[NET]: IPV6 checksum offloading in network devices
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/sock.h>
96 #include <linux/rtnetlink.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/stat.h>
100 #include <linux/if_bridge.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <linux/highmem.h>
105 #include <linux/init.h>
106 #include <linux/kmod.h>
107 #include <linux/module.h>
108 #include <linux/kallsyms.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/wext.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120
121 /*
122 * The list of packet types we will receive (as opposed to discard)
123 * and the routines to invoke.
124 *
125 * Why 16. Because with 16 the only overlap we get on a hash of the
126 * low nibble of the protocol value is RARP/SNAP/X.25.
127 *
128 * NOTE: That is no longer true with the addition of VLAN tags. Not
129 * sure which should go first, but I bet it won't make much
130 * difference if we are running VLANs. The good news is that
131 * this protocol won't be in the list unless compiled in, so
132 * the average user (w/out VLANs) will not be adversely affected.
133 * --BLG
134 *
135 * 0800 IP
136 * 8100 802.1Q VLAN
137 * 0001 802.3
138 * 0002 AX.25
139 * 0004 802.2
140 * 8035 RARP
141 * 0005 SNAP
142 * 0805 X.25
143 * 0806 ARP
144 * 8137 IPX
145 * 0009 Localtalk
146 * 86DD IPv6
147 */
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
151 static struct list_head ptype_all __read_mostly; /* Taps */
152
153 #ifdef CONFIG_NET_DMA
154 static struct dma_client *net_dma_client;
155 static unsigned int net_dma_count;
156 static spinlock_t net_dma_event_lock;
157 #endif
158
159 /*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading.
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178 LIST_HEAD(dev_base_head);
179 DEFINE_RWLOCK(dev_base_lock);
180
181 EXPORT_SYMBOL(dev_base_head);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 #define NETDEV_HASHBITS 8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
187
188 static inline struct hlist_head *dev_name_hash(const char *name)
189 {
190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(int ifindex)
195 {
196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
197 }
198
199 /*
200 * Our notifier list
201 */
202
203 static RAW_NOTIFIER_HEAD(netdev_chain);
204
205 /*
206 * Device drivers call our routines to queue packets here. We empty the
207 * queue in the local softnet handler.
208 */
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
210
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init() (0)
217 #define netdev_register_sysfs(dev) (0)
218 #define netdev_unregister_sysfs(dev) do { } while(0)
219 #endif
220
221 #ifdef CONFIG_DEBUG_LOCK_ALLOC
222 /*
223 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
224 * according to dev->type
225 */
226 static const unsigned short netdev_lock_type[] =
227 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
228 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
229 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
230 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
231 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
232 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
233 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
234 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
235 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
236 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
237 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
238 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
239 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
240 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
241 ARPHRD_NONE};
242
243 static const char *netdev_lock_name[] =
244 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
245 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
246 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
247 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
248 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
249 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
250 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
251 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
252 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
253 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
254 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
255 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
256 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
257 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
258 "_xmit_NONE"};
259
260 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
261
262 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
263 {
264 int i;
265
266 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
267 if (netdev_lock_type[i] == dev_type)
268 return i;
269 /* the last key is used by default */
270 return ARRAY_SIZE(netdev_lock_type) - 1;
271 }
272
273 static inline void netdev_set_lockdep_class(spinlock_t *lock,
274 unsigned short dev_type)
275 {
276 int i;
277
278 i = netdev_lock_pos(dev_type);
279 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
280 netdev_lock_name[i]);
281 }
282 #else
283 static inline void netdev_set_lockdep_class(spinlock_t *lock,
284 unsigned short dev_type)
285 {
286 }
287 #endif
288
289 /*******************************************************************************
290
291 Protocol management and registration routines
292
293 *******************************************************************************/
294
295 /*
296 * Add a protocol ID to the list. Now that the input handler is
297 * smarter we can dispense with all the messy stuff that used to be
298 * here.
299 *
300 * BEWARE!!! Protocol handlers, mangling input packets,
301 * MUST BE last in hash buckets and checking protocol handlers
302 * MUST start from promiscuous ptype_all chain in net_bh.
303 * It is true now, do not change it.
304 * Explanation follows: if protocol handler, mangling packet, will
305 * be the first on list, it is not able to sense, that packet
306 * is cloned and should be copied-on-write, so that it will
307 * change it and subsequent readers will get broken packet.
308 * --ANK (980803)
309 */
310
311 /**
312 * dev_add_pack - add packet handler
313 * @pt: packet type declaration
314 *
315 * Add a protocol handler to the networking stack. The passed &packet_type
316 * is linked into kernel lists and may not be freed until it has been
317 * removed from the kernel lists.
318 *
319 * This call does not sleep therefore it can not
320 * guarantee all CPU's that are in middle of receiving packets
321 * will see the new packet type (until the next received packet).
322 */
323
324 void dev_add_pack(struct packet_type *pt)
325 {
326 int hash;
327
328 spin_lock_bh(&ptype_lock);
329 if (pt->type == htons(ETH_P_ALL))
330 list_add_rcu(&pt->list, &ptype_all);
331 else {
332 hash = ntohs(pt->type) & 15;
333 list_add_rcu(&pt->list, &ptype_base[hash]);
334 }
335 spin_unlock_bh(&ptype_lock);
336 }
337
338 /**
339 * __dev_remove_pack - remove packet handler
340 * @pt: packet type declaration
341 *
342 * Remove a protocol handler that was previously added to the kernel
343 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
344 * from the kernel lists and can be freed or reused once this function
345 * returns.
346 *
347 * The packet type might still be in use by receivers
348 * and must not be freed until after all the CPU's have gone
349 * through a quiescent state.
350 */
351 void __dev_remove_pack(struct packet_type *pt)
352 {
353 struct list_head *head;
354 struct packet_type *pt1;
355
356 spin_lock_bh(&ptype_lock);
357
358 if (pt->type == htons(ETH_P_ALL))
359 head = &ptype_all;
360 else
361 head = &ptype_base[ntohs(pt->type) & 15];
362
363 list_for_each_entry(pt1, head, list) {
364 if (pt == pt1) {
365 list_del_rcu(&pt->list);
366 goto out;
367 }
368 }
369
370 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
371 out:
372 spin_unlock_bh(&ptype_lock);
373 }
374 /**
375 * dev_remove_pack - remove packet handler
376 * @pt: packet type declaration
377 *
378 * Remove a protocol handler that was previously added to the kernel
379 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
380 * from the kernel lists and can be freed or reused once this function
381 * returns.
382 *
383 * This call sleeps to guarantee that no CPU is looking at the packet
384 * type after return.
385 */
386 void dev_remove_pack(struct packet_type *pt)
387 {
388 __dev_remove_pack(pt);
389
390 synchronize_net();
391 }
392
393 /******************************************************************************
394
395 Device Boot-time Settings Routines
396
397 *******************************************************************************/
398
399 /* Boot time configuration table */
400 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
401
402 /**
403 * netdev_boot_setup_add - add new setup entry
404 * @name: name of the device
405 * @map: configured settings for the device
406 *
407 * Adds new setup entry to the dev_boot_setup list. The function
408 * returns 0 on error and 1 on success. This is a generic routine to
409 * all netdevices.
410 */
411 static int netdev_boot_setup_add(char *name, struct ifmap *map)
412 {
413 struct netdev_boot_setup *s;
414 int i;
415
416 s = dev_boot_setup;
417 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
418 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
419 memset(s[i].name, 0, sizeof(s[i].name));
420 strcpy(s[i].name, name);
421 memcpy(&s[i].map, map, sizeof(s[i].map));
422 break;
423 }
424 }
425
426 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
427 }
428
429 /**
430 * netdev_boot_setup_check - check boot time settings
431 * @dev: the netdevice
432 *
433 * Check boot time settings for the device.
434 * The found settings are set for the device to be used
435 * later in the device probing.
436 * Returns 0 if no settings found, 1 if they are.
437 */
438 int netdev_boot_setup_check(struct net_device *dev)
439 {
440 struct netdev_boot_setup *s = dev_boot_setup;
441 int i;
442
443 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
444 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
445 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
446 dev->irq = s[i].map.irq;
447 dev->base_addr = s[i].map.base_addr;
448 dev->mem_start = s[i].map.mem_start;
449 dev->mem_end = s[i].map.mem_end;
450 return 1;
451 }
452 }
453 return 0;
454 }
455
456
457 /**
458 * netdev_boot_base - get address from boot time settings
459 * @prefix: prefix for network device
460 * @unit: id for network device
461 *
462 * Check boot time settings for the base address of device.
463 * The found settings are set for the device to be used
464 * later in the device probing.
465 * Returns 0 if no settings found.
466 */
467 unsigned long netdev_boot_base(const char *prefix, int unit)
468 {
469 const struct netdev_boot_setup *s = dev_boot_setup;
470 char name[IFNAMSIZ];
471 int i;
472
473 sprintf(name, "%s%d", prefix, unit);
474
475 /*
476 * If device already registered then return base of 1
477 * to indicate not to probe for this interface
478 */
479 if (__dev_get_by_name(name))
480 return 1;
481
482 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
483 if (!strcmp(name, s[i].name))
484 return s[i].map.base_addr;
485 return 0;
486 }
487
488 /*
489 * Saves at boot time configured settings for any netdevice.
490 */
491 int __init netdev_boot_setup(char *str)
492 {
493 int ints[5];
494 struct ifmap map;
495
496 str = get_options(str, ARRAY_SIZE(ints), ints);
497 if (!str || !*str)
498 return 0;
499
500 /* Save settings */
501 memset(&map, 0, sizeof(map));
502 if (ints[0] > 0)
503 map.irq = ints[1];
504 if (ints[0] > 1)
505 map.base_addr = ints[2];
506 if (ints[0] > 2)
507 map.mem_start = ints[3];
508 if (ints[0] > 3)
509 map.mem_end = ints[4];
510
511 /* Add new entry to the list */
512 return netdev_boot_setup_add(str, &map);
513 }
514
515 __setup("netdev=", netdev_boot_setup);
516
517 /*******************************************************************************
518
519 Device Interface Subroutines
520
521 *******************************************************************************/
522
523 /**
524 * __dev_get_by_name - find a device by its name
525 * @name: name to find
526 *
527 * Find an interface by name. Must be called under RTNL semaphore
528 * or @dev_base_lock. If the name is found a pointer to the device
529 * is returned. If the name is not found then %NULL is returned. The
530 * reference counters are not incremented so the caller must be
531 * careful with locks.
532 */
533
534 struct net_device *__dev_get_by_name(const char *name)
535 {
536 struct hlist_node *p;
537
538 hlist_for_each(p, dev_name_hash(name)) {
539 struct net_device *dev
540 = hlist_entry(p, struct net_device, name_hlist);
541 if (!strncmp(dev->name, name, IFNAMSIZ))
542 return dev;
543 }
544 return NULL;
545 }
546
547 /**
548 * dev_get_by_name - find a device by its name
549 * @name: name to find
550 *
551 * Find an interface by name. This can be called from any
552 * context and does its own locking. The returned handle has
553 * the usage count incremented and the caller must use dev_put() to
554 * release it when it is no longer needed. %NULL is returned if no
555 * matching device is found.
556 */
557
558 struct net_device *dev_get_by_name(const char *name)
559 {
560 struct net_device *dev;
561
562 read_lock(&dev_base_lock);
563 dev = __dev_get_by_name(name);
564 if (dev)
565 dev_hold(dev);
566 read_unlock(&dev_base_lock);
567 return dev;
568 }
569
570 /**
571 * __dev_get_by_index - find a device by its ifindex
572 * @ifindex: index of device
573 *
574 * Search for an interface by index. Returns %NULL if the device
575 * is not found or a pointer to the device. The device has not
576 * had its reference counter increased so the caller must be careful
577 * about locking. The caller must hold either the RTNL semaphore
578 * or @dev_base_lock.
579 */
580
581 struct net_device *__dev_get_by_index(int ifindex)
582 {
583 struct hlist_node *p;
584
585 hlist_for_each(p, dev_index_hash(ifindex)) {
586 struct net_device *dev
587 = hlist_entry(p, struct net_device, index_hlist);
588 if (dev->ifindex == ifindex)
589 return dev;
590 }
591 return NULL;
592 }
593
594
595 /**
596 * dev_get_by_index - find a device by its ifindex
597 * @ifindex: index of device
598 *
599 * Search for an interface by index. Returns NULL if the device
600 * is not found or a pointer to the device. The device returned has
601 * had a reference added and the pointer is safe until the user calls
602 * dev_put to indicate they have finished with it.
603 */
604
605 struct net_device *dev_get_by_index(int ifindex)
606 {
607 struct net_device *dev;
608
609 read_lock(&dev_base_lock);
610 dev = __dev_get_by_index(ifindex);
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
615 }
616
617 /**
618 * dev_getbyhwaddr - find a device by its hardware address
619 * @type: media type of device
620 * @ha: hardware address
621 *
622 * Search for an interface by MAC address. Returns NULL if the device
623 * is not found or a pointer to the device. The caller must hold the
624 * rtnl semaphore. The returned device has not had its ref count increased
625 * and the caller must therefore be careful about locking
626 *
627 * BUGS:
628 * If the API was consistent this would be __dev_get_by_hwaddr
629 */
630
631 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
632 {
633 struct net_device *dev;
634
635 ASSERT_RTNL();
636
637 for_each_netdev(dev)
638 if (dev->type == type &&
639 !memcmp(dev->dev_addr, ha, dev->addr_len))
640 return dev;
641
642 return NULL;
643 }
644
645 EXPORT_SYMBOL(dev_getbyhwaddr);
646
647 struct net_device *__dev_getfirstbyhwtype(unsigned short type)
648 {
649 struct net_device *dev;
650
651 ASSERT_RTNL();
652 for_each_netdev(dev)
653 if (dev->type == type)
654 return dev;
655
656 return NULL;
657 }
658
659 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
660
661 struct net_device *dev_getfirstbyhwtype(unsigned short type)
662 {
663 struct net_device *dev;
664
665 rtnl_lock();
666 dev = __dev_getfirstbyhwtype(type);
667 if (dev)
668 dev_hold(dev);
669 rtnl_unlock();
670 return dev;
671 }
672
673 EXPORT_SYMBOL(dev_getfirstbyhwtype);
674
675 /**
676 * dev_get_by_flags - find any device with given flags
677 * @if_flags: IFF_* values
678 * @mask: bitmask of bits in if_flags to check
679 *
680 * Search for any interface with the given flags. Returns NULL if a device
681 * is not found or a pointer to the device. The device returned has
682 * had a reference added and the pointer is safe until the user calls
683 * dev_put to indicate they have finished with it.
684 */
685
686 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
687 {
688 struct net_device *dev, *ret;
689
690 ret = NULL;
691 read_lock(&dev_base_lock);
692 for_each_netdev(dev) {
693 if (((dev->flags ^ if_flags) & mask) == 0) {
694 dev_hold(dev);
695 ret = dev;
696 break;
697 }
698 }
699 read_unlock(&dev_base_lock);
700 return ret;
701 }
702
703 /**
704 * dev_valid_name - check if name is okay for network device
705 * @name: name string
706 *
707 * Network device names need to be valid file names to
708 * to allow sysfs to work. We also disallow any kind of
709 * whitespace.
710 */
711 int dev_valid_name(const char *name)
712 {
713 if (*name == '\0')
714 return 0;
715 if (strlen(name) >= IFNAMSIZ)
716 return 0;
717 if (!strcmp(name, ".") || !strcmp(name, ".."))
718 return 0;
719
720 while (*name) {
721 if (*name == '/' || isspace(*name))
722 return 0;
723 name++;
724 }
725 return 1;
726 }
727
728 /**
729 * dev_alloc_name - allocate a name for a device
730 * @dev: device
731 * @name: name format string
732 *
733 * Passed a format string - eg "lt%d" it will try and find a suitable
734 * id. It scans list of devices to build up a free map, then chooses
735 * the first empty slot. The caller must hold the dev_base or rtnl lock
736 * while allocating the name and adding the device in order to avoid
737 * duplicates.
738 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
739 * Returns the number of the unit assigned or a negative errno code.
740 */
741
742 int dev_alloc_name(struct net_device *dev, const char *name)
743 {
744 int i = 0;
745 char buf[IFNAMSIZ];
746 const char *p;
747 const int max_netdevices = 8*PAGE_SIZE;
748 long *inuse;
749 struct net_device *d;
750
751 p = strnchr(name, IFNAMSIZ-1, '%');
752 if (p) {
753 /*
754 * Verify the string as this thing may have come from
755 * the user. There must be either one "%d" and no other "%"
756 * characters.
757 */
758 if (p[1] != 'd' || strchr(p + 2, '%'))
759 return -EINVAL;
760
761 /* Use one page as a bit array of possible slots */
762 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
763 if (!inuse)
764 return -ENOMEM;
765
766 for_each_netdev(d) {
767 if (!sscanf(d->name, name, &i))
768 continue;
769 if (i < 0 || i >= max_netdevices)
770 continue;
771
772 /* avoid cases where sscanf is not exact inverse of printf */
773 snprintf(buf, sizeof(buf), name, i);
774 if (!strncmp(buf, d->name, IFNAMSIZ))
775 set_bit(i, inuse);
776 }
777
778 i = find_first_zero_bit(inuse, max_netdevices);
779 free_page((unsigned long) inuse);
780 }
781
782 snprintf(buf, sizeof(buf), name, i);
783 if (!__dev_get_by_name(buf)) {
784 strlcpy(dev->name, buf, IFNAMSIZ);
785 return i;
786 }
787
788 /* It is possible to run out of possible slots
789 * when the name is long and there isn't enough space left
790 * for the digits, or if all bits are used.
791 */
792 return -ENFILE;
793 }
794
795
796 /**
797 * dev_change_name - change name of a device
798 * @dev: device
799 * @newname: name (or format string) must be at least IFNAMSIZ
800 *
801 * Change name of a device, can pass format strings "eth%d".
802 * for wildcarding.
803 */
804 int dev_change_name(struct net_device *dev, char *newname)
805 {
806 int err = 0;
807
808 ASSERT_RTNL();
809
810 if (dev->flags & IFF_UP)
811 return -EBUSY;
812
813 if (!dev_valid_name(newname))
814 return -EINVAL;
815
816 if (strchr(newname, '%')) {
817 err = dev_alloc_name(dev, newname);
818 if (err < 0)
819 return err;
820 strcpy(newname, dev->name);
821 }
822 else if (__dev_get_by_name(newname))
823 return -EEXIST;
824 else
825 strlcpy(dev->name, newname, IFNAMSIZ);
826
827 device_rename(&dev->dev, dev->name);
828 hlist_del(&dev->name_hlist);
829 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
830 raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
831
832 return err;
833 }
834
835 /**
836 * netdev_features_change - device changes features
837 * @dev: device to cause notification
838 *
839 * Called to indicate a device has changed features.
840 */
841 void netdev_features_change(struct net_device *dev)
842 {
843 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
844 }
845 EXPORT_SYMBOL(netdev_features_change);
846
847 /**
848 * netdev_state_change - device changes state
849 * @dev: device to cause notification
850 *
851 * Called to indicate a device has changed state. This function calls
852 * the notifier chains for netdev_chain and sends a NEWLINK message
853 * to the routing socket.
854 */
855 void netdev_state_change(struct net_device *dev)
856 {
857 if (dev->flags & IFF_UP) {
858 raw_notifier_call_chain(&netdev_chain,
859 NETDEV_CHANGE, dev);
860 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
861 }
862 }
863
864 /**
865 * dev_load - load a network module
866 * @name: name of interface
867 *
868 * If a network interface is not present and the process has suitable
869 * privileges this function loads the module. If module loading is not
870 * available in this kernel then it becomes a nop.
871 */
872
873 void dev_load(const char *name)
874 {
875 struct net_device *dev;
876
877 read_lock(&dev_base_lock);
878 dev = __dev_get_by_name(name);
879 read_unlock(&dev_base_lock);
880
881 if (!dev && capable(CAP_SYS_MODULE))
882 request_module("%s", name);
883 }
884
885 static int default_rebuild_header(struct sk_buff *skb)
886 {
887 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
888 skb->dev ? skb->dev->name : "NULL!!!");
889 kfree_skb(skb);
890 return 1;
891 }
892
893 /**
894 * dev_open - prepare an interface for use.
895 * @dev: device to open
896 *
897 * Takes a device from down to up state. The device's private open
898 * function is invoked and then the multicast lists are loaded. Finally
899 * the device is moved into the up state and a %NETDEV_UP message is
900 * sent to the netdev notifier chain.
901 *
902 * Calling this function on an active interface is a nop. On a failure
903 * a negative errno code is returned.
904 */
905 int dev_open(struct net_device *dev)
906 {
907 int ret = 0;
908
909 /*
910 * Is it already up?
911 */
912
913 if (dev->flags & IFF_UP)
914 return 0;
915
916 /*
917 * Is it even present?
918 */
919 if (!netif_device_present(dev))
920 return -ENODEV;
921
922 /*
923 * Call device private open method
924 */
925 set_bit(__LINK_STATE_START, &dev->state);
926 if (dev->open) {
927 ret = dev->open(dev);
928 if (ret)
929 clear_bit(__LINK_STATE_START, &dev->state);
930 }
931
932 /*
933 * If it went open OK then:
934 */
935
936 if (!ret) {
937 /*
938 * Set the flags.
939 */
940 dev->flags |= IFF_UP;
941
942 /*
943 * Initialize multicasting status
944 */
945 dev_mc_upload(dev);
946
947 /*
948 * Wakeup transmit queue engine
949 */
950 dev_activate(dev);
951
952 /*
953 * ... and announce new interface.
954 */
955 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
956 }
957 return ret;
958 }
959
960 /**
961 * dev_close - shutdown an interface.
962 * @dev: device to shutdown
963 *
964 * This function moves an active device into down state. A
965 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
966 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
967 * chain.
968 */
969 int dev_close(struct net_device *dev)
970 {
971 if (!(dev->flags & IFF_UP))
972 return 0;
973
974 /*
975 * Tell people we are going down, so that they can
976 * prepare to death, when device is still operating.
977 */
978 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
979
980 dev_deactivate(dev);
981
982 clear_bit(__LINK_STATE_START, &dev->state);
983
984 /* Synchronize to scheduled poll. We cannot touch poll list,
985 * it can be even on different cpu. So just clear netif_running(),
986 * and wait when poll really will happen. Actually, the best place
987 * for this is inside dev->stop() after device stopped its irq
988 * engine, but this requires more changes in devices. */
989
990 smp_mb__after_clear_bit(); /* Commit netif_running(). */
991 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
992 /* No hurry. */
993 msleep(1);
994 }
995
996 /*
997 * Call the device specific close. This cannot fail.
998 * Only if device is UP
999 *
1000 * We allow it to be called even after a DETACH hot-plug
1001 * event.
1002 */
1003 if (dev->stop)
1004 dev->stop(dev);
1005
1006 /*
1007 * Device is now down.
1008 */
1009
1010 dev->flags &= ~IFF_UP;
1011
1012 /*
1013 * Tell people we are down
1014 */
1015 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1016
1017 return 0;
1018 }
1019
1020
1021 /*
1022 * Device change register/unregister. These are not inline or static
1023 * as we export them to the world.
1024 */
1025
1026 /**
1027 * register_netdevice_notifier - register a network notifier block
1028 * @nb: notifier
1029 *
1030 * Register a notifier to be called when network device events occur.
1031 * The notifier passed is linked into the kernel structures and must
1032 * not be reused until it has been unregistered. A negative errno code
1033 * is returned on a failure.
1034 *
1035 * When registered all registration and up events are replayed
1036 * to the new notifier to allow device to have a race free
1037 * view of the network device list.
1038 */
1039
1040 int register_netdevice_notifier(struct notifier_block *nb)
1041 {
1042 struct net_device *dev;
1043 int err;
1044
1045 rtnl_lock();
1046 err = raw_notifier_chain_register(&netdev_chain, nb);
1047 if (!err) {
1048 for_each_netdev(dev) {
1049 nb->notifier_call(nb, NETDEV_REGISTER, dev);
1050
1051 if (dev->flags & IFF_UP)
1052 nb->notifier_call(nb, NETDEV_UP, dev);
1053 }
1054 }
1055 rtnl_unlock();
1056 return err;
1057 }
1058
1059 /**
1060 * unregister_netdevice_notifier - unregister a network notifier block
1061 * @nb: notifier
1062 *
1063 * Unregister a notifier previously registered by
1064 * register_netdevice_notifier(). The notifier is unlinked into the
1065 * kernel structures and may then be reused. A negative errno code
1066 * is returned on a failure.
1067 */
1068
1069 int unregister_netdevice_notifier(struct notifier_block *nb)
1070 {
1071 int err;
1072
1073 rtnl_lock();
1074 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1075 rtnl_unlock();
1076 return err;
1077 }
1078
1079 /**
1080 * call_netdevice_notifiers - call all network notifier blocks
1081 * @val: value passed unmodified to notifier function
1082 * @v: pointer passed unmodified to notifier function
1083 *
1084 * Call all network notifier blocks. Parameters and return value
1085 * are as for raw_notifier_call_chain().
1086 */
1087
1088 int call_netdevice_notifiers(unsigned long val, void *v)
1089 {
1090 return raw_notifier_call_chain(&netdev_chain, val, v);
1091 }
1092
1093 /* When > 0 there are consumers of rx skb time stamps */
1094 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1095
1096 void net_enable_timestamp(void)
1097 {
1098 atomic_inc(&netstamp_needed);
1099 }
1100
1101 void net_disable_timestamp(void)
1102 {
1103 atomic_dec(&netstamp_needed);
1104 }
1105
1106 static inline void net_timestamp(struct sk_buff *skb)
1107 {
1108 if (atomic_read(&netstamp_needed))
1109 __net_timestamp(skb);
1110 else
1111 skb->tstamp.tv64 = 0;
1112 }
1113
1114 /*
1115 * Support routine. Sends outgoing frames to any network
1116 * taps currently in use.
1117 */
1118
1119 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1120 {
1121 struct packet_type *ptype;
1122
1123 net_timestamp(skb);
1124
1125 rcu_read_lock();
1126 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1127 /* Never send packets back to the socket
1128 * they originated from - MvS (miquels@drinkel.ow.org)
1129 */
1130 if ((ptype->dev == dev || !ptype->dev) &&
1131 (ptype->af_packet_priv == NULL ||
1132 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1133 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1134 if (!skb2)
1135 break;
1136
1137 /* skb->nh should be correctly
1138 set by sender, so that the second statement is
1139 just protection against buggy protocols.
1140 */
1141 skb_reset_mac_header(skb2);
1142
1143 if (skb_network_header(skb2) < skb2->data ||
1144 skb2->network_header > skb2->tail) {
1145 if (net_ratelimit())
1146 printk(KERN_CRIT "protocol %04x is "
1147 "buggy, dev %s\n",
1148 skb2->protocol, dev->name);
1149 skb_reset_network_header(skb2);
1150 }
1151
1152 skb2->transport_header = skb2->network_header;
1153 skb2->pkt_type = PACKET_OUTGOING;
1154 ptype->func(skb2, skb->dev, ptype, skb->dev);
1155 }
1156 }
1157 rcu_read_unlock();
1158 }
1159
1160
1161 void __netif_schedule(struct net_device *dev)
1162 {
1163 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1164 unsigned long flags;
1165 struct softnet_data *sd;
1166
1167 local_irq_save(flags);
1168 sd = &__get_cpu_var(softnet_data);
1169 dev->next_sched = sd->output_queue;
1170 sd->output_queue = dev;
1171 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1172 local_irq_restore(flags);
1173 }
1174 }
1175 EXPORT_SYMBOL(__netif_schedule);
1176
1177 void __netif_rx_schedule(struct net_device *dev)
1178 {
1179 unsigned long flags;
1180
1181 local_irq_save(flags);
1182 dev_hold(dev);
1183 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1184 if (dev->quota < 0)
1185 dev->quota += dev->weight;
1186 else
1187 dev->quota = dev->weight;
1188 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
1189 local_irq_restore(flags);
1190 }
1191 EXPORT_SYMBOL(__netif_rx_schedule);
1192
1193 void dev_kfree_skb_any(struct sk_buff *skb)
1194 {
1195 if (in_irq() || irqs_disabled())
1196 dev_kfree_skb_irq(skb);
1197 else
1198 dev_kfree_skb(skb);
1199 }
1200 EXPORT_SYMBOL(dev_kfree_skb_any);
1201
1202
1203 /* Hot-plugging. */
1204 void netif_device_detach(struct net_device *dev)
1205 {
1206 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1207 netif_running(dev)) {
1208 netif_stop_queue(dev);
1209 }
1210 }
1211 EXPORT_SYMBOL(netif_device_detach);
1212
1213 void netif_device_attach(struct net_device *dev)
1214 {
1215 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1216 netif_running(dev)) {
1217 netif_wake_queue(dev);
1218 __netdev_watchdog_up(dev);
1219 }
1220 }
1221 EXPORT_SYMBOL(netif_device_attach);
1222
1223
1224 /*
1225 * Invalidate hardware checksum when packet is to be mangled, and
1226 * complete checksum manually on outgoing path.
1227 */
1228 int skb_checksum_help(struct sk_buff *skb)
1229 {
1230 __wsum csum;
1231 int ret = 0, offset;
1232
1233 if (skb->ip_summed == CHECKSUM_COMPLETE)
1234 goto out_set_summed;
1235
1236 if (unlikely(skb_shinfo(skb)->gso_size)) {
1237 /* Let GSO fix up the checksum. */
1238 goto out_set_summed;
1239 }
1240
1241 if (skb_cloned(skb)) {
1242 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1243 if (ret)
1244 goto out;
1245 }
1246
1247 offset = skb->csum_start - skb_headroom(skb);
1248 BUG_ON(offset > (int)skb->len);
1249 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1250
1251 offset = skb_headlen(skb) - offset;
1252 BUG_ON(offset <= 0);
1253 BUG_ON(skb->csum_offset + 2 > offset);
1254
1255 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1256 csum_fold(csum);
1257 out_set_summed:
1258 skb->ip_summed = CHECKSUM_NONE;
1259 out:
1260 return ret;
1261 }
1262
1263 /**
1264 * skb_gso_segment - Perform segmentation on skb.
1265 * @skb: buffer to segment
1266 * @features: features for the output path (see dev->features)
1267 *
1268 * This function segments the given skb and returns a list of segments.
1269 *
1270 * It may return NULL if the skb requires no segmentation. This is
1271 * only possible when GSO is used for verifying header integrity.
1272 */
1273 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1274 {
1275 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1276 struct packet_type *ptype;
1277 __be16 type = skb->protocol;
1278 int err;
1279
1280 BUG_ON(skb_shinfo(skb)->frag_list);
1281
1282 skb_reset_mac_header(skb);
1283 skb->mac_len = skb->network_header - skb->mac_header;
1284 __skb_pull(skb, skb->mac_len);
1285
1286 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1287 if (skb_header_cloned(skb) &&
1288 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1289 return ERR_PTR(err);
1290 }
1291
1292 rcu_read_lock();
1293 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1294 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1295 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1296 err = ptype->gso_send_check(skb);
1297 segs = ERR_PTR(err);
1298 if (err || skb_gso_ok(skb, features))
1299 break;
1300 __skb_push(skb, (skb->data -
1301 skb_network_header(skb)));
1302 }
1303 segs = ptype->gso_segment(skb, features);
1304 break;
1305 }
1306 }
1307 rcu_read_unlock();
1308
1309 __skb_push(skb, skb->data - skb_mac_header(skb));
1310
1311 return segs;
1312 }
1313
1314 EXPORT_SYMBOL(skb_gso_segment);
1315
1316 /* Take action when hardware reception checksum errors are detected. */
1317 #ifdef CONFIG_BUG
1318 void netdev_rx_csum_fault(struct net_device *dev)
1319 {
1320 if (net_ratelimit()) {
1321 printk(KERN_ERR "%s: hw csum failure.\n",
1322 dev ? dev->name : "<unknown>");
1323 dump_stack();
1324 }
1325 }
1326 EXPORT_SYMBOL(netdev_rx_csum_fault);
1327 #endif
1328
1329 /* Actually, we should eliminate this check as soon as we know, that:
1330 * 1. IOMMU is present and allows to map all the memory.
1331 * 2. No high memory really exists on this machine.
1332 */
1333
1334 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1335 {
1336 #ifdef CONFIG_HIGHMEM
1337 int i;
1338
1339 if (dev->features & NETIF_F_HIGHDMA)
1340 return 0;
1341
1342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1343 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1344 return 1;
1345
1346 #endif
1347 return 0;
1348 }
1349
1350 struct dev_gso_cb {
1351 void (*destructor)(struct sk_buff *skb);
1352 };
1353
1354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1355
1356 static void dev_gso_skb_destructor(struct sk_buff *skb)
1357 {
1358 struct dev_gso_cb *cb;
1359
1360 do {
1361 struct sk_buff *nskb = skb->next;
1362
1363 skb->next = nskb->next;
1364 nskb->next = NULL;
1365 kfree_skb(nskb);
1366 } while (skb->next);
1367
1368 cb = DEV_GSO_CB(skb);
1369 if (cb->destructor)
1370 cb->destructor(skb);
1371 }
1372
1373 /**
1374 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1375 * @skb: buffer to segment
1376 *
1377 * This function segments the given skb and stores the list of segments
1378 * in skb->next.
1379 */
1380 static int dev_gso_segment(struct sk_buff *skb)
1381 {
1382 struct net_device *dev = skb->dev;
1383 struct sk_buff *segs;
1384 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1385 NETIF_F_SG : 0);
1386
1387 segs = skb_gso_segment(skb, features);
1388
1389 /* Verifying header integrity only. */
1390 if (!segs)
1391 return 0;
1392
1393 if (unlikely(IS_ERR(segs)))
1394 return PTR_ERR(segs);
1395
1396 skb->next = segs;
1397 DEV_GSO_CB(skb)->destructor = skb->destructor;
1398 skb->destructor = dev_gso_skb_destructor;
1399
1400 return 0;
1401 }
1402
1403 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1404 {
1405 if (likely(!skb->next)) {
1406 if (!list_empty(&ptype_all))
1407 dev_queue_xmit_nit(skb, dev);
1408
1409 if (netif_needs_gso(dev, skb)) {
1410 if (unlikely(dev_gso_segment(skb)))
1411 goto out_kfree_skb;
1412 if (skb->next)
1413 goto gso;
1414 }
1415
1416 return dev->hard_start_xmit(skb, dev);
1417 }
1418
1419 gso:
1420 do {
1421 struct sk_buff *nskb = skb->next;
1422 int rc;
1423
1424 skb->next = nskb->next;
1425 nskb->next = NULL;
1426 rc = dev->hard_start_xmit(nskb, dev);
1427 if (unlikely(rc)) {
1428 nskb->next = skb->next;
1429 skb->next = nskb;
1430 return rc;
1431 }
1432 if (unlikely(netif_queue_stopped(dev) && skb->next))
1433 return NETDEV_TX_BUSY;
1434 } while (skb->next);
1435
1436 skb->destructor = DEV_GSO_CB(skb)->destructor;
1437
1438 out_kfree_skb:
1439 kfree_skb(skb);
1440 return 0;
1441 }
1442
1443 #define HARD_TX_LOCK(dev, cpu) { \
1444 if ((dev->features & NETIF_F_LLTX) == 0) { \
1445 netif_tx_lock(dev); \
1446 } \
1447 }
1448
1449 #define HARD_TX_UNLOCK(dev) { \
1450 if ((dev->features & NETIF_F_LLTX) == 0) { \
1451 netif_tx_unlock(dev); \
1452 } \
1453 }
1454
1455 /**
1456 * dev_queue_xmit - transmit a buffer
1457 * @skb: buffer to transmit
1458 *
1459 * Queue a buffer for transmission to a network device. The caller must
1460 * have set the device and priority and built the buffer before calling
1461 * this function. The function can be called from an interrupt.
1462 *
1463 * A negative errno code is returned on a failure. A success does not
1464 * guarantee the frame will be transmitted as it may be dropped due
1465 * to congestion or traffic shaping.
1466 *
1467 * -----------------------------------------------------------------------------------
1468 * I notice this method can also return errors from the queue disciplines,
1469 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1470 * be positive.
1471 *
1472 * Regardless of the return value, the skb is consumed, so it is currently
1473 * difficult to retry a send to this method. (You can bump the ref count
1474 * before sending to hold a reference for retry if you are careful.)
1475 *
1476 * When calling this method, interrupts MUST be enabled. This is because
1477 * the BH enable code must have IRQs enabled so that it will not deadlock.
1478 * --BLG
1479 */
1480
1481 int dev_queue_xmit(struct sk_buff *skb)
1482 {
1483 struct net_device *dev = skb->dev;
1484 struct Qdisc *q;
1485 int rc = -ENOMEM;
1486
1487 /* GSO will handle the following emulations directly. */
1488 if (netif_needs_gso(dev, skb))
1489 goto gso;
1490
1491 if (skb_shinfo(skb)->frag_list &&
1492 !(dev->features & NETIF_F_FRAGLIST) &&
1493 __skb_linearize(skb))
1494 goto out_kfree_skb;
1495
1496 /* Fragmented skb is linearized if device does not support SG,
1497 * or if at least one of fragments is in highmem and device
1498 * does not support DMA from it.
1499 */
1500 if (skb_shinfo(skb)->nr_frags &&
1501 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1502 __skb_linearize(skb))
1503 goto out_kfree_skb;
1504
1505 /* If packet is not checksummed and device does not support
1506 * checksumming for this protocol, complete checksumming here.
1507 */
1508 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1509 skb_set_transport_header(skb, skb->csum_start -
1510 skb_headroom(skb));
1511
1512 if (!(dev->features & NETIF_F_GEN_CSUM)
1513 || ((dev->features & NETIF_F_IP_CSUM)
1514 && skb->protocol == htons(ETH_P_IP))
1515 || ((dev->features & NETIF_F_IPV6_CSUM)
1516 && skb->protocol == htons(ETH_P_IPV6)))
1517 if (skb_checksum_help(skb))
1518 goto out_kfree_skb;
1519 }
1520
1521 gso:
1522 spin_lock_prefetch(&dev->queue_lock);
1523
1524 /* Disable soft irqs for various locks below. Also
1525 * stops preemption for RCU.
1526 */
1527 rcu_read_lock_bh();
1528
1529 /* Updates of qdisc are serialized by queue_lock.
1530 * The struct Qdisc which is pointed to by qdisc is now a
1531 * rcu structure - it may be accessed without acquiring
1532 * a lock (but the structure may be stale.) The freeing of the
1533 * qdisc will be deferred until it's known that there are no
1534 * more references to it.
1535 *
1536 * If the qdisc has an enqueue function, we still need to
1537 * hold the queue_lock before calling it, since queue_lock
1538 * also serializes access to the device queue.
1539 */
1540
1541 q = rcu_dereference(dev->qdisc);
1542 #ifdef CONFIG_NET_CLS_ACT
1543 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1544 #endif
1545 if (q->enqueue) {
1546 /* Grab device queue */
1547 spin_lock(&dev->queue_lock);
1548 q = dev->qdisc;
1549 if (q->enqueue) {
1550 rc = q->enqueue(skb, q);
1551 qdisc_run(dev);
1552 spin_unlock(&dev->queue_lock);
1553
1554 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1555 goto out;
1556 }
1557 spin_unlock(&dev->queue_lock);
1558 }
1559
1560 /* The device has no queue. Common case for software devices:
1561 loopback, all the sorts of tunnels...
1562
1563 Really, it is unlikely that netif_tx_lock protection is necessary
1564 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1565 counters.)
1566 However, it is possible, that they rely on protection
1567 made by us here.
1568
1569 Check this and shot the lock. It is not prone from deadlocks.
1570 Either shot noqueue qdisc, it is even simpler 8)
1571 */
1572 if (dev->flags & IFF_UP) {
1573 int cpu = smp_processor_id(); /* ok because BHs are off */
1574
1575 if (dev->xmit_lock_owner != cpu) {
1576
1577 HARD_TX_LOCK(dev, cpu);
1578
1579 if (!netif_queue_stopped(dev)) {
1580 rc = 0;
1581 if (!dev_hard_start_xmit(skb, dev)) {
1582 HARD_TX_UNLOCK(dev);
1583 goto out;
1584 }
1585 }
1586 HARD_TX_UNLOCK(dev);
1587 if (net_ratelimit())
1588 printk(KERN_CRIT "Virtual device %s asks to "
1589 "queue packet!\n", dev->name);
1590 } else {
1591 /* Recursion is detected! It is possible,
1592 * unfortunately */
1593 if (net_ratelimit())
1594 printk(KERN_CRIT "Dead loop on virtual device "
1595 "%s, fix it urgently!\n", dev->name);
1596 }
1597 }
1598
1599 rc = -ENETDOWN;
1600 rcu_read_unlock_bh();
1601
1602 out_kfree_skb:
1603 kfree_skb(skb);
1604 return rc;
1605 out:
1606 rcu_read_unlock_bh();
1607 return rc;
1608 }
1609
1610
1611 /*=======================================================================
1612 Receiver routines
1613 =======================================================================*/
1614
1615 int netdev_max_backlog __read_mostly = 1000;
1616 int netdev_budget __read_mostly = 300;
1617 int weight_p __read_mostly = 64; /* old backlog weight */
1618
1619 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1620
1621
1622 /**
1623 * netif_rx - post buffer to the network code
1624 * @skb: buffer to post
1625 *
1626 * This function receives a packet from a device driver and queues it for
1627 * the upper (protocol) levels to process. It always succeeds. The buffer
1628 * may be dropped during processing for congestion control or by the
1629 * protocol layers.
1630 *
1631 * return values:
1632 * NET_RX_SUCCESS (no congestion)
1633 * NET_RX_CN_LOW (low congestion)
1634 * NET_RX_CN_MOD (moderate congestion)
1635 * NET_RX_CN_HIGH (high congestion)
1636 * NET_RX_DROP (packet was dropped)
1637 *
1638 */
1639
1640 int netif_rx(struct sk_buff *skb)
1641 {
1642 struct softnet_data *queue;
1643 unsigned long flags;
1644
1645 /* if netpoll wants it, pretend we never saw it */
1646 if (netpoll_rx(skb))
1647 return NET_RX_DROP;
1648
1649 if (!skb->tstamp.tv64)
1650 net_timestamp(skb);
1651
1652 /*
1653 * The code is rearranged so that the path is the most
1654 * short when CPU is congested, but is still operating.
1655 */
1656 local_irq_save(flags);
1657 queue = &__get_cpu_var(softnet_data);
1658
1659 __get_cpu_var(netdev_rx_stat).total++;
1660 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1661 if (queue->input_pkt_queue.qlen) {
1662 enqueue:
1663 dev_hold(skb->dev);
1664 __skb_queue_tail(&queue->input_pkt_queue, skb);
1665 local_irq_restore(flags);
1666 return NET_RX_SUCCESS;
1667 }
1668
1669 netif_rx_schedule(&queue->backlog_dev);
1670 goto enqueue;
1671 }
1672
1673 __get_cpu_var(netdev_rx_stat).dropped++;
1674 local_irq_restore(flags);
1675
1676 kfree_skb(skb);
1677 return NET_RX_DROP;
1678 }
1679
1680 int netif_rx_ni(struct sk_buff *skb)
1681 {
1682 int err;
1683
1684 preempt_disable();
1685 err = netif_rx(skb);
1686 if (local_softirq_pending())
1687 do_softirq();
1688 preempt_enable();
1689
1690 return err;
1691 }
1692
1693 EXPORT_SYMBOL(netif_rx_ni);
1694
1695 static inline struct net_device *skb_bond(struct sk_buff *skb)
1696 {
1697 struct net_device *dev = skb->dev;
1698
1699 if (dev->master) {
1700 if (skb_bond_should_drop(skb)) {
1701 kfree_skb(skb);
1702 return NULL;
1703 }
1704 skb->dev = dev->master;
1705 }
1706
1707 return dev;
1708 }
1709
1710 static void net_tx_action(struct softirq_action *h)
1711 {
1712 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1713
1714 if (sd->completion_queue) {
1715 struct sk_buff *clist;
1716
1717 local_irq_disable();
1718 clist = sd->completion_queue;
1719 sd->completion_queue = NULL;
1720 local_irq_enable();
1721
1722 while (clist) {
1723 struct sk_buff *skb = clist;
1724 clist = clist->next;
1725
1726 BUG_TRAP(!atomic_read(&skb->users));
1727 __kfree_skb(skb);
1728 }
1729 }
1730
1731 if (sd->output_queue) {
1732 struct net_device *head;
1733
1734 local_irq_disable();
1735 head = sd->output_queue;
1736 sd->output_queue = NULL;
1737 local_irq_enable();
1738
1739 while (head) {
1740 struct net_device *dev = head;
1741 head = head->next_sched;
1742
1743 smp_mb__before_clear_bit();
1744 clear_bit(__LINK_STATE_SCHED, &dev->state);
1745
1746 if (spin_trylock(&dev->queue_lock)) {
1747 qdisc_run(dev);
1748 spin_unlock(&dev->queue_lock);
1749 } else {
1750 netif_schedule(dev);
1751 }
1752 }
1753 }
1754 }
1755
1756 static inline int deliver_skb(struct sk_buff *skb,
1757 struct packet_type *pt_prev,
1758 struct net_device *orig_dev)
1759 {
1760 atomic_inc(&skb->users);
1761 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1762 }
1763
1764 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1765 /* These hooks defined here for ATM */
1766 struct net_bridge;
1767 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1768 unsigned char *addr);
1769 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1770
1771 /*
1772 * If bridge module is loaded call bridging hook.
1773 * returns NULL if packet was consumed.
1774 */
1775 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1776 struct sk_buff *skb) __read_mostly;
1777 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1778 struct packet_type **pt_prev, int *ret,
1779 struct net_device *orig_dev)
1780 {
1781 struct net_bridge_port *port;
1782
1783 if (skb->pkt_type == PACKET_LOOPBACK ||
1784 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1785 return skb;
1786
1787 if (*pt_prev) {
1788 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1789 *pt_prev = NULL;
1790 }
1791
1792 return br_handle_frame_hook(port, skb);
1793 }
1794 #else
1795 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1796 #endif
1797
1798 #ifdef CONFIG_NET_CLS_ACT
1799 /* TODO: Maybe we should just force sch_ingress to be compiled in
1800 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1801 * a compare and 2 stores extra right now if we dont have it on
1802 * but have CONFIG_NET_CLS_ACT
1803 * NOTE: This doesnt stop any functionality; if you dont have
1804 * the ingress scheduler, you just cant add policies on ingress.
1805 *
1806 */
1807 static int ing_filter(struct sk_buff *skb)
1808 {
1809 struct Qdisc *q;
1810 struct net_device *dev = skb->dev;
1811 int result = TC_ACT_OK;
1812
1813 if (dev->qdisc_ingress) {
1814 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1815 if (MAX_RED_LOOP < ttl++) {
1816 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1817 skb->iif, skb->dev->ifindex);
1818 return TC_ACT_SHOT;
1819 }
1820
1821 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1822
1823 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1824
1825 spin_lock(&dev->ingress_lock);
1826 if ((q = dev->qdisc_ingress) != NULL)
1827 result = q->enqueue(skb, q);
1828 spin_unlock(&dev->ingress_lock);
1829
1830 }
1831
1832 return result;
1833 }
1834 #endif
1835
1836 int netif_receive_skb(struct sk_buff *skb)
1837 {
1838 struct packet_type *ptype, *pt_prev;
1839 struct net_device *orig_dev;
1840 int ret = NET_RX_DROP;
1841 __be16 type;
1842
1843 /* if we've gotten here through NAPI, check netpoll */
1844 if (skb->dev->poll && netpoll_rx(skb))
1845 return NET_RX_DROP;
1846
1847 if (!skb->tstamp.tv64)
1848 net_timestamp(skb);
1849
1850 if (!skb->iif)
1851 skb->iif = skb->dev->ifindex;
1852
1853 orig_dev = skb_bond(skb);
1854
1855 if (!orig_dev)
1856 return NET_RX_DROP;
1857
1858 __get_cpu_var(netdev_rx_stat).total++;
1859
1860 skb_reset_network_header(skb);
1861 skb_reset_transport_header(skb);
1862 skb->mac_len = skb->network_header - skb->mac_header;
1863
1864 pt_prev = NULL;
1865
1866 rcu_read_lock();
1867
1868 #ifdef CONFIG_NET_CLS_ACT
1869 if (skb->tc_verd & TC_NCLS) {
1870 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1871 goto ncls;
1872 }
1873 #endif
1874
1875 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1876 if (!ptype->dev || ptype->dev == skb->dev) {
1877 if (pt_prev)
1878 ret = deliver_skb(skb, pt_prev, orig_dev);
1879 pt_prev = ptype;
1880 }
1881 }
1882
1883 #ifdef CONFIG_NET_CLS_ACT
1884 if (pt_prev) {
1885 ret = deliver_skb(skb, pt_prev, orig_dev);
1886 pt_prev = NULL; /* noone else should process this after*/
1887 } else {
1888 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1889 }
1890
1891 ret = ing_filter(skb);
1892
1893 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1894 kfree_skb(skb);
1895 goto out;
1896 }
1897
1898 skb->tc_verd = 0;
1899 ncls:
1900 #endif
1901
1902 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
1903 if (!skb)
1904 goto out;
1905
1906 type = skb->protocol;
1907 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1908 if (ptype->type == type &&
1909 (!ptype->dev || ptype->dev == skb->dev)) {
1910 if (pt_prev)
1911 ret = deliver_skb(skb, pt_prev, orig_dev);
1912 pt_prev = ptype;
1913 }
1914 }
1915
1916 if (pt_prev) {
1917 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1918 } else {
1919 kfree_skb(skb);
1920 /* Jamal, now you will not able to escape explaining
1921 * me how you were going to use this. :-)
1922 */
1923 ret = NET_RX_DROP;
1924 }
1925
1926 out:
1927 rcu_read_unlock();
1928 return ret;
1929 }
1930
1931 static int process_backlog(struct net_device *backlog_dev, int *budget)
1932 {
1933 int work = 0;
1934 int quota = min(backlog_dev->quota, *budget);
1935 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1936 unsigned long start_time = jiffies;
1937
1938 backlog_dev->weight = weight_p;
1939 for (;;) {
1940 struct sk_buff *skb;
1941 struct net_device *dev;
1942
1943 local_irq_disable();
1944 skb = __skb_dequeue(&queue->input_pkt_queue);
1945 if (!skb)
1946 goto job_done;
1947 local_irq_enable();
1948
1949 dev = skb->dev;
1950
1951 netif_receive_skb(skb);
1952
1953 dev_put(dev);
1954
1955 work++;
1956
1957 if (work >= quota || jiffies - start_time > 1)
1958 break;
1959
1960 }
1961
1962 backlog_dev->quota -= work;
1963 *budget -= work;
1964 return -1;
1965
1966 job_done:
1967 backlog_dev->quota -= work;
1968 *budget -= work;
1969
1970 list_del(&backlog_dev->poll_list);
1971 smp_mb__before_clear_bit();
1972 netif_poll_enable(backlog_dev);
1973
1974 local_irq_enable();
1975 return 0;
1976 }
1977
1978 static void net_rx_action(struct softirq_action *h)
1979 {
1980 struct softnet_data *queue = &__get_cpu_var(softnet_data);
1981 unsigned long start_time = jiffies;
1982 int budget = netdev_budget;
1983 void *have;
1984
1985 local_irq_disable();
1986
1987 while (!list_empty(&queue->poll_list)) {
1988 struct net_device *dev;
1989
1990 if (budget <= 0 || jiffies - start_time > 1)
1991 goto softnet_break;
1992
1993 local_irq_enable();
1994
1995 dev = list_entry(queue->poll_list.next,
1996 struct net_device, poll_list);
1997 have = netpoll_poll_lock(dev);
1998
1999 if (dev->quota <= 0 || dev->poll(dev, &budget)) {
2000 netpoll_poll_unlock(have);
2001 local_irq_disable();
2002 list_move_tail(&dev->poll_list, &queue->poll_list);
2003 if (dev->quota < 0)
2004 dev->quota += dev->weight;
2005 else
2006 dev->quota = dev->weight;
2007 } else {
2008 netpoll_poll_unlock(have);
2009 dev_put(dev);
2010 local_irq_disable();
2011 }
2012 }
2013 out:
2014 local_irq_enable();
2015 #ifdef CONFIG_NET_DMA
2016 /*
2017 * There may not be any more sk_buffs coming right now, so push
2018 * any pending DMA copies to hardware
2019 */
2020 if (net_dma_client) {
2021 struct dma_chan *chan;
2022 rcu_read_lock();
2023 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
2024 dma_async_memcpy_issue_pending(chan);
2025 rcu_read_unlock();
2026 }
2027 #endif
2028 return;
2029
2030 softnet_break:
2031 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2032 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2033 goto out;
2034 }
2035
2036 static gifconf_func_t * gifconf_list [NPROTO];
2037
2038 /**
2039 * register_gifconf - register a SIOCGIF handler
2040 * @family: Address family
2041 * @gifconf: Function handler
2042 *
2043 * Register protocol dependent address dumping routines. The handler
2044 * that is passed must not be freed or reused until it has been replaced
2045 * by another handler.
2046 */
2047 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2048 {
2049 if (family >= NPROTO)
2050 return -EINVAL;
2051 gifconf_list[family] = gifconf;
2052 return 0;
2053 }
2054
2055
2056 /*
2057 * Map an interface index to its name (SIOCGIFNAME)
2058 */
2059
2060 /*
2061 * We need this ioctl for efficient implementation of the
2062 * if_indextoname() function required by the IPv6 API. Without
2063 * it, we would have to search all the interfaces to find a
2064 * match. --pb
2065 */
2066
2067 static int dev_ifname(struct ifreq __user *arg)
2068 {
2069 struct net_device *dev;
2070 struct ifreq ifr;
2071
2072 /*
2073 * Fetch the caller's info block.
2074 */
2075
2076 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2077 return -EFAULT;
2078
2079 read_lock(&dev_base_lock);
2080 dev = __dev_get_by_index(ifr.ifr_ifindex);
2081 if (!dev) {
2082 read_unlock(&dev_base_lock);
2083 return -ENODEV;
2084 }
2085
2086 strcpy(ifr.ifr_name, dev->name);
2087 read_unlock(&dev_base_lock);
2088
2089 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2090 return -EFAULT;
2091 return 0;
2092 }
2093
2094 /*
2095 * Perform a SIOCGIFCONF call. This structure will change
2096 * size eventually, and there is nothing I can do about it.
2097 * Thus we will need a 'compatibility mode'.
2098 */
2099
2100 static int dev_ifconf(char __user *arg)
2101 {
2102 struct ifconf ifc;
2103 struct net_device *dev;
2104 char __user *pos;
2105 int len;
2106 int total;
2107 int i;
2108
2109 /*
2110 * Fetch the caller's info block.
2111 */
2112
2113 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2114 return -EFAULT;
2115
2116 pos = ifc.ifc_buf;
2117 len = ifc.ifc_len;
2118
2119 /*
2120 * Loop over the interfaces, and write an info block for each.
2121 */
2122
2123 total = 0;
2124 for_each_netdev(dev) {
2125 for (i = 0; i < NPROTO; i++) {
2126 if (gifconf_list[i]) {
2127 int done;
2128 if (!pos)
2129 done = gifconf_list[i](dev, NULL, 0);
2130 else
2131 done = gifconf_list[i](dev, pos + total,
2132 len - total);
2133 if (done < 0)
2134 return -EFAULT;
2135 total += done;
2136 }
2137 }
2138 }
2139
2140 /*
2141 * All done. Write the updated control block back to the caller.
2142 */
2143 ifc.ifc_len = total;
2144
2145 /*
2146 * Both BSD and Solaris return 0 here, so we do too.
2147 */
2148 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2149 }
2150
2151 #ifdef CONFIG_PROC_FS
2152 /*
2153 * This is invoked by the /proc filesystem handler to display a device
2154 * in detail.
2155 */
2156 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2157 {
2158 loff_t off;
2159 struct net_device *dev;
2160
2161 read_lock(&dev_base_lock);
2162 if (!*pos)
2163 return SEQ_START_TOKEN;
2164
2165 off = 1;
2166 for_each_netdev(dev)
2167 if (off++ == *pos)
2168 return dev;
2169
2170 return NULL;
2171 }
2172
2173 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2174 {
2175 ++*pos;
2176 return v == SEQ_START_TOKEN ?
2177 first_net_device() : next_net_device((struct net_device *)v);
2178 }
2179
2180 void dev_seq_stop(struct seq_file *seq, void *v)
2181 {
2182 read_unlock(&dev_base_lock);
2183 }
2184
2185 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2186 {
2187 struct net_device_stats *stats = dev->get_stats(dev);
2188
2189 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2190 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2191 dev->name, stats->rx_bytes, stats->rx_packets,
2192 stats->rx_errors,
2193 stats->rx_dropped + stats->rx_missed_errors,
2194 stats->rx_fifo_errors,
2195 stats->rx_length_errors + stats->rx_over_errors +
2196 stats->rx_crc_errors + stats->rx_frame_errors,
2197 stats->rx_compressed, stats->multicast,
2198 stats->tx_bytes, stats->tx_packets,
2199 stats->tx_errors, stats->tx_dropped,
2200 stats->tx_fifo_errors, stats->collisions,
2201 stats->tx_carrier_errors +
2202 stats->tx_aborted_errors +
2203 stats->tx_window_errors +
2204 stats->tx_heartbeat_errors,
2205 stats->tx_compressed);
2206 }
2207
2208 /*
2209 * Called from the PROCfs module. This now uses the new arbitrary sized
2210 * /proc/net interface to create /proc/net/dev
2211 */
2212 static int dev_seq_show(struct seq_file *seq, void *v)
2213 {
2214 if (v == SEQ_START_TOKEN)
2215 seq_puts(seq, "Inter-| Receive "
2216 " | Transmit\n"
2217 " face |bytes packets errs drop fifo frame "
2218 "compressed multicast|bytes packets errs "
2219 "drop fifo colls carrier compressed\n");
2220 else
2221 dev_seq_printf_stats(seq, v);
2222 return 0;
2223 }
2224
2225 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2226 {
2227 struct netif_rx_stats *rc = NULL;
2228
2229 while (*pos < NR_CPUS)
2230 if (cpu_online(*pos)) {
2231 rc = &per_cpu(netdev_rx_stat, *pos);
2232 break;
2233 } else
2234 ++*pos;
2235 return rc;
2236 }
2237
2238 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2239 {
2240 return softnet_get_online(pos);
2241 }
2242
2243 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2244 {
2245 ++*pos;
2246 return softnet_get_online(pos);
2247 }
2248
2249 static void softnet_seq_stop(struct seq_file *seq, void *v)
2250 {
2251 }
2252
2253 static int softnet_seq_show(struct seq_file *seq, void *v)
2254 {
2255 struct netif_rx_stats *s = v;
2256
2257 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2258 s->total, s->dropped, s->time_squeeze, 0,
2259 0, 0, 0, 0, /* was fastroute */
2260 s->cpu_collision );
2261 return 0;
2262 }
2263
2264 static const struct seq_operations dev_seq_ops = {
2265 .start = dev_seq_start,
2266 .next = dev_seq_next,
2267 .stop = dev_seq_stop,
2268 .show = dev_seq_show,
2269 };
2270
2271 static int dev_seq_open(struct inode *inode, struct file *file)
2272 {
2273 return seq_open(file, &dev_seq_ops);
2274 }
2275
2276 static const struct file_operations dev_seq_fops = {
2277 .owner = THIS_MODULE,
2278 .open = dev_seq_open,
2279 .read = seq_read,
2280 .llseek = seq_lseek,
2281 .release = seq_release,
2282 };
2283
2284 static const struct seq_operations softnet_seq_ops = {
2285 .start = softnet_seq_start,
2286 .next = softnet_seq_next,
2287 .stop = softnet_seq_stop,
2288 .show = softnet_seq_show,
2289 };
2290
2291 static int softnet_seq_open(struct inode *inode, struct file *file)
2292 {
2293 return seq_open(file, &softnet_seq_ops);
2294 }
2295
2296 static const struct file_operations softnet_seq_fops = {
2297 .owner = THIS_MODULE,
2298 .open = softnet_seq_open,
2299 .read = seq_read,
2300 .llseek = seq_lseek,
2301 .release = seq_release,
2302 };
2303
2304 static void *ptype_get_idx(loff_t pos)
2305 {
2306 struct packet_type *pt = NULL;
2307 loff_t i = 0;
2308 int t;
2309
2310 list_for_each_entry_rcu(pt, &ptype_all, list) {
2311 if (i == pos)
2312 return pt;
2313 ++i;
2314 }
2315
2316 for (t = 0; t < 16; t++) {
2317 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2318 if (i == pos)
2319 return pt;
2320 ++i;
2321 }
2322 }
2323 return NULL;
2324 }
2325
2326 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2327 {
2328 rcu_read_lock();
2329 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2330 }
2331
2332 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2333 {
2334 struct packet_type *pt;
2335 struct list_head *nxt;
2336 int hash;
2337
2338 ++*pos;
2339 if (v == SEQ_START_TOKEN)
2340 return ptype_get_idx(0);
2341
2342 pt = v;
2343 nxt = pt->list.next;
2344 if (pt->type == htons(ETH_P_ALL)) {
2345 if (nxt != &ptype_all)
2346 goto found;
2347 hash = 0;
2348 nxt = ptype_base[0].next;
2349 } else
2350 hash = ntohs(pt->type) & 15;
2351
2352 while (nxt == &ptype_base[hash]) {
2353 if (++hash >= 16)
2354 return NULL;
2355 nxt = ptype_base[hash].next;
2356 }
2357 found:
2358 return list_entry(nxt, struct packet_type, list);
2359 }
2360
2361 static void ptype_seq_stop(struct seq_file *seq, void *v)
2362 {
2363 rcu_read_unlock();
2364 }
2365
2366 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2367 {
2368 #ifdef CONFIG_KALLSYMS
2369 unsigned long offset = 0, symsize;
2370 const char *symname;
2371 char *modname;
2372 char namebuf[128];
2373
2374 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2375 &modname, namebuf);
2376
2377 if (symname) {
2378 char *delim = ":";
2379
2380 if (!modname)
2381 modname = delim = "";
2382 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2383 symname, offset);
2384 return;
2385 }
2386 #endif
2387
2388 seq_printf(seq, "[%p]", sym);
2389 }
2390
2391 static int ptype_seq_show(struct seq_file *seq, void *v)
2392 {
2393 struct packet_type *pt = v;
2394
2395 if (v == SEQ_START_TOKEN)
2396 seq_puts(seq, "Type Device Function\n");
2397 else {
2398 if (pt->type == htons(ETH_P_ALL))
2399 seq_puts(seq, "ALL ");
2400 else
2401 seq_printf(seq, "%04x", ntohs(pt->type));
2402
2403 seq_printf(seq, " %-8s ",
2404 pt->dev ? pt->dev->name : "");
2405 ptype_seq_decode(seq, pt->func);
2406 seq_putc(seq, '\n');
2407 }
2408
2409 return 0;
2410 }
2411
2412 static const struct seq_operations ptype_seq_ops = {
2413 .start = ptype_seq_start,
2414 .next = ptype_seq_next,
2415 .stop = ptype_seq_stop,
2416 .show = ptype_seq_show,
2417 };
2418
2419 static int ptype_seq_open(struct inode *inode, struct file *file)
2420 {
2421 return seq_open(file, &ptype_seq_ops);
2422 }
2423
2424 static const struct file_operations ptype_seq_fops = {
2425 .owner = THIS_MODULE,
2426 .open = ptype_seq_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
2429 .release = seq_release,
2430 };
2431
2432
2433 static int __init dev_proc_init(void)
2434 {
2435 int rc = -ENOMEM;
2436
2437 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2438 goto out;
2439 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2440 goto out_dev;
2441 if (!proc_net_fops_create("ptype", S_IRUGO, &ptype_seq_fops))
2442 goto out_dev2;
2443
2444 if (wext_proc_init())
2445 goto out_softnet;
2446 rc = 0;
2447 out:
2448 return rc;
2449 out_softnet:
2450 proc_net_remove("ptype");
2451 out_dev2:
2452 proc_net_remove("softnet_stat");
2453 out_dev:
2454 proc_net_remove("dev");
2455 goto out;
2456 }
2457 #else
2458 #define dev_proc_init() 0
2459 #endif /* CONFIG_PROC_FS */
2460
2461
2462 /**
2463 * netdev_set_master - set up master/slave pair
2464 * @slave: slave device
2465 * @master: new master device
2466 *
2467 * Changes the master device of the slave. Pass %NULL to break the
2468 * bonding. The caller must hold the RTNL semaphore. On a failure
2469 * a negative errno code is returned. On success the reference counts
2470 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2471 * function returns zero.
2472 */
2473 int netdev_set_master(struct net_device *slave, struct net_device *master)
2474 {
2475 struct net_device *old = slave->master;
2476
2477 ASSERT_RTNL();
2478
2479 if (master) {
2480 if (old)
2481 return -EBUSY;
2482 dev_hold(master);
2483 }
2484
2485 slave->master = master;
2486
2487 synchronize_net();
2488
2489 if (old)
2490 dev_put(old);
2491
2492 if (master)
2493 slave->flags |= IFF_SLAVE;
2494 else
2495 slave->flags &= ~IFF_SLAVE;
2496
2497 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2498 return 0;
2499 }
2500
2501 /**
2502 * dev_set_promiscuity - update promiscuity count on a device
2503 * @dev: device
2504 * @inc: modifier
2505 *
2506 * Add or remove promiscuity from a device. While the count in the device
2507 * remains above zero the interface remains promiscuous. Once it hits zero
2508 * the device reverts back to normal filtering operation. A negative inc
2509 * value is used to drop promiscuity on the device.
2510 */
2511 void dev_set_promiscuity(struct net_device *dev, int inc)
2512 {
2513 unsigned short old_flags = dev->flags;
2514
2515 if ((dev->promiscuity += inc) == 0)
2516 dev->flags &= ~IFF_PROMISC;
2517 else
2518 dev->flags |= IFF_PROMISC;
2519 if (dev->flags != old_flags) {
2520 dev_mc_upload(dev);
2521 printk(KERN_INFO "device %s %s promiscuous mode\n",
2522 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2523 "left");
2524 audit_log(current->audit_context, GFP_ATOMIC,
2525 AUDIT_ANOM_PROMISCUOUS,
2526 "dev=%s prom=%d old_prom=%d auid=%u",
2527 dev->name, (dev->flags & IFF_PROMISC),
2528 (old_flags & IFF_PROMISC),
2529 audit_get_loginuid(current->audit_context));
2530 }
2531 }
2532
2533 /**
2534 * dev_set_allmulti - update allmulti count on a device
2535 * @dev: device
2536 * @inc: modifier
2537 *
2538 * Add or remove reception of all multicast frames to a device. While the
2539 * count in the device remains above zero the interface remains listening
2540 * to all interfaces. Once it hits zero the device reverts back to normal
2541 * filtering operation. A negative @inc value is used to drop the counter
2542 * when releasing a resource needing all multicasts.
2543 */
2544
2545 void dev_set_allmulti(struct net_device *dev, int inc)
2546 {
2547 unsigned short old_flags = dev->flags;
2548
2549 dev->flags |= IFF_ALLMULTI;
2550 if ((dev->allmulti += inc) == 0)
2551 dev->flags &= ~IFF_ALLMULTI;
2552 if (dev->flags ^ old_flags)
2553 dev_mc_upload(dev);
2554 }
2555
2556 unsigned dev_get_flags(const struct net_device *dev)
2557 {
2558 unsigned flags;
2559
2560 flags = (dev->flags & ~(IFF_PROMISC |
2561 IFF_ALLMULTI |
2562 IFF_RUNNING |
2563 IFF_LOWER_UP |
2564 IFF_DORMANT)) |
2565 (dev->gflags & (IFF_PROMISC |
2566 IFF_ALLMULTI));
2567
2568 if (netif_running(dev)) {
2569 if (netif_oper_up(dev))
2570 flags |= IFF_RUNNING;
2571 if (netif_carrier_ok(dev))
2572 flags |= IFF_LOWER_UP;
2573 if (netif_dormant(dev))
2574 flags |= IFF_DORMANT;
2575 }
2576
2577 return flags;
2578 }
2579
2580 int dev_change_flags(struct net_device *dev, unsigned flags)
2581 {
2582 int ret, changes;
2583 int old_flags = dev->flags;
2584
2585 /*
2586 * Set the flags on our device.
2587 */
2588
2589 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2590 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2591 IFF_AUTOMEDIA)) |
2592 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2593 IFF_ALLMULTI));
2594
2595 /*
2596 * Load in the correct multicast list now the flags have changed.
2597 */
2598
2599 dev_mc_upload(dev);
2600
2601 /*
2602 * Have we downed the interface. We handle IFF_UP ourselves
2603 * according to user attempts to set it, rather than blindly
2604 * setting it.
2605 */
2606
2607 ret = 0;
2608 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2609 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2610
2611 if (!ret)
2612 dev_mc_upload(dev);
2613 }
2614
2615 if (dev->flags & IFF_UP &&
2616 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2617 IFF_VOLATILE)))
2618 raw_notifier_call_chain(&netdev_chain,
2619 NETDEV_CHANGE, dev);
2620
2621 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2622 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2623 dev->gflags ^= IFF_PROMISC;
2624 dev_set_promiscuity(dev, inc);
2625 }
2626
2627 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2628 is important. Some (broken) drivers set IFF_PROMISC, when
2629 IFF_ALLMULTI is requested not asking us and not reporting.
2630 */
2631 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2632 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2633 dev->gflags ^= IFF_ALLMULTI;
2634 dev_set_allmulti(dev, inc);
2635 }
2636
2637 /* Exclude state transition flags, already notified */
2638 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
2639 if (changes)
2640 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
2641
2642 return ret;
2643 }
2644
2645 int dev_set_mtu(struct net_device *dev, int new_mtu)
2646 {
2647 int err;
2648
2649 if (new_mtu == dev->mtu)
2650 return 0;
2651
2652 /* MTU must be positive. */
2653 if (new_mtu < 0)
2654 return -EINVAL;
2655
2656 if (!netif_device_present(dev))
2657 return -ENODEV;
2658
2659 err = 0;
2660 if (dev->change_mtu)
2661 err = dev->change_mtu(dev, new_mtu);
2662 else
2663 dev->mtu = new_mtu;
2664 if (!err && dev->flags & IFF_UP)
2665 raw_notifier_call_chain(&netdev_chain,
2666 NETDEV_CHANGEMTU, dev);
2667 return err;
2668 }
2669
2670 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2671 {
2672 int err;
2673
2674 if (!dev->set_mac_address)
2675 return -EOPNOTSUPP;
2676 if (sa->sa_family != dev->type)
2677 return -EINVAL;
2678 if (!netif_device_present(dev))
2679 return -ENODEV;
2680 err = dev->set_mac_address(dev, sa);
2681 if (!err)
2682 raw_notifier_call_chain(&netdev_chain,
2683 NETDEV_CHANGEADDR, dev);
2684 return err;
2685 }
2686
2687 /*
2688 * Perform the SIOCxIFxxx calls.
2689 */
2690 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2691 {
2692 int err;
2693 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2694
2695 if (!dev)
2696 return -ENODEV;
2697
2698 switch (cmd) {
2699 case SIOCGIFFLAGS: /* Get interface flags */
2700 ifr->ifr_flags = dev_get_flags(dev);
2701 return 0;
2702
2703 case SIOCSIFFLAGS: /* Set interface flags */
2704 return dev_change_flags(dev, ifr->ifr_flags);
2705
2706 case SIOCGIFMETRIC: /* Get the metric on the interface
2707 (currently unused) */
2708 ifr->ifr_metric = 0;
2709 return 0;
2710
2711 case SIOCSIFMETRIC: /* Set the metric on the interface
2712 (currently unused) */
2713 return -EOPNOTSUPP;
2714
2715 case SIOCGIFMTU: /* Get the MTU of a device */
2716 ifr->ifr_mtu = dev->mtu;
2717 return 0;
2718
2719 case SIOCSIFMTU: /* Set the MTU of a device */
2720 return dev_set_mtu(dev, ifr->ifr_mtu);
2721
2722 case SIOCGIFHWADDR:
2723 if (!dev->addr_len)
2724 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2725 else
2726 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2727 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2728 ifr->ifr_hwaddr.sa_family = dev->type;
2729 return 0;
2730
2731 case SIOCSIFHWADDR:
2732 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2733
2734 case SIOCSIFHWBROADCAST:
2735 if (ifr->ifr_hwaddr.sa_family != dev->type)
2736 return -EINVAL;
2737 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2738 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2739 raw_notifier_call_chain(&netdev_chain,
2740 NETDEV_CHANGEADDR, dev);
2741 return 0;
2742
2743 case SIOCGIFMAP:
2744 ifr->ifr_map.mem_start = dev->mem_start;
2745 ifr->ifr_map.mem_end = dev->mem_end;
2746 ifr->ifr_map.base_addr = dev->base_addr;
2747 ifr->ifr_map.irq = dev->irq;
2748 ifr->ifr_map.dma = dev->dma;
2749 ifr->ifr_map.port = dev->if_port;
2750 return 0;
2751
2752 case SIOCSIFMAP:
2753 if (dev->set_config) {
2754 if (!netif_device_present(dev))
2755 return -ENODEV;
2756 return dev->set_config(dev, &ifr->ifr_map);
2757 }
2758 return -EOPNOTSUPP;
2759
2760 case SIOCADDMULTI:
2761 if (!dev->set_multicast_list ||
2762 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2763 return -EINVAL;
2764 if (!netif_device_present(dev))
2765 return -ENODEV;
2766 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2767 dev->addr_len, 1);
2768
2769 case SIOCDELMULTI:
2770 if (!dev->set_multicast_list ||
2771 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2772 return -EINVAL;
2773 if (!netif_device_present(dev))
2774 return -ENODEV;
2775 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2776 dev->addr_len, 1);
2777
2778 case SIOCGIFINDEX:
2779 ifr->ifr_ifindex = dev->ifindex;
2780 return 0;
2781
2782 case SIOCGIFTXQLEN:
2783 ifr->ifr_qlen = dev->tx_queue_len;
2784 return 0;
2785
2786 case SIOCSIFTXQLEN:
2787 if (ifr->ifr_qlen < 0)
2788 return -EINVAL;
2789 dev->tx_queue_len = ifr->ifr_qlen;
2790 return 0;
2791
2792 case SIOCSIFNAME:
2793 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2794 return dev_change_name(dev, ifr->ifr_newname);
2795
2796 /*
2797 * Unknown or private ioctl
2798 */
2799
2800 default:
2801 if ((cmd >= SIOCDEVPRIVATE &&
2802 cmd <= SIOCDEVPRIVATE + 15) ||
2803 cmd == SIOCBONDENSLAVE ||
2804 cmd == SIOCBONDRELEASE ||
2805 cmd == SIOCBONDSETHWADDR ||
2806 cmd == SIOCBONDSLAVEINFOQUERY ||
2807 cmd == SIOCBONDINFOQUERY ||
2808 cmd == SIOCBONDCHANGEACTIVE ||
2809 cmd == SIOCGMIIPHY ||
2810 cmd == SIOCGMIIREG ||
2811 cmd == SIOCSMIIREG ||
2812 cmd == SIOCBRADDIF ||
2813 cmd == SIOCBRDELIF ||
2814 cmd == SIOCWANDEV) {
2815 err = -EOPNOTSUPP;
2816 if (dev->do_ioctl) {
2817 if (netif_device_present(dev))
2818 err = dev->do_ioctl(dev, ifr,
2819 cmd);
2820 else
2821 err = -ENODEV;
2822 }
2823 } else
2824 err = -EINVAL;
2825
2826 }
2827 return err;
2828 }
2829
2830 /*
2831 * This function handles all "interface"-type I/O control requests. The actual
2832 * 'doing' part of this is dev_ifsioc above.
2833 */
2834
2835 /**
2836 * dev_ioctl - network device ioctl
2837 * @cmd: command to issue
2838 * @arg: pointer to a struct ifreq in user space
2839 *
2840 * Issue ioctl functions to devices. This is normally called by the
2841 * user space syscall interfaces but can sometimes be useful for
2842 * other purposes. The return value is the return from the syscall if
2843 * positive or a negative errno code on error.
2844 */
2845
2846 int dev_ioctl(unsigned int cmd, void __user *arg)
2847 {
2848 struct ifreq ifr;
2849 int ret;
2850 char *colon;
2851
2852 /* One special case: SIOCGIFCONF takes ifconf argument
2853 and requires shared lock, because it sleeps writing
2854 to user space.
2855 */
2856
2857 if (cmd == SIOCGIFCONF) {
2858 rtnl_lock();
2859 ret = dev_ifconf((char __user *) arg);
2860 rtnl_unlock();
2861 return ret;
2862 }
2863 if (cmd == SIOCGIFNAME)
2864 return dev_ifname((struct ifreq __user *)arg);
2865
2866 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2867 return -EFAULT;
2868
2869 ifr.ifr_name[IFNAMSIZ-1] = 0;
2870
2871 colon = strchr(ifr.ifr_name, ':');
2872 if (colon)
2873 *colon = 0;
2874
2875 /*
2876 * See which interface the caller is talking about.
2877 */
2878
2879 switch (cmd) {
2880 /*
2881 * These ioctl calls:
2882 * - can be done by all.
2883 * - atomic and do not require locking.
2884 * - return a value
2885 */
2886 case SIOCGIFFLAGS:
2887 case SIOCGIFMETRIC:
2888 case SIOCGIFMTU:
2889 case SIOCGIFHWADDR:
2890 case SIOCGIFSLAVE:
2891 case SIOCGIFMAP:
2892 case SIOCGIFINDEX:
2893 case SIOCGIFTXQLEN:
2894 dev_load(ifr.ifr_name);
2895 read_lock(&dev_base_lock);
2896 ret = dev_ifsioc(&ifr, cmd);
2897 read_unlock(&dev_base_lock);
2898 if (!ret) {
2899 if (colon)
2900 *colon = ':';
2901 if (copy_to_user(arg, &ifr,
2902 sizeof(struct ifreq)))
2903 ret = -EFAULT;
2904 }
2905 return ret;
2906
2907 case SIOCETHTOOL:
2908 dev_load(ifr.ifr_name);
2909 rtnl_lock();
2910 ret = dev_ethtool(&ifr);
2911 rtnl_unlock();
2912 if (!ret) {
2913 if (colon)
2914 *colon = ':';
2915 if (copy_to_user(arg, &ifr,
2916 sizeof(struct ifreq)))
2917 ret = -EFAULT;
2918 }
2919 return ret;
2920
2921 /*
2922 * These ioctl calls:
2923 * - require superuser power.
2924 * - require strict serialization.
2925 * - return a value
2926 */
2927 case SIOCGMIIPHY:
2928 case SIOCGMIIREG:
2929 case SIOCSIFNAME:
2930 if (!capable(CAP_NET_ADMIN))
2931 return -EPERM;
2932 dev_load(ifr.ifr_name);
2933 rtnl_lock();
2934 ret = dev_ifsioc(&ifr, cmd);
2935 rtnl_unlock();
2936 if (!ret) {
2937 if (colon)
2938 *colon = ':';
2939 if (copy_to_user(arg, &ifr,
2940 sizeof(struct ifreq)))
2941 ret = -EFAULT;
2942 }
2943 return ret;
2944
2945 /*
2946 * These ioctl calls:
2947 * - require superuser power.
2948 * - require strict serialization.
2949 * - do not return a value
2950 */
2951 case SIOCSIFFLAGS:
2952 case SIOCSIFMETRIC:
2953 case SIOCSIFMTU:
2954 case SIOCSIFMAP:
2955 case SIOCSIFHWADDR:
2956 case SIOCSIFSLAVE:
2957 case SIOCADDMULTI:
2958 case SIOCDELMULTI:
2959 case SIOCSIFHWBROADCAST:
2960 case SIOCSIFTXQLEN:
2961 case SIOCSMIIREG:
2962 case SIOCBONDENSLAVE:
2963 case SIOCBONDRELEASE:
2964 case SIOCBONDSETHWADDR:
2965 case SIOCBONDCHANGEACTIVE:
2966 case SIOCBRADDIF:
2967 case SIOCBRDELIF:
2968 if (!capable(CAP_NET_ADMIN))
2969 return -EPERM;
2970 /* fall through */
2971 case SIOCBONDSLAVEINFOQUERY:
2972 case SIOCBONDINFOQUERY:
2973 dev_load(ifr.ifr_name);
2974 rtnl_lock();
2975 ret = dev_ifsioc(&ifr, cmd);
2976 rtnl_unlock();
2977 return ret;
2978
2979 case SIOCGIFMEM:
2980 /* Get the per device memory space. We can add this but
2981 * currently do not support it */
2982 case SIOCSIFMEM:
2983 /* Set the per device memory buffer space.
2984 * Not applicable in our case */
2985 case SIOCSIFLINK:
2986 return -EINVAL;
2987
2988 /*
2989 * Unknown or private ioctl.
2990 */
2991 default:
2992 if (cmd == SIOCWANDEV ||
2993 (cmd >= SIOCDEVPRIVATE &&
2994 cmd <= SIOCDEVPRIVATE + 15)) {
2995 dev_load(ifr.ifr_name);
2996 rtnl_lock();
2997 ret = dev_ifsioc(&ifr, cmd);
2998 rtnl_unlock();
2999 if (!ret && copy_to_user(arg, &ifr,
3000 sizeof(struct ifreq)))
3001 ret = -EFAULT;
3002 return ret;
3003 }
3004 /* Take care of Wireless Extensions */
3005 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3006 return wext_handle_ioctl(&ifr, cmd, arg);
3007 return -EINVAL;
3008 }
3009 }
3010
3011
3012 /**
3013 * dev_new_index - allocate an ifindex
3014 *
3015 * Returns a suitable unique value for a new device interface
3016 * number. The caller must hold the rtnl semaphore or the
3017 * dev_base_lock to be sure it remains unique.
3018 */
3019 static int dev_new_index(void)
3020 {
3021 static int ifindex;
3022 for (;;) {
3023 if (++ifindex <= 0)
3024 ifindex = 1;
3025 if (!__dev_get_by_index(ifindex))
3026 return ifindex;
3027 }
3028 }
3029
3030 static int dev_boot_phase = 1;
3031
3032 /* Delayed registration/unregisteration */
3033 static DEFINE_SPINLOCK(net_todo_list_lock);
3034 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3035
3036 static void net_set_todo(struct net_device *dev)
3037 {
3038 spin_lock(&net_todo_list_lock);
3039 list_add_tail(&dev->todo_list, &net_todo_list);
3040 spin_unlock(&net_todo_list_lock);
3041 }
3042
3043 /**
3044 * register_netdevice - register a network device
3045 * @dev: device to register
3046 *
3047 * Take a completed network device structure and add it to the kernel
3048 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3049 * chain. 0 is returned on success. A negative errno code is returned
3050 * on a failure to set up the device, or if the name is a duplicate.
3051 *
3052 * Callers must hold the rtnl semaphore. You may want
3053 * register_netdev() instead of this.
3054 *
3055 * BUGS:
3056 * The locking appears insufficient to guarantee two parallel registers
3057 * will not get the same name.
3058 */
3059
3060 int register_netdevice(struct net_device *dev)
3061 {
3062 struct hlist_head *head;
3063 struct hlist_node *p;
3064 int ret;
3065
3066 BUG_ON(dev_boot_phase);
3067 ASSERT_RTNL();
3068
3069 might_sleep();
3070
3071 /* When net_device's are persistent, this will be fatal. */
3072 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3073
3074 spin_lock_init(&dev->queue_lock);
3075 spin_lock_init(&dev->_xmit_lock);
3076 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3077 dev->xmit_lock_owner = -1;
3078 spin_lock_init(&dev->ingress_lock);
3079
3080 dev->iflink = -1;
3081
3082 /* Init, if this function is available */
3083 if (dev->init) {
3084 ret = dev->init(dev);
3085 if (ret) {
3086 if (ret > 0)
3087 ret = -EIO;
3088 goto out;
3089 }
3090 }
3091
3092 if (!dev_valid_name(dev->name)) {
3093 ret = -EINVAL;
3094 goto out;
3095 }
3096
3097 dev->ifindex = dev_new_index();
3098 if (dev->iflink == -1)
3099 dev->iflink = dev->ifindex;
3100
3101 /* Check for existence of name */
3102 head = dev_name_hash(dev->name);
3103 hlist_for_each(p, head) {
3104 struct net_device *d
3105 = hlist_entry(p, struct net_device, name_hlist);
3106 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3107 ret = -EEXIST;
3108 goto out;
3109 }
3110 }
3111
3112 /* Fix illegal checksum combinations */
3113 if ((dev->features & NETIF_F_HW_CSUM) &&
3114 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3115 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3116 dev->name);
3117 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3118 }
3119
3120 if ((dev->features & NETIF_F_NO_CSUM) &&
3121 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3122 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3123 dev->name);
3124 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3125 }
3126
3127
3128 /* Fix illegal SG+CSUM combinations. */
3129 if ((dev->features & NETIF_F_SG) &&
3130 !(dev->features & NETIF_F_ALL_CSUM)) {
3131 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3132 dev->name);
3133 dev->features &= ~NETIF_F_SG;
3134 }
3135
3136 /* TSO requires that SG is present as well. */
3137 if ((dev->features & NETIF_F_TSO) &&
3138 !(dev->features & NETIF_F_SG)) {
3139 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3140 dev->name);
3141 dev->features &= ~NETIF_F_TSO;
3142 }
3143 if (dev->features & NETIF_F_UFO) {
3144 if (!(dev->features & NETIF_F_HW_CSUM)) {
3145 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3146 "NETIF_F_HW_CSUM feature.\n",
3147 dev->name);
3148 dev->features &= ~NETIF_F_UFO;
3149 }
3150 if (!(dev->features & NETIF_F_SG)) {
3151 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3152 "NETIF_F_SG feature.\n",
3153 dev->name);
3154 dev->features &= ~NETIF_F_UFO;
3155 }
3156 }
3157
3158 /*
3159 * nil rebuild_header routine,
3160 * that should be never called and used as just bug trap.
3161 */
3162
3163 if (!dev->rebuild_header)
3164 dev->rebuild_header = default_rebuild_header;
3165
3166 ret = netdev_register_sysfs(dev);
3167 if (ret)
3168 goto out;
3169 dev->reg_state = NETREG_REGISTERED;
3170
3171 /*
3172 * Default initial state at registry is that the
3173 * device is present.
3174 */
3175
3176 set_bit(__LINK_STATE_PRESENT, &dev->state);
3177
3178 dev_init_scheduler(dev);
3179 write_lock_bh(&dev_base_lock);
3180 list_add_tail(&dev->dev_list, &dev_base_head);
3181 hlist_add_head(&dev->name_hlist, head);
3182 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3183 dev_hold(dev);
3184 write_unlock_bh(&dev_base_lock);
3185
3186 /* Notify protocols, that a new device appeared. */
3187 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3188
3189 ret = 0;
3190
3191 out:
3192 return ret;
3193 }
3194
3195 /**
3196 * register_netdev - register a network device
3197 * @dev: device to register
3198 *
3199 * Take a completed network device structure and add it to the kernel
3200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3201 * chain. 0 is returned on success. A negative errno code is returned
3202 * on a failure to set up the device, or if the name is a duplicate.
3203 *
3204 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3205 * and expands the device name if you passed a format string to
3206 * alloc_netdev.
3207 */
3208 int register_netdev(struct net_device *dev)
3209 {
3210 int err;
3211
3212 rtnl_lock();
3213
3214 /*
3215 * If the name is a format string the caller wants us to do a
3216 * name allocation.
3217 */
3218 if (strchr(dev->name, '%')) {
3219 err = dev_alloc_name(dev, dev->name);
3220 if (err < 0)
3221 goto out;
3222 }
3223
3224 err = register_netdevice(dev);
3225 out:
3226 rtnl_unlock();
3227 return err;
3228 }
3229 EXPORT_SYMBOL(register_netdev);
3230
3231 /*
3232 * netdev_wait_allrefs - wait until all references are gone.
3233 *
3234 * This is called when unregistering network devices.
3235 *
3236 * Any protocol or device that holds a reference should register
3237 * for netdevice notification, and cleanup and put back the
3238 * reference if they receive an UNREGISTER event.
3239 * We can get stuck here if buggy protocols don't correctly
3240 * call dev_put.
3241 */
3242 static void netdev_wait_allrefs(struct net_device *dev)
3243 {
3244 unsigned long rebroadcast_time, warning_time;
3245
3246 rebroadcast_time = warning_time = jiffies;
3247 while (atomic_read(&dev->refcnt) != 0) {
3248 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3249 rtnl_lock();
3250
3251 /* Rebroadcast unregister notification */
3252 raw_notifier_call_chain(&netdev_chain,
3253 NETDEV_UNREGISTER, dev);
3254
3255 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3256 &dev->state)) {
3257 /* We must not have linkwatch events
3258 * pending on unregister. If this
3259 * happens, we simply run the queue
3260 * unscheduled, resulting in a noop
3261 * for this device.
3262 */
3263 linkwatch_run_queue();
3264 }
3265
3266 __rtnl_unlock();
3267
3268 rebroadcast_time = jiffies;
3269 }
3270
3271 msleep(250);
3272
3273 if (time_after(jiffies, warning_time + 10 * HZ)) {
3274 printk(KERN_EMERG "unregister_netdevice: "
3275 "waiting for %s to become free. Usage "
3276 "count = %d\n",
3277 dev->name, atomic_read(&dev->refcnt));
3278 warning_time = jiffies;
3279 }
3280 }
3281 }
3282
3283 /* The sequence is:
3284 *
3285 * rtnl_lock();
3286 * ...
3287 * register_netdevice(x1);
3288 * register_netdevice(x2);
3289 * ...
3290 * unregister_netdevice(y1);
3291 * unregister_netdevice(y2);
3292 * ...
3293 * rtnl_unlock();
3294 * free_netdev(y1);
3295 * free_netdev(y2);
3296 *
3297 * We are invoked by rtnl_unlock() after it drops the semaphore.
3298 * This allows us to deal with problems:
3299 * 1) We can delete sysfs objects which invoke hotplug
3300 * without deadlocking with linkwatch via keventd.
3301 * 2) Since we run with the RTNL semaphore not held, we can sleep
3302 * safely in order to wait for the netdev refcnt to drop to zero.
3303 */
3304 static DEFINE_MUTEX(net_todo_run_mutex);
3305 void netdev_run_todo(void)
3306 {
3307 struct list_head list;
3308
3309 /* Need to guard against multiple cpu's getting out of order. */
3310 mutex_lock(&net_todo_run_mutex);
3311
3312 /* Not safe to do outside the semaphore. We must not return
3313 * until all unregister events invoked by the local processor
3314 * have been completed (either by this todo run, or one on
3315 * another cpu).
3316 */
3317 if (list_empty(&net_todo_list))
3318 goto out;
3319
3320 /* Snapshot list, allow later requests */
3321 spin_lock(&net_todo_list_lock);
3322 list_replace_init(&net_todo_list, &list);
3323 spin_unlock(&net_todo_list_lock);
3324
3325 while (!list_empty(&list)) {
3326 struct net_device *dev
3327 = list_entry(list.next, struct net_device, todo_list);
3328 list_del(&dev->todo_list);
3329
3330 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3331 printk(KERN_ERR "network todo '%s' but state %d\n",
3332 dev->name, dev->reg_state);
3333 dump_stack();
3334 continue;
3335 }
3336
3337 dev->reg_state = NETREG_UNREGISTERED;
3338
3339 netdev_wait_allrefs(dev);
3340
3341 /* paranoia */
3342 BUG_ON(atomic_read(&dev->refcnt));
3343 BUG_TRAP(!dev->ip_ptr);
3344 BUG_TRAP(!dev->ip6_ptr);
3345 BUG_TRAP(!dev->dn_ptr);
3346
3347 if (dev->destructor)
3348 dev->destructor(dev);
3349
3350 /* Free network device */
3351 kobject_put(&dev->dev.kobj);
3352 }
3353
3354 out:
3355 mutex_unlock(&net_todo_run_mutex);
3356 }
3357
3358 static struct net_device_stats *internal_stats(struct net_device *dev)
3359 {
3360 return &dev->stats;
3361 }
3362
3363 /**
3364 * alloc_netdev - allocate network device
3365 * @sizeof_priv: size of private data to allocate space for
3366 * @name: device name format string
3367 * @setup: callback to initialize device
3368 *
3369 * Allocates a struct net_device with private data area for driver use
3370 * and performs basic initialization.
3371 */
3372 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3373 void (*setup)(struct net_device *))
3374 {
3375 void *p;
3376 struct net_device *dev;
3377 int alloc_size;
3378
3379 BUG_ON(strlen(name) >= sizeof(dev->name));
3380
3381 /* ensure 32-byte alignment of both the device and private area */
3382 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3383 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3384
3385 p = kzalloc(alloc_size, GFP_KERNEL);
3386 if (!p) {
3387 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3388 return NULL;
3389 }
3390
3391 dev = (struct net_device *)
3392 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3393 dev->padded = (char *)dev - (char *)p;
3394
3395 if (sizeof_priv)
3396 dev->priv = netdev_priv(dev);
3397
3398 dev->get_stats = internal_stats;
3399 setup(dev);
3400 strcpy(dev->name, name);
3401 return dev;
3402 }
3403 EXPORT_SYMBOL(alloc_netdev);
3404
3405 /**
3406 * free_netdev - free network device
3407 * @dev: device
3408 *
3409 * This function does the last stage of destroying an allocated device
3410 * interface. The reference to the device object is released.
3411 * If this is the last reference then it will be freed.
3412 */
3413 void free_netdev(struct net_device *dev)
3414 {
3415 #ifdef CONFIG_SYSFS
3416 /* Compatibility with error handling in drivers */
3417 if (dev->reg_state == NETREG_UNINITIALIZED) {
3418 kfree((char *)dev - dev->padded);
3419 return;
3420 }
3421
3422 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3423 dev->reg_state = NETREG_RELEASED;
3424
3425 /* will free via device release */
3426 put_device(&dev->dev);
3427 #else
3428 kfree((char *)dev - dev->padded);
3429 #endif
3430 }
3431
3432 /* Synchronize with packet receive processing. */
3433 void synchronize_net(void)
3434 {
3435 might_sleep();
3436 synchronize_rcu();
3437 }
3438
3439 /**
3440 * unregister_netdevice - remove device from the kernel
3441 * @dev: device
3442 *
3443 * This function shuts down a device interface and removes it
3444 * from the kernel tables. On success 0 is returned, on a failure
3445 * a negative errno code is returned.
3446 *
3447 * Callers must hold the rtnl semaphore. You may want
3448 * unregister_netdev() instead of this.
3449 */
3450
3451 void unregister_netdevice(struct net_device *dev)
3452 {
3453 BUG_ON(dev_boot_phase);
3454 ASSERT_RTNL();
3455
3456 /* Some devices call without registering for initialization unwind. */
3457 if (dev->reg_state == NETREG_UNINITIALIZED) {
3458 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3459 "was registered\n", dev->name, dev);
3460
3461 WARN_ON(1);
3462 return;
3463 }
3464
3465 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3466
3467 /* If device is running, close it first. */
3468 if (dev->flags & IFF_UP)
3469 dev_close(dev);
3470
3471 /* And unlink it from device chain. */
3472 write_lock_bh(&dev_base_lock);
3473 list_del(&dev->dev_list);
3474 hlist_del(&dev->name_hlist);
3475 hlist_del(&dev->index_hlist);
3476 write_unlock_bh(&dev_base_lock);
3477
3478 dev->reg_state = NETREG_UNREGISTERING;
3479
3480 synchronize_net();
3481
3482 /* Shutdown queueing discipline. */
3483 dev_shutdown(dev);
3484
3485
3486 /* Notify protocols, that we are about to destroy
3487 this device. They should clean all the things.
3488 */
3489 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3490
3491 /*
3492 * Flush the multicast chain
3493 */
3494 dev_mc_discard(dev);
3495
3496 if (dev->uninit)
3497 dev->uninit(dev);
3498
3499 /* Notifier chain MUST detach us from master device. */
3500 BUG_TRAP(!dev->master);
3501
3502 /* Remove entries from sysfs */
3503 netdev_unregister_sysfs(dev);
3504
3505 /* Finish processing unregister after unlock */
3506 net_set_todo(dev);
3507
3508 synchronize_net();
3509
3510 dev_put(dev);
3511 }
3512
3513 /**
3514 * unregister_netdev - remove device from the kernel
3515 * @dev: device
3516 *
3517 * This function shuts down a device interface and removes it
3518 * from the kernel tables. On success 0 is returned, on a failure
3519 * a negative errno code is returned.
3520 *
3521 * This is just a wrapper for unregister_netdevice that takes
3522 * the rtnl semaphore. In general you want to use this and not
3523 * unregister_netdevice.
3524 */
3525 void unregister_netdev(struct net_device *dev)
3526 {
3527 rtnl_lock();
3528 unregister_netdevice(dev);
3529 rtnl_unlock();
3530 }
3531
3532 EXPORT_SYMBOL(unregister_netdev);
3533
3534 static int dev_cpu_callback(struct notifier_block *nfb,
3535 unsigned long action,
3536 void *ocpu)
3537 {
3538 struct sk_buff **list_skb;
3539 struct net_device **list_net;
3540 struct sk_buff *skb;
3541 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3542 struct softnet_data *sd, *oldsd;
3543
3544 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
3545 return NOTIFY_OK;
3546
3547 local_irq_disable();
3548 cpu = smp_processor_id();
3549 sd = &per_cpu(softnet_data, cpu);
3550 oldsd = &per_cpu(softnet_data, oldcpu);
3551
3552 /* Find end of our completion_queue. */
3553 list_skb = &sd->completion_queue;
3554 while (*list_skb)
3555 list_skb = &(*list_skb)->next;
3556 /* Append completion queue from offline CPU. */
3557 *list_skb = oldsd->completion_queue;
3558 oldsd->completion_queue = NULL;
3559
3560 /* Find end of our output_queue. */
3561 list_net = &sd->output_queue;
3562 while (*list_net)
3563 list_net = &(*list_net)->next_sched;
3564 /* Append output queue from offline CPU. */
3565 *list_net = oldsd->output_queue;
3566 oldsd->output_queue = NULL;
3567
3568 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3569 local_irq_enable();
3570
3571 /* Process offline CPU's input_pkt_queue */
3572 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3573 netif_rx(skb);
3574
3575 return NOTIFY_OK;
3576 }
3577
3578 #ifdef CONFIG_NET_DMA
3579 /**
3580 * net_dma_rebalance -
3581 * This is called when the number of channels allocated to the net_dma_client
3582 * changes. The net_dma_client tries to have one DMA channel per CPU.
3583 */
3584 static void net_dma_rebalance(void)
3585 {
3586 unsigned int cpu, i, n;
3587 struct dma_chan *chan;
3588
3589 if (net_dma_count == 0) {
3590 for_each_online_cpu(cpu)
3591 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3592 return;
3593 }
3594
3595 i = 0;
3596 cpu = first_cpu(cpu_online_map);
3597
3598 rcu_read_lock();
3599 list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3600 n = ((num_online_cpus() / net_dma_count)
3601 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3602
3603 while(n) {
3604 per_cpu(softnet_data, cpu).net_dma = chan;
3605 cpu = next_cpu(cpu, cpu_online_map);
3606 n--;
3607 }
3608 i++;
3609 }
3610 rcu_read_unlock();
3611 }
3612
3613 /**
3614 * netdev_dma_event - event callback for the net_dma_client
3615 * @client: should always be net_dma_client
3616 * @chan: DMA channel for the event
3617 * @event: event type
3618 */
3619 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3620 enum dma_event event)
3621 {
3622 spin_lock(&net_dma_event_lock);
3623 switch (event) {
3624 case DMA_RESOURCE_ADDED:
3625 net_dma_count++;
3626 net_dma_rebalance();
3627 break;
3628 case DMA_RESOURCE_REMOVED:
3629 net_dma_count--;
3630 net_dma_rebalance();
3631 break;
3632 default:
3633 break;
3634 }
3635 spin_unlock(&net_dma_event_lock);
3636 }
3637
3638 /**
3639 * netdev_dma_regiser - register the networking subsystem as a DMA client
3640 */
3641 static int __init netdev_dma_register(void)
3642 {
3643 spin_lock_init(&net_dma_event_lock);
3644 net_dma_client = dma_async_client_register(netdev_dma_event);
3645 if (net_dma_client == NULL)
3646 return -ENOMEM;
3647
3648 dma_async_client_chan_request(net_dma_client, num_online_cpus());
3649 return 0;
3650 }
3651
3652 #else
3653 static int __init netdev_dma_register(void) { return -ENODEV; }
3654 #endif /* CONFIG_NET_DMA */
3655
3656 /*
3657 * Initialize the DEV module. At boot time this walks the device list and
3658 * unhooks any devices that fail to initialise (normally hardware not
3659 * present) and leaves us with a valid list of present and active devices.
3660 *
3661 */
3662
3663 /*
3664 * This is called single threaded during boot, so no need
3665 * to take the rtnl semaphore.
3666 */
3667 static int __init net_dev_init(void)
3668 {
3669 int i, rc = -ENOMEM;
3670
3671 BUG_ON(!dev_boot_phase);
3672
3673 if (dev_proc_init())
3674 goto out;
3675
3676 if (netdev_sysfs_init())
3677 goto out;
3678
3679 INIT_LIST_HEAD(&ptype_all);
3680 for (i = 0; i < 16; i++)
3681 INIT_LIST_HEAD(&ptype_base[i]);
3682
3683 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3684 INIT_HLIST_HEAD(&dev_name_head[i]);
3685
3686 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3687 INIT_HLIST_HEAD(&dev_index_head[i]);
3688
3689 /*
3690 * Initialise the packet receive queues.
3691 */
3692
3693 for_each_possible_cpu(i) {
3694 struct softnet_data *queue;
3695
3696 queue = &per_cpu(softnet_data, i);
3697 skb_queue_head_init(&queue->input_pkt_queue);
3698 queue->completion_queue = NULL;
3699 INIT_LIST_HEAD(&queue->poll_list);
3700 set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3701 queue->backlog_dev.weight = weight_p;
3702 queue->backlog_dev.poll = process_backlog;
3703 atomic_set(&queue->backlog_dev.refcnt, 1);
3704 }
3705
3706 netdev_dma_register();
3707
3708 dev_boot_phase = 0;
3709
3710 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3711 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3712
3713 hotcpu_notifier(dev_cpu_callback, 0);
3714 dst_init();
3715 dev_mcast_init();
3716 rc = 0;
3717 out:
3718 return rc;
3719 }
3720
3721 subsys_initcall(net_dev_init);
3722
3723 EXPORT_SYMBOL(__dev_get_by_index);
3724 EXPORT_SYMBOL(__dev_get_by_name);
3725 EXPORT_SYMBOL(__dev_remove_pack);
3726 EXPORT_SYMBOL(dev_valid_name);
3727 EXPORT_SYMBOL(dev_add_pack);
3728 EXPORT_SYMBOL(dev_alloc_name);
3729 EXPORT_SYMBOL(dev_close);
3730 EXPORT_SYMBOL(dev_get_by_flags);
3731 EXPORT_SYMBOL(dev_get_by_index);
3732 EXPORT_SYMBOL(dev_get_by_name);
3733 EXPORT_SYMBOL(dev_open);
3734 EXPORT_SYMBOL(dev_queue_xmit);
3735 EXPORT_SYMBOL(dev_remove_pack);
3736 EXPORT_SYMBOL(dev_set_allmulti);
3737 EXPORT_SYMBOL(dev_set_promiscuity);
3738 EXPORT_SYMBOL(dev_change_flags);
3739 EXPORT_SYMBOL(dev_set_mtu);
3740 EXPORT_SYMBOL(dev_set_mac_address);
3741 EXPORT_SYMBOL(free_netdev);
3742 EXPORT_SYMBOL(netdev_boot_setup_check);
3743 EXPORT_SYMBOL(netdev_set_master);
3744 EXPORT_SYMBOL(netdev_state_change);
3745 EXPORT_SYMBOL(netif_receive_skb);
3746 EXPORT_SYMBOL(netif_rx);
3747 EXPORT_SYMBOL(register_gifconf);
3748 EXPORT_SYMBOL(register_netdevice);
3749 EXPORT_SYMBOL(register_netdevice_notifier);
3750 EXPORT_SYMBOL(skb_checksum_help);
3751 EXPORT_SYMBOL(synchronize_net);
3752 EXPORT_SYMBOL(unregister_netdevice);
3753 EXPORT_SYMBOL(unregister_netdevice_notifier);
3754 EXPORT_SYMBOL(net_enable_timestamp);
3755 EXPORT_SYMBOL(net_disable_timestamp);
3756 EXPORT_SYMBOL(dev_get_flags);
3757
3758 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3759 EXPORT_SYMBOL(br_handle_frame_hook);
3760 EXPORT_SYMBOL(br_fdb_get_hook);
3761 EXPORT_SYMBOL(br_fdb_put_hook);
3762 #endif
3763
3764 #ifdef CONFIG_KMOD
3765 EXPORT_SYMBOL(dev_load);
3766 #endif
3767
3768 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.141061 seconds and 5 git commands to generate.