igb: Kill CONFIG_NETDEVICES_MULTIQUEUE references, no longer exists.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strlcpy(s[i].name, name, IFNAMSIZ);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strcmp(dev->name, s[i].name)) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct netdev_queue *txq)
1324 {
1325 struct net_device *dev = txq->dev;
1326
1327 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1328 struct softnet_data *sd;
1329 unsigned long flags;
1330
1331 local_irq_save(flags);
1332 sd = &__get_cpu_var(softnet_data);
1333 txq->next_sched = sd->output_queue;
1334 sd->output_queue = txq;
1335 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1336 local_irq_restore(flags);
1337 }
1338 }
1339 EXPORT_SYMBOL(__netif_schedule);
1340
1341 void dev_kfree_skb_irq(struct sk_buff *skb)
1342 {
1343 if (atomic_dec_and_test(&skb->users)) {
1344 struct softnet_data *sd;
1345 unsigned long flags;
1346
1347 local_irq_save(flags);
1348 sd = &__get_cpu_var(softnet_data);
1349 skb->next = sd->completion_queue;
1350 sd->completion_queue = skb;
1351 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 local_irq_restore(flags);
1353 }
1354 }
1355 EXPORT_SYMBOL(dev_kfree_skb_irq);
1356
1357 void dev_kfree_skb_any(struct sk_buff *skb)
1358 {
1359 if (in_irq() || irqs_disabled())
1360 dev_kfree_skb_irq(skb);
1361 else
1362 dev_kfree_skb(skb);
1363 }
1364 EXPORT_SYMBOL(dev_kfree_skb_any);
1365
1366
1367 /**
1368 * netif_device_detach - mark device as removed
1369 * @dev: network device
1370 *
1371 * Mark device as removed from system and therefore no longer available.
1372 */
1373 void netif_device_detach(struct net_device *dev)
1374 {
1375 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1376 netif_running(dev)) {
1377 netif_stop_queue(dev);
1378 }
1379 }
1380 EXPORT_SYMBOL(netif_device_detach);
1381
1382 /**
1383 * netif_device_attach - mark device as attached
1384 * @dev: network device
1385 *
1386 * Mark device as attached from system and restart if needed.
1387 */
1388 void netif_device_attach(struct net_device *dev)
1389 {
1390 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1391 netif_running(dev)) {
1392 netif_wake_queue(dev);
1393 __netdev_watchdog_up(dev);
1394 }
1395 }
1396 EXPORT_SYMBOL(netif_device_attach);
1397
1398 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1399 {
1400 return ((features & NETIF_F_GEN_CSUM) ||
1401 ((features & NETIF_F_IP_CSUM) &&
1402 protocol == htons(ETH_P_IP)) ||
1403 ((features & NETIF_F_IPV6_CSUM) &&
1404 protocol == htons(ETH_P_IPV6)));
1405 }
1406
1407 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1408 {
1409 if (can_checksum_protocol(dev->features, skb->protocol))
1410 return true;
1411
1412 if (skb->protocol == htons(ETH_P_8021Q)) {
1413 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1414 if (can_checksum_protocol(dev->features & dev->vlan_features,
1415 veh->h_vlan_encapsulated_proto))
1416 return true;
1417 }
1418
1419 return false;
1420 }
1421
1422 /*
1423 * Invalidate hardware checksum when packet is to be mangled, and
1424 * complete checksum manually on outgoing path.
1425 */
1426 int skb_checksum_help(struct sk_buff *skb)
1427 {
1428 __wsum csum;
1429 int ret = 0, offset;
1430
1431 if (skb->ip_summed == CHECKSUM_COMPLETE)
1432 goto out_set_summed;
1433
1434 if (unlikely(skb_shinfo(skb)->gso_size)) {
1435 /* Let GSO fix up the checksum. */
1436 goto out_set_summed;
1437 }
1438
1439 offset = skb->csum_start - skb_headroom(skb);
1440 BUG_ON(offset >= skb_headlen(skb));
1441 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1442
1443 offset += skb->csum_offset;
1444 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1445
1446 if (skb_cloned(skb) &&
1447 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1448 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1449 if (ret)
1450 goto out;
1451 }
1452
1453 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1454 out_set_summed:
1455 skb->ip_summed = CHECKSUM_NONE;
1456 out:
1457 return ret;
1458 }
1459
1460 /**
1461 * skb_gso_segment - Perform segmentation on skb.
1462 * @skb: buffer to segment
1463 * @features: features for the output path (see dev->features)
1464 *
1465 * This function segments the given skb and returns a list of segments.
1466 *
1467 * It may return NULL if the skb requires no segmentation. This is
1468 * only possible when GSO is used for verifying header integrity.
1469 */
1470 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1471 {
1472 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1473 struct packet_type *ptype;
1474 __be16 type = skb->protocol;
1475 int err;
1476
1477 BUG_ON(skb_shinfo(skb)->frag_list);
1478
1479 skb_reset_mac_header(skb);
1480 skb->mac_len = skb->network_header - skb->mac_header;
1481 __skb_pull(skb, skb->mac_len);
1482
1483 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1484 if (skb_header_cloned(skb) &&
1485 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1486 return ERR_PTR(err);
1487 }
1488
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(ptype,
1491 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1492 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1493 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1494 err = ptype->gso_send_check(skb);
1495 segs = ERR_PTR(err);
1496 if (err || skb_gso_ok(skb, features))
1497 break;
1498 __skb_push(skb, (skb->data -
1499 skb_network_header(skb)));
1500 }
1501 segs = ptype->gso_segment(skb, features);
1502 break;
1503 }
1504 }
1505 rcu_read_unlock();
1506
1507 __skb_push(skb, skb->data - skb_mac_header(skb));
1508
1509 return segs;
1510 }
1511
1512 EXPORT_SYMBOL(skb_gso_segment);
1513
1514 /* Take action when hardware reception checksum errors are detected. */
1515 #ifdef CONFIG_BUG
1516 void netdev_rx_csum_fault(struct net_device *dev)
1517 {
1518 if (net_ratelimit()) {
1519 printk(KERN_ERR "%s: hw csum failure.\n",
1520 dev ? dev->name : "<unknown>");
1521 dump_stack();
1522 }
1523 }
1524 EXPORT_SYMBOL(netdev_rx_csum_fault);
1525 #endif
1526
1527 /* Actually, we should eliminate this check as soon as we know, that:
1528 * 1. IOMMU is present and allows to map all the memory.
1529 * 2. No high memory really exists on this machine.
1530 */
1531
1532 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1533 {
1534 #ifdef CONFIG_HIGHMEM
1535 int i;
1536
1537 if (dev->features & NETIF_F_HIGHDMA)
1538 return 0;
1539
1540 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1541 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1542 return 1;
1543
1544 #endif
1545 return 0;
1546 }
1547
1548 struct dev_gso_cb {
1549 void (*destructor)(struct sk_buff *skb);
1550 };
1551
1552 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1553
1554 static void dev_gso_skb_destructor(struct sk_buff *skb)
1555 {
1556 struct dev_gso_cb *cb;
1557
1558 do {
1559 struct sk_buff *nskb = skb->next;
1560
1561 skb->next = nskb->next;
1562 nskb->next = NULL;
1563 kfree_skb(nskb);
1564 } while (skb->next);
1565
1566 cb = DEV_GSO_CB(skb);
1567 if (cb->destructor)
1568 cb->destructor(skb);
1569 }
1570
1571 /**
1572 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1573 * @skb: buffer to segment
1574 *
1575 * This function segments the given skb and stores the list of segments
1576 * in skb->next.
1577 */
1578 static int dev_gso_segment(struct sk_buff *skb)
1579 {
1580 struct net_device *dev = skb->dev;
1581 struct sk_buff *segs;
1582 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1583 NETIF_F_SG : 0);
1584
1585 segs = skb_gso_segment(skb, features);
1586
1587 /* Verifying header integrity only. */
1588 if (!segs)
1589 return 0;
1590
1591 if (IS_ERR(segs))
1592 return PTR_ERR(segs);
1593
1594 skb->next = segs;
1595 DEV_GSO_CB(skb)->destructor = skb->destructor;
1596 skb->destructor = dev_gso_skb_destructor;
1597
1598 return 0;
1599 }
1600
1601 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1602 {
1603 if (likely(!skb->next)) {
1604 if (!list_empty(&ptype_all))
1605 dev_queue_xmit_nit(skb, dev);
1606
1607 if (netif_needs_gso(dev, skb)) {
1608 if (unlikely(dev_gso_segment(skb)))
1609 goto out_kfree_skb;
1610 if (skb->next)
1611 goto gso;
1612 }
1613
1614 return dev->hard_start_xmit(skb, dev);
1615 }
1616
1617 gso:
1618 do {
1619 struct sk_buff *nskb = skb->next;
1620 int rc;
1621
1622 skb->next = nskb->next;
1623 nskb->next = NULL;
1624 rc = dev->hard_start_xmit(nskb, dev);
1625 if (unlikely(rc)) {
1626 nskb->next = skb->next;
1627 skb->next = nskb;
1628 return rc;
1629 }
1630 if (unlikely((netif_queue_stopped(dev) ||
1631 netif_subqueue_stopped(dev, skb)) &&
1632 skb->next))
1633 return NETDEV_TX_BUSY;
1634 } while (skb->next);
1635
1636 skb->destructor = DEV_GSO_CB(skb)->destructor;
1637
1638 out_kfree_skb:
1639 kfree_skb(skb);
1640 return 0;
1641 }
1642
1643 /**
1644 * dev_queue_xmit - transmit a buffer
1645 * @skb: buffer to transmit
1646 *
1647 * Queue a buffer for transmission to a network device. The caller must
1648 * have set the device and priority and built the buffer before calling
1649 * this function. The function can be called from an interrupt.
1650 *
1651 * A negative errno code is returned on a failure. A success does not
1652 * guarantee the frame will be transmitted as it may be dropped due
1653 * to congestion or traffic shaping.
1654 *
1655 * -----------------------------------------------------------------------------------
1656 * I notice this method can also return errors from the queue disciplines,
1657 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1658 * be positive.
1659 *
1660 * Regardless of the return value, the skb is consumed, so it is currently
1661 * difficult to retry a send to this method. (You can bump the ref count
1662 * before sending to hold a reference for retry if you are careful.)
1663 *
1664 * When calling this method, interrupts MUST be enabled. This is because
1665 * the BH enable code must have IRQs enabled so that it will not deadlock.
1666 * --BLG
1667 */
1668
1669 int dev_queue_xmit(struct sk_buff *skb)
1670 {
1671 struct net_device *dev = skb->dev;
1672 struct netdev_queue *txq;
1673 struct Qdisc *q;
1674 int rc = -ENOMEM;
1675
1676 /* GSO will handle the following emulations directly. */
1677 if (netif_needs_gso(dev, skb))
1678 goto gso;
1679
1680 if (skb_shinfo(skb)->frag_list &&
1681 !(dev->features & NETIF_F_FRAGLIST) &&
1682 __skb_linearize(skb))
1683 goto out_kfree_skb;
1684
1685 /* Fragmented skb is linearized if device does not support SG,
1686 * or if at least one of fragments is in highmem and device
1687 * does not support DMA from it.
1688 */
1689 if (skb_shinfo(skb)->nr_frags &&
1690 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1691 __skb_linearize(skb))
1692 goto out_kfree_skb;
1693
1694 /* If packet is not checksummed and device does not support
1695 * checksumming for this protocol, complete checksumming here.
1696 */
1697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1698 skb_set_transport_header(skb, skb->csum_start -
1699 skb_headroom(skb));
1700 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1701 goto out_kfree_skb;
1702 }
1703
1704 gso:
1705 txq = &dev->tx_queue;
1706 spin_lock_prefetch(&txq->lock);
1707
1708 /* Disable soft irqs for various locks below. Also
1709 * stops preemption for RCU.
1710 */
1711 rcu_read_lock_bh();
1712
1713 /* Updates of qdisc are serialized by queue->lock.
1714 * The struct Qdisc which is pointed to by qdisc is now a
1715 * rcu structure - it may be accessed without acquiring
1716 * a lock (but the structure may be stale.) The freeing of the
1717 * qdisc will be deferred until it's known that there are no
1718 * more references to it.
1719 *
1720 * If the qdisc has an enqueue function, we still need to
1721 * hold the queue->lock before calling it, since queue->lock
1722 * also serializes access to the device queue.
1723 */
1724
1725 q = rcu_dereference(txq->qdisc);
1726 #ifdef CONFIG_NET_CLS_ACT
1727 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1728 #endif
1729 if (q->enqueue) {
1730 /* Grab device queue */
1731 spin_lock(&txq->lock);
1732 q = txq->qdisc;
1733 if (q->enqueue) {
1734 /* reset queue_mapping to zero */
1735 skb_set_queue_mapping(skb, 0);
1736 rc = q->enqueue(skb, q);
1737 qdisc_run(txq);
1738 spin_unlock(&txq->lock);
1739
1740 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1741 goto out;
1742 }
1743 spin_unlock(&txq->lock);
1744 }
1745
1746 /* The device has no queue. Common case for software devices:
1747 loopback, all the sorts of tunnels...
1748
1749 Really, it is unlikely that netif_tx_lock protection is necessary
1750 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1751 counters.)
1752 However, it is possible, that they rely on protection
1753 made by us here.
1754
1755 Check this and shot the lock. It is not prone from deadlocks.
1756 Either shot noqueue qdisc, it is even simpler 8)
1757 */
1758 if (dev->flags & IFF_UP) {
1759 int cpu = smp_processor_id(); /* ok because BHs are off */
1760
1761 if (txq->xmit_lock_owner != cpu) {
1762
1763 HARD_TX_LOCK(dev, txq, cpu);
1764
1765 if (!netif_queue_stopped(dev) &&
1766 !netif_subqueue_stopped(dev, skb)) {
1767 rc = 0;
1768 if (!dev_hard_start_xmit(skb, dev)) {
1769 HARD_TX_UNLOCK(dev, txq);
1770 goto out;
1771 }
1772 }
1773 HARD_TX_UNLOCK(dev, txq);
1774 if (net_ratelimit())
1775 printk(KERN_CRIT "Virtual device %s asks to "
1776 "queue packet!\n", dev->name);
1777 } else {
1778 /* Recursion is detected! It is possible,
1779 * unfortunately */
1780 if (net_ratelimit())
1781 printk(KERN_CRIT "Dead loop on virtual device "
1782 "%s, fix it urgently!\n", dev->name);
1783 }
1784 }
1785
1786 rc = -ENETDOWN;
1787 rcu_read_unlock_bh();
1788
1789 out_kfree_skb:
1790 kfree_skb(skb);
1791 return rc;
1792 out:
1793 rcu_read_unlock_bh();
1794 return rc;
1795 }
1796
1797
1798 /*=======================================================================
1799 Receiver routines
1800 =======================================================================*/
1801
1802 int netdev_max_backlog __read_mostly = 1000;
1803 int netdev_budget __read_mostly = 300;
1804 int weight_p __read_mostly = 64; /* old backlog weight */
1805
1806 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1807
1808
1809 /**
1810 * netif_rx - post buffer to the network code
1811 * @skb: buffer to post
1812 *
1813 * This function receives a packet from a device driver and queues it for
1814 * the upper (protocol) levels to process. It always succeeds. The buffer
1815 * may be dropped during processing for congestion control or by the
1816 * protocol layers.
1817 *
1818 * return values:
1819 * NET_RX_SUCCESS (no congestion)
1820 * NET_RX_DROP (packet was dropped)
1821 *
1822 */
1823
1824 int netif_rx(struct sk_buff *skb)
1825 {
1826 struct softnet_data *queue;
1827 unsigned long flags;
1828
1829 /* if netpoll wants it, pretend we never saw it */
1830 if (netpoll_rx(skb))
1831 return NET_RX_DROP;
1832
1833 if (!skb->tstamp.tv64)
1834 net_timestamp(skb);
1835
1836 /*
1837 * The code is rearranged so that the path is the most
1838 * short when CPU is congested, but is still operating.
1839 */
1840 local_irq_save(flags);
1841 queue = &__get_cpu_var(softnet_data);
1842
1843 __get_cpu_var(netdev_rx_stat).total++;
1844 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1845 if (queue->input_pkt_queue.qlen) {
1846 enqueue:
1847 dev_hold(skb->dev);
1848 __skb_queue_tail(&queue->input_pkt_queue, skb);
1849 local_irq_restore(flags);
1850 return NET_RX_SUCCESS;
1851 }
1852
1853 napi_schedule(&queue->backlog);
1854 goto enqueue;
1855 }
1856
1857 __get_cpu_var(netdev_rx_stat).dropped++;
1858 local_irq_restore(flags);
1859
1860 kfree_skb(skb);
1861 return NET_RX_DROP;
1862 }
1863
1864 int netif_rx_ni(struct sk_buff *skb)
1865 {
1866 int err;
1867
1868 preempt_disable();
1869 err = netif_rx(skb);
1870 if (local_softirq_pending())
1871 do_softirq();
1872 preempt_enable();
1873
1874 return err;
1875 }
1876
1877 EXPORT_SYMBOL(netif_rx_ni);
1878
1879 static inline struct net_device *skb_bond(struct sk_buff *skb)
1880 {
1881 struct net_device *dev = skb->dev;
1882
1883 if (dev->master) {
1884 if (skb_bond_should_drop(skb)) {
1885 kfree_skb(skb);
1886 return NULL;
1887 }
1888 skb->dev = dev->master;
1889 }
1890
1891 return dev;
1892 }
1893
1894
1895 static void net_tx_action(struct softirq_action *h)
1896 {
1897 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1898
1899 if (sd->completion_queue) {
1900 struct sk_buff *clist;
1901
1902 local_irq_disable();
1903 clist = sd->completion_queue;
1904 sd->completion_queue = NULL;
1905 local_irq_enable();
1906
1907 while (clist) {
1908 struct sk_buff *skb = clist;
1909 clist = clist->next;
1910
1911 BUG_TRAP(!atomic_read(&skb->users));
1912 __kfree_skb(skb);
1913 }
1914 }
1915
1916 if (sd->output_queue) {
1917 struct netdev_queue *head;
1918
1919 local_irq_disable();
1920 head = sd->output_queue;
1921 sd->output_queue = NULL;
1922 local_irq_enable();
1923
1924 while (head) {
1925 struct netdev_queue *txq = head;
1926 struct net_device *dev = txq->dev;
1927 head = head->next_sched;
1928
1929 smp_mb__before_clear_bit();
1930 clear_bit(__LINK_STATE_SCHED, &dev->state);
1931
1932 if (spin_trylock(&txq->lock)) {
1933 qdisc_run(txq);
1934 spin_unlock(&txq->lock);
1935 } else {
1936 netif_schedule_queue(txq);
1937 }
1938 }
1939 }
1940 }
1941
1942 static inline int deliver_skb(struct sk_buff *skb,
1943 struct packet_type *pt_prev,
1944 struct net_device *orig_dev)
1945 {
1946 atomic_inc(&skb->users);
1947 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1948 }
1949
1950 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1951 /* These hooks defined here for ATM */
1952 struct net_bridge;
1953 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1954 unsigned char *addr);
1955 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1956
1957 /*
1958 * If bridge module is loaded call bridging hook.
1959 * returns NULL if packet was consumed.
1960 */
1961 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1962 struct sk_buff *skb) __read_mostly;
1963 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1964 struct packet_type **pt_prev, int *ret,
1965 struct net_device *orig_dev)
1966 {
1967 struct net_bridge_port *port;
1968
1969 if (skb->pkt_type == PACKET_LOOPBACK ||
1970 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1971 return skb;
1972
1973 if (*pt_prev) {
1974 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1975 *pt_prev = NULL;
1976 }
1977
1978 return br_handle_frame_hook(port, skb);
1979 }
1980 #else
1981 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1982 #endif
1983
1984 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1985 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1986 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1987
1988 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1989 struct packet_type **pt_prev,
1990 int *ret,
1991 struct net_device *orig_dev)
1992 {
1993 if (skb->dev->macvlan_port == NULL)
1994 return skb;
1995
1996 if (*pt_prev) {
1997 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1998 *pt_prev = NULL;
1999 }
2000 return macvlan_handle_frame_hook(skb);
2001 }
2002 #else
2003 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2004 #endif
2005
2006 #ifdef CONFIG_NET_CLS_ACT
2007 /* TODO: Maybe we should just force sch_ingress to be compiled in
2008 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2009 * a compare and 2 stores extra right now if we dont have it on
2010 * but have CONFIG_NET_CLS_ACT
2011 * NOTE: This doesnt stop any functionality; if you dont have
2012 * the ingress scheduler, you just cant add policies on ingress.
2013 *
2014 */
2015 static int ing_filter(struct sk_buff *skb)
2016 {
2017 struct net_device *dev = skb->dev;
2018 u32 ttl = G_TC_RTTL(skb->tc_verd);
2019 struct netdev_queue *rxq;
2020 int result = TC_ACT_OK;
2021 struct Qdisc *q;
2022
2023 if (MAX_RED_LOOP < ttl++) {
2024 printk(KERN_WARNING
2025 "Redir loop detected Dropping packet (%d->%d)\n",
2026 skb->iif, dev->ifindex);
2027 return TC_ACT_SHOT;
2028 }
2029
2030 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2031 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2032
2033 rxq = &dev->rx_queue;
2034
2035 spin_lock(&rxq->lock);
2036 if ((q = rxq->qdisc) != NULL)
2037 result = q->enqueue(skb, q);
2038 spin_unlock(&rxq->lock);
2039
2040 return result;
2041 }
2042
2043 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2044 struct packet_type **pt_prev,
2045 int *ret, struct net_device *orig_dev)
2046 {
2047 if (!skb->dev->rx_queue.qdisc)
2048 goto out;
2049
2050 if (*pt_prev) {
2051 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2052 *pt_prev = NULL;
2053 } else {
2054 /* Huh? Why does turning on AF_PACKET affect this? */
2055 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2056 }
2057
2058 switch (ing_filter(skb)) {
2059 case TC_ACT_SHOT:
2060 case TC_ACT_STOLEN:
2061 kfree_skb(skb);
2062 return NULL;
2063 }
2064
2065 out:
2066 skb->tc_verd = 0;
2067 return skb;
2068 }
2069 #endif
2070
2071 /*
2072 * netif_nit_deliver - deliver received packets to network taps
2073 * @skb: buffer
2074 *
2075 * This function is used to deliver incoming packets to network
2076 * taps. It should be used when the normal netif_receive_skb path
2077 * is bypassed, for example because of VLAN acceleration.
2078 */
2079 void netif_nit_deliver(struct sk_buff *skb)
2080 {
2081 struct packet_type *ptype;
2082
2083 if (list_empty(&ptype_all))
2084 return;
2085
2086 skb_reset_network_header(skb);
2087 skb_reset_transport_header(skb);
2088 skb->mac_len = skb->network_header - skb->mac_header;
2089
2090 rcu_read_lock();
2091 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2092 if (!ptype->dev || ptype->dev == skb->dev)
2093 deliver_skb(skb, ptype, skb->dev);
2094 }
2095 rcu_read_unlock();
2096 }
2097
2098 /**
2099 * netif_receive_skb - process receive buffer from network
2100 * @skb: buffer to process
2101 *
2102 * netif_receive_skb() is the main receive data processing function.
2103 * It always succeeds. The buffer may be dropped during processing
2104 * for congestion control or by the protocol layers.
2105 *
2106 * This function may only be called from softirq context and interrupts
2107 * should be enabled.
2108 *
2109 * Return values (usually ignored):
2110 * NET_RX_SUCCESS: no congestion
2111 * NET_RX_DROP: packet was dropped
2112 */
2113 int netif_receive_skb(struct sk_buff *skb)
2114 {
2115 struct packet_type *ptype, *pt_prev;
2116 struct net_device *orig_dev;
2117 int ret = NET_RX_DROP;
2118 __be16 type;
2119
2120 /* if we've gotten here through NAPI, check netpoll */
2121 if (netpoll_receive_skb(skb))
2122 return NET_RX_DROP;
2123
2124 if (!skb->tstamp.tv64)
2125 net_timestamp(skb);
2126
2127 if (!skb->iif)
2128 skb->iif = skb->dev->ifindex;
2129
2130 orig_dev = skb_bond(skb);
2131
2132 if (!orig_dev)
2133 return NET_RX_DROP;
2134
2135 __get_cpu_var(netdev_rx_stat).total++;
2136
2137 skb_reset_network_header(skb);
2138 skb_reset_transport_header(skb);
2139 skb->mac_len = skb->network_header - skb->mac_header;
2140
2141 pt_prev = NULL;
2142
2143 rcu_read_lock();
2144
2145 /* Don't receive packets in an exiting network namespace */
2146 if (!net_alive(dev_net(skb->dev)))
2147 goto out;
2148
2149 #ifdef CONFIG_NET_CLS_ACT
2150 if (skb->tc_verd & TC_NCLS) {
2151 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2152 goto ncls;
2153 }
2154 #endif
2155
2156 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2157 if (!ptype->dev || ptype->dev == skb->dev) {
2158 if (pt_prev)
2159 ret = deliver_skb(skb, pt_prev, orig_dev);
2160 pt_prev = ptype;
2161 }
2162 }
2163
2164 #ifdef CONFIG_NET_CLS_ACT
2165 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2166 if (!skb)
2167 goto out;
2168 ncls:
2169 #endif
2170
2171 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2172 if (!skb)
2173 goto out;
2174 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2175 if (!skb)
2176 goto out;
2177
2178 type = skb->protocol;
2179 list_for_each_entry_rcu(ptype,
2180 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2181 if (ptype->type == type &&
2182 (!ptype->dev || ptype->dev == skb->dev)) {
2183 if (pt_prev)
2184 ret = deliver_skb(skb, pt_prev, orig_dev);
2185 pt_prev = ptype;
2186 }
2187 }
2188
2189 if (pt_prev) {
2190 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2191 } else {
2192 kfree_skb(skb);
2193 /* Jamal, now you will not able to escape explaining
2194 * me how you were going to use this. :-)
2195 */
2196 ret = NET_RX_DROP;
2197 }
2198
2199 out:
2200 rcu_read_unlock();
2201 return ret;
2202 }
2203
2204 static int process_backlog(struct napi_struct *napi, int quota)
2205 {
2206 int work = 0;
2207 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2208 unsigned long start_time = jiffies;
2209
2210 napi->weight = weight_p;
2211 do {
2212 struct sk_buff *skb;
2213 struct net_device *dev;
2214
2215 local_irq_disable();
2216 skb = __skb_dequeue(&queue->input_pkt_queue);
2217 if (!skb) {
2218 __napi_complete(napi);
2219 local_irq_enable();
2220 break;
2221 }
2222
2223 local_irq_enable();
2224
2225 dev = skb->dev;
2226
2227 netif_receive_skb(skb);
2228
2229 dev_put(dev);
2230 } while (++work < quota && jiffies == start_time);
2231
2232 return work;
2233 }
2234
2235 /**
2236 * __napi_schedule - schedule for receive
2237 * @n: entry to schedule
2238 *
2239 * The entry's receive function will be scheduled to run
2240 */
2241 void __napi_schedule(struct napi_struct *n)
2242 {
2243 unsigned long flags;
2244
2245 local_irq_save(flags);
2246 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2247 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2248 local_irq_restore(flags);
2249 }
2250 EXPORT_SYMBOL(__napi_schedule);
2251
2252
2253 static void net_rx_action(struct softirq_action *h)
2254 {
2255 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2256 unsigned long start_time = jiffies;
2257 int budget = netdev_budget;
2258 void *have;
2259
2260 local_irq_disable();
2261
2262 while (!list_empty(list)) {
2263 struct napi_struct *n;
2264 int work, weight;
2265
2266 /* If softirq window is exhuasted then punt.
2267 *
2268 * Note that this is a slight policy change from the
2269 * previous NAPI code, which would allow up to 2
2270 * jiffies to pass before breaking out. The test
2271 * used to be "jiffies - start_time > 1".
2272 */
2273 if (unlikely(budget <= 0 || jiffies != start_time))
2274 goto softnet_break;
2275
2276 local_irq_enable();
2277
2278 /* Even though interrupts have been re-enabled, this
2279 * access is safe because interrupts can only add new
2280 * entries to the tail of this list, and only ->poll()
2281 * calls can remove this head entry from the list.
2282 */
2283 n = list_entry(list->next, struct napi_struct, poll_list);
2284
2285 have = netpoll_poll_lock(n);
2286
2287 weight = n->weight;
2288
2289 /* This NAPI_STATE_SCHED test is for avoiding a race
2290 * with netpoll's poll_napi(). Only the entity which
2291 * obtains the lock and sees NAPI_STATE_SCHED set will
2292 * actually make the ->poll() call. Therefore we avoid
2293 * accidently calling ->poll() when NAPI is not scheduled.
2294 */
2295 work = 0;
2296 if (test_bit(NAPI_STATE_SCHED, &n->state))
2297 work = n->poll(n, weight);
2298
2299 WARN_ON_ONCE(work > weight);
2300
2301 budget -= work;
2302
2303 local_irq_disable();
2304
2305 /* Drivers must not modify the NAPI state if they
2306 * consume the entire weight. In such cases this code
2307 * still "owns" the NAPI instance and therefore can
2308 * move the instance around on the list at-will.
2309 */
2310 if (unlikely(work == weight)) {
2311 if (unlikely(napi_disable_pending(n)))
2312 __napi_complete(n);
2313 else
2314 list_move_tail(&n->poll_list, list);
2315 }
2316
2317 netpoll_poll_unlock(have);
2318 }
2319 out:
2320 local_irq_enable();
2321
2322 #ifdef CONFIG_NET_DMA
2323 /*
2324 * There may not be any more sk_buffs coming right now, so push
2325 * any pending DMA copies to hardware
2326 */
2327 if (!cpus_empty(net_dma.channel_mask)) {
2328 int chan_idx;
2329 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2330 struct dma_chan *chan = net_dma.channels[chan_idx];
2331 if (chan)
2332 dma_async_memcpy_issue_pending(chan);
2333 }
2334 }
2335 #endif
2336
2337 return;
2338
2339 softnet_break:
2340 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2341 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2342 goto out;
2343 }
2344
2345 static gifconf_func_t * gifconf_list [NPROTO];
2346
2347 /**
2348 * register_gifconf - register a SIOCGIF handler
2349 * @family: Address family
2350 * @gifconf: Function handler
2351 *
2352 * Register protocol dependent address dumping routines. The handler
2353 * that is passed must not be freed or reused until it has been replaced
2354 * by another handler.
2355 */
2356 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2357 {
2358 if (family >= NPROTO)
2359 return -EINVAL;
2360 gifconf_list[family] = gifconf;
2361 return 0;
2362 }
2363
2364
2365 /*
2366 * Map an interface index to its name (SIOCGIFNAME)
2367 */
2368
2369 /*
2370 * We need this ioctl for efficient implementation of the
2371 * if_indextoname() function required by the IPv6 API. Without
2372 * it, we would have to search all the interfaces to find a
2373 * match. --pb
2374 */
2375
2376 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2377 {
2378 struct net_device *dev;
2379 struct ifreq ifr;
2380
2381 /*
2382 * Fetch the caller's info block.
2383 */
2384
2385 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2386 return -EFAULT;
2387
2388 read_lock(&dev_base_lock);
2389 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2390 if (!dev) {
2391 read_unlock(&dev_base_lock);
2392 return -ENODEV;
2393 }
2394
2395 strcpy(ifr.ifr_name, dev->name);
2396 read_unlock(&dev_base_lock);
2397
2398 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2399 return -EFAULT;
2400 return 0;
2401 }
2402
2403 /*
2404 * Perform a SIOCGIFCONF call. This structure will change
2405 * size eventually, and there is nothing I can do about it.
2406 * Thus we will need a 'compatibility mode'.
2407 */
2408
2409 static int dev_ifconf(struct net *net, char __user *arg)
2410 {
2411 struct ifconf ifc;
2412 struct net_device *dev;
2413 char __user *pos;
2414 int len;
2415 int total;
2416 int i;
2417
2418 /*
2419 * Fetch the caller's info block.
2420 */
2421
2422 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2423 return -EFAULT;
2424
2425 pos = ifc.ifc_buf;
2426 len = ifc.ifc_len;
2427
2428 /*
2429 * Loop over the interfaces, and write an info block for each.
2430 */
2431
2432 total = 0;
2433 for_each_netdev(net, dev) {
2434 for (i = 0; i < NPROTO; i++) {
2435 if (gifconf_list[i]) {
2436 int done;
2437 if (!pos)
2438 done = gifconf_list[i](dev, NULL, 0);
2439 else
2440 done = gifconf_list[i](dev, pos + total,
2441 len - total);
2442 if (done < 0)
2443 return -EFAULT;
2444 total += done;
2445 }
2446 }
2447 }
2448
2449 /*
2450 * All done. Write the updated control block back to the caller.
2451 */
2452 ifc.ifc_len = total;
2453
2454 /*
2455 * Both BSD and Solaris return 0 here, so we do too.
2456 */
2457 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2458 }
2459
2460 #ifdef CONFIG_PROC_FS
2461 /*
2462 * This is invoked by the /proc filesystem handler to display a device
2463 * in detail.
2464 */
2465 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2466 __acquires(dev_base_lock)
2467 {
2468 struct net *net = seq_file_net(seq);
2469 loff_t off;
2470 struct net_device *dev;
2471
2472 read_lock(&dev_base_lock);
2473 if (!*pos)
2474 return SEQ_START_TOKEN;
2475
2476 off = 1;
2477 for_each_netdev(net, dev)
2478 if (off++ == *pos)
2479 return dev;
2480
2481 return NULL;
2482 }
2483
2484 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2485 {
2486 struct net *net = seq_file_net(seq);
2487 ++*pos;
2488 return v == SEQ_START_TOKEN ?
2489 first_net_device(net) : next_net_device((struct net_device *)v);
2490 }
2491
2492 void dev_seq_stop(struct seq_file *seq, void *v)
2493 __releases(dev_base_lock)
2494 {
2495 read_unlock(&dev_base_lock);
2496 }
2497
2498 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2499 {
2500 struct net_device_stats *stats = dev->get_stats(dev);
2501
2502 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2503 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2504 dev->name, stats->rx_bytes, stats->rx_packets,
2505 stats->rx_errors,
2506 stats->rx_dropped + stats->rx_missed_errors,
2507 stats->rx_fifo_errors,
2508 stats->rx_length_errors + stats->rx_over_errors +
2509 stats->rx_crc_errors + stats->rx_frame_errors,
2510 stats->rx_compressed, stats->multicast,
2511 stats->tx_bytes, stats->tx_packets,
2512 stats->tx_errors, stats->tx_dropped,
2513 stats->tx_fifo_errors, stats->collisions,
2514 stats->tx_carrier_errors +
2515 stats->tx_aborted_errors +
2516 stats->tx_window_errors +
2517 stats->tx_heartbeat_errors,
2518 stats->tx_compressed);
2519 }
2520
2521 /*
2522 * Called from the PROCfs module. This now uses the new arbitrary sized
2523 * /proc/net interface to create /proc/net/dev
2524 */
2525 static int dev_seq_show(struct seq_file *seq, void *v)
2526 {
2527 if (v == SEQ_START_TOKEN)
2528 seq_puts(seq, "Inter-| Receive "
2529 " | Transmit\n"
2530 " face |bytes packets errs drop fifo frame "
2531 "compressed multicast|bytes packets errs "
2532 "drop fifo colls carrier compressed\n");
2533 else
2534 dev_seq_printf_stats(seq, v);
2535 return 0;
2536 }
2537
2538 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2539 {
2540 struct netif_rx_stats *rc = NULL;
2541
2542 while (*pos < nr_cpu_ids)
2543 if (cpu_online(*pos)) {
2544 rc = &per_cpu(netdev_rx_stat, *pos);
2545 break;
2546 } else
2547 ++*pos;
2548 return rc;
2549 }
2550
2551 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2552 {
2553 return softnet_get_online(pos);
2554 }
2555
2556 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2557 {
2558 ++*pos;
2559 return softnet_get_online(pos);
2560 }
2561
2562 static void softnet_seq_stop(struct seq_file *seq, void *v)
2563 {
2564 }
2565
2566 static int softnet_seq_show(struct seq_file *seq, void *v)
2567 {
2568 struct netif_rx_stats *s = v;
2569
2570 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2571 s->total, s->dropped, s->time_squeeze, 0,
2572 0, 0, 0, 0, /* was fastroute */
2573 s->cpu_collision );
2574 return 0;
2575 }
2576
2577 static const struct seq_operations dev_seq_ops = {
2578 .start = dev_seq_start,
2579 .next = dev_seq_next,
2580 .stop = dev_seq_stop,
2581 .show = dev_seq_show,
2582 };
2583
2584 static int dev_seq_open(struct inode *inode, struct file *file)
2585 {
2586 return seq_open_net(inode, file, &dev_seq_ops,
2587 sizeof(struct seq_net_private));
2588 }
2589
2590 static const struct file_operations dev_seq_fops = {
2591 .owner = THIS_MODULE,
2592 .open = dev_seq_open,
2593 .read = seq_read,
2594 .llseek = seq_lseek,
2595 .release = seq_release_net,
2596 };
2597
2598 static const struct seq_operations softnet_seq_ops = {
2599 .start = softnet_seq_start,
2600 .next = softnet_seq_next,
2601 .stop = softnet_seq_stop,
2602 .show = softnet_seq_show,
2603 };
2604
2605 static int softnet_seq_open(struct inode *inode, struct file *file)
2606 {
2607 return seq_open(file, &softnet_seq_ops);
2608 }
2609
2610 static const struct file_operations softnet_seq_fops = {
2611 .owner = THIS_MODULE,
2612 .open = softnet_seq_open,
2613 .read = seq_read,
2614 .llseek = seq_lseek,
2615 .release = seq_release,
2616 };
2617
2618 static void *ptype_get_idx(loff_t pos)
2619 {
2620 struct packet_type *pt = NULL;
2621 loff_t i = 0;
2622 int t;
2623
2624 list_for_each_entry_rcu(pt, &ptype_all, list) {
2625 if (i == pos)
2626 return pt;
2627 ++i;
2628 }
2629
2630 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2631 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2632 if (i == pos)
2633 return pt;
2634 ++i;
2635 }
2636 }
2637 return NULL;
2638 }
2639
2640 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2641 __acquires(RCU)
2642 {
2643 rcu_read_lock();
2644 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2645 }
2646
2647 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2648 {
2649 struct packet_type *pt;
2650 struct list_head *nxt;
2651 int hash;
2652
2653 ++*pos;
2654 if (v == SEQ_START_TOKEN)
2655 return ptype_get_idx(0);
2656
2657 pt = v;
2658 nxt = pt->list.next;
2659 if (pt->type == htons(ETH_P_ALL)) {
2660 if (nxt != &ptype_all)
2661 goto found;
2662 hash = 0;
2663 nxt = ptype_base[0].next;
2664 } else
2665 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2666
2667 while (nxt == &ptype_base[hash]) {
2668 if (++hash >= PTYPE_HASH_SIZE)
2669 return NULL;
2670 nxt = ptype_base[hash].next;
2671 }
2672 found:
2673 return list_entry(nxt, struct packet_type, list);
2674 }
2675
2676 static void ptype_seq_stop(struct seq_file *seq, void *v)
2677 __releases(RCU)
2678 {
2679 rcu_read_unlock();
2680 }
2681
2682 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2683 {
2684 #ifdef CONFIG_KALLSYMS
2685 unsigned long offset = 0, symsize;
2686 const char *symname;
2687 char *modname;
2688 char namebuf[128];
2689
2690 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2691 &modname, namebuf);
2692
2693 if (symname) {
2694 char *delim = ":";
2695
2696 if (!modname)
2697 modname = delim = "";
2698 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2699 symname, offset);
2700 return;
2701 }
2702 #endif
2703
2704 seq_printf(seq, "[%p]", sym);
2705 }
2706
2707 static int ptype_seq_show(struct seq_file *seq, void *v)
2708 {
2709 struct packet_type *pt = v;
2710
2711 if (v == SEQ_START_TOKEN)
2712 seq_puts(seq, "Type Device Function\n");
2713 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2714 if (pt->type == htons(ETH_P_ALL))
2715 seq_puts(seq, "ALL ");
2716 else
2717 seq_printf(seq, "%04x", ntohs(pt->type));
2718
2719 seq_printf(seq, " %-8s ",
2720 pt->dev ? pt->dev->name : "");
2721 ptype_seq_decode(seq, pt->func);
2722 seq_putc(seq, '\n');
2723 }
2724
2725 return 0;
2726 }
2727
2728 static const struct seq_operations ptype_seq_ops = {
2729 .start = ptype_seq_start,
2730 .next = ptype_seq_next,
2731 .stop = ptype_seq_stop,
2732 .show = ptype_seq_show,
2733 };
2734
2735 static int ptype_seq_open(struct inode *inode, struct file *file)
2736 {
2737 return seq_open_net(inode, file, &ptype_seq_ops,
2738 sizeof(struct seq_net_private));
2739 }
2740
2741 static const struct file_operations ptype_seq_fops = {
2742 .owner = THIS_MODULE,
2743 .open = ptype_seq_open,
2744 .read = seq_read,
2745 .llseek = seq_lseek,
2746 .release = seq_release_net,
2747 };
2748
2749
2750 static int __net_init dev_proc_net_init(struct net *net)
2751 {
2752 int rc = -ENOMEM;
2753
2754 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2755 goto out;
2756 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2757 goto out_dev;
2758 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2759 goto out_softnet;
2760
2761 if (wext_proc_init(net))
2762 goto out_ptype;
2763 rc = 0;
2764 out:
2765 return rc;
2766 out_ptype:
2767 proc_net_remove(net, "ptype");
2768 out_softnet:
2769 proc_net_remove(net, "softnet_stat");
2770 out_dev:
2771 proc_net_remove(net, "dev");
2772 goto out;
2773 }
2774
2775 static void __net_exit dev_proc_net_exit(struct net *net)
2776 {
2777 wext_proc_exit(net);
2778
2779 proc_net_remove(net, "ptype");
2780 proc_net_remove(net, "softnet_stat");
2781 proc_net_remove(net, "dev");
2782 }
2783
2784 static struct pernet_operations __net_initdata dev_proc_ops = {
2785 .init = dev_proc_net_init,
2786 .exit = dev_proc_net_exit,
2787 };
2788
2789 static int __init dev_proc_init(void)
2790 {
2791 return register_pernet_subsys(&dev_proc_ops);
2792 }
2793 #else
2794 #define dev_proc_init() 0
2795 #endif /* CONFIG_PROC_FS */
2796
2797
2798 /**
2799 * netdev_set_master - set up master/slave pair
2800 * @slave: slave device
2801 * @master: new master device
2802 *
2803 * Changes the master device of the slave. Pass %NULL to break the
2804 * bonding. The caller must hold the RTNL semaphore. On a failure
2805 * a negative errno code is returned. On success the reference counts
2806 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2807 * function returns zero.
2808 */
2809 int netdev_set_master(struct net_device *slave, struct net_device *master)
2810 {
2811 struct net_device *old = slave->master;
2812
2813 ASSERT_RTNL();
2814
2815 if (master) {
2816 if (old)
2817 return -EBUSY;
2818 dev_hold(master);
2819 }
2820
2821 slave->master = master;
2822
2823 synchronize_net();
2824
2825 if (old)
2826 dev_put(old);
2827
2828 if (master)
2829 slave->flags |= IFF_SLAVE;
2830 else
2831 slave->flags &= ~IFF_SLAVE;
2832
2833 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2834 return 0;
2835 }
2836
2837 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2838 {
2839 unsigned short old_flags = dev->flags;
2840
2841 ASSERT_RTNL();
2842
2843 dev->flags |= IFF_PROMISC;
2844 dev->promiscuity += inc;
2845 if (dev->promiscuity == 0) {
2846 /*
2847 * Avoid overflow.
2848 * If inc causes overflow, untouch promisc and return error.
2849 */
2850 if (inc < 0)
2851 dev->flags &= ~IFF_PROMISC;
2852 else {
2853 dev->promiscuity -= inc;
2854 printk(KERN_WARNING "%s: promiscuity touches roof, "
2855 "set promiscuity failed, promiscuity feature "
2856 "of device might be broken.\n", dev->name);
2857 return -EOVERFLOW;
2858 }
2859 }
2860 if (dev->flags != old_flags) {
2861 printk(KERN_INFO "device %s %s promiscuous mode\n",
2862 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2863 "left");
2864 if (audit_enabled)
2865 audit_log(current->audit_context, GFP_ATOMIC,
2866 AUDIT_ANOM_PROMISCUOUS,
2867 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2868 dev->name, (dev->flags & IFF_PROMISC),
2869 (old_flags & IFF_PROMISC),
2870 audit_get_loginuid(current),
2871 current->uid, current->gid,
2872 audit_get_sessionid(current));
2873
2874 if (dev->change_rx_flags)
2875 dev->change_rx_flags(dev, IFF_PROMISC);
2876 }
2877 return 0;
2878 }
2879
2880 /**
2881 * dev_set_promiscuity - update promiscuity count on a device
2882 * @dev: device
2883 * @inc: modifier
2884 *
2885 * Add or remove promiscuity from a device. While the count in the device
2886 * remains above zero the interface remains promiscuous. Once it hits zero
2887 * the device reverts back to normal filtering operation. A negative inc
2888 * value is used to drop promiscuity on the device.
2889 * Return 0 if successful or a negative errno code on error.
2890 */
2891 int dev_set_promiscuity(struct net_device *dev, int inc)
2892 {
2893 unsigned short old_flags = dev->flags;
2894 int err;
2895
2896 err = __dev_set_promiscuity(dev, inc);
2897 if (err < 0)
2898 return err;
2899 if (dev->flags != old_flags)
2900 dev_set_rx_mode(dev);
2901 return err;
2902 }
2903
2904 /**
2905 * dev_set_allmulti - update allmulti count on a device
2906 * @dev: device
2907 * @inc: modifier
2908 *
2909 * Add or remove reception of all multicast frames to a device. While the
2910 * count in the device remains above zero the interface remains listening
2911 * to all interfaces. Once it hits zero the device reverts back to normal
2912 * filtering operation. A negative @inc value is used to drop the counter
2913 * when releasing a resource needing all multicasts.
2914 * Return 0 if successful or a negative errno code on error.
2915 */
2916
2917 int dev_set_allmulti(struct net_device *dev, int inc)
2918 {
2919 unsigned short old_flags = dev->flags;
2920
2921 ASSERT_RTNL();
2922
2923 dev->flags |= IFF_ALLMULTI;
2924 dev->allmulti += inc;
2925 if (dev->allmulti == 0) {
2926 /*
2927 * Avoid overflow.
2928 * If inc causes overflow, untouch allmulti and return error.
2929 */
2930 if (inc < 0)
2931 dev->flags &= ~IFF_ALLMULTI;
2932 else {
2933 dev->allmulti -= inc;
2934 printk(KERN_WARNING "%s: allmulti touches roof, "
2935 "set allmulti failed, allmulti feature of "
2936 "device might be broken.\n", dev->name);
2937 return -EOVERFLOW;
2938 }
2939 }
2940 if (dev->flags ^ old_flags) {
2941 if (dev->change_rx_flags)
2942 dev->change_rx_flags(dev, IFF_ALLMULTI);
2943 dev_set_rx_mode(dev);
2944 }
2945 return 0;
2946 }
2947
2948 /*
2949 * Upload unicast and multicast address lists to device and
2950 * configure RX filtering. When the device doesn't support unicast
2951 * filtering it is put in promiscuous mode while unicast addresses
2952 * are present.
2953 */
2954 void __dev_set_rx_mode(struct net_device *dev)
2955 {
2956 /* dev_open will call this function so the list will stay sane. */
2957 if (!(dev->flags&IFF_UP))
2958 return;
2959
2960 if (!netif_device_present(dev))
2961 return;
2962
2963 if (dev->set_rx_mode)
2964 dev->set_rx_mode(dev);
2965 else {
2966 /* Unicast addresses changes may only happen under the rtnl,
2967 * therefore calling __dev_set_promiscuity here is safe.
2968 */
2969 if (dev->uc_count > 0 && !dev->uc_promisc) {
2970 __dev_set_promiscuity(dev, 1);
2971 dev->uc_promisc = 1;
2972 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2973 __dev_set_promiscuity(dev, -1);
2974 dev->uc_promisc = 0;
2975 }
2976
2977 if (dev->set_multicast_list)
2978 dev->set_multicast_list(dev);
2979 }
2980 }
2981
2982 void dev_set_rx_mode(struct net_device *dev)
2983 {
2984 netif_addr_lock_bh(dev);
2985 __dev_set_rx_mode(dev);
2986 netif_addr_unlock_bh(dev);
2987 }
2988
2989 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2990 void *addr, int alen, int glbl)
2991 {
2992 struct dev_addr_list *da;
2993
2994 for (; (da = *list) != NULL; list = &da->next) {
2995 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2996 alen == da->da_addrlen) {
2997 if (glbl) {
2998 int old_glbl = da->da_gusers;
2999 da->da_gusers = 0;
3000 if (old_glbl == 0)
3001 break;
3002 }
3003 if (--da->da_users)
3004 return 0;
3005
3006 *list = da->next;
3007 kfree(da);
3008 (*count)--;
3009 return 0;
3010 }
3011 }
3012 return -ENOENT;
3013 }
3014
3015 int __dev_addr_add(struct dev_addr_list **list, int *count,
3016 void *addr, int alen, int glbl)
3017 {
3018 struct dev_addr_list *da;
3019
3020 for (da = *list; da != NULL; da = da->next) {
3021 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3022 da->da_addrlen == alen) {
3023 if (glbl) {
3024 int old_glbl = da->da_gusers;
3025 da->da_gusers = 1;
3026 if (old_glbl)
3027 return 0;
3028 }
3029 da->da_users++;
3030 return 0;
3031 }
3032 }
3033
3034 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3035 if (da == NULL)
3036 return -ENOMEM;
3037 memcpy(da->da_addr, addr, alen);
3038 da->da_addrlen = alen;
3039 da->da_users = 1;
3040 da->da_gusers = glbl ? 1 : 0;
3041 da->next = *list;
3042 *list = da;
3043 (*count)++;
3044 return 0;
3045 }
3046
3047 /**
3048 * dev_unicast_delete - Release secondary unicast address.
3049 * @dev: device
3050 * @addr: address to delete
3051 * @alen: length of @addr
3052 *
3053 * Release reference to a secondary unicast address and remove it
3054 * from the device if the reference count drops to zero.
3055 *
3056 * The caller must hold the rtnl_mutex.
3057 */
3058 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3059 {
3060 int err;
3061
3062 ASSERT_RTNL();
3063
3064 netif_addr_lock_bh(dev);
3065 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3066 if (!err)
3067 __dev_set_rx_mode(dev);
3068 netif_addr_unlock_bh(dev);
3069 return err;
3070 }
3071 EXPORT_SYMBOL(dev_unicast_delete);
3072
3073 /**
3074 * dev_unicast_add - add a secondary unicast address
3075 * @dev: device
3076 * @addr: address to add
3077 * @alen: length of @addr
3078 *
3079 * Add a secondary unicast address to the device or increase
3080 * the reference count if it already exists.
3081 *
3082 * The caller must hold the rtnl_mutex.
3083 */
3084 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3085 {
3086 int err;
3087
3088 ASSERT_RTNL();
3089
3090 netif_addr_lock_bh(dev);
3091 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3092 if (!err)
3093 __dev_set_rx_mode(dev);
3094 netif_addr_unlock_bh(dev);
3095 return err;
3096 }
3097 EXPORT_SYMBOL(dev_unicast_add);
3098
3099 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3100 struct dev_addr_list **from, int *from_count)
3101 {
3102 struct dev_addr_list *da, *next;
3103 int err = 0;
3104
3105 da = *from;
3106 while (da != NULL) {
3107 next = da->next;
3108 if (!da->da_synced) {
3109 err = __dev_addr_add(to, to_count,
3110 da->da_addr, da->da_addrlen, 0);
3111 if (err < 0)
3112 break;
3113 da->da_synced = 1;
3114 da->da_users++;
3115 } else if (da->da_users == 1) {
3116 __dev_addr_delete(to, to_count,
3117 da->da_addr, da->da_addrlen, 0);
3118 __dev_addr_delete(from, from_count,
3119 da->da_addr, da->da_addrlen, 0);
3120 }
3121 da = next;
3122 }
3123 return err;
3124 }
3125
3126 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3127 struct dev_addr_list **from, int *from_count)
3128 {
3129 struct dev_addr_list *da, *next;
3130
3131 da = *from;
3132 while (da != NULL) {
3133 next = da->next;
3134 if (da->da_synced) {
3135 __dev_addr_delete(to, to_count,
3136 da->da_addr, da->da_addrlen, 0);
3137 da->da_synced = 0;
3138 __dev_addr_delete(from, from_count,
3139 da->da_addr, da->da_addrlen, 0);
3140 }
3141 da = next;
3142 }
3143 }
3144
3145 /**
3146 * dev_unicast_sync - Synchronize device's unicast list to another device
3147 * @to: destination device
3148 * @from: source device
3149 *
3150 * Add newly added addresses to the destination device and release
3151 * addresses that have no users left. The source device must be
3152 * locked by netif_tx_lock_bh.
3153 *
3154 * This function is intended to be called from the dev->set_rx_mode
3155 * function of layered software devices.
3156 */
3157 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3158 {
3159 int err = 0;
3160
3161 netif_addr_lock_bh(to);
3162 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3163 &from->uc_list, &from->uc_count);
3164 if (!err)
3165 __dev_set_rx_mode(to);
3166 netif_addr_unlock_bh(to);
3167 return err;
3168 }
3169 EXPORT_SYMBOL(dev_unicast_sync);
3170
3171 /**
3172 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3173 * @to: destination device
3174 * @from: source device
3175 *
3176 * Remove all addresses that were added to the destination device by
3177 * dev_unicast_sync(). This function is intended to be called from the
3178 * dev->stop function of layered software devices.
3179 */
3180 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3181 {
3182 netif_addr_lock_bh(from);
3183 netif_addr_lock(to);
3184
3185 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3186 &from->uc_list, &from->uc_count);
3187 __dev_set_rx_mode(to);
3188
3189 netif_addr_unlock(to);
3190 netif_addr_unlock_bh(from);
3191 }
3192 EXPORT_SYMBOL(dev_unicast_unsync);
3193
3194 static void __dev_addr_discard(struct dev_addr_list **list)
3195 {
3196 struct dev_addr_list *tmp;
3197
3198 while (*list != NULL) {
3199 tmp = *list;
3200 *list = tmp->next;
3201 if (tmp->da_users > tmp->da_gusers)
3202 printk("__dev_addr_discard: address leakage! "
3203 "da_users=%d\n", tmp->da_users);
3204 kfree(tmp);
3205 }
3206 }
3207
3208 static void dev_addr_discard(struct net_device *dev)
3209 {
3210 netif_addr_lock_bh(dev);
3211
3212 __dev_addr_discard(&dev->uc_list);
3213 dev->uc_count = 0;
3214
3215 __dev_addr_discard(&dev->mc_list);
3216 dev->mc_count = 0;
3217
3218 netif_addr_unlock_bh(dev);
3219 }
3220
3221 unsigned dev_get_flags(const struct net_device *dev)
3222 {
3223 unsigned flags;
3224
3225 flags = (dev->flags & ~(IFF_PROMISC |
3226 IFF_ALLMULTI |
3227 IFF_RUNNING |
3228 IFF_LOWER_UP |
3229 IFF_DORMANT)) |
3230 (dev->gflags & (IFF_PROMISC |
3231 IFF_ALLMULTI));
3232
3233 if (netif_running(dev)) {
3234 if (netif_oper_up(dev))
3235 flags |= IFF_RUNNING;
3236 if (netif_carrier_ok(dev))
3237 flags |= IFF_LOWER_UP;
3238 if (netif_dormant(dev))
3239 flags |= IFF_DORMANT;
3240 }
3241
3242 return flags;
3243 }
3244
3245 int dev_change_flags(struct net_device *dev, unsigned flags)
3246 {
3247 int ret, changes;
3248 int old_flags = dev->flags;
3249
3250 ASSERT_RTNL();
3251
3252 /*
3253 * Set the flags on our device.
3254 */
3255
3256 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3257 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3258 IFF_AUTOMEDIA)) |
3259 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3260 IFF_ALLMULTI));
3261
3262 /*
3263 * Load in the correct multicast list now the flags have changed.
3264 */
3265
3266 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3267 dev->change_rx_flags(dev, IFF_MULTICAST);
3268
3269 dev_set_rx_mode(dev);
3270
3271 /*
3272 * Have we downed the interface. We handle IFF_UP ourselves
3273 * according to user attempts to set it, rather than blindly
3274 * setting it.
3275 */
3276
3277 ret = 0;
3278 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3279 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3280
3281 if (!ret)
3282 dev_set_rx_mode(dev);
3283 }
3284
3285 if (dev->flags & IFF_UP &&
3286 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3287 IFF_VOLATILE)))
3288 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3289
3290 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3291 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3292 dev->gflags ^= IFF_PROMISC;
3293 dev_set_promiscuity(dev, inc);
3294 }
3295
3296 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3297 is important. Some (broken) drivers set IFF_PROMISC, when
3298 IFF_ALLMULTI is requested not asking us and not reporting.
3299 */
3300 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3301 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3302 dev->gflags ^= IFF_ALLMULTI;
3303 dev_set_allmulti(dev, inc);
3304 }
3305
3306 /* Exclude state transition flags, already notified */
3307 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3308 if (changes)
3309 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3310
3311 return ret;
3312 }
3313
3314 int dev_set_mtu(struct net_device *dev, int new_mtu)
3315 {
3316 int err;
3317
3318 if (new_mtu == dev->mtu)
3319 return 0;
3320
3321 /* MTU must be positive. */
3322 if (new_mtu < 0)
3323 return -EINVAL;
3324
3325 if (!netif_device_present(dev))
3326 return -ENODEV;
3327
3328 err = 0;
3329 if (dev->change_mtu)
3330 err = dev->change_mtu(dev, new_mtu);
3331 else
3332 dev->mtu = new_mtu;
3333 if (!err && dev->flags & IFF_UP)
3334 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3335 return err;
3336 }
3337
3338 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3339 {
3340 int err;
3341
3342 if (!dev->set_mac_address)
3343 return -EOPNOTSUPP;
3344 if (sa->sa_family != dev->type)
3345 return -EINVAL;
3346 if (!netif_device_present(dev))
3347 return -ENODEV;
3348 err = dev->set_mac_address(dev, sa);
3349 if (!err)
3350 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3351 return err;
3352 }
3353
3354 /*
3355 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3356 */
3357 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3358 {
3359 int err;
3360 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3361
3362 if (!dev)
3363 return -ENODEV;
3364
3365 switch (cmd) {
3366 case SIOCGIFFLAGS: /* Get interface flags */
3367 ifr->ifr_flags = dev_get_flags(dev);
3368 return 0;
3369
3370 case SIOCGIFMETRIC: /* Get the metric on the interface
3371 (currently unused) */
3372 ifr->ifr_metric = 0;
3373 return 0;
3374
3375 case SIOCGIFMTU: /* Get the MTU of a device */
3376 ifr->ifr_mtu = dev->mtu;
3377 return 0;
3378
3379 case SIOCGIFHWADDR:
3380 if (!dev->addr_len)
3381 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3382 else
3383 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3384 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3385 ifr->ifr_hwaddr.sa_family = dev->type;
3386 return 0;
3387
3388 case SIOCGIFSLAVE:
3389 err = -EINVAL;
3390 break;
3391
3392 case SIOCGIFMAP:
3393 ifr->ifr_map.mem_start = dev->mem_start;
3394 ifr->ifr_map.mem_end = dev->mem_end;
3395 ifr->ifr_map.base_addr = dev->base_addr;
3396 ifr->ifr_map.irq = dev->irq;
3397 ifr->ifr_map.dma = dev->dma;
3398 ifr->ifr_map.port = dev->if_port;
3399 return 0;
3400
3401 case SIOCGIFINDEX:
3402 ifr->ifr_ifindex = dev->ifindex;
3403 return 0;
3404
3405 case SIOCGIFTXQLEN:
3406 ifr->ifr_qlen = dev->tx_queue_len;
3407 return 0;
3408
3409 default:
3410 /* dev_ioctl() should ensure this case
3411 * is never reached
3412 */
3413 WARN_ON(1);
3414 err = -EINVAL;
3415 break;
3416
3417 }
3418 return err;
3419 }
3420
3421 /*
3422 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3423 */
3424 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3425 {
3426 int err;
3427 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3428
3429 if (!dev)
3430 return -ENODEV;
3431
3432 switch (cmd) {
3433 case SIOCSIFFLAGS: /* Set interface flags */
3434 return dev_change_flags(dev, ifr->ifr_flags);
3435
3436 case SIOCSIFMETRIC: /* Set the metric on the interface
3437 (currently unused) */
3438 return -EOPNOTSUPP;
3439
3440 case SIOCSIFMTU: /* Set the MTU of a device */
3441 return dev_set_mtu(dev, ifr->ifr_mtu);
3442
3443 case SIOCSIFHWADDR:
3444 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3445
3446 case SIOCSIFHWBROADCAST:
3447 if (ifr->ifr_hwaddr.sa_family != dev->type)
3448 return -EINVAL;
3449 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3450 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3451 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3452 return 0;
3453
3454 case SIOCSIFMAP:
3455 if (dev->set_config) {
3456 if (!netif_device_present(dev))
3457 return -ENODEV;
3458 return dev->set_config(dev, &ifr->ifr_map);
3459 }
3460 return -EOPNOTSUPP;
3461
3462 case SIOCADDMULTI:
3463 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3464 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3465 return -EINVAL;
3466 if (!netif_device_present(dev))
3467 return -ENODEV;
3468 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3469 dev->addr_len, 1);
3470
3471 case SIOCDELMULTI:
3472 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3473 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3474 return -EINVAL;
3475 if (!netif_device_present(dev))
3476 return -ENODEV;
3477 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3478 dev->addr_len, 1);
3479
3480 case SIOCSIFTXQLEN:
3481 if (ifr->ifr_qlen < 0)
3482 return -EINVAL;
3483 dev->tx_queue_len = ifr->ifr_qlen;
3484 return 0;
3485
3486 case SIOCSIFNAME:
3487 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3488 return dev_change_name(dev, ifr->ifr_newname);
3489
3490 /*
3491 * Unknown or private ioctl
3492 */
3493
3494 default:
3495 if ((cmd >= SIOCDEVPRIVATE &&
3496 cmd <= SIOCDEVPRIVATE + 15) ||
3497 cmd == SIOCBONDENSLAVE ||
3498 cmd == SIOCBONDRELEASE ||
3499 cmd == SIOCBONDSETHWADDR ||
3500 cmd == SIOCBONDSLAVEINFOQUERY ||
3501 cmd == SIOCBONDINFOQUERY ||
3502 cmd == SIOCBONDCHANGEACTIVE ||
3503 cmd == SIOCGMIIPHY ||
3504 cmd == SIOCGMIIREG ||
3505 cmd == SIOCSMIIREG ||
3506 cmd == SIOCBRADDIF ||
3507 cmd == SIOCBRDELIF ||
3508 cmd == SIOCWANDEV) {
3509 err = -EOPNOTSUPP;
3510 if (dev->do_ioctl) {
3511 if (netif_device_present(dev))
3512 err = dev->do_ioctl(dev, ifr,
3513 cmd);
3514 else
3515 err = -ENODEV;
3516 }
3517 } else
3518 err = -EINVAL;
3519
3520 }
3521 return err;
3522 }
3523
3524 /*
3525 * This function handles all "interface"-type I/O control requests. The actual
3526 * 'doing' part of this is dev_ifsioc above.
3527 */
3528
3529 /**
3530 * dev_ioctl - network device ioctl
3531 * @net: the applicable net namespace
3532 * @cmd: command to issue
3533 * @arg: pointer to a struct ifreq in user space
3534 *
3535 * Issue ioctl functions to devices. This is normally called by the
3536 * user space syscall interfaces but can sometimes be useful for
3537 * other purposes. The return value is the return from the syscall if
3538 * positive or a negative errno code on error.
3539 */
3540
3541 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3542 {
3543 struct ifreq ifr;
3544 int ret;
3545 char *colon;
3546
3547 /* One special case: SIOCGIFCONF takes ifconf argument
3548 and requires shared lock, because it sleeps writing
3549 to user space.
3550 */
3551
3552 if (cmd == SIOCGIFCONF) {
3553 rtnl_lock();
3554 ret = dev_ifconf(net, (char __user *) arg);
3555 rtnl_unlock();
3556 return ret;
3557 }
3558 if (cmd == SIOCGIFNAME)
3559 return dev_ifname(net, (struct ifreq __user *)arg);
3560
3561 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3562 return -EFAULT;
3563
3564 ifr.ifr_name[IFNAMSIZ-1] = 0;
3565
3566 colon = strchr(ifr.ifr_name, ':');
3567 if (colon)
3568 *colon = 0;
3569
3570 /*
3571 * See which interface the caller is talking about.
3572 */
3573
3574 switch (cmd) {
3575 /*
3576 * These ioctl calls:
3577 * - can be done by all.
3578 * - atomic and do not require locking.
3579 * - return a value
3580 */
3581 case SIOCGIFFLAGS:
3582 case SIOCGIFMETRIC:
3583 case SIOCGIFMTU:
3584 case SIOCGIFHWADDR:
3585 case SIOCGIFSLAVE:
3586 case SIOCGIFMAP:
3587 case SIOCGIFINDEX:
3588 case SIOCGIFTXQLEN:
3589 dev_load(net, ifr.ifr_name);
3590 read_lock(&dev_base_lock);
3591 ret = dev_ifsioc_locked(net, &ifr, cmd);
3592 read_unlock(&dev_base_lock);
3593 if (!ret) {
3594 if (colon)
3595 *colon = ':';
3596 if (copy_to_user(arg, &ifr,
3597 sizeof(struct ifreq)))
3598 ret = -EFAULT;
3599 }
3600 return ret;
3601
3602 case SIOCETHTOOL:
3603 dev_load(net, ifr.ifr_name);
3604 rtnl_lock();
3605 ret = dev_ethtool(net, &ifr);
3606 rtnl_unlock();
3607 if (!ret) {
3608 if (colon)
3609 *colon = ':';
3610 if (copy_to_user(arg, &ifr,
3611 sizeof(struct ifreq)))
3612 ret = -EFAULT;
3613 }
3614 return ret;
3615
3616 /*
3617 * These ioctl calls:
3618 * - require superuser power.
3619 * - require strict serialization.
3620 * - return a value
3621 */
3622 case SIOCGMIIPHY:
3623 case SIOCGMIIREG:
3624 case SIOCSIFNAME:
3625 if (!capable(CAP_NET_ADMIN))
3626 return -EPERM;
3627 dev_load(net, ifr.ifr_name);
3628 rtnl_lock();
3629 ret = dev_ifsioc(net, &ifr, cmd);
3630 rtnl_unlock();
3631 if (!ret) {
3632 if (colon)
3633 *colon = ':';
3634 if (copy_to_user(arg, &ifr,
3635 sizeof(struct ifreq)))
3636 ret = -EFAULT;
3637 }
3638 return ret;
3639
3640 /*
3641 * These ioctl calls:
3642 * - require superuser power.
3643 * - require strict serialization.
3644 * - do not return a value
3645 */
3646 case SIOCSIFFLAGS:
3647 case SIOCSIFMETRIC:
3648 case SIOCSIFMTU:
3649 case SIOCSIFMAP:
3650 case SIOCSIFHWADDR:
3651 case SIOCSIFSLAVE:
3652 case SIOCADDMULTI:
3653 case SIOCDELMULTI:
3654 case SIOCSIFHWBROADCAST:
3655 case SIOCSIFTXQLEN:
3656 case SIOCSMIIREG:
3657 case SIOCBONDENSLAVE:
3658 case SIOCBONDRELEASE:
3659 case SIOCBONDSETHWADDR:
3660 case SIOCBONDCHANGEACTIVE:
3661 case SIOCBRADDIF:
3662 case SIOCBRDELIF:
3663 if (!capable(CAP_NET_ADMIN))
3664 return -EPERM;
3665 /* fall through */
3666 case SIOCBONDSLAVEINFOQUERY:
3667 case SIOCBONDINFOQUERY:
3668 dev_load(net, ifr.ifr_name);
3669 rtnl_lock();
3670 ret = dev_ifsioc(net, &ifr, cmd);
3671 rtnl_unlock();
3672 return ret;
3673
3674 case SIOCGIFMEM:
3675 /* Get the per device memory space. We can add this but
3676 * currently do not support it */
3677 case SIOCSIFMEM:
3678 /* Set the per device memory buffer space.
3679 * Not applicable in our case */
3680 case SIOCSIFLINK:
3681 return -EINVAL;
3682
3683 /*
3684 * Unknown or private ioctl.
3685 */
3686 default:
3687 if (cmd == SIOCWANDEV ||
3688 (cmd >= SIOCDEVPRIVATE &&
3689 cmd <= SIOCDEVPRIVATE + 15)) {
3690 dev_load(net, ifr.ifr_name);
3691 rtnl_lock();
3692 ret = dev_ifsioc(net, &ifr, cmd);
3693 rtnl_unlock();
3694 if (!ret && copy_to_user(arg, &ifr,
3695 sizeof(struct ifreq)))
3696 ret = -EFAULT;
3697 return ret;
3698 }
3699 /* Take care of Wireless Extensions */
3700 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3701 return wext_handle_ioctl(net, &ifr, cmd, arg);
3702 return -EINVAL;
3703 }
3704 }
3705
3706
3707 /**
3708 * dev_new_index - allocate an ifindex
3709 * @net: the applicable net namespace
3710 *
3711 * Returns a suitable unique value for a new device interface
3712 * number. The caller must hold the rtnl semaphore or the
3713 * dev_base_lock to be sure it remains unique.
3714 */
3715 static int dev_new_index(struct net *net)
3716 {
3717 static int ifindex;
3718 for (;;) {
3719 if (++ifindex <= 0)
3720 ifindex = 1;
3721 if (!__dev_get_by_index(net, ifindex))
3722 return ifindex;
3723 }
3724 }
3725
3726 /* Delayed registration/unregisteration */
3727 static DEFINE_SPINLOCK(net_todo_list_lock);
3728 static LIST_HEAD(net_todo_list);
3729
3730 static void net_set_todo(struct net_device *dev)
3731 {
3732 spin_lock(&net_todo_list_lock);
3733 list_add_tail(&dev->todo_list, &net_todo_list);
3734 spin_unlock(&net_todo_list_lock);
3735 }
3736
3737 static void rollback_registered(struct net_device *dev)
3738 {
3739 BUG_ON(dev_boot_phase);
3740 ASSERT_RTNL();
3741
3742 /* Some devices call without registering for initialization unwind. */
3743 if (dev->reg_state == NETREG_UNINITIALIZED) {
3744 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3745 "was registered\n", dev->name, dev);
3746
3747 WARN_ON(1);
3748 return;
3749 }
3750
3751 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3752
3753 /* If device is running, close it first. */
3754 dev_close(dev);
3755
3756 /* And unlink it from device chain. */
3757 unlist_netdevice(dev);
3758
3759 dev->reg_state = NETREG_UNREGISTERING;
3760
3761 synchronize_net();
3762
3763 /* Shutdown queueing discipline. */
3764 dev_shutdown(dev);
3765
3766
3767 /* Notify protocols, that we are about to destroy
3768 this device. They should clean all the things.
3769 */
3770 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3771
3772 /*
3773 * Flush the unicast and multicast chains
3774 */
3775 dev_addr_discard(dev);
3776
3777 if (dev->uninit)
3778 dev->uninit(dev);
3779
3780 /* Notifier chain MUST detach us from master device. */
3781 BUG_TRAP(!dev->master);
3782
3783 /* Remove entries from kobject tree */
3784 netdev_unregister_kobject(dev);
3785
3786 synchronize_net();
3787
3788 dev_put(dev);
3789 }
3790
3791 static void __netdev_init_queue_locks_one(struct netdev_queue *dev_queue,
3792 struct net_device *dev)
3793 {
3794 spin_lock_init(&dev_queue->_xmit_lock);
3795 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3796 dev_queue->xmit_lock_owner = -1;
3797 }
3798
3799 static void netdev_init_queue_locks(struct net_device *dev)
3800 {
3801 __netdev_init_queue_locks_one(&dev->tx_queue, dev);
3802 __netdev_init_queue_locks_one(&dev->rx_queue, dev);
3803 }
3804
3805 /**
3806 * register_netdevice - register a network device
3807 * @dev: device to register
3808 *
3809 * Take a completed network device structure and add it to the kernel
3810 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3811 * chain. 0 is returned on success. A negative errno code is returned
3812 * on a failure to set up the device, or if the name is a duplicate.
3813 *
3814 * Callers must hold the rtnl semaphore. You may want
3815 * register_netdev() instead of this.
3816 *
3817 * BUGS:
3818 * The locking appears insufficient to guarantee two parallel registers
3819 * will not get the same name.
3820 */
3821
3822 int register_netdevice(struct net_device *dev)
3823 {
3824 struct hlist_head *head;
3825 struct hlist_node *p;
3826 int ret;
3827 struct net *net;
3828
3829 BUG_ON(dev_boot_phase);
3830 ASSERT_RTNL();
3831
3832 might_sleep();
3833
3834 /* When net_device's are persistent, this will be fatal. */
3835 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3836 BUG_ON(!dev_net(dev));
3837 net = dev_net(dev);
3838
3839 spin_lock_init(&dev->addr_list_lock);
3840 netdev_init_queue_locks(dev);
3841
3842 dev->iflink = -1;
3843
3844 /* Init, if this function is available */
3845 if (dev->init) {
3846 ret = dev->init(dev);
3847 if (ret) {
3848 if (ret > 0)
3849 ret = -EIO;
3850 goto out;
3851 }
3852 }
3853
3854 if (!dev_valid_name(dev->name)) {
3855 ret = -EINVAL;
3856 goto err_uninit;
3857 }
3858
3859 dev->ifindex = dev_new_index(net);
3860 if (dev->iflink == -1)
3861 dev->iflink = dev->ifindex;
3862
3863 /* Check for existence of name */
3864 head = dev_name_hash(net, dev->name);
3865 hlist_for_each(p, head) {
3866 struct net_device *d
3867 = hlist_entry(p, struct net_device, name_hlist);
3868 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3869 ret = -EEXIST;
3870 goto err_uninit;
3871 }
3872 }
3873
3874 /* Fix illegal checksum combinations */
3875 if ((dev->features & NETIF_F_HW_CSUM) &&
3876 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3877 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3878 dev->name);
3879 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3880 }
3881
3882 if ((dev->features & NETIF_F_NO_CSUM) &&
3883 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3884 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3885 dev->name);
3886 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3887 }
3888
3889
3890 /* Fix illegal SG+CSUM combinations. */
3891 if ((dev->features & NETIF_F_SG) &&
3892 !(dev->features & NETIF_F_ALL_CSUM)) {
3893 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3894 dev->name);
3895 dev->features &= ~NETIF_F_SG;
3896 }
3897
3898 /* TSO requires that SG is present as well. */
3899 if ((dev->features & NETIF_F_TSO) &&
3900 !(dev->features & NETIF_F_SG)) {
3901 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3902 dev->name);
3903 dev->features &= ~NETIF_F_TSO;
3904 }
3905 if (dev->features & NETIF_F_UFO) {
3906 if (!(dev->features & NETIF_F_HW_CSUM)) {
3907 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3908 "NETIF_F_HW_CSUM feature.\n",
3909 dev->name);
3910 dev->features &= ~NETIF_F_UFO;
3911 }
3912 if (!(dev->features & NETIF_F_SG)) {
3913 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3914 "NETIF_F_SG feature.\n",
3915 dev->name);
3916 dev->features &= ~NETIF_F_UFO;
3917 }
3918 }
3919
3920 netdev_initialize_kobject(dev);
3921 ret = netdev_register_kobject(dev);
3922 if (ret)
3923 goto err_uninit;
3924 dev->reg_state = NETREG_REGISTERED;
3925
3926 /*
3927 * Default initial state at registry is that the
3928 * device is present.
3929 */
3930
3931 set_bit(__LINK_STATE_PRESENT, &dev->state);
3932
3933 dev_init_scheduler(dev);
3934 dev_hold(dev);
3935 list_netdevice(dev);
3936
3937 /* Notify protocols, that a new device appeared. */
3938 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3939 ret = notifier_to_errno(ret);
3940 if (ret) {
3941 rollback_registered(dev);
3942 dev->reg_state = NETREG_UNREGISTERED;
3943 }
3944
3945 out:
3946 return ret;
3947
3948 err_uninit:
3949 if (dev->uninit)
3950 dev->uninit(dev);
3951 goto out;
3952 }
3953
3954 /**
3955 * register_netdev - register a network device
3956 * @dev: device to register
3957 *
3958 * Take a completed network device structure and add it to the kernel
3959 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3960 * chain. 0 is returned on success. A negative errno code is returned
3961 * on a failure to set up the device, or if the name is a duplicate.
3962 *
3963 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3964 * and expands the device name if you passed a format string to
3965 * alloc_netdev.
3966 */
3967 int register_netdev(struct net_device *dev)
3968 {
3969 int err;
3970
3971 rtnl_lock();
3972
3973 /*
3974 * If the name is a format string the caller wants us to do a
3975 * name allocation.
3976 */
3977 if (strchr(dev->name, '%')) {
3978 err = dev_alloc_name(dev, dev->name);
3979 if (err < 0)
3980 goto out;
3981 }
3982
3983 err = register_netdevice(dev);
3984 out:
3985 rtnl_unlock();
3986 return err;
3987 }
3988 EXPORT_SYMBOL(register_netdev);
3989
3990 /*
3991 * netdev_wait_allrefs - wait until all references are gone.
3992 *
3993 * This is called when unregistering network devices.
3994 *
3995 * Any protocol or device that holds a reference should register
3996 * for netdevice notification, and cleanup and put back the
3997 * reference if they receive an UNREGISTER event.
3998 * We can get stuck here if buggy protocols don't correctly
3999 * call dev_put.
4000 */
4001 static void netdev_wait_allrefs(struct net_device *dev)
4002 {
4003 unsigned long rebroadcast_time, warning_time;
4004
4005 rebroadcast_time = warning_time = jiffies;
4006 while (atomic_read(&dev->refcnt) != 0) {
4007 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4008 rtnl_lock();
4009
4010 /* Rebroadcast unregister notification */
4011 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4012
4013 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4014 &dev->state)) {
4015 /* We must not have linkwatch events
4016 * pending on unregister. If this
4017 * happens, we simply run the queue
4018 * unscheduled, resulting in a noop
4019 * for this device.
4020 */
4021 linkwatch_run_queue();
4022 }
4023
4024 __rtnl_unlock();
4025
4026 rebroadcast_time = jiffies;
4027 }
4028
4029 msleep(250);
4030
4031 if (time_after(jiffies, warning_time + 10 * HZ)) {
4032 printk(KERN_EMERG "unregister_netdevice: "
4033 "waiting for %s to become free. Usage "
4034 "count = %d\n",
4035 dev->name, atomic_read(&dev->refcnt));
4036 warning_time = jiffies;
4037 }
4038 }
4039 }
4040
4041 /* The sequence is:
4042 *
4043 * rtnl_lock();
4044 * ...
4045 * register_netdevice(x1);
4046 * register_netdevice(x2);
4047 * ...
4048 * unregister_netdevice(y1);
4049 * unregister_netdevice(y2);
4050 * ...
4051 * rtnl_unlock();
4052 * free_netdev(y1);
4053 * free_netdev(y2);
4054 *
4055 * We are invoked by rtnl_unlock() after it drops the semaphore.
4056 * This allows us to deal with problems:
4057 * 1) We can delete sysfs objects which invoke hotplug
4058 * without deadlocking with linkwatch via keventd.
4059 * 2) Since we run with the RTNL semaphore not held, we can sleep
4060 * safely in order to wait for the netdev refcnt to drop to zero.
4061 */
4062 static DEFINE_MUTEX(net_todo_run_mutex);
4063 void netdev_run_todo(void)
4064 {
4065 struct list_head list;
4066
4067 /* Need to guard against multiple cpu's getting out of order. */
4068 mutex_lock(&net_todo_run_mutex);
4069
4070 /* Not safe to do outside the semaphore. We must not return
4071 * until all unregister events invoked by the local processor
4072 * have been completed (either by this todo run, or one on
4073 * another cpu).
4074 */
4075 if (list_empty(&net_todo_list))
4076 goto out;
4077
4078 /* Snapshot list, allow later requests */
4079 spin_lock(&net_todo_list_lock);
4080 list_replace_init(&net_todo_list, &list);
4081 spin_unlock(&net_todo_list_lock);
4082
4083 while (!list_empty(&list)) {
4084 struct net_device *dev
4085 = list_entry(list.next, struct net_device, todo_list);
4086 list_del(&dev->todo_list);
4087
4088 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4089 printk(KERN_ERR "network todo '%s' but state %d\n",
4090 dev->name, dev->reg_state);
4091 dump_stack();
4092 continue;
4093 }
4094
4095 dev->reg_state = NETREG_UNREGISTERED;
4096
4097 netdev_wait_allrefs(dev);
4098
4099 /* paranoia */
4100 BUG_ON(atomic_read(&dev->refcnt));
4101 BUG_TRAP(!dev->ip_ptr);
4102 BUG_TRAP(!dev->ip6_ptr);
4103 BUG_TRAP(!dev->dn_ptr);
4104
4105 if (dev->destructor)
4106 dev->destructor(dev);
4107
4108 /* Free network device */
4109 kobject_put(&dev->dev.kobj);
4110 }
4111
4112 out:
4113 mutex_unlock(&net_todo_run_mutex);
4114 }
4115
4116 static struct net_device_stats *internal_stats(struct net_device *dev)
4117 {
4118 return &dev->stats;
4119 }
4120
4121 static void netdev_init_one_queue(struct net_device *dev,
4122 struct netdev_queue *queue)
4123 {
4124 spin_lock_init(&queue->lock);
4125 queue->dev = dev;
4126 }
4127
4128 static void netdev_init_queues(struct net_device *dev)
4129 {
4130 netdev_init_one_queue(dev, &dev->rx_queue);
4131 netdev_init_one_queue(dev, &dev->tx_queue);
4132 }
4133
4134 /**
4135 * alloc_netdev_mq - allocate network device
4136 * @sizeof_priv: size of private data to allocate space for
4137 * @name: device name format string
4138 * @setup: callback to initialize device
4139 * @queue_count: the number of subqueues to allocate
4140 *
4141 * Allocates a struct net_device with private data area for driver use
4142 * and performs basic initialization. Also allocates subquue structs
4143 * for each queue on the device at the end of the netdevice.
4144 */
4145 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4146 void (*setup)(struct net_device *), unsigned int queue_count)
4147 {
4148 void *p;
4149 struct net_device *dev;
4150 int alloc_size;
4151
4152 BUG_ON(strlen(name) >= sizeof(dev->name));
4153
4154 alloc_size = sizeof(struct net_device) +
4155 sizeof(struct net_device_subqueue) * (queue_count - 1);
4156 if (sizeof_priv) {
4157 /* ensure 32-byte alignment of private area */
4158 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4159 alloc_size += sizeof_priv;
4160 }
4161 /* ensure 32-byte alignment of whole construct */
4162 alloc_size += NETDEV_ALIGN_CONST;
4163
4164 p = kzalloc(alloc_size, GFP_KERNEL);
4165 if (!p) {
4166 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4167 return NULL;
4168 }
4169
4170 dev = (struct net_device *)
4171 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4172 dev->padded = (char *)dev - (char *)p;
4173 dev_net_set(dev, &init_net);
4174
4175 if (sizeof_priv) {
4176 dev->priv = ((char *)dev +
4177 ((sizeof(struct net_device) +
4178 (sizeof(struct net_device_subqueue) *
4179 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4180 & ~NETDEV_ALIGN_CONST));
4181 }
4182
4183 dev->egress_subqueue_count = queue_count;
4184 dev->gso_max_size = GSO_MAX_SIZE;
4185
4186 netdev_init_queues(dev);
4187
4188 dev->get_stats = internal_stats;
4189 netpoll_netdev_init(dev);
4190 setup(dev);
4191 strcpy(dev->name, name);
4192 return dev;
4193 }
4194 EXPORT_SYMBOL(alloc_netdev_mq);
4195
4196 /**
4197 * free_netdev - free network device
4198 * @dev: device
4199 *
4200 * This function does the last stage of destroying an allocated device
4201 * interface. The reference to the device object is released.
4202 * If this is the last reference then it will be freed.
4203 */
4204 void free_netdev(struct net_device *dev)
4205 {
4206 release_net(dev_net(dev));
4207
4208 /* Compatibility with error handling in drivers */
4209 if (dev->reg_state == NETREG_UNINITIALIZED) {
4210 kfree((char *)dev - dev->padded);
4211 return;
4212 }
4213
4214 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4215 dev->reg_state = NETREG_RELEASED;
4216
4217 /* will free via device release */
4218 put_device(&dev->dev);
4219 }
4220
4221 /* Synchronize with packet receive processing. */
4222 void synchronize_net(void)
4223 {
4224 might_sleep();
4225 synchronize_rcu();
4226 }
4227
4228 /**
4229 * unregister_netdevice - remove device from the kernel
4230 * @dev: device
4231 *
4232 * This function shuts down a device interface and removes it
4233 * from the kernel tables.
4234 *
4235 * Callers must hold the rtnl semaphore. You may want
4236 * unregister_netdev() instead of this.
4237 */
4238
4239 void unregister_netdevice(struct net_device *dev)
4240 {
4241 ASSERT_RTNL();
4242
4243 rollback_registered(dev);
4244 /* Finish processing unregister after unlock */
4245 net_set_todo(dev);
4246 }
4247
4248 /**
4249 * unregister_netdev - remove device from the kernel
4250 * @dev: device
4251 *
4252 * This function shuts down a device interface and removes it
4253 * from the kernel tables.
4254 *
4255 * This is just a wrapper for unregister_netdevice that takes
4256 * the rtnl semaphore. In general you want to use this and not
4257 * unregister_netdevice.
4258 */
4259 void unregister_netdev(struct net_device *dev)
4260 {
4261 rtnl_lock();
4262 unregister_netdevice(dev);
4263 rtnl_unlock();
4264 }
4265
4266 EXPORT_SYMBOL(unregister_netdev);
4267
4268 /**
4269 * dev_change_net_namespace - move device to different nethost namespace
4270 * @dev: device
4271 * @net: network namespace
4272 * @pat: If not NULL name pattern to try if the current device name
4273 * is already taken in the destination network namespace.
4274 *
4275 * This function shuts down a device interface and moves it
4276 * to a new network namespace. On success 0 is returned, on
4277 * a failure a netagive errno code is returned.
4278 *
4279 * Callers must hold the rtnl semaphore.
4280 */
4281
4282 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4283 {
4284 char buf[IFNAMSIZ];
4285 const char *destname;
4286 int err;
4287
4288 ASSERT_RTNL();
4289
4290 /* Don't allow namespace local devices to be moved. */
4291 err = -EINVAL;
4292 if (dev->features & NETIF_F_NETNS_LOCAL)
4293 goto out;
4294
4295 /* Ensure the device has been registrered */
4296 err = -EINVAL;
4297 if (dev->reg_state != NETREG_REGISTERED)
4298 goto out;
4299
4300 /* Get out if there is nothing todo */
4301 err = 0;
4302 if (net_eq(dev_net(dev), net))
4303 goto out;
4304
4305 /* Pick the destination device name, and ensure
4306 * we can use it in the destination network namespace.
4307 */
4308 err = -EEXIST;
4309 destname = dev->name;
4310 if (__dev_get_by_name(net, destname)) {
4311 /* We get here if we can't use the current device name */
4312 if (!pat)
4313 goto out;
4314 if (!dev_valid_name(pat))
4315 goto out;
4316 if (strchr(pat, '%')) {
4317 if (__dev_alloc_name(net, pat, buf) < 0)
4318 goto out;
4319 destname = buf;
4320 } else
4321 destname = pat;
4322 if (__dev_get_by_name(net, destname))
4323 goto out;
4324 }
4325
4326 /*
4327 * And now a mini version of register_netdevice unregister_netdevice.
4328 */
4329
4330 /* If device is running close it first. */
4331 dev_close(dev);
4332
4333 /* And unlink it from device chain */
4334 err = -ENODEV;
4335 unlist_netdevice(dev);
4336
4337 synchronize_net();
4338
4339 /* Shutdown queueing discipline. */
4340 dev_shutdown(dev);
4341
4342 /* Notify protocols, that we are about to destroy
4343 this device. They should clean all the things.
4344 */
4345 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4346
4347 /*
4348 * Flush the unicast and multicast chains
4349 */
4350 dev_addr_discard(dev);
4351
4352 /* Actually switch the network namespace */
4353 dev_net_set(dev, net);
4354
4355 /* Assign the new device name */
4356 if (destname != dev->name)
4357 strcpy(dev->name, destname);
4358
4359 /* If there is an ifindex conflict assign a new one */
4360 if (__dev_get_by_index(net, dev->ifindex)) {
4361 int iflink = (dev->iflink == dev->ifindex);
4362 dev->ifindex = dev_new_index(net);
4363 if (iflink)
4364 dev->iflink = dev->ifindex;
4365 }
4366
4367 /* Fixup kobjects */
4368 netdev_unregister_kobject(dev);
4369 err = netdev_register_kobject(dev);
4370 WARN_ON(err);
4371
4372 /* Add the device back in the hashes */
4373 list_netdevice(dev);
4374
4375 /* Notify protocols, that a new device appeared. */
4376 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4377
4378 synchronize_net();
4379 err = 0;
4380 out:
4381 return err;
4382 }
4383
4384 static int dev_cpu_callback(struct notifier_block *nfb,
4385 unsigned long action,
4386 void *ocpu)
4387 {
4388 struct sk_buff **list_skb;
4389 struct netdev_queue **list_net;
4390 struct sk_buff *skb;
4391 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4392 struct softnet_data *sd, *oldsd;
4393
4394 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4395 return NOTIFY_OK;
4396
4397 local_irq_disable();
4398 cpu = smp_processor_id();
4399 sd = &per_cpu(softnet_data, cpu);
4400 oldsd = &per_cpu(softnet_data, oldcpu);
4401
4402 /* Find end of our completion_queue. */
4403 list_skb = &sd->completion_queue;
4404 while (*list_skb)
4405 list_skb = &(*list_skb)->next;
4406 /* Append completion queue from offline CPU. */
4407 *list_skb = oldsd->completion_queue;
4408 oldsd->completion_queue = NULL;
4409
4410 /* Find end of our output_queue. */
4411 list_net = &sd->output_queue;
4412 while (*list_net)
4413 list_net = &(*list_net)->next_sched;
4414 /* Append output queue from offline CPU. */
4415 *list_net = oldsd->output_queue;
4416 oldsd->output_queue = NULL;
4417
4418 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4419 local_irq_enable();
4420
4421 /* Process offline CPU's input_pkt_queue */
4422 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4423 netif_rx(skb);
4424
4425 return NOTIFY_OK;
4426 }
4427
4428 #ifdef CONFIG_NET_DMA
4429 /**
4430 * net_dma_rebalance - try to maintain one DMA channel per CPU
4431 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4432 *
4433 * This is called when the number of channels allocated to the net_dma client
4434 * changes. The net_dma client tries to have one DMA channel per CPU.
4435 */
4436
4437 static void net_dma_rebalance(struct net_dma *net_dma)
4438 {
4439 unsigned int cpu, i, n, chan_idx;
4440 struct dma_chan *chan;
4441
4442 if (cpus_empty(net_dma->channel_mask)) {
4443 for_each_online_cpu(cpu)
4444 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4445 return;
4446 }
4447
4448 i = 0;
4449 cpu = first_cpu(cpu_online_map);
4450
4451 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4452 chan = net_dma->channels[chan_idx];
4453
4454 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4455 + (i < (num_online_cpus() %
4456 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4457
4458 while(n) {
4459 per_cpu(softnet_data, cpu).net_dma = chan;
4460 cpu = next_cpu(cpu, cpu_online_map);
4461 n--;
4462 }
4463 i++;
4464 }
4465 }
4466
4467 /**
4468 * netdev_dma_event - event callback for the net_dma_client
4469 * @client: should always be net_dma_client
4470 * @chan: DMA channel for the event
4471 * @state: DMA state to be handled
4472 */
4473 static enum dma_state_client
4474 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4475 enum dma_state state)
4476 {
4477 int i, found = 0, pos = -1;
4478 struct net_dma *net_dma =
4479 container_of(client, struct net_dma, client);
4480 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4481
4482 spin_lock(&net_dma->lock);
4483 switch (state) {
4484 case DMA_RESOURCE_AVAILABLE:
4485 for (i = 0; i < nr_cpu_ids; i++)
4486 if (net_dma->channels[i] == chan) {
4487 found = 1;
4488 break;
4489 } else if (net_dma->channels[i] == NULL && pos < 0)
4490 pos = i;
4491
4492 if (!found && pos >= 0) {
4493 ack = DMA_ACK;
4494 net_dma->channels[pos] = chan;
4495 cpu_set(pos, net_dma->channel_mask);
4496 net_dma_rebalance(net_dma);
4497 }
4498 break;
4499 case DMA_RESOURCE_REMOVED:
4500 for (i = 0; i < nr_cpu_ids; i++)
4501 if (net_dma->channels[i] == chan) {
4502 found = 1;
4503 pos = i;
4504 break;
4505 }
4506
4507 if (found) {
4508 ack = DMA_ACK;
4509 cpu_clear(pos, net_dma->channel_mask);
4510 net_dma->channels[i] = NULL;
4511 net_dma_rebalance(net_dma);
4512 }
4513 break;
4514 default:
4515 break;
4516 }
4517 spin_unlock(&net_dma->lock);
4518
4519 return ack;
4520 }
4521
4522 /**
4523 * netdev_dma_regiser - register the networking subsystem as a DMA client
4524 */
4525 static int __init netdev_dma_register(void)
4526 {
4527 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4528 GFP_KERNEL);
4529 if (unlikely(!net_dma.channels)) {
4530 printk(KERN_NOTICE
4531 "netdev_dma: no memory for net_dma.channels\n");
4532 return -ENOMEM;
4533 }
4534 spin_lock_init(&net_dma.lock);
4535 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4536 dma_async_client_register(&net_dma.client);
4537 dma_async_client_chan_request(&net_dma.client);
4538 return 0;
4539 }
4540
4541 #else
4542 static int __init netdev_dma_register(void) { return -ENODEV; }
4543 #endif /* CONFIG_NET_DMA */
4544
4545 /**
4546 * netdev_compute_feature - compute conjunction of two feature sets
4547 * @all: first feature set
4548 * @one: second feature set
4549 *
4550 * Computes a new feature set after adding a device with feature set
4551 * @one to the master device with current feature set @all. Returns
4552 * the new feature set.
4553 */
4554 int netdev_compute_features(unsigned long all, unsigned long one)
4555 {
4556 /* if device needs checksumming, downgrade to hw checksumming */
4557 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4558 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4559
4560 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4561 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4562 all ^= NETIF_F_HW_CSUM
4563 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4564
4565 if (one & NETIF_F_GSO)
4566 one |= NETIF_F_GSO_SOFTWARE;
4567 one |= NETIF_F_GSO;
4568
4569 /* If even one device supports robust GSO, enable it for all. */
4570 if (one & NETIF_F_GSO_ROBUST)
4571 all |= NETIF_F_GSO_ROBUST;
4572
4573 all &= one | NETIF_F_LLTX;
4574
4575 if (!(all & NETIF_F_ALL_CSUM))
4576 all &= ~NETIF_F_SG;
4577 if (!(all & NETIF_F_SG))
4578 all &= ~NETIF_F_GSO_MASK;
4579
4580 return all;
4581 }
4582 EXPORT_SYMBOL(netdev_compute_features);
4583
4584 static struct hlist_head *netdev_create_hash(void)
4585 {
4586 int i;
4587 struct hlist_head *hash;
4588
4589 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4590 if (hash != NULL)
4591 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4592 INIT_HLIST_HEAD(&hash[i]);
4593
4594 return hash;
4595 }
4596
4597 /* Initialize per network namespace state */
4598 static int __net_init netdev_init(struct net *net)
4599 {
4600 INIT_LIST_HEAD(&net->dev_base_head);
4601
4602 net->dev_name_head = netdev_create_hash();
4603 if (net->dev_name_head == NULL)
4604 goto err_name;
4605
4606 net->dev_index_head = netdev_create_hash();
4607 if (net->dev_index_head == NULL)
4608 goto err_idx;
4609
4610 return 0;
4611
4612 err_idx:
4613 kfree(net->dev_name_head);
4614 err_name:
4615 return -ENOMEM;
4616 }
4617
4618 static void __net_exit netdev_exit(struct net *net)
4619 {
4620 kfree(net->dev_name_head);
4621 kfree(net->dev_index_head);
4622 }
4623
4624 static struct pernet_operations __net_initdata netdev_net_ops = {
4625 .init = netdev_init,
4626 .exit = netdev_exit,
4627 };
4628
4629 static void __net_exit default_device_exit(struct net *net)
4630 {
4631 struct net_device *dev, *next;
4632 /*
4633 * Push all migratable of the network devices back to the
4634 * initial network namespace
4635 */
4636 rtnl_lock();
4637 for_each_netdev_safe(net, dev, next) {
4638 int err;
4639 char fb_name[IFNAMSIZ];
4640
4641 /* Ignore unmoveable devices (i.e. loopback) */
4642 if (dev->features & NETIF_F_NETNS_LOCAL)
4643 continue;
4644
4645 /* Push remaing network devices to init_net */
4646 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4647 err = dev_change_net_namespace(dev, &init_net, fb_name);
4648 if (err) {
4649 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4650 __func__, dev->name, err);
4651 BUG();
4652 }
4653 }
4654 rtnl_unlock();
4655 }
4656
4657 static struct pernet_operations __net_initdata default_device_ops = {
4658 .exit = default_device_exit,
4659 };
4660
4661 /*
4662 * Initialize the DEV module. At boot time this walks the device list and
4663 * unhooks any devices that fail to initialise (normally hardware not
4664 * present) and leaves us with a valid list of present and active devices.
4665 *
4666 */
4667
4668 /*
4669 * This is called single threaded during boot, so no need
4670 * to take the rtnl semaphore.
4671 */
4672 static int __init net_dev_init(void)
4673 {
4674 int i, rc = -ENOMEM;
4675
4676 BUG_ON(!dev_boot_phase);
4677
4678 if (dev_proc_init())
4679 goto out;
4680
4681 if (netdev_kobject_init())
4682 goto out;
4683
4684 INIT_LIST_HEAD(&ptype_all);
4685 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4686 INIT_LIST_HEAD(&ptype_base[i]);
4687
4688 if (register_pernet_subsys(&netdev_net_ops))
4689 goto out;
4690
4691 if (register_pernet_device(&default_device_ops))
4692 goto out;
4693
4694 /*
4695 * Initialise the packet receive queues.
4696 */
4697
4698 for_each_possible_cpu(i) {
4699 struct softnet_data *queue;
4700
4701 queue = &per_cpu(softnet_data, i);
4702 skb_queue_head_init(&queue->input_pkt_queue);
4703 queue->completion_queue = NULL;
4704 INIT_LIST_HEAD(&queue->poll_list);
4705
4706 queue->backlog.poll = process_backlog;
4707 queue->backlog.weight = weight_p;
4708 }
4709
4710 netdev_dma_register();
4711
4712 dev_boot_phase = 0;
4713
4714 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4715 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4716
4717 hotcpu_notifier(dev_cpu_callback, 0);
4718 dst_init();
4719 dev_mcast_init();
4720 rc = 0;
4721 out:
4722 return rc;
4723 }
4724
4725 subsys_initcall(net_dev_init);
4726
4727 EXPORT_SYMBOL(__dev_get_by_index);
4728 EXPORT_SYMBOL(__dev_get_by_name);
4729 EXPORT_SYMBOL(__dev_remove_pack);
4730 EXPORT_SYMBOL(dev_valid_name);
4731 EXPORT_SYMBOL(dev_add_pack);
4732 EXPORT_SYMBOL(dev_alloc_name);
4733 EXPORT_SYMBOL(dev_close);
4734 EXPORT_SYMBOL(dev_get_by_flags);
4735 EXPORT_SYMBOL(dev_get_by_index);
4736 EXPORT_SYMBOL(dev_get_by_name);
4737 EXPORT_SYMBOL(dev_open);
4738 EXPORT_SYMBOL(dev_queue_xmit);
4739 EXPORT_SYMBOL(dev_remove_pack);
4740 EXPORT_SYMBOL(dev_set_allmulti);
4741 EXPORT_SYMBOL(dev_set_promiscuity);
4742 EXPORT_SYMBOL(dev_change_flags);
4743 EXPORT_SYMBOL(dev_set_mtu);
4744 EXPORT_SYMBOL(dev_set_mac_address);
4745 EXPORT_SYMBOL(free_netdev);
4746 EXPORT_SYMBOL(netdev_boot_setup_check);
4747 EXPORT_SYMBOL(netdev_set_master);
4748 EXPORT_SYMBOL(netdev_state_change);
4749 EXPORT_SYMBOL(netif_receive_skb);
4750 EXPORT_SYMBOL(netif_rx);
4751 EXPORT_SYMBOL(register_gifconf);
4752 EXPORT_SYMBOL(register_netdevice);
4753 EXPORT_SYMBOL(register_netdevice_notifier);
4754 EXPORT_SYMBOL(skb_checksum_help);
4755 EXPORT_SYMBOL(synchronize_net);
4756 EXPORT_SYMBOL(unregister_netdevice);
4757 EXPORT_SYMBOL(unregister_netdevice_notifier);
4758 EXPORT_SYMBOL(net_enable_timestamp);
4759 EXPORT_SYMBOL(net_disable_timestamp);
4760 EXPORT_SYMBOL(dev_get_flags);
4761
4762 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4763 EXPORT_SYMBOL(br_handle_frame_hook);
4764 EXPORT_SYMBOL(br_fdb_get_hook);
4765 EXPORT_SYMBOL(br_fdb_put_hook);
4766 #endif
4767
4768 #ifdef CONFIG_KMOD
4769 EXPORT_SYMBOL(dev_load);
4770 #endif
4771
4772 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.1323 seconds and 5 git commands to generate.