net: Introduce skb_orphan_try()
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043 }
1044
1045 /**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 {
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074 }
1075
1076
1077 /**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083 void netdev_features_change(struct net_device *dev)
1084 {
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 }
1087 EXPORT_SYMBOL(netdev_features_change);
1088
1089 /**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097 void netdev_state_change(struct net_device *dev)
1098 {
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103 }
1104 EXPORT_SYMBOL(netdev_state_change);
1105
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 {
1108 return call_netdevice_notifiers(event, dev);
1109 }
1110 EXPORT_SYMBOL(netdev_bonding_change);
1111
1112 /**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122 void dev_load(struct net *net, const char *name)
1123 {
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292 int dev_close(struct net_device *dev)
1293 {
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403 }
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406 /**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 {
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424 }
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427 /**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 {
1438 ASSERT_RTNL();
1439 return raw_notifier_call_chain(&netdev_chain, val, dev);
1440 }
1441
1442 /* When > 0 there are consumers of rx skb time stamps */
1443 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1444
1445 void net_enable_timestamp(void)
1446 {
1447 atomic_inc(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_enable_timestamp);
1450
1451 void net_disable_timestamp(void)
1452 {
1453 atomic_dec(&netstamp_needed);
1454 }
1455 EXPORT_SYMBOL(net_disable_timestamp);
1456
1457 static inline void net_timestamp(struct sk_buff *skb)
1458 {
1459 if (atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 else
1462 skb->tstamp.tv64 = 0;
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486
1487 if (!(dev->flags & IFF_UP))
1488 return NET_RX_DROP;
1489
1490 if (skb->len > (dev->mtu + dev->hard_header_len))
1491 return NET_RX_DROP;
1492
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp(skb);
1513 #else
1514 net_timestamp(skb);
1515 #endif
1516
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1521 */
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1528
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1532 */
1533 skb_reset_mac_header(skb2);
1534
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 skb2->protocol, dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552
1553 static inline void __netif_reschedule(struct Qdisc *q)
1554 {
1555 struct softnet_data *sd;
1556 unsigned long flags;
1557
1558 local_irq_save(flags);
1559 sd = &__get_cpu_var(softnet_data);
1560 q->next_sched = sd->output_queue;
1561 sd->output_queue = q;
1562 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1563 local_irq_restore(flags);
1564 }
1565
1566 void __netif_schedule(struct Qdisc *q)
1567 {
1568 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1569 __netif_reschedule(q);
1570 }
1571 EXPORT_SYMBOL(__netif_schedule);
1572
1573 void dev_kfree_skb_irq(struct sk_buff *skb)
1574 {
1575 if (atomic_dec_and_test(&skb->users)) {
1576 struct softnet_data *sd;
1577 unsigned long flags;
1578
1579 local_irq_save(flags);
1580 sd = &__get_cpu_var(softnet_data);
1581 skb->next = sd->completion_queue;
1582 sd->completion_queue = skb;
1583 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1584 local_irq_restore(flags);
1585 }
1586 }
1587 EXPORT_SYMBOL(dev_kfree_skb_irq);
1588
1589 void dev_kfree_skb_any(struct sk_buff *skb)
1590 {
1591 if (in_irq() || irqs_disabled())
1592 dev_kfree_skb_irq(skb);
1593 else
1594 dev_kfree_skb(skb);
1595 }
1596 EXPORT_SYMBOL(dev_kfree_skb_any);
1597
1598
1599 /**
1600 * netif_device_detach - mark device as removed
1601 * @dev: network device
1602 *
1603 * Mark device as removed from system and therefore no longer available.
1604 */
1605 void netif_device_detach(struct net_device *dev)
1606 {
1607 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1608 netif_running(dev)) {
1609 netif_tx_stop_all_queues(dev);
1610 }
1611 }
1612 EXPORT_SYMBOL(netif_device_detach);
1613
1614 /**
1615 * netif_device_attach - mark device as attached
1616 * @dev: network device
1617 *
1618 * Mark device as attached from system and restart if needed.
1619 */
1620 void netif_device_attach(struct net_device *dev)
1621 {
1622 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1623 netif_running(dev)) {
1624 netif_tx_wake_all_queues(dev);
1625 __netdev_watchdog_up(dev);
1626 }
1627 }
1628 EXPORT_SYMBOL(netif_device_attach);
1629
1630 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1631 {
1632 return ((features & NETIF_F_GEN_CSUM) ||
1633 ((features & NETIF_F_IP_CSUM) &&
1634 protocol == htons(ETH_P_IP)) ||
1635 ((features & NETIF_F_IPV6_CSUM) &&
1636 protocol == htons(ETH_P_IPV6)) ||
1637 ((features & NETIF_F_FCOE_CRC) &&
1638 protocol == htons(ETH_P_FCOE)));
1639 }
1640
1641 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1642 {
1643 if (can_checksum_protocol(dev->features, skb->protocol))
1644 return true;
1645
1646 if (skb->protocol == htons(ETH_P_8021Q)) {
1647 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1648 if (can_checksum_protocol(dev->features & dev->vlan_features,
1649 veh->h_vlan_encapsulated_proto))
1650 return true;
1651 }
1652
1653 return false;
1654 }
1655
1656 /**
1657 * skb_dev_set -- assign a new device to a buffer
1658 * @skb: buffer for the new device
1659 * @dev: network device
1660 *
1661 * If an skb is owned by a device already, we have to reset
1662 * all data private to the namespace a device belongs to
1663 * before assigning it a new device.
1664 */
1665 #ifdef CONFIG_NET_NS
1666 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1667 {
1668 skb_dst_drop(skb);
1669 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1670 secpath_reset(skb);
1671 nf_reset(skb);
1672 skb_init_secmark(skb);
1673 skb->mark = 0;
1674 skb->priority = 0;
1675 skb->nf_trace = 0;
1676 skb->ipvs_property = 0;
1677 #ifdef CONFIG_NET_SCHED
1678 skb->tc_index = 0;
1679 #endif
1680 }
1681 skb->dev = dev;
1682 }
1683 EXPORT_SYMBOL(skb_set_dev);
1684 #endif /* CONFIG_NET_NS */
1685
1686 /*
1687 * Invalidate hardware checksum when packet is to be mangled, and
1688 * complete checksum manually on outgoing path.
1689 */
1690 int skb_checksum_help(struct sk_buff *skb)
1691 {
1692 __wsum csum;
1693 int ret = 0, offset;
1694
1695 if (skb->ip_summed == CHECKSUM_COMPLETE)
1696 goto out_set_summed;
1697
1698 if (unlikely(skb_shinfo(skb)->gso_size)) {
1699 /* Let GSO fix up the checksum. */
1700 goto out_set_summed;
1701 }
1702
1703 offset = skb->csum_start - skb_headroom(skb);
1704 BUG_ON(offset >= skb_headlen(skb));
1705 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1706
1707 offset += skb->csum_offset;
1708 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1709
1710 if (skb_cloned(skb) &&
1711 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1712 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1713 if (ret)
1714 goto out;
1715 }
1716
1717 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1718 out_set_summed:
1719 skb->ip_summed = CHECKSUM_NONE;
1720 out:
1721 return ret;
1722 }
1723 EXPORT_SYMBOL(skb_checksum_help);
1724
1725 /**
1726 * skb_gso_segment - Perform segmentation on skb.
1727 * @skb: buffer to segment
1728 * @features: features for the output path (see dev->features)
1729 *
1730 * This function segments the given skb and returns a list of segments.
1731 *
1732 * It may return NULL if the skb requires no segmentation. This is
1733 * only possible when GSO is used for verifying header integrity.
1734 */
1735 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1736 {
1737 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1738 struct packet_type *ptype;
1739 __be16 type = skb->protocol;
1740 int err;
1741
1742 skb_reset_mac_header(skb);
1743 skb->mac_len = skb->network_header - skb->mac_header;
1744 __skb_pull(skb, skb->mac_len);
1745
1746 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1747 struct net_device *dev = skb->dev;
1748 struct ethtool_drvinfo info = {};
1749
1750 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1751 dev->ethtool_ops->get_drvinfo(dev, &info);
1752
1753 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1754 "ip_summed=%d",
1755 info.driver, dev ? dev->features : 0L,
1756 skb->sk ? skb->sk->sk_route_caps : 0L,
1757 skb->len, skb->data_len, skb->ip_summed);
1758
1759 if (skb_header_cloned(skb) &&
1760 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1761 return ERR_PTR(err);
1762 }
1763
1764 rcu_read_lock();
1765 list_for_each_entry_rcu(ptype,
1766 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1767 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1768 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1769 err = ptype->gso_send_check(skb);
1770 segs = ERR_PTR(err);
1771 if (err || skb_gso_ok(skb, features))
1772 break;
1773 __skb_push(skb, (skb->data -
1774 skb_network_header(skb)));
1775 }
1776 segs = ptype->gso_segment(skb, features);
1777 break;
1778 }
1779 }
1780 rcu_read_unlock();
1781
1782 __skb_push(skb, skb->data - skb_mac_header(skb));
1783
1784 return segs;
1785 }
1786 EXPORT_SYMBOL(skb_gso_segment);
1787
1788 /* Take action when hardware reception checksum errors are detected. */
1789 #ifdef CONFIG_BUG
1790 void netdev_rx_csum_fault(struct net_device *dev)
1791 {
1792 if (net_ratelimit()) {
1793 printk(KERN_ERR "%s: hw csum failure.\n",
1794 dev ? dev->name : "<unknown>");
1795 dump_stack();
1796 }
1797 }
1798 EXPORT_SYMBOL(netdev_rx_csum_fault);
1799 #endif
1800
1801 /* Actually, we should eliminate this check as soon as we know, that:
1802 * 1. IOMMU is present and allows to map all the memory.
1803 * 2. No high memory really exists on this machine.
1804 */
1805
1806 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1807 {
1808 #ifdef CONFIG_HIGHMEM
1809 int i;
1810 if (!(dev->features & NETIF_F_HIGHDMA)) {
1811 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1812 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1813 return 1;
1814 }
1815
1816 if (PCI_DMA_BUS_IS_PHYS) {
1817 struct device *pdev = dev->dev.parent;
1818
1819 if (!pdev)
1820 return 0;
1821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1822 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1823 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1824 return 1;
1825 }
1826 }
1827 #endif
1828 return 0;
1829 }
1830
1831 struct dev_gso_cb {
1832 void (*destructor)(struct sk_buff *skb);
1833 };
1834
1835 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1836
1837 static void dev_gso_skb_destructor(struct sk_buff *skb)
1838 {
1839 struct dev_gso_cb *cb;
1840
1841 do {
1842 struct sk_buff *nskb = skb->next;
1843
1844 skb->next = nskb->next;
1845 nskb->next = NULL;
1846 kfree_skb(nskb);
1847 } while (skb->next);
1848
1849 cb = DEV_GSO_CB(skb);
1850 if (cb->destructor)
1851 cb->destructor(skb);
1852 }
1853
1854 /**
1855 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1856 * @skb: buffer to segment
1857 *
1858 * This function segments the given skb and stores the list of segments
1859 * in skb->next.
1860 */
1861 static int dev_gso_segment(struct sk_buff *skb)
1862 {
1863 struct net_device *dev = skb->dev;
1864 struct sk_buff *segs;
1865 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1866 NETIF_F_SG : 0);
1867
1868 segs = skb_gso_segment(skb, features);
1869
1870 /* Verifying header integrity only. */
1871 if (!segs)
1872 return 0;
1873
1874 if (IS_ERR(segs))
1875 return PTR_ERR(segs);
1876
1877 skb->next = segs;
1878 DEV_GSO_CB(skb)->destructor = skb->destructor;
1879 skb->destructor = dev_gso_skb_destructor;
1880
1881 return 0;
1882 }
1883
1884 /*
1885 * Try to orphan skb early, right before transmission by the device.
1886 * We cannot orphan skb if tx timestamp is requested, since
1887 * drivers need to call skb_tstamp_tx() to send the timestamp.
1888 */
1889 static inline void skb_orphan_try(struct sk_buff *skb)
1890 {
1891 if (!skb_tx(skb)->flags)
1892 skb_orphan(skb);
1893 }
1894
1895 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1896 struct netdev_queue *txq)
1897 {
1898 const struct net_device_ops *ops = dev->netdev_ops;
1899 int rc = NETDEV_TX_OK;
1900
1901 if (likely(!skb->next)) {
1902 if (!list_empty(&ptype_all))
1903 dev_queue_xmit_nit(skb, dev);
1904
1905 if (netif_needs_gso(dev, skb)) {
1906 if (unlikely(dev_gso_segment(skb)))
1907 goto out_kfree_skb;
1908 if (skb->next)
1909 goto gso;
1910 }
1911
1912 /*
1913 * If device doesnt need skb->dst, release it right now while
1914 * its hot in this cpu cache
1915 */
1916 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1917 skb_dst_drop(skb);
1918
1919 skb_orphan_try(skb);
1920 rc = ops->ndo_start_xmit(skb, dev);
1921 if (rc == NETDEV_TX_OK)
1922 txq_trans_update(txq);
1923 return rc;
1924 }
1925
1926 gso:
1927 do {
1928 struct sk_buff *nskb = skb->next;
1929
1930 skb->next = nskb->next;
1931 nskb->next = NULL;
1932
1933 /*
1934 * If device doesnt need nskb->dst, release it right now while
1935 * its hot in this cpu cache
1936 */
1937 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1938 skb_dst_drop(nskb);
1939
1940 rc = ops->ndo_start_xmit(nskb, dev);
1941 if (unlikely(rc != NETDEV_TX_OK)) {
1942 if (rc & ~NETDEV_TX_MASK)
1943 goto out_kfree_gso_skb;
1944 nskb->next = skb->next;
1945 skb->next = nskb;
1946 return rc;
1947 }
1948 txq_trans_update(txq);
1949 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1950 return NETDEV_TX_BUSY;
1951 } while (skb->next);
1952
1953 out_kfree_gso_skb:
1954 if (likely(skb->next == NULL))
1955 skb->destructor = DEV_GSO_CB(skb)->destructor;
1956 out_kfree_skb:
1957 kfree_skb(skb);
1958 return rc;
1959 }
1960
1961 static u32 hashrnd __read_mostly;
1962
1963 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1964 {
1965 u32 hash;
1966
1967 if (skb_rx_queue_recorded(skb)) {
1968 hash = skb_get_rx_queue(skb);
1969 while (unlikely(hash >= dev->real_num_tx_queues))
1970 hash -= dev->real_num_tx_queues;
1971 return hash;
1972 }
1973
1974 if (skb->sk && skb->sk->sk_hash)
1975 hash = skb->sk->sk_hash;
1976 else
1977 hash = (__force u16) skb->protocol;
1978
1979 hash = jhash_1word(hash, hashrnd);
1980
1981 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1982 }
1983 EXPORT_SYMBOL(skb_tx_hash);
1984
1985 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1986 {
1987 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1988 if (net_ratelimit()) {
1989 pr_warning("%s selects TX queue %d, but "
1990 "real number of TX queues is %d\n",
1991 dev->name, queue_index, dev->real_num_tx_queues);
1992 }
1993 return 0;
1994 }
1995 return queue_index;
1996 }
1997
1998 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1999 struct sk_buff *skb)
2000 {
2001 u16 queue_index;
2002 struct sock *sk = skb->sk;
2003
2004 if (sk_tx_queue_recorded(sk)) {
2005 queue_index = sk_tx_queue_get(sk);
2006 } else {
2007 const struct net_device_ops *ops = dev->netdev_ops;
2008
2009 if (ops->ndo_select_queue) {
2010 queue_index = ops->ndo_select_queue(dev, skb);
2011 queue_index = dev_cap_txqueue(dev, queue_index);
2012 } else {
2013 queue_index = 0;
2014 if (dev->real_num_tx_queues > 1)
2015 queue_index = skb_tx_hash(dev, skb);
2016
2017 if (sk) {
2018 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2019
2020 if (dst && skb_dst(skb) == dst)
2021 sk_tx_queue_set(sk, queue_index);
2022 }
2023 }
2024 }
2025
2026 skb_set_queue_mapping(skb, queue_index);
2027 return netdev_get_tx_queue(dev, queue_index);
2028 }
2029
2030 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2031 struct net_device *dev,
2032 struct netdev_queue *txq)
2033 {
2034 spinlock_t *root_lock = qdisc_lock(q);
2035 int rc;
2036
2037 spin_lock(root_lock);
2038 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2039 kfree_skb(skb);
2040 rc = NET_XMIT_DROP;
2041 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2042 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2043 /*
2044 * This is a work-conserving queue; there are no old skbs
2045 * waiting to be sent out; and the qdisc is not running -
2046 * xmit the skb directly.
2047 */
2048 __qdisc_update_bstats(q, skb->len);
2049 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2050 __qdisc_run(q);
2051 else
2052 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2053
2054 rc = NET_XMIT_SUCCESS;
2055 } else {
2056 rc = qdisc_enqueue_root(skb, q);
2057 qdisc_run(q);
2058 }
2059 spin_unlock(root_lock);
2060
2061 return rc;
2062 }
2063
2064 /*
2065 * Returns true if either:
2066 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2067 * 2. skb is fragmented and the device does not support SG, or if
2068 * at least one of fragments is in highmem and device does not
2069 * support DMA from it.
2070 */
2071 static inline int skb_needs_linearize(struct sk_buff *skb,
2072 struct net_device *dev)
2073 {
2074 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2075 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2076 illegal_highdma(dev, skb)));
2077 }
2078
2079 /**
2080 * dev_queue_xmit - transmit a buffer
2081 * @skb: buffer to transmit
2082 *
2083 * Queue a buffer for transmission to a network device. The caller must
2084 * have set the device and priority and built the buffer before calling
2085 * this function. The function can be called from an interrupt.
2086 *
2087 * A negative errno code is returned on a failure. A success does not
2088 * guarantee the frame will be transmitted as it may be dropped due
2089 * to congestion or traffic shaping.
2090 *
2091 * -----------------------------------------------------------------------------------
2092 * I notice this method can also return errors from the queue disciplines,
2093 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2094 * be positive.
2095 *
2096 * Regardless of the return value, the skb is consumed, so it is currently
2097 * difficult to retry a send to this method. (You can bump the ref count
2098 * before sending to hold a reference for retry if you are careful.)
2099 *
2100 * When calling this method, interrupts MUST be enabled. This is because
2101 * the BH enable code must have IRQs enabled so that it will not deadlock.
2102 * --BLG
2103 */
2104 int dev_queue_xmit(struct sk_buff *skb)
2105 {
2106 struct net_device *dev = skb->dev;
2107 struct netdev_queue *txq;
2108 struct Qdisc *q;
2109 int rc = -ENOMEM;
2110
2111 /* GSO will handle the following emulations directly. */
2112 if (netif_needs_gso(dev, skb))
2113 goto gso;
2114
2115 /* Convert a paged skb to linear, if required */
2116 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2117 goto out_kfree_skb;
2118
2119 /* If packet is not checksummed and device does not support
2120 * checksumming for this protocol, complete checksumming here.
2121 */
2122 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2123 skb_set_transport_header(skb, skb->csum_start -
2124 skb_headroom(skb));
2125 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2126 goto out_kfree_skb;
2127 }
2128
2129 gso:
2130 /* Disable soft irqs for various locks below. Also
2131 * stops preemption for RCU.
2132 */
2133 rcu_read_lock_bh();
2134
2135 txq = dev_pick_tx(dev, skb);
2136 q = rcu_dereference_bh(txq->qdisc);
2137
2138 #ifdef CONFIG_NET_CLS_ACT
2139 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2140 #endif
2141 if (q->enqueue) {
2142 rc = __dev_xmit_skb(skb, q, dev, txq);
2143 goto out;
2144 }
2145
2146 /* The device has no queue. Common case for software devices:
2147 loopback, all the sorts of tunnels...
2148
2149 Really, it is unlikely that netif_tx_lock protection is necessary
2150 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2151 counters.)
2152 However, it is possible, that they rely on protection
2153 made by us here.
2154
2155 Check this and shot the lock. It is not prone from deadlocks.
2156 Either shot noqueue qdisc, it is even simpler 8)
2157 */
2158 if (dev->flags & IFF_UP) {
2159 int cpu = smp_processor_id(); /* ok because BHs are off */
2160
2161 if (txq->xmit_lock_owner != cpu) {
2162
2163 HARD_TX_LOCK(dev, txq, cpu);
2164
2165 if (!netif_tx_queue_stopped(txq)) {
2166 rc = dev_hard_start_xmit(skb, dev, txq);
2167 if (dev_xmit_complete(rc)) {
2168 HARD_TX_UNLOCK(dev, txq);
2169 goto out;
2170 }
2171 }
2172 HARD_TX_UNLOCK(dev, txq);
2173 if (net_ratelimit())
2174 printk(KERN_CRIT "Virtual device %s asks to "
2175 "queue packet!\n", dev->name);
2176 } else {
2177 /* Recursion is detected! It is possible,
2178 * unfortunately */
2179 if (net_ratelimit())
2180 printk(KERN_CRIT "Dead loop on virtual device "
2181 "%s, fix it urgently!\n", dev->name);
2182 }
2183 }
2184
2185 rc = -ENETDOWN;
2186 rcu_read_unlock_bh();
2187
2188 out_kfree_skb:
2189 kfree_skb(skb);
2190 return rc;
2191 out:
2192 rcu_read_unlock_bh();
2193 return rc;
2194 }
2195 EXPORT_SYMBOL(dev_queue_xmit);
2196
2197
2198 /*=======================================================================
2199 Receiver routines
2200 =======================================================================*/
2201
2202 int netdev_max_backlog __read_mostly = 1000;
2203 int netdev_budget __read_mostly = 300;
2204 int weight_p __read_mostly = 64; /* old backlog weight */
2205
2206 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2207
2208 #ifdef CONFIG_RPS
2209
2210 /* One global table that all flow-based protocols share. */
2211 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2212 EXPORT_SYMBOL(rps_sock_flow_table);
2213
2214 /*
2215 * get_rps_cpu is called from netif_receive_skb and returns the target
2216 * CPU from the RPS map of the receiving queue for a given skb.
2217 * rcu_read_lock must be held on entry.
2218 */
2219 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2220 struct rps_dev_flow **rflowp)
2221 {
2222 struct ipv6hdr *ip6;
2223 struct iphdr *ip;
2224 struct netdev_rx_queue *rxqueue;
2225 struct rps_map *map;
2226 struct rps_dev_flow_table *flow_table;
2227 struct rps_sock_flow_table *sock_flow_table;
2228 int cpu = -1;
2229 u8 ip_proto;
2230 u16 tcpu;
2231 u32 addr1, addr2, ports, ihl;
2232
2233 if (skb_rx_queue_recorded(skb)) {
2234 u16 index = skb_get_rx_queue(skb);
2235 if (unlikely(index >= dev->num_rx_queues)) {
2236 if (net_ratelimit()) {
2237 pr_warning("%s received packet on queue "
2238 "%u, but number of RX queues is %u\n",
2239 dev->name, index, dev->num_rx_queues);
2240 }
2241 goto done;
2242 }
2243 rxqueue = dev->_rx + index;
2244 } else
2245 rxqueue = dev->_rx;
2246
2247 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2248 goto done;
2249
2250 if (skb->rxhash)
2251 goto got_hash; /* Skip hash computation on packet header */
2252
2253 switch (skb->protocol) {
2254 case __constant_htons(ETH_P_IP):
2255 if (!pskb_may_pull(skb, sizeof(*ip)))
2256 goto done;
2257
2258 ip = (struct iphdr *) skb->data;
2259 ip_proto = ip->protocol;
2260 addr1 = (__force u32) ip->saddr;
2261 addr2 = (__force u32) ip->daddr;
2262 ihl = ip->ihl;
2263 break;
2264 case __constant_htons(ETH_P_IPV6):
2265 if (!pskb_may_pull(skb, sizeof(*ip6)))
2266 goto done;
2267
2268 ip6 = (struct ipv6hdr *) skb->data;
2269 ip_proto = ip6->nexthdr;
2270 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2271 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2272 ihl = (40 >> 2);
2273 break;
2274 default:
2275 goto done;
2276 }
2277 ports = 0;
2278 switch (ip_proto) {
2279 case IPPROTO_TCP:
2280 case IPPROTO_UDP:
2281 case IPPROTO_DCCP:
2282 case IPPROTO_ESP:
2283 case IPPROTO_AH:
2284 case IPPROTO_SCTP:
2285 case IPPROTO_UDPLITE:
2286 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2287 __be16 *hports = (__be16 *) (skb->data + (ihl * 4));
2288 u32 sport, dport;
2289
2290 sport = (__force u16) hports[0];
2291 dport = (__force u16) hports[1];
2292 if (dport < sport)
2293 swap(sport, dport);
2294 ports = (sport << 16) + dport;
2295 }
2296 break;
2297
2298 default:
2299 break;
2300 }
2301
2302 /* get a consistent hash (same value on both flow directions) */
2303 if (addr2 < addr1)
2304 swap(addr1, addr2);
2305 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2306 if (!skb->rxhash)
2307 skb->rxhash = 1;
2308
2309 got_hash:
2310 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2311 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2312 if (flow_table && sock_flow_table) {
2313 u16 next_cpu;
2314 struct rps_dev_flow *rflow;
2315
2316 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2317 tcpu = rflow->cpu;
2318
2319 next_cpu = sock_flow_table->ents[skb->rxhash &
2320 sock_flow_table->mask];
2321
2322 /*
2323 * If the desired CPU (where last recvmsg was done) is
2324 * different from current CPU (one in the rx-queue flow
2325 * table entry), switch if one of the following holds:
2326 * - Current CPU is unset (equal to RPS_NO_CPU).
2327 * - Current CPU is offline.
2328 * - The current CPU's queue tail has advanced beyond the
2329 * last packet that was enqueued using this table entry.
2330 * This guarantees that all previous packets for the flow
2331 * have been dequeued, thus preserving in order delivery.
2332 */
2333 if (unlikely(tcpu != next_cpu) &&
2334 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2335 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2336 rflow->last_qtail)) >= 0)) {
2337 tcpu = rflow->cpu = next_cpu;
2338 if (tcpu != RPS_NO_CPU)
2339 rflow->last_qtail = per_cpu(softnet_data,
2340 tcpu).input_queue_head;
2341 }
2342 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2343 *rflowp = rflow;
2344 cpu = tcpu;
2345 goto done;
2346 }
2347 }
2348
2349 map = rcu_dereference(rxqueue->rps_map);
2350 if (map) {
2351 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2352
2353 if (cpu_online(tcpu)) {
2354 cpu = tcpu;
2355 goto done;
2356 }
2357 }
2358
2359 done:
2360 return cpu;
2361 }
2362
2363 /* Called from hardirq (IPI) context */
2364 static void rps_trigger_softirq(void *data)
2365 {
2366 struct softnet_data *sd = data;
2367
2368 __napi_schedule(&sd->backlog);
2369 __get_cpu_var(netdev_rx_stat).received_rps++;
2370 }
2371
2372 #endif /* CONFIG_RPS */
2373
2374 /*
2375 * Check if this softnet_data structure is another cpu one
2376 * If yes, queue it to our IPI list and return 1
2377 * If no, return 0
2378 */
2379 static int rps_ipi_queued(struct softnet_data *sd)
2380 {
2381 #ifdef CONFIG_RPS
2382 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2383
2384 if (sd != mysd) {
2385 sd->rps_ipi_next = mysd->rps_ipi_list;
2386 mysd->rps_ipi_list = sd;
2387
2388 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2389 return 1;
2390 }
2391 #endif /* CONFIG_RPS */
2392 return 0;
2393 }
2394
2395 /*
2396 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2397 * queue (may be a remote CPU queue).
2398 */
2399 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2400 unsigned int *qtail)
2401 {
2402 struct softnet_data *sd;
2403 unsigned long flags;
2404
2405 sd = &per_cpu(softnet_data, cpu);
2406
2407 local_irq_save(flags);
2408 __get_cpu_var(netdev_rx_stat).total++;
2409
2410 rps_lock(sd);
2411 if (sd->input_pkt_queue.qlen <= netdev_max_backlog) {
2412 if (sd->input_pkt_queue.qlen) {
2413 enqueue:
2414 __skb_queue_tail(&sd->input_pkt_queue, skb);
2415 #ifdef CONFIG_RPS
2416 *qtail = sd->input_queue_head + sd->input_pkt_queue.qlen;
2417 #endif
2418 rps_unlock(sd);
2419 local_irq_restore(flags);
2420 return NET_RX_SUCCESS;
2421 }
2422
2423 /* Schedule NAPI for backlog device */
2424 if (napi_schedule_prep(&sd->backlog)) {
2425 if (!rps_ipi_queued(sd))
2426 __napi_schedule(&sd->backlog);
2427 }
2428 goto enqueue;
2429 }
2430
2431 rps_unlock(sd);
2432
2433 __get_cpu_var(netdev_rx_stat).dropped++;
2434 local_irq_restore(flags);
2435
2436 kfree_skb(skb);
2437 return NET_RX_DROP;
2438 }
2439
2440 /**
2441 * netif_rx - post buffer to the network code
2442 * @skb: buffer to post
2443 *
2444 * This function receives a packet from a device driver and queues it for
2445 * the upper (protocol) levels to process. It always succeeds. The buffer
2446 * may be dropped during processing for congestion control or by the
2447 * protocol layers.
2448 *
2449 * return values:
2450 * NET_RX_SUCCESS (no congestion)
2451 * NET_RX_DROP (packet was dropped)
2452 *
2453 */
2454
2455 int netif_rx(struct sk_buff *skb)
2456 {
2457 int ret;
2458
2459 /* if netpoll wants it, pretend we never saw it */
2460 if (netpoll_rx(skb))
2461 return NET_RX_DROP;
2462
2463 if (!skb->tstamp.tv64)
2464 net_timestamp(skb);
2465
2466 #ifdef CONFIG_RPS
2467 {
2468 struct rps_dev_flow voidflow, *rflow = &voidflow;
2469 int cpu;
2470
2471 rcu_read_lock();
2472
2473 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2474 if (cpu < 0)
2475 cpu = smp_processor_id();
2476
2477 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2478
2479 rcu_read_unlock();
2480 }
2481 #else
2482 {
2483 unsigned int qtail;
2484 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2485 put_cpu();
2486 }
2487 #endif
2488 return ret;
2489 }
2490 EXPORT_SYMBOL(netif_rx);
2491
2492 int netif_rx_ni(struct sk_buff *skb)
2493 {
2494 int err;
2495
2496 preempt_disable();
2497 err = netif_rx(skb);
2498 if (local_softirq_pending())
2499 do_softirq();
2500 preempt_enable();
2501
2502 return err;
2503 }
2504 EXPORT_SYMBOL(netif_rx_ni);
2505
2506 static void net_tx_action(struct softirq_action *h)
2507 {
2508 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2509
2510 if (sd->completion_queue) {
2511 struct sk_buff *clist;
2512
2513 local_irq_disable();
2514 clist = sd->completion_queue;
2515 sd->completion_queue = NULL;
2516 local_irq_enable();
2517
2518 while (clist) {
2519 struct sk_buff *skb = clist;
2520 clist = clist->next;
2521
2522 WARN_ON(atomic_read(&skb->users));
2523 __kfree_skb(skb);
2524 }
2525 }
2526
2527 if (sd->output_queue) {
2528 struct Qdisc *head;
2529
2530 local_irq_disable();
2531 head = sd->output_queue;
2532 sd->output_queue = NULL;
2533 local_irq_enable();
2534
2535 while (head) {
2536 struct Qdisc *q = head;
2537 spinlock_t *root_lock;
2538
2539 head = head->next_sched;
2540
2541 root_lock = qdisc_lock(q);
2542 if (spin_trylock(root_lock)) {
2543 smp_mb__before_clear_bit();
2544 clear_bit(__QDISC_STATE_SCHED,
2545 &q->state);
2546 qdisc_run(q);
2547 spin_unlock(root_lock);
2548 } else {
2549 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2550 &q->state)) {
2551 __netif_reschedule(q);
2552 } else {
2553 smp_mb__before_clear_bit();
2554 clear_bit(__QDISC_STATE_SCHED,
2555 &q->state);
2556 }
2557 }
2558 }
2559 }
2560 }
2561
2562 static inline int deliver_skb(struct sk_buff *skb,
2563 struct packet_type *pt_prev,
2564 struct net_device *orig_dev)
2565 {
2566 atomic_inc(&skb->users);
2567 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2568 }
2569
2570 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2571
2572 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2573 /* This hook is defined here for ATM LANE */
2574 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2575 unsigned char *addr) __read_mostly;
2576 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2577 #endif
2578
2579 /*
2580 * If bridge module is loaded call bridging hook.
2581 * returns NULL if packet was consumed.
2582 */
2583 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2584 struct sk_buff *skb) __read_mostly;
2585 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2586
2587 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2588 struct packet_type **pt_prev, int *ret,
2589 struct net_device *orig_dev)
2590 {
2591 struct net_bridge_port *port;
2592
2593 if (skb->pkt_type == PACKET_LOOPBACK ||
2594 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2595 return skb;
2596
2597 if (*pt_prev) {
2598 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2599 *pt_prev = NULL;
2600 }
2601
2602 return br_handle_frame_hook(port, skb);
2603 }
2604 #else
2605 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2606 #endif
2607
2608 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2609 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2610 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2611
2612 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2613 struct packet_type **pt_prev,
2614 int *ret,
2615 struct net_device *orig_dev)
2616 {
2617 if (skb->dev->macvlan_port == NULL)
2618 return skb;
2619
2620 if (*pt_prev) {
2621 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2622 *pt_prev = NULL;
2623 }
2624 return macvlan_handle_frame_hook(skb);
2625 }
2626 #else
2627 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2628 #endif
2629
2630 #ifdef CONFIG_NET_CLS_ACT
2631 /* TODO: Maybe we should just force sch_ingress to be compiled in
2632 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2633 * a compare and 2 stores extra right now if we dont have it on
2634 * but have CONFIG_NET_CLS_ACT
2635 * NOTE: This doesnt stop any functionality; if you dont have
2636 * the ingress scheduler, you just cant add policies on ingress.
2637 *
2638 */
2639 static int ing_filter(struct sk_buff *skb)
2640 {
2641 struct net_device *dev = skb->dev;
2642 u32 ttl = G_TC_RTTL(skb->tc_verd);
2643 struct netdev_queue *rxq;
2644 int result = TC_ACT_OK;
2645 struct Qdisc *q;
2646
2647 if (MAX_RED_LOOP < ttl++) {
2648 printk(KERN_WARNING
2649 "Redir loop detected Dropping packet (%d->%d)\n",
2650 skb->skb_iif, dev->ifindex);
2651 return TC_ACT_SHOT;
2652 }
2653
2654 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2655 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2656
2657 rxq = &dev->rx_queue;
2658
2659 q = rxq->qdisc;
2660 if (q != &noop_qdisc) {
2661 spin_lock(qdisc_lock(q));
2662 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2663 result = qdisc_enqueue_root(skb, q);
2664 spin_unlock(qdisc_lock(q));
2665 }
2666
2667 return result;
2668 }
2669
2670 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2671 struct packet_type **pt_prev,
2672 int *ret, struct net_device *orig_dev)
2673 {
2674 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2675 goto out;
2676
2677 if (*pt_prev) {
2678 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2679 *pt_prev = NULL;
2680 } else {
2681 /* Huh? Why does turning on AF_PACKET affect this? */
2682 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2683 }
2684
2685 switch (ing_filter(skb)) {
2686 case TC_ACT_SHOT:
2687 case TC_ACT_STOLEN:
2688 kfree_skb(skb);
2689 return NULL;
2690 }
2691
2692 out:
2693 skb->tc_verd = 0;
2694 return skb;
2695 }
2696 #endif
2697
2698 /*
2699 * netif_nit_deliver - deliver received packets to network taps
2700 * @skb: buffer
2701 *
2702 * This function is used to deliver incoming packets to network
2703 * taps. It should be used when the normal netif_receive_skb path
2704 * is bypassed, for example because of VLAN acceleration.
2705 */
2706 void netif_nit_deliver(struct sk_buff *skb)
2707 {
2708 struct packet_type *ptype;
2709
2710 if (list_empty(&ptype_all))
2711 return;
2712
2713 skb_reset_network_header(skb);
2714 skb_reset_transport_header(skb);
2715 skb->mac_len = skb->network_header - skb->mac_header;
2716
2717 rcu_read_lock();
2718 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2719 if (!ptype->dev || ptype->dev == skb->dev)
2720 deliver_skb(skb, ptype, skb->dev);
2721 }
2722 rcu_read_unlock();
2723 }
2724
2725 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2726 struct net_device *master)
2727 {
2728 if (skb->pkt_type == PACKET_HOST) {
2729 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2730
2731 memcpy(dest, master->dev_addr, ETH_ALEN);
2732 }
2733 }
2734
2735 /* On bonding slaves other than the currently active slave, suppress
2736 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2737 * ARP on active-backup slaves with arp_validate enabled.
2738 */
2739 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2740 {
2741 struct net_device *dev = skb->dev;
2742
2743 if (master->priv_flags & IFF_MASTER_ARPMON)
2744 dev->last_rx = jiffies;
2745
2746 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2747 /* Do address unmangle. The local destination address
2748 * will be always the one master has. Provides the right
2749 * functionality in a bridge.
2750 */
2751 skb_bond_set_mac_by_master(skb, master);
2752 }
2753
2754 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2755 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2756 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2757 return 0;
2758
2759 if (master->priv_flags & IFF_MASTER_ALB) {
2760 if (skb->pkt_type != PACKET_BROADCAST &&
2761 skb->pkt_type != PACKET_MULTICAST)
2762 return 0;
2763 }
2764 if (master->priv_flags & IFF_MASTER_8023AD &&
2765 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2766 return 0;
2767
2768 return 1;
2769 }
2770 return 0;
2771 }
2772 EXPORT_SYMBOL(__skb_bond_should_drop);
2773
2774 static int __netif_receive_skb(struct sk_buff *skb)
2775 {
2776 struct packet_type *ptype, *pt_prev;
2777 struct net_device *orig_dev;
2778 struct net_device *master;
2779 struct net_device *null_or_orig;
2780 struct net_device *null_or_bond;
2781 int ret = NET_RX_DROP;
2782 __be16 type;
2783
2784 if (!skb->tstamp.tv64)
2785 net_timestamp(skb);
2786
2787 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2788 return NET_RX_SUCCESS;
2789
2790 /* if we've gotten here through NAPI, check netpoll */
2791 if (netpoll_receive_skb(skb))
2792 return NET_RX_DROP;
2793
2794 if (!skb->skb_iif)
2795 skb->skb_iif = skb->dev->ifindex;
2796
2797 null_or_orig = NULL;
2798 orig_dev = skb->dev;
2799 master = ACCESS_ONCE(orig_dev->master);
2800 if (master) {
2801 if (skb_bond_should_drop(skb, master))
2802 null_or_orig = orig_dev; /* deliver only exact match */
2803 else
2804 skb->dev = master;
2805 }
2806
2807 __get_cpu_var(netdev_rx_stat).total++;
2808
2809 skb_reset_network_header(skb);
2810 skb_reset_transport_header(skb);
2811 skb->mac_len = skb->network_header - skb->mac_header;
2812
2813 pt_prev = NULL;
2814
2815 rcu_read_lock();
2816
2817 #ifdef CONFIG_NET_CLS_ACT
2818 if (skb->tc_verd & TC_NCLS) {
2819 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2820 goto ncls;
2821 }
2822 #endif
2823
2824 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2825 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2826 ptype->dev == orig_dev) {
2827 if (pt_prev)
2828 ret = deliver_skb(skb, pt_prev, orig_dev);
2829 pt_prev = ptype;
2830 }
2831 }
2832
2833 #ifdef CONFIG_NET_CLS_ACT
2834 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2835 if (!skb)
2836 goto out;
2837 ncls:
2838 #endif
2839
2840 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2841 if (!skb)
2842 goto out;
2843 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2844 if (!skb)
2845 goto out;
2846
2847 /*
2848 * Make sure frames received on VLAN interfaces stacked on
2849 * bonding interfaces still make their way to any base bonding
2850 * device that may have registered for a specific ptype. The
2851 * handler may have to adjust skb->dev and orig_dev.
2852 */
2853 null_or_bond = NULL;
2854 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2855 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2856 null_or_bond = vlan_dev_real_dev(skb->dev);
2857 }
2858
2859 type = skb->protocol;
2860 list_for_each_entry_rcu(ptype,
2861 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2862 if (ptype->type == type && (ptype->dev == null_or_orig ||
2863 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2864 ptype->dev == null_or_bond)) {
2865 if (pt_prev)
2866 ret = deliver_skb(skb, pt_prev, orig_dev);
2867 pt_prev = ptype;
2868 }
2869 }
2870
2871 if (pt_prev) {
2872 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2873 } else {
2874 kfree_skb(skb);
2875 /* Jamal, now you will not able to escape explaining
2876 * me how you were going to use this. :-)
2877 */
2878 ret = NET_RX_DROP;
2879 }
2880
2881 out:
2882 rcu_read_unlock();
2883 return ret;
2884 }
2885
2886 /**
2887 * netif_receive_skb - process receive buffer from network
2888 * @skb: buffer to process
2889 *
2890 * netif_receive_skb() is the main receive data processing function.
2891 * It always succeeds. The buffer may be dropped during processing
2892 * for congestion control or by the protocol layers.
2893 *
2894 * This function may only be called from softirq context and interrupts
2895 * should be enabled.
2896 *
2897 * Return values (usually ignored):
2898 * NET_RX_SUCCESS: no congestion
2899 * NET_RX_DROP: packet was dropped
2900 */
2901 int netif_receive_skb(struct sk_buff *skb)
2902 {
2903 #ifdef CONFIG_RPS
2904 struct rps_dev_flow voidflow, *rflow = &voidflow;
2905 int cpu, ret;
2906
2907 rcu_read_lock();
2908
2909 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2910
2911 if (cpu >= 0) {
2912 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2913 rcu_read_unlock();
2914 } else {
2915 rcu_read_unlock();
2916 ret = __netif_receive_skb(skb);
2917 }
2918
2919 return ret;
2920 #else
2921 return __netif_receive_skb(skb);
2922 #endif
2923 }
2924 EXPORT_SYMBOL(netif_receive_skb);
2925
2926 /* Network device is going away, flush any packets still pending
2927 * Called with irqs disabled.
2928 */
2929 static void flush_backlog(void *arg)
2930 {
2931 struct net_device *dev = arg;
2932 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2933 struct sk_buff *skb, *tmp;
2934
2935 rps_lock(sd);
2936 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp)
2937 if (skb->dev == dev) {
2938 __skb_unlink(skb, &sd->input_pkt_queue);
2939 kfree_skb(skb);
2940 input_queue_head_incr(sd);
2941 }
2942 rps_unlock(sd);
2943 }
2944
2945 static int napi_gro_complete(struct sk_buff *skb)
2946 {
2947 struct packet_type *ptype;
2948 __be16 type = skb->protocol;
2949 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2950 int err = -ENOENT;
2951
2952 if (NAPI_GRO_CB(skb)->count == 1) {
2953 skb_shinfo(skb)->gso_size = 0;
2954 goto out;
2955 }
2956
2957 rcu_read_lock();
2958 list_for_each_entry_rcu(ptype, head, list) {
2959 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2960 continue;
2961
2962 err = ptype->gro_complete(skb);
2963 break;
2964 }
2965 rcu_read_unlock();
2966
2967 if (err) {
2968 WARN_ON(&ptype->list == head);
2969 kfree_skb(skb);
2970 return NET_RX_SUCCESS;
2971 }
2972
2973 out:
2974 return netif_receive_skb(skb);
2975 }
2976
2977 static void napi_gro_flush(struct napi_struct *napi)
2978 {
2979 struct sk_buff *skb, *next;
2980
2981 for (skb = napi->gro_list; skb; skb = next) {
2982 next = skb->next;
2983 skb->next = NULL;
2984 napi_gro_complete(skb);
2985 }
2986
2987 napi->gro_count = 0;
2988 napi->gro_list = NULL;
2989 }
2990
2991 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2992 {
2993 struct sk_buff **pp = NULL;
2994 struct packet_type *ptype;
2995 __be16 type = skb->protocol;
2996 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2997 int same_flow;
2998 int mac_len;
2999 enum gro_result ret;
3000
3001 if (!(skb->dev->features & NETIF_F_GRO))
3002 goto normal;
3003
3004 if (skb_is_gso(skb) || skb_has_frags(skb))
3005 goto normal;
3006
3007 rcu_read_lock();
3008 list_for_each_entry_rcu(ptype, head, list) {
3009 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3010 continue;
3011
3012 skb_set_network_header(skb, skb_gro_offset(skb));
3013 mac_len = skb->network_header - skb->mac_header;
3014 skb->mac_len = mac_len;
3015 NAPI_GRO_CB(skb)->same_flow = 0;
3016 NAPI_GRO_CB(skb)->flush = 0;
3017 NAPI_GRO_CB(skb)->free = 0;
3018
3019 pp = ptype->gro_receive(&napi->gro_list, skb);
3020 break;
3021 }
3022 rcu_read_unlock();
3023
3024 if (&ptype->list == head)
3025 goto normal;
3026
3027 same_flow = NAPI_GRO_CB(skb)->same_flow;
3028 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3029
3030 if (pp) {
3031 struct sk_buff *nskb = *pp;
3032
3033 *pp = nskb->next;
3034 nskb->next = NULL;
3035 napi_gro_complete(nskb);
3036 napi->gro_count--;
3037 }
3038
3039 if (same_flow)
3040 goto ok;
3041
3042 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3043 goto normal;
3044
3045 napi->gro_count++;
3046 NAPI_GRO_CB(skb)->count = 1;
3047 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3048 skb->next = napi->gro_list;
3049 napi->gro_list = skb;
3050 ret = GRO_HELD;
3051
3052 pull:
3053 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3054 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3055
3056 BUG_ON(skb->end - skb->tail < grow);
3057
3058 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3059
3060 skb->tail += grow;
3061 skb->data_len -= grow;
3062
3063 skb_shinfo(skb)->frags[0].page_offset += grow;
3064 skb_shinfo(skb)->frags[0].size -= grow;
3065
3066 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3067 put_page(skb_shinfo(skb)->frags[0].page);
3068 memmove(skb_shinfo(skb)->frags,
3069 skb_shinfo(skb)->frags + 1,
3070 --skb_shinfo(skb)->nr_frags);
3071 }
3072 }
3073
3074 ok:
3075 return ret;
3076
3077 normal:
3078 ret = GRO_NORMAL;
3079 goto pull;
3080 }
3081 EXPORT_SYMBOL(dev_gro_receive);
3082
3083 static gro_result_t
3084 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3085 {
3086 struct sk_buff *p;
3087
3088 if (netpoll_rx_on(skb))
3089 return GRO_NORMAL;
3090
3091 for (p = napi->gro_list; p; p = p->next) {
3092 NAPI_GRO_CB(p)->same_flow =
3093 (p->dev == skb->dev) &&
3094 !compare_ether_header(skb_mac_header(p),
3095 skb_gro_mac_header(skb));
3096 NAPI_GRO_CB(p)->flush = 0;
3097 }
3098
3099 return dev_gro_receive(napi, skb);
3100 }
3101
3102 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3103 {
3104 switch (ret) {
3105 case GRO_NORMAL:
3106 if (netif_receive_skb(skb))
3107 ret = GRO_DROP;
3108 break;
3109
3110 case GRO_DROP:
3111 case GRO_MERGED_FREE:
3112 kfree_skb(skb);
3113 break;
3114
3115 case GRO_HELD:
3116 case GRO_MERGED:
3117 break;
3118 }
3119
3120 return ret;
3121 }
3122 EXPORT_SYMBOL(napi_skb_finish);
3123
3124 void skb_gro_reset_offset(struct sk_buff *skb)
3125 {
3126 NAPI_GRO_CB(skb)->data_offset = 0;
3127 NAPI_GRO_CB(skb)->frag0 = NULL;
3128 NAPI_GRO_CB(skb)->frag0_len = 0;
3129
3130 if (skb->mac_header == skb->tail &&
3131 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3132 NAPI_GRO_CB(skb)->frag0 =
3133 page_address(skb_shinfo(skb)->frags[0].page) +
3134 skb_shinfo(skb)->frags[0].page_offset;
3135 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3136 }
3137 }
3138 EXPORT_SYMBOL(skb_gro_reset_offset);
3139
3140 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3141 {
3142 skb_gro_reset_offset(skb);
3143
3144 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3145 }
3146 EXPORT_SYMBOL(napi_gro_receive);
3147
3148 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3149 {
3150 __skb_pull(skb, skb_headlen(skb));
3151 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3152
3153 napi->skb = skb;
3154 }
3155 EXPORT_SYMBOL(napi_reuse_skb);
3156
3157 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3158 {
3159 struct sk_buff *skb = napi->skb;
3160
3161 if (!skb) {
3162 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3163 if (skb)
3164 napi->skb = skb;
3165 }
3166 return skb;
3167 }
3168 EXPORT_SYMBOL(napi_get_frags);
3169
3170 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3171 gro_result_t ret)
3172 {
3173 switch (ret) {
3174 case GRO_NORMAL:
3175 case GRO_HELD:
3176 skb->protocol = eth_type_trans(skb, skb->dev);
3177
3178 if (ret == GRO_HELD)
3179 skb_gro_pull(skb, -ETH_HLEN);
3180 else if (netif_receive_skb(skb))
3181 ret = GRO_DROP;
3182 break;
3183
3184 case GRO_DROP:
3185 case GRO_MERGED_FREE:
3186 napi_reuse_skb(napi, skb);
3187 break;
3188
3189 case GRO_MERGED:
3190 break;
3191 }
3192
3193 return ret;
3194 }
3195 EXPORT_SYMBOL(napi_frags_finish);
3196
3197 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3198 {
3199 struct sk_buff *skb = napi->skb;
3200 struct ethhdr *eth;
3201 unsigned int hlen;
3202 unsigned int off;
3203
3204 napi->skb = NULL;
3205
3206 skb_reset_mac_header(skb);
3207 skb_gro_reset_offset(skb);
3208
3209 off = skb_gro_offset(skb);
3210 hlen = off + sizeof(*eth);
3211 eth = skb_gro_header_fast(skb, off);
3212 if (skb_gro_header_hard(skb, hlen)) {
3213 eth = skb_gro_header_slow(skb, hlen, off);
3214 if (unlikely(!eth)) {
3215 napi_reuse_skb(napi, skb);
3216 skb = NULL;
3217 goto out;
3218 }
3219 }
3220
3221 skb_gro_pull(skb, sizeof(*eth));
3222
3223 /*
3224 * This works because the only protocols we care about don't require
3225 * special handling. We'll fix it up properly at the end.
3226 */
3227 skb->protocol = eth->h_proto;
3228
3229 out:
3230 return skb;
3231 }
3232 EXPORT_SYMBOL(napi_frags_skb);
3233
3234 gro_result_t napi_gro_frags(struct napi_struct *napi)
3235 {
3236 struct sk_buff *skb = napi_frags_skb(napi);
3237
3238 if (!skb)
3239 return GRO_DROP;
3240
3241 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3242 }
3243 EXPORT_SYMBOL(napi_gro_frags);
3244
3245 static int process_backlog(struct napi_struct *napi, int quota)
3246 {
3247 int work = 0;
3248 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3249
3250 napi->weight = weight_p;
3251 do {
3252 struct sk_buff *skb;
3253
3254 local_irq_disable();
3255 rps_lock(sd);
3256 skb = __skb_dequeue(&sd->input_pkt_queue);
3257 if (!skb) {
3258 __napi_complete(napi);
3259 rps_unlock(sd);
3260 local_irq_enable();
3261 break;
3262 }
3263 input_queue_head_incr(sd);
3264 rps_unlock(sd);
3265 local_irq_enable();
3266
3267 __netif_receive_skb(skb);
3268 } while (++work < quota);
3269
3270 return work;
3271 }
3272
3273 /**
3274 * __napi_schedule - schedule for receive
3275 * @n: entry to schedule
3276 *
3277 * The entry's receive function will be scheduled to run
3278 */
3279 void __napi_schedule(struct napi_struct *n)
3280 {
3281 unsigned long flags;
3282
3283 local_irq_save(flags);
3284 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3285 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3286 local_irq_restore(flags);
3287 }
3288 EXPORT_SYMBOL(__napi_schedule);
3289
3290 void __napi_complete(struct napi_struct *n)
3291 {
3292 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3293 BUG_ON(n->gro_list);
3294
3295 list_del(&n->poll_list);
3296 smp_mb__before_clear_bit();
3297 clear_bit(NAPI_STATE_SCHED, &n->state);
3298 }
3299 EXPORT_SYMBOL(__napi_complete);
3300
3301 void napi_complete(struct napi_struct *n)
3302 {
3303 unsigned long flags;
3304
3305 /*
3306 * don't let napi dequeue from the cpu poll list
3307 * just in case its running on a different cpu
3308 */
3309 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3310 return;
3311
3312 napi_gro_flush(n);
3313 local_irq_save(flags);
3314 __napi_complete(n);
3315 local_irq_restore(flags);
3316 }
3317 EXPORT_SYMBOL(napi_complete);
3318
3319 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3320 int (*poll)(struct napi_struct *, int), int weight)
3321 {
3322 INIT_LIST_HEAD(&napi->poll_list);
3323 napi->gro_count = 0;
3324 napi->gro_list = NULL;
3325 napi->skb = NULL;
3326 napi->poll = poll;
3327 napi->weight = weight;
3328 list_add(&napi->dev_list, &dev->napi_list);
3329 napi->dev = dev;
3330 #ifdef CONFIG_NETPOLL
3331 spin_lock_init(&napi->poll_lock);
3332 napi->poll_owner = -1;
3333 #endif
3334 set_bit(NAPI_STATE_SCHED, &napi->state);
3335 }
3336 EXPORT_SYMBOL(netif_napi_add);
3337
3338 void netif_napi_del(struct napi_struct *napi)
3339 {
3340 struct sk_buff *skb, *next;
3341
3342 list_del_init(&napi->dev_list);
3343 napi_free_frags(napi);
3344
3345 for (skb = napi->gro_list; skb; skb = next) {
3346 next = skb->next;
3347 skb->next = NULL;
3348 kfree_skb(skb);
3349 }
3350
3351 napi->gro_list = NULL;
3352 napi->gro_count = 0;
3353 }
3354 EXPORT_SYMBOL(netif_napi_del);
3355
3356 /*
3357 * net_rps_action sends any pending IPI's for rps.
3358 * Note: called with local irq disabled, but exits with local irq enabled.
3359 */
3360 static void net_rps_action_and_irq_disable(void)
3361 {
3362 #ifdef CONFIG_RPS
3363 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3364 struct softnet_data *remsd = sd->rps_ipi_list;
3365
3366 if (remsd) {
3367 sd->rps_ipi_list = NULL;
3368
3369 local_irq_enable();
3370
3371 /* Send pending IPI's to kick RPS processing on remote cpus. */
3372 while (remsd) {
3373 struct softnet_data *next = remsd->rps_ipi_next;
3374
3375 if (cpu_online(remsd->cpu))
3376 __smp_call_function_single(remsd->cpu,
3377 &remsd->csd, 0);
3378 remsd = next;
3379 }
3380 } else
3381 #endif
3382 local_irq_enable();
3383 }
3384
3385 static void net_rx_action(struct softirq_action *h)
3386 {
3387 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3388 unsigned long time_limit = jiffies + 2;
3389 int budget = netdev_budget;
3390 void *have;
3391
3392 local_irq_disable();
3393
3394 while (!list_empty(list)) {
3395 struct napi_struct *n;
3396 int work, weight;
3397
3398 /* If softirq window is exhuasted then punt.
3399 * Allow this to run for 2 jiffies since which will allow
3400 * an average latency of 1.5/HZ.
3401 */
3402 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3403 goto softnet_break;
3404
3405 local_irq_enable();
3406
3407 /* Even though interrupts have been re-enabled, this
3408 * access is safe because interrupts can only add new
3409 * entries to the tail of this list, and only ->poll()
3410 * calls can remove this head entry from the list.
3411 */
3412 n = list_first_entry(list, struct napi_struct, poll_list);
3413
3414 have = netpoll_poll_lock(n);
3415
3416 weight = n->weight;
3417
3418 /* This NAPI_STATE_SCHED test is for avoiding a race
3419 * with netpoll's poll_napi(). Only the entity which
3420 * obtains the lock and sees NAPI_STATE_SCHED set will
3421 * actually make the ->poll() call. Therefore we avoid
3422 * accidently calling ->poll() when NAPI is not scheduled.
3423 */
3424 work = 0;
3425 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3426 work = n->poll(n, weight);
3427 trace_napi_poll(n);
3428 }
3429
3430 WARN_ON_ONCE(work > weight);
3431
3432 budget -= work;
3433
3434 local_irq_disable();
3435
3436 /* Drivers must not modify the NAPI state if they
3437 * consume the entire weight. In such cases this code
3438 * still "owns" the NAPI instance and therefore can
3439 * move the instance around on the list at-will.
3440 */
3441 if (unlikely(work == weight)) {
3442 if (unlikely(napi_disable_pending(n))) {
3443 local_irq_enable();
3444 napi_complete(n);
3445 local_irq_disable();
3446 } else
3447 list_move_tail(&n->poll_list, list);
3448 }
3449
3450 netpoll_poll_unlock(have);
3451 }
3452 out:
3453 net_rps_action_and_irq_disable();
3454
3455 #ifdef CONFIG_NET_DMA
3456 /*
3457 * There may not be any more sk_buffs coming right now, so push
3458 * any pending DMA copies to hardware
3459 */
3460 dma_issue_pending_all();
3461 #endif
3462
3463 return;
3464
3465 softnet_break:
3466 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3467 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3468 goto out;
3469 }
3470
3471 static gifconf_func_t *gifconf_list[NPROTO];
3472
3473 /**
3474 * register_gifconf - register a SIOCGIF handler
3475 * @family: Address family
3476 * @gifconf: Function handler
3477 *
3478 * Register protocol dependent address dumping routines. The handler
3479 * that is passed must not be freed or reused until it has been replaced
3480 * by another handler.
3481 */
3482 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3483 {
3484 if (family >= NPROTO)
3485 return -EINVAL;
3486 gifconf_list[family] = gifconf;
3487 return 0;
3488 }
3489 EXPORT_SYMBOL(register_gifconf);
3490
3491
3492 /*
3493 * Map an interface index to its name (SIOCGIFNAME)
3494 */
3495
3496 /*
3497 * We need this ioctl for efficient implementation of the
3498 * if_indextoname() function required by the IPv6 API. Without
3499 * it, we would have to search all the interfaces to find a
3500 * match. --pb
3501 */
3502
3503 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3504 {
3505 struct net_device *dev;
3506 struct ifreq ifr;
3507
3508 /*
3509 * Fetch the caller's info block.
3510 */
3511
3512 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3513 return -EFAULT;
3514
3515 rcu_read_lock();
3516 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3517 if (!dev) {
3518 rcu_read_unlock();
3519 return -ENODEV;
3520 }
3521
3522 strcpy(ifr.ifr_name, dev->name);
3523 rcu_read_unlock();
3524
3525 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3526 return -EFAULT;
3527 return 0;
3528 }
3529
3530 /*
3531 * Perform a SIOCGIFCONF call. This structure will change
3532 * size eventually, and there is nothing I can do about it.
3533 * Thus we will need a 'compatibility mode'.
3534 */
3535
3536 static int dev_ifconf(struct net *net, char __user *arg)
3537 {
3538 struct ifconf ifc;
3539 struct net_device *dev;
3540 char __user *pos;
3541 int len;
3542 int total;
3543 int i;
3544
3545 /*
3546 * Fetch the caller's info block.
3547 */
3548
3549 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3550 return -EFAULT;
3551
3552 pos = ifc.ifc_buf;
3553 len = ifc.ifc_len;
3554
3555 /*
3556 * Loop over the interfaces, and write an info block for each.
3557 */
3558
3559 total = 0;
3560 for_each_netdev(net, dev) {
3561 for (i = 0; i < NPROTO; i++) {
3562 if (gifconf_list[i]) {
3563 int done;
3564 if (!pos)
3565 done = gifconf_list[i](dev, NULL, 0);
3566 else
3567 done = gifconf_list[i](dev, pos + total,
3568 len - total);
3569 if (done < 0)
3570 return -EFAULT;
3571 total += done;
3572 }
3573 }
3574 }
3575
3576 /*
3577 * All done. Write the updated control block back to the caller.
3578 */
3579 ifc.ifc_len = total;
3580
3581 /*
3582 * Both BSD and Solaris return 0 here, so we do too.
3583 */
3584 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3585 }
3586
3587 #ifdef CONFIG_PROC_FS
3588 /*
3589 * This is invoked by the /proc filesystem handler to display a device
3590 * in detail.
3591 */
3592 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3593 __acquires(RCU)
3594 {
3595 struct net *net = seq_file_net(seq);
3596 loff_t off;
3597 struct net_device *dev;
3598
3599 rcu_read_lock();
3600 if (!*pos)
3601 return SEQ_START_TOKEN;
3602
3603 off = 1;
3604 for_each_netdev_rcu(net, dev)
3605 if (off++ == *pos)
3606 return dev;
3607
3608 return NULL;
3609 }
3610
3611 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3612 {
3613 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3614 first_net_device(seq_file_net(seq)) :
3615 next_net_device((struct net_device *)v);
3616
3617 ++*pos;
3618 return rcu_dereference(dev);
3619 }
3620
3621 void dev_seq_stop(struct seq_file *seq, void *v)
3622 __releases(RCU)
3623 {
3624 rcu_read_unlock();
3625 }
3626
3627 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3628 {
3629 const struct net_device_stats *stats = dev_get_stats(dev);
3630
3631 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3632 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3633 dev->name, stats->rx_bytes, stats->rx_packets,
3634 stats->rx_errors,
3635 stats->rx_dropped + stats->rx_missed_errors,
3636 stats->rx_fifo_errors,
3637 stats->rx_length_errors + stats->rx_over_errors +
3638 stats->rx_crc_errors + stats->rx_frame_errors,
3639 stats->rx_compressed, stats->multicast,
3640 stats->tx_bytes, stats->tx_packets,
3641 stats->tx_errors, stats->tx_dropped,
3642 stats->tx_fifo_errors, stats->collisions,
3643 stats->tx_carrier_errors +
3644 stats->tx_aborted_errors +
3645 stats->tx_window_errors +
3646 stats->tx_heartbeat_errors,
3647 stats->tx_compressed);
3648 }
3649
3650 /*
3651 * Called from the PROCfs module. This now uses the new arbitrary sized
3652 * /proc/net interface to create /proc/net/dev
3653 */
3654 static int dev_seq_show(struct seq_file *seq, void *v)
3655 {
3656 if (v == SEQ_START_TOKEN)
3657 seq_puts(seq, "Inter-| Receive "
3658 " | Transmit\n"
3659 " face |bytes packets errs drop fifo frame "
3660 "compressed multicast|bytes packets errs "
3661 "drop fifo colls carrier compressed\n");
3662 else
3663 dev_seq_printf_stats(seq, v);
3664 return 0;
3665 }
3666
3667 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3668 {
3669 struct netif_rx_stats *rc = NULL;
3670
3671 while (*pos < nr_cpu_ids)
3672 if (cpu_online(*pos)) {
3673 rc = &per_cpu(netdev_rx_stat, *pos);
3674 break;
3675 } else
3676 ++*pos;
3677 return rc;
3678 }
3679
3680 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3681 {
3682 return softnet_get_online(pos);
3683 }
3684
3685 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3686 {
3687 ++*pos;
3688 return softnet_get_online(pos);
3689 }
3690
3691 static void softnet_seq_stop(struct seq_file *seq, void *v)
3692 {
3693 }
3694
3695 static int softnet_seq_show(struct seq_file *seq, void *v)
3696 {
3697 struct netif_rx_stats *s = v;
3698
3699 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3700 s->total, s->dropped, s->time_squeeze, 0,
3701 0, 0, 0, 0, /* was fastroute */
3702 s->cpu_collision, s->received_rps);
3703 return 0;
3704 }
3705
3706 static const struct seq_operations dev_seq_ops = {
3707 .start = dev_seq_start,
3708 .next = dev_seq_next,
3709 .stop = dev_seq_stop,
3710 .show = dev_seq_show,
3711 };
3712
3713 static int dev_seq_open(struct inode *inode, struct file *file)
3714 {
3715 return seq_open_net(inode, file, &dev_seq_ops,
3716 sizeof(struct seq_net_private));
3717 }
3718
3719 static const struct file_operations dev_seq_fops = {
3720 .owner = THIS_MODULE,
3721 .open = dev_seq_open,
3722 .read = seq_read,
3723 .llseek = seq_lseek,
3724 .release = seq_release_net,
3725 };
3726
3727 static const struct seq_operations softnet_seq_ops = {
3728 .start = softnet_seq_start,
3729 .next = softnet_seq_next,
3730 .stop = softnet_seq_stop,
3731 .show = softnet_seq_show,
3732 };
3733
3734 static int softnet_seq_open(struct inode *inode, struct file *file)
3735 {
3736 return seq_open(file, &softnet_seq_ops);
3737 }
3738
3739 static const struct file_operations softnet_seq_fops = {
3740 .owner = THIS_MODULE,
3741 .open = softnet_seq_open,
3742 .read = seq_read,
3743 .llseek = seq_lseek,
3744 .release = seq_release,
3745 };
3746
3747 static void *ptype_get_idx(loff_t pos)
3748 {
3749 struct packet_type *pt = NULL;
3750 loff_t i = 0;
3751 int t;
3752
3753 list_for_each_entry_rcu(pt, &ptype_all, list) {
3754 if (i == pos)
3755 return pt;
3756 ++i;
3757 }
3758
3759 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3760 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3761 if (i == pos)
3762 return pt;
3763 ++i;
3764 }
3765 }
3766 return NULL;
3767 }
3768
3769 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3770 __acquires(RCU)
3771 {
3772 rcu_read_lock();
3773 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3774 }
3775
3776 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3777 {
3778 struct packet_type *pt;
3779 struct list_head *nxt;
3780 int hash;
3781
3782 ++*pos;
3783 if (v == SEQ_START_TOKEN)
3784 return ptype_get_idx(0);
3785
3786 pt = v;
3787 nxt = pt->list.next;
3788 if (pt->type == htons(ETH_P_ALL)) {
3789 if (nxt != &ptype_all)
3790 goto found;
3791 hash = 0;
3792 nxt = ptype_base[0].next;
3793 } else
3794 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3795
3796 while (nxt == &ptype_base[hash]) {
3797 if (++hash >= PTYPE_HASH_SIZE)
3798 return NULL;
3799 nxt = ptype_base[hash].next;
3800 }
3801 found:
3802 return list_entry(nxt, struct packet_type, list);
3803 }
3804
3805 static void ptype_seq_stop(struct seq_file *seq, void *v)
3806 __releases(RCU)
3807 {
3808 rcu_read_unlock();
3809 }
3810
3811 static int ptype_seq_show(struct seq_file *seq, void *v)
3812 {
3813 struct packet_type *pt = v;
3814
3815 if (v == SEQ_START_TOKEN)
3816 seq_puts(seq, "Type Device Function\n");
3817 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3818 if (pt->type == htons(ETH_P_ALL))
3819 seq_puts(seq, "ALL ");
3820 else
3821 seq_printf(seq, "%04x", ntohs(pt->type));
3822
3823 seq_printf(seq, " %-8s %pF\n",
3824 pt->dev ? pt->dev->name : "", pt->func);
3825 }
3826
3827 return 0;
3828 }
3829
3830 static const struct seq_operations ptype_seq_ops = {
3831 .start = ptype_seq_start,
3832 .next = ptype_seq_next,
3833 .stop = ptype_seq_stop,
3834 .show = ptype_seq_show,
3835 };
3836
3837 static int ptype_seq_open(struct inode *inode, struct file *file)
3838 {
3839 return seq_open_net(inode, file, &ptype_seq_ops,
3840 sizeof(struct seq_net_private));
3841 }
3842
3843 static const struct file_operations ptype_seq_fops = {
3844 .owner = THIS_MODULE,
3845 .open = ptype_seq_open,
3846 .read = seq_read,
3847 .llseek = seq_lseek,
3848 .release = seq_release_net,
3849 };
3850
3851
3852 static int __net_init dev_proc_net_init(struct net *net)
3853 {
3854 int rc = -ENOMEM;
3855
3856 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3857 goto out;
3858 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3859 goto out_dev;
3860 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3861 goto out_softnet;
3862
3863 if (wext_proc_init(net))
3864 goto out_ptype;
3865 rc = 0;
3866 out:
3867 return rc;
3868 out_ptype:
3869 proc_net_remove(net, "ptype");
3870 out_softnet:
3871 proc_net_remove(net, "softnet_stat");
3872 out_dev:
3873 proc_net_remove(net, "dev");
3874 goto out;
3875 }
3876
3877 static void __net_exit dev_proc_net_exit(struct net *net)
3878 {
3879 wext_proc_exit(net);
3880
3881 proc_net_remove(net, "ptype");
3882 proc_net_remove(net, "softnet_stat");
3883 proc_net_remove(net, "dev");
3884 }
3885
3886 static struct pernet_operations __net_initdata dev_proc_ops = {
3887 .init = dev_proc_net_init,
3888 .exit = dev_proc_net_exit,
3889 };
3890
3891 static int __init dev_proc_init(void)
3892 {
3893 return register_pernet_subsys(&dev_proc_ops);
3894 }
3895 #else
3896 #define dev_proc_init() 0
3897 #endif /* CONFIG_PROC_FS */
3898
3899
3900 /**
3901 * netdev_set_master - set up master/slave pair
3902 * @slave: slave device
3903 * @master: new master device
3904 *
3905 * Changes the master device of the slave. Pass %NULL to break the
3906 * bonding. The caller must hold the RTNL semaphore. On a failure
3907 * a negative errno code is returned. On success the reference counts
3908 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3909 * function returns zero.
3910 */
3911 int netdev_set_master(struct net_device *slave, struct net_device *master)
3912 {
3913 struct net_device *old = slave->master;
3914
3915 ASSERT_RTNL();
3916
3917 if (master) {
3918 if (old)
3919 return -EBUSY;
3920 dev_hold(master);
3921 }
3922
3923 slave->master = master;
3924
3925 if (old) {
3926 synchronize_net();
3927 dev_put(old);
3928 }
3929 if (master)
3930 slave->flags |= IFF_SLAVE;
3931 else
3932 slave->flags &= ~IFF_SLAVE;
3933
3934 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3935 return 0;
3936 }
3937 EXPORT_SYMBOL(netdev_set_master);
3938
3939 static void dev_change_rx_flags(struct net_device *dev, int flags)
3940 {
3941 const struct net_device_ops *ops = dev->netdev_ops;
3942
3943 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3944 ops->ndo_change_rx_flags(dev, flags);
3945 }
3946
3947 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3948 {
3949 unsigned short old_flags = dev->flags;
3950 uid_t uid;
3951 gid_t gid;
3952
3953 ASSERT_RTNL();
3954
3955 dev->flags |= IFF_PROMISC;
3956 dev->promiscuity += inc;
3957 if (dev->promiscuity == 0) {
3958 /*
3959 * Avoid overflow.
3960 * If inc causes overflow, untouch promisc and return error.
3961 */
3962 if (inc < 0)
3963 dev->flags &= ~IFF_PROMISC;
3964 else {
3965 dev->promiscuity -= inc;
3966 printk(KERN_WARNING "%s: promiscuity touches roof, "
3967 "set promiscuity failed, promiscuity feature "
3968 "of device might be broken.\n", dev->name);
3969 return -EOVERFLOW;
3970 }
3971 }
3972 if (dev->flags != old_flags) {
3973 printk(KERN_INFO "device %s %s promiscuous mode\n",
3974 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3975 "left");
3976 if (audit_enabled) {
3977 current_uid_gid(&uid, &gid);
3978 audit_log(current->audit_context, GFP_ATOMIC,
3979 AUDIT_ANOM_PROMISCUOUS,
3980 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3981 dev->name, (dev->flags & IFF_PROMISC),
3982 (old_flags & IFF_PROMISC),
3983 audit_get_loginuid(current),
3984 uid, gid,
3985 audit_get_sessionid(current));
3986 }
3987
3988 dev_change_rx_flags(dev, IFF_PROMISC);
3989 }
3990 return 0;
3991 }
3992
3993 /**
3994 * dev_set_promiscuity - update promiscuity count on a device
3995 * @dev: device
3996 * @inc: modifier
3997 *
3998 * Add or remove promiscuity from a device. While the count in the device
3999 * remains above zero the interface remains promiscuous. Once it hits zero
4000 * the device reverts back to normal filtering operation. A negative inc
4001 * value is used to drop promiscuity on the device.
4002 * Return 0 if successful or a negative errno code on error.
4003 */
4004 int dev_set_promiscuity(struct net_device *dev, int inc)
4005 {
4006 unsigned short old_flags = dev->flags;
4007 int err;
4008
4009 err = __dev_set_promiscuity(dev, inc);
4010 if (err < 0)
4011 return err;
4012 if (dev->flags != old_flags)
4013 dev_set_rx_mode(dev);
4014 return err;
4015 }
4016 EXPORT_SYMBOL(dev_set_promiscuity);
4017
4018 /**
4019 * dev_set_allmulti - update allmulti count on a device
4020 * @dev: device
4021 * @inc: modifier
4022 *
4023 * Add or remove reception of all multicast frames to a device. While the
4024 * count in the device remains above zero the interface remains listening
4025 * to all interfaces. Once it hits zero the device reverts back to normal
4026 * filtering operation. A negative @inc value is used to drop the counter
4027 * when releasing a resource needing all multicasts.
4028 * Return 0 if successful or a negative errno code on error.
4029 */
4030
4031 int dev_set_allmulti(struct net_device *dev, int inc)
4032 {
4033 unsigned short old_flags = dev->flags;
4034
4035 ASSERT_RTNL();
4036
4037 dev->flags |= IFF_ALLMULTI;
4038 dev->allmulti += inc;
4039 if (dev->allmulti == 0) {
4040 /*
4041 * Avoid overflow.
4042 * If inc causes overflow, untouch allmulti and return error.
4043 */
4044 if (inc < 0)
4045 dev->flags &= ~IFF_ALLMULTI;
4046 else {
4047 dev->allmulti -= inc;
4048 printk(KERN_WARNING "%s: allmulti touches roof, "
4049 "set allmulti failed, allmulti feature of "
4050 "device might be broken.\n", dev->name);
4051 return -EOVERFLOW;
4052 }
4053 }
4054 if (dev->flags ^ old_flags) {
4055 dev_change_rx_flags(dev, IFF_ALLMULTI);
4056 dev_set_rx_mode(dev);
4057 }
4058 return 0;
4059 }
4060 EXPORT_SYMBOL(dev_set_allmulti);
4061
4062 /*
4063 * Upload unicast and multicast address lists to device and
4064 * configure RX filtering. When the device doesn't support unicast
4065 * filtering it is put in promiscuous mode while unicast addresses
4066 * are present.
4067 */
4068 void __dev_set_rx_mode(struct net_device *dev)
4069 {
4070 const struct net_device_ops *ops = dev->netdev_ops;
4071
4072 /* dev_open will call this function so the list will stay sane. */
4073 if (!(dev->flags&IFF_UP))
4074 return;
4075
4076 if (!netif_device_present(dev))
4077 return;
4078
4079 if (ops->ndo_set_rx_mode)
4080 ops->ndo_set_rx_mode(dev);
4081 else {
4082 /* Unicast addresses changes may only happen under the rtnl,
4083 * therefore calling __dev_set_promiscuity here is safe.
4084 */
4085 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4086 __dev_set_promiscuity(dev, 1);
4087 dev->uc_promisc = 1;
4088 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4089 __dev_set_promiscuity(dev, -1);
4090 dev->uc_promisc = 0;
4091 }
4092
4093 if (ops->ndo_set_multicast_list)
4094 ops->ndo_set_multicast_list(dev);
4095 }
4096 }
4097
4098 void dev_set_rx_mode(struct net_device *dev)
4099 {
4100 netif_addr_lock_bh(dev);
4101 __dev_set_rx_mode(dev);
4102 netif_addr_unlock_bh(dev);
4103 }
4104
4105 /**
4106 * dev_get_flags - get flags reported to userspace
4107 * @dev: device
4108 *
4109 * Get the combination of flag bits exported through APIs to userspace.
4110 */
4111 unsigned dev_get_flags(const struct net_device *dev)
4112 {
4113 unsigned flags;
4114
4115 flags = (dev->flags & ~(IFF_PROMISC |
4116 IFF_ALLMULTI |
4117 IFF_RUNNING |
4118 IFF_LOWER_UP |
4119 IFF_DORMANT)) |
4120 (dev->gflags & (IFF_PROMISC |
4121 IFF_ALLMULTI));
4122
4123 if (netif_running(dev)) {
4124 if (netif_oper_up(dev))
4125 flags |= IFF_RUNNING;
4126 if (netif_carrier_ok(dev))
4127 flags |= IFF_LOWER_UP;
4128 if (netif_dormant(dev))
4129 flags |= IFF_DORMANT;
4130 }
4131
4132 return flags;
4133 }
4134 EXPORT_SYMBOL(dev_get_flags);
4135
4136 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4137 {
4138 int old_flags = dev->flags;
4139 int ret;
4140
4141 ASSERT_RTNL();
4142
4143 /*
4144 * Set the flags on our device.
4145 */
4146
4147 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4148 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4149 IFF_AUTOMEDIA)) |
4150 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4151 IFF_ALLMULTI));
4152
4153 /*
4154 * Load in the correct multicast list now the flags have changed.
4155 */
4156
4157 if ((old_flags ^ flags) & IFF_MULTICAST)
4158 dev_change_rx_flags(dev, IFF_MULTICAST);
4159
4160 dev_set_rx_mode(dev);
4161
4162 /*
4163 * Have we downed the interface. We handle IFF_UP ourselves
4164 * according to user attempts to set it, rather than blindly
4165 * setting it.
4166 */
4167
4168 ret = 0;
4169 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4170 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4171
4172 if (!ret)
4173 dev_set_rx_mode(dev);
4174 }
4175
4176 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4177 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4178
4179 dev->gflags ^= IFF_PROMISC;
4180 dev_set_promiscuity(dev, inc);
4181 }
4182
4183 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4184 is important. Some (broken) drivers set IFF_PROMISC, when
4185 IFF_ALLMULTI is requested not asking us and not reporting.
4186 */
4187 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4188 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4189
4190 dev->gflags ^= IFF_ALLMULTI;
4191 dev_set_allmulti(dev, inc);
4192 }
4193
4194 return ret;
4195 }
4196
4197 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4198 {
4199 unsigned int changes = dev->flags ^ old_flags;
4200
4201 if (changes & IFF_UP) {
4202 if (dev->flags & IFF_UP)
4203 call_netdevice_notifiers(NETDEV_UP, dev);
4204 else
4205 call_netdevice_notifiers(NETDEV_DOWN, dev);
4206 }
4207
4208 if (dev->flags & IFF_UP &&
4209 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4211 }
4212
4213 /**
4214 * dev_change_flags - change device settings
4215 * @dev: device
4216 * @flags: device state flags
4217 *
4218 * Change settings on device based state flags. The flags are
4219 * in the userspace exported format.
4220 */
4221 int dev_change_flags(struct net_device *dev, unsigned flags)
4222 {
4223 int ret, changes;
4224 int old_flags = dev->flags;
4225
4226 ret = __dev_change_flags(dev, flags);
4227 if (ret < 0)
4228 return ret;
4229
4230 changes = old_flags ^ dev->flags;
4231 if (changes)
4232 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4233
4234 __dev_notify_flags(dev, old_flags);
4235 return ret;
4236 }
4237 EXPORT_SYMBOL(dev_change_flags);
4238
4239 /**
4240 * dev_set_mtu - Change maximum transfer unit
4241 * @dev: device
4242 * @new_mtu: new transfer unit
4243 *
4244 * Change the maximum transfer size of the network device.
4245 */
4246 int dev_set_mtu(struct net_device *dev, int new_mtu)
4247 {
4248 const struct net_device_ops *ops = dev->netdev_ops;
4249 int err;
4250
4251 if (new_mtu == dev->mtu)
4252 return 0;
4253
4254 /* MTU must be positive. */
4255 if (new_mtu < 0)
4256 return -EINVAL;
4257
4258 if (!netif_device_present(dev))
4259 return -ENODEV;
4260
4261 err = 0;
4262 if (ops->ndo_change_mtu)
4263 err = ops->ndo_change_mtu(dev, new_mtu);
4264 else
4265 dev->mtu = new_mtu;
4266
4267 if (!err && dev->flags & IFF_UP)
4268 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4269 return err;
4270 }
4271 EXPORT_SYMBOL(dev_set_mtu);
4272
4273 /**
4274 * dev_set_mac_address - Change Media Access Control Address
4275 * @dev: device
4276 * @sa: new address
4277 *
4278 * Change the hardware (MAC) address of the device
4279 */
4280 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4281 {
4282 const struct net_device_ops *ops = dev->netdev_ops;
4283 int err;
4284
4285 if (!ops->ndo_set_mac_address)
4286 return -EOPNOTSUPP;
4287 if (sa->sa_family != dev->type)
4288 return -EINVAL;
4289 if (!netif_device_present(dev))
4290 return -ENODEV;
4291 err = ops->ndo_set_mac_address(dev, sa);
4292 if (!err)
4293 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4294 return err;
4295 }
4296 EXPORT_SYMBOL(dev_set_mac_address);
4297
4298 /*
4299 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4300 */
4301 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4302 {
4303 int err;
4304 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4305
4306 if (!dev)
4307 return -ENODEV;
4308
4309 switch (cmd) {
4310 case SIOCGIFFLAGS: /* Get interface flags */
4311 ifr->ifr_flags = (short) dev_get_flags(dev);
4312 return 0;
4313
4314 case SIOCGIFMETRIC: /* Get the metric on the interface
4315 (currently unused) */
4316 ifr->ifr_metric = 0;
4317 return 0;
4318
4319 case SIOCGIFMTU: /* Get the MTU of a device */
4320 ifr->ifr_mtu = dev->mtu;
4321 return 0;
4322
4323 case SIOCGIFHWADDR:
4324 if (!dev->addr_len)
4325 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4326 else
4327 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4328 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4329 ifr->ifr_hwaddr.sa_family = dev->type;
4330 return 0;
4331
4332 case SIOCGIFSLAVE:
4333 err = -EINVAL;
4334 break;
4335
4336 case SIOCGIFMAP:
4337 ifr->ifr_map.mem_start = dev->mem_start;
4338 ifr->ifr_map.mem_end = dev->mem_end;
4339 ifr->ifr_map.base_addr = dev->base_addr;
4340 ifr->ifr_map.irq = dev->irq;
4341 ifr->ifr_map.dma = dev->dma;
4342 ifr->ifr_map.port = dev->if_port;
4343 return 0;
4344
4345 case SIOCGIFINDEX:
4346 ifr->ifr_ifindex = dev->ifindex;
4347 return 0;
4348
4349 case SIOCGIFTXQLEN:
4350 ifr->ifr_qlen = dev->tx_queue_len;
4351 return 0;
4352
4353 default:
4354 /* dev_ioctl() should ensure this case
4355 * is never reached
4356 */
4357 WARN_ON(1);
4358 err = -EINVAL;
4359 break;
4360
4361 }
4362 return err;
4363 }
4364
4365 /*
4366 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4367 */
4368 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4369 {
4370 int err;
4371 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4372 const struct net_device_ops *ops;
4373
4374 if (!dev)
4375 return -ENODEV;
4376
4377 ops = dev->netdev_ops;
4378
4379 switch (cmd) {
4380 case SIOCSIFFLAGS: /* Set interface flags */
4381 return dev_change_flags(dev, ifr->ifr_flags);
4382
4383 case SIOCSIFMETRIC: /* Set the metric on the interface
4384 (currently unused) */
4385 return -EOPNOTSUPP;
4386
4387 case SIOCSIFMTU: /* Set the MTU of a device */
4388 return dev_set_mtu(dev, ifr->ifr_mtu);
4389
4390 case SIOCSIFHWADDR:
4391 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4392
4393 case SIOCSIFHWBROADCAST:
4394 if (ifr->ifr_hwaddr.sa_family != dev->type)
4395 return -EINVAL;
4396 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4397 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4398 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4399 return 0;
4400
4401 case SIOCSIFMAP:
4402 if (ops->ndo_set_config) {
4403 if (!netif_device_present(dev))
4404 return -ENODEV;
4405 return ops->ndo_set_config(dev, &ifr->ifr_map);
4406 }
4407 return -EOPNOTSUPP;
4408
4409 case SIOCADDMULTI:
4410 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4411 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4412 return -EINVAL;
4413 if (!netif_device_present(dev))
4414 return -ENODEV;
4415 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4416
4417 case SIOCDELMULTI:
4418 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4419 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4420 return -EINVAL;
4421 if (!netif_device_present(dev))
4422 return -ENODEV;
4423 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4424
4425 case SIOCSIFTXQLEN:
4426 if (ifr->ifr_qlen < 0)
4427 return -EINVAL;
4428 dev->tx_queue_len = ifr->ifr_qlen;
4429 return 0;
4430
4431 case SIOCSIFNAME:
4432 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4433 return dev_change_name(dev, ifr->ifr_newname);
4434
4435 /*
4436 * Unknown or private ioctl
4437 */
4438 default:
4439 if ((cmd >= SIOCDEVPRIVATE &&
4440 cmd <= SIOCDEVPRIVATE + 15) ||
4441 cmd == SIOCBONDENSLAVE ||
4442 cmd == SIOCBONDRELEASE ||
4443 cmd == SIOCBONDSETHWADDR ||
4444 cmd == SIOCBONDSLAVEINFOQUERY ||
4445 cmd == SIOCBONDINFOQUERY ||
4446 cmd == SIOCBONDCHANGEACTIVE ||
4447 cmd == SIOCGMIIPHY ||
4448 cmd == SIOCGMIIREG ||
4449 cmd == SIOCSMIIREG ||
4450 cmd == SIOCBRADDIF ||
4451 cmd == SIOCBRDELIF ||
4452 cmd == SIOCSHWTSTAMP ||
4453 cmd == SIOCWANDEV) {
4454 err = -EOPNOTSUPP;
4455 if (ops->ndo_do_ioctl) {
4456 if (netif_device_present(dev))
4457 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4458 else
4459 err = -ENODEV;
4460 }
4461 } else
4462 err = -EINVAL;
4463
4464 }
4465 return err;
4466 }
4467
4468 /*
4469 * This function handles all "interface"-type I/O control requests. The actual
4470 * 'doing' part of this is dev_ifsioc above.
4471 */
4472
4473 /**
4474 * dev_ioctl - network device ioctl
4475 * @net: the applicable net namespace
4476 * @cmd: command to issue
4477 * @arg: pointer to a struct ifreq in user space
4478 *
4479 * Issue ioctl functions to devices. This is normally called by the
4480 * user space syscall interfaces but can sometimes be useful for
4481 * other purposes. The return value is the return from the syscall if
4482 * positive or a negative errno code on error.
4483 */
4484
4485 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4486 {
4487 struct ifreq ifr;
4488 int ret;
4489 char *colon;
4490
4491 /* One special case: SIOCGIFCONF takes ifconf argument
4492 and requires shared lock, because it sleeps writing
4493 to user space.
4494 */
4495
4496 if (cmd == SIOCGIFCONF) {
4497 rtnl_lock();
4498 ret = dev_ifconf(net, (char __user *) arg);
4499 rtnl_unlock();
4500 return ret;
4501 }
4502 if (cmd == SIOCGIFNAME)
4503 return dev_ifname(net, (struct ifreq __user *)arg);
4504
4505 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4506 return -EFAULT;
4507
4508 ifr.ifr_name[IFNAMSIZ-1] = 0;
4509
4510 colon = strchr(ifr.ifr_name, ':');
4511 if (colon)
4512 *colon = 0;
4513
4514 /*
4515 * See which interface the caller is talking about.
4516 */
4517
4518 switch (cmd) {
4519 /*
4520 * These ioctl calls:
4521 * - can be done by all.
4522 * - atomic and do not require locking.
4523 * - return a value
4524 */
4525 case SIOCGIFFLAGS:
4526 case SIOCGIFMETRIC:
4527 case SIOCGIFMTU:
4528 case SIOCGIFHWADDR:
4529 case SIOCGIFSLAVE:
4530 case SIOCGIFMAP:
4531 case SIOCGIFINDEX:
4532 case SIOCGIFTXQLEN:
4533 dev_load(net, ifr.ifr_name);
4534 rcu_read_lock();
4535 ret = dev_ifsioc_locked(net, &ifr, cmd);
4536 rcu_read_unlock();
4537 if (!ret) {
4538 if (colon)
4539 *colon = ':';
4540 if (copy_to_user(arg, &ifr,
4541 sizeof(struct ifreq)))
4542 ret = -EFAULT;
4543 }
4544 return ret;
4545
4546 case SIOCETHTOOL:
4547 dev_load(net, ifr.ifr_name);
4548 rtnl_lock();
4549 ret = dev_ethtool(net, &ifr);
4550 rtnl_unlock();
4551 if (!ret) {
4552 if (colon)
4553 *colon = ':';
4554 if (copy_to_user(arg, &ifr,
4555 sizeof(struct ifreq)))
4556 ret = -EFAULT;
4557 }
4558 return ret;
4559
4560 /*
4561 * These ioctl calls:
4562 * - require superuser power.
4563 * - require strict serialization.
4564 * - return a value
4565 */
4566 case SIOCGMIIPHY:
4567 case SIOCGMIIREG:
4568 case SIOCSIFNAME:
4569 if (!capable(CAP_NET_ADMIN))
4570 return -EPERM;
4571 dev_load(net, ifr.ifr_name);
4572 rtnl_lock();
4573 ret = dev_ifsioc(net, &ifr, cmd);
4574 rtnl_unlock();
4575 if (!ret) {
4576 if (colon)
4577 *colon = ':';
4578 if (copy_to_user(arg, &ifr,
4579 sizeof(struct ifreq)))
4580 ret = -EFAULT;
4581 }
4582 return ret;
4583
4584 /*
4585 * These ioctl calls:
4586 * - require superuser power.
4587 * - require strict serialization.
4588 * - do not return a value
4589 */
4590 case SIOCSIFFLAGS:
4591 case SIOCSIFMETRIC:
4592 case SIOCSIFMTU:
4593 case SIOCSIFMAP:
4594 case SIOCSIFHWADDR:
4595 case SIOCSIFSLAVE:
4596 case SIOCADDMULTI:
4597 case SIOCDELMULTI:
4598 case SIOCSIFHWBROADCAST:
4599 case SIOCSIFTXQLEN:
4600 case SIOCSMIIREG:
4601 case SIOCBONDENSLAVE:
4602 case SIOCBONDRELEASE:
4603 case SIOCBONDSETHWADDR:
4604 case SIOCBONDCHANGEACTIVE:
4605 case SIOCBRADDIF:
4606 case SIOCBRDELIF:
4607 case SIOCSHWTSTAMP:
4608 if (!capable(CAP_NET_ADMIN))
4609 return -EPERM;
4610 /* fall through */
4611 case SIOCBONDSLAVEINFOQUERY:
4612 case SIOCBONDINFOQUERY:
4613 dev_load(net, ifr.ifr_name);
4614 rtnl_lock();
4615 ret = dev_ifsioc(net, &ifr, cmd);
4616 rtnl_unlock();
4617 return ret;
4618
4619 case SIOCGIFMEM:
4620 /* Get the per device memory space. We can add this but
4621 * currently do not support it */
4622 case SIOCSIFMEM:
4623 /* Set the per device memory buffer space.
4624 * Not applicable in our case */
4625 case SIOCSIFLINK:
4626 return -EINVAL;
4627
4628 /*
4629 * Unknown or private ioctl.
4630 */
4631 default:
4632 if (cmd == SIOCWANDEV ||
4633 (cmd >= SIOCDEVPRIVATE &&
4634 cmd <= SIOCDEVPRIVATE + 15)) {
4635 dev_load(net, ifr.ifr_name);
4636 rtnl_lock();
4637 ret = dev_ifsioc(net, &ifr, cmd);
4638 rtnl_unlock();
4639 if (!ret && copy_to_user(arg, &ifr,
4640 sizeof(struct ifreq)))
4641 ret = -EFAULT;
4642 return ret;
4643 }
4644 /* Take care of Wireless Extensions */
4645 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4646 return wext_handle_ioctl(net, &ifr, cmd, arg);
4647 return -EINVAL;
4648 }
4649 }
4650
4651
4652 /**
4653 * dev_new_index - allocate an ifindex
4654 * @net: the applicable net namespace
4655 *
4656 * Returns a suitable unique value for a new device interface
4657 * number. The caller must hold the rtnl semaphore or the
4658 * dev_base_lock to be sure it remains unique.
4659 */
4660 static int dev_new_index(struct net *net)
4661 {
4662 static int ifindex;
4663 for (;;) {
4664 if (++ifindex <= 0)
4665 ifindex = 1;
4666 if (!__dev_get_by_index(net, ifindex))
4667 return ifindex;
4668 }
4669 }
4670
4671 /* Delayed registration/unregisteration */
4672 static LIST_HEAD(net_todo_list);
4673
4674 static void net_set_todo(struct net_device *dev)
4675 {
4676 list_add_tail(&dev->todo_list, &net_todo_list);
4677 }
4678
4679 static void rollback_registered_many(struct list_head *head)
4680 {
4681 struct net_device *dev, *tmp;
4682
4683 BUG_ON(dev_boot_phase);
4684 ASSERT_RTNL();
4685
4686 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4687 /* Some devices call without registering
4688 * for initialization unwind. Remove those
4689 * devices and proceed with the remaining.
4690 */
4691 if (dev->reg_state == NETREG_UNINITIALIZED) {
4692 pr_debug("unregister_netdevice: device %s/%p never "
4693 "was registered\n", dev->name, dev);
4694
4695 WARN_ON(1);
4696 list_del(&dev->unreg_list);
4697 continue;
4698 }
4699
4700 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4701
4702 /* If device is running, close it first. */
4703 dev_close(dev);
4704
4705 /* And unlink it from device chain. */
4706 unlist_netdevice(dev);
4707
4708 dev->reg_state = NETREG_UNREGISTERING;
4709 }
4710
4711 synchronize_net();
4712
4713 list_for_each_entry(dev, head, unreg_list) {
4714 /* Shutdown queueing discipline. */
4715 dev_shutdown(dev);
4716
4717
4718 /* Notify protocols, that we are about to destroy
4719 this device. They should clean all the things.
4720 */
4721 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4722
4723 if (!dev->rtnl_link_ops ||
4724 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4725 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4726
4727 /*
4728 * Flush the unicast and multicast chains
4729 */
4730 dev_uc_flush(dev);
4731 dev_mc_flush(dev);
4732
4733 if (dev->netdev_ops->ndo_uninit)
4734 dev->netdev_ops->ndo_uninit(dev);
4735
4736 /* Notifier chain MUST detach us from master device. */
4737 WARN_ON(dev->master);
4738
4739 /* Remove entries from kobject tree */
4740 netdev_unregister_kobject(dev);
4741 }
4742
4743 /* Process any work delayed until the end of the batch */
4744 dev = list_first_entry(head, struct net_device, unreg_list);
4745 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4746
4747 synchronize_net();
4748
4749 list_for_each_entry(dev, head, unreg_list)
4750 dev_put(dev);
4751 }
4752
4753 static void rollback_registered(struct net_device *dev)
4754 {
4755 LIST_HEAD(single);
4756
4757 list_add(&dev->unreg_list, &single);
4758 rollback_registered_many(&single);
4759 }
4760
4761 static void __netdev_init_queue_locks_one(struct net_device *dev,
4762 struct netdev_queue *dev_queue,
4763 void *_unused)
4764 {
4765 spin_lock_init(&dev_queue->_xmit_lock);
4766 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4767 dev_queue->xmit_lock_owner = -1;
4768 }
4769
4770 static void netdev_init_queue_locks(struct net_device *dev)
4771 {
4772 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4773 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4774 }
4775
4776 unsigned long netdev_fix_features(unsigned long features, const char *name)
4777 {
4778 /* Fix illegal SG+CSUM combinations. */
4779 if ((features & NETIF_F_SG) &&
4780 !(features & NETIF_F_ALL_CSUM)) {
4781 if (name)
4782 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4783 "checksum feature.\n", name);
4784 features &= ~NETIF_F_SG;
4785 }
4786
4787 /* TSO requires that SG is present as well. */
4788 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4789 if (name)
4790 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4791 "SG feature.\n", name);
4792 features &= ~NETIF_F_TSO;
4793 }
4794
4795 if (features & NETIF_F_UFO) {
4796 if (!(features & NETIF_F_GEN_CSUM)) {
4797 if (name)
4798 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4799 "since no NETIF_F_HW_CSUM feature.\n",
4800 name);
4801 features &= ~NETIF_F_UFO;
4802 }
4803
4804 if (!(features & NETIF_F_SG)) {
4805 if (name)
4806 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4807 "since no NETIF_F_SG feature.\n", name);
4808 features &= ~NETIF_F_UFO;
4809 }
4810 }
4811
4812 return features;
4813 }
4814 EXPORT_SYMBOL(netdev_fix_features);
4815
4816 /**
4817 * netif_stacked_transfer_operstate - transfer operstate
4818 * @rootdev: the root or lower level device to transfer state from
4819 * @dev: the device to transfer operstate to
4820 *
4821 * Transfer operational state from root to device. This is normally
4822 * called when a stacking relationship exists between the root
4823 * device and the device(a leaf device).
4824 */
4825 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4826 struct net_device *dev)
4827 {
4828 if (rootdev->operstate == IF_OPER_DORMANT)
4829 netif_dormant_on(dev);
4830 else
4831 netif_dormant_off(dev);
4832
4833 if (netif_carrier_ok(rootdev)) {
4834 if (!netif_carrier_ok(dev))
4835 netif_carrier_on(dev);
4836 } else {
4837 if (netif_carrier_ok(dev))
4838 netif_carrier_off(dev);
4839 }
4840 }
4841 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4842
4843 /**
4844 * register_netdevice - register a network device
4845 * @dev: device to register
4846 *
4847 * Take a completed network device structure and add it to the kernel
4848 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4849 * chain. 0 is returned on success. A negative errno code is returned
4850 * on a failure to set up the device, or if the name is a duplicate.
4851 *
4852 * Callers must hold the rtnl semaphore. You may want
4853 * register_netdev() instead of this.
4854 *
4855 * BUGS:
4856 * The locking appears insufficient to guarantee two parallel registers
4857 * will not get the same name.
4858 */
4859
4860 int register_netdevice(struct net_device *dev)
4861 {
4862 int ret;
4863 struct net *net = dev_net(dev);
4864
4865 BUG_ON(dev_boot_phase);
4866 ASSERT_RTNL();
4867
4868 might_sleep();
4869
4870 /* When net_device's are persistent, this will be fatal. */
4871 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4872 BUG_ON(!net);
4873
4874 spin_lock_init(&dev->addr_list_lock);
4875 netdev_set_addr_lockdep_class(dev);
4876 netdev_init_queue_locks(dev);
4877
4878 dev->iflink = -1;
4879
4880 #ifdef CONFIG_RPS
4881 if (!dev->num_rx_queues) {
4882 /*
4883 * Allocate a single RX queue if driver never called
4884 * alloc_netdev_mq
4885 */
4886
4887 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4888 if (!dev->_rx) {
4889 ret = -ENOMEM;
4890 goto out;
4891 }
4892
4893 dev->_rx->first = dev->_rx;
4894 atomic_set(&dev->_rx->count, 1);
4895 dev->num_rx_queues = 1;
4896 }
4897 #endif
4898 /* Init, if this function is available */
4899 if (dev->netdev_ops->ndo_init) {
4900 ret = dev->netdev_ops->ndo_init(dev);
4901 if (ret) {
4902 if (ret > 0)
4903 ret = -EIO;
4904 goto out;
4905 }
4906 }
4907
4908 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4909 if (ret)
4910 goto err_uninit;
4911
4912 dev->ifindex = dev_new_index(net);
4913 if (dev->iflink == -1)
4914 dev->iflink = dev->ifindex;
4915
4916 /* Fix illegal checksum combinations */
4917 if ((dev->features & NETIF_F_HW_CSUM) &&
4918 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4919 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4920 dev->name);
4921 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4922 }
4923
4924 if ((dev->features & NETIF_F_NO_CSUM) &&
4925 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4926 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4927 dev->name);
4928 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4929 }
4930
4931 dev->features = netdev_fix_features(dev->features, dev->name);
4932
4933 /* Enable software GSO if SG is supported. */
4934 if (dev->features & NETIF_F_SG)
4935 dev->features |= NETIF_F_GSO;
4936
4937 netdev_initialize_kobject(dev);
4938
4939 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4940 ret = notifier_to_errno(ret);
4941 if (ret)
4942 goto err_uninit;
4943
4944 ret = netdev_register_kobject(dev);
4945 if (ret)
4946 goto err_uninit;
4947 dev->reg_state = NETREG_REGISTERED;
4948
4949 /*
4950 * Default initial state at registry is that the
4951 * device is present.
4952 */
4953
4954 set_bit(__LINK_STATE_PRESENT, &dev->state);
4955
4956 dev_init_scheduler(dev);
4957 dev_hold(dev);
4958 list_netdevice(dev);
4959
4960 /* Notify protocols, that a new device appeared. */
4961 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4962 ret = notifier_to_errno(ret);
4963 if (ret) {
4964 rollback_registered(dev);
4965 dev->reg_state = NETREG_UNREGISTERED;
4966 }
4967 /*
4968 * Prevent userspace races by waiting until the network
4969 * device is fully setup before sending notifications.
4970 */
4971 if (!dev->rtnl_link_ops ||
4972 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4973 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4974
4975 out:
4976 return ret;
4977
4978 err_uninit:
4979 if (dev->netdev_ops->ndo_uninit)
4980 dev->netdev_ops->ndo_uninit(dev);
4981 goto out;
4982 }
4983 EXPORT_SYMBOL(register_netdevice);
4984
4985 /**
4986 * init_dummy_netdev - init a dummy network device for NAPI
4987 * @dev: device to init
4988 *
4989 * This takes a network device structure and initialize the minimum
4990 * amount of fields so it can be used to schedule NAPI polls without
4991 * registering a full blown interface. This is to be used by drivers
4992 * that need to tie several hardware interfaces to a single NAPI
4993 * poll scheduler due to HW limitations.
4994 */
4995 int init_dummy_netdev(struct net_device *dev)
4996 {
4997 /* Clear everything. Note we don't initialize spinlocks
4998 * are they aren't supposed to be taken by any of the
4999 * NAPI code and this dummy netdev is supposed to be
5000 * only ever used for NAPI polls
5001 */
5002 memset(dev, 0, sizeof(struct net_device));
5003
5004 /* make sure we BUG if trying to hit standard
5005 * register/unregister code path
5006 */
5007 dev->reg_state = NETREG_DUMMY;
5008
5009 /* initialize the ref count */
5010 atomic_set(&dev->refcnt, 1);
5011
5012 /* NAPI wants this */
5013 INIT_LIST_HEAD(&dev->napi_list);
5014
5015 /* a dummy interface is started by default */
5016 set_bit(__LINK_STATE_PRESENT, &dev->state);
5017 set_bit(__LINK_STATE_START, &dev->state);
5018
5019 return 0;
5020 }
5021 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5022
5023
5024 /**
5025 * register_netdev - register a network device
5026 * @dev: device to register
5027 *
5028 * Take a completed network device structure and add it to the kernel
5029 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5030 * chain. 0 is returned on success. A negative errno code is returned
5031 * on a failure to set up the device, or if the name is a duplicate.
5032 *
5033 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5034 * and expands the device name if you passed a format string to
5035 * alloc_netdev.
5036 */
5037 int register_netdev(struct net_device *dev)
5038 {
5039 int err;
5040
5041 rtnl_lock();
5042
5043 /*
5044 * If the name is a format string the caller wants us to do a
5045 * name allocation.
5046 */
5047 if (strchr(dev->name, '%')) {
5048 err = dev_alloc_name(dev, dev->name);
5049 if (err < 0)
5050 goto out;
5051 }
5052
5053 err = register_netdevice(dev);
5054 out:
5055 rtnl_unlock();
5056 return err;
5057 }
5058 EXPORT_SYMBOL(register_netdev);
5059
5060 /*
5061 * netdev_wait_allrefs - wait until all references are gone.
5062 *
5063 * This is called when unregistering network devices.
5064 *
5065 * Any protocol or device that holds a reference should register
5066 * for netdevice notification, and cleanup and put back the
5067 * reference if they receive an UNREGISTER event.
5068 * We can get stuck here if buggy protocols don't correctly
5069 * call dev_put.
5070 */
5071 static void netdev_wait_allrefs(struct net_device *dev)
5072 {
5073 unsigned long rebroadcast_time, warning_time;
5074
5075 linkwatch_forget_dev(dev);
5076
5077 rebroadcast_time = warning_time = jiffies;
5078 while (atomic_read(&dev->refcnt) != 0) {
5079 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5080 rtnl_lock();
5081
5082 /* Rebroadcast unregister notification */
5083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5084 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5085 * should have already handle it the first time */
5086
5087 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5088 &dev->state)) {
5089 /* We must not have linkwatch events
5090 * pending on unregister. If this
5091 * happens, we simply run the queue
5092 * unscheduled, resulting in a noop
5093 * for this device.
5094 */
5095 linkwatch_run_queue();
5096 }
5097
5098 __rtnl_unlock();
5099
5100 rebroadcast_time = jiffies;
5101 }
5102
5103 msleep(250);
5104
5105 if (time_after(jiffies, warning_time + 10 * HZ)) {
5106 printk(KERN_EMERG "unregister_netdevice: "
5107 "waiting for %s to become free. Usage "
5108 "count = %d\n",
5109 dev->name, atomic_read(&dev->refcnt));
5110 warning_time = jiffies;
5111 }
5112 }
5113 }
5114
5115 /* The sequence is:
5116 *
5117 * rtnl_lock();
5118 * ...
5119 * register_netdevice(x1);
5120 * register_netdevice(x2);
5121 * ...
5122 * unregister_netdevice(y1);
5123 * unregister_netdevice(y2);
5124 * ...
5125 * rtnl_unlock();
5126 * free_netdev(y1);
5127 * free_netdev(y2);
5128 *
5129 * We are invoked by rtnl_unlock().
5130 * This allows us to deal with problems:
5131 * 1) We can delete sysfs objects which invoke hotplug
5132 * without deadlocking with linkwatch via keventd.
5133 * 2) Since we run with the RTNL semaphore not held, we can sleep
5134 * safely in order to wait for the netdev refcnt to drop to zero.
5135 *
5136 * We must not return until all unregister events added during
5137 * the interval the lock was held have been completed.
5138 */
5139 void netdev_run_todo(void)
5140 {
5141 struct list_head list;
5142
5143 /* Snapshot list, allow later requests */
5144 list_replace_init(&net_todo_list, &list);
5145
5146 __rtnl_unlock();
5147
5148 while (!list_empty(&list)) {
5149 struct net_device *dev
5150 = list_first_entry(&list, struct net_device, todo_list);
5151 list_del(&dev->todo_list);
5152
5153 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5154 printk(KERN_ERR "network todo '%s' but state %d\n",
5155 dev->name, dev->reg_state);
5156 dump_stack();
5157 continue;
5158 }
5159
5160 dev->reg_state = NETREG_UNREGISTERED;
5161
5162 on_each_cpu(flush_backlog, dev, 1);
5163
5164 netdev_wait_allrefs(dev);
5165
5166 /* paranoia */
5167 BUG_ON(atomic_read(&dev->refcnt));
5168 WARN_ON(dev->ip_ptr);
5169 WARN_ON(dev->ip6_ptr);
5170 WARN_ON(dev->dn_ptr);
5171
5172 if (dev->destructor)
5173 dev->destructor(dev);
5174
5175 /* Free network device */
5176 kobject_put(&dev->dev.kobj);
5177 }
5178 }
5179
5180 /**
5181 * dev_txq_stats_fold - fold tx_queues stats
5182 * @dev: device to get statistics from
5183 * @stats: struct net_device_stats to hold results
5184 */
5185 void dev_txq_stats_fold(const struct net_device *dev,
5186 struct net_device_stats *stats)
5187 {
5188 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5189 unsigned int i;
5190 struct netdev_queue *txq;
5191
5192 for (i = 0; i < dev->num_tx_queues; i++) {
5193 txq = netdev_get_tx_queue(dev, i);
5194 tx_bytes += txq->tx_bytes;
5195 tx_packets += txq->tx_packets;
5196 tx_dropped += txq->tx_dropped;
5197 }
5198 if (tx_bytes || tx_packets || tx_dropped) {
5199 stats->tx_bytes = tx_bytes;
5200 stats->tx_packets = tx_packets;
5201 stats->tx_dropped = tx_dropped;
5202 }
5203 }
5204 EXPORT_SYMBOL(dev_txq_stats_fold);
5205
5206 /**
5207 * dev_get_stats - get network device statistics
5208 * @dev: device to get statistics from
5209 *
5210 * Get network statistics from device. The device driver may provide
5211 * its own method by setting dev->netdev_ops->get_stats; otherwise
5212 * the internal statistics structure is used.
5213 */
5214 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5215 {
5216 const struct net_device_ops *ops = dev->netdev_ops;
5217
5218 if (ops->ndo_get_stats)
5219 return ops->ndo_get_stats(dev);
5220
5221 dev_txq_stats_fold(dev, &dev->stats);
5222 return &dev->stats;
5223 }
5224 EXPORT_SYMBOL(dev_get_stats);
5225
5226 static void netdev_init_one_queue(struct net_device *dev,
5227 struct netdev_queue *queue,
5228 void *_unused)
5229 {
5230 queue->dev = dev;
5231 }
5232
5233 static void netdev_init_queues(struct net_device *dev)
5234 {
5235 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5236 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5237 spin_lock_init(&dev->tx_global_lock);
5238 }
5239
5240 /**
5241 * alloc_netdev_mq - allocate network device
5242 * @sizeof_priv: size of private data to allocate space for
5243 * @name: device name format string
5244 * @setup: callback to initialize device
5245 * @queue_count: the number of subqueues to allocate
5246 *
5247 * Allocates a struct net_device with private data area for driver use
5248 * and performs basic initialization. Also allocates subquue structs
5249 * for each queue on the device at the end of the netdevice.
5250 */
5251 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5252 void (*setup)(struct net_device *), unsigned int queue_count)
5253 {
5254 struct netdev_queue *tx;
5255 struct net_device *dev;
5256 size_t alloc_size;
5257 struct net_device *p;
5258 #ifdef CONFIG_RPS
5259 struct netdev_rx_queue *rx;
5260 int i;
5261 #endif
5262
5263 BUG_ON(strlen(name) >= sizeof(dev->name));
5264
5265 alloc_size = sizeof(struct net_device);
5266 if (sizeof_priv) {
5267 /* ensure 32-byte alignment of private area */
5268 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5269 alloc_size += sizeof_priv;
5270 }
5271 /* ensure 32-byte alignment of whole construct */
5272 alloc_size += NETDEV_ALIGN - 1;
5273
5274 p = kzalloc(alloc_size, GFP_KERNEL);
5275 if (!p) {
5276 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5277 return NULL;
5278 }
5279
5280 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5281 if (!tx) {
5282 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5283 "tx qdiscs.\n");
5284 goto free_p;
5285 }
5286
5287 #ifdef CONFIG_RPS
5288 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5289 if (!rx) {
5290 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5291 "rx queues.\n");
5292 goto free_tx;
5293 }
5294
5295 atomic_set(&rx->count, queue_count);
5296
5297 /*
5298 * Set a pointer to first element in the array which holds the
5299 * reference count.
5300 */
5301 for (i = 0; i < queue_count; i++)
5302 rx[i].first = rx;
5303 #endif
5304
5305 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5306 dev->padded = (char *)dev - (char *)p;
5307
5308 if (dev_addr_init(dev))
5309 goto free_rx;
5310
5311 dev_mc_init(dev);
5312 dev_uc_init(dev);
5313
5314 dev_net_set(dev, &init_net);
5315
5316 dev->_tx = tx;
5317 dev->num_tx_queues = queue_count;
5318 dev->real_num_tx_queues = queue_count;
5319
5320 #ifdef CONFIG_RPS
5321 dev->_rx = rx;
5322 dev->num_rx_queues = queue_count;
5323 #endif
5324
5325 dev->gso_max_size = GSO_MAX_SIZE;
5326
5327 netdev_init_queues(dev);
5328
5329 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5330 dev->ethtool_ntuple_list.count = 0;
5331 INIT_LIST_HEAD(&dev->napi_list);
5332 INIT_LIST_HEAD(&dev->unreg_list);
5333 INIT_LIST_HEAD(&dev->link_watch_list);
5334 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5335 setup(dev);
5336 strcpy(dev->name, name);
5337 return dev;
5338
5339 free_rx:
5340 #ifdef CONFIG_RPS
5341 kfree(rx);
5342 free_tx:
5343 #endif
5344 kfree(tx);
5345 free_p:
5346 kfree(p);
5347 return NULL;
5348 }
5349 EXPORT_SYMBOL(alloc_netdev_mq);
5350
5351 /**
5352 * free_netdev - free network device
5353 * @dev: device
5354 *
5355 * This function does the last stage of destroying an allocated device
5356 * interface. The reference to the device object is released.
5357 * If this is the last reference then it will be freed.
5358 */
5359 void free_netdev(struct net_device *dev)
5360 {
5361 struct napi_struct *p, *n;
5362
5363 release_net(dev_net(dev));
5364
5365 kfree(dev->_tx);
5366
5367 /* Flush device addresses */
5368 dev_addr_flush(dev);
5369
5370 /* Clear ethtool n-tuple list */
5371 ethtool_ntuple_flush(dev);
5372
5373 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5374 netif_napi_del(p);
5375
5376 /* Compatibility with error handling in drivers */
5377 if (dev->reg_state == NETREG_UNINITIALIZED) {
5378 kfree((char *)dev - dev->padded);
5379 return;
5380 }
5381
5382 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5383 dev->reg_state = NETREG_RELEASED;
5384
5385 /* will free via device release */
5386 put_device(&dev->dev);
5387 }
5388 EXPORT_SYMBOL(free_netdev);
5389
5390 /**
5391 * synchronize_net - Synchronize with packet receive processing
5392 *
5393 * Wait for packets currently being received to be done.
5394 * Does not block later packets from starting.
5395 */
5396 void synchronize_net(void)
5397 {
5398 might_sleep();
5399 synchronize_rcu();
5400 }
5401 EXPORT_SYMBOL(synchronize_net);
5402
5403 /**
5404 * unregister_netdevice_queue - remove device from the kernel
5405 * @dev: device
5406 * @head: list
5407 *
5408 * This function shuts down a device interface and removes it
5409 * from the kernel tables.
5410 * If head not NULL, device is queued to be unregistered later.
5411 *
5412 * Callers must hold the rtnl semaphore. You may want
5413 * unregister_netdev() instead of this.
5414 */
5415
5416 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5417 {
5418 ASSERT_RTNL();
5419
5420 if (head) {
5421 list_move_tail(&dev->unreg_list, head);
5422 } else {
5423 rollback_registered(dev);
5424 /* Finish processing unregister after unlock */
5425 net_set_todo(dev);
5426 }
5427 }
5428 EXPORT_SYMBOL(unregister_netdevice_queue);
5429
5430 /**
5431 * unregister_netdevice_many - unregister many devices
5432 * @head: list of devices
5433 */
5434 void unregister_netdevice_many(struct list_head *head)
5435 {
5436 struct net_device *dev;
5437
5438 if (!list_empty(head)) {
5439 rollback_registered_many(head);
5440 list_for_each_entry(dev, head, unreg_list)
5441 net_set_todo(dev);
5442 }
5443 }
5444 EXPORT_SYMBOL(unregister_netdevice_many);
5445
5446 /**
5447 * unregister_netdev - remove device from the kernel
5448 * @dev: device
5449 *
5450 * This function shuts down a device interface and removes it
5451 * from the kernel tables.
5452 *
5453 * This is just a wrapper for unregister_netdevice that takes
5454 * the rtnl semaphore. In general you want to use this and not
5455 * unregister_netdevice.
5456 */
5457 void unregister_netdev(struct net_device *dev)
5458 {
5459 rtnl_lock();
5460 unregister_netdevice(dev);
5461 rtnl_unlock();
5462 }
5463 EXPORT_SYMBOL(unregister_netdev);
5464
5465 /**
5466 * dev_change_net_namespace - move device to different nethost namespace
5467 * @dev: device
5468 * @net: network namespace
5469 * @pat: If not NULL name pattern to try if the current device name
5470 * is already taken in the destination network namespace.
5471 *
5472 * This function shuts down a device interface and moves it
5473 * to a new network namespace. On success 0 is returned, on
5474 * a failure a netagive errno code is returned.
5475 *
5476 * Callers must hold the rtnl semaphore.
5477 */
5478
5479 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5480 {
5481 int err;
5482
5483 ASSERT_RTNL();
5484
5485 /* Don't allow namespace local devices to be moved. */
5486 err = -EINVAL;
5487 if (dev->features & NETIF_F_NETNS_LOCAL)
5488 goto out;
5489
5490 #ifdef CONFIG_SYSFS
5491 /* Don't allow real devices to be moved when sysfs
5492 * is enabled.
5493 */
5494 err = -EINVAL;
5495 if (dev->dev.parent)
5496 goto out;
5497 #endif
5498
5499 /* Ensure the device has been registrered */
5500 err = -EINVAL;
5501 if (dev->reg_state != NETREG_REGISTERED)
5502 goto out;
5503
5504 /* Get out if there is nothing todo */
5505 err = 0;
5506 if (net_eq(dev_net(dev), net))
5507 goto out;
5508
5509 /* Pick the destination device name, and ensure
5510 * we can use it in the destination network namespace.
5511 */
5512 err = -EEXIST;
5513 if (__dev_get_by_name(net, dev->name)) {
5514 /* We get here if we can't use the current device name */
5515 if (!pat)
5516 goto out;
5517 if (dev_get_valid_name(net, pat, dev->name, 1))
5518 goto out;
5519 }
5520
5521 /*
5522 * And now a mini version of register_netdevice unregister_netdevice.
5523 */
5524
5525 /* If device is running close it first. */
5526 dev_close(dev);
5527
5528 /* And unlink it from device chain */
5529 err = -ENODEV;
5530 unlist_netdevice(dev);
5531
5532 synchronize_net();
5533
5534 /* Shutdown queueing discipline. */
5535 dev_shutdown(dev);
5536
5537 /* Notify protocols, that we are about to destroy
5538 this device. They should clean all the things.
5539 */
5540 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5541 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5542
5543 /*
5544 * Flush the unicast and multicast chains
5545 */
5546 dev_uc_flush(dev);
5547 dev_mc_flush(dev);
5548
5549 netdev_unregister_kobject(dev);
5550
5551 /* Actually switch the network namespace */
5552 dev_net_set(dev, net);
5553
5554 /* If there is an ifindex conflict assign a new one */
5555 if (__dev_get_by_index(net, dev->ifindex)) {
5556 int iflink = (dev->iflink == dev->ifindex);
5557 dev->ifindex = dev_new_index(net);
5558 if (iflink)
5559 dev->iflink = dev->ifindex;
5560 }
5561
5562 /* Fixup kobjects */
5563 err = netdev_register_kobject(dev);
5564 WARN_ON(err);
5565
5566 /* Add the device back in the hashes */
5567 list_netdevice(dev);
5568
5569 /* Notify protocols, that a new device appeared. */
5570 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5571
5572 /*
5573 * Prevent userspace races by waiting until the network
5574 * device is fully setup before sending notifications.
5575 */
5576 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5577
5578 synchronize_net();
5579 err = 0;
5580 out:
5581 return err;
5582 }
5583 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5584
5585 static int dev_cpu_callback(struct notifier_block *nfb,
5586 unsigned long action,
5587 void *ocpu)
5588 {
5589 struct sk_buff **list_skb;
5590 struct Qdisc **list_net;
5591 struct sk_buff *skb;
5592 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5593 struct softnet_data *sd, *oldsd;
5594
5595 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5596 return NOTIFY_OK;
5597
5598 local_irq_disable();
5599 cpu = smp_processor_id();
5600 sd = &per_cpu(softnet_data, cpu);
5601 oldsd = &per_cpu(softnet_data, oldcpu);
5602
5603 /* Find end of our completion_queue. */
5604 list_skb = &sd->completion_queue;
5605 while (*list_skb)
5606 list_skb = &(*list_skb)->next;
5607 /* Append completion queue from offline CPU. */
5608 *list_skb = oldsd->completion_queue;
5609 oldsd->completion_queue = NULL;
5610
5611 /* Find end of our output_queue. */
5612 list_net = &sd->output_queue;
5613 while (*list_net)
5614 list_net = &(*list_net)->next_sched;
5615 /* Append output queue from offline CPU. */
5616 *list_net = oldsd->output_queue;
5617 oldsd->output_queue = NULL;
5618
5619 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5620 local_irq_enable();
5621
5622 /* Process offline CPU's input_pkt_queue */
5623 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5624 netif_rx(skb);
5625 input_queue_head_incr(oldsd);
5626 }
5627
5628 return NOTIFY_OK;
5629 }
5630
5631
5632 /**
5633 * netdev_increment_features - increment feature set by one
5634 * @all: current feature set
5635 * @one: new feature set
5636 * @mask: mask feature set
5637 *
5638 * Computes a new feature set after adding a device with feature set
5639 * @one to the master device with current feature set @all. Will not
5640 * enable anything that is off in @mask. Returns the new feature set.
5641 */
5642 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5643 unsigned long mask)
5644 {
5645 /* If device needs checksumming, downgrade to it. */
5646 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5647 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5648 else if (mask & NETIF_F_ALL_CSUM) {
5649 /* If one device supports v4/v6 checksumming, set for all. */
5650 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5651 !(all & NETIF_F_GEN_CSUM)) {
5652 all &= ~NETIF_F_ALL_CSUM;
5653 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5654 }
5655
5656 /* If one device supports hw checksumming, set for all. */
5657 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5658 all &= ~NETIF_F_ALL_CSUM;
5659 all |= NETIF_F_HW_CSUM;
5660 }
5661 }
5662
5663 one |= NETIF_F_ALL_CSUM;
5664
5665 one |= all & NETIF_F_ONE_FOR_ALL;
5666 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5667 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5668
5669 return all;
5670 }
5671 EXPORT_SYMBOL(netdev_increment_features);
5672
5673 static struct hlist_head *netdev_create_hash(void)
5674 {
5675 int i;
5676 struct hlist_head *hash;
5677
5678 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5679 if (hash != NULL)
5680 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5681 INIT_HLIST_HEAD(&hash[i]);
5682
5683 return hash;
5684 }
5685
5686 /* Initialize per network namespace state */
5687 static int __net_init netdev_init(struct net *net)
5688 {
5689 INIT_LIST_HEAD(&net->dev_base_head);
5690
5691 net->dev_name_head = netdev_create_hash();
5692 if (net->dev_name_head == NULL)
5693 goto err_name;
5694
5695 net->dev_index_head = netdev_create_hash();
5696 if (net->dev_index_head == NULL)
5697 goto err_idx;
5698
5699 return 0;
5700
5701 err_idx:
5702 kfree(net->dev_name_head);
5703 err_name:
5704 return -ENOMEM;
5705 }
5706
5707 /**
5708 * netdev_drivername - network driver for the device
5709 * @dev: network device
5710 * @buffer: buffer for resulting name
5711 * @len: size of buffer
5712 *
5713 * Determine network driver for device.
5714 */
5715 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5716 {
5717 const struct device_driver *driver;
5718 const struct device *parent;
5719
5720 if (len <= 0 || !buffer)
5721 return buffer;
5722 buffer[0] = 0;
5723
5724 parent = dev->dev.parent;
5725
5726 if (!parent)
5727 return buffer;
5728
5729 driver = parent->driver;
5730 if (driver && driver->name)
5731 strlcpy(buffer, driver->name, len);
5732 return buffer;
5733 }
5734
5735 static void __net_exit netdev_exit(struct net *net)
5736 {
5737 kfree(net->dev_name_head);
5738 kfree(net->dev_index_head);
5739 }
5740
5741 static struct pernet_operations __net_initdata netdev_net_ops = {
5742 .init = netdev_init,
5743 .exit = netdev_exit,
5744 };
5745
5746 static void __net_exit default_device_exit(struct net *net)
5747 {
5748 struct net_device *dev, *aux;
5749 /*
5750 * Push all migratable network devices back to the
5751 * initial network namespace
5752 */
5753 rtnl_lock();
5754 for_each_netdev_safe(net, dev, aux) {
5755 int err;
5756 char fb_name[IFNAMSIZ];
5757
5758 /* Ignore unmoveable devices (i.e. loopback) */
5759 if (dev->features & NETIF_F_NETNS_LOCAL)
5760 continue;
5761
5762 /* Leave virtual devices for the generic cleanup */
5763 if (dev->rtnl_link_ops)
5764 continue;
5765
5766 /* Push remaing network devices to init_net */
5767 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5768 err = dev_change_net_namespace(dev, &init_net, fb_name);
5769 if (err) {
5770 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5771 __func__, dev->name, err);
5772 BUG();
5773 }
5774 }
5775 rtnl_unlock();
5776 }
5777
5778 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5779 {
5780 /* At exit all network devices most be removed from a network
5781 * namespace. Do this in the reverse order of registeration.
5782 * Do this across as many network namespaces as possible to
5783 * improve batching efficiency.
5784 */
5785 struct net_device *dev;
5786 struct net *net;
5787 LIST_HEAD(dev_kill_list);
5788
5789 rtnl_lock();
5790 list_for_each_entry(net, net_list, exit_list) {
5791 for_each_netdev_reverse(net, dev) {
5792 if (dev->rtnl_link_ops)
5793 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5794 else
5795 unregister_netdevice_queue(dev, &dev_kill_list);
5796 }
5797 }
5798 unregister_netdevice_many(&dev_kill_list);
5799 rtnl_unlock();
5800 }
5801
5802 static struct pernet_operations __net_initdata default_device_ops = {
5803 .exit = default_device_exit,
5804 .exit_batch = default_device_exit_batch,
5805 };
5806
5807 /*
5808 * Initialize the DEV module. At boot time this walks the device list and
5809 * unhooks any devices that fail to initialise (normally hardware not
5810 * present) and leaves us with a valid list of present and active devices.
5811 *
5812 */
5813
5814 /*
5815 * This is called single threaded during boot, so no need
5816 * to take the rtnl semaphore.
5817 */
5818 static int __init net_dev_init(void)
5819 {
5820 int i, rc = -ENOMEM;
5821
5822 BUG_ON(!dev_boot_phase);
5823
5824 if (dev_proc_init())
5825 goto out;
5826
5827 if (netdev_kobject_init())
5828 goto out;
5829
5830 INIT_LIST_HEAD(&ptype_all);
5831 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5832 INIT_LIST_HEAD(&ptype_base[i]);
5833
5834 if (register_pernet_subsys(&netdev_net_ops))
5835 goto out;
5836
5837 /*
5838 * Initialise the packet receive queues.
5839 */
5840
5841 for_each_possible_cpu(i) {
5842 struct softnet_data *sd = &per_cpu(softnet_data, i);
5843
5844 skb_queue_head_init(&sd->input_pkt_queue);
5845 sd->completion_queue = NULL;
5846 INIT_LIST_HEAD(&sd->poll_list);
5847
5848 #ifdef CONFIG_RPS
5849 sd->csd.func = rps_trigger_softirq;
5850 sd->csd.info = sd;
5851 sd->csd.flags = 0;
5852 sd->cpu = i;
5853 #endif
5854
5855 sd->backlog.poll = process_backlog;
5856 sd->backlog.weight = weight_p;
5857 sd->backlog.gro_list = NULL;
5858 sd->backlog.gro_count = 0;
5859 }
5860
5861 dev_boot_phase = 0;
5862
5863 /* The loopback device is special if any other network devices
5864 * is present in a network namespace the loopback device must
5865 * be present. Since we now dynamically allocate and free the
5866 * loopback device ensure this invariant is maintained by
5867 * keeping the loopback device as the first device on the
5868 * list of network devices. Ensuring the loopback devices
5869 * is the first device that appears and the last network device
5870 * that disappears.
5871 */
5872 if (register_pernet_device(&loopback_net_ops))
5873 goto out;
5874
5875 if (register_pernet_device(&default_device_ops))
5876 goto out;
5877
5878 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5879 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5880
5881 hotcpu_notifier(dev_cpu_callback, 0);
5882 dst_init();
5883 dev_mcast_init();
5884 rc = 0;
5885 out:
5886 return rc;
5887 }
5888
5889 subsys_initcall(net_dev_init);
5890
5891 static int __init initialize_hashrnd(void)
5892 {
5893 get_random_bytes(&hashrnd, sizeof(hashrnd));
5894 return 0;
5895 }
5896
5897 late_initcall_sync(initialize_hashrnd);
5898
This page took 0.20069 seconds and 5 git commands to generate.