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3035 unsigned char *addr) __read_mostly;
3036 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3037 #endif
3038
3039 #ifdef CONFIG_NET_CLS_ACT
3040 /* TODO: Maybe we should just force sch_ingress to be compiled in
3041 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3042 * a compare and 2 stores extra right now if we dont have it on
3043 * but have CONFIG_NET_CLS_ACT
3044 * NOTE: This doesn't stop any functionality; if you dont have
3045 * the ingress scheduler, you just can't add policies on ingress.
3046 *
3047 */
3048 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3049 {
3050 struct net_device *dev = skb->dev;
3051 u32 ttl = G_TC_RTTL(skb->tc_verd);
3052 int result = TC_ACT_OK;
3053 struct Qdisc *q;
3054
3055 if (unlikely(MAX_RED_LOOP < ttl++)) {
3056 if (net_ratelimit())
3057 pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3058 skb->skb_iif, dev->ifindex);
3059 return TC_ACT_SHOT;
3060 }
3061
3062 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3063 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3064
3065 q = rxq->qdisc;
3066 if (q != &noop_qdisc) {
3067 spin_lock(qdisc_lock(q));
3068 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3069 result = qdisc_enqueue_root(skb, q);
3070 spin_unlock(qdisc_lock(q));
3071 }
3072
3073 return result;
3074 }
3075
3076 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3077 struct packet_type **pt_prev,
3078 int *ret, struct net_device *orig_dev)
3079 {
3080 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3081
3082 if (!rxq || rxq->qdisc == &noop_qdisc)
3083 goto out;
3084
3085 if (*pt_prev) {
3086 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3087 *pt_prev = NULL;
3088 }
3089
3090 switch (ing_filter(skb, rxq)) {
3091 case TC_ACT_SHOT:
3092 case TC_ACT_STOLEN:
3093 kfree_skb(skb);
3094 return NULL;
3095 }
3096
3097 out:
3098 skb->tc_verd = 0;
3099 return skb;
3100 }
3101 #endif
3102
3103 /**
3104 * netdev_rx_handler_register - register receive handler
3105 * @dev: device to register a handler for
3106 * @rx_handler: receive handler to register
3107 * @rx_handler_data: data pointer that is used by rx handler
3108 *
3109 * Register a receive hander for a device. This handler will then be
3110 * called from __netif_receive_skb. A negative errno code is returned
3111 * on a failure.
3112 *
3113 * The caller must hold the rtnl_mutex.
3114 *
3115 * For a general description of rx_handler, see enum rx_handler_result.
3116 */
3117 int netdev_rx_handler_register(struct net_device *dev,
3118 rx_handler_func_t *rx_handler,
3119 void *rx_handler_data)
3120 {
3121 ASSERT_RTNL();
3122
3123 if (dev->rx_handler)
3124 return -EBUSY;
3125
3126 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3127 rcu_assign_pointer(dev->rx_handler, rx_handler);
3128
3129 return 0;
3130 }
3131 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3132
3133 /**
3134 * netdev_rx_handler_unregister - unregister receive handler
3135 * @dev: device to unregister a handler from
3136 *
3137 * Unregister a receive hander from a device.
3138 *
3139 * The caller must hold the rtnl_mutex.
3140 */
3141 void netdev_rx_handler_unregister(struct net_device *dev)
3142 {
3143
3144 ASSERT_RTNL();
3145 RCU_INIT_POINTER(dev->rx_handler, NULL);
3146 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3147 }
3148 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3149
3150 static int __netif_receive_skb(struct sk_buff *skb)
3151 {
3152 struct packet_type *ptype, *pt_prev;
3153 rx_handler_func_t *rx_handler;
3154 struct net_device *orig_dev;
3155 struct net_device *null_or_dev;
3156 bool deliver_exact = false;
3157 int ret = NET_RX_DROP;
3158 __be16 type;
3159
3160 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3161
3162 trace_netif_receive_skb(skb);
3163
3164 /* if we've gotten here through NAPI, check netpoll */
3165 if (netpoll_receive_skb(skb))
3166 return NET_RX_DROP;
3167
3168 if (!skb->skb_iif)
3169 skb->skb_iif = skb->dev->ifindex;
3170 orig_dev = skb->dev;
3171
3172 skb_reset_network_header(skb);
3173 skb_reset_transport_header(skb);
3174 skb_reset_mac_len(skb);
3175
3176 pt_prev = NULL;
3177
3178 rcu_read_lock();
3179
3180 another_round:
3181
3182 __this_cpu_inc(softnet_data.processed);
3183
3184 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3185 skb = vlan_untag(skb);
3186 if (unlikely(!skb))
3187 goto out;
3188 }
3189
3190 #ifdef CONFIG_NET_CLS_ACT
3191 if (skb->tc_verd & TC_NCLS) {
3192 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3193 goto ncls;
3194 }
3195 #endif
3196
3197 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3198 if (!ptype->dev || ptype->dev == skb->dev) {
3199 if (pt_prev)
3200 ret = deliver_skb(skb, pt_prev, orig_dev);
3201 pt_prev = ptype;
3202 }
3203 }
3204
3205 #ifdef CONFIG_NET_CLS_ACT
3206 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3207 if (!skb)
3208 goto out;
3209 ncls:
3210 #endif
3211
3212 rx_handler = rcu_dereference(skb->dev->rx_handler);
3213 if (vlan_tx_tag_present(skb)) {
3214 if (pt_prev) {
3215 ret = deliver_skb(skb, pt_prev, orig_dev);
3216 pt_prev = NULL;
3217 }
3218 if (vlan_do_receive(&skb, !rx_handler))
3219 goto another_round;
3220 else if (unlikely(!skb))
3221 goto out;
3222 }
3223
3224 if (rx_handler) {
3225 if (pt_prev) {
3226 ret = deliver_skb(skb, pt_prev, orig_dev);
3227 pt_prev = NULL;
3228 }
3229 switch (rx_handler(&skb)) {
3230 case RX_HANDLER_CONSUMED:
3231 goto out;
3232 case RX_HANDLER_ANOTHER:
3233 goto another_round;
3234 case RX_HANDLER_EXACT:
3235 deliver_exact = true;
3236 case RX_HANDLER_PASS:
3237 break;
3238 default:
3239 BUG();
3240 }
3241 }
3242
3243 /* deliver only exact match when indicated */
3244 null_or_dev = deliver_exact ? skb->dev : NULL;
3245
3246 type = skb->protocol;
3247 list_for_each_entry_rcu(ptype,
3248 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3249 if (ptype->type == type &&
3250 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3251 ptype->dev == orig_dev)) {
3252 if (pt_prev)
3253 ret = deliver_skb(skb, pt_prev, orig_dev);
3254 pt_prev = ptype;
3255 }
3256 }
3257
3258 if (pt_prev) {
3259 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3260 } else {
3261 atomic_long_inc(&skb->dev->rx_dropped);
3262 kfree_skb(skb);
3263 /* Jamal, now you will not able to escape explaining
3264 * me how you were going to use this. :-)
3265 */
3266 ret = NET_RX_DROP;
3267 }
3268
3269 out:
3270 rcu_read_unlock();
3271 return ret;
3272 }
3273
3274 /**
3275 * netif_receive_skb - process receive buffer from network
3276 * @skb: buffer to process
3277 *
3278 * netif_receive_skb() is the main receive data processing function.
3279 * It always succeeds. The buffer may be dropped during processing
3280 * for congestion control or by the protocol layers.
3281 *
3282 * This function may only be called from softirq context and interrupts
3283 * should be enabled.
3284 *
3285 * Return values (usually ignored):
3286 * NET_RX_SUCCESS: no congestion
3287 * NET_RX_DROP: packet was dropped
3288 */
3289 int netif_receive_skb(struct sk_buff *skb)
3290 {
3291 net_timestamp_check(netdev_tstamp_prequeue, skb);
3292
3293 if (skb_defer_rx_timestamp(skb))
3294 return NET_RX_SUCCESS;
3295
3296 #ifdef CONFIG_RPS
3297 if (static_key_false(&rps_needed)) {
3298 struct rps_dev_flow voidflow, *rflow = &voidflow;
3299 int cpu, ret;
3300
3301 rcu_read_lock();
3302
3303 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3304
3305 if (cpu >= 0) {
3306 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3307 rcu_read_unlock();
3308 return ret;
3309 }
3310 rcu_read_unlock();
3311 }
3312 #endif
3313 return __netif_receive_skb(skb);
3314 }
3315 EXPORT_SYMBOL(netif_receive_skb);
3316
3317 /* Network device is going away, flush any packets still pending
3318 * Called with irqs disabled.
3319 */
3320 static void flush_backlog(void *arg)
3321 {
3322 struct net_device *dev = arg;
3323 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3324 struct sk_buff *skb, *tmp;
3325
3326 rps_lock(sd);
3327 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3328 if (skb->dev == dev) {
3329 __skb_unlink(skb, &sd->input_pkt_queue);
3330 kfree_skb(skb);
3331 input_queue_head_incr(sd);
3332 }
3333 }
3334 rps_unlock(sd);
3335
3336 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3337 if (skb->dev == dev) {
3338 __skb_unlink(skb, &sd->process_queue);
3339 kfree_skb(skb);
3340 input_queue_head_incr(sd);
3341 }
3342 }
3343 }
3344
3345 static int napi_gro_complete(struct sk_buff *skb)
3346 {
3347 struct packet_type *ptype;
3348 __be16 type = skb->protocol;
3349 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3350 int err = -ENOENT;
3351
3352 if (NAPI_GRO_CB(skb)->count == 1) {
3353 skb_shinfo(skb)->gso_size = 0;
3354 goto out;
3355 }
3356
3357 rcu_read_lock();
3358 list_for_each_entry_rcu(ptype, head, list) {
3359 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3360 continue;
3361
3362 err = ptype->gro_complete(skb);
3363 break;
3364 }
3365 rcu_read_unlock();
3366
3367 if (err) {
3368 WARN_ON(&ptype->list == head);
3369 kfree_skb(skb);
3370 return NET_RX_SUCCESS;
3371 }
3372
3373 out:
3374 return netif_receive_skb(skb);
3375 }
3376
3377 inline void napi_gro_flush(struct napi_struct *napi)
3378 {
3379 struct sk_buff *skb, *next;
3380
3381 for (skb = napi->gro_list; skb; skb = next) {
3382 next = skb->next;
3383 skb->next = NULL;
3384 napi_gro_complete(skb);
3385 }
3386
3387 napi->gro_count = 0;
3388 napi->gro_list = NULL;
3389 }
3390 EXPORT_SYMBOL(napi_gro_flush);
3391
3392 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3393 {
3394 struct sk_buff **pp = NULL;
3395 struct packet_type *ptype;
3396 __be16 type = skb->protocol;
3397 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3398 int same_flow;
3399 int mac_len;
3400 enum gro_result ret;
3401
3402 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3403 goto normal;
3404
3405 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3406 goto normal;
3407
3408 rcu_read_lock();
3409 list_for_each_entry_rcu(ptype, head, list) {
3410 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3411 continue;
3412
3413 skb_set_network_header(skb, skb_gro_offset(skb));
3414 mac_len = skb->network_header - skb->mac_header;
3415 skb->mac_len = mac_len;
3416 NAPI_GRO_CB(skb)->same_flow = 0;
3417 NAPI_GRO_CB(skb)->flush = 0;
3418 NAPI_GRO_CB(skb)->free = 0;
3419
3420 pp = ptype->gro_receive(&napi->gro_list, skb);
3421 break;
3422 }
3423 rcu_read_unlock();
3424
3425 if (&ptype->list == head)
3426 goto normal;
3427
3428 same_flow = NAPI_GRO_CB(skb)->same_flow;
3429 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3430
3431 if (pp) {
3432 struct sk_buff *nskb = *pp;
3433
3434 *pp = nskb->next;
3435 nskb->next = NULL;
3436 napi_gro_complete(nskb);
3437 napi->gro_count--;
3438 }
3439
3440 if (same_flow)
3441 goto ok;
3442
3443 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3444 goto normal;
3445
3446 napi->gro_count++;
3447 NAPI_GRO_CB(skb)->count = 1;
3448 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3449 skb->next = napi->gro_list;
3450 napi->gro_list = skb;
3451 ret = GRO_HELD;
3452
3453 pull:
3454 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3455 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3456
3457 BUG_ON(skb->end - skb->tail < grow);
3458
3459 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3460
3461 skb->tail += grow;
3462 skb->data_len -= grow;
3463
3464 skb_shinfo(skb)->frags[0].page_offset += grow;
3465 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3466
3467 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3468 skb_frag_unref(skb, 0);
3469 memmove(skb_shinfo(skb)->frags,
3470 skb_shinfo(skb)->frags + 1,
3471 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3472 }
3473 }
3474
3475 ok:
3476 return ret;
3477
3478 normal:
3479 ret = GRO_NORMAL;
3480 goto pull;
3481 }
3482 EXPORT_SYMBOL(dev_gro_receive);
3483
3484 static inline gro_result_t
3485 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3486 {
3487 struct sk_buff *p;
3488 unsigned int maclen = skb->dev->hard_header_len;
3489
3490 for (p = napi->gro_list; p; p = p->next) {
3491 unsigned long diffs;
3492
3493 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3494 diffs |= p->vlan_tci ^ skb->vlan_tci;
3495 if (maclen == ETH_HLEN)
3496 diffs |= compare_ether_header(skb_mac_header(p),
3497 skb_gro_mac_header(skb));
3498 else if (!diffs)
3499 diffs = memcmp(skb_mac_header(p),
3500 skb_gro_mac_header(skb),
3501 maclen);
3502 NAPI_GRO_CB(p)->same_flow = !diffs;
3503 NAPI_GRO_CB(p)->flush = 0;
3504 }
3505
3506 return dev_gro_receive(napi, skb);
3507 }
3508
3509 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3510 {
3511 switch (ret) {
3512 case GRO_NORMAL:
3513 if (netif_receive_skb(skb))
3514 ret = GRO_DROP;
3515 break;
3516
3517 case GRO_DROP:
3518 case GRO_MERGED_FREE:
3519 kfree_skb(skb);
3520 break;
3521
3522 case GRO_HELD:
3523 case GRO_MERGED:
3524 break;
3525 }
3526
3527 return ret;
3528 }
3529 EXPORT_SYMBOL(napi_skb_finish);
3530
3531 void skb_gro_reset_offset(struct sk_buff *skb)
3532 {
3533 NAPI_GRO_CB(skb)->data_offset = 0;
3534 NAPI_GRO_CB(skb)->frag0 = NULL;
3535 NAPI_GRO_CB(skb)->frag0_len = 0;
3536
3537 if (skb->mac_header == skb->tail &&
3538 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3539 NAPI_GRO_CB(skb)->frag0 =
3540 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3541 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3542 }
3543 }
3544 EXPORT_SYMBOL(skb_gro_reset_offset);
3545
3546 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3547 {
3548 skb_gro_reset_offset(skb);
3549
3550 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3551 }
3552 EXPORT_SYMBOL(napi_gro_receive);
3553
3554 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3555 {
3556 __skb_pull(skb, skb_headlen(skb));
3557 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3558 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3559 skb->vlan_tci = 0;
3560 skb->dev = napi->dev;
3561 skb->skb_iif = 0;
3562
3563 napi->skb = skb;
3564 }
3565
3566 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3567 {
3568 struct sk_buff *skb = napi->skb;
3569
3570 if (!skb) {
3571 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3572 if (skb)
3573 napi->skb = skb;
3574 }
3575 return skb;
3576 }
3577 EXPORT_SYMBOL(napi_get_frags);
3578
3579 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3580 gro_result_t ret)
3581 {
3582 switch (ret) {
3583 case GRO_NORMAL:
3584 case GRO_HELD:
3585 skb->protocol = eth_type_trans(skb, skb->dev);
3586
3587 if (ret == GRO_HELD)
3588 skb_gro_pull(skb, -ETH_HLEN);
3589 else if (netif_receive_skb(skb))
3590 ret = GRO_DROP;
3591 break;
3592
3593 case GRO_DROP:
3594 case GRO_MERGED_FREE:
3595 napi_reuse_skb(napi, skb);
3596 break;
3597
3598 case GRO_MERGED:
3599 break;
3600 }
3601
3602 return ret;
3603 }
3604 EXPORT_SYMBOL(napi_frags_finish);
3605
3606 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3607 {
3608 struct sk_buff *skb = napi->skb;
3609 struct ethhdr *eth;
3610 unsigned int hlen;
3611 unsigned int off;
3612
3613 napi->skb = NULL;
3614
3615 skb_reset_mac_header(skb);
3616 skb_gro_reset_offset(skb);
3617
3618 off = skb_gro_offset(skb);
3619 hlen = off + sizeof(*eth);
3620 eth = skb_gro_header_fast(skb, off);
3621 if (skb_gro_header_hard(skb, hlen)) {
3622 eth = skb_gro_header_slow(skb, hlen, off);
3623 if (unlikely(!eth)) {
3624 napi_reuse_skb(napi, skb);
3625 skb = NULL;
3626 goto out;
3627 }
3628 }
3629
3630 skb_gro_pull(skb, sizeof(*eth));
3631
3632 /*
3633 * This works because the only protocols we care about don't require
3634 * special handling. We'll fix it up properly at the end.
3635 */
3636 skb->protocol = eth->h_proto;
3637
3638 out:
3639 return skb;
3640 }
3641 EXPORT_SYMBOL(napi_frags_skb);
3642
3643 gro_result_t napi_gro_frags(struct napi_struct *napi)
3644 {
3645 struct sk_buff *skb = napi_frags_skb(napi);
3646
3647 if (!skb)
3648 return GRO_DROP;
3649
3650 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3651 }
3652 EXPORT_SYMBOL(napi_gro_frags);
3653
3654 /*
3655 * net_rps_action sends any pending IPI's for rps.
3656 * Note: called with local irq disabled, but exits with local irq enabled.
3657 */
3658 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3659 {
3660 #ifdef CONFIG_RPS
3661 struct softnet_data *remsd = sd->rps_ipi_list;
3662
3663 if (remsd) {
3664 sd->rps_ipi_list = NULL;
3665
3666 local_irq_enable();
3667
3668 /* Send pending IPI's to kick RPS processing on remote cpus. */
3669 while (remsd) {
3670 struct softnet_data *next = remsd->rps_ipi_next;
3671
3672 if (cpu_online(remsd->cpu))
3673 __smp_call_function_single(remsd->cpu,
3674 &remsd->csd, 0);
3675 remsd = next;
3676 }
3677 } else
3678 #endif
3679 local_irq_enable();
3680 }
3681
3682 static int process_backlog(struct napi_struct *napi, int quota)
3683 {
3684 int work = 0;
3685 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3686
3687 #ifdef CONFIG_RPS
3688 /* Check if we have pending ipi, its better to send them now,
3689 * not waiting net_rx_action() end.
3690 */
3691 if (sd->rps_ipi_list) {
3692 local_irq_disable();
3693 net_rps_action_and_irq_enable(sd);
3694 }
3695 #endif
3696 napi->weight = weight_p;
3697 local_irq_disable();
3698 while (work < quota) {
3699 struct sk_buff *skb;
3700 unsigned int qlen;
3701
3702 while ((skb = __skb_dequeue(&sd->process_queue))) {
3703 local_irq_enable();
3704 __netif_receive_skb(skb);
3705 local_irq_disable();
3706 input_queue_head_incr(sd);
3707 if (++work >= quota) {
3708 local_irq_enable();
3709 return work;
3710 }
3711 }
3712
3713 rps_lock(sd);
3714 qlen = skb_queue_len(&sd->input_pkt_queue);
3715 if (qlen)
3716 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3717 &sd->process_queue);
3718
3719 if (qlen < quota - work) {
3720 /*
3721 * Inline a custom version of __napi_complete().
3722 * only current cpu owns and manipulates this napi,
3723 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3724 * we can use a plain write instead of clear_bit(),
3725 * and we dont need an smp_mb() memory barrier.
3726 */
3727 list_del(&napi->poll_list);
3728 napi->state = 0;
3729
3730 quota = work + qlen;
3731 }
3732 rps_unlock(sd);
3733 }
3734 local_irq_enable();
3735
3736 return work;
3737 }
3738
3739 /**
3740 * __napi_schedule - schedule for receive
3741 * @n: entry to schedule
3742 *
3743 * The entry's receive function will be scheduled to run
3744 */
3745 void __napi_schedule(struct napi_struct *n)
3746 {
3747 unsigned long flags;
3748
3749 local_irq_save(flags);
3750 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3751 local_irq_restore(flags);
3752 }
3753 EXPORT_SYMBOL(__napi_schedule);
3754
3755 void __napi_complete(struct napi_struct *n)
3756 {
3757 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3758 BUG_ON(n->gro_list);
3759
3760 list_del(&n->poll_list);
3761 smp_mb__before_clear_bit();
3762 clear_bit(NAPI_STATE_SCHED, &n->state);
3763 }
3764 EXPORT_SYMBOL(__napi_complete);
3765
3766 void napi_complete(struct napi_struct *n)
3767 {
3768 unsigned long flags;
3769
3770 /*
3771 * don't let napi dequeue from the cpu poll list
3772 * just in case its running on a different cpu
3773 */
3774 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3775 return;
3776
3777 napi_gro_flush(n);
3778 local_irq_save(flags);
3779 __napi_complete(n);
3780 local_irq_restore(flags);
3781 }
3782 EXPORT_SYMBOL(napi_complete);
3783
3784 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3785 int (*poll)(struct napi_struct *, int), int weight)
3786 {
3787 INIT_LIST_HEAD(&napi->poll_list);
3788 napi->gro_count = 0;
3789 napi->gro_list = NULL;
3790 napi->skb = NULL;
3791 napi->poll = poll;
3792 napi->weight = weight;
3793 list_add(&napi->dev_list, &dev->napi_list);
3794 napi->dev = dev;
3795 #ifdef CONFIG_NETPOLL
3796 spin_lock_init(&napi->poll_lock);
3797 napi->poll_owner = -1;
3798 #endif
3799 set_bit(NAPI_STATE_SCHED, &napi->state);
3800 }
3801 EXPORT_SYMBOL(netif_napi_add);
3802
3803 void netif_napi_del(struct napi_struct *napi)
3804 {
3805 struct sk_buff *skb, *next;
3806
3807 list_del_init(&napi->dev_list);
3808 napi_free_frags(napi);
3809
3810 for (skb = napi->gro_list; skb; skb = next) {
3811 next = skb->next;
3812 skb->next = NULL;
3813 kfree_skb(skb);
3814 }
3815
3816 napi->gro_list = NULL;
3817 napi->gro_count = 0;
3818 }
3819 EXPORT_SYMBOL(netif_napi_del);
3820
3821 static void net_rx_action(struct softirq_action *h)
3822 {
3823 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3824 unsigned long time_limit = jiffies + 2;
3825 int budget = netdev_budget;
3826 void *have;
3827
3828 local_irq_disable();
3829
3830 while (!list_empty(&sd->poll_list)) {
3831 struct napi_struct *n;
3832 int work, weight;
3833
3834 /* If softirq window is exhuasted then punt.
3835 * Allow this to run for 2 jiffies since which will allow
3836 * an average latency of 1.5/HZ.
3837 */
3838 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3839 goto softnet_break;
3840
3841 local_irq_enable();
3842
3843 /* Even though interrupts have been re-enabled, this
3844 * access is safe because interrupts can only add new
3845 * entries to the tail of this list, and only ->poll()
3846 * calls can remove this head entry from the list.
3847 */
3848 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3849
3850 have = netpoll_poll_lock(n);
3851
3852 weight = n->weight;
3853
3854 /* This NAPI_STATE_SCHED test is for avoiding a race
3855 * with netpoll's poll_napi(). Only the entity which
3856 * obtains the lock and sees NAPI_STATE_SCHED set will
3857 * actually make the ->poll() call. Therefore we avoid
3858 * accidentally calling ->poll() when NAPI is not scheduled.
3859 */
3860 work = 0;
3861 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3862 work = n->poll(n, weight);
3863 trace_napi_poll(n);
3864 }
3865
3866 WARN_ON_ONCE(work > weight);
3867
3868 budget -= work;
3869
3870 local_irq_disable();
3871
3872 /* Drivers must not modify the NAPI state if they
3873 * consume the entire weight. In such cases this code
3874 * still "owns" the NAPI instance and therefore can
3875 * move the instance around on the list at-will.
3876 */
3877 if (unlikely(work == weight)) {
3878 if (unlikely(napi_disable_pending(n))) {
3879 local_irq_enable();
3880 napi_complete(n);
3881 local_irq_disable();
3882 } else
3883 list_move_tail(&n->poll_list, &sd->poll_list);
3884 }
3885
3886 netpoll_poll_unlock(have);
3887 }
3888 out:
3889 net_rps_action_and_irq_enable(sd);
3890
3891 #ifdef CONFIG_NET_DMA
3892 /*
3893 * There may not be any more sk_buffs coming right now, so push
3894 * any pending DMA copies to hardware
3895 */
3896 dma_issue_pending_all();
3897 #endif
3898
3899 return;
3900
3901 softnet_break:
3902 sd->time_squeeze++;
3903 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3904 goto out;
3905 }
3906
3907 static gifconf_func_t *gifconf_list[NPROTO];
3908
3909 /**
3910 * register_gifconf - register a SIOCGIF handler
3911 * @family: Address family
3912 * @gifconf: Function handler
3913 *
3914 * Register protocol dependent address dumping routines. The handler
3915 * that is passed must not be freed or reused until it has been replaced
3916 * by another handler.
3917 */
3918 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3919 {
3920 if (family >= NPROTO)
3921 return -EINVAL;
3922 gifconf_list[family] = gifconf;
3923 return 0;
3924 }
3925 EXPORT_SYMBOL(register_gifconf);
3926
3927
3928 /*
3929 * Map an interface index to its name (SIOCGIFNAME)
3930 */
3931
3932 /*
3933 * We need this ioctl for efficient implementation of the
3934 * if_indextoname() function required by the IPv6 API. Without
3935 * it, we would have to search all the interfaces to find a
3936 * match. --pb
3937 */
3938
3939 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3940 {
3941 struct net_device *dev;
3942 struct ifreq ifr;
3943
3944 /*
3945 * Fetch the caller's info block.
3946 */
3947
3948 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3949 return -EFAULT;
3950
3951 rcu_read_lock();
3952 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3953 if (!dev) {
3954 rcu_read_unlock();
3955 return -ENODEV;
3956 }
3957
3958 strcpy(ifr.ifr_name, dev->name);
3959 rcu_read_unlock();
3960
3961 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3962 return -EFAULT;
3963 return 0;
3964 }
3965
3966 /*
3967 * Perform a SIOCGIFCONF call. This structure will change
3968 * size eventually, and there is nothing I can do about it.
3969 * Thus we will need a 'compatibility mode'.
3970 */
3971
3972 static int dev_ifconf(struct net *net, char __user *arg)
3973 {
3974 struct ifconf ifc;
3975 struct net_device *dev;
3976 char __user *pos;
3977 int len;
3978 int total;
3979 int i;
3980
3981 /*
3982 * Fetch the caller's info block.
3983 */
3984
3985 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3986 return -EFAULT;
3987
3988 pos = ifc.ifc_buf;
3989 len = ifc.ifc_len;
3990
3991 /*
3992 * Loop over the interfaces, and write an info block for each.
3993 */
3994
3995 total = 0;
3996 for_each_netdev(net, dev) {
3997 for (i = 0; i < NPROTO; i++) {
3998 if (gifconf_list[i]) {
3999 int done;
4000 if (!pos)
4001 done = gifconf_list[i](dev, NULL, 0);
4002 else
4003 done = gifconf_list[i](dev, pos + total,
4004 len - total);
4005 if (done < 0)
4006 return -EFAULT;
4007 total += done;
4008 }
4009 }
4010 }
4011
4012 /*
4013 * All done. Write the updated control block back to the caller.
4014 */
4015 ifc.ifc_len = total;
4016
4017 /*
4018 * Both BSD and Solaris return 0 here, so we do too.
4019 */
4020 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4021 }
4022
4023 #ifdef CONFIG_PROC_FS
4024
4025 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4026
4027 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4028 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4029 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4030
4031 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4032 {
4033 struct net *net = seq_file_net(seq);
4034 struct net_device *dev;
4035 struct hlist_node *p;
4036 struct hlist_head *h;
4037 unsigned int count = 0, offset = get_offset(*pos);
4038
4039 h = &net->dev_name_head[get_bucket(*pos)];
4040 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4041 if (++count == offset)
4042 return dev;
4043 }
4044
4045 return NULL;
4046 }
4047
4048 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4049 {
4050 struct net_device *dev;
4051 unsigned int bucket;
4052
4053 do {
4054 dev = dev_from_same_bucket(seq, pos);
4055 if (dev)
4056 return dev;
4057
4058 bucket = get_bucket(*pos) + 1;
4059 *pos = set_bucket_offset(bucket, 1);
4060 } while (bucket < NETDEV_HASHENTRIES);
4061
4062 return NULL;
4063 }
4064
4065 /*
4066 * This is invoked by the /proc filesystem handler to display a device
4067 * in detail.
4068 */
4069 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4070 __acquires(RCU)
4071 {
4072 rcu_read_lock();
4073 if (!*pos)
4074 return SEQ_START_TOKEN;
4075
4076 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4077 return NULL;
4078
4079 return dev_from_bucket(seq, pos);
4080 }
4081
4082 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4083 {
4084 ++*pos;
4085 return dev_from_bucket(seq, pos);
4086 }
4087
4088 void dev_seq_stop(struct seq_file *seq, void *v)
4089 __releases(RCU)
4090 {
4091 rcu_read_unlock();
4092 }
4093
4094 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4095 {
4096 struct rtnl_link_stats64 temp;
4097 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4098
4099 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4100 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4101 dev->name, stats->rx_bytes, stats->rx_packets,
4102 stats->rx_errors,
4103 stats->rx_dropped + stats->rx_missed_errors,
4104 stats->rx_fifo_errors,
4105 stats->rx_length_errors + stats->rx_over_errors +
4106 stats->rx_crc_errors + stats->rx_frame_errors,
4107 stats->rx_compressed, stats->multicast,
4108 stats->tx_bytes, stats->tx_packets,
4109 stats->tx_errors, stats->tx_dropped,
4110 stats->tx_fifo_errors, stats->collisions,
4111 stats->tx_carrier_errors +
4112 stats->tx_aborted_errors +
4113 stats->tx_window_errors +
4114 stats->tx_heartbeat_errors,
4115 stats->tx_compressed);
4116 }
4117
4118 /*
4119 * Called from the PROCfs module. This now uses the new arbitrary sized
4120 * /proc/net interface to create /proc/net/dev
4121 */
4122 static int dev_seq_show(struct seq_file *seq, void *v)
4123 {
4124 if (v == SEQ_START_TOKEN)
4125 seq_puts(seq, "Inter-| Receive "
4126 " | Transmit\n"
4127 " face |bytes packets errs drop fifo frame "
4128 "compressed multicast|bytes packets errs "
4129 "drop fifo colls carrier compressed\n");
4130 else
4131 dev_seq_printf_stats(seq, v);
4132 return 0;
4133 }
4134
4135 static struct softnet_data *softnet_get_online(loff_t *pos)
4136 {
4137 struct softnet_data *sd = NULL;
4138
4139 while (*pos < nr_cpu_ids)
4140 if (cpu_online(*pos)) {
4141 sd = &per_cpu(softnet_data, *pos);
4142 break;
4143 } else
4144 ++*pos;
4145 return sd;
4146 }
4147
4148 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4149 {
4150 return softnet_get_online(pos);
4151 }
4152
4153 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4154 {
4155 ++*pos;
4156 return softnet_get_online(pos);
4157 }
4158
4159 static void softnet_seq_stop(struct seq_file *seq, void *v)
4160 {
4161 }
4162
4163 static int softnet_seq_show(struct seq_file *seq, void *v)
4164 {
4165 struct softnet_data *sd = v;
4166
4167 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4168 sd->processed, sd->dropped, sd->time_squeeze, 0,
4169 0, 0, 0, 0, /* was fastroute */
4170 sd->cpu_collision, sd->received_rps);
4171 return 0;
4172 }
4173
4174 static const struct seq_operations dev_seq_ops = {
4175 .start = dev_seq_start,
4176 .next = dev_seq_next,
4177 .stop = dev_seq_stop,
4178 .show = dev_seq_show,
4179 };
4180
4181 static int dev_seq_open(struct inode *inode, struct file *file)
4182 {
4183 return seq_open_net(inode, file, &dev_seq_ops,
4184 sizeof(struct seq_net_private));
4185 }
4186
4187 static const struct file_operations dev_seq_fops = {
4188 .owner = THIS_MODULE,
4189 .open = dev_seq_open,
4190 .read = seq_read,
4191 .llseek = seq_lseek,
4192 .release = seq_release_net,
4193 };
4194
4195 static const struct seq_operations softnet_seq_ops = {
4196 .start = softnet_seq_start,
4197 .next = softnet_seq_next,
4198 .stop = softnet_seq_stop,
4199 .show = softnet_seq_show,
4200 };
4201
4202 static int softnet_seq_open(struct inode *inode, struct file *file)
4203 {
4204 return seq_open(file, &softnet_seq_ops);
4205 }
4206
4207 static const struct file_operations softnet_seq_fops = {
4208 .owner = THIS_MODULE,
4209 .open = softnet_seq_open,
4210 .read = seq_read,
4211 .llseek = seq_lseek,
4212 .release = seq_release,
4213 };
4214
4215 static void *ptype_get_idx(loff_t pos)
4216 {
4217 struct packet_type *pt = NULL;
4218 loff_t i = 0;
4219 int t;
4220
4221 list_for_each_entry_rcu(pt, &ptype_all, list) {
4222 if (i == pos)
4223 return pt;
4224 ++i;
4225 }
4226
4227 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4228 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4229 if (i == pos)
4230 return pt;
4231 ++i;
4232 }
4233 }
4234 return NULL;
4235 }
4236
4237 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4238 __acquires(RCU)
4239 {
4240 rcu_read_lock();
4241 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4242 }
4243
4244 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4245 {
4246 struct packet_type *pt;
4247 struct list_head *nxt;
4248 int hash;
4249
4250 ++*pos;
4251 if (v == SEQ_START_TOKEN)
4252 return ptype_get_idx(0);
4253
4254 pt = v;
4255 nxt = pt->list.next;
4256 if (pt->type == htons(ETH_P_ALL)) {
4257 if (nxt != &ptype_all)
4258 goto found;
4259 hash = 0;
4260 nxt = ptype_base[0].next;
4261 } else
4262 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4263
4264 while (nxt == &ptype_base[hash]) {
4265 if (++hash >= PTYPE_HASH_SIZE)
4266 return NULL;
4267 nxt = ptype_base[hash].next;
4268 }
4269 found:
4270 return list_entry(nxt, struct packet_type, list);
4271 }
4272
4273 static void ptype_seq_stop(struct seq_file *seq, void *v)
4274 __releases(RCU)
4275 {
4276 rcu_read_unlock();
4277 }
4278
4279 static int ptype_seq_show(struct seq_file *seq, void *v)
4280 {
4281 struct packet_type *pt = v;
4282
4283 if (v == SEQ_START_TOKEN)
4284 seq_puts(seq, "Type Device Function\n");
4285 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4286 if (pt->type == htons(ETH_P_ALL))
4287 seq_puts(seq, "ALL ");
4288 else
4289 seq_printf(seq, "%04x", ntohs(pt->type));
4290
4291 seq_printf(seq, " %-8s %pF\n",
4292 pt->dev ? pt->dev->name : "", pt->func);
4293 }
4294
4295 return 0;
4296 }
4297
4298 static const struct seq_operations ptype_seq_ops = {
4299 .start = ptype_seq_start,
4300 .next = ptype_seq_next,
4301 .stop = ptype_seq_stop,
4302 .show = ptype_seq_show,
4303 };
4304
4305 static int ptype_seq_open(struct inode *inode, struct file *file)
4306 {
4307 return seq_open_net(inode, file, &ptype_seq_ops,
4308 sizeof(struct seq_net_private));
4309 }
4310
4311 static const struct file_operations ptype_seq_fops = {
4312 .owner = THIS_MODULE,
4313 .open = ptype_seq_open,
4314 .read = seq_read,
4315 .llseek = seq_lseek,
4316 .release = seq_release_net,
4317 };
4318
4319
4320 static int __net_init dev_proc_net_init(struct net *net)
4321 {
4322 int rc = -ENOMEM;
4323
4324 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4325 goto out;
4326 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4327 goto out_dev;
4328 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4329 goto out_softnet;
4330
4331 if (wext_proc_init(net))
4332 goto out_ptype;
4333 rc = 0;
4334 out:
4335 return rc;
4336 out_ptype:
4337 proc_net_remove(net, "ptype");
4338 out_softnet:
4339 proc_net_remove(net, "softnet_stat");
4340 out_dev:
4341 proc_net_remove(net, "dev");
4342 goto out;
4343 }
4344
4345 static void __net_exit dev_proc_net_exit(struct net *net)
4346 {
4347 wext_proc_exit(net);
4348
4349 proc_net_remove(net, "ptype");
4350 proc_net_remove(net, "softnet_stat");
4351 proc_net_remove(net, "dev");
4352 }
4353
4354 static struct pernet_operations __net_initdata dev_proc_ops = {
4355 .init = dev_proc_net_init,
4356 .exit = dev_proc_net_exit,
4357 };
4358
4359 static int __init dev_proc_init(void)
4360 {
4361 return register_pernet_subsys(&dev_proc_ops);
4362 }
4363 #else
4364 #define dev_proc_init() 0
4365 #endif /* CONFIG_PROC_FS */
4366
4367
4368 /**
4369 * netdev_set_master - set up master pointer
4370 * @slave: slave device
4371 * @master: new master device
4372 *
4373 * Changes the master device of the slave. Pass %NULL to break the
4374 * bonding. The caller must hold the RTNL semaphore. On a failure
4375 * a negative errno code is returned. On success the reference counts
4376 * are adjusted and the function returns zero.
4377 */
4378 int netdev_set_master(struct net_device *slave, struct net_device *master)
4379 {
4380 struct net_device *old = slave->master;
4381
4382 ASSERT_RTNL();
4383
4384 if (master) {
4385 if (old)
4386 return -EBUSY;
4387 dev_hold(master);
4388 }
4389
4390 slave->master = master;
4391
4392 if (old)
4393 dev_put(old);
4394 return 0;
4395 }
4396 EXPORT_SYMBOL(netdev_set_master);
4397
4398 /**
4399 * netdev_set_bond_master - set up bonding master/slave pair
4400 * @slave: slave device
4401 * @master: new master device
4402 *
4403 * Changes the master device of the slave. Pass %NULL to break the
4404 * bonding. The caller must hold the RTNL semaphore. On a failure
4405 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4406 * to the routing socket and the function returns zero.
4407 */
4408 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4409 {
4410 int err;
4411
4412 ASSERT_RTNL();
4413
4414 err = netdev_set_master(slave, master);
4415 if (err)
4416 return err;
4417 if (master)
4418 slave->flags |= IFF_SLAVE;
4419 else
4420 slave->flags &= ~IFF_SLAVE;
4421
4422 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4423 return 0;
4424 }
4425 EXPORT_SYMBOL(netdev_set_bond_master);
4426
4427 static void dev_change_rx_flags(struct net_device *dev, int flags)
4428 {
4429 const struct net_device_ops *ops = dev->netdev_ops;
4430
4431 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4432 ops->ndo_change_rx_flags(dev, flags);
4433 }
4434
4435 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4436 {
4437 unsigned int old_flags = dev->flags;
4438 uid_t uid;
4439 gid_t gid;
4440
4441 ASSERT_RTNL();
4442
4443 dev->flags |= IFF_PROMISC;
4444 dev->promiscuity += inc;
4445 if (dev->promiscuity == 0) {
4446 /*
4447 * Avoid overflow.
4448 * If inc causes overflow, untouch promisc and return error.
4449 */
4450 if (inc < 0)
4451 dev->flags &= ~IFF_PROMISC;
4452 else {
4453 dev->promiscuity -= inc;
4454 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4455 dev->name);
4456 return -EOVERFLOW;
4457 }
4458 }
4459 if (dev->flags != old_flags) {
4460 pr_info("device %s %s promiscuous mode\n",
4461 dev->name,
4462 dev->flags & IFF_PROMISC ? "entered" : "left");
4463 if (audit_enabled) {
4464 current_uid_gid(&uid, &gid);
4465 audit_log(current->audit_context, GFP_ATOMIC,
4466 AUDIT_ANOM_PROMISCUOUS,
4467 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4468 dev->name, (dev->flags & IFF_PROMISC),
4469 (old_flags & IFF_PROMISC),
4470 audit_get_loginuid(current),
4471 uid, gid,
4472 audit_get_sessionid(current));
4473 }
4474
4475 dev_change_rx_flags(dev, IFF_PROMISC);
4476 }
4477 return 0;
4478 }
4479
4480 /**
4481 * dev_set_promiscuity - update promiscuity count on a device
4482 * @dev: device
4483 * @inc: modifier
4484 *
4485 * Add or remove promiscuity from a device. While the count in the device
4486 * remains above zero the interface remains promiscuous. Once it hits zero
4487 * the device reverts back to normal filtering operation. A negative inc
4488 * value is used to drop promiscuity on the device.
4489 * Return 0 if successful or a negative errno code on error.
4490 */
4491 int dev_set_promiscuity(struct net_device *dev, int inc)
4492 {
4493 unsigned int old_flags = dev->flags;
4494 int err;
4495
4496 err = __dev_set_promiscuity(dev, inc);
4497 if (err < 0)
4498 return err;
4499 if (dev->flags != old_flags)
4500 dev_set_rx_mode(dev);
4501 return err;
4502 }
4503 EXPORT_SYMBOL(dev_set_promiscuity);
4504
4505 /**
4506 * dev_set_allmulti - update allmulti count on a device
4507 * @dev: device
4508 * @inc: modifier
4509 *
4510 * Add or remove reception of all multicast frames to a device. While the
4511 * count in the device remains above zero the interface remains listening
4512 * to all interfaces. Once it hits zero the device reverts back to normal
4513 * filtering operation. A negative @inc value is used to drop the counter
4514 * when releasing a resource needing all multicasts.
4515 * Return 0 if successful or a negative errno code on error.
4516 */
4517
4518 int dev_set_allmulti(struct net_device *dev, int inc)
4519 {
4520 unsigned int old_flags = dev->flags;
4521
4522 ASSERT_RTNL();
4523
4524 dev->flags |= IFF_ALLMULTI;
4525 dev->allmulti += inc;
4526 if (dev->allmulti == 0) {
4527 /*
4528 * Avoid overflow.
4529 * If inc causes overflow, untouch allmulti and return error.
4530 */
4531 if (inc < 0)
4532 dev->flags &= ~IFF_ALLMULTI;
4533 else {
4534 dev->allmulti -= inc;
4535 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4536 dev->name);
4537 return -EOVERFLOW;
4538 }
4539 }
4540 if (dev->flags ^ old_flags) {
4541 dev_change_rx_flags(dev, IFF_ALLMULTI);
4542 dev_set_rx_mode(dev);
4543 }
4544 return 0;
4545 }
4546 EXPORT_SYMBOL(dev_set_allmulti);
4547
4548 /*
4549 * Upload unicast and multicast address lists to device and
4550 * configure RX filtering. When the device doesn't support unicast
4551 * filtering it is put in promiscuous mode while unicast addresses
4552 * are present.
4553 */
4554 void __dev_set_rx_mode(struct net_device *dev)
4555 {
4556 const struct net_device_ops *ops = dev->netdev_ops;
4557
4558 /* dev_open will call this function so the list will stay sane. */
4559 if (!(dev->flags&IFF_UP))
4560 return;
4561
4562 if (!netif_device_present(dev))
4563 return;
4564
4565 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4566 /* Unicast addresses changes may only happen under the rtnl,
4567 * therefore calling __dev_set_promiscuity here is safe.
4568 */
4569 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4570 __dev_set_promiscuity(dev, 1);
4571 dev->uc_promisc = true;
4572 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4573 __dev_set_promiscuity(dev, -1);
4574 dev->uc_promisc = false;
4575 }
4576 }
4577
4578 if (ops->ndo_set_rx_mode)
4579 ops->ndo_set_rx_mode(dev);
4580 }
4581
4582 void dev_set_rx_mode(struct net_device *dev)
4583 {
4584 netif_addr_lock_bh(dev);
4585 __dev_set_rx_mode(dev);
4586 netif_addr_unlock_bh(dev);
4587 }
4588
4589 /**
4590 * dev_get_flags - get flags reported to userspace
4591 * @dev: device
4592 *
4593 * Get the combination of flag bits exported through APIs to userspace.
4594 */
4595 unsigned dev_get_flags(const struct net_device *dev)
4596 {
4597 unsigned flags;
4598
4599 flags = (dev->flags & ~(IFF_PROMISC |
4600 IFF_ALLMULTI |
4601 IFF_RUNNING |
4602 IFF_LOWER_UP |
4603 IFF_DORMANT)) |
4604 (dev->gflags & (IFF_PROMISC |
4605 IFF_ALLMULTI));
4606
4607 if (netif_running(dev)) {
4608 if (netif_oper_up(dev))
4609 flags |= IFF_RUNNING;
4610 if (netif_carrier_ok(dev))
4611 flags |= IFF_LOWER_UP;
4612 if (netif_dormant(dev))
4613 flags |= IFF_DORMANT;
4614 }
4615
4616 return flags;
4617 }
4618 EXPORT_SYMBOL(dev_get_flags);
4619
4620 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4621 {
4622 unsigned int old_flags = dev->flags;
4623 int ret;
4624
4625 ASSERT_RTNL();
4626
4627 /*
4628 * Set the flags on our device.
4629 */
4630
4631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4633 IFF_AUTOMEDIA)) |
4634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4635 IFF_ALLMULTI));
4636
4637 /*
4638 * Load in the correct multicast list now the flags have changed.
4639 */
4640
4641 if ((old_flags ^ flags) & IFF_MULTICAST)
4642 dev_change_rx_flags(dev, IFF_MULTICAST);
4643
4644 dev_set_rx_mode(dev);
4645
4646 /*
4647 * Have we downed the interface. We handle IFF_UP ourselves
4648 * according to user attempts to set it, rather than blindly
4649 * setting it.
4650 */
4651
4652 ret = 0;
4653 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4654 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4655
4656 if (!ret)
4657 dev_set_rx_mode(dev);
4658 }
4659
4660 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4661 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4662
4663 dev->gflags ^= IFF_PROMISC;
4664 dev_set_promiscuity(dev, inc);
4665 }
4666
4667 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4668 is important. Some (broken) drivers set IFF_PROMISC, when
4669 IFF_ALLMULTI is requested not asking us and not reporting.
4670 */
4671 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4672 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4673
4674 dev->gflags ^= IFF_ALLMULTI;
4675 dev_set_allmulti(dev, inc);
4676 }
4677
4678 return ret;
4679 }
4680
4681 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4682 {
4683 unsigned int changes = dev->flags ^ old_flags;
4684
4685 if (changes & IFF_UP) {
4686 if (dev->flags & IFF_UP)
4687 call_netdevice_notifiers(NETDEV_UP, dev);
4688 else
4689 call_netdevice_notifiers(NETDEV_DOWN, dev);
4690 }
4691
4692 if (dev->flags & IFF_UP &&
4693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4694 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4695 }
4696
4697 /**
4698 * dev_change_flags - change device settings
4699 * @dev: device
4700 * @flags: device state flags
4701 *
4702 * Change settings on device based state flags. The flags are
4703 * in the userspace exported format.
4704 */
4705 int dev_change_flags(struct net_device *dev, unsigned int flags)
4706 {
4707 int ret;
4708 unsigned int changes, old_flags = dev->flags;
4709
4710 ret = __dev_change_flags(dev, flags);
4711 if (ret < 0)
4712 return ret;
4713
4714 changes = old_flags ^ dev->flags;
4715 if (changes)
4716 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4717
4718 __dev_notify_flags(dev, old_flags);
4719 return ret;
4720 }
4721 EXPORT_SYMBOL(dev_change_flags);
4722
4723 /**
4724 * dev_set_mtu - Change maximum transfer unit
4725 * @dev: device
4726 * @new_mtu: new transfer unit
4727 *
4728 * Change the maximum transfer size of the network device.
4729 */
4730 int dev_set_mtu(struct net_device *dev, int new_mtu)
4731 {
4732 const struct net_device_ops *ops = dev->netdev_ops;
4733 int err;
4734
4735 if (new_mtu == dev->mtu)
4736 return 0;
4737
4738 /* MTU must be positive. */
4739 if (new_mtu < 0)
4740 return -EINVAL;
4741
4742 if (!netif_device_present(dev))
4743 return -ENODEV;
4744
4745 err = 0;
4746 if (ops->ndo_change_mtu)
4747 err = ops->ndo_change_mtu(dev, new_mtu);
4748 else
4749 dev->mtu = new_mtu;
4750
4751 if (!err && dev->flags & IFF_UP)
4752 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4753 return err;
4754 }
4755 EXPORT_SYMBOL(dev_set_mtu);
4756
4757 /**
4758 * dev_set_group - Change group this device belongs to
4759 * @dev: device
4760 * @new_group: group this device should belong to
4761 */
4762 void dev_set_group(struct net_device *dev, int new_group)
4763 {
4764 dev->group = new_group;
4765 }
4766 EXPORT_SYMBOL(dev_set_group);
4767
4768 /**
4769 * dev_set_mac_address - Change Media Access Control Address
4770 * @dev: device
4771 * @sa: new address
4772 *
4773 * Change the hardware (MAC) address of the device
4774 */
4775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4776 {
4777 const struct net_device_ops *ops = dev->netdev_ops;
4778 int err;
4779
4780 if (!ops->ndo_set_mac_address)
4781 return -EOPNOTSUPP;
4782 if (sa->sa_family != dev->type)
4783 return -EINVAL;
4784 if (!netif_device_present(dev))
4785 return -ENODEV;
4786 err = ops->ndo_set_mac_address(dev, sa);
4787 if (!err)
4788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4789 return err;
4790 }
4791 EXPORT_SYMBOL(dev_set_mac_address);
4792
4793 /*
4794 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4795 */
4796 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4797 {
4798 int err;
4799 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4800
4801 if (!dev)
4802 return -ENODEV;
4803
4804 switch (cmd) {
4805 case SIOCGIFFLAGS: /* Get interface flags */
4806 ifr->ifr_flags = (short) dev_get_flags(dev);
4807 return 0;
4808
4809 case SIOCGIFMETRIC: /* Get the metric on the interface
4810 (currently unused) */
4811 ifr->ifr_metric = 0;
4812 return 0;
4813
4814 case SIOCGIFMTU: /* Get the MTU of a device */
4815 ifr->ifr_mtu = dev->mtu;
4816 return 0;
4817
4818 case SIOCGIFHWADDR:
4819 if (!dev->addr_len)
4820 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4821 else
4822 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4823 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4824 ifr->ifr_hwaddr.sa_family = dev->type;
4825 return 0;
4826
4827 case SIOCGIFSLAVE:
4828 err = -EINVAL;
4829 break;
4830
4831 case SIOCGIFMAP:
4832 ifr->ifr_map.mem_start = dev->mem_start;
4833 ifr->ifr_map.mem_end = dev->mem_end;
4834 ifr->ifr_map.base_addr = dev->base_addr;
4835 ifr->ifr_map.irq = dev->irq;
4836 ifr->ifr_map.dma = dev->dma;
4837 ifr->ifr_map.port = dev->if_port;
4838 return 0;
4839
4840 case SIOCGIFINDEX:
4841 ifr->ifr_ifindex = dev->ifindex;
4842 return 0;
4843
4844 case SIOCGIFTXQLEN:
4845 ifr->ifr_qlen = dev->tx_queue_len;
4846 return 0;
4847
4848 default:
4849 /* dev_ioctl() should ensure this case
4850 * is never reached
4851 */
4852 WARN_ON(1);
4853 err = -ENOTTY;
4854 break;
4855
4856 }
4857 return err;
4858 }
4859
4860 /*
4861 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4862 */
4863 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4864 {
4865 int err;
4866 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4867 const struct net_device_ops *ops;
4868
4869 if (!dev)
4870 return -ENODEV;
4871
4872 ops = dev->netdev_ops;
4873
4874 switch (cmd) {
4875 case SIOCSIFFLAGS: /* Set interface flags */
4876 return dev_change_flags(dev, ifr->ifr_flags);
4877
4878 case SIOCSIFMETRIC: /* Set the metric on the interface
4879 (currently unused) */
4880 return -EOPNOTSUPP;
4881
4882 case SIOCSIFMTU: /* Set the MTU of a device */
4883 return dev_set_mtu(dev, ifr->ifr_mtu);
4884
4885 case SIOCSIFHWADDR:
4886 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4887
4888 case SIOCSIFHWBROADCAST:
4889 if (ifr->ifr_hwaddr.sa_family != dev->type)
4890 return -EINVAL;
4891 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4892 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4893 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4894 return 0;
4895
4896 case SIOCSIFMAP:
4897 if (ops->ndo_set_config) {
4898 if (!netif_device_present(dev))
4899 return -ENODEV;
4900 return ops->ndo_set_config(dev, &ifr->ifr_map);
4901 }
4902 return -EOPNOTSUPP;
4903
4904 case SIOCADDMULTI:
4905 if (!ops->ndo_set_rx_mode ||
4906 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4907 return -EINVAL;
4908 if (!netif_device_present(dev))
4909 return -ENODEV;
4910 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4911
4912 case SIOCDELMULTI:
4913 if (!ops->ndo_set_rx_mode ||
4914 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4915 return -EINVAL;
4916 if (!netif_device_present(dev))
4917 return -ENODEV;
4918 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4919
4920 case SIOCSIFTXQLEN:
4921 if (ifr->ifr_qlen < 0)
4922 return -EINVAL;
4923 dev->tx_queue_len = ifr->ifr_qlen;
4924 return 0;
4925
4926 case SIOCSIFNAME:
4927 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4928 return dev_change_name(dev, ifr->ifr_newname);
4929
4930 case SIOCSHWTSTAMP:
4931 err = net_hwtstamp_validate(ifr);
4932 if (err)
4933 return err;
4934 /* fall through */
4935
4936 /*
4937 * Unknown or private ioctl
4938 */
4939 default:
4940 if ((cmd >= SIOCDEVPRIVATE &&
4941 cmd <= SIOCDEVPRIVATE + 15) ||
4942 cmd == SIOCBONDENSLAVE ||
4943 cmd == SIOCBONDRELEASE ||
4944 cmd == SIOCBONDSETHWADDR ||
4945 cmd == SIOCBONDSLAVEINFOQUERY ||
4946 cmd == SIOCBONDINFOQUERY ||
4947 cmd == SIOCBONDCHANGEACTIVE ||
4948 cmd == SIOCGMIIPHY ||
4949 cmd == SIOCGMIIREG ||
4950 cmd == SIOCSMIIREG ||
4951 cmd == SIOCBRADDIF ||
4952 cmd == SIOCBRDELIF ||
4953 cmd == SIOCSHWTSTAMP ||
4954 cmd == SIOCWANDEV) {
4955 err = -EOPNOTSUPP;
4956 if (ops->ndo_do_ioctl) {
4957 if (netif_device_present(dev))
4958 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4959 else
4960 err = -ENODEV;
4961 }
4962 } else
4963 err = -EINVAL;
4964
4965 }
4966 return err;
4967 }
4968
4969 /*
4970 * This function handles all "interface"-type I/O control requests. The actual
4971 * 'doing' part of this is dev_ifsioc above.
4972 */
4973
4974 /**
4975 * dev_ioctl - network device ioctl
4976 * @net: the applicable net namespace
4977 * @cmd: command to issue
4978 * @arg: pointer to a struct ifreq in user space
4979 *
4980 * Issue ioctl functions to devices. This is normally called by the
4981 * user space syscall interfaces but can sometimes be useful for
4982 * other purposes. The return value is the return from the syscall if
4983 * positive or a negative errno code on error.
4984 */
4985
4986 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4987 {
4988 struct ifreq ifr;
4989 int ret;
4990 char *colon;
4991
4992 /* One special case: SIOCGIFCONF takes ifconf argument
4993 and requires shared lock, because it sleeps writing
4994 to user space.
4995 */
4996
4997 if (cmd == SIOCGIFCONF) {
4998 rtnl_lock();
4999 ret = dev_ifconf(net, (char __user *) arg);
5000 rtnl_unlock();
5001 return ret;
5002 }
5003 if (cmd == SIOCGIFNAME)
5004 return dev_ifname(net, (struct ifreq __user *)arg);
5005
5006 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5007 return -EFAULT;
5008
5009 ifr.ifr_name[IFNAMSIZ-1] = 0;
5010
5011 colon = strchr(ifr.ifr_name, ':');
5012 if (colon)
5013 *colon = 0;
5014
5015 /*
5016 * See which interface the caller is talking about.
5017 */
5018
5019 switch (cmd) {
5020 /*
5021 * These ioctl calls:
5022 * - can be done by all.
5023 * - atomic and do not require locking.
5024 * - return a value
5025 */
5026 case SIOCGIFFLAGS:
5027 case SIOCGIFMETRIC:
5028 case SIOCGIFMTU:
5029 case SIOCGIFHWADDR:
5030 case SIOCGIFSLAVE:
5031 case SIOCGIFMAP:
5032 case SIOCGIFINDEX:
5033 case SIOCGIFTXQLEN:
5034 dev_load(net, ifr.ifr_name);
5035 rcu_read_lock();
5036 ret = dev_ifsioc_locked(net, &ifr, cmd);
5037 rcu_read_unlock();
5038 if (!ret) {
5039 if (colon)
5040 *colon = ':';
5041 if (copy_to_user(arg, &ifr,
5042 sizeof(struct ifreq)))
5043 ret = -EFAULT;
5044 }
5045 return ret;
5046
5047 case SIOCETHTOOL:
5048 dev_load(net, ifr.ifr_name);
5049 rtnl_lock();
5050 ret = dev_ethtool(net, &ifr);
5051 rtnl_unlock();
5052 if (!ret) {
5053 if (colon)
5054 *colon = ':';
5055 if (copy_to_user(arg, &ifr,
5056 sizeof(struct ifreq)))
5057 ret = -EFAULT;
5058 }
5059 return ret;
5060
5061 /*
5062 * These ioctl calls:
5063 * - require superuser power.
5064 * - require strict serialization.
5065 * - return a value
5066 */
5067 case SIOCGMIIPHY:
5068 case SIOCGMIIREG:
5069 case SIOCSIFNAME:
5070 if (!capable(CAP_NET_ADMIN))
5071 return -EPERM;
5072 dev_load(net, ifr.ifr_name);
5073 rtnl_lock();
5074 ret = dev_ifsioc(net, &ifr, cmd);
5075 rtnl_unlock();
5076 if (!ret) {
5077 if (colon)
5078 *colon = ':';
5079 if (copy_to_user(arg, &ifr,
5080 sizeof(struct ifreq)))
5081 ret = -EFAULT;
5082 }
5083 return ret;
5084
5085 /*
5086 * These ioctl calls:
5087 * - require superuser power.
5088 * - require strict serialization.
5089 * - do not return a value
5090 */
5091 case SIOCSIFFLAGS:
5092 case SIOCSIFMETRIC:
5093 case SIOCSIFMTU:
5094 case SIOCSIFMAP:
5095 case SIOCSIFHWADDR:
5096 case SIOCSIFSLAVE:
5097 case SIOCADDMULTI:
5098 case SIOCDELMULTI:
5099 case SIOCSIFHWBROADCAST:
5100 case SIOCSIFTXQLEN:
5101 case SIOCSMIIREG:
5102 case SIOCBONDENSLAVE:
5103 case SIOCBONDRELEASE:
5104 case SIOCBONDSETHWADDR:
5105 case SIOCBONDCHANGEACTIVE:
5106 case SIOCBRADDIF:
5107 case SIOCBRDELIF:
5108 case SIOCSHWTSTAMP:
5109 if (!capable(CAP_NET_ADMIN))
5110 return -EPERM;
5111 /* fall through */
5112 case SIOCBONDSLAVEINFOQUERY:
5113 case SIOCBONDINFOQUERY:
5114 dev_load(net, ifr.ifr_name);
5115 rtnl_lock();
5116 ret = dev_ifsioc(net, &ifr, cmd);
5117 rtnl_unlock();
5118 return ret;
5119
5120 case SIOCGIFMEM:
5121 /* Get the per device memory space. We can add this but
5122 * currently do not support it */
5123 case SIOCSIFMEM:
5124 /* Set the per device memory buffer space.
5125 * Not applicable in our case */
5126 case SIOCSIFLINK:
5127 return -ENOTTY;
5128
5129 /*
5130 * Unknown or private ioctl.
5131 */
5132 default:
5133 if (cmd == SIOCWANDEV ||
5134 (cmd >= SIOCDEVPRIVATE &&
5135 cmd <= SIOCDEVPRIVATE + 15)) {
5136 dev_load(net, ifr.ifr_name);
5137 rtnl_lock();
5138 ret = dev_ifsioc(net, &ifr, cmd);
5139 rtnl_unlock();
5140 if (!ret && copy_to_user(arg, &ifr,
5141 sizeof(struct ifreq)))
5142 ret = -EFAULT;
5143 return ret;
5144 }
5145 /* Take care of Wireless Extensions */
5146 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5147 return wext_handle_ioctl(net, &ifr, cmd, arg);
5148 return -ENOTTY;
5149 }
5150 }
5151
5152
5153 /**
5154 * dev_new_index - allocate an ifindex
5155 * @net: the applicable net namespace
5156 *
5157 * Returns a suitable unique value for a new device interface
5158 * number. The caller must hold the rtnl semaphore or the
5159 * dev_base_lock to be sure it remains unique.
5160 */
5161 static int dev_new_index(struct net *net)
5162 {
5163 static int ifindex;
5164 for (;;) {
5165 if (++ifindex <= 0)
5166 ifindex = 1;
5167 if (!__dev_get_by_index(net, ifindex))
5168 return ifindex;
5169 }
5170 }
5171
5172 /* Delayed registration/unregisteration */
5173 static LIST_HEAD(net_todo_list);
5174
5175 static void net_set_todo(struct net_device *dev)
5176 {
5177 list_add_tail(&dev->todo_list, &net_todo_list);
5178 }
5179
5180 static void rollback_registered_many(struct list_head *head)
5181 {
5182 struct net_device *dev, *tmp;
5183
5184 BUG_ON(dev_boot_phase);
5185 ASSERT_RTNL();
5186
5187 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5188 /* Some devices call without registering
5189 * for initialization unwind. Remove those
5190 * devices and proceed with the remaining.
5191 */
5192 if (dev->reg_state == NETREG_UNINITIALIZED) {
5193 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5194 dev->name, dev);
5195
5196 WARN_ON(1);
5197 list_del(&dev->unreg_list);
5198 continue;
5199 }
5200 dev->dismantle = true;
5201 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5202 }
5203
5204 /* If device is running, close it first. */
5205 dev_close_many(head);
5206
5207 list_for_each_entry(dev, head, unreg_list) {
5208 /* And unlink it from device chain. */
5209 unlist_netdevice(dev);
5210
5211 dev->reg_state = NETREG_UNREGISTERING;
5212 }
5213
5214 synchronize_net();
5215
5216 list_for_each_entry(dev, head, unreg_list) {
5217 /* Shutdown queueing discipline. */
5218 dev_shutdown(dev);
5219
5220
5221 /* Notify protocols, that we are about to destroy
5222 this device. They should clean all the things.
5223 */
5224 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5225
5226 if (!dev->rtnl_link_ops ||
5227 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5228 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5229
5230 /*
5231 * Flush the unicast and multicast chains
5232 */
5233 dev_uc_flush(dev);
5234 dev_mc_flush(dev);
5235
5236 if (dev->netdev_ops->ndo_uninit)
5237 dev->netdev_ops->ndo_uninit(dev);
5238
5239 /* Notifier chain MUST detach us from master device. */
5240 WARN_ON(dev->master);
5241
5242 /* Remove entries from kobject tree */
5243 netdev_unregister_kobject(dev);
5244 }
5245
5246 /* Process any work delayed until the end of the batch */
5247 dev = list_first_entry(head, struct net_device, unreg_list);
5248 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5249
5250 synchronize_net();
5251
5252 list_for_each_entry(dev, head, unreg_list)
5253 dev_put(dev);
5254 }
5255
5256 static void rollback_registered(struct net_device *dev)
5257 {
5258 LIST_HEAD(single);
5259
5260 list_add(&dev->unreg_list, &single);
5261 rollback_registered_many(&single);
5262 list_del(&single);
5263 }
5264
5265 static netdev_features_t netdev_fix_features(struct net_device *dev,
5266 netdev_features_t features)
5267 {
5268 /* Fix illegal checksum combinations */
5269 if ((features & NETIF_F_HW_CSUM) &&
5270 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5271 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5272 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5273 }
5274
5275 /* Fix illegal SG+CSUM combinations. */
5276 if ((features & NETIF_F_SG) &&
5277 !(features & NETIF_F_ALL_CSUM)) {
5278 netdev_dbg(dev,
5279 "Dropping NETIF_F_SG since no checksum feature.\n");
5280 features &= ~NETIF_F_SG;
5281 }
5282
5283 /* TSO requires that SG is present as well. */
5284 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5285 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5286 features &= ~NETIF_F_ALL_TSO;
5287 }
5288
5289 /* TSO ECN requires that TSO is present as well. */
5290 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5291 features &= ~NETIF_F_TSO_ECN;
5292
5293 /* Software GSO depends on SG. */
5294 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5295 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5296 features &= ~NETIF_F_GSO;
5297 }
5298
5299 /* UFO needs SG and checksumming */
5300 if (features & NETIF_F_UFO) {
5301 /* maybe split UFO into V4 and V6? */
5302 if (!((features & NETIF_F_GEN_CSUM) ||
5303 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5304 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5305 netdev_dbg(dev,
5306 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5307 features &= ~NETIF_F_UFO;
5308 }
5309
5310 if (!(features & NETIF_F_SG)) {
5311 netdev_dbg(dev,
5312 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5313 features &= ~NETIF_F_UFO;
5314 }
5315 }
5316
5317 return features;
5318 }
5319
5320 int __netdev_update_features(struct net_device *dev)
5321 {
5322 netdev_features_t features;
5323 int err = 0;
5324
5325 ASSERT_RTNL();
5326
5327 features = netdev_get_wanted_features(dev);
5328
5329 if (dev->netdev_ops->ndo_fix_features)
5330 features = dev->netdev_ops->ndo_fix_features(dev, features);
5331
5332 /* driver might be less strict about feature dependencies */
5333 features = netdev_fix_features(dev, features);
5334
5335 if (dev->features == features)
5336 return 0;
5337
5338 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5339 &dev->features, &features);
5340
5341 if (dev->netdev_ops->ndo_set_features)
5342 err = dev->netdev_ops->ndo_set_features(dev, features);
5343
5344 if (unlikely(err < 0)) {
5345 netdev_err(dev,
5346 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5347 err, &features, &dev->features);
5348 return -1;
5349 }
5350
5351 if (!err)
5352 dev->features = features;
5353
5354 return 1;
5355 }
5356
5357 /**
5358 * netdev_update_features - recalculate device features
5359 * @dev: the device to check
5360 *
5361 * Recalculate dev->features set and send notifications if it
5362 * has changed. Should be called after driver or hardware dependent
5363 * conditions might have changed that influence the features.
5364 */
5365 void netdev_update_features(struct net_device *dev)
5366 {
5367 if (__netdev_update_features(dev))
5368 netdev_features_change(dev);
5369 }
5370 EXPORT_SYMBOL(netdev_update_features);
5371
5372 /**
5373 * netdev_change_features - recalculate device features
5374 * @dev: the device to check
5375 *
5376 * Recalculate dev->features set and send notifications even
5377 * if they have not changed. Should be called instead of
5378 * netdev_update_features() if also dev->vlan_features might
5379 * have changed to allow the changes to be propagated to stacked
5380 * VLAN devices.
5381 */
5382 void netdev_change_features(struct net_device *dev)
5383 {
5384 __netdev_update_features(dev);
5385 netdev_features_change(dev);
5386 }
5387 EXPORT_SYMBOL(netdev_change_features);
5388
5389 /**
5390 * netif_stacked_transfer_operstate - transfer operstate
5391 * @rootdev: the root or lower level device to transfer state from
5392 * @dev: the device to transfer operstate to
5393 *
5394 * Transfer operational state from root to device. This is normally
5395 * called when a stacking relationship exists between the root
5396 * device and the device(a leaf device).
5397 */
5398 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5399 struct net_device *dev)
5400 {
5401 if (rootdev->operstate == IF_OPER_DORMANT)
5402 netif_dormant_on(dev);
5403 else
5404 netif_dormant_off(dev);
5405
5406 if (netif_carrier_ok(rootdev)) {
5407 if (!netif_carrier_ok(dev))
5408 netif_carrier_on(dev);
5409 } else {
5410 if (netif_carrier_ok(dev))
5411 netif_carrier_off(dev);
5412 }
5413 }
5414 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5415
5416 #ifdef CONFIG_RPS
5417 static int netif_alloc_rx_queues(struct net_device *dev)
5418 {
5419 unsigned int i, count = dev->num_rx_queues;
5420 struct netdev_rx_queue *rx;
5421
5422 BUG_ON(count < 1);
5423
5424 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5425 if (!rx) {
5426 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5427 return -ENOMEM;
5428 }
5429 dev->_rx = rx;
5430
5431 for (i = 0; i < count; i++)
5432 rx[i].dev = dev;
5433 return 0;
5434 }
5435 #endif
5436
5437 static void netdev_init_one_queue(struct net_device *dev,
5438 struct netdev_queue *queue, void *_unused)
5439 {
5440 /* Initialize queue lock */
5441 spin_lock_init(&queue->_xmit_lock);
5442 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5443 queue->xmit_lock_owner = -1;
5444 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5445 queue->dev = dev;
5446 #ifdef CONFIG_BQL
5447 dql_init(&queue->dql, HZ);
5448 #endif
5449 }
5450
5451 static int netif_alloc_netdev_queues(struct net_device *dev)
5452 {
5453 unsigned int count = dev->num_tx_queues;
5454 struct netdev_queue *tx;
5455
5456 BUG_ON(count < 1);
5457
5458 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5459 if (!tx) {
5460 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5461 return -ENOMEM;
5462 }
5463 dev->_tx = tx;
5464
5465 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5466 spin_lock_init(&dev->tx_global_lock);
5467
5468 return 0;
5469 }
5470
5471 /**
5472 * register_netdevice - register a network device
5473 * @dev: device to register
5474 *
5475 * Take a completed network device structure and add it to the kernel
5476 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5477 * chain. 0 is returned on success. A negative errno code is returned
5478 * on a failure to set up the device, or if the name is a duplicate.
5479 *
5480 * Callers must hold the rtnl semaphore. You may want
5481 * register_netdev() instead of this.
5482 *
5483 * BUGS:
5484 * The locking appears insufficient to guarantee two parallel registers
5485 * will not get the same name.
5486 */
5487
5488 int register_netdevice(struct net_device *dev)
5489 {
5490 int ret;
5491 struct net *net = dev_net(dev);
5492
5493 BUG_ON(dev_boot_phase);
5494 ASSERT_RTNL();
5495
5496 might_sleep();
5497
5498 /* When net_device's are persistent, this will be fatal. */
5499 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5500 BUG_ON(!net);
5501
5502 spin_lock_init(&dev->addr_list_lock);
5503 netdev_set_addr_lockdep_class(dev);
5504
5505 dev->iflink = -1;
5506
5507 ret = dev_get_valid_name(dev, dev->name);
5508 if (ret < 0)
5509 goto out;
5510
5511 /* Init, if this function is available */
5512 if (dev->netdev_ops->ndo_init) {
5513 ret = dev->netdev_ops->ndo_init(dev);
5514 if (ret) {
5515 if (ret > 0)
5516 ret = -EIO;
5517 goto out;
5518 }
5519 }
5520
5521 dev->ifindex = dev_new_index(net);
5522 if (dev->iflink == -1)
5523 dev->iflink = dev->ifindex;
5524
5525 /* Transfer changeable features to wanted_features and enable
5526 * software offloads (GSO and GRO).
5527 */
5528 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5529 dev->features |= NETIF_F_SOFT_FEATURES;
5530 dev->wanted_features = dev->features & dev->hw_features;
5531
5532 /* Turn on no cache copy if HW is doing checksum */
5533 if (!(dev->flags & IFF_LOOPBACK)) {
5534 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5535 if (dev->features & NETIF_F_ALL_CSUM) {
5536 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5537 dev->features |= NETIF_F_NOCACHE_COPY;
5538 }
5539 }
5540
5541 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5542 */
5543 dev->vlan_features |= NETIF_F_HIGHDMA;
5544
5545 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5546 ret = notifier_to_errno(ret);
5547 if (ret)
5548 goto err_uninit;
5549
5550 ret = netdev_register_kobject(dev);
5551 if (ret)
5552 goto err_uninit;
5553 dev->reg_state = NETREG_REGISTERED;
5554
5555 __netdev_update_features(dev);
5556
5557 /*
5558 * Default initial state at registry is that the
5559 * device is present.
5560 */
5561
5562 set_bit(__LINK_STATE_PRESENT, &dev->state);
5563
5564 dev_init_scheduler(dev);
5565 dev_hold(dev);
5566 list_netdevice(dev);
5567
5568 /* Notify protocols, that a new device appeared. */
5569 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5570 ret = notifier_to_errno(ret);
5571 if (ret) {
5572 rollback_registered(dev);
5573 dev->reg_state = NETREG_UNREGISTERED;
5574 }
5575 /*
5576 * Prevent userspace races by waiting until the network
5577 * device is fully setup before sending notifications.
5578 */
5579 if (!dev->rtnl_link_ops ||
5580 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5581 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5582
5583 out:
5584 return ret;
5585
5586 err_uninit:
5587 if (dev->netdev_ops->ndo_uninit)
5588 dev->netdev_ops->ndo_uninit(dev);
5589 goto out;
5590 }
5591 EXPORT_SYMBOL(register_netdevice);
5592
5593 /**
5594 * init_dummy_netdev - init a dummy network device for NAPI
5595 * @dev: device to init
5596 *
5597 * This takes a network device structure and initialize the minimum
5598 * amount of fields so it can be used to schedule NAPI polls without
5599 * registering a full blown interface. This is to be used by drivers
5600 * that need to tie several hardware interfaces to a single NAPI
5601 * poll scheduler due to HW limitations.
5602 */
5603 int init_dummy_netdev(struct net_device *dev)
5604 {
5605 /* Clear everything. Note we don't initialize spinlocks
5606 * are they aren't supposed to be taken by any of the
5607 * NAPI code and this dummy netdev is supposed to be
5608 * only ever used for NAPI polls
5609 */
5610 memset(dev, 0, sizeof(struct net_device));
5611
5612 /* make sure we BUG if trying to hit standard
5613 * register/unregister code path
5614 */
5615 dev->reg_state = NETREG_DUMMY;
5616
5617 /* NAPI wants this */
5618 INIT_LIST_HEAD(&dev->napi_list);
5619
5620 /* a dummy interface is started by default */
5621 set_bit(__LINK_STATE_PRESENT, &dev->state);
5622 set_bit(__LINK_STATE_START, &dev->state);
5623
5624 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5625 * because users of this 'device' dont need to change
5626 * its refcount.
5627 */
5628
5629 return 0;
5630 }
5631 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5632
5633
5634 /**
5635 * register_netdev - register a network device
5636 * @dev: device to register
5637 *
5638 * Take a completed network device structure and add it to the kernel
5639 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5640 * chain. 0 is returned on success. A negative errno code is returned
5641 * on a failure to set up the device, or if the name is a duplicate.
5642 *
5643 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5644 * and expands the device name if you passed a format string to
5645 * alloc_netdev.
5646 */
5647 int register_netdev(struct net_device *dev)
5648 {
5649 int err;
5650
5651 rtnl_lock();
5652 err = register_netdevice(dev);
5653 rtnl_unlock();
5654 return err;
5655 }
5656 EXPORT_SYMBOL(register_netdev);
5657
5658 int netdev_refcnt_read(const struct net_device *dev)
5659 {
5660 int i, refcnt = 0;
5661
5662 for_each_possible_cpu(i)
5663 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5664 return refcnt;
5665 }
5666 EXPORT_SYMBOL(netdev_refcnt_read);
5667
5668 /*
5669 * netdev_wait_allrefs - wait until all references are gone.
5670 *
5671 * This is called when unregistering network devices.
5672 *
5673 * Any protocol or device that holds a reference should register
5674 * for netdevice notification, and cleanup and put back the
5675 * reference if they receive an UNREGISTER event.
5676 * We can get stuck here if buggy protocols don't correctly
5677 * call dev_put.
5678 */
5679 static void netdev_wait_allrefs(struct net_device *dev)
5680 {
5681 unsigned long rebroadcast_time, warning_time;
5682 int refcnt;
5683
5684 linkwatch_forget_dev(dev);
5685
5686 rebroadcast_time = warning_time = jiffies;
5687 refcnt = netdev_refcnt_read(dev);
5688
5689 while (refcnt != 0) {
5690 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5691 rtnl_lock();
5692
5693 /* Rebroadcast unregister notification */
5694 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5695 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5696 * should have already handle it the first time */
5697
5698 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5699 &dev->state)) {
5700 /* We must not have linkwatch events
5701 * pending on unregister. If this
5702 * happens, we simply run the queue
5703 * unscheduled, resulting in a noop
5704 * for this device.
5705 */
5706 linkwatch_run_queue();
5707 }
5708
5709 __rtnl_unlock();
5710
5711 rebroadcast_time = jiffies;
5712 }
5713
5714 msleep(250);
5715
5716 refcnt = netdev_refcnt_read(dev);
5717
5718 if (time_after(jiffies, warning_time + 10 * HZ)) {
5719 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5720 dev->name, refcnt);
5721 warning_time = jiffies;
5722 }
5723 }
5724 }
5725
5726 /* The sequence is:
5727 *
5728 * rtnl_lock();
5729 * ...
5730 * register_netdevice(x1);
5731 * register_netdevice(x2);
5732 * ...
5733 * unregister_netdevice(y1);
5734 * unregister_netdevice(y2);
5735 * ...
5736 * rtnl_unlock();
5737 * free_netdev(y1);
5738 * free_netdev(y2);
5739 *
5740 * We are invoked by rtnl_unlock().
5741 * This allows us to deal with problems:
5742 * 1) We can delete sysfs objects which invoke hotplug
5743 * without deadlocking with linkwatch via keventd.
5744 * 2) Since we run with the RTNL semaphore not held, we can sleep
5745 * safely in order to wait for the netdev refcnt to drop to zero.
5746 *
5747 * We must not return until all unregister events added during
5748 * the interval the lock was held have been completed.
5749 */
5750 void netdev_run_todo(void)
5751 {
5752 struct list_head list;
5753
5754 /* Snapshot list, allow later requests */
5755 list_replace_init(&net_todo_list, &list);
5756
5757 __rtnl_unlock();
5758
5759 /* Wait for rcu callbacks to finish before attempting to drain
5760 * the device list. This usually avoids a 250ms wait.
5761 */
5762 if (!list_empty(&list))
5763 rcu_barrier();
5764
5765 while (!list_empty(&list)) {
5766 struct net_device *dev
5767 = list_first_entry(&list, struct net_device, todo_list);
5768 list_del(&dev->todo_list);
5769
5770 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5771 pr_err("network todo '%s' but state %d\n",
5772 dev->name, dev->reg_state);
5773 dump_stack();
5774 continue;
5775 }
5776
5777 dev->reg_state = NETREG_UNREGISTERED;
5778
5779 on_each_cpu(flush_backlog, dev, 1);
5780
5781 netdev_wait_allrefs(dev);
5782
5783 /* paranoia */
5784 BUG_ON(netdev_refcnt_read(dev));
5785 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5786 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5787 WARN_ON(dev->dn_ptr);
5788
5789 if (dev->destructor)
5790 dev->destructor(dev);
5791
5792 /* Free network device */
5793 kobject_put(&dev->dev.kobj);
5794 }
5795 }
5796
5797 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5798 * fields in the same order, with only the type differing.
5799 */
5800 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5801 const struct net_device_stats *netdev_stats)
5802 {
5803 #if BITS_PER_LONG == 64
5804 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5805 memcpy(stats64, netdev_stats, sizeof(*stats64));
5806 #else
5807 size_t i, n = sizeof(*stats64) / sizeof(u64);
5808 const unsigned long *src = (const unsigned long *)netdev_stats;
5809 u64 *dst = (u64 *)stats64;
5810
5811 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5812 sizeof(*stats64) / sizeof(u64));
5813 for (i = 0; i < n; i++)
5814 dst[i] = src[i];
5815 #endif
5816 }
5817 EXPORT_SYMBOL(netdev_stats_to_stats64);
5818
5819 /**
5820 * dev_get_stats - get network device statistics
5821 * @dev: device to get statistics from
5822 * @storage: place to store stats
5823 *
5824 * Get network statistics from device. Return @storage.
5825 * The device driver may provide its own method by setting
5826 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5827 * otherwise the internal statistics structure is used.
5828 */
5829 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5830 struct rtnl_link_stats64 *storage)
5831 {
5832 const struct net_device_ops *ops = dev->netdev_ops;
5833
5834 if (ops->ndo_get_stats64) {
5835 memset(storage, 0, sizeof(*storage));
5836 ops->ndo_get_stats64(dev, storage);
5837 } else if (ops->ndo_get_stats) {
5838 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5839 } else {
5840 netdev_stats_to_stats64(storage, &dev->stats);
5841 }
5842 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5843 return storage;
5844 }
5845 EXPORT_SYMBOL(dev_get_stats);
5846
5847 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5848 {
5849 struct netdev_queue *queue = dev_ingress_queue(dev);
5850
5851 #ifdef CONFIG_NET_CLS_ACT
5852 if (queue)
5853 return queue;
5854 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5855 if (!queue)
5856 return NULL;
5857 netdev_init_one_queue(dev, queue, NULL);
5858 queue->qdisc = &noop_qdisc;
5859 queue->qdisc_sleeping = &noop_qdisc;
5860 rcu_assign_pointer(dev->ingress_queue, queue);
5861 #endif
5862 return queue;
5863 }
5864
5865 /**
5866 * alloc_netdev_mqs - allocate network device
5867 * @sizeof_priv: size of private data to allocate space for
5868 * @name: device name format string
5869 * @setup: callback to initialize device
5870 * @txqs: the number of TX subqueues to allocate
5871 * @rxqs: the number of RX subqueues to allocate
5872 *
5873 * Allocates a struct net_device with private data area for driver use
5874 * and performs basic initialization. Also allocates subquue structs
5875 * for each queue on the device.
5876 */
5877 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5878 void (*setup)(struct net_device *),
5879 unsigned int txqs, unsigned int rxqs)
5880 {
5881 struct net_device *dev;
5882 size_t alloc_size;
5883 struct net_device *p;
5884
5885 BUG_ON(strlen(name) >= sizeof(dev->name));
5886
5887 if (txqs < 1) {
5888 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5889 return NULL;
5890 }
5891
5892 #ifdef CONFIG_RPS
5893 if (rxqs < 1) {
5894 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5895 return NULL;
5896 }
5897 #endif
5898
5899 alloc_size = sizeof(struct net_device);
5900 if (sizeof_priv) {
5901 /* ensure 32-byte alignment of private area */
5902 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5903 alloc_size += sizeof_priv;
5904 }
5905 /* ensure 32-byte alignment of whole construct */
5906 alloc_size += NETDEV_ALIGN - 1;
5907
5908 p = kzalloc(alloc_size, GFP_KERNEL);
5909 if (!p) {
5910 pr_err("alloc_netdev: Unable to allocate device\n");
5911 return NULL;
5912 }
5913
5914 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5915 dev->padded = (char *)dev - (char *)p;
5916
5917 dev->pcpu_refcnt = alloc_percpu(int);
5918 if (!dev->pcpu_refcnt)
5919 goto free_p;
5920
5921 if (dev_addr_init(dev))
5922 goto free_pcpu;
5923
5924 dev_mc_init(dev);
5925 dev_uc_init(dev);
5926
5927 dev_net_set(dev, &init_net);
5928
5929 dev->gso_max_size = GSO_MAX_SIZE;
5930
5931 INIT_LIST_HEAD(&dev->napi_list);
5932 INIT_LIST_HEAD(&dev->unreg_list);
5933 INIT_LIST_HEAD(&dev->link_watch_list);
5934 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5935 setup(dev);
5936
5937 dev->num_tx_queues = txqs;
5938 dev->real_num_tx_queues = txqs;
5939 if (netif_alloc_netdev_queues(dev))
5940 goto free_all;
5941
5942 #ifdef CONFIG_RPS
5943 dev->num_rx_queues = rxqs;
5944 dev->real_num_rx_queues = rxqs;
5945 if (netif_alloc_rx_queues(dev))
5946 goto free_all;
5947 #endif
5948
5949 strcpy(dev->name, name);
5950 dev->group = INIT_NETDEV_GROUP;
5951 return dev;
5952
5953 free_all:
5954 free_netdev(dev);
5955 return NULL;
5956
5957 free_pcpu:
5958 free_percpu(dev->pcpu_refcnt);
5959 kfree(dev->_tx);
5960 #ifdef CONFIG_RPS
5961 kfree(dev->_rx);
5962 #endif
5963
5964 free_p:
5965 kfree(p);
5966 return NULL;
5967 }
5968 EXPORT_SYMBOL(alloc_netdev_mqs);
5969
5970 /**
5971 * free_netdev - free network device
5972 * @dev: device
5973 *
5974 * This function does the last stage of destroying an allocated device
5975 * interface. The reference to the device object is released.
5976 * If this is the last reference then it will be freed.
5977 */
5978 void free_netdev(struct net_device *dev)
5979 {
5980 struct napi_struct *p, *n;
5981
5982 release_net(dev_net(dev));
5983
5984 kfree(dev->_tx);
5985 #ifdef CONFIG_RPS
5986 kfree(dev->_rx);
5987 #endif
5988
5989 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5990
5991 /* Flush device addresses */
5992 dev_addr_flush(dev);
5993
5994 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5995 netif_napi_del(p);
5996
5997 free_percpu(dev->pcpu_refcnt);
5998 dev->pcpu_refcnt = NULL;
5999
6000 /* Compatibility with error handling in drivers */
6001 if (dev->reg_state == NETREG_UNINITIALIZED) {
6002 kfree((char *)dev - dev->padded);
6003 return;
6004 }
6005
6006 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6007 dev->reg_state = NETREG_RELEASED;
6008
6009 /* will free via device release */
6010 put_device(&dev->dev);
6011 }
6012 EXPORT_SYMBOL(free_netdev);
6013
6014 /**
6015 * synchronize_net - Synchronize with packet receive processing
6016 *
6017 * Wait for packets currently being received to be done.
6018 * Does not block later packets from starting.
6019 */
6020 void synchronize_net(void)
6021 {
6022 might_sleep();
6023 if (rtnl_is_locked())
6024 synchronize_rcu_expedited();
6025 else
6026 synchronize_rcu();
6027 }
6028 EXPORT_SYMBOL(synchronize_net);
6029
6030 /**
6031 * unregister_netdevice_queue - remove device from the kernel
6032 * @dev: device
6033 * @head: list
6034 *
6035 * This function shuts down a device interface and removes it
6036 * from the kernel tables.
6037 * If head not NULL, device is queued to be unregistered later.
6038 *
6039 * Callers must hold the rtnl semaphore. You may want
6040 * unregister_netdev() instead of this.
6041 */
6042
6043 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6044 {
6045 ASSERT_RTNL();
6046
6047 if (head) {
6048 list_move_tail(&dev->unreg_list, head);
6049 } else {
6050 rollback_registered(dev);
6051 /* Finish processing unregister after unlock */
6052 net_set_todo(dev);
6053 }
6054 }
6055 EXPORT_SYMBOL(unregister_netdevice_queue);
6056
6057 /**
6058 * unregister_netdevice_many - unregister many devices
6059 * @head: list of devices
6060 */
6061 void unregister_netdevice_many(struct list_head *head)
6062 {
6063 struct net_device *dev;
6064
6065 if (!list_empty(head)) {
6066 rollback_registered_many(head);
6067 list_for_each_entry(dev, head, unreg_list)
6068 net_set_todo(dev);
6069 }
6070 }
6071 EXPORT_SYMBOL(unregister_netdevice_many);
6072
6073 /**
6074 * unregister_netdev - remove device from the kernel
6075 * @dev: device
6076 *
6077 * This function shuts down a device interface and removes it
6078 * from the kernel tables.
6079 *
6080 * This is just a wrapper for unregister_netdevice that takes
6081 * the rtnl semaphore. In general you want to use this and not
6082 * unregister_netdevice.
6083 */
6084 void unregister_netdev(struct net_device *dev)
6085 {
6086 rtnl_lock();
6087 unregister_netdevice(dev);
6088 rtnl_unlock();
6089 }
6090 EXPORT_SYMBOL(unregister_netdev);
6091
6092 /**
6093 * dev_change_net_namespace - move device to different nethost namespace
6094 * @dev: device
6095 * @net: network namespace
6096 * @pat: If not NULL name pattern to try if the current device name
6097 * is already taken in the destination network namespace.
6098 *
6099 * This function shuts down a device interface and moves it
6100 * to a new network namespace. On success 0 is returned, on
6101 * a failure a netagive errno code is returned.
6102 *
6103 * Callers must hold the rtnl semaphore.
6104 */
6105
6106 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6107 {
6108 int err;
6109
6110 ASSERT_RTNL();
6111
6112 /* Don't allow namespace local devices to be moved. */
6113 err = -EINVAL;
6114 if (dev->features & NETIF_F_NETNS_LOCAL)
6115 goto out;
6116
6117 /* Ensure the device has been registrered */
6118 err = -EINVAL;
6119 if (dev->reg_state != NETREG_REGISTERED)
6120 goto out;
6121
6122 /* Get out if there is nothing todo */
6123 err = 0;
6124 if (net_eq(dev_net(dev), net))
6125 goto out;
6126
6127 /* Pick the destination device name, and ensure
6128 * we can use it in the destination network namespace.
6129 */
6130 err = -EEXIST;
6131 if (__dev_get_by_name(net, dev->name)) {
6132 /* We get here if we can't use the current device name */
6133 if (!pat)
6134 goto out;
6135 if (dev_get_valid_name(dev, pat) < 0)
6136 goto out;
6137 }
6138
6139 /*
6140 * And now a mini version of register_netdevice unregister_netdevice.
6141 */
6142
6143 /* If device is running close it first. */
6144 dev_close(dev);
6145
6146 /* And unlink it from device chain */
6147 err = -ENODEV;
6148 unlist_netdevice(dev);
6149
6150 synchronize_net();
6151
6152 /* Shutdown queueing discipline. */
6153 dev_shutdown(dev);
6154
6155 /* Notify protocols, that we are about to destroy
6156 this device. They should clean all the things.
6157
6158 Note that dev->reg_state stays at NETREG_REGISTERED.
6159 This is wanted because this way 8021q and macvlan know
6160 the device is just moving and can keep their slaves up.
6161 */
6162 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6163 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6164 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6165
6166 /*
6167 * Flush the unicast and multicast chains
6168 */
6169 dev_uc_flush(dev);
6170 dev_mc_flush(dev);
6171
6172 /* Actually switch the network namespace */
6173 dev_net_set(dev, net);
6174
6175 /* If there is an ifindex conflict assign a new one */
6176 if (__dev_get_by_index(net, dev->ifindex)) {
6177 int iflink = (dev->iflink == dev->ifindex);
6178 dev->ifindex = dev_new_index(net);
6179 if (iflink)
6180 dev->iflink = dev->ifindex;
6181 }
6182
6183 /* Fixup kobjects */
6184 err = device_rename(&dev->dev, dev->name);
6185 WARN_ON(err);
6186
6187 /* Add the device back in the hashes */
6188 list_netdevice(dev);
6189
6190 /* Notify protocols, that a new device appeared. */
6191 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6192
6193 /*
6194 * Prevent userspace races by waiting until the network
6195 * device is fully setup before sending notifications.
6196 */
6197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6198
6199 synchronize_net();
6200 err = 0;
6201 out:
6202 return err;
6203 }
6204 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6205
6206 static int dev_cpu_callback(struct notifier_block *nfb,
6207 unsigned long action,
6208 void *ocpu)
6209 {
6210 struct sk_buff **list_skb;
6211 struct sk_buff *skb;
6212 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6213 struct softnet_data *sd, *oldsd;
6214
6215 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6216 return NOTIFY_OK;
6217
6218 local_irq_disable();
6219 cpu = smp_processor_id();
6220 sd = &per_cpu(softnet_data, cpu);
6221 oldsd = &per_cpu(softnet_data, oldcpu);
6222
6223 /* Find end of our completion_queue. */
6224 list_skb = &sd->completion_queue;
6225 while (*list_skb)
6226 list_skb = &(*list_skb)->next;
6227 /* Append completion queue from offline CPU. */
6228 *list_skb = oldsd->completion_queue;
6229 oldsd->completion_queue = NULL;
6230
6231 /* Append output queue from offline CPU. */
6232 if (oldsd->output_queue) {
6233 *sd->output_queue_tailp = oldsd->output_queue;
6234 sd->output_queue_tailp = oldsd->output_queue_tailp;
6235 oldsd->output_queue = NULL;
6236 oldsd->output_queue_tailp = &oldsd->output_queue;
6237 }
6238 /* Append NAPI poll list from offline CPU. */
6239 if (!list_empty(&oldsd->poll_list)) {
6240 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6241 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6242 }
6243
6244 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6245 local_irq_enable();
6246
6247 /* Process offline CPU's input_pkt_queue */
6248 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6249 netif_rx(skb);
6250 input_queue_head_incr(oldsd);
6251 }
6252 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6253 netif_rx(skb);
6254 input_queue_head_incr(oldsd);
6255 }
6256
6257 return NOTIFY_OK;
6258 }
6259
6260
6261 /**
6262 * netdev_increment_features - increment feature set by one
6263 * @all: current feature set
6264 * @one: new feature set
6265 * @mask: mask feature set
6266 *
6267 * Computes a new feature set after adding a device with feature set
6268 * @one to the master device with current feature set @all. Will not
6269 * enable anything that is off in @mask. Returns the new feature set.
6270 */
6271 netdev_features_t netdev_increment_features(netdev_features_t all,
6272 netdev_features_t one, netdev_features_t mask)
6273 {
6274 if (mask & NETIF_F_GEN_CSUM)
6275 mask |= NETIF_F_ALL_CSUM;
6276 mask |= NETIF_F_VLAN_CHALLENGED;
6277
6278 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6279 all &= one | ~NETIF_F_ALL_FOR_ALL;
6280
6281 /* If one device supports hw checksumming, set for all. */
6282 if (all & NETIF_F_GEN_CSUM)
6283 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6284
6285 return all;
6286 }
6287 EXPORT_SYMBOL(netdev_increment_features);
6288
6289 static struct hlist_head *netdev_create_hash(void)
6290 {
6291 int i;
6292 struct hlist_head *hash;
6293
6294 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6295 if (hash != NULL)
6296 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6297 INIT_HLIST_HEAD(&hash[i]);
6298
6299 return hash;
6300 }
6301
6302 /* Initialize per network namespace state */
6303 static int __net_init netdev_init(struct net *net)
6304 {
6305 INIT_LIST_HEAD(&net->dev_base_head);
6306
6307 net->dev_name_head = netdev_create_hash();
6308 if (net->dev_name_head == NULL)
6309 goto err_name;
6310
6311 net->dev_index_head = netdev_create_hash();
6312 if (net->dev_index_head == NULL)
6313 goto err_idx;
6314
6315 return 0;
6316
6317 err_idx:
6318 kfree(net->dev_name_head);
6319 err_name:
6320 return -ENOMEM;
6321 }
6322
6323 /**
6324 * netdev_drivername - network driver for the device
6325 * @dev: network device
6326 *
6327 * Determine network driver for device.
6328 */
6329 const char *netdev_drivername(const struct net_device *dev)
6330 {
6331 const struct device_driver *driver;
6332 const struct device *parent;
6333 const char *empty = "";
6334
6335 parent = dev->dev.parent;
6336 if (!parent)
6337 return empty;
6338
6339 driver = parent->driver;
6340 if (driver && driver->name)
6341 return driver->name;
6342 return empty;
6343 }
6344
6345 int __netdev_printk(const char *level, const struct net_device *dev,
6346 struct va_format *vaf)
6347 {
6348 int r;
6349
6350 if (dev && dev->dev.parent)
6351 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6352 netdev_name(dev), vaf);
6353 else if (dev)
6354 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6355 else
6356 r = printk("%s(NULL net_device): %pV", level, vaf);
6357
6358 return r;
6359 }
6360 EXPORT_SYMBOL(__netdev_printk);
6361
6362 int netdev_printk(const char *level, const struct net_device *dev,
6363 const char *format, ...)
6364 {
6365 struct va_format vaf;
6366 va_list args;
6367 int r;
6368
6369 va_start(args, format);
6370
6371 vaf.fmt = format;
6372 vaf.va = &args;
6373
6374 r = __netdev_printk(level, dev, &vaf);
6375 va_end(args);
6376
6377 return r;
6378 }
6379 EXPORT_SYMBOL(netdev_printk);
6380
6381 #define define_netdev_printk_level(func, level) \
6382 int func(const struct net_device *dev, const char *fmt, ...) \
6383 { \
6384 int r; \
6385 struct va_format vaf; \
6386 va_list args; \
6387 \
6388 va_start(args, fmt); \
6389 \
6390 vaf.fmt = fmt; \
6391 vaf.va = &args; \
6392 \
6393 r = __netdev_printk(level, dev, &vaf); \
6394 va_end(args); \
6395 \
6396 return r; \
6397 } \
6398 EXPORT_SYMBOL(func);
6399
6400 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6401 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6402 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6403 define_netdev_printk_level(netdev_err, KERN_ERR);
6404 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6405 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6406 define_netdev_printk_level(netdev_info, KERN_INFO);
6407
6408 static void __net_exit netdev_exit(struct net *net)
6409 {
6410 kfree(net->dev_name_head);
6411 kfree(net->dev_index_head);
6412 }
6413
6414 static struct pernet_operations __net_initdata netdev_net_ops = {
6415 .init = netdev_init,
6416 .exit = netdev_exit,
6417 };
6418
6419 static void __net_exit default_device_exit(struct net *net)
6420 {
6421 struct net_device *dev, *aux;
6422 /*
6423 * Push all migratable network devices back to the
6424 * initial network namespace
6425 */
6426 rtnl_lock();
6427 for_each_netdev_safe(net, dev, aux) {
6428 int err;
6429 char fb_name[IFNAMSIZ];
6430
6431 /* Ignore unmoveable devices (i.e. loopback) */
6432 if (dev->features & NETIF_F_NETNS_LOCAL)
6433 continue;
6434
6435 /* Leave virtual devices for the generic cleanup */
6436 if (dev->rtnl_link_ops)
6437 continue;
6438
6439 /* Push remaining network devices to init_net */
6440 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6441 err = dev_change_net_namespace(dev, &init_net, fb_name);
6442 if (err) {
6443 pr_emerg("%s: failed to move %s to init_net: %d\n",
6444 __func__, dev->name, err);
6445 BUG();
6446 }
6447 }
6448 rtnl_unlock();
6449 }
6450
6451 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6452 {
6453 /* At exit all network devices most be removed from a network
6454 * namespace. Do this in the reverse order of registration.
6455 * Do this across as many network namespaces as possible to
6456 * improve batching efficiency.
6457 */
6458 struct net_device *dev;
6459 struct net *net;
6460 LIST_HEAD(dev_kill_list);
6461
6462 rtnl_lock();
6463 list_for_each_entry(net, net_list, exit_list) {
6464 for_each_netdev_reverse(net, dev) {
6465 if (dev->rtnl_link_ops)
6466 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6467 else
6468 unregister_netdevice_queue(dev, &dev_kill_list);
6469 }
6470 }
6471 unregister_netdevice_many(&dev_kill_list);
6472 list_del(&dev_kill_list);
6473 rtnl_unlock();
6474 }
6475
6476 static struct pernet_operations __net_initdata default_device_ops = {
6477 .exit = default_device_exit,
6478 .exit_batch = default_device_exit_batch,
6479 };
6480
6481 /*
6482 * Initialize the DEV module. At boot time this walks the device list and
6483 * unhooks any devices that fail to initialise (normally hardware not
6484 * present) and leaves us with a valid list of present and active devices.
6485 *
6486 */
6487
6488 /*
6489 * This is called single threaded during boot, so no need
6490 * to take the rtnl semaphore.
6491 */
6492 static int __init net_dev_init(void)
6493 {
6494 int i, rc = -ENOMEM;
6495
6496 BUG_ON(!dev_boot_phase);
6497
6498 if (dev_proc_init())
6499 goto out;
6500
6501 if (netdev_kobject_init())
6502 goto out;
6503
6504 INIT_LIST_HEAD(&ptype_all);
6505 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6506 INIT_LIST_HEAD(&ptype_base[i]);
6507
6508 if (register_pernet_subsys(&netdev_net_ops))
6509 goto out;
6510
6511 /*
6512 * Initialise the packet receive queues.
6513 */
6514
6515 for_each_possible_cpu(i) {
6516 struct softnet_data *sd = &per_cpu(softnet_data, i);
6517
6518 memset(sd, 0, sizeof(*sd));
6519 skb_queue_head_init(&sd->input_pkt_queue);
6520 skb_queue_head_init(&sd->process_queue);
6521 sd->completion_queue = NULL;
6522 INIT_LIST_HEAD(&sd->poll_list);
6523 sd->output_queue = NULL;
6524 sd->output_queue_tailp = &sd->output_queue;
6525 #ifdef CONFIG_RPS
6526 sd->csd.func = rps_trigger_softirq;
6527 sd->csd.info = sd;
6528 sd->csd.flags = 0;
6529 sd->cpu = i;
6530 #endif
6531
6532 sd->backlog.poll = process_backlog;
6533 sd->backlog.weight = weight_p;
6534 sd->backlog.gro_list = NULL;
6535 sd->backlog.gro_count = 0;
6536 }
6537
6538 dev_boot_phase = 0;
6539
6540 /* The loopback device is special if any other network devices
6541 * is present in a network namespace the loopback device must
6542 * be present. Since we now dynamically allocate and free the
6543 * loopback device ensure this invariant is maintained by
6544 * keeping the loopback device as the first device on the
6545 * list of network devices. Ensuring the loopback devices
6546 * is the first device that appears and the last network device
6547 * that disappears.
6548 */
6549 if (register_pernet_device(&loopback_net_ops))
6550 goto out;
6551
6552 if (register_pernet_device(&default_device_ops))
6553 goto out;
6554
6555 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6556 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6557
6558 hotcpu_notifier(dev_cpu_callback, 0);
6559 dst_init();
6560 dev_mcast_init();
6561 rc = 0;
6562 out:
6563 return rc;
6564 }
6565
6566 subsys_initcall(net_dev_init);
6567
6568 static int __init initialize_hashrnd(void)
6569 {
6570 get_random_bytes(&hashrnd, sizeof(hashrnd));
6571 return 0;
6572 }
6573
6574 late_initcall_sync(initialize_hashrnd);
6575
This page took 0.193939 seconds and 5 git commands to generate.