a215269d2e35b98b1e6070b3eee234035c84330d
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold RCU
753 * The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 */
757
758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
759 const char *ha)
760 {
761 struct net_device *dev;
762
763 for_each_netdev_rcu(net, dev)
764 if (dev->type == type &&
765 !memcmp(dev->dev_addr, ha, dev->addr_len))
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
771
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 struct net_device *dev;
775
776 ASSERT_RTNL();
777 for_each_netdev(net, dev)
778 if (dev->type == type)
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev, *ret = NULL;
788
789 rcu_read_lock();
790 for_each_netdev_rcu(net, dev)
791 if (dev->type == type) {
792 dev_hold(dev);
793 ret = dev;
794 break;
795 }
796 rcu_read_unlock();
797 return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800
801 /**
802 * dev_get_by_flags_rcu - find any device with given flags
803 * @net: the applicable net namespace
804 * @if_flags: IFF_* values
805 * @mask: bitmask of bits in if_flags to check
806 *
807 * Search for any interface with the given flags. Returns NULL if a device
808 * is not found or a pointer to the device. Must be called inside
809 * rcu_read_lock(), and result refcount is unchanged.
810 */
811
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 unsigned short mask)
814 {
815 struct net_device *dev, *ret;
816
817 ret = NULL;
818 for_each_netdev_rcu(net, dev) {
819 if (((dev->flags ^ if_flags) & mask) == 0) {
820 ret = dev;
821 break;
822 }
823 }
824 return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827
828 /**
829 * dev_valid_name - check if name is okay for network device
830 * @name: name string
831 *
832 * Network device names need to be valid file names to
833 * to allow sysfs to work. We also disallow any kind of
834 * whitespace.
835 */
836 int dev_valid_name(const char *name)
837 {
838 if (*name == '\0')
839 return 0;
840 if (strlen(name) >= IFNAMSIZ)
841 return 0;
842 if (!strcmp(name, ".") || !strcmp(name, ".."))
843 return 0;
844
845 while (*name) {
846 if (*name == '/' || isspace(*name))
847 return 0;
848 name++;
849 }
850 return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853
854 /**
855 * __dev_alloc_name - allocate a name for a device
856 * @net: network namespace to allocate the device name in
857 * @name: name format string
858 * @buf: scratch buffer and result name string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 int i = 0;
872 const char *p;
873 const int max_netdevices = 8*PAGE_SIZE;
874 unsigned long *inuse;
875 struct net_device *d;
876
877 p = strnchr(name, IFNAMSIZ-1, '%');
878 if (p) {
879 /*
880 * Verify the string as this thing may have come from
881 * the user. There must be either one "%d" and no other "%"
882 * characters.
883 */
884 if (p[1] != 'd' || strchr(p + 2, '%'))
885 return -EINVAL;
886
887 /* Use one page as a bit array of possible slots */
888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 if (!inuse)
890 return -ENOMEM;
891
892 for_each_netdev(net, d) {
893 if (!sscanf(d->name, name, &i))
894 continue;
895 if (i < 0 || i >= max_netdevices)
896 continue;
897
898 /* avoid cases where sscanf is not exact inverse of printf */
899 snprintf(buf, IFNAMSIZ, name, i);
900 if (!strncmp(buf, d->name, IFNAMSIZ))
901 set_bit(i, inuse);
902 }
903
904 i = find_first_zero_bit(inuse, max_netdevices);
905 free_page((unsigned long) inuse);
906 }
907
908 if (buf != name)
909 snprintf(buf, IFNAMSIZ, name, i);
910 if (!__dev_get_by_name(net, buf))
911 return i;
912
913 /* It is possible to run out of possible slots
914 * when the name is long and there isn't enough space left
915 * for the digits, or if all bits are used.
916 */
917 return -ENFILE;
918 }
919
920 /**
921 * dev_alloc_name - allocate a name for a device
922 * @dev: device
923 * @name: name format string
924 *
925 * Passed a format string - eg "lt%d" it will try and find a suitable
926 * id. It scans list of devices to build up a free map, then chooses
927 * the first empty slot. The caller must hold the dev_base or rtnl lock
928 * while allocating the name and adding the device in order to avoid
929 * duplicates.
930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931 * Returns the number of the unit assigned or a negative errno code.
932 */
933
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 char buf[IFNAMSIZ];
937 struct net *net;
938 int ret;
939
940 BUG_ON(!dev_net(dev));
941 net = dev_net(dev);
942 ret = __dev_alloc_name(net, name, buf);
943 if (ret >= 0)
944 strlcpy(dev->name, buf, IFNAMSIZ);
945 return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 struct net *net;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955
956 if (!dev_valid_name(name))
957 return -EINVAL;
958
959 if (fmt && strchr(name, '%'))
960 return dev_alloc_name(dev, name);
961 else if (__dev_get_by_name(net, name))
962 return -EEXIST;
963 else if (dev->name != name)
964 strlcpy(dev->name, name, IFNAMSIZ);
965
966 return 0;
967 }
968
969 /**
970 * dev_change_name - change name of a device
971 * @dev: device
972 * @newname: name (or format string) must be at least IFNAMSIZ
973 *
974 * Change name of a device, can pass format strings "eth%d".
975 * for wildcarding.
976 */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 char oldname[IFNAMSIZ];
980 int err = 0;
981 int ret;
982 struct net *net;
983
984 ASSERT_RTNL();
985 BUG_ON(!dev_net(dev));
986
987 net = dev_net(dev);
988 if (dev->flags & IFF_UP)
989 return -EBUSY;
990
991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 return 0;
993
994 memcpy(oldname, dev->name, IFNAMSIZ);
995
996 err = dev_get_valid_name(dev, newname, 1);
997 if (err < 0)
998 return err;
999
1000 rollback:
1001 ret = device_rename(&dev->dev, dev->name);
1002 if (ret) {
1003 memcpy(dev->name, oldname, IFNAMSIZ);
1004 return ret;
1005 }
1006
1007 write_lock_bh(&dev_base_lock);
1008 hlist_del(&dev->name_hlist);
1009 write_unlock_bh(&dev_base_lock);
1010
1011 synchronize_rcu();
1012
1013 write_lock_bh(&dev_base_lock);
1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 write_unlock_bh(&dev_base_lock);
1016
1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 ret = notifier_to_errno(ret);
1019
1020 if (ret) {
1021 /* err >= 0 after dev_alloc_name() or stores the first errno */
1022 if (err >= 0) {
1023 err = ret;
1024 memcpy(dev->name, oldname, IFNAMSIZ);
1025 goto rollback;
1026 } else {
1027 printk(KERN_ERR
1028 "%s: name change rollback failed: %d.\n",
1029 dev->name, ret);
1030 }
1031 }
1032
1033 return err;
1034 }
1035
1036 /**
1037 * dev_set_alias - change ifalias of a device
1038 * @dev: device
1039 * @alias: name up to IFALIASZ
1040 * @len: limit of bytes to copy from info
1041 *
1042 * Set ifalias for a device,
1043 */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 ASSERT_RTNL();
1047
1048 if (len >= IFALIASZ)
1049 return -EINVAL;
1050
1051 if (!len) {
1052 if (dev->ifalias) {
1053 kfree(dev->ifalias);
1054 dev->ifalias = NULL;
1055 }
1056 return 0;
1057 }
1058
1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 if (!dev->ifalias)
1061 return -ENOMEM;
1062
1063 strlcpy(dev->ifalias, alias, len+1);
1064 return len;
1065 }
1066
1067
1068 /**
1069 * netdev_features_change - device changes features
1070 * @dev: device to cause notification
1071 *
1072 * Called to indicate a device has changed features.
1073 */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079
1080 /**
1081 * netdev_state_change - device changes state
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed state. This function calls
1085 * the notifier chains for netdev_chain and sends a NEWLINK message
1086 * to the routing socket.
1087 */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 if (dev->flags & IFF_UP) {
1091 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 }
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102
1103 /**
1104 * dev_load - load a network module
1105 * @net: the applicable net namespace
1106 * @name: name of interface
1107 *
1108 * If a network interface is not present and the process has suitable
1109 * privileges this function loads the module. If module loading is not
1110 * available in this kernel then it becomes a nop.
1111 */
1112
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 struct net_device *dev;
1116
1117 rcu_read_lock();
1118 dev = dev_get_by_name_rcu(net, name);
1119 rcu_read_unlock();
1120
1121 if (!dev && capable(CAP_NET_ADMIN))
1122 request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 const struct net_device_ops *ops = dev->netdev_ops;
1129 int ret;
1130
1131 ASSERT_RTNL();
1132
1133 /*
1134 * Is it even present?
1135 */
1136 if (!netif_device_present(dev))
1137 return -ENODEV;
1138
1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 ret = notifier_to_errno(ret);
1141 if (ret)
1142 return ret;
1143
1144 /*
1145 * Call device private open method
1146 */
1147 set_bit(__LINK_STATE_START, &dev->state);
1148
1149 if (ops->ndo_validate_addr)
1150 ret = ops->ndo_validate_addr(dev);
1151
1152 if (!ret && ops->ndo_open)
1153 ret = ops->ndo_open(dev);
1154
1155 /*
1156 * If it went open OK then:
1157 */
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 /*
1163 * Set the flags.
1164 */
1165 dev->flags |= IFF_UP;
1166
1167 /*
1168 * Enable NET_DMA
1169 */
1170 net_dmaengine_get();
1171
1172 /*
1173 * Initialize multicasting status
1174 */
1175 dev_set_rx_mode(dev);
1176
1177 /*
1178 * Wakeup transmit queue engine
1179 */
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 /*
1203 * Is it already up?
1204 */
1205 if (dev->flags & IFF_UP)
1206 return 0;
1207
1208 /*
1209 * Open device
1210 */
1211 ret = __dev_open(dev);
1212 if (ret < 0)
1213 return ret;
1214
1215 /*
1216 * ... and announce new interface.
1217 */
1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 call_netdevice_notifiers(NETDEV_UP, dev);
1220
1221 return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224
1225 static int __dev_close_many(struct list_head *head)
1226 {
1227 struct net_device *dev;
1228
1229 ASSERT_RTNL();
1230 might_sleep();
1231
1232 list_for_each_entry(dev, head, unreg_list) {
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list, it
1242 * can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248 }
1249
1250 dev_deactivate_many(head);
1251
1252 list_for_each_entry(dev, head, unreg_list) {
1253 const struct net_device_ops *ops = dev->netdev_ops;
1254
1255 /*
1256 * Call the device specific close. This cannot fail.
1257 * Only if device is UP
1258 *
1259 * We allow it to be called even after a DETACH hot-plug
1260 * event.
1261 */
1262 if (ops->ndo_stop)
1263 ops->ndo_stop(dev);
1264
1265 /*
1266 * Device is now down.
1267 */
1268
1269 dev->flags &= ~IFF_UP;
1270
1271 /*
1272 * Shutdown NET_DMA
1273 */
1274 net_dmaengine_put();
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int __dev_close(struct net_device *dev)
1281 {
1282 LIST_HEAD(single);
1283
1284 list_add(&dev->unreg_list, &single);
1285 return __dev_close_many(&single);
1286 }
1287
1288 int dev_close_many(struct list_head *head)
1289 {
1290 struct net_device *dev, *tmp;
1291 LIST_HEAD(tmp_list);
1292
1293 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1294 if (!(dev->flags & IFF_UP))
1295 list_move(&dev->unreg_list, &tmp_list);
1296
1297 __dev_close_many(head);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 list_for_each_entry(dev, head, unreg_list) {
1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1304 call_netdevice_notifiers(NETDEV_DOWN, dev);
1305 }
1306
1307 /* rollback_registered_many needs the complete original list */
1308 list_splice(&tmp_list, head);
1309 return 0;
1310 }
1311
1312 /**
1313 * dev_close - shutdown an interface.
1314 * @dev: device to shutdown
1315 *
1316 * This function moves an active device into down state. A
1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1319 * chain.
1320 */
1321 int dev_close(struct net_device *dev)
1322 {
1323 LIST_HEAD(single);
1324
1325 list_add(&dev->unreg_list, &single);
1326 dev_close_many(&single);
1327
1328 return 0;
1329 }
1330 EXPORT_SYMBOL(dev_close);
1331
1332
1333 /**
1334 * dev_disable_lro - disable Large Receive Offload on a device
1335 * @dev: device
1336 *
1337 * Disable Large Receive Offload (LRO) on a net device. Must be
1338 * called under RTNL. This is needed if received packets may be
1339 * forwarded to another interface.
1340 */
1341 void dev_disable_lro(struct net_device *dev)
1342 {
1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1344 dev->ethtool_ops->set_flags) {
1345 u32 flags = dev->ethtool_ops->get_flags(dev);
1346 if (flags & ETH_FLAG_LRO) {
1347 flags &= ~ETH_FLAG_LRO;
1348 dev->ethtool_ops->set_flags(dev, flags);
1349 }
1350 }
1351 WARN_ON(dev->features & NETIF_F_LRO);
1352 }
1353 EXPORT_SYMBOL(dev_disable_lro);
1354
1355
1356 static int dev_boot_phase = 1;
1357
1358 /*
1359 * Device change register/unregister. These are not inline or static
1360 * as we export them to the world.
1361 */
1362
1363 /**
1364 * register_netdevice_notifier - register a network notifier block
1365 * @nb: notifier
1366 *
1367 * Register a notifier to be called when network device events occur.
1368 * The notifier passed is linked into the kernel structures and must
1369 * not be reused until it has been unregistered. A negative errno code
1370 * is returned on a failure.
1371 *
1372 * When registered all registration and up events are replayed
1373 * to the new notifier to allow device to have a race free
1374 * view of the network device list.
1375 */
1376
1377 int register_netdevice_notifier(struct notifier_block *nb)
1378 {
1379 struct net_device *dev;
1380 struct net_device *last;
1381 struct net *net;
1382 int err;
1383
1384 rtnl_lock();
1385 err = raw_notifier_chain_register(&netdev_chain, nb);
1386 if (err)
1387 goto unlock;
1388 if (dev_boot_phase)
1389 goto unlock;
1390 for_each_net(net) {
1391 for_each_netdev(net, dev) {
1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1393 err = notifier_to_errno(err);
1394 if (err)
1395 goto rollback;
1396
1397 if (!(dev->flags & IFF_UP))
1398 continue;
1399
1400 nb->notifier_call(nb, NETDEV_UP, dev);
1401 }
1402 }
1403
1404 unlock:
1405 rtnl_unlock();
1406 return err;
1407
1408 rollback:
1409 last = dev;
1410 for_each_net(net) {
1411 for_each_netdev(net, dev) {
1412 if (dev == last)
1413 break;
1414
1415 if (dev->flags & IFF_UP) {
1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1417 nb->notifier_call(nb, NETDEV_DOWN, dev);
1418 }
1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1421 }
1422 }
1423
1424 raw_notifier_chain_unregister(&netdev_chain, nb);
1425 goto unlock;
1426 }
1427 EXPORT_SYMBOL(register_netdevice_notifier);
1428
1429 /**
1430 * unregister_netdevice_notifier - unregister a network notifier block
1431 * @nb: notifier
1432 *
1433 * Unregister a notifier previously registered by
1434 * register_netdevice_notifier(). The notifier is unlinked into the
1435 * kernel structures and may then be reused. A negative errno code
1436 * is returned on a failure.
1437 */
1438
1439 int unregister_netdevice_notifier(struct notifier_block *nb)
1440 {
1441 int err;
1442
1443 rtnl_lock();
1444 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1445 rtnl_unlock();
1446 return err;
1447 }
1448 EXPORT_SYMBOL(unregister_netdevice_notifier);
1449
1450 /**
1451 * call_netdevice_notifiers - call all network notifier blocks
1452 * @val: value passed unmodified to notifier function
1453 * @dev: net_device pointer passed unmodified to notifier function
1454 *
1455 * Call all network notifier blocks. Parameters and return value
1456 * are as for raw_notifier_call_chain().
1457 */
1458
1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1460 {
1461 ASSERT_RTNL();
1462 return raw_notifier_call_chain(&netdev_chain, val, dev);
1463 }
1464
1465 /* When > 0 there are consumers of rx skb time stamps */
1466 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1467
1468 void net_enable_timestamp(void)
1469 {
1470 atomic_inc(&netstamp_needed);
1471 }
1472 EXPORT_SYMBOL(net_enable_timestamp);
1473
1474 void net_disable_timestamp(void)
1475 {
1476 atomic_dec(&netstamp_needed);
1477 }
1478 EXPORT_SYMBOL(net_disable_timestamp);
1479
1480 static inline void net_timestamp_set(struct sk_buff *skb)
1481 {
1482 if (atomic_read(&netstamp_needed))
1483 __net_timestamp(skb);
1484 else
1485 skb->tstamp.tv64 = 0;
1486 }
1487
1488 static inline void net_timestamp_check(struct sk_buff *skb)
1489 {
1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1491 __net_timestamp(skb);
1492 }
1493
1494 /**
1495 * dev_forward_skb - loopback an skb to another netif
1496 *
1497 * @dev: destination network device
1498 * @skb: buffer to forward
1499 *
1500 * return values:
1501 * NET_RX_SUCCESS (no congestion)
1502 * NET_RX_DROP (packet was dropped, but freed)
1503 *
1504 * dev_forward_skb can be used for injecting an skb from the
1505 * start_xmit function of one device into the receive queue
1506 * of another device.
1507 *
1508 * The receiving device may be in another namespace, so
1509 * we have to clear all information in the skb that could
1510 * impact namespace isolation.
1511 */
1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1513 {
1514 skb_orphan(skb);
1515 nf_reset(skb);
1516
1517 if (unlikely(!(dev->flags & IFF_UP) ||
1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1519 atomic_long_inc(&dev->rx_dropped);
1520 kfree_skb(skb);
1521 return NET_RX_DROP;
1522 }
1523 skb_set_dev(skb, dev);
1524 skb->tstamp.tv64 = 0;
1525 skb->pkt_type = PACKET_HOST;
1526 skb->protocol = eth_type_trans(skb, dev);
1527 return netif_rx(skb);
1528 }
1529 EXPORT_SYMBOL_GPL(dev_forward_skb);
1530
1531 static inline int deliver_skb(struct sk_buff *skb,
1532 struct packet_type *pt_prev,
1533 struct net_device *orig_dev)
1534 {
1535 atomic_inc(&skb->users);
1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1537 }
1538
1539 /*
1540 * Support routine. Sends outgoing frames to any network
1541 * taps currently in use.
1542 */
1543
1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1545 {
1546 struct packet_type *ptype;
1547 struct sk_buff *skb2 = NULL;
1548 struct packet_type *pt_prev = NULL;
1549
1550 rcu_read_lock();
1551 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1552 /* Never send packets back to the socket
1553 * they originated from - MvS (miquels@drinkel.ow.org)
1554 */
1555 if ((ptype->dev == dev || !ptype->dev) &&
1556 (ptype->af_packet_priv == NULL ||
1557 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1558 if (pt_prev) {
1559 deliver_skb(skb2, pt_prev, skb->dev);
1560 pt_prev = ptype;
1561 continue;
1562 }
1563
1564 skb2 = skb_clone(skb, GFP_ATOMIC);
1565 if (!skb2)
1566 break;
1567
1568 net_timestamp_set(skb2);
1569
1570 /* skb->nh should be correctly
1571 set by sender, so that the second statement is
1572 just protection against buggy protocols.
1573 */
1574 skb_reset_mac_header(skb2);
1575
1576 if (skb_network_header(skb2) < skb2->data ||
1577 skb2->network_header > skb2->tail) {
1578 if (net_ratelimit())
1579 printk(KERN_CRIT "protocol %04x is "
1580 "buggy, dev %s\n",
1581 ntohs(skb2->protocol),
1582 dev->name);
1583 skb_reset_network_header(skb2);
1584 }
1585
1586 skb2->transport_header = skb2->network_header;
1587 skb2->pkt_type = PACKET_OUTGOING;
1588 pt_prev = ptype;
1589 }
1590 }
1591 if (pt_prev)
1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1593 rcu_read_unlock();
1594 }
1595
1596 /*
1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1599 */
1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1601 {
1602 int rc;
1603
1604 if (txq < 1 || txq > dev->num_tx_queues)
1605 return -EINVAL;
1606
1607 if (dev->reg_state == NETREG_REGISTERED) {
1608 ASSERT_RTNL();
1609
1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1611 txq);
1612 if (rc)
1613 return rc;
1614
1615 if (txq < dev->real_num_tx_queues)
1616 qdisc_reset_all_tx_gt(dev, txq);
1617 }
1618
1619 dev->real_num_tx_queues = txq;
1620 return 0;
1621 }
1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1623
1624 #ifdef CONFIG_RPS
1625 /**
1626 * netif_set_real_num_rx_queues - set actual number of RX queues used
1627 * @dev: Network device
1628 * @rxq: Actual number of RX queues
1629 *
1630 * This must be called either with the rtnl_lock held or before
1631 * registration of the net device. Returns 0 on success, or a
1632 * negative error code. If called before registration, it always
1633 * succeeds.
1634 */
1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1636 {
1637 int rc;
1638
1639 if (rxq < 1 || rxq > dev->num_rx_queues)
1640 return -EINVAL;
1641
1642 if (dev->reg_state == NETREG_REGISTERED) {
1643 ASSERT_RTNL();
1644
1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1646 rxq);
1647 if (rc)
1648 return rc;
1649 }
1650
1651 dev->real_num_rx_queues = rxq;
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1655 #endif
1656
1657 static inline void __netif_reschedule(struct Qdisc *q)
1658 {
1659 struct softnet_data *sd;
1660 unsigned long flags;
1661
1662 local_irq_save(flags);
1663 sd = &__get_cpu_var(softnet_data);
1664 q->next_sched = NULL;
1665 *sd->output_queue_tailp = q;
1666 sd->output_queue_tailp = &q->next_sched;
1667 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1668 local_irq_restore(flags);
1669 }
1670
1671 void __netif_schedule(struct Qdisc *q)
1672 {
1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1674 __netif_reschedule(q);
1675 }
1676 EXPORT_SYMBOL(__netif_schedule);
1677
1678 void dev_kfree_skb_irq(struct sk_buff *skb)
1679 {
1680 if (atomic_dec_and_test(&skb->users)) {
1681 struct softnet_data *sd;
1682 unsigned long flags;
1683
1684 local_irq_save(flags);
1685 sd = &__get_cpu_var(softnet_data);
1686 skb->next = sd->completion_queue;
1687 sd->completion_queue = skb;
1688 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1689 local_irq_restore(flags);
1690 }
1691 }
1692 EXPORT_SYMBOL(dev_kfree_skb_irq);
1693
1694 void dev_kfree_skb_any(struct sk_buff *skb)
1695 {
1696 if (in_irq() || irqs_disabled())
1697 dev_kfree_skb_irq(skb);
1698 else
1699 dev_kfree_skb(skb);
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_any);
1702
1703
1704 /**
1705 * netif_device_detach - mark device as removed
1706 * @dev: network device
1707 *
1708 * Mark device as removed from system and therefore no longer available.
1709 */
1710 void netif_device_detach(struct net_device *dev)
1711 {
1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1713 netif_running(dev)) {
1714 netif_tx_stop_all_queues(dev);
1715 }
1716 }
1717 EXPORT_SYMBOL(netif_device_detach);
1718
1719 /**
1720 * netif_device_attach - mark device as attached
1721 * @dev: network device
1722 *
1723 * Mark device as attached from system and restart if needed.
1724 */
1725 void netif_device_attach(struct net_device *dev)
1726 {
1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1728 netif_running(dev)) {
1729 netif_tx_wake_all_queues(dev);
1730 __netdev_watchdog_up(dev);
1731 }
1732 }
1733 EXPORT_SYMBOL(netif_device_attach);
1734
1735 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1736 {
1737 return ((features & NETIF_F_NO_CSUM) ||
1738 ((features & NETIF_F_V4_CSUM) &&
1739 protocol == htons(ETH_P_IP)) ||
1740 ((features & NETIF_F_V6_CSUM) &&
1741 protocol == htons(ETH_P_IPV6)) ||
1742 ((features & NETIF_F_FCOE_CRC) &&
1743 protocol == htons(ETH_P_FCOE)));
1744 }
1745
1746 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1747 {
1748 __be16 protocol = skb->protocol;
1749 int features = dev->features;
1750
1751 if (vlan_tx_tag_present(skb)) {
1752 features &= dev->vlan_features;
1753 } else if (protocol == htons(ETH_P_8021Q)) {
1754 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1755 protocol = veh->h_vlan_encapsulated_proto;
1756 features &= dev->vlan_features;
1757 }
1758
1759 return can_checksum_protocol(features, protocol);
1760 }
1761
1762 /**
1763 * skb_dev_set -- assign a new device to a buffer
1764 * @skb: buffer for the new device
1765 * @dev: network device
1766 *
1767 * If an skb is owned by a device already, we have to reset
1768 * all data private to the namespace a device belongs to
1769 * before assigning it a new device.
1770 */
1771 #ifdef CONFIG_NET_NS
1772 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1773 {
1774 skb_dst_drop(skb);
1775 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1776 secpath_reset(skb);
1777 nf_reset(skb);
1778 skb_init_secmark(skb);
1779 skb->mark = 0;
1780 skb->priority = 0;
1781 skb->nf_trace = 0;
1782 skb->ipvs_property = 0;
1783 #ifdef CONFIG_NET_SCHED
1784 skb->tc_index = 0;
1785 #endif
1786 }
1787 skb->dev = dev;
1788 }
1789 EXPORT_SYMBOL(skb_set_dev);
1790 #endif /* CONFIG_NET_NS */
1791
1792 /*
1793 * Invalidate hardware checksum when packet is to be mangled, and
1794 * complete checksum manually on outgoing path.
1795 */
1796 int skb_checksum_help(struct sk_buff *skb)
1797 {
1798 __wsum csum;
1799 int ret = 0, offset;
1800
1801 if (skb->ip_summed == CHECKSUM_COMPLETE)
1802 goto out_set_summed;
1803
1804 if (unlikely(skb_shinfo(skb)->gso_size)) {
1805 /* Let GSO fix up the checksum. */
1806 goto out_set_summed;
1807 }
1808
1809 offset = skb_checksum_start_offset(skb);
1810 BUG_ON(offset >= skb_headlen(skb));
1811 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1812
1813 offset += skb->csum_offset;
1814 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1815
1816 if (skb_cloned(skb) &&
1817 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1818 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1819 if (ret)
1820 goto out;
1821 }
1822
1823 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1824 out_set_summed:
1825 skb->ip_summed = CHECKSUM_NONE;
1826 out:
1827 return ret;
1828 }
1829 EXPORT_SYMBOL(skb_checksum_help);
1830
1831 /**
1832 * skb_gso_segment - Perform segmentation on skb.
1833 * @skb: buffer to segment
1834 * @features: features for the output path (see dev->features)
1835 *
1836 * This function segments the given skb and returns a list of segments.
1837 *
1838 * It may return NULL if the skb requires no segmentation. This is
1839 * only possible when GSO is used for verifying header integrity.
1840 */
1841 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1842 {
1843 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1844 struct packet_type *ptype;
1845 __be16 type = skb->protocol;
1846 int vlan_depth = ETH_HLEN;
1847 int err;
1848
1849 while (type == htons(ETH_P_8021Q)) {
1850 struct vlan_hdr *vh;
1851
1852 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1853 return ERR_PTR(-EINVAL);
1854
1855 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1856 type = vh->h_vlan_encapsulated_proto;
1857 vlan_depth += VLAN_HLEN;
1858 }
1859
1860 skb_reset_mac_header(skb);
1861 skb->mac_len = skb->network_header - skb->mac_header;
1862 __skb_pull(skb, skb->mac_len);
1863
1864 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1865 struct net_device *dev = skb->dev;
1866 struct ethtool_drvinfo info = {};
1867
1868 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1869 dev->ethtool_ops->get_drvinfo(dev, &info);
1870
1871 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1872 info.driver, dev ? dev->features : 0L,
1873 skb->sk ? skb->sk->sk_route_caps : 0L,
1874 skb->len, skb->data_len, skb->ip_summed);
1875
1876 if (skb_header_cloned(skb) &&
1877 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1878 return ERR_PTR(err);
1879 }
1880
1881 rcu_read_lock();
1882 list_for_each_entry_rcu(ptype,
1883 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1884 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1885 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1886 err = ptype->gso_send_check(skb);
1887 segs = ERR_PTR(err);
1888 if (err || skb_gso_ok(skb, features))
1889 break;
1890 __skb_push(skb, (skb->data -
1891 skb_network_header(skb)));
1892 }
1893 segs = ptype->gso_segment(skb, features);
1894 break;
1895 }
1896 }
1897 rcu_read_unlock();
1898
1899 __skb_push(skb, skb->data - skb_mac_header(skb));
1900
1901 return segs;
1902 }
1903 EXPORT_SYMBOL(skb_gso_segment);
1904
1905 /* Take action when hardware reception checksum errors are detected. */
1906 #ifdef CONFIG_BUG
1907 void netdev_rx_csum_fault(struct net_device *dev)
1908 {
1909 if (net_ratelimit()) {
1910 printk(KERN_ERR "%s: hw csum failure.\n",
1911 dev ? dev->name : "<unknown>");
1912 dump_stack();
1913 }
1914 }
1915 EXPORT_SYMBOL(netdev_rx_csum_fault);
1916 #endif
1917
1918 /* Actually, we should eliminate this check as soon as we know, that:
1919 * 1. IOMMU is present and allows to map all the memory.
1920 * 2. No high memory really exists on this machine.
1921 */
1922
1923 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1924 {
1925 #ifdef CONFIG_HIGHMEM
1926 int i;
1927 if (!(dev->features & NETIF_F_HIGHDMA)) {
1928 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1929 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1930 return 1;
1931 }
1932
1933 if (PCI_DMA_BUS_IS_PHYS) {
1934 struct device *pdev = dev->dev.parent;
1935
1936 if (!pdev)
1937 return 0;
1938 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1939 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1940 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1941 return 1;
1942 }
1943 }
1944 #endif
1945 return 0;
1946 }
1947
1948 struct dev_gso_cb {
1949 void (*destructor)(struct sk_buff *skb);
1950 };
1951
1952 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1953
1954 static void dev_gso_skb_destructor(struct sk_buff *skb)
1955 {
1956 struct dev_gso_cb *cb;
1957
1958 do {
1959 struct sk_buff *nskb = skb->next;
1960
1961 skb->next = nskb->next;
1962 nskb->next = NULL;
1963 kfree_skb(nskb);
1964 } while (skb->next);
1965
1966 cb = DEV_GSO_CB(skb);
1967 if (cb->destructor)
1968 cb->destructor(skb);
1969 }
1970
1971 /**
1972 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1973 * @skb: buffer to segment
1974 *
1975 * This function segments the given skb and stores the list of segments
1976 * in skb->next.
1977 */
1978 static int dev_gso_segment(struct sk_buff *skb)
1979 {
1980 struct net_device *dev = skb->dev;
1981 struct sk_buff *segs;
1982 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1983 NETIF_F_SG : 0);
1984
1985 segs = skb_gso_segment(skb, features);
1986
1987 /* Verifying header integrity only. */
1988 if (!segs)
1989 return 0;
1990
1991 if (IS_ERR(segs))
1992 return PTR_ERR(segs);
1993
1994 skb->next = segs;
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005 */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 struct sock *sk = skb->sk;
2009
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2013 */
2014 if (!skb->rxhash)
2015 skb->rxhash = sk->sk_hash;
2016 skb_orphan(skb);
2017 }
2018 }
2019
2020 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
2021 {
2022 __be16 protocol = skb->protocol;
2023
2024 if (protocol == htons(ETH_P_8021Q)) {
2025 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2026 protocol = veh->h_vlan_encapsulated_proto;
2027 } else if (!skb->vlan_tci)
2028 return dev->features;
2029
2030 if (protocol != htons(ETH_P_8021Q))
2031 return dev->features & dev->vlan_features;
2032 else
2033 return 0;
2034 }
2035 EXPORT_SYMBOL(netif_get_vlan_features);
2036
2037 /*
2038 * Returns true if either:
2039 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2040 * 2. skb is fragmented and the device does not support SG, or if
2041 * at least one of fragments is in highmem and device does not
2042 * support DMA from it.
2043 */
2044 static inline int skb_needs_linearize(struct sk_buff *skb,
2045 struct net_device *dev)
2046 {
2047 if (skb_is_nonlinear(skb)) {
2048 int features = dev->features;
2049
2050 if (vlan_tx_tag_present(skb))
2051 features &= dev->vlan_features;
2052
2053 return (skb_has_frag_list(skb) &&
2054 !(features & NETIF_F_FRAGLIST)) ||
2055 (skb_shinfo(skb)->nr_frags &&
2056 (!(features & NETIF_F_SG) ||
2057 illegal_highdma(dev, skb)));
2058 }
2059
2060 return 0;
2061 }
2062
2063 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2064 struct netdev_queue *txq)
2065 {
2066 const struct net_device_ops *ops = dev->netdev_ops;
2067 int rc = NETDEV_TX_OK;
2068
2069 if (likely(!skb->next)) {
2070 /*
2071 * If device doesnt need skb->dst, release it right now while
2072 * its hot in this cpu cache
2073 */
2074 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2075 skb_dst_drop(skb);
2076
2077 if (!list_empty(&ptype_all))
2078 dev_queue_xmit_nit(skb, dev);
2079
2080 skb_orphan_try(skb);
2081
2082 if (vlan_tx_tag_present(skb) &&
2083 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2084 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2085 if (unlikely(!skb))
2086 goto out;
2087
2088 skb->vlan_tci = 0;
2089 }
2090
2091 if (netif_needs_gso(dev, skb)) {
2092 if (unlikely(dev_gso_segment(skb)))
2093 goto out_kfree_skb;
2094 if (skb->next)
2095 goto gso;
2096 } else {
2097 if (skb_needs_linearize(skb, dev) &&
2098 __skb_linearize(skb))
2099 goto out_kfree_skb;
2100
2101 /* If packet is not checksummed and device does not
2102 * support checksumming for this protocol, complete
2103 * checksumming here.
2104 */
2105 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2106 skb_set_transport_header(skb,
2107 skb_checksum_start_offset(skb));
2108 if (!dev_can_checksum(dev, skb) &&
2109 skb_checksum_help(skb))
2110 goto out_kfree_skb;
2111 }
2112 }
2113
2114 rc = ops->ndo_start_xmit(skb, dev);
2115 trace_net_dev_xmit(skb, rc);
2116 if (rc == NETDEV_TX_OK)
2117 txq_trans_update(txq);
2118 return rc;
2119 }
2120
2121 gso:
2122 do {
2123 struct sk_buff *nskb = skb->next;
2124
2125 skb->next = nskb->next;
2126 nskb->next = NULL;
2127
2128 /*
2129 * If device doesnt need nskb->dst, release it right now while
2130 * its hot in this cpu cache
2131 */
2132 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2133 skb_dst_drop(nskb);
2134
2135 rc = ops->ndo_start_xmit(nskb, dev);
2136 trace_net_dev_xmit(nskb, rc);
2137 if (unlikely(rc != NETDEV_TX_OK)) {
2138 if (rc & ~NETDEV_TX_MASK)
2139 goto out_kfree_gso_skb;
2140 nskb->next = skb->next;
2141 skb->next = nskb;
2142 return rc;
2143 }
2144 txq_trans_update(txq);
2145 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2146 return NETDEV_TX_BUSY;
2147 } while (skb->next);
2148
2149 out_kfree_gso_skb:
2150 if (likely(skb->next == NULL))
2151 skb->destructor = DEV_GSO_CB(skb)->destructor;
2152 out_kfree_skb:
2153 kfree_skb(skb);
2154 out:
2155 return rc;
2156 }
2157
2158 static u32 hashrnd __read_mostly;
2159
2160 /*
2161 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2162 * to be used as a distribution range.
2163 */
2164 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2165 unsigned int num_tx_queues)
2166 {
2167 u32 hash;
2168
2169 if (skb_rx_queue_recorded(skb)) {
2170 hash = skb_get_rx_queue(skb);
2171 while (unlikely(hash >= num_tx_queues))
2172 hash -= num_tx_queues;
2173 return hash;
2174 }
2175
2176 if (skb->sk && skb->sk->sk_hash)
2177 hash = skb->sk->sk_hash;
2178 else
2179 hash = (__force u16) skb->protocol ^ skb->rxhash;
2180 hash = jhash_1word(hash, hashrnd);
2181
2182 return (u16) (((u64) hash * num_tx_queues) >> 32);
2183 }
2184 EXPORT_SYMBOL(__skb_tx_hash);
2185
2186 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2187 {
2188 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2189 if (net_ratelimit()) {
2190 pr_warning("%s selects TX queue %d, but "
2191 "real number of TX queues is %d\n",
2192 dev->name, queue_index, dev->real_num_tx_queues);
2193 }
2194 return 0;
2195 }
2196 return queue_index;
2197 }
2198
2199 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2200 {
2201 #ifdef CONFIG_XPS
2202 struct xps_dev_maps *dev_maps;
2203 struct xps_map *map;
2204 int queue_index = -1;
2205
2206 rcu_read_lock();
2207 dev_maps = rcu_dereference(dev->xps_maps);
2208 if (dev_maps) {
2209 map = rcu_dereference(
2210 dev_maps->cpu_map[raw_smp_processor_id()]);
2211 if (map) {
2212 if (map->len == 1)
2213 queue_index = map->queues[0];
2214 else {
2215 u32 hash;
2216 if (skb->sk && skb->sk->sk_hash)
2217 hash = skb->sk->sk_hash;
2218 else
2219 hash = (__force u16) skb->protocol ^
2220 skb->rxhash;
2221 hash = jhash_1word(hash, hashrnd);
2222 queue_index = map->queues[
2223 ((u64)hash * map->len) >> 32];
2224 }
2225 if (unlikely(queue_index >= dev->real_num_tx_queues))
2226 queue_index = -1;
2227 }
2228 }
2229 rcu_read_unlock();
2230
2231 return queue_index;
2232 #else
2233 return -1;
2234 #endif
2235 }
2236
2237 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2238 struct sk_buff *skb)
2239 {
2240 int queue_index;
2241 const struct net_device_ops *ops = dev->netdev_ops;
2242
2243 if (dev->real_num_tx_queues == 1)
2244 queue_index = 0;
2245 else if (ops->ndo_select_queue) {
2246 queue_index = ops->ndo_select_queue(dev, skb);
2247 queue_index = dev_cap_txqueue(dev, queue_index);
2248 } else {
2249 struct sock *sk = skb->sk;
2250 queue_index = sk_tx_queue_get(sk);
2251
2252 if (queue_index < 0 || skb->ooo_okay ||
2253 queue_index >= dev->real_num_tx_queues) {
2254 int old_index = queue_index;
2255
2256 queue_index = get_xps_queue(dev, skb);
2257 if (queue_index < 0)
2258 queue_index = skb_tx_hash(dev, skb);
2259
2260 if (queue_index != old_index && sk) {
2261 struct dst_entry *dst =
2262 rcu_dereference_check(sk->sk_dst_cache, 1);
2263
2264 if (dst && skb_dst(skb) == dst)
2265 sk_tx_queue_set(sk, queue_index);
2266 }
2267 }
2268 }
2269
2270 skb_set_queue_mapping(skb, queue_index);
2271 return netdev_get_tx_queue(dev, queue_index);
2272 }
2273
2274 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2275 struct net_device *dev,
2276 struct netdev_queue *txq)
2277 {
2278 spinlock_t *root_lock = qdisc_lock(q);
2279 bool contended = qdisc_is_running(q);
2280 int rc;
2281
2282 /*
2283 * Heuristic to force contended enqueues to serialize on a
2284 * separate lock before trying to get qdisc main lock.
2285 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2286 * and dequeue packets faster.
2287 */
2288 if (unlikely(contended))
2289 spin_lock(&q->busylock);
2290
2291 spin_lock(root_lock);
2292 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2293 kfree_skb(skb);
2294 rc = NET_XMIT_DROP;
2295 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2296 qdisc_run_begin(q)) {
2297 /*
2298 * This is a work-conserving queue; there are no old skbs
2299 * waiting to be sent out; and the qdisc is not running -
2300 * xmit the skb directly.
2301 */
2302 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2303 skb_dst_force(skb);
2304 __qdisc_update_bstats(q, skb->len);
2305 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2306 if (unlikely(contended)) {
2307 spin_unlock(&q->busylock);
2308 contended = false;
2309 }
2310 __qdisc_run(q);
2311 } else
2312 qdisc_run_end(q);
2313
2314 rc = NET_XMIT_SUCCESS;
2315 } else {
2316 skb_dst_force(skb);
2317 rc = qdisc_enqueue_root(skb, q);
2318 if (qdisc_run_begin(q)) {
2319 if (unlikely(contended)) {
2320 spin_unlock(&q->busylock);
2321 contended = false;
2322 }
2323 __qdisc_run(q);
2324 }
2325 }
2326 spin_unlock(root_lock);
2327 if (unlikely(contended))
2328 spin_unlock(&q->busylock);
2329 return rc;
2330 }
2331
2332 static DEFINE_PER_CPU(int, xmit_recursion);
2333 #define RECURSION_LIMIT 10
2334
2335 /**
2336 * dev_queue_xmit - transmit a buffer
2337 * @skb: buffer to transmit
2338 *
2339 * Queue a buffer for transmission to a network device. The caller must
2340 * have set the device and priority and built the buffer before calling
2341 * this function. The function can be called from an interrupt.
2342 *
2343 * A negative errno code is returned on a failure. A success does not
2344 * guarantee the frame will be transmitted as it may be dropped due
2345 * to congestion or traffic shaping.
2346 *
2347 * -----------------------------------------------------------------------------------
2348 * I notice this method can also return errors from the queue disciplines,
2349 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2350 * be positive.
2351 *
2352 * Regardless of the return value, the skb is consumed, so it is currently
2353 * difficult to retry a send to this method. (You can bump the ref count
2354 * before sending to hold a reference for retry if you are careful.)
2355 *
2356 * When calling this method, interrupts MUST be enabled. This is because
2357 * the BH enable code must have IRQs enabled so that it will not deadlock.
2358 * --BLG
2359 */
2360 int dev_queue_xmit(struct sk_buff *skb)
2361 {
2362 struct net_device *dev = skb->dev;
2363 struct netdev_queue *txq;
2364 struct Qdisc *q;
2365 int rc = -ENOMEM;
2366
2367 /* Disable soft irqs for various locks below. Also
2368 * stops preemption for RCU.
2369 */
2370 rcu_read_lock_bh();
2371
2372 txq = dev_pick_tx(dev, skb);
2373 q = rcu_dereference_bh(txq->qdisc);
2374
2375 #ifdef CONFIG_NET_CLS_ACT
2376 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2377 #endif
2378 trace_net_dev_queue(skb);
2379 if (q->enqueue) {
2380 rc = __dev_xmit_skb(skb, q, dev, txq);
2381 goto out;
2382 }
2383
2384 /* The device has no queue. Common case for software devices:
2385 loopback, all the sorts of tunnels...
2386
2387 Really, it is unlikely that netif_tx_lock protection is necessary
2388 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2389 counters.)
2390 However, it is possible, that they rely on protection
2391 made by us here.
2392
2393 Check this and shot the lock. It is not prone from deadlocks.
2394 Either shot noqueue qdisc, it is even simpler 8)
2395 */
2396 if (dev->flags & IFF_UP) {
2397 int cpu = smp_processor_id(); /* ok because BHs are off */
2398
2399 if (txq->xmit_lock_owner != cpu) {
2400
2401 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2402 goto recursion_alert;
2403
2404 HARD_TX_LOCK(dev, txq, cpu);
2405
2406 if (!netif_tx_queue_stopped(txq)) {
2407 __this_cpu_inc(xmit_recursion);
2408 rc = dev_hard_start_xmit(skb, dev, txq);
2409 __this_cpu_dec(xmit_recursion);
2410 if (dev_xmit_complete(rc)) {
2411 HARD_TX_UNLOCK(dev, txq);
2412 goto out;
2413 }
2414 }
2415 HARD_TX_UNLOCK(dev, txq);
2416 if (net_ratelimit())
2417 printk(KERN_CRIT "Virtual device %s asks to "
2418 "queue packet!\n", dev->name);
2419 } else {
2420 /* Recursion is detected! It is possible,
2421 * unfortunately
2422 */
2423 recursion_alert:
2424 if (net_ratelimit())
2425 printk(KERN_CRIT "Dead loop on virtual device "
2426 "%s, fix it urgently!\n", dev->name);
2427 }
2428 }
2429
2430 rc = -ENETDOWN;
2431 rcu_read_unlock_bh();
2432
2433 kfree_skb(skb);
2434 return rc;
2435 out:
2436 rcu_read_unlock_bh();
2437 return rc;
2438 }
2439 EXPORT_SYMBOL(dev_queue_xmit);
2440
2441
2442 /*=======================================================================
2443 Receiver routines
2444 =======================================================================*/
2445
2446 int netdev_max_backlog __read_mostly = 1000;
2447 int netdev_tstamp_prequeue __read_mostly = 1;
2448 int netdev_budget __read_mostly = 300;
2449 int weight_p __read_mostly = 64; /* old backlog weight */
2450
2451 /* Called with irq disabled */
2452 static inline void ____napi_schedule(struct softnet_data *sd,
2453 struct napi_struct *napi)
2454 {
2455 list_add_tail(&napi->poll_list, &sd->poll_list);
2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 }
2458
2459 /*
2460 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2461 * and src/dst port numbers. Returns a non-zero hash number on success
2462 * and 0 on failure.
2463 */
2464 __u32 __skb_get_rxhash(struct sk_buff *skb)
2465 {
2466 int nhoff, hash = 0, poff;
2467 struct ipv6hdr *ip6;
2468 struct iphdr *ip;
2469 u8 ip_proto;
2470 u32 addr1, addr2, ihl;
2471 union {
2472 u32 v32;
2473 u16 v16[2];
2474 } ports;
2475
2476 nhoff = skb_network_offset(skb);
2477
2478 switch (skb->protocol) {
2479 case __constant_htons(ETH_P_IP):
2480 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2481 goto done;
2482
2483 ip = (struct iphdr *) (skb->data + nhoff);
2484 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2485 ip_proto = 0;
2486 else
2487 ip_proto = ip->protocol;
2488 addr1 = (__force u32) ip->saddr;
2489 addr2 = (__force u32) ip->daddr;
2490 ihl = ip->ihl;
2491 break;
2492 case __constant_htons(ETH_P_IPV6):
2493 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2494 goto done;
2495
2496 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2497 ip_proto = ip6->nexthdr;
2498 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2499 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2500 ihl = (40 >> 2);
2501 break;
2502 default:
2503 goto done;
2504 }
2505
2506 ports.v32 = 0;
2507 poff = proto_ports_offset(ip_proto);
2508 if (poff >= 0) {
2509 nhoff += ihl * 4 + poff;
2510 if (pskb_may_pull(skb, nhoff + 4)) {
2511 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2512 if (ports.v16[1] < ports.v16[0])
2513 swap(ports.v16[0], ports.v16[1]);
2514 }
2515 }
2516
2517 /* get a consistent hash (same value on both flow directions) */
2518 if (addr2 < addr1)
2519 swap(addr1, addr2);
2520
2521 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2522 if (!hash)
2523 hash = 1;
2524
2525 done:
2526 return hash;
2527 }
2528 EXPORT_SYMBOL(__skb_get_rxhash);
2529
2530 #ifdef CONFIG_RPS
2531
2532 /* One global table that all flow-based protocols share. */
2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2534 EXPORT_SYMBOL(rps_sock_flow_table);
2535
2536 /*
2537 * get_rps_cpu is called from netif_receive_skb and returns the target
2538 * CPU from the RPS map of the receiving queue for a given skb.
2539 * rcu_read_lock must be held on entry.
2540 */
2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2542 struct rps_dev_flow **rflowp)
2543 {
2544 struct netdev_rx_queue *rxqueue;
2545 struct rps_map *map;
2546 struct rps_dev_flow_table *flow_table;
2547 struct rps_sock_flow_table *sock_flow_table;
2548 int cpu = -1;
2549 u16 tcpu;
2550
2551 if (skb_rx_queue_recorded(skb)) {
2552 u16 index = skb_get_rx_queue(skb);
2553 if (unlikely(index >= dev->real_num_rx_queues)) {
2554 WARN_ONCE(dev->real_num_rx_queues > 1,
2555 "%s received packet on queue %u, but number "
2556 "of RX queues is %u\n",
2557 dev->name, index, dev->real_num_rx_queues);
2558 goto done;
2559 }
2560 rxqueue = dev->_rx + index;
2561 } else
2562 rxqueue = dev->_rx;
2563
2564 map = rcu_dereference(rxqueue->rps_map);
2565 if (map) {
2566 if (map->len == 1) {
2567 tcpu = map->cpus[0];
2568 if (cpu_online(tcpu))
2569 cpu = tcpu;
2570 goto done;
2571 }
2572 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2573 goto done;
2574 }
2575
2576 skb_reset_network_header(skb);
2577 if (!skb_get_rxhash(skb))
2578 goto done;
2579
2580 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2581 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2582 if (flow_table && sock_flow_table) {
2583 u16 next_cpu;
2584 struct rps_dev_flow *rflow;
2585
2586 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2587 tcpu = rflow->cpu;
2588
2589 next_cpu = sock_flow_table->ents[skb->rxhash &
2590 sock_flow_table->mask];
2591
2592 /*
2593 * If the desired CPU (where last recvmsg was done) is
2594 * different from current CPU (one in the rx-queue flow
2595 * table entry), switch if one of the following holds:
2596 * - Current CPU is unset (equal to RPS_NO_CPU).
2597 * - Current CPU is offline.
2598 * - The current CPU's queue tail has advanced beyond the
2599 * last packet that was enqueued using this table entry.
2600 * This guarantees that all previous packets for the flow
2601 * have been dequeued, thus preserving in order delivery.
2602 */
2603 if (unlikely(tcpu != next_cpu) &&
2604 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2605 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2606 rflow->last_qtail)) >= 0)) {
2607 tcpu = rflow->cpu = next_cpu;
2608 if (tcpu != RPS_NO_CPU)
2609 rflow->last_qtail = per_cpu(softnet_data,
2610 tcpu).input_queue_head;
2611 }
2612 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2613 *rflowp = rflow;
2614 cpu = tcpu;
2615 goto done;
2616 }
2617 }
2618
2619 if (map) {
2620 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2621
2622 if (cpu_online(tcpu)) {
2623 cpu = tcpu;
2624 goto done;
2625 }
2626 }
2627
2628 done:
2629 return cpu;
2630 }
2631
2632 /* Called from hardirq (IPI) context */
2633 static void rps_trigger_softirq(void *data)
2634 {
2635 struct softnet_data *sd = data;
2636
2637 ____napi_schedule(sd, &sd->backlog);
2638 sd->received_rps++;
2639 }
2640
2641 #endif /* CONFIG_RPS */
2642
2643 /*
2644 * Check if this softnet_data structure is another cpu one
2645 * If yes, queue it to our IPI list and return 1
2646 * If no, return 0
2647 */
2648 static int rps_ipi_queued(struct softnet_data *sd)
2649 {
2650 #ifdef CONFIG_RPS
2651 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2652
2653 if (sd != mysd) {
2654 sd->rps_ipi_next = mysd->rps_ipi_list;
2655 mysd->rps_ipi_list = sd;
2656
2657 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2658 return 1;
2659 }
2660 #endif /* CONFIG_RPS */
2661 return 0;
2662 }
2663
2664 /*
2665 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2666 * queue (may be a remote CPU queue).
2667 */
2668 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2669 unsigned int *qtail)
2670 {
2671 struct softnet_data *sd;
2672 unsigned long flags;
2673
2674 sd = &per_cpu(softnet_data, cpu);
2675
2676 local_irq_save(flags);
2677
2678 rps_lock(sd);
2679 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2680 if (skb_queue_len(&sd->input_pkt_queue)) {
2681 enqueue:
2682 __skb_queue_tail(&sd->input_pkt_queue, skb);
2683 input_queue_tail_incr_save(sd, qtail);
2684 rps_unlock(sd);
2685 local_irq_restore(flags);
2686 return NET_RX_SUCCESS;
2687 }
2688
2689 /* Schedule NAPI for backlog device
2690 * We can use non atomic operation since we own the queue lock
2691 */
2692 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2693 if (!rps_ipi_queued(sd))
2694 ____napi_schedule(sd, &sd->backlog);
2695 }
2696 goto enqueue;
2697 }
2698
2699 sd->dropped++;
2700 rps_unlock(sd);
2701
2702 local_irq_restore(flags);
2703
2704 atomic_long_inc(&skb->dev->rx_dropped);
2705 kfree_skb(skb);
2706 return NET_RX_DROP;
2707 }
2708
2709 /**
2710 * netif_rx - post buffer to the network code
2711 * @skb: buffer to post
2712 *
2713 * This function receives a packet from a device driver and queues it for
2714 * the upper (protocol) levels to process. It always succeeds. The buffer
2715 * may be dropped during processing for congestion control or by the
2716 * protocol layers.
2717 *
2718 * return values:
2719 * NET_RX_SUCCESS (no congestion)
2720 * NET_RX_DROP (packet was dropped)
2721 *
2722 */
2723
2724 int netif_rx(struct sk_buff *skb)
2725 {
2726 int ret;
2727
2728 /* if netpoll wants it, pretend we never saw it */
2729 if (netpoll_rx(skb))
2730 return NET_RX_DROP;
2731
2732 if (netdev_tstamp_prequeue)
2733 net_timestamp_check(skb);
2734
2735 trace_netif_rx(skb);
2736 #ifdef CONFIG_RPS
2737 {
2738 struct rps_dev_flow voidflow, *rflow = &voidflow;
2739 int cpu;
2740
2741 preempt_disable();
2742 rcu_read_lock();
2743
2744 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2745 if (cpu < 0)
2746 cpu = smp_processor_id();
2747
2748 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2749
2750 rcu_read_unlock();
2751 preempt_enable();
2752 }
2753 #else
2754 {
2755 unsigned int qtail;
2756 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2757 put_cpu();
2758 }
2759 #endif
2760 return ret;
2761 }
2762 EXPORT_SYMBOL(netif_rx);
2763
2764 int netif_rx_ni(struct sk_buff *skb)
2765 {
2766 int err;
2767
2768 preempt_disable();
2769 err = netif_rx(skb);
2770 if (local_softirq_pending())
2771 do_softirq();
2772 preempt_enable();
2773
2774 return err;
2775 }
2776 EXPORT_SYMBOL(netif_rx_ni);
2777
2778 static void net_tx_action(struct softirq_action *h)
2779 {
2780 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2781
2782 if (sd->completion_queue) {
2783 struct sk_buff *clist;
2784
2785 local_irq_disable();
2786 clist = sd->completion_queue;
2787 sd->completion_queue = NULL;
2788 local_irq_enable();
2789
2790 while (clist) {
2791 struct sk_buff *skb = clist;
2792 clist = clist->next;
2793
2794 WARN_ON(atomic_read(&skb->users));
2795 trace_kfree_skb(skb, net_tx_action);
2796 __kfree_skb(skb);
2797 }
2798 }
2799
2800 if (sd->output_queue) {
2801 struct Qdisc *head;
2802
2803 local_irq_disable();
2804 head = sd->output_queue;
2805 sd->output_queue = NULL;
2806 sd->output_queue_tailp = &sd->output_queue;
2807 local_irq_enable();
2808
2809 while (head) {
2810 struct Qdisc *q = head;
2811 spinlock_t *root_lock;
2812
2813 head = head->next_sched;
2814
2815 root_lock = qdisc_lock(q);
2816 if (spin_trylock(root_lock)) {
2817 smp_mb__before_clear_bit();
2818 clear_bit(__QDISC_STATE_SCHED,
2819 &q->state);
2820 qdisc_run(q);
2821 spin_unlock(root_lock);
2822 } else {
2823 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2824 &q->state)) {
2825 __netif_reschedule(q);
2826 } else {
2827 smp_mb__before_clear_bit();
2828 clear_bit(__QDISC_STATE_SCHED,
2829 &q->state);
2830 }
2831 }
2832 }
2833 }
2834 }
2835
2836 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2837 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2838 /* This hook is defined here for ATM LANE */
2839 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2840 unsigned char *addr) __read_mostly;
2841 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2842 #endif
2843
2844 #ifdef CONFIG_NET_CLS_ACT
2845 /* TODO: Maybe we should just force sch_ingress to be compiled in
2846 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2847 * a compare and 2 stores extra right now if we dont have it on
2848 * but have CONFIG_NET_CLS_ACT
2849 * NOTE: This doesnt stop any functionality; if you dont have
2850 * the ingress scheduler, you just cant add policies on ingress.
2851 *
2852 */
2853 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2854 {
2855 struct net_device *dev = skb->dev;
2856 u32 ttl = G_TC_RTTL(skb->tc_verd);
2857 int result = TC_ACT_OK;
2858 struct Qdisc *q;
2859
2860 if (unlikely(MAX_RED_LOOP < ttl++)) {
2861 if (net_ratelimit())
2862 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2863 skb->skb_iif, dev->ifindex);
2864 return TC_ACT_SHOT;
2865 }
2866
2867 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2868 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2869
2870 q = rxq->qdisc;
2871 if (q != &noop_qdisc) {
2872 spin_lock(qdisc_lock(q));
2873 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2874 result = qdisc_enqueue_root(skb, q);
2875 spin_unlock(qdisc_lock(q));
2876 }
2877
2878 return result;
2879 }
2880
2881 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2882 struct packet_type **pt_prev,
2883 int *ret, struct net_device *orig_dev)
2884 {
2885 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2886
2887 if (!rxq || rxq->qdisc == &noop_qdisc)
2888 goto out;
2889
2890 if (*pt_prev) {
2891 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2892 *pt_prev = NULL;
2893 }
2894
2895 switch (ing_filter(skb, rxq)) {
2896 case TC_ACT_SHOT:
2897 case TC_ACT_STOLEN:
2898 kfree_skb(skb);
2899 return NULL;
2900 }
2901
2902 out:
2903 skb->tc_verd = 0;
2904 return skb;
2905 }
2906 #endif
2907
2908 /**
2909 * netdev_rx_handler_register - register receive handler
2910 * @dev: device to register a handler for
2911 * @rx_handler: receive handler to register
2912 * @rx_handler_data: data pointer that is used by rx handler
2913 *
2914 * Register a receive hander for a device. This handler will then be
2915 * called from __netif_receive_skb. A negative errno code is returned
2916 * on a failure.
2917 *
2918 * The caller must hold the rtnl_mutex.
2919 */
2920 int netdev_rx_handler_register(struct net_device *dev,
2921 rx_handler_func_t *rx_handler,
2922 void *rx_handler_data)
2923 {
2924 ASSERT_RTNL();
2925
2926 if (dev->rx_handler)
2927 return -EBUSY;
2928
2929 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2930 rcu_assign_pointer(dev->rx_handler, rx_handler);
2931
2932 return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2935
2936 /**
2937 * netdev_rx_handler_unregister - unregister receive handler
2938 * @dev: device to unregister a handler from
2939 *
2940 * Unregister a receive hander from a device.
2941 *
2942 * The caller must hold the rtnl_mutex.
2943 */
2944 void netdev_rx_handler_unregister(struct net_device *dev)
2945 {
2946
2947 ASSERT_RTNL();
2948 rcu_assign_pointer(dev->rx_handler, NULL);
2949 rcu_assign_pointer(dev->rx_handler_data, NULL);
2950 }
2951 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2952
2953 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2954 struct net_device *master)
2955 {
2956 if (skb->pkt_type == PACKET_HOST) {
2957 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2958
2959 memcpy(dest, master->dev_addr, ETH_ALEN);
2960 }
2961 }
2962
2963 /* On bonding slaves other than the currently active slave, suppress
2964 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2965 * ARP on active-backup slaves with arp_validate enabled.
2966 */
2967 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2968 {
2969 struct net_device *dev = skb->dev;
2970
2971 if (master->priv_flags & IFF_MASTER_ARPMON)
2972 dev->last_rx = jiffies;
2973
2974 if ((master->priv_flags & IFF_MASTER_ALB) &&
2975 (master->priv_flags & IFF_BRIDGE_PORT)) {
2976 /* Do address unmangle. The local destination address
2977 * will be always the one master has. Provides the right
2978 * functionality in a bridge.
2979 */
2980 skb_bond_set_mac_by_master(skb, master);
2981 }
2982
2983 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2984 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2985 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2986 return 0;
2987
2988 if (master->priv_flags & IFF_MASTER_ALB) {
2989 if (skb->pkt_type != PACKET_BROADCAST &&
2990 skb->pkt_type != PACKET_MULTICAST)
2991 return 0;
2992 }
2993 if (master->priv_flags & IFF_MASTER_8023AD &&
2994 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2995 return 0;
2996
2997 return 1;
2998 }
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(__skb_bond_should_drop);
3002
3003 static int __netif_receive_skb(struct sk_buff *skb)
3004 {
3005 struct packet_type *ptype, *pt_prev;
3006 rx_handler_func_t *rx_handler;
3007 struct net_device *orig_dev;
3008 struct net_device *master;
3009 struct net_device *null_or_orig;
3010 struct net_device *orig_or_bond;
3011 int ret = NET_RX_DROP;
3012 __be16 type;
3013
3014 if (!netdev_tstamp_prequeue)
3015 net_timestamp_check(skb);
3016
3017 trace_netif_receive_skb(skb);
3018
3019 /* if we've gotten here through NAPI, check netpoll */
3020 if (netpoll_receive_skb(skb))
3021 return NET_RX_DROP;
3022
3023 if (!skb->skb_iif)
3024 skb->skb_iif = skb->dev->ifindex;
3025
3026 /*
3027 * bonding note: skbs received on inactive slaves should only
3028 * be delivered to pkt handlers that are exact matches. Also
3029 * the deliver_no_wcard flag will be set. If packet handlers
3030 * are sensitive to duplicate packets these skbs will need to
3031 * be dropped at the handler.
3032 */
3033 null_or_orig = NULL;
3034 orig_dev = skb->dev;
3035 master = ACCESS_ONCE(orig_dev->master);
3036 if (skb->deliver_no_wcard)
3037 null_or_orig = orig_dev;
3038 else if (master) {
3039 if (skb_bond_should_drop(skb, master)) {
3040 skb->deliver_no_wcard = 1;
3041 null_or_orig = orig_dev; /* deliver only exact match */
3042 } else
3043 skb->dev = master;
3044 }
3045
3046 __this_cpu_inc(softnet_data.processed);
3047 skb_reset_network_header(skb);
3048 skb_reset_transport_header(skb);
3049 skb->mac_len = skb->network_header - skb->mac_header;
3050
3051 pt_prev = NULL;
3052
3053 rcu_read_lock();
3054
3055 #ifdef CONFIG_NET_CLS_ACT
3056 if (skb->tc_verd & TC_NCLS) {
3057 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3058 goto ncls;
3059 }
3060 #endif
3061
3062 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3063 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3064 ptype->dev == orig_dev) {
3065 if (pt_prev)
3066 ret = deliver_skb(skb, pt_prev, orig_dev);
3067 pt_prev = ptype;
3068 }
3069 }
3070
3071 #ifdef CONFIG_NET_CLS_ACT
3072 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3073 if (!skb)
3074 goto out;
3075 ncls:
3076 #endif
3077
3078 /* Handle special case of bridge or macvlan */
3079 rx_handler = rcu_dereference(skb->dev->rx_handler);
3080 if (rx_handler) {
3081 if (pt_prev) {
3082 ret = deliver_skb(skb, pt_prev, orig_dev);
3083 pt_prev = NULL;
3084 }
3085 skb = rx_handler(skb);
3086 if (!skb)
3087 goto out;
3088 }
3089
3090 if (vlan_tx_tag_present(skb)) {
3091 if (pt_prev) {
3092 ret = deliver_skb(skb, pt_prev, orig_dev);
3093 pt_prev = NULL;
3094 }
3095 if (vlan_hwaccel_do_receive(&skb)) {
3096 ret = __netif_receive_skb(skb);
3097 goto out;
3098 } else if (unlikely(!skb))
3099 goto out;
3100 }
3101
3102 /*
3103 * Make sure frames received on VLAN interfaces stacked on
3104 * bonding interfaces still make their way to any base bonding
3105 * device that may have registered for a specific ptype. The
3106 * handler may have to adjust skb->dev and orig_dev.
3107 */
3108 orig_or_bond = orig_dev;
3109 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3110 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3111 orig_or_bond = vlan_dev_real_dev(skb->dev);
3112 }
3113
3114 type = skb->protocol;
3115 list_for_each_entry_rcu(ptype,
3116 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3117 if (ptype->type == type && (ptype->dev == null_or_orig ||
3118 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3119 ptype->dev == orig_or_bond)) {
3120 if (pt_prev)
3121 ret = deliver_skb(skb, pt_prev, orig_dev);
3122 pt_prev = ptype;
3123 }
3124 }
3125
3126 if (pt_prev) {
3127 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3128 } else {
3129 atomic_long_inc(&skb->dev->rx_dropped);
3130 kfree_skb(skb);
3131 /* Jamal, now you will not able to escape explaining
3132 * me how you were going to use this. :-)
3133 */
3134 ret = NET_RX_DROP;
3135 }
3136
3137 out:
3138 rcu_read_unlock();
3139 return ret;
3140 }
3141
3142 /**
3143 * netif_receive_skb - process receive buffer from network
3144 * @skb: buffer to process
3145 *
3146 * netif_receive_skb() is the main receive data processing function.
3147 * It always succeeds. The buffer may be dropped during processing
3148 * for congestion control or by the protocol layers.
3149 *
3150 * This function may only be called from softirq context and interrupts
3151 * should be enabled.
3152 *
3153 * Return values (usually ignored):
3154 * NET_RX_SUCCESS: no congestion
3155 * NET_RX_DROP: packet was dropped
3156 */
3157 int netif_receive_skb(struct sk_buff *skb)
3158 {
3159 if (netdev_tstamp_prequeue)
3160 net_timestamp_check(skb);
3161
3162 if (skb_defer_rx_timestamp(skb))
3163 return NET_RX_SUCCESS;
3164
3165 #ifdef CONFIG_RPS
3166 {
3167 struct rps_dev_flow voidflow, *rflow = &voidflow;
3168 int cpu, ret;
3169
3170 rcu_read_lock();
3171
3172 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3173
3174 if (cpu >= 0) {
3175 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3176 rcu_read_unlock();
3177 } else {
3178 rcu_read_unlock();
3179 ret = __netif_receive_skb(skb);
3180 }
3181
3182 return ret;
3183 }
3184 #else
3185 return __netif_receive_skb(skb);
3186 #endif
3187 }
3188 EXPORT_SYMBOL(netif_receive_skb);
3189
3190 /* Network device is going away, flush any packets still pending
3191 * Called with irqs disabled.
3192 */
3193 static void flush_backlog(void *arg)
3194 {
3195 struct net_device *dev = arg;
3196 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3197 struct sk_buff *skb, *tmp;
3198
3199 rps_lock(sd);
3200 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3201 if (skb->dev == dev) {
3202 __skb_unlink(skb, &sd->input_pkt_queue);
3203 kfree_skb(skb);
3204 input_queue_head_incr(sd);
3205 }
3206 }
3207 rps_unlock(sd);
3208
3209 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3210 if (skb->dev == dev) {
3211 __skb_unlink(skb, &sd->process_queue);
3212 kfree_skb(skb);
3213 input_queue_head_incr(sd);
3214 }
3215 }
3216 }
3217
3218 static int napi_gro_complete(struct sk_buff *skb)
3219 {
3220 struct packet_type *ptype;
3221 __be16 type = skb->protocol;
3222 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3223 int err = -ENOENT;
3224
3225 if (NAPI_GRO_CB(skb)->count == 1) {
3226 skb_shinfo(skb)->gso_size = 0;
3227 goto out;
3228 }
3229
3230 rcu_read_lock();
3231 list_for_each_entry_rcu(ptype, head, list) {
3232 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3233 continue;
3234
3235 err = ptype->gro_complete(skb);
3236 break;
3237 }
3238 rcu_read_unlock();
3239
3240 if (err) {
3241 WARN_ON(&ptype->list == head);
3242 kfree_skb(skb);
3243 return NET_RX_SUCCESS;
3244 }
3245
3246 out:
3247 return netif_receive_skb(skb);
3248 }
3249
3250 inline void napi_gro_flush(struct napi_struct *napi)
3251 {
3252 struct sk_buff *skb, *next;
3253
3254 for (skb = napi->gro_list; skb; skb = next) {
3255 next = skb->next;
3256 skb->next = NULL;
3257 napi_gro_complete(skb);
3258 }
3259
3260 napi->gro_count = 0;
3261 napi->gro_list = NULL;
3262 }
3263 EXPORT_SYMBOL(napi_gro_flush);
3264
3265 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3266 {
3267 struct sk_buff **pp = NULL;
3268 struct packet_type *ptype;
3269 __be16 type = skb->protocol;
3270 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3271 int same_flow;
3272 int mac_len;
3273 enum gro_result ret;
3274
3275 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3276 goto normal;
3277
3278 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3279 goto normal;
3280
3281 rcu_read_lock();
3282 list_for_each_entry_rcu(ptype, head, list) {
3283 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3284 continue;
3285
3286 skb_set_network_header(skb, skb_gro_offset(skb));
3287 mac_len = skb->network_header - skb->mac_header;
3288 skb->mac_len = mac_len;
3289 NAPI_GRO_CB(skb)->same_flow = 0;
3290 NAPI_GRO_CB(skb)->flush = 0;
3291 NAPI_GRO_CB(skb)->free = 0;
3292
3293 pp = ptype->gro_receive(&napi->gro_list, skb);
3294 break;
3295 }
3296 rcu_read_unlock();
3297
3298 if (&ptype->list == head)
3299 goto normal;
3300
3301 same_flow = NAPI_GRO_CB(skb)->same_flow;
3302 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3303
3304 if (pp) {
3305 struct sk_buff *nskb = *pp;
3306
3307 *pp = nskb->next;
3308 nskb->next = NULL;
3309 napi_gro_complete(nskb);
3310 napi->gro_count--;
3311 }
3312
3313 if (same_flow)
3314 goto ok;
3315
3316 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3317 goto normal;
3318
3319 napi->gro_count++;
3320 NAPI_GRO_CB(skb)->count = 1;
3321 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3322 skb->next = napi->gro_list;
3323 napi->gro_list = skb;
3324 ret = GRO_HELD;
3325
3326 pull:
3327 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3328 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3329
3330 BUG_ON(skb->end - skb->tail < grow);
3331
3332 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3333
3334 skb->tail += grow;
3335 skb->data_len -= grow;
3336
3337 skb_shinfo(skb)->frags[0].page_offset += grow;
3338 skb_shinfo(skb)->frags[0].size -= grow;
3339
3340 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3341 put_page(skb_shinfo(skb)->frags[0].page);
3342 memmove(skb_shinfo(skb)->frags,
3343 skb_shinfo(skb)->frags + 1,
3344 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3345 }
3346 }
3347
3348 ok:
3349 return ret;
3350
3351 normal:
3352 ret = GRO_NORMAL;
3353 goto pull;
3354 }
3355 EXPORT_SYMBOL(dev_gro_receive);
3356
3357 static inline gro_result_t
3358 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3359 {
3360 struct sk_buff *p;
3361
3362 for (p = napi->gro_list; p; p = p->next) {
3363 unsigned long diffs;
3364
3365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3366 diffs |= p->vlan_tci ^ skb->vlan_tci;
3367 diffs |= compare_ether_header(skb_mac_header(p),
3368 skb_gro_mac_header(skb));
3369 NAPI_GRO_CB(p)->same_flow = !diffs;
3370 NAPI_GRO_CB(p)->flush = 0;
3371 }
3372
3373 return dev_gro_receive(napi, skb);
3374 }
3375
3376 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3377 {
3378 switch (ret) {
3379 case GRO_NORMAL:
3380 if (netif_receive_skb(skb))
3381 ret = GRO_DROP;
3382 break;
3383
3384 case GRO_DROP:
3385 case GRO_MERGED_FREE:
3386 kfree_skb(skb);
3387 break;
3388
3389 case GRO_HELD:
3390 case GRO_MERGED:
3391 break;
3392 }
3393
3394 return ret;
3395 }
3396 EXPORT_SYMBOL(napi_skb_finish);
3397
3398 void skb_gro_reset_offset(struct sk_buff *skb)
3399 {
3400 NAPI_GRO_CB(skb)->data_offset = 0;
3401 NAPI_GRO_CB(skb)->frag0 = NULL;
3402 NAPI_GRO_CB(skb)->frag0_len = 0;
3403
3404 if (skb->mac_header == skb->tail &&
3405 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3406 NAPI_GRO_CB(skb)->frag0 =
3407 page_address(skb_shinfo(skb)->frags[0].page) +
3408 skb_shinfo(skb)->frags[0].page_offset;
3409 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3410 }
3411 }
3412 EXPORT_SYMBOL(skb_gro_reset_offset);
3413
3414 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3415 {
3416 skb_gro_reset_offset(skb);
3417
3418 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3419 }
3420 EXPORT_SYMBOL(napi_gro_receive);
3421
3422 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3423 {
3424 __skb_pull(skb, skb_headlen(skb));
3425 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3426 skb->vlan_tci = 0;
3427
3428 napi->skb = skb;
3429 }
3430
3431 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3432 {
3433 struct sk_buff *skb = napi->skb;
3434
3435 if (!skb) {
3436 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3437 if (skb)
3438 napi->skb = skb;
3439 }
3440 return skb;
3441 }
3442 EXPORT_SYMBOL(napi_get_frags);
3443
3444 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3445 gro_result_t ret)
3446 {
3447 switch (ret) {
3448 case GRO_NORMAL:
3449 case GRO_HELD:
3450 skb->protocol = eth_type_trans(skb, skb->dev);
3451
3452 if (ret == GRO_HELD)
3453 skb_gro_pull(skb, -ETH_HLEN);
3454 else if (netif_receive_skb(skb))
3455 ret = GRO_DROP;
3456 break;
3457
3458 case GRO_DROP:
3459 case GRO_MERGED_FREE:
3460 napi_reuse_skb(napi, skb);
3461 break;
3462
3463 case GRO_MERGED:
3464 break;
3465 }
3466
3467 return ret;
3468 }
3469 EXPORT_SYMBOL(napi_frags_finish);
3470
3471 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3472 {
3473 struct sk_buff *skb = napi->skb;
3474 struct ethhdr *eth;
3475 unsigned int hlen;
3476 unsigned int off;
3477
3478 napi->skb = NULL;
3479
3480 skb_reset_mac_header(skb);
3481 skb_gro_reset_offset(skb);
3482
3483 off = skb_gro_offset(skb);
3484 hlen = off + sizeof(*eth);
3485 eth = skb_gro_header_fast(skb, off);
3486 if (skb_gro_header_hard(skb, hlen)) {
3487 eth = skb_gro_header_slow(skb, hlen, off);
3488 if (unlikely(!eth)) {
3489 napi_reuse_skb(napi, skb);
3490 skb = NULL;
3491 goto out;
3492 }
3493 }
3494
3495 skb_gro_pull(skb, sizeof(*eth));
3496
3497 /*
3498 * This works because the only protocols we care about don't require
3499 * special handling. We'll fix it up properly at the end.
3500 */
3501 skb->protocol = eth->h_proto;
3502
3503 out:
3504 return skb;
3505 }
3506 EXPORT_SYMBOL(napi_frags_skb);
3507
3508 gro_result_t napi_gro_frags(struct napi_struct *napi)
3509 {
3510 struct sk_buff *skb = napi_frags_skb(napi);
3511
3512 if (!skb)
3513 return GRO_DROP;
3514
3515 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3516 }
3517 EXPORT_SYMBOL(napi_gro_frags);
3518
3519 /*
3520 * net_rps_action sends any pending IPI's for rps.
3521 * Note: called with local irq disabled, but exits with local irq enabled.
3522 */
3523 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3524 {
3525 #ifdef CONFIG_RPS
3526 struct softnet_data *remsd = sd->rps_ipi_list;
3527
3528 if (remsd) {
3529 sd->rps_ipi_list = NULL;
3530
3531 local_irq_enable();
3532
3533 /* Send pending IPI's to kick RPS processing on remote cpus. */
3534 while (remsd) {
3535 struct softnet_data *next = remsd->rps_ipi_next;
3536
3537 if (cpu_online(remsd->cpu))
3538 __smp_call_function_single(remsd->cpu,
3539 &remsd->csd, 0);
3540 remsd = next;
3541 }
3542 } else
3543 #endif
3544 local_irq_enable();
3545 }
3546
3547 static int process_backlog(struct napi_struct *napi, int quota)
3548 {
3549 int work = 0;
3550 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3551
3552 #ifdef CONFIG_RPS
3553 /* Check if we have pending ipi, its better to send them now,
3554 * not waiting net_rx_action() end.
3555 */
3556 if (sd->rps_ipi_list) {
3557 local_irq_disable();
3558 net_rps_action_and_irq_enable(sd);
3559 }
3560 #endif
3561 napi->weight = weight_p;
3562 local_irq_disable();
3563 while (work < quota) {
3564 struct sk_buff *skb;
3565 unsigned int qlen;
3566
3567 while ((skb = __skb_dequeue(&sd->process_queue))) {
3568 local_irq_enable();
3569 __netif_receive_skb(skb);
3570 local_irq_disable();
3571 input_queue_head_incr(sd);
3572 if (++work >= quota) {
3573 local_irq_enable();
3574 return work;
3575 }
3576 }
3577
3578 rps_lock(sd);
3579 qlen = skb_queue_len(&sd->input_pkt_queue);
3580 if (qlen)
3581 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3582 &sd->process_queue);
3583
3584 if (qlen < quota - work) {
3585 /*
3586 * Inline a custom version of __napi_complete().
3587 * only current cpu owns and manipulates this napi,
3588 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3589 * we can use a plain write instead of clear_bit(),
3590 * and we dont need an smp_mb() memory barrier.
3591 */
3592 list_del(&napi->poll_list);
3593 napi->state = 0;
3594
3595 quota = work + qlen;
3596 }
3597 rps_unlock(sd);
3598 }
3599 local_irq_enable();
3600
3601 return work;
3602 }
3603
3604 /**
3605 * __napi_schedule - schedule for receive
3606 * @n: entry to schedule
3607 *
3608 * The entry's receive function will be scheduled to run
3609 */
3610 void __napi_schedule(struct napi_struct *n)
3611 {
3612 unsigned long flags;
3613
3614 local_irq_save(flags);
3615 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3616 local_irq_restore(flags);
3617 }
3618 EXPORT_SYMBOL(__napi_schedule);
3619
3620 void __napi_complete(struct napi_struct *n)
3621 {
3622 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3623 BUG_ON(n->gro_list);
3624
3625 list_del(&n->poll_list);
3626 smp_mb__before_clear_bit();
3627 clear_bit(NAPI_STATE_SCHED, &n->state);
3628 }
3629 EXPORT_SYMBOL(__napi_complete);
3630
3631 void napi_complete(struct napi_struct *n)
3632 {
3633 unsigned long flags;
3634
3635 /*
3636 * don't let napi dequeue from the cpu poll list
3637 * just in case its running on a different cpu
3638 */
3639 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3640 return;
3641
3642 napi_gro_flush(n);
3643 local_irq_save(flags);
3644 __napi_complete(n);
3645 local_irq_restore(flags);
3646 }
3647 EXPORT_SYMBOL(napi_complete);
3648
3649 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3650 int (*poll)(struct napi_struct *, int), int weight)
3651 {
3652 INIT_LIST_HEAD(&napi->poll_list);
3653 napi->gro_count = 0;
3654 napi->gro_list = NULL;
3655 napi->skb = NULL;
3656 napi->poll = poll;
3657 napi->weight = weight;
3658 list_add(&napi->dev_list, &dev->napi_list);
3659 napi->dev = dev;
3660 #ifdef CONFIG_NETPOLL
3661 spin_lock_init(&napi->poll_lock);
3662 napi->poll_owner = -1;
3663 #endif
3664 set_bit(NAPI_STATE_SCHED, &napi->state);
3665 }
3666 EXPORT_SYMBOL(netif_napi_add);
3667
3668 void netif_napi_del(struct napi_struct *napi)
3669 {
3670 struct sk_buff *skb, *next;
3671
3672 list_del_init(&napi->dev_list);
3673 napi_free_frags(napi);
3674
3675 for (skb = napi->gro_list; skb; skb = next) {
3676 next = skb->next;
3677 skb->next = NULL;
3678 kfree_skb(skb);
3679 }
3680
3681 napi->gro_list = NULL;
3682 napi->gro_count = 0;
3683 }
3684 EXPORT_SYMBOL(netif_napi_del);
3685
3686 static void net_rx_action(struct softirq_action *h)
3687 {
3688 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3689 unsigned long time_limit = jiffies + 2;
3690 int budget = netdev_budget;
3691 void *have;
3692
3693 local_irq_disable();
3694
3695 while (!list_empty(&sd->poll_list)) {
3696 struct napi_struct *n;
3697 int work, weight;
3698
3699 /* If softirq window is exhuasted then punt.
3700 * Allow this to run for 2 jiffies since which will allow
3701 * an average latency of 1.5/HZ.
3702 */
3703 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3704 goto softnet_break;
3705
3706 local_irq_enable();
3707
3708 /* Even though interrupts have been re-enabled, this
3709 * access is safe because interrupts can only add new
3710 * entries to the tail of this list, and only ->poll()
3711 * calls can remove this head entry from the list.
3712 */
3713 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3714
3715 have = netpoll_poll_lock(n);
3716
3717 weight = n->weight;
3718
3719 /* This NAPI_STATE_SCHED test is for avoiding a race
3720 * with netpoll's poll_napi(). Only the entity which
3721 * obtains the lock and sees NAPI_STATE_SCHED set will
3722 * actually make the ->poll() call. Therefore we avoid
3723 * accidently calling ->poll() when NAPI is not scheduled.
3724 */
3725 work = 0;
3726 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3727 work = n->poll(n, weight);
3728 trace_napi_poll(n);
3729 }
3730
3731 WARN_ON_ONCE(work > weight);
3732
3733 budget -= work;
3734
3735 local_irq_disable();
3736
3737 /* Drivers must not modify the NAPI state if they
3738 * consume the entire weight. In such cases this code
3739 * still "owns" the NAPI instance and therefore can
3740 * move the instance around on the list at-will.
3741 */
3742 if (unlikely(work == weight)) {
3743 if (unlikely(napi_disable_pending(n))) {
3744 local_irq_enable();
3745 napi_complete(n);
3746 local_irq_disable();
3747 } else
3748 list_move_tail(&n->poll_list, &sd->poll_list);
3749 }
3750
3751 netpoll_poll_unlock(have);
3752 }
3753 out:
3754 net_rps_action_and_irq_enable(sd);
3755
3756 #ifdef CONFIG_NET_DMA
3757 /*
3758 * There may not be any more sk_buffs coming right now, so push
3759 * any pending DMA copies to hardware
3760 */
3761 dma_issue_pending_all();
3762 #endif
3763
3764 return;
3765
3766 softnet_break:
3767 sd->time_squeeze++;
3768 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3769 goto out;
3770 }
3771
3772 static gifconf_func_t *gifconf_list[NPROTO];
3773
3774 /**
3775 * register_gifconf - register a SIOCGIF handler
3776 * @family: Address family
3777 * @gifconf: Function handler
3778 *
3779 * Register protocol dependent address dumping routines. The handler
3780 * that is passed must not be freed or reused until it has been replaced
3781 * by another handler.
3782 */
3783 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3784 {
3785 if (family >= NPROTO)
3786 return -EINVAL;
3787 gifconf_list[family] = gifconf;
3788 return 0;
3789 }
3790 EXPORT_SYMBOL(register_gifconf);
3791
3792
3793 /*
3794 * Map an interface index to its name (SIOCGIFNAME)
3795 */
3796
3797 /*
3798 * We need this ioctl for efficient implementation of the
3799 * if_indextoname() function required by the IPv6 API. Without
3800 * it, we would have to search all the interfaces to find a
3801 * match. --pb
3802 */
3803
3804 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3805 {
3806 struct net_device *dev;
3807 struct ifreq ifr;
3808
3809 /*
3810 * Fetch the caller's info block.
3811 */
3812
3813 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3814 return -EFAULT;
3815
3816 rcu_read_lock();
3817 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3818 if (!dev) {
3819 rcu_read_unlock();
3820 return -ENODEV;
3821 }
3822
3823 strcpy(ifr.ifr_name, dev->name);
3824 rcu_read_unlock();
3825
3826 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3827 return -EFAULT;
3828 return 0;
3829 }
3830
3831 /*
3832 * Perform a SIOCGIFCONF call. This structure will change
3833 * size eventually, and there is nothing I can do about it.
3834 * Thus we will need a 'compatibility mode'.
3835 */
3836
3837 static int dev_ifconf(struct net *net, char __user *arg)
3838 {
3839 struct ifconf ifc;
3840 struct net_device *dev;
3841 char __user *pos;
3842 int len;
3843 int total;
3844 int i;
3845
3846 /*
3847 * Fetch the caller's info block.
3848 */
3849
3850 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3851 return -EFAULT;
3852
3853 pos = ifc.ifc_buf;
3854 len = ifc.ifc_len;
3855
3856 /*
3857 * Loop over the interfaces, and write an info block for each.
3858 */
3859
3860 total = 0;
3861 for_each_netdev(net, dev) {
3862 for (i = 0; i < NPROTO; i++) {
3863 if (gifconf_list[i]) {
3864 int done;
3865 if (!pos)
3866 done = gifconf_list[i](dev, NULL, 0);
3867 else
3868 done = gifconf_list[i](dev, pos + total,
3869 len - total);
3870 if (done < 0)
3871 return -EFAULT;
3872 total += done;
3873 }
3874 }
3875 }
3876
3877 /*
3878 * All done. Write the updated control block back to the caller.
3879 */
3880 ifc.ifc_len = total;
3881
3882 /*
3883 * Both BSD and Solaris return 0 here, so we do too.
3884 */
3885 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3886 }
3887
3888 #ifdef CONFIG_PROC_FS
3889 /*
3890 * This is invoked by the /proc filesystem handler to display a device
3891 * in detail.
3892 */
3893 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3894 __acquires(RCU)
3895 {
3896 struct net *net = seq_file_net(seq);
3897 loff_t off;
3898 struct net_device *dev;
3899
3900 rcu_read_lock();
3901 if (!*pos)
3902 return SEQ_START_TOKEN;
3903
3904 off = 1;
3905 for_each_netdev_rcu(net, dev)
3906 if (off++ == *pos)
3907 return dev;
3908
3909 return NULL;
3910 }
3911
3912 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3913 {
3914 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3915 first_net_device(seq_file_net(seq)) :
3916 next_net_device((struct net_device *)v);
3917
3918 ++*pos;
3919 return rcu_dereference(dev);
3920 }
3921
3922 void dev_seq_stop(struct seq_file *seq, void *v)
3923 __releases(RCU)
3924 {
3925 rcu_read_unlock();
3926 }
3927
3928 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3929 {
3930 struct rtnl_link_stats64 temp;
3931 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3932
3933 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3934 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3935 dev->name, stats->rx_bytes, stats->rx_packets,
3936 stats->rx_errors,
3937 stats->rx_dropped + stats->rx_missed_errors,
3938 stats->rx_fifo_errors,
3939 stats->rx_length_errors + stats->rx_over_errors +
3940 stats->rx_crc_errors + stats->rx_frame_errors,
3941 stats->rx_compressed, stats->multicast,
3942 stats->tx_bytes, stats->tx_packets,
3943 stats->tx_errors, stats->tx_dropped,
3944 stats->tx_fifo_errors, stats->collisions,
3945 stats->tx_carrier_errors +
3946 stats->tx_aborted_errors +
3947 stats->tx_window_errors +
3948 stats->tx_heartbeat_errors,
3949 stats->tx_compressed);
3950 }
3951
3952 /*
3953 * Called from the PROCfs module. This now uses the new arbitrary sized
3954 * /proc/net interface to create /proc/net/dev
3955 */
3956 static int dev_seq_show(struct seq_file *seq, void *v)
3957 {
3958 if (v == SEQ_START_TOKEN)
3959 seq_puts(seq, "Inter-| Receive "
3960 " | Transmit\n"
3961 " face |bytes packets errs drop fifo frame "
3962 "compressed multicast|bytes packets errs "
3963 "drop fifo colls carrier compressed\n");
3964 else
3965 dev_seq_printf_stats(seq, v);
3966 return 0;
3967 }
3968
3969 static struct softnet_data *softnet_get_online(loff_t *pos)
3970 {
3971 struct softnet_data *sd = NULL;
3972
3973 while (*pos < nr_cpu_ids)
3974 if (cpu_online(*pos)) {
3975 sd = &per_cpu(softnet_data, *pos);
3976 break;
3977 } else
3978 ++*pos;
3979 return sd;
3980 }
3981
3982 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3983 {
3984 return softnet_get_online(pos);
3985 }
3986
3987 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3988 {
3989 ++*pos;
3990 return softnet_get_online(pos);
3991 }
3992
3993 static void softnet_seq_stop(struct seq_file *seq, void *v)
3994 {
3995 }
3996
3997 static int softnet_seq_show(struct seq_file *seq, void *v)
3998 {
3999 struct softnet_data *sd = v;
4000
4001 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4002 sd->processed, sd->dropped, sd->time_squeeze, 0,
4003 0, 0, 0, 0, /* was fastroute */
4004 sd->cpu_collision, sd->received_rps);
4005 return 0;
4006 }
4007
4008 static const struct seq_operations dev_seq_ops = {
4009 .start = dev_seq_start,
4010 .next = dev_seq_next,
4011 .stop = dev_seq_stop,
4012 .show = dev_seq_show,
4013 };
4014
4015 static int dev_seq_open(struct inode *inode, struct file *file)
4016 {
4017 return seq_open_net(inode, file, &dev_seq_ops,
4018 sizeof(struct seq_net_private));
4019 }
4020
4021 static const struct file_operations dev_seq_fops = {
4022 .owner = THIS_MODULE,
4023 .open = dev_seq_open,
4024 .read = seq_read,
4025 .llseek = seq_lseek,
4026 .release = seq_release_net,
4027 };
4028
4029 static const struct seq_operations softnet_seq_ops = {
4030 .start = softnet_seq_start,
4031 .next = softnet_seq_next,
4032 .stop = softnet_seq_stop,
4033 .show = softnet_seq_show,
4034 };
4035
4036 static int softnet_seq_open(struct inode *inode, struct file *file)
4037 {
4038 return seq_open(file, &softnet_seq_ops);
4039 }
4040
4041 static const struct file_operations softnet_seq_fops = {
4042 .owner = THIS_MODULE,
4043 .open = softnet_seq_open,
4044 .read = seq_read,
4045 .llseek = seq_lseek,
4046 .release = seq_release,
4047 };
4048
4049 static void *ptype_get_idx(loff_t pos)
4050 {
4051 struct packet_type *pt = NULL;
4052 loff_t i = 0;
4053 int t;
4054
4055 list_for_each_entry_rcu(pt, &ptype_all, list) {
4056 if (i == pos)
4057 return pt;
4058 ++i;
4059 }
4060
4061 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4062 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4063 if (i == pos)
4064 return pt;
4065 ++i;
4066 }
4067 }
4068 return NULL;
4069 }
4070
4071 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4072 __acquires(RCU)
4073 {
4074 rcu_read_lock();
4075 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4076 }
4077
4078 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4079 {
4080 struct packet_type *pt;
4081 struct list_head *nxt;
4082 int hash;
4083
4084 ++*pos;
4085 if (v == SEQ_START_TOKEN)
4086 return ptype_get_idx(0);
4087
4088 pt = v;
4089 nxt = pt->list.next;
4090 if (pt->type == htons(ETH_P_ALL)) {
4091 if (nxt != &ptype_all)
4092 goto found;
4093 hash = 0;
4094 nxt = ptype_base[0].next;
4095 } else
4096 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4097
4098 while (nxt == &ptype_base[hash]) {
4099 if (++hash >= PTYPE_HASH_SIZE)
4100 return NULL;
4101 nxt = ptype_base[hash].next;
4102 }
4103 found:
4104 return list_entry(nxt, struct packet_type, list);
4105 }
4106
4107 static void ptype_seq_stop(struct seq_file *seq, void *v)
4108 __releases(RCU)
4109 {
4110 rcu_read_unlock();
4111 }
4112
4113 static int ptype_seq_show(struct seq_file *seq, void *v)
4114 {
4115 struct packet_type *pt = v;
4116
4117 if (v == SEQ_START_TOKEN)
4118 seq_puts(seq, "Type Device Function\n");
4119 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4120 if (pt->type == htons(ETH_P_ALL))
4121 seq_puts(seq, "ALL ");
4122 else
4123 seq_printf(seq, "%04x", ntohs(pt->type));
4124
4125 seq_printf(seq, " %-8s %pF\n",
4126 pt->dev ? pt->dev->name : "", pt->func);
4127 }
4128
4129 return 0;
4130 }
4131
4132 static const struct seq_operations ptype_seq_ops = {
4133 .start = ptype_seq_start,
4134 .next = ptype_seq_next,
4135 .stop = ptype_seq_stop,
4136 .show = ptype_seq_show,
4137 };
4138
4139 static int ptype_seq_open(struct inode *inode, struct file *file)
4140 {
4141 return seq_open_net(inode, file, &ptype_seq_ops,
4142 sizeof(struct seq_net_private));
4143 }
4144
4145 static const struct file_operations ptype_seq_fops = {
4146 .owner = THIS_MODULE,
4147 .open = ptype_seq_open,
4148 .read = seq_read,
4149 .llseek = seq_lseek,
4150 .release = seq_release_net,
4151 };
4152
4153
4154 static int __net_init dev_proc_net_init(struct net *net)
4155 {
4156 int rc = -ENOMEM;
4157
4158 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4159 goto out;
4160 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4161 goto out_dev;
4162 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4163 goto out_softnet;
4164
4165 if (wext_proc_init(net))
4166 goto out_ptype;
4167 rc = 0;
4168 out:
4169 return rc;
4170 out_ptype:
4171 proc_net_remove(net, "ptype");
4172 out_softnet:
4173 proc_net_remove(net, "softnet_stat");
4174 out_dev:
4175 proc_net_remove(net, "dev");
4176 goto out;
4177 }
4178
4179 static void __net_exit dev_proc_net_exit(struct net *net)
4180 {
4181 wext_proc_exit(net);
4182
4183 proc_net_remove(net, "ptype");
4184 proc_net_remove(net, "softnet_stat");
4185 proc_net_remove(net, "dev");
4186 }
4187
4188 static struct pernet_operations __net_initdata dev_proc_ops = {
4189 .init = dev_proc_net_init,
4190 .exit = dev_proc_net_exit,
4191 };
4192
4193 static int __init dev_proc_init(void)
4194 {
4195 return register_pernet_subsys(&dev_proc_ops);
4196 }
4197 #else
4198 #define dev_proc_init() 0
4199 #endif /* CONFIG_PROC_FS */
4200
4201
4202 /**
4203 * netdev_set_master - set up master/slave pair
4204 * @slave: slave device
4205 * @master: new master device
4206 *
4207 * Changes the master device of the slave. Pass %NULL to break the
4208 * bonding. The caller must hold the RTNL semaphore. On a failure
4209 * a negative errno code is returned. On success the reference counts
4210 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4211 * function returns zero.
4212 */
4213 int netdev_set_master(struct net_device *slave, struct net_device *master)
4214 {
4215 struct net_device *old = slave->master;
4216
4217 ASSERT_RTNL();
4218
4219 if (master) {
4220 if (old)
4221 return -EBUSY;
4222 dev_hold(master);
4223 }
4224
4225 slave->master = master;
4226
4227 if (old) {
4228 synchronize_net();
4229 dev_put(old);
4230 }
4231 if (master)
4232 slave->flags |= IFF_SLAVE;
4233 else
4234 slave->flags &= ~IFF_SLAVE;
4235
4236 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4237 return 0;
4238 }
4239 EXPORT_SYMBOL(netdev_set_master);
4240
4241 static void dev_change_rx_flags(struct net_device *dev, int flags)
4242 {
4243 const struct net_device_ops *ops = dev->netdev_ops;
4244
4245 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4246 ops->ndo_change_rx_flags(dev, flags);
4247 }
4248
4249 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4250 {
4251 unsigned short old_flags = dev->flags;
4252 uid_t uid;
4253 gid_t gid;
4254
4255 ASSERT_RTNL();
4256
4257 dev->flags |= IFF_PROMISC;
4258 dev->promiscuity += inc;
4259 if (dev->promiscuity == 0) {
4260 /*
4261 * Avoid overflow.
4262 * If inc causes overflow, untouch promisc and return error.
4263 */
4264 if (inc < 0)
4265 dev->flags &= ~IFF_PROMISC;
4266 else {
4267 dev->promiscuity -= inc;
4268 printk(KERN_WARNING "%s: promiscuity touches roof, "
4269 "set promiscuity failed, promiscuity feature "
4270 "of device might be broken.\n", dev->name);
4271 return -EOVERFLOW;
4272 }
4273 }
4274 if (dev->flags != old_flags) {
4275 printk(KERN_INFO "device %s %s promiscuous mode\n",
4276 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4277 "left");
4278 if (audit_enabled) {
4279 current_uid_gid(&uid, &gid);
4280 audit_log(current->audit_context, GFP_ATOMIC,
4281 AUDIT_ANOM_PROMISCUOUS,
4282 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4283 dev->name, (dev->flags & IFF_PROMISC),
4284 (old_flags & IFF_PROMISC),
4285 audit_get_loginuid(current),
4286 uid, gid,
4287 audit_get_sessionid(current));
4288 }
4289
4290 dev_change_rx_flags(dev, IFF_PROMISC);
4291 }
4292 return 0;
4293 }
4294
4295 /**
4296 * dev_set_promiscuity - update promiscuity count on a device
4297 * @dev: device
4298 * @inc: modifier
4299 *
4300 * Add or remove promiscuity from a device. While the count in the device
4301 * remains above zero the interface remains promiscuous. Once it hits zero
4302 * the device reverts back to normal filtering operation. A negative inc
4303 * value is used to drop promiscuity on the device.
4304 * Return 0 if successful or a negative errno code on error.
4305 */
4306 int dev_set_promiscuity(struct net_device *dev, int inc)
4307 {
4308 unsigned short old_flags = dev->flags;
4309 int err;
4310
4311 err = __dev_set_promiscuity(dev, inc);
4312 if (err < 0)
4313 return err;
4314 if (dev->flags != old_flags)
4315 dev_set_rx_mode(dev);
4316 return err;
4317 }
4318 EXPORT_SYMBOL(dev_set_promiscuity);
4319
4320 /**
4321 * dev_set_allmulti - update allmulti count on a device
4322 * @dev: device
4323 * @inc: modifier
4324 *
4325 * Add or remove reception of all multicast frames to a device. While the
4326 * count in the device remains above zero the interface remains listening
4327 * to all interfaces. Once it hits zero the device reverts back to normal
4328 * filtering operation. A negative @inc value is used to drop the counter
4329 * when releasing a resource needing all multicasts.
4330 * Return 0 if successful or a negative errno code on error.
4331 */
4332
4333 int dev_set_allmulti(struct net_device *dev, int inc)
4334 {
4335 unsigned short old_flags = dev->flags;
4336
4337 ASSERT_RTNL();
4338
4339 dev->flags |= IFF_ALLMULTI;
4340 dev->allmulti += inc;
4341 if (dev->allmulti == 0) {
4342 /*
4343 * Avoid overflow.
4344 * If inc causes overflow, untouch allmulti and return error.
4345 */
4346 if (inc < 0)
4347 dev->flags &= ~IFF_ALLMULTI;
4348 else {
4349 dev->allmulti -= inc;
4350 printk(KERN_WARNING "%s: allmulti touches roof, "
4351 "set allmulti failed, allmulti feature of "
4352 "device might be broken.\n", dev->name);
4353 return -EOVERFLOW;
4354 }
4355 }
4356 if (dev->flags ^ old_flags) {
4357 dev_change_rx_flags(dev, IFF_ALLMULTI);
4358 dev_set_rx_mode(dev);
4359 }
4360 return 0;
4361 }
4362 EXPORT_SYMBOL(dev_set_allmulti);
4363
4364 /*
4365 * Upload unicast and multicast address lists to device and
4366 * configure RX filtering. When the device doesn't support unicast
4367 * filtering it is put in promiscuous mode while unicast addresses
4368 * are present.
4369 */
4370 void __dev_set_rx_mode(struct net_device *dev)
4371 {
4372 const struct net_device_ops *ops = dev->netdev_ops;
4373
4374 /* dev_open will call this function so the list will stay sane. */
4375 if (!(dev->flags&IFF_UP))
4376 return;
4377
4378 if (!netif_device_present(dev))
4379 return;
4380
4381 if (ops->ndo_set_rx_mode)
4382 ops->ndo_set_rx_mode(dev);
4383 else {
4384 /* Unicast addresses changes may only happen under the rtnl,
4385 * therefore calling __dev_set_promiscuity here is safe.
4386 */
4387 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4388 __dev_set_promiscuity(dev, 1);
4389 dev->uc_promisc = 1;
4390 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4391 __dev_set_promiscuity(dev, -1);
4392 dev->uc_promisc = 0;
4393 }
4394
4395 if (ops->ndo_set_multicast_list)
4396 ops->ndo_set_multicast_list(dev);
4397 }
4398 }
4399
4400 void dev_set_rx_mode(struct net_device *dev)
4401 {
4402 netif_addr_lock_bh(dev);
4403 __dev_set_rx_mode(dev);
4404 netif_addr_unlock_bh(dev);
4405 }
4406
4407 /**
4408 * dev_get_flags - get flags reported to userspace
4409 * @dev: device
4410 *
4411 * Get the combination of flag bits exported through APIs to userspace.
4412 */
4413 unsigned dev_get_flags(const struct net_device *dev)
4414 {
4415 unsigned flags;
4416
4417 flags = (dev->flags & ~(IFF_PROMISC |
4418 IFF_ALLMULTI |
4419 IFF_RUNNING |
4420 IFF_LOWER_UP |
4421 IFF_DORMANT)) |
4422 (dev->gflags & (IFF_PROMISC |
4423 IFF_ALLMULTI));
4424
4425 if (netif_running(dev)) {
4426 if (netif_oper_up(dev))
4427 flags |= IFF_RUNNING;
4428 if (netif_carrier_ok(dev))
4429 flags |= IFF_LOWER_UP;
4430 if (netif_dormant(dev))
4431 flags |= IFF_DORMANT;
4432 }
4433
4434 return flags;
4435 }
4436 EXPORT_SYMBOL(dev_get_flags);
4437
4438 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4439 {
4440 int old_flags = dev->flags;
4441 int ret;
4442
4443 ASSERT_RTNL();
4444
4445 /*
4446 * Set the flags on our device.
4447 */
4448
4449 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4450 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4451 IFF_AUTOMEDIA)) |
4452 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4453 IFF_ALLMULTI));
4454
4455 /*
4456 * Load in the correct multicast list now the flags have changed.
4457 */
4458
4459 if ((old_flags ^ flags) & IFF_MULTICAST)
4460 dev_change_rx_flags(dev, IFF_MULTICAST);
4461
4462 dev_set_rx_mode(dev);
4463
4464 /*
4465 * Have we downed the interface. We handle IFF_UP ourselves
4466 * according to user attempts to set it, rather than blindly
4467 * setting it.
4468 */
4469
4470 ret = 0;
4471 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4472 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4473
4474 if (!ret)
4475 dev_set_rx_mode(dev);
4476 }
4477
4478 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4479 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4480
4481 dev->gflags ^= IFF_PROMISC;
4482 dev_set_promiscuity(dev, inc);
4483 }
4484
4485 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4486 is important. Some (broken) drivers set IFF_PROMISC, when
4487 IFF_ALLMULTI is requested not asking us and not reporting.
4488 */
4489 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4490 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4491
4492 dev->gflags ^= IFF_ALLMULTI;
4493 dev_set_allmulti(dev, inc);
4494 }
4495
4496 return ret;
4497 }
4498
4499 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4500 {
4501 unsigned int changes = dev->flags ^ old_flags;
4502
4503 if (changes & IFF_UP) {
4504 if (dev->flags & IFF_UP)
4505 call_netdevice_notifiers(NETDEV_UP, dev);
4506 else
4507 call_netdevice_notifiers(NETDEV_DOWN, dev);
4508 }
4509
4510 if (dev->flags & IFF_UP &&
4511 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4512 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4513 }
4514
4515 /**
4516 * dev_change_flags - change device settings
4517 * @dev: device
4518 * @flags: device state flags
4519 *
4520 * Change settings on device based state flags. The flags are
4521 * in the userspace exported format.
4522 */
4523 int dev_change_flags(struct net_device *dev, unsigned flags)
4524 {
4525 int ret, changes;
4526 int old_flags = dev->flags;
4527
4528 ret = __dev_change_flags(dev, flags);
4529 if (ret < 0)
4530 return ret;
4531
4532 changes = old_flags ^ dev->flags;
4533 if (changes)
4534 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4535
4536 __dev_notify_flags(dev, old_flags);
4537 return ret;
4538 }
4539 EXPORT_SYMBOL(dev_change_flags);
4540
4541 /**
4542 * dev_set_mtu - Change maximum transfer unit
4543 * @dev: device
4544 * @new_mtu: new transfer unit
4545 *
4546 * Change the maximum transfer size of the network device.
4547 */
4548 int dev_set_mtu(struct net_device *dev, int new_mtu)
4549 {
4550 const struct net_device_ops *ops = dev->netdev_ops;
4551 int err;
4552
4553 if (new_mtu == dev->mtu)
4554 return 0;
4555
4556 /* MTU must be positive. */
4557 if (new_mtu < 0)
4558 return -EINVAL;
4559
4560 if (!netif_device_present(dev))
4561 return -ENODEV;
4562
4563 err = 0;
4564 if (ops->ndo_change_mtu)
4565 err = ops->ndo_change_mtu(dev, new_mtu);
4566 else
4567 dev->mtu = new_mtu;
4568
4569 if (!err && dev->flags & IFF_UP)
4570 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4571 return err;
4572 }
4573 EXPORT_SYMBOL(dev_set_mtu);
4574
4575 /**
4576 * dev_set_mac_address - Change Media Access Control Address
4577 * @dev: device
4578 * @sa: new address
4579 *
4580 * Change the hardware (MAC) address of the device
4581 */
4582 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4583 {
4584 const struct net_device_ops *ops = dev->netdev_ops;
4585 int err;
4586
4587 if (!ops->ndo_set_mac_address)
4588 return -EOPNOTSUPP;
4589 if (sa->sa_family != dev->type)
4590 return -EINVAL;
4591 if (!netif_device_present(dev))
4592 return -ENODEV;
4593 err = ops->ndo_set_mac_address(dev, sa);
4594 if (!err)
4595 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4596 return err;
4597 }
4598 EXPORT_SYMBOL(dev_set_mac_address);
4599
4600 /*
4601 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4602 */
4603 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4604 {
4605 int err;
4606 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4607
4608 if (!dev)
4609 return -ENODEV;
4610
4611 switch (cmd) {
4612 case SIOCGIFFLAGS: /* Get interface flags */
4613 ifr->ifr_flags = (short) dev_get_flags(dev);
4614 return 0;
4615
4616 case SIOCGIFMETRIC: /* Get the metric on the interface
4617 (currently unused) */
4618 ifr->ifr_metric = 0;
4619 return 0;
4620
4621 case SIOCGIFMTU: /* Get the MTU of a device */
4622 ifr->ifr_mtu = dev->mtu;
4623 return 0;
4624
4625 case SIOCGIFHWADDR:
4626 if (!dev->addr_len)
4627 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4628 else
4629 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4630 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4631 ifr->ifr_hwaddr.sa_family = dev->type;
4632 return 0;
4633
4634 case SIOCGIFSLAVE:
4635 err = -EINVAL;
4636 break;
4637
4638 case SIOCGIFMAP:
4639 ifr->ifr_map.mem_start = dev->mem_start;
4640 ifr->ifr_map.mem_end = dev->mem_end;
4641 ifr->ifr_map.base_addr = dev->base_addr;
4642 ifr->ifr_map.irq = dev->irq;
4643 ifr->ifr_map.dma = dev->dma;
4644 ifr->ifr_map.port = dev->if_port;
4645 return 0;
4646
4647 case SIOCGIFINDEX:
4648 ifr->ifr_ifindex = dev->ifindex;
4649 return 0;
4650
4651 case SIOCGIFTXQLEN:
4652 ifr->ifr_qlen = dev->tx_queue_len;
4653 return 0;
4654
4655 default:
4656 /* dev_ioctl() should ensure this case
4657 * is never reached
4658 */
4659 WARN_ON(1);
4660 err = -EINVAL;
4661 break;
4662
4663 }
4664 return err;
4665 }
4666
4667 /*
4668 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4669 */
4670 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4671 {
4672 int err;
4673 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4674 const struct net_device_ops *ops;
4675
4676 if (!dev)
4677 return -ENODEV;
4678
4679 ops = dev->netdev_ops;
4680
4681 switch (cmd) {
4682 case SIOCSIFFLAGS: /* Set interface flags */
4683 return dev_change_flags(dev, ifr->ifr_flags);
4684
4685 case SIOCSIFMETRIC: /* Set the metric on the interface
4686 (currently unused) */
4687 return -EOPNOTSUPP;
4688
4689 case SIOCSIFMTU: /* Set the MTU of a device */
4690 return dev_set_mtu(dev, ifr->ifr_mtu);
4691
4692 case SIOCSIFHWADDR:
4693 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4694
4695 case SIOCSIFHWBROADCAST:
4696 if (ifr->ifr_hwaddr.sa_family != dev->type)
4697 return -EINVAL;
4698 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4699 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4700 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4701 return 0;
4702
4703 case SIOCSIFMAP:
4704 if (ops->ndo_set_config) {
4705 if (!netif_device_present(dev))
4706 return -ENODEV;
4707 return ops->ndo_set_config(dev, &ifr->ifr_map);
4708 }
4709 return -EOPNOTSUPP;
4710
4711 case SIOCADDMULTI:
4712 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4713 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4714 return -EINVAL;
4715 if (!netif_device_present(dev))
4716 return -ENODEV;
4717 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4718
4719 case SIOCDELMULTI:
4720 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4721 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4722 return -EINVAL;
4723 if (!netif_device_present(dev))
4724 return -ENODEV;
4725 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4726
4727 case SIOCSIFTXQLEN:
4728 if (ifr->ifr_qlen < 0)
4729 return -EINVAL;
4730 dev->tx_queue_len = ifr->ifr_qlen;
4731 return 0;
4732
4733 case SIOCSIFNAME:
4734 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4735 return dev_change_name(dev, ifr->ifr_newname);
4736
4737 /*
4738 * Unknown or private ioctl
4739 */
4740 default:
4741 if ((cmd >= SIOCDEVPRIVATE &&
4742 cmd <= SIOCDEVPRIVATE + 15) ||
4743 cmd == SIOCBONDENSLAVE ||
4744 cmd == SIOCBONDRELEASE ||
4745 cmd == SIOCBONDSETHWADDR ||
4746 cmd == SIOCBONDSLAVEINFOQUERY ||
4747 cmd == SIOCBONDINFOQUERY ||
4748 cmd == SIOCBONDCHANGEACTIVE ||
4749 cmd == SIOCGMIIPHY ||
4750 cmd == SIOCGMIIREG ||
4751 cmd == SIOCSMIIREG ||
4752 cmd == SIOCBRADDIF ||
4753 cmd == SIOCBRDELIF ||
4754 cmd == SIOCSHWTSTAMP ||
4755 cmd == SIOCWANDEV) {
4756 err = -EOPNOTSUPP;
4757 if (ops->ndo_do_ioctl) {
4758 if (netif_device_present(dev))
4759 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4760 else
4761 err = -ENODEV;
4762 }
4763 } else
4764 err = -EINVAL;
4765
4766 }
4767 return err;
4768 }
4769
4770 /*
4771 * This function handles all "interface"-type I/O control requests. The actual
4772 * 'doing' part of this is dev_ifsioc above.
4773 */
4774
4775 /**
4776 * dev_ioctl - network device ioctl
4777 * @net: the applicable net namespace
4778 * @cmd: command to issue
4779 * @arg: pointer to a struct ifreq in user space
4780 *
4781 * Issue ioctl functions to devices. This is normally called by the
4782 * user space syscall interfaces but can sometimes be useful for
4783 * other purposes. The return value is the return from the syscall if
4784 * positive or a negative errno code on error.
4785 */
4786
4787 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4788 {
4789 struct ifreq ifr;
4790 int ret;
4791 char *colon;
4792
4793 /* One special case: SIOCGIFCONF takes ifconf argument
4794 and requires shared lock, because it sleeps writing
4795 to user space.
4796 */
4797
4798 if (cmd == SIOCGIFCONF) {
4799 rtnl_lock();
4800 ret = dev_ifconf(net, (char __user *) arg);
4801 rtnl_unlock();
4802 return ret;
4803 }
4804 if (cmd == SIOCGIFNAME)
4805 return dev_ifname(net, (struct ifreq __user *)arg);
4806
4807 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4808 return -EFAULT;
4809
4810 ifr.ifr_name[IFNAMSIZ-1] = 0;
4811
4812 colon = strchr(ifr.ifr_name, ':');
4813 if (colon)
4814 *colon = 0;
4815
4816 /*
4817 * See which interface the caller is talking about.
4818 */
4819
4820 switch (cmd) {
4821 /*
4822 * These ioctl calls:
4823 * - can be done by all.
4824 * - atomic and do not require locking.
4825 * - return a value
4826 */
4827 case SIOCGIFFLAGS:
4828 case SIOCGIFMETRIC:
4829 case SIOCGIFMTU:
4830 case SIOCGIFHWADDR:
4831 case SIOCGIFSLAVE:
4832 case SIOCGIFMAP:
4833 case SIOCGIFINDEX:
4834 case SIOCGIFTXQLEN:
4835 dev_load(net, ifr.ifr_name);
4836 rcu_read_lock();
4837 ret = dev_ifsioc_locked(net, &ifr, cmd);
4838 rcu_read_unlock();
4839 if (!ret) {
4840 if (colon)
4841 *colon = ':';
4842 if (copy_to_user(arg, &ifr,
4843 sizeof(struct ifreq)))
4844 ret = -EFAULT;
4845 }
4846 return ret;
4847
4848 case SIOCETHTOOL:
4849 dev_load(net, ifr.ifr_name);
4850 rtnl_lock();
4851 ret = dev_ethtool(net, &ifr);
4852 rtnl_unlock();
4853 if (!ret) {
4854 if (colon)
4855 *colon = ':';
4856 if (copy_to_user(arg, &ifr,
4857 sizeof(struct ifreq)))
4858 ret = -EFAULT;
4859 }
4860 return ret;
4861
4862 /*
4863 * These ioctl calls:
4864 * - require superuser power.
4865 * - require strict serialization.
4866 * - return a value
4867 */
4868 case SIOCGMIIPHY:
4869 case SIOCGMIIREG:
4870 case SIOCSIFNAME:
4871 if (!capable(CAP_NET_ADMIN))
4872 return -EPERM;
4873 dev_load(net, ifr.ifr_name);
4874 rtnl_lock();
4875 ret = dev_ifsioc(net, &ifr, cmd);
4876 rtnl_unlock();
4877 if (!ret) {
4878 if (colon)
4879 *colon = ':';
4880 if (copy_to_user(arg, &ifr,
4881 sizeof(struct ifreq)))
4882 ret = -EFAULT;
4883 }
4884 return ret;
4885
4886 /*
4887 * These ioctl calls:
4888 * - require superuser power.
4889 * - require strict serialization.
4890 * - do not return a value
4891 */
4892 case SIOCSIFFLAGS:
4893 case SIOCSIFMETRIC:
4894 case SIOCSIFMTU:
4895 case SIOCSIFMAP:
4896 case SIOCSIFHWADDR:
4897 case SIOCSIFSLAVE:
4898 case SIOCADDMULTI:
4899 case SIOCDELMULTI:
4900 case SIOCSIFHWBROADCAST:
4901 case SIOCSIFTXQLEN:
4902 case SIOCSMIIREG:
4903 case SIOCBONDENSLAVE:
4904 case SIOCBONDRELEASE:
4905 case SIOCBONDSETHWADDR:
4906 case SIOCBONDCHANGEACTIVE:
4907 case SIOCBRADDIF:
4908 case SIOCBRDELIF:
4909 case SIOCSHWTSTAMP:
4910 if (!capable(CAP_NET_ADMIN))
4911 return -EPERM;
4912 /* fall through */
4913 case SIOCBONDSLAVEINFOQUERY:
4914 case SIOCBONDINFOQUERY:
4915 dev_load(net, ifr.ifr_name);
4916 rtnl_lock();
4917 ret = dev_ifsioc(net, &ifr, cmd);
4918 rtnl_unlock();
4919 return ret;
4920
4921 case SIOCGIFMEM:
4922 /* Get the per device memory space. We can add this but
4923 * currently do not support it */
4924 case SIOCSIFMEM:
4925 /* Set the per device memory buffer space.
4926 * Not applicable in our case */
4927 case SIOCSIFLINK:
4928 return -EINVAL;
4929
4930 /*
4931 * Unknown or private ioctl.
4932 */
4933 default:
4934 if (cmd == SIOCWANDEV ||
4935 (cmd >= SIOCDEVPRIVATE &&
4936 cmd <= SIOCDEVPRIVATE + 15)) {
4937 dev_load(net, ifr.ifr_name);
4938 rtnl_lock();
4939 ret = dev_ifsioc(net, &ifr, cmd);
4940 rtnl_unlock();
4941 if (!ret && copy_to_user(arg, &ifr,
4942 sizeof(struct ifreq)))
4943 ret = -EFAULT;
4944 return ret;
4945 }
4946 /* Take care of Wireless Extensions */
4947 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4948 return wext_handle_ioctl(net, &ifr, cmd, arg);
4949 return -EINVAL;
4950 }
4951 }
4952
4953
4954 /**
4955 * dev_new_index - allocate an ifindex
4956 * @net: the applicable net namespace
4957 *
4958 * Returns a suitable unique value for a new device interface
4959 * number. The caller must hold the rtnl semaphore or the
4960 * dev_base_lock to be sure it remains unique.
4961 */
4962 static int dev_new_index(struct net *net)
4963 {
4964 static int ifindex;
4965 for (;;) {
4966 if (++ifindex <= 0)
4967 ifindex = 1;
4968 if (!__dev_get_by_index(net, ifindex))
4969 return ifindex;
4970 }
4971 }
4972
4973 /* Delayed registration/unregisteration */
4974 static LIST_HEAD(net_todo_list);
4975
4976 static void net_set_todo(struct net_device *dev)
4977 {
4978 list_add_tail(&dev->todo_list, &net_todo_list);
4979 }
4980
4981 static void rollback_registered_many(struct list_head *head)
4982 {
4983 struct net_device *dev, *tmp;
4984
4985 BUG_ON(dev_boot_phase);
4986 ASSERT_RTNL();
4987
4988 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4989 /* Some devices call without registering
4990 * for initialization unwind. Remove those
4991 * devices and proceed with the remaining.
4992 */
4993 if (dev->reg_state == NETREG_UNINITIALIZED) {
4994 pr_debug("unregister_netdevice: device %s/%p never "
4995 "was registered\n", dev->name, dev);
4996
4997 WARN_ON(1);
4998 list_del(&dev->unreg_list);
4999 continue;
5000 }
5001
5002 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5003 }
5004
5005 /* If device is running, close it first. */
5006 dev_close_many(head);
5007
5008 list_for_each_entry(dev, head, unreg_list) {
5009 /* And unlink it from device chain. */
5010 unlist_netdevice(dev);
5011
5012 dev->reg_state = NETREG_UNREGISTERING;
5013 }
5014
5015 synchronize_net();
5016
5017 list_for_each_entry(dev, head, unreg_list) {
5018 /* Shutdown queueing discipline. */
5019 dev_shutdown(dev);
5020
5021
5022 /* Notify protocols, that we are about to destroy
5023 this device. They should clean all the things.
5024 */
5025 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5026
5027 if (!dev->rtnl_link_ops ||
5028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5029 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5030
5031 /*
5032 * Flush the unicast and multicast chains
5033 */
5034 dev_uc_flush(dev);
5035 dev_mc_flush(dev);
5036
5037 if (dev->netdev_ops->ndo_uninit)
5038 dev->netdev_ops->ndo_uninit(dev);
5039
5040 /* Notifier chain MUST detach us from master device. */
5041 WARN_ON(dev->master);
5042
5043 /* Remove entries from kobject tree */
5044 netdev_unregister_kobject(dev);
5045 }
5046
5047 /* Process any work delayed until the end of the batch */
5048 dev = list_first_entry(head, struct net_device, unreg_list);
5049 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5050
5051 rcu_barrier();
5052
5053 list_for_each_entry(dev, head, unreg_list)
5054 dev_put(dev);
5055 }
5056
5057 static void rollback_registered(struct net_device *dev)
5058 {
5059 LIST_HEAD(single);
5060
5061 list_add(&dev->unreg_list, &single);
5062 rollback_registered_many(&single);
5063 }
5064
5065 unsigned long netdev_fix_features(unsigned long features, const char *name)
5066 {
5067 /* Fix illegal SG+CSUM combinations. */
5068 if ((features & NETIF_F_SG) &&
5069 !(features & NETIF_F_ALL_CSUM)) {
5070 if (name)
5071 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5072 "checksum feature.\n", name);
5073 features &= ~NETIF_F_SG;
5074 }
5075
5076 /* TSO requires that SG is present as well. */
5077 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5078 if (name)
5079 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5080 "SG feature.\n", name);
5081 features &= ~NETIF_F_TSO;
5082 }
5083
5084 if (features & NETIF_F_UFO) {
5085 /* maybe split UFO into V4 and V6? */
5086 if (!((features & NETIF_F_GEN_CSUM) ||
5087 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5088 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5089 if (name)
5090 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5091 "since no checksum offload features.\n",
5092 name);
5093 features &= ~NETIF_F_UFO;
5094 }
5095
5096 if (!(features & NETIF_F_SG)) {
5097 if (name)
5098 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5099 "since no NETIF_F_SG feature.\n", name);
5100 features &= ~NETIF_F_UFO;
5101 }
5102 }
5103
5104 return features;
5105 }
5106 EXPORT_SYMBOL(netdev_fix_features);
5107
5108 /**
5109 * netif_stacked_transfer_operstate - transfer operstate
5110 * @rootdev: the root or lower level device to transfer state from
5111 * @dev: the device to transfer operstate to
5112 *
5113 * Transfer operational state from root to device. This is normally
5114 * called when a stacking relationship exists between the root
5115 * device and the device(a leaf device).
5116 */
5117 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5118 struct net_device *dev)
5119 {
5120 if (rootdev->operstate == IF_OPER_DORMANT)
5121 netif_dormant_on(dev);
5122 else
5123 netif_dormant_off(dev);
5124
5125 if (netif_carrier_ok(rootdev)) {
5126 if (!netif_carrier_ok(dev))
5127 netif_carrier_on(dev);
5128 } else {
5129 if (netif_carrier_ok(dev))
5130 netif_carrier_off(dev);
5131 }
5132 }
5133 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5134
5135 #ifdef CONFIG_RPS
5136 static int netif_alloc_rx_queues(struct net_device *dev)
5137 {
5138 unsigned int i, count = dev->num_rx_queues;
5139 struct netdev_rx_queue *rx;
5140
5141 BUG_ON(count < 1);
5142
5143 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5144 if (!rx) {
5145 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5146 return -ENOMEM;
5147 }
5148 dev->_rx = rx;
5149
5150 for (i = 0; i < count; i++)
5151 rx[i].dev = dev;
5152 return 0;
5153 }
5154 #endif
5155
5156 static void netdev_init_one_queue(struct net_device *dev,
5157 struct netdev_queue *queue, void *_unused)
5158 {
5159 /* Initialize queue lock */
5160 spin_lock_init(&queue->_xmit_lock);
5161 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5162 queue->xmit_lock_owner = -1;
5163 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5164 queue->dev = dev;
5165 }
5166
5167 static int netif_alloc_netdev_queues(struct net_device *dev)
5168 {
5169 unsigned int count = dev->num_tx_queues;
5170 struct netdev_queue *tx;
5171
5172 BUG_ON(count < 1);
5173
5174 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5175 if (!tx) {
5176 pr_err("netdev: Unable to allocate %u tx queues.\n",
5177 count);
5178 return -ENOMEM;
5179 }
5180 dev->_tx = tx;
5181
5182 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5183 spin_lock_init(&dev->tx_global_lock);
5184
5185 return 0;
5186 }
5187
5188 /**
5189 * register_netdevice - register a network device
5190 * @dev: device to register
5191 *
5192 * Take a completed network device structure and add it to the kernel
5193 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5194 * chain. 0 is returned on success. A negative errno code is returned
5195 * on a failure to set up the device, or if the name is a duplicate.
5196 *
5197 * Callers must hold the rtnl semaphore. You may want
5198 * register_netdev() instead of this.
5199 *
5200 * BUGS:
5201 * The locking appears insufficient to guarantee two parallel registers
5202 * will not get the same name.
5203 */
5204
5205 int register_netdevice(struct net_device *dev)
5206 {
5207 int ret;
5208 struct net *net = dev_net(dev);
5209
5210 BUG_ON(dev_boot_phase);
5211 ASSERT_RTNL();
5212
5213 might_sleep();
5214
5215 /* When net_device's are persistent, this will be fatal. */
5216 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5217 BUG_ON(!net);
5218
5219 spin_lock_init(&dev->addr_list_lock);
5220 netdev_set_addr_lockdep_class(dev);
5221
5222 dev->iflink = -1;
5223
5224 /* Init, if this function is available */
5225 if (dev->netdev_ops->ndo_init) {
5226 ret = dev->netdev_ops->ndo_init(dev);
5227 if (ret) {
5228 if (ret > 0)
5229 ret = -EIO;
5230 goto out;
5231 }
5232 }
5233
5234 ret = dev_get_valid_name(dev, dev->name, 0);
5235 if (ret)
5236 goto err_uninit;
5237
5238 dev->ifindex = dev_new_index(net);
5239 if (dev->iflink == -1)
5240 dev->iflink = dev->ifindex;
5241
5242 /* Fix illegal checksum combinations */
5243 if ((dev->features & NETIF_F_HW_CSUM) &&
5244 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5245 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5246 dev->name);
5247 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5248 }
5249
5250 if ((dev->features & NETIF_F_NO_CSUM) &&
5251 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5252 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5253 dev->name);
5254 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5255 }
5256
5257 dev->features = netdev_fix_features(dev->features, dev->name);
5258
5259 /* Enable software GSO if SG is supported. */
5260 if (dev->features & NETIF_F_SG)
5261 dev->features |= NETIF_F_GSO;
5262
5263 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5264 * vlan_dev_init() will do the dev->features check, so these features
5265 * are enabled only if supported by underlying device.
5266 */
5267 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5268
5269 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5270 ret = notifier_to_errno(ret);
5271 if (ret)
5272 goto err_uninit;
5273
5274 ret = netdev_register_kobject(dev);
5275 if (ret)
5276 goto err_uninit;
5277 dev->reg_state = NETREG_REGISTERED;
5278
5279 /*
5280 * Default initial state at registry is that the
5281 * device is present.
5282 */
5283
5284 set_bit(__LINK_STATE_PRESENT, &dev->state);
5285
5286 dev_init_scheduler(dev);
5287 dev_hold(dev);
5288 list_netdevice(dev);
5289
5290 /* Notify protocols, that a new device appeared. */
5291 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5292 ret = notifier_to_errno(ret);
5293 if (ret) {
5294 rollback_registered(dev);
5295 dev->reg_state = NETREG_UNREGISTERED;
5296 }
5297 /*
5298 * Prevent userspace races by waiting until the network
5299 * device is fully setup before sending notifications.
5300 */
5301 if (!dev->rtnl_link_ops ||
5302 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5303 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5304
5305 out:
5306 return ret;
5307
5308 err_uninit:
5309 if (dev->netdev_ops->ndo_uninit)
5310 dev->netdev_ops->ndo_uninit(dev);
5311 goto out;
5312 }
5313 EXPORT_SYMBOL(register_netdevice);
5314
5315 /**
5316 * init_dummy_netdev - init a dummy network device for NAPI
5317 * @dev: device to init
5318 *
5319 * This takes a network device structure and initialize the minimum
5320 * amount of fields so it can be used to schedule NAPI polls without
5321 * registering a full blown interface. This is to be used by drivers
5322 * that need to tie several hardware interfaces to a single NAPI
5323 * poll scheduler due to HW limitations.
5324 */
5325 int init_dummy_netdev(struct net_device *dev)
5326 {
5327 /* Clear everything. Note we don't initialize spinlocks
5328 * are they aren't supposed to be taken by any of the
5329 * NAPI code and this dummy netdev is supposed to be
5330 * only ever used for NAPI polls
5331 */
5332 memset(dev, 0, sizeof(struct net_device));
5333
5334 /* make sure we BUG if trying to hit standard
5335 * register/unregister code path
5336 */
5337 dev->reg_state = NETREG_DUMMY;
5338
5339 /* NAPI wants this */
5340 INIT_LIST_HEAD(&dev->napi_list);
5341
5342 /* a dummy interface is started by default */
5343 set_bit(__LINK_STATE_PRESENT, &dev->state);
5344 set_bit(__LINK_STATE_START, &dev->state);
5345
5346 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5347 * because users of this 'device' dont need to change
5348 * its refcount.
5349 */
5350
5351 return 0;
5352 }
5353 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5354
5355
5356 /**
5357 * register_netdev - register a network device
5358 * @dev: device to register
5359 *
5360 * Take a completed network device structure and add it to the kernel
5361 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5362 * chain. 0 is returned on success. A negative errno code is returned
5363 * on a failure to set up the device, or if the name is a duplicate.
5364 *
5365 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5366 * and expands the device name if you passed a format string to
5367 * alloc_netdev.
5368 */
5369 int register_netdev(struct net_device *dev)
5370 {
5371 int err;
5372
5373 rtnl_lock();
5374
5375 /*
5376 * If the name is a format string the caller wants us to do a
5377 * name allocation.
5378 */
5379 if (strchr(dev->name, '%')) {
5380 err = dev_alloc_name(dev, dev->name);
5381 if (err < 0)
5382 goto out;
5383 }
5384
5385 err = register_netdevice(dev);
5386 out:
5387 rtnl_unlock();
5388 return err;
5389 }
5390 EXPORT_SYMBOL(register_netdev);
5391
5392 int netdev_refcnt_read(const struct net_device *dev)
5393 {
5394 int i, refcnt = 0;
5395
5396 for_each_possible_cpu(i)
5397 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5398 return refcnt;
5399 }
5400 EXPORT_SYMBOL(netdev_refcnt_read);
5401
5402 /*
5403 * netdev_wait_allrefs - wait until all references are gone.
5404 *
5405 * This is called when unregistering network devices.
5406 *
5407 * Any protocol or device that holds a reference should register
5408 * for netdevice notification, and cleanup and put back the
5409 * reference if they receive an UNREGISTER event.
5410 * We can get stuck here if buggy protocols don't correctly
5411 * call dev_put.
5412 */
5413 static void netdev_wait_allrefs(struct net_device *dev)
5414 {
5415 unsigned long rebroadcast_time, warning_time;
5416 int refcnt;
5417
5418 linkwatch_forget_dev(dev);
5419
5420 rebroadcast_time = warning_time = jiffies;
5421 refcnt = netdev_refcnt_read(dev);
5422
5423 while (refcnt != 0) {
5424 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5425 rtnl_lock();
5426
5427 /* Rebroadcast unregister notification */
5428 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5429 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5430 * should have already handle it the first time */
5431
5432 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5433 &dev->state)) {
5434 /* We must not have linkwatch events
5435 * pending on unregister. If this
5436 * happens, we simply run the queue
5437 * unscheduled, resulting in a noop
5438 * for this device.
5439 */
5440 linkwatch_run_queue();
5441 }
5442
5443 __rtnl_unlock();
5444
5445 rebroadcast_time = jiffies;
5446 }
5447
5448 msleep(250);
5449
5450 refcnt = netdev_refcnt_read(dev);
5451
5452 if (time_after(jiffies, warning_time + 10 * HZ)) {
5453 printk(KERN_EMERG "unregister_netdevice: "
5454 "waiting for %s to become free. Usage "
5455 "count = %d\n",
5456 dev->name, refcnt);
5457 warning_time = jiffies;
5458 }
5459 }
5460 }
5461
5462 /* The sequence is:
5463 *
5464 * rtnl_lock();
5465 * ...
5466 * register_netdevice(x1);
5467 * register_netdevice(x2);
5468 * ...
5469 * unregister_netdevice(y1);
5470 * unregister_netdevice(y2);
5471 * ...
5472 * rtnl_unlock();
5473 * free_netdev(y1);
5474 * free_netdev(y2);
5475 *
5476 * We are invoked by rtnl_unlock().
5477 * This allows us to deal with problems:
5478 * 1) We can delete sysfs objects which invoke hotplug
5479 * without deadlocking with linkwatch via keventd.
5480 * 2) Since we run with the RTNL semaphore not held, we can sleep
5481 * safely in order to wait for the netdev refcnt to drop to zero.
5482 *
5483 * We must not return until all unregister events added during
5484 * the interval the lock was held have been completed.
5485 */
5486 void netdev_run_todo(void)
5487 {
5488 struct list_head list;
5489
5490 /* Snapshot list, allow later requests */
5491 list_replace_init(&net_todo_list, &list);
5492
5493 __rtnl_unlock();
5494
5495 while (!list_empty(&list)) {
5496 struct net_device *dev
5497 = list_first_entry(&list, struct net_device, todo_list);
5498 list_del(&dev->todo_list);
5499
5500 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5501 printk(KERN_ERR "network todo '%s' but state %d\n",
5502 dev->name, dev->reg_state);
5503 dump_stack();
5504 continue;
5505 }
5506
5507 dev->reg_state = NETREG_UNREGISTERED;
5508
5509 on_each_cpu(flush_backlog, dev, 1);
5510
5511 netdev_wait_allrefs(dev);
5512
5513 /* paranoia */
5514 BUG_ON(netdev_refcnt_read(dev));
5515 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5516 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5517 WARN_ON(dev->dn_ptr);
5518
5519 if (dev->destructor)
5520 dev->destructor(dev);
5521
5522 /* Free network device */
5523 kobject_put(&dev->dev.kobj);
5524 }
5525 }
5526
5527 /**
5528 * dev_txq_stats_fold - fold tx_queues stats
5529 * @dev: device to get statistics from
5530 * @stats: struct rtnl_link_stats64 to hold results
5531 */
5532 void dev_txq_stats_fold(const struct net_device *dev,
5533 struct rtnl_link_stats64 *stats)
5534 {
5535 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5536 unsigned int i;
5537 struct netdev_queue *txq;
5538
5539 for (i = 0; i < dev->num_tx_queues; i++) {
5540 txq = netdev_get_tx_queue(dev, i);
5541 spin_lock_bh(&txq->_xmit_lock);
5542 tx_bytes += txq->tx_bytes;
5543 tx_packets += txq->tx_packets;
5544 tx_dropped += txq->tx_dropped;
5545 spin_unlock_bh(&txq->_xmit_lock);
5546 }
5547 if (tx_bytes || tx_packets || tx_dropped) {
5548 stats->tx_bytes = tx_bytes;
5549 stats->tx_packets = tx_packets;
5550 stats->tx_dropped = tx_dropped;
5551 }
5552 }
5553 EXPORT_SYMBOL(dev_txq_stats_fold);
5554
5555 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5556 * fields in the same order, with only the type differing.
5557 */
5558 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5559 const struct net_device_stats *netdev_stats)
5560 {
5561 #if BITS_PER_LONG == 64
5562 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5563 memcpy(stats64, netdev_stats, sizeof(*stats64));
5564 #else
5565 size_t i, n = sizeof(*stats64) / sizeof(u64);
5566 const unsigned long *src = (const unsigned long *)netdev_stats;
5567 u64 *dst = (u64 *)stats64;
5568
5569 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5570 sizeof(*stats64) / sizeof(u64));
5571 for (i = 0; i < n; i++)
5572 dst[i] = src[i];
5573 #endif
5574 }
5575
5576 /**
5577 * dev_get_stats - get network device statistics
5578 * @dev: device to get statistics from
5579 * @storage: place to store stats
5580 *
5581 * Get network statistics from device. Return @storage.
5582 * The device driver may provide its own method by setting
5583 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5584 * otherwise the internal statistics structure is used.
5585 */
5586 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5587 struct rtnl_link_stats64 *storage)
5588 {
5589 const struct net_device_ops *ops = dev->netdev_ops;
5590
5591 if (ops->ndo_get_stats64) {
5592 memset(storage, 0, sizeof(*storage));
5593 ops->ndo_get_stats64(dev, storage);
5594 } else if (ops->ndo_get_stats) {
5595 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5596 } else {
5597 netdev_stats_to_stats64(storage, &dev->stats);
5598 dev_txq_stats_fold(dev, storage);
5599 }
5600 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5601 return storage;
5602 }
5603 EXPORT_SYMBOL(dev_get_stats);
5604
5605 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5606 {
5607 struct netdev_queue *queue = dev_ingress_queue(dev);
5608
5609 #ifdef CONFIG_NET_CLS_ACT
5610 if (queue)
5611 return queue;
5612 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5613 if (!queue)
5614 return NULL;
5615 netdev_init_one_queue(dev, queue, NULL);
5616 queue->qdisc = &noop_qdisc;
5617 queue->qdisc_sleeping = &noop_qdisc;
5618 rcu_assign_pointer(dev->ingress_queue, queue);
5619 #endif
5620 return queue;
5621 }
5622
5623 /**
5624 * alloc_netdev_mq - allocate network device
5625 * @sizeof_priv: size of private data to allocate space for
5626 * @name: device name format string
5627 * @setup: callback to initialize device
5628 * @queue_count: the number of subqueues to allocate
5629 *
5630 * Allocates a struct net_device with private data area for driver use
5631 * and performs basic initialization. Also allocates subquue structs
5632 * for each queue on the device at the end of the netdevice.
5633 */
5634 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5635 void (*setup)(struct net_device *), unsigned int queue_count)
5636 {
5637 struct net_device *dev;
5638 size_t alloc_size;
5639 struct net_device *p;
5640
5641 BUG_ON(strlen(name) >= sizeof(dev->name));
5642
5643 if (queue_count < 1) {
5644 pr_err("alloc_netdev: Unable to allocate device "
5645 "with zero queues.\n");
5646 return NULL;
5647 }
5648
5649 alloc_size = sizeof(struct net_device);
5650 if (sizeof_priv) {
5651 /* ensure 32-byte alignment of private area */
5652 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5653 alloc_size += sizeof_priv;
5654 }
5655 /* ensure 32-byte alignment of whole construct */
5656 alloc_size += NETDEV_ALIGN - 1;
5657
5658 p = kzalloc(alloc_size, GFP_KERNEL);
5659 if (!p) {
5660 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5661 return NULL;
5662 }
5663
5664 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5665 dev->padded = (char *)dev - (char *)p;
5666
5667 dev->pcpu_refcnt = alloc_percpu(int);
5668 if (!dev->pcpu_refcnt)
5669 goto free_p;
5670
5671 if (dev_addr_init(dev))
5672 goto free_pcpu;
5673
5674 dev_mc_init(dev);
5675 dev_uc_init(dev);
5676
5677 dev_net_set(dev, &init_net);
5678
5679 dev->num_tx_queues = queue_count;
5680 dev->real_num_tx_queues = queue_count;
5681 if (netif_alloc_netdev_queues(dev))
5682 goto free_pcpu;
5683
5684 #ifdef CONFIG_RPS
5685 dev->num_rx_queues = queue_count;
5686 dev->real_num_rx_queues = queue_count;
5687 if (netif_alloc_rx_queues(dev))
5688 goto free_pcpu;
5689 #endif
5690
5691 dev->gso_max_size = GSO_MAX_SIZE;
5692
5693 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5694 dev->ethtool_ntuple_list.count = 0;
5695 INIT_LIST_HEAD(&dev->napi_list);
5696 INIT_LIST_HEAD(&dev->unreg_list);
5697 INIT_LIST_HEAD(&dev->link_watch_list);
5698 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5699 setup(dev);
5700 strcpy(dev->name, name);
5701 return dev;
5702
5703 free_pcpu:
5704 free_percpu(dev->pcpu_refcnt);
5705 kfree(dev->_tx);
5706 #ifdef CONFIG_RPS
5707 kfree(dev->_rx);
5708 #endif
5709
5710 free_p:
5711 kfree(p);
5712 return NULL;
5713 }
5714 EXPORT_SYMBOL(alloc_netdev_mq);
5715
5716 /**
5717 * free_netdev - free network device
5718 * @dev: device
5719 *
5720 * This function does the last stage of destroying an allocated device
5721 * interface. The reference to the device object is released.
5722 * If this is the last reference then it will be freed.
5723 */
5724 void free_netdev(struct net_device *dev)
5725 {
5726 struct napi_struct *p, *n;
5727
5728 release_net(dev_net(dev));
5729
5730 kfree(dev->_tx);
5731 #ifdef CONFIG_RPS
5732 kfree(dev->_rx);
5733 #endif
5734
5735 kfree(rcu_dereference_raw(dev->ingress_queue));
5736
5737 /* Flush device addresses */
5738 dev_addr_flush(dev);
5739
5740 /* Clear ethtool n-tuple list */
5741 ethtool_ntuple_flush(dev);
5742
5743 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5744 netif_napi_del(p);
5745
5746 free_percpu(dev->pcpu_refcnt);
5747 dev->pcpu_refcnt = NULL;
5748
5749 /* Compatibility with error handling in drivers */
5750 if (dev->reg_state == NETREG_UNINITIALIZED) {
5751 kfree((char *)dev - dev->padded);
5752 return;
5753 }
5754
5755 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5756 dev->reg_state = NETREG_RELEASED;
5757
5758 /* will free via device release */
5759 put_device(&dev->dev);
5760 }
5761 EXPORT_SYMBOL(free_netdev);
5762
5763 /**
5764 * synchronize_net - Synchronize with packet receive processing
5765 *
5766 * Wait for packets currently being received to be done.
5767 * Does not block later packets from starting.
5768 */
5769 void synchronize_net(void)
5770 {
5771 might_sleep();
5772 synchronize_rcu();
5773 }
5774 EXPORT_SYMBOL(synchronize_net);
5775
5776 /**
5777 * unregister_netdevice_queue - remove device from the kernel
5778 * @dev: device
5779 * @head: list
5780 *
5781 * This function shuts down a device interface and removes it
5782 * from the kernel tables.
5783 * If head not NULL, device is queued to be unregistered later.
5784 *
5785 * Callers must hold the rtnl semaphore. You may want
5786 * unregister_netdev() instead of this.
5787 */
5788
5789 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5790 {
5791 ASSERT_RTNL();
5792
5793 if (head) {
5794 list_move_tail(&dev->unreg_list, head);
5795 } else {
5796 rollback_registered(dev);
5797 /* Finish processing unregister after unlock */
5798 net_set_todo(dev);
5799 }
5800 }
5801 EXPORT_SYMBOL(unregister_netdevice_queue);
5802
5803 /**
5804 * unregister_netdevice_many - unregister many devices
5805 * @head: list of devices
5806 */
5807 void unregister_netdevice_many(struct list_head *head)
5808 {
5809 struct net_device *dev;
5810
5811 if (!list_empty(head)) {
5812 rollback_registered_many(head);
5813 list_for_each_entry(dev, head, unreg_list)
5814 net_set_todo(dev);
5815 }
5816 }
5817 EXPORT_SYMBOL(unregister_netdevice_many);
5818
5819 /**
5820 * unregister_netdev - remove device from the kernel
5821 * @dev: device
5822 *
5823 * This function shuts down a device interface and removes it
5824 * from the kernel tables.
5825 *
5826 * This is just a wrapper for unregister_netdevice that takes
5827 * the rtnl semaphore. In general you want to use this and not
5828 * unregister_netdevice.
5829 */
5830 void unregister_netdev(struct net_device *dev)
5831 {
5832 rtnl_lock();
5833 unregister_netdevice(dev);
5834 rtnl_unlock();
5835 }
5836 EXPORT_SYMBOL(unregister_netdev);
5837
5838 /**
5839 * dev_change_net_namespace - move device to different nethost namespace
5840 * @dev: device
5841 * @net: network namespace
5842 * @pat: If not NULL name pattern to try if the current device name
5843 * is already taken in the destination network namespace.
5844 *
5845 * This function shuts down a device interface and moves it
5846 * to a new network namespace. On success 0 is returned, on
5847 * a failure a netagive errno code is returned.
5848 *
5849 * Callers must hold the rtnl semaphore.
5850 */
5851
5852 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5853 {
5854 int err;
5855
5856 ASSERT_RTNL();
5857
5858 /* Don't allow namespace local devices to be moved. */
5859 err = -EINVAL;
5860 if (dev->features & NETIF_F_NETNS_LOCAL)
5861 goto out;
5862
5863 /* Ensure the device has been registrered */
5864 err = -EINVAL;
5865 if (dev->reg_state != NETREG_REGISTERED)
5866 goto out;
5867
5868 /* Get out if there is nothing todo */
5869 err = 0;
5870 if (net_eq(dev_net(dev), net))
5871 goto out;
5872
5873 /* Pick the destination device name, and ensure
5874 * we can use it in the destination network namespace.
5875 */
5876 err = -EEXIST;
5877 if (__dev_get_by_name(net, dev->name)) {
5878 /* We get here if we can't use the current device name */
5879 if (!pat)
5880 goto out;
5881 if (dev_get_valid_name(dev, pat, 1))
5882 goto out;
5883 }
5884
5885 /*
5886 * And now a mini version of register_netdevice unregister_netdevice.
5887 */
5888
5889 /* If device is running close it first. */
5890 dev_close(dev);
5891
5892 /* And unlink it from device chain */
5893 err = -ENODEV;
5894 unlist_netdevice(dev);
5895
5896 synchronize_net();
5897
5898 /* Shutdown queueing discipline. */
5899 dev_shutdown(dev);
5900
5901 /* Notify protocols, that we are about to destroy
5902 this device. They should clean all the things.
5903
5904 Note that dev->reg_state stays at NETREG_REGISTERED.
5905 This is wanted because this way 8021q and macvlan know
5906 the device is just moving and can keep their slaves up.
5907 */
5908 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5909 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5910
5911 /*
5912 * Flush the unicast and multicast chains
5913 */
5914 dev_uc_flush(dev);
5915 dev_mc_flush(dev);
5916
5917 /* Actually switch the network namespace */
5918 dev_net_set(dev, net);
5919
5920 /* If there is an ifindex conflict assign a new one */
5921 if (__dev_get_by_index(net, dev->ifindex)) {
5922 int iflink = (dev->iflink == dev->ifindex);
5923 dev->ifindex = dev_new_index(net);
5924 if (iflink)
5925 dev->iflink = dev->ifindex;
5926 }
5927
5928 /* Fixup kobjects */
5929 err = device_rename(&dev->dev, dev->name);
5930 WARN_ON(err);
5931
5932 /* Add the device back in the hashes */
5933 list_netdevice(dev);
5934
5935 /* Notify protocols, that a new device appeared. */
5936 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5937
5938 /*
5939 * Prevent userspace races by waiting until the network
5940 * device is fully setup before sending notifications.
5941 */
5942 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5943
5944 synchronize_net();
5945 err = 0;
5946 out:
5947 return err;
5948 }
5949 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5950
5951 static int dev_cpu_callback(struct notifier_block *nfb,
5952 unsigned long action,
5953 void *ocpu)
5954 {
5955 struct sk_buff **list_skb;
5956 struct sk_buff *skb;
5957 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5958 struct softnet_data *sd, *oldsd;
5959
5960 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5961 return NOTIFY_OK;
5962
5963 local_irq_disable();
5964 cpu = smp_processor_id();
5965 sd = &per_cpu(softnet_data, cpu);
5966 oldsd = &per_cpu(softnet_data, oldcpu);
5967
5968 /* Find end of our completion_queue. */
5969 list_skb = &sd->completion_queue;
5970 while (*list_skb)
5971 list_skb = &(*list_skb)->next;
5972 /* Append completion queue from offline CPU. */
5973 *list_skb = oldsd->completion_queue;
5974 oldsd->completion_queue = NULL;
5975
5976 /* Append output queue from offline CPU. */
5977 if (oldsd->output_queue) {
5978 *sd->output_queue_tailp = oldsd->output_queue;
5979 sd->output_queue_tailp = oldsd->output_queue_tailp;
5980 oldsd->output_queue = NULL;
5981 oldsd->output_queue_tailp = &oldsd->output_queue;
5982 }
5983
5984 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5985 local_irq_enable();
5986
5987 /* Process offline CPU's input_pkt_queue */
5988 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5989 netif_rx(skb);
5990 input_queue_head_incr(oldsd);
5991 }
5992 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5993 netif_rx(skb);
5994 input_queue_head_incr(oldsd);
5995 }
5996
5997 return NOTIFY_OK;
5998 }
5999
6000
6001 /**
6002 * netdev_increment_features - increment feature set by one
6003 * @all: current feature set
6004 * @one: new feature set
6005 * @mask: mask feature set
6006 *
6007 * Computes a new feature set after adding a device with feature set
6008 * @one to the master device with current feature set @all. Will not
6009 * enable anything that is off in @mask. Returns the new feature set.
6010 */
6011 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6012 unsigned long mask)
6013 {
6014 /* If device needs checksumming, downgrade to it. */
6015 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6016 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6017 else if (mask & NETIF_F_ALL_CSUM) {
6018 /* If one device supports v4/v6 checksumming, set for all. */
6019 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6020 !(all & NETIF_F_GEN_CSUM)) {
6021 all &= ~NETIF_F_ALL_CSUM;
6022 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6023 }
6024
6025 /* If one device supports hw checksumming, set for all. */
6026 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6027 all &= ~NETIF_F_ALL_CSUM;
6028 all |= NETIF_F_HW_CSUM;
6029 }
6030 }
6031
6032 one |= NETIF_F_ALL_CSUM;
6033
6034 one |= all & NETIF_F_ONE_FOR_ALL;
6035 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6036 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6037
6038 return all;
6039 }
6040 EXPORT_SYMBOL(netdev_increment_features);
6041
6042 static struct hlist_head *netdev_create_hash(void)
6043 {
6044 int i;
6045 struct hlist_head *hash;
6046
6047 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6048 if (hash != NULL)
6049 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6050 INIT_HLIST_HEAD(&hash[i]);
6051
6052 return hash;
6053 }
6054
6055 /* Initialize per network namespace state */
6056 static int __net_init netdev_init(struct net *net)
6057 {
6058 INIT_LIST_HEAD(&net->dev_base_head);
6059
6060 net->dev_name_head = netdev_create_hash();
6061 if (net->dev_name_head == NULL)
6062 goto err_name;
6063
6064 net->dev_index_head = netdev_create_hash();
6065 if (net->dev_index_head == NULL)
6066 goto err_idx;
6067
6068 return 0;
6069
6070 err_idx:
6071 kfree(net->dev_name_head);
6072 err_name:
6073 return -ENOMEM;
6074 }
6075
6076 /**
6077 * netdev_drivername - network driver for the device
6078 * @dev: network device
6079 * @buffer: buffer for resulting name
6080 * @len: size of buffer
6081 *
6082 * Determine network driver for device.
6083 */
6084 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6085 {
6086 const struct device_driver *driver;
6087 const struct device *parent;
6088
6089 if (len <= 0 || !buffer)
6090 return buffer;
6091 buffer[0] = 0;
6092
6093 parent = dev->dev.parent;
6094
6095 if (!parent)
6096 return buffer;
6097
6098 driver = parent->driver;
6099 if (driver && driver->name)
6100 strlcpy(buffer, driver->name, len);
6101 return buffer;
6102 }
6103
6104 static int __netdev_printk(const char *level, const struct net_device *dev,
6105 struct va_format *vaf)
6106 {
6107 int r;
6108
6109 if (dev && dev->dev.parent)
6110 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6111 netdev_name(dev), vaf);
6112 else if (dev)
6113 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6114 else
6115 r = printk("%s(NULL net_device): %pV", level, vaf);
6116
6117 return r;
6118 }
6119
6120 int netdev_printk(const char *level, const struct net_device *dev,
6121 const char *format, ...)
6122 {
6123 struct va_format vaf;
6124 va_list args;
6125 int r;
6126
6127 va_start(args, format);
6128
6129 vaf.fmt = format;
6130 vaf.va = &args;
6131
6132 r = __netdev_printk(level, dev, &vaf);
6133 va_end(args);
6134
6135 return r;
6136 }
6137 EXPORT_SYMBOL(netdev_printk);
6138
6139 #define define_netdev_printk_level(func, level) \
6140 int func(const struct net_device *dev, const char *fmt, ...) \
6141 { \
6142 int r; \
6143 struct va_format vaf; \
6144 va_list args; \
6145 \
6146 va_start(args, fmt); \
6147 \
6148 vaf.fmt = fmt; \
6149 vaf.va = &args; \
6150 \
6151 r = __netdev_printk(level, dev, &vaf); \
6152 va_end(args); \
6153 \
6154 return r; \
6155 } \
6156 EXPORT_SYMBOL(func);
6157
6158 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6159 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6160 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6161 define_netdev_printk_level(netdev_err, KERN_ERR);
6162 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6163 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6164 define_netdev_printk_level(netdev_info, KERN_INFO);
6165
6166 static void __net_exit netdev_exit(struct net *net)
6167 {
6168 kfree(net->dev_name_head);
6169 kfree(net->dev_index_head);
6170 }
6171
6172 static struct pernet_operations __net_initdata netdev_net_ops = {
6173 .init = netdev_init,
6174 .exit = netdev_exit,
6175 };
6176
6177 static void __net_exit default_device_exit(struct net *net)
6178 {
6179 struct net_device *dev, *aux;
6180 /*
6181 * Push all migratable network devices back to the
6182 * initial network namespace
6183 */
6184 rtnl_lock();
6185 for_each_netdev_safe(net, dev, aux) {
6186 int err;
6187 char fb_name[IFNAMSIZ];
6188
6189 /* Ignore unmoveable devices (i.e. loopback) */
6190 if (dev->features & NETIF_F_NETNS_LOCAL)
6191 continue;
6192
6193 /* Leave virtual devices for the generic cleanup */
6194 if (dev->rtnl_link_ops)
6195 continue;
6196
6197 /* Push remaing network devices to init_net */
6198 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6199 err = dev_change_net_namespace(dev, &init_net, fb_name);
6200 if (err) {
6201 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6202 __func__, dev->name, err);
6203 BUG();
6204 }
6205 }
6206 rtnl_unlock();
6207 }
6208
6209 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6210 {
6211 /* At exit all network devices most be removed from a network
6212 * namespace. Do this in the reverse order of registeration.
6213 * Do this across as many network namespaces as possible to
6214 * improve batching efficiency.
6215 */
6216 struct net_device *dev;
6217 struct net *net;
6218 LIST_HEAD(dev_kill_list);
6219
6220 rtnl_lock();
6221 list_for_each_entry(net, net_list, exit_list) {
6222 for_each_netdev_reverse(net, dev) {
6223 if (dev->rtnl_link_ops)
6224 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6225 else
6226 unregister_netdevice_queue(dev, &dev_kill_list);
6227 }
6228 }
6229 unregister_netdevice_many(&dev_kill_list);
6230 rtnl_unlock();
6231 }
6232
6233 static struct pernet_operations __net_initdata default_device_ops = {
6234 .exit = default_device_exit,
6235 .exit_batch = default_device_exit_batch,
6236 };
6237
6238 /*
6239 * Initialize the DEV module. At boot time this walks the device list and
6240 * unhooks any devices that fail to initialise (normally hardware not
6241 * present) and leaves us with a valid list of present and active devices.
6242 *
6243 */
6244
6245 /*
6246 * This is called single threaded during boot, so no need
6247 * to take the rtnl semaphore.
6248 */
6249 static int __init net_dev_init(void)
6250 {
6251 int i, rc = -ENOMEM;
6252
6253 BUG_ON(!dev_boot_phase);
6254
6255 if (dev_proc_init())
6256 goto out;
6257
6258 if (netdev_kobject_init())
6259 goto out;
6260
6261 INIT_LIST_HEAD(&ptype_all);
6262 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6263 INIT_LIST_HEAD(&ptype_base[i]);
6264
6265 if (register_pernet_subsys(&netdev_net_ops))
6266 goto out;
6267
6268 /*
6269 * Initialise the packet receive queues.
6270 */
6271
6272 for_each_possible_cpu(i) {
6273 struct softnet_data *sd = &per_cpu(softnet_data, i);
6274
6275 memset(sd, 0, sizeof(*sd));
6276 skb_queue_head_init(&sd->input_pkt_queue);
6277 skb_queue_head_init(&sd->process_queue);
6278 sd->completion_queue = NULL;
6279 INIT_LIST_HEAD(&sd->poll_list);
6280 sd->output_queue = NULL;
6281 sd->output_queue_tailp = &sd->output_queue;
6282 #ifdef CONFIG_RPS
6283 sd->csd.func = rps_trigger_softirq;
6284 sd->csd.info = sd;
6285 sd->csd.flags = 0;
6286 sd->cpu = i;
6287 #endif
6288
6289 sd->backlog.poll = process_backlog;
6290 sd->backlog.weight = weight_p;
6291 sd->backlog.gro_list = NULL;
6292 sd->backlog.gro_count = 0;
6293 }
6294
6295 dev_boot_phase = 0;
6296
6297 /* The loopback device is special if any other network devices
6298 * is present in a network namespace the loopback device must
6299 * be present. Since we now dynamically allocate and free the
6300 * loopback device ensure this invariant is maintained by
6301 * keeping the loopback device as the first device on the
6302 * list of network devices. Ensuring the loopback devices
6303 * is the first device that appears and the last network device
6304 * that disappears.
6305 */
6306 if (register_pernet_device(&loopback_net_ops))
6307 goto out;
6308
6309 if (register_pernet_device(&default_device_ops))
6310 goto out;
6311
6312 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6313 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6314
6315 hotcpu_notifier(dev_cpu_callback, 0);
6316 dst_init();
6317 dev_mcast_init();
6318 rc = 0;
6319 out:
6320 return rc;
6321 }
6322
6323 subsys_initcall(net_dev_init);
6324
6325 static int __init initialize_hashrnd(void)
6326 {
6327 get_random_bytes(&hashrnd, sizeof(hashrnd));
6328 return 0;
6329 }
6330
6331 late_initcall_sync(initialize_hashrnd);
6332
This page took 0.286401 seconds and 4 git commands to generate.