Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly; /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
158
159 /*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 struct net *net = dev_net(dev);
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233
234 dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del_rcu(&dev->dev_list);
247 hlist_del_rcu(&dev->name_hlist);
248 hlist_del_rcu(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273 static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 if (pt->type == htons(ETH_P_ALL))
375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 else
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
389 * This call does not sleep therefore it can not
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396 struct list_head *head = ptype_head(pt);
397
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head = ptype_head(pt);
420 struct packet_type *pt1;
421
422 spin_lock(&ptype_lock);
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
431 pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 struct packet_offload *elem;
473
474 spin_lock(&offload_lock);
475 list_for_each_entry(elem, &offload_base, list) {
476 if (po->priority < elem->priority)
477 break;
478 }
479 list_add_rcu(&po->list, elem->list.prev);
480 spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485 * __dev_remove_offload - remove offload handler
486 * @po: packet offload declaration
487 *
488 * Remove a protocol offload handler that was previously added to the
489 * kernel offload handlers by dev_add_offload(). The passed &offload_type
490 * is removed from the kernel lists and can be freed or reused once this
491 * function returns.
492 *
493 * The packet type might still be in use by receivers
494 * and must not be freed until after all the CPU's have gone
495 * through a quiescent state.
496 */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 struct list_head *head = &offload_base;
500 struct packet_offload *po1;
501
502 spin_lock(&offload_lock);
503
504 list_for_each_entry(po1, head, list) {
505 if (po == po1) {
506 list_del_rcu(&po->list);
507 goto out;
508 }
509 }
510
511 pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 spin_unlock(&offload_lock);
514 }
515
516 /**
517 * dev_remove_offload - remove packet offload handler
518 * @po: packet offload declaration
519 *
520 * Remove a packet offload handler that was previously added to the kernel
521 * offload handlers by dev_add_offload(). The passed &offload_type is
522 * removed from the kernel lists and can be freed or reused once this
523 * function returns.
524 *
525 * This call sleeps to guarantee that no CPU is looking at the packet
526 * type after return.
527 */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 __dev_remove_offload(po);
531
532 synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538 Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546 * netdev_boot_setup_add - add new setup entry
547 * @name: name of the device
548 * @map: configured settings for the device
549 *
550 * Adds new setup entry to the dev_boot_setup list. The function
551 * returns 0 on error and 1 on success. This is a generic routine to
552 * all netdevices.
553 */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 struct netdev_boot_setup *s;
557 int i;
558
559 s = dev_boot_setup;
560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 memset(s[i].name, 0, sizeof(s[i].name));
563 strlcpy(s[i].name, name, IFNAMSIZ);
564 memcpy(&s[i].map, map, sizeof(s[i].map));
565 break;
566 }
567 }
568
569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573 * netdev_boot_setup_check - check boot time settings
574 * @dev: the netdevice
575 *
576 * Check boot time settings for the device.
577 * The found settings are set for the device to be used
578 * later in the device probing.
579 * Returns 0 if no settings found, 1 if they are.
580 */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 struct netdev_boot_setup *s = dev_boot_setup;
584 int i;
585
586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 !strcmp(dev->name, s[i].name)) {
589 dev->irq = s[i].map.irq;
590 dev->base_addr = s[i].map.base_addr;
591 dev->mem_start = s[i].map.mem_start;
592 dev->mem_end = s[i].map.mem_end;
593 return 1;
594 }
595 }
596 return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602 * netdev_boot_base - get address from boot time settings
603 * @prefix: prefix for network device
604 * @unit: id for network device
605 *
606 * Check boot time settings for the base address of device.
607 * The found settings are set for the device to be used
608 * later in the device probing.
609 * Returns 0 if no settings found.
610 */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 const struct netdev_boot_setup *s = dev_boot_setup;
614 char name[IFNAMSIZ];
615 int i;
616
617 sprintf(name, "%s%d", prefix, unit);
618
619 /*
620 * If device already registered then return base of 1
621 * to indicate not to probe for this interface
622 */
623 if (__dev_get_by_name(&init_net, name))
624 return 1;
625
626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 if (!strcmp(name, s[i].name))
628 return s[i].map.base_addr;
629 return 0;
630 }
631
632 /*
633 * Saves at boot time configured settings for any netdevice.
634 */
635 int __init netdev_boot_setup(char *str)
636 {
637 int ints[5];
638 struct ifmap map;
639
640 str = get_options(str, ARRAY_SIZE(ints), ints);
641 if (!str || !*str)
642 return 0;
643
644 /* Save settings */
645 memset(&map, 0, sizeof(map));
646 if (ints[0] > 0)
647 map.irq = ints[1];
648 if (ints[0] > 1)
649 map.base_addr = ints[2];
650 if (ints[0] > 2)
651 map.mem_start = ints[3];
652 if (ints[0] > 3)
653 map.mem_end = ints[4];
654
655 /* Add new entry to the list */
656 return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663 Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668 * dev_get_iflink - get 'iflink' value of a interface
669 * @dev: targeted interface
670 *
671 * Indicates the ifindex the interface is linked to.
672 * Physical interfaces have the same 'ifindex' and 'iflink' values.
673 */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 return dev->netdev_ops->ndo_get_iflink(dev);
679
680 return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
775
776 hlist_for_each_entry(dev, head, index_hlist)
777 if (dev->ifindex == ifindex)
778 return dev;
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
800 hlist_for_each_entry_rcu(dev, head, index_hlist)
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810 * dev_get_by_index - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 struct net_device *dev;
823
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (dev)
827 dev_hold(dev);
828 rcu_read_unlock();
829 return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 struct net_device *dev;
846 unsigned int seq;
847
848 retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865 }
866
867 /**
868 * dev_getbyhwaddr_rcu - find a device by its hardware address
869 * @net: the applicable net namespace
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
876 * The returned device has not had its ref count increased
877 * and the caller must therefore be careful about locking
878 *
879 */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
883 {
884 struct net_device *dev;
885
886 for_each_netdev_rcu(net, dev)
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
889 return dev;
890
891 return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 struct net_device *dev;
898
899 ASSERT_RTNL();
900 for_each_netdev(net, dev)
901 if (dev->type == type)
902 return dev;
903
904 return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 struct net_device *dev, *ret = NULL;
911
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925 * __dev_get_by_flags - find any device with given flags
926 * @net: the applicable net namespace
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
931 * is not found or a pointer to the device. Must be called inside
932 * rtnl_lock(), and result refcount is unchanged.
933 */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
937 {
938 struct net_device *dev, *ret;
939
940 ASSERT_RTNL();
941
942 ret = NULL;
943 for_each_netdev(net, dev) {
944 if (((dev->flags ^ if_flags) & mask) == 0) {
945 ret = dev;
946 break;
947 }
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
960 */
961 bool dev_valid_name(const char *name)
962 {
963 if (*name == '\0')
964 return false;
965 if (strlen(name) >= IFNAMSIZ)
966 return false;
967 if (!strcmp(name, ".") || !strcmp(name, ".."))
968 return false;
969
970 while (*name) {
971 if (*name == '/' || *name == ':' || isspace(*name))
972 return false;
973 name++;
974 }
975 return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
982 * @name: name format string
983 * @buf: scratch buffer and result name string
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
992 */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 int i = 0;
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
999 unsigned long *inuse;
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 if (!inuse)
1015 return -ENOMEM;
1016
1017 for_each_netdev(net, d) {
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
1024 snprintf(buf, IFNAMSIZ, name, i);
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
1035 if (!__dev_get_by_name(net, buf))
1036 return i;
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043 }
1044
1045 /**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
1077 {
1078 char buf[IFNAMSIZ];
1079 int ret;
1080
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090 {
1091 BUG_ON(!net);
1092
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1096 if (strchr(name, '%'))
1097 return dev_alloc_name_ns(net, dev, name);
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 unsigned char old_assign_type;
1117 char oldname[IFNAMSIZ];
1118 int err = 0;
1119 int ret;
1120 struct net *net;
1121
1122 ASSERT_RTNL();
1123 BUG_ON(!dev_net(dev));
1124
1125 net = dev_net(dev);
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
1129 write_seqcount_begin(&devnet_rename_seq);
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 write_seqcount_end(&devnet_rename_seq);
1133 return 0;
1134 }
1135
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138 err = dev_get_valid_name(net, dev, newname);
1139 if (err < 0) {
1140 write_seqcount_end(&devnet_rename_seq);
1141 return err;
1142 }
1143
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
1154 dev->name_assign_type = old_assign_type;
1155 write_seqcount_end(&devnet_rename_seq);
1156 return ret;
1157 }
1158
1159 write_seqcount_end(&devnet_rename_seq);
1160
1161 netdev_adjacent_rename_links(dev, oldname);
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_del_rcu(&dev->name_hlist);
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 write_unlock_bh(&dev_base_lock);
1172
1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
1179 err = ret;
1180 write_seqcount_begin(&devnet_rename_seq);
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 memcpy(oldname, newname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
1185 goto rollback;
1186 } else {
1187 pr_err("%s: name change rollback failed: %d\n",
1188 dev->name, ret);
1189 }
1190 }
1191
1192 return err;
1193 }
1194
1195 /**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
1199 * @len: limit of bytes to copy from info
1200 *
1201 * Set ifalias for a device,
1202 */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 char *new_ifalias;
1206
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
1212 if (!len) {
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
1215 return 0;
1216 }
1217
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
1220 return -ENOMEM;
1221 dev->ifalias = new_ifalias;
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225 }
1226
1227
1228 /**
1229 * netdev_features_change - device changes features
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 if (dev->flags & IFF_UP) {
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 const struct net_device_ops *ops = dev->netdev_ops;
1282 int ret;
1283
1284 ASSERT_RTNL();
1285
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
1293 netpoll_poll_disable(dev);
1294
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1300 set_bit(__LINK_STATE_START, &dev->state);
1301
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
1304
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1307
1308 netpoll_poll_enable(dev);
1309
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1313 dev->flags |= IFF_UP;
1314 dev_set_rx_mode(dev);
1315 dev_activate(dev);
1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1325 *
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1333 */
1334 int dev_open(struct net_device *dev)
1335 {
1336 int ret;
1337
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 struct net_device *dev;
1355
1356 ASSERT_RTNL();
1357 might_sleep();
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 /* Temporarily disable netpoll until the interface is down */
1361 netpoll_poll_disable(dev);
1362
1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
1373 smp_mb__after_atomic(); /* Commit netif_running(). */
1374 }
1375
1376 dev_deactivate_many(head);
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
1391 dev->flags &= ~IFF_UP;
1392 netpoll_poll_enable(dev);
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 int retval;
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->close_list, &single);
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
1406
1407 return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 struct net_device *dev, *tmp;
1413
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
1416 if (!(dev->flags & IFF_UP))
1417 list_del_init(&dev->close_list);
1418
1419 __dev_close_many(head);
1420
1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 if (unlink)
1425 list_del_init(&dev->close_list);
1426 }
1427
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441 int dev_close(struct net_device *dev)
1442 {
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1445
1446 list_add(&dev->close_list, &single);
1447 dev_close_many(&single, true);
1448 list_del(&single);
1449 }
1450 return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
1467
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
1470
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481 {
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
1500 * to the new notifier to allow device to have a race free
1501 * view of the network device list.
1502 */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 struct net_device *dev;
1507 struct net_device *last;
1508 struct net *net;
1509 int err;
1510
1511 rtnl_lock();
1512 err = raw_notifier_chain_register(&netdev_chain, nb);
1513 if (err)
1514 goto unlock;
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1526
1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 }
1529 }
1530
1531 unlock:
1532 rtnl_unlock();
1533 return err;
1534
1535 rollback:
1536 last = dev;
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
1540 goto outroll;
1541
1542 if (dev->flags & IFF_UP) {
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 }
1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 }
1549 }
1550
1551 outroll:
1552 raw_notifier_chain_unregister(&netdev_chain, nb);
1553 goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1569 */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 struct net_device *dev;
1574 struct net *net;
1575 int err;
1576
1577 rtnl_lock();
1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 }
1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 }
1591 }
1592 unlock:
1593 rtnl_unlock();
1594 return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
1611 {
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
1620 * @dev: net_device pointer passed unmodified to notifier function
1621 *
1622 * Call all network notifier blocks. Parameters and return value
1623 * are as for raw_notifier_call_chain().
1624 */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639 static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645 static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653 * If net_disable_timestamp() is called from irq context, defer the
1654 * static_key_slow_dec() calls.
1655 */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
1666 static_key_slow_dec(&netstamp_needed);
1667 return;
1668 }
1669 #endif
1670 static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681 #endif
1682 static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 skb->tstamp.tv64 = 0;
1689 if (static_key_false(&netstamp_needed))
1690 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB) \
1694 if (static_key_false(&netstamp_needed)) { \
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 unlikely(!is_skb_forwardable(dev, skb))) {
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728
1729 skb_scrub_packet(skb, true);
1730 skb->priority = 0;
1731 skb->protocol = eth_type_trans(skb, dev);
1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734 return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739 * dev_forward_skb - loopback an skb to another netif
1740 *
1741 * @dev: destination network device
1742 * @skb: buffer to forward
1743 *
1744 * return values:
1745 * NET_RX_SUCCESS (no congestion)
1746 * NET_RX_DROP (packet was dropped, but freed)
1747 *
1748 * dev_forward_skb can be used for injecting an skb from the
1749 * start_xmit function of one device into the receive queue
1750 * of another device.
1751 *
1752 * The receiving device may be in another namespace, so
1753 * we have to clear all information in the skb that could
1754 * impact namespace isolation.
1755 */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 struct packet_type *pt_prev,
1764 struct net_device *orig_dev)
1765 {
1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 return -ENOMEM;
1768 atomic_inc(&skb->users);
1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 struct packet_type **pt,
1774 struct net_device *orig_dev,
1775 __be16 type,
1776 struct list_head *ptype_list)
1777 {
1778 struct packet_type *ptype, *pt_prev = *pt;
1779
1780 list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 if (ptype->type != type)
1782 continue;
1783 if (pt_prev)
1784 deliver_skb(skb, pt_prev, orig_dev);
1785 pt_prev = ptype;
1786 }
1787 *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 if (!ptype->af_packet_priv || !skb->sk)
1793 return false;
1794
1795 if (ptype->id_match)
1796 return ptype->id_match(ptype, skb->sk);
1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 return true;
1799
1800 return false;
1801 }
1802
1803 /*
1804 * Support routine. Sends outgoing frames to any network
1805 * taps currently in use.
1806 */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 struct packet_type *ptype;
1811 struct sk_buff *skb2 = NULL;
1812 struct packet_type *pt_prev = NULL;
1813 struct list_head *ptype_list = &ptype_all;
1814
1815 rcu_read_lock();
1816 again:
1817 list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 /* Never send packets back to the socket
1819 * they originated from - MvS (miquels@drinkel.ow.org)
1820 */
1821 if (skb_loop_sk(ptype, skb))
1822 continue;
1823
1824 if (pt_prev) {
1825 deliver_skb(skb2, pt_prev, skb->dev);
1826 pt_prev = ptype;
1827 continue;
1828 }
1829
1830 /* need to clone skb, done only once */
1831 skb2 = skb_clone(skb, GFP_ATOMIC);
1832 if (!skb2)
1833 goto out_unlock;
1834
1835 net_timestamp_set(skb2);
1836
1837 /* skb->nh should be correctly
1838 * set by sender, so that the second statement is
1839 * just protection against buggy protocols.
1840 */
1841 skb_reset_mac_header(skb2);
1842
1843 if (skb_network_header(skb2) < skb2->data ||
1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 ntohs(skb2->protocol),
1847 dev->name);
1848 skb_reset_network_header(skb2);
1849 }
1850
1851 skb2->transport_header = skb2->network_header;
1852 skb2->pkt_type = PACKET_OUTGOING;
1853 pt_prev = ptype;
1854 }
1855
1856 if (ptype_list == &ptype_all) {
1857 ptype_list = &dev->ptype_all;
1858 goto again;
1859 }
1860 out_unlock:
1861 if (pt_prev)
1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 rcu_read_unlock();
1864 }
1865
1866 /**
1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868 * @dev: Network device
1869 * @txq: number of queues available
1870 *
1871 * If real_num_tx_queues is changed the tc mappings may no longer be
1872 * valid. To resolve this verify the tc mapping remains valid and if
1873 * not NULL the mapping. With no priorities mapping to this
1874 * offset/count pair it will no longer be used. In the worst case TC0
1875 * is invalid nothing can be done so disable priority mappings. If is
1876 * expected that drivers will fix this mapping if they can before
1877 * calling netif_set_real_num_tx_queues.
1878 */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 int i;
1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884 /* If TC0 is invalidated disable TC mapping */
1885 if (tc->offset + tc->count > txq) {
1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 dev->num_tc = 0;
1888 return;
1889 }
1890
1891 /* Invalidated prio to tc mappings set to TC0 */
1892 for (i = 1; i < TC_BITMASK + 1; i++) {
1893 int q = netdev_get_prio_tc_map(dev, i);
1894
1895 tc = &dev->tc_to_txq[q];
1896 if (tc->offset + tc->count > txq) {
1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 i, q);
1899 netdev_set_prio_tc_map(dev, i, 0);
1900 }
1901 }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P) \
1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 int cpu, u16 index)
1911 {
1912 struct xps_map *map = NULL;
1913 int pos;
1914
1915 if (dev_maps)
1916 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918 for (pos = 0; map && pos < map->len; pos++) {
1919 if (map->queues[pos] == index) {
1920 if (map->len > 1) {
1921 map->queues[pos] = map->queues[--map->len];
1922 } else {
1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 kfree_rcu(map, rcu);
1925 map = NULL;
1926 }
1927 break;
1928 }
1929 }
1930
1931 return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 struct xps_dev_maps *dev_maps;
1937 int cpu, i;
1938 bool active = false;
1939
1940 mutex_lock(&xps_map_mutex);
1941 dev_maps = xmap_dereference(dev->xps_maps);
1942
1943 if (!dev_maps)
1944 goto out_no_maps;
1945
1946 for_each_possible_cpu(cpu) {
1947 for (i = index; i < dev->num_tx_queues; i++) {
1948 if (!remove_xps_queue(dev_maps, cpu, i))
1949 break;
1950 }
1951 if (i == dev->num_tx_queues)
1952 active = true;
1953 }
1954
1955 if (!active) {
1956 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 kfree_rcu(dev_maps, rcu);
1958 }
1959
1960 for (i = index; i < dev->num_tx_queues; i++)
1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 NUMA_NO_NODE);
1963
1964 out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 int cpu, u16 index)
1970 {
1971 struct xps_map *new_map;
1972 int alloc_len = XPS_MIN_MAP_ALLOC;
1973 int i, pos;
1974
1975 for (pos = 0; map && pos < map->len; pos++) {
1976 if (map->queues[pos] != index)
1977 continue;
1978 return map;
1979 }
1980
1981 /* Need to add queue to this CPU's existing map */
1982 if (map) {
1983 if (pos < map->alloc_len)
1984 return map;
1985
1986 alloc_len = map->alloc_len * 2;
1987 }
1988
1989 /* Need to allocate new map to store queue on this CPU's map */
1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 cpu_to_node(cpu));
1992 if (!new_map)
1993 return NULL;
1994
1995 for (i = 0; i < pos; i++)
1996 new_map->queues[i] = map->queues[i];
1997 new_map->alloc_len = alloc_len;
1998 new_map->len = pos;
1999
2000 return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 u16 index)
2005 {
2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 struct xps_map *map, *new_map;
2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 int cpu, numa_node_id = -2;
2010 bool active = false;
2011
2012 mutex_lock(&xps_map_mutex);
2013
2014 dev_maps = xmap_dereference(dev->xps_maps);
2015
2016 /* allocate memory for queue storage */
2017 for_each_online_cpu(cpu) {
2018 if (!cpumask_test_cpu(cpu, mask))
2019 continue;
2020
2021 if (!new_dev_maps)
2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 if (!new_dev_maps) {
2024 mutex_unlock(&xps_map_mutex);
2025 return -ENOMEM;
2026 }
2027
2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 NULL;
2030
2031 map = expand_xps_map(map, cpu, index);
2032 if (!map)
2033 goto error;
2034
2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 }
2037
2038 if (!new_dev_maps)
2039 goto out_no_new_maps;
2040
2041 for_each_possible_cpu(cpu) {
2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 /* add queue to CPU maps */
2044 int pos = 0;
2045
2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 while ((pos < map->len) && (map->queues[pos] != index))
2048 pos++;
2049
2050 if (pos == map->len)
2051 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 if (numa_node_id == -2)
2054 numa_node_id = cpu_to_node(cpu);
2055 else if (numa_node_id != cpu_to_node(cpu))
2056 numa_node_id = -1;
2057 #endif
2058 } else if (dev_maps) {
2059 /* fill in the new device map from the old device map */
2060 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 }
2063
2064 }
2065
2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068 /* Cleanup old maps */
2069 if (dev_maps) {
2070 for_each_possible_cpu(cpu) {
2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 if (map && map != new_map)
2074 kfree_rcu(map, rcu);
2075 }
2076
2077 kfree_rcu(dev_maps, rcu);
2078 }
2079
2080 dev_maps = new_dev_maps;
2081 active = true;
2082
2083 out_no_new_maps:
2084 /* update Tx queue numa node */
2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 (numa_node_id >= 0) ? numa_node_id :
2087 NUMA_NO_NODE);
2088
2089 if (!dev_maps)
2090 goto out_no_maps;
2091
2092 /* removes queue from unused CPUs */
2093 for_each_possible_cpu(cpu) {
2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 continue;
2096
2097 if (remove_xps_queue(dev_maps, cpu, index))
2098 active = true;
2099 }
2100
2101 /* free map if not active */
2102 if (!active) {
2103 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 out_no_maps:
2108 mutex_unlock(&xps_map_mutex);
2109
2110 return 0;
2111 error:
2112 /* remove any maps that we added */
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 NULL;
2117 if (new_map && new_map != map)
2118 kfree(new_map);
2119 }
2120
2121 mutex_unlock(&xps_map_mutex);
2122
2123 kfree(new_dev_maps);
2124 return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132 */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 int rc;
2136
2137 if (txq < 1 || txq > dev->num_tx_queues)
2138 return -EINVAL;
2139
2140 if (dev->reg_state == NETREG_REGISTERED ||
2141 dev->reg_state == NETREG_UNREGISTERING) {
2142 ASSERT_RTNL();
2143
2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 txq);
2146 if (rc)
2147 return rc;
2148
2149 if (dev->num_tc)
2150 netif_setup_tc(dev, txq);
2151
2152 if (txq < dev->real_num_tx_queues) {
2153 qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 }
2158 }
2159
2160 dev->real_num_tx_queues = txq;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167 * netif_set_real_num_rx_queues - set actual number of RX queues used
2168 * @dev: Network device
2169 * @rxq: Actual number of RX queues
2170 *
2171 * This must be called either with the rtnl_lock held or before
2172 * registration of the net device. Returns 0 on success, or a
2173 * negative error code. If called before registration, it always
2174 * succeeds.
2175 */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 int rc;
2179
2180 if (rxq < 1 || rxq > dev->num_rx_queues)
2181 return -EINVAL;
2182
2183 if (dev->reg_state == NETREG_REGISTERED) {
2184 ASSERT_RTNL();
2185
2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 rxq);
2188 if (rc)
2189 return rc;
2190 }
2191
2192 dev->real_num_rx_queues = rxq;
2193 return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199 * netif_get_num_default_rss_queues - default number of RSS queues
2200 *
2201 * This routine should set an upper limit on the number of RSS queues
2202 * used by default by multiqueue devices.
2203 */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 struct softnet_data *sd;
2213 unsigned long flags;
2214
2215 local_irq_save(flags);
2216 sd = this_cpu_ptr(&softnet_data);
2217 q->next_sched = NULL;
2218 *sd->output_queue_tailp = q;
2219 sd->output_queue_tailp = &q->next_sched;
2220 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232 enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 rcu_read_lock();
2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246 __netif_schedule(q);
2247 }
2248 rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253 * netif_wake_subqueue - allow sending packets on subqueue
2254 * @dev: network device
2255 * @queue_index: sub queue index
2256 *
2257 * Resume individual transmit queue of a device with multiple transmit queues.
2258 */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 struct Qdisc *q;
2265
2266 rcu_read_lock();
2267 q = rcu_dereference(txq->qdisc);
2268 __netif_schedule(q);
2269 rcu_read_unlock();
2270 }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 struct Qdisc *q;
2278
2279 rcu_read_lock();
2280 q = rcu_dereference(dev_queue->qdisc);
2281 __netif_schedule(q);
2282 rcu_read_unlock();
2283 }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 unsigned long flags;
2290
2291 if (likely(atomic_read(&skb->users) == 1)) {
2292 smp_rmb();
2293 atomic_set(&skb->users, 0);
2294 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 return;
2296 }
2297 get_kfree_skb_cb(skb)->reason = reason;
2298 local_irq_save(flags);
2299 skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 __this_cpu_write(softnet_data.completion_queue, skb);
2301 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 if (in_irq() || irqs_disabled())
2309 __dev_kfree_skb_irq(skb, reason);
2310 else
2311 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317 * netif_device_detach - mark device as removed
2318 * @dev: network device
2319 *
2320 * Mark device as removed from system and therefore no longer available.
2321 */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 netif_running(dev)) {
2326 netif_tx_stop_all_queues(dev);
2327 }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332 * netif_device_attach - mark device as attached
2333 * @dev: network device
2334 *
2335 * Mark device as attached from system and restart if needed.
2336 */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 netif_running(dev)) {
2341 netif_tx_wake_all_queues(dev);
2342 __netdev_watchdog_up(dev);
2343 }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349 * to be used as a distribution range.
2350 */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 unsigned int num_tx_queues)
2353 {
2354 u32 hash;
2355 u16 qoffset = 0;
2356 u16 qcount = num_tx_queues;
2357
2358 if (skb_rx_queue_recorded(skb)) {
2359 hash = skb_get_rx_queue(skb);
2360 while (unlikely(hash >= num_tx_queues))
2361 hash -= num_tx_queues;
2362 return hash;
2363 }
2364
2365 if (dev->num_tc) {
2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 qoffset = dev->tc_to_txq[tc].offset;
2368 qcount = dev->tc_to_txq[tc].count;
2369 }
2370
2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 static const netdev_features_t null_features = 0;
2378 struct net_device *dev = skb->dev;
2379 const char *driver = "";
2380
2381 if (!net_ratelimit())
2382 return;
2383
2384 if (dev && dev->dev.parent)
2385 driver = dev_driver_string(dev->dev.parent);
2386
2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 "gso_type=%d ip_summed=%d\n",
2389 driver, dev ? &dev->features : &null_features,
2390 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396 * Invalidate hardware checksum when packet is to be mangled, and
2397 * complete checksum manually on outgoing path.
2398 */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 __wsum csum;
2402 int ret = 0, offset;
2403
2404 if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 goto out_set_summed;
2406
2407 if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 skb_warn_bad_offload(skb);
2409 return -EINVAL;
2410 }
2411
2412 /* Before computing a checksum, we should make sure no frag could
2413 * be modified by an external entity : checksum could be wrong.
2414 */
2415 if (skb_has_shared_frag(skb)) {
2416 ret = __skb_linearize(skb);
2417 if (ret)
2418 goto out;
2419 }
2420
2421 offset = skb_checksum_start_offset(skb);
2422 BUG_ON(offset >= skb_headlen(skb));
2423 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425 offset += skb->csum_offset;
2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428 if (skb_cloned(skb) &&
2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 if (ret)
2432 goto out;
2433 }
2434
2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 __be16 type = skb->protocol;
2446
2447 /* Tunnel gso handlers can set protocol to ethernet. */
2448 if (type == htons(ETH_P_TEB)) {
2449 struct ethhdr *eth;
2450
2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 return 0;
2453
2454 eth = (struct ethhdr *)skb_mac_header(skb);
2455 type = eth->h_proto;
2456 }
2457
2458 return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462 * skb_mac_gso_segment - mac layer segmentation handler.
2463 * @skb: buffer to segment
2464 * @features: features for the output path (see dev->features)
2465 */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 netdev_features_t features)
2468 {
2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 struct packet_offload *ptype;
2471 int vlan_depth = skb->mac_len;
2472 __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474 if (unlikely(!type))
2475 return ERR_PTR(-EINVAL);
2476
2477 __skb_pull(skb, vlan_depth);
2478
2479 rcu_read_lock();
2480 list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 segs = ptype->callbacks.gso_segment(skb, features);
2483 break;
2484 }
2485 }
2486 rcu_read_unlock();
2487
2488 __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490 return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496 */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 if (tx_path)
2500 return skb->ip_summed != CHECKSUM_PARTIAL;
2501 else
2502 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506 * __skb_gso_segment - Perform segmentation on skb.
2507 * @skb: buffer to segment
2508 * @features: features for the output path (see dev->features)
2509 * @tx_path: whether it is called in TX path
2510 *
2511 * This function segments the given skb and returns a list of segments.
2512 *
2513 * It may return NULL if the skb requires no segmentation. This is
2514 * only possible when GSO is used for verifying header integrity.
2515 */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 netdev_features_t features, bool tx_path)
2518 {
2519 if (unlikely(skb_needs_check(skb, tx_path))) {
2520 int err;
2521
2522 skb_warn_bad_offload(skb);
2523
2524 err = skb_cow_head(skb, 0);
2525 if (err < 0)
2526 return ERR_PTR(err);
2527 }
2528
2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 SKB_GSO_CB(skb)->encap_level = 0;
2531
2532 skb_reset_mac_header(skb);
2533 skb_reset_mac_len(skb);
2534
2535 return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 if (net_ratelimit()) {
2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 dump_stack();
2546 }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552 * 1. IOMMU is present and allows to map all the memory.
2553 * 2. No high memory really exists on this machine.
2554 */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 int i;
2560 if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 if (PageHighMem(skb_frag_page(frag)))
2564 return 1;
2565 }
2566 }
2567
2568 if (PCI_DMA_BUS_IS_PHYS) {
2569 struct device *pdev = dev->dev.parent;
2570
2571 if (!pdev)
2572 return 0;
2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 return 1;
2578 }
2579 }
2580 #endif
2581 return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585 * instead of standard features for the netdev.
2586 */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 netdev_features_t features,
2590 __be16 type)
2591 {
2592 if (eth_p_mpls(type))
2593 features &= skb->dev->mpls_features;
2594
2595 return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 netdev_features_t features,
2600 __be16 type)
2601 {
2602 return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 netdev_features_t features)
2608 {
2609 int tmp;
2610 __be16 type;
2611
2612 type = skb_network_protocol(skb, &tmp);
2613 features = net_mpls_features(skb, features, type);
2614
2615 if (skb->ip_summed != CHECKSUM_NONE &&
2616 !can_checksum_protocol(features, type)) {
2617 features &= ~NETIF_F_ALL_CSUM;
2618 } else if (illegal_highdma(skb->dev, skb)) {
2619 features &= ~NETIF_F_SG;
2620 }
2621
2622 return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 struct net_device *dev,
2627 netdev_features_t features)
2628 {
2629 return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 struct net_device *dev,
2635 netdev_features_t features)
2636 {
2637 return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 struct net_device *dev = skb->dev;
2643 netdev_features_t features = dev->features;
2644 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 features &= ~NETIF_F_GSO_MASK;
2648
2649 /* If encapsulation offload request, verify we are testing
2650 * hardware encapsulation features instead of standard
2651 * features for the netdev
2652 */
2653 if (skb->encapsulation)
2654 features &= dev->hw_enc_features;
2655
2656 if (skb_vlan_tagged(skb))
2657 features = netdev_intersect_features(features,
2658 dev->vlan_features |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_HW_VLAN_STAG_TX);
2661
2662 if (dev->netdev_ops->ndo_features_check)
2663 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 features);
2665 else
2666 features &= dflt_features_check(skb, dev, features);
2667
2668 return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 struct netdev_queue *txq, bool more)
2674 {
2675 unsigned int len;
2676 int rc;
2677
2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 dev_queue_xmit_nit(skb, dev);
2680
2681 len = skb->len;
2682 trace_net_dev_start_xmit(skb, dev);
2683 rc = netdev_start_xmit(skb, dev, txq, more);
2684 trace_net_dev_xmit(skb, rc, dev, len);
2685
2686 return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 struct netdev_queue *txq, int *ret)
2691 {
2692 struct sk_buff *skb = first;
2693 int rc = NETDEV_TX_OK;
2694
2695 while (skb) {
2696 struct sk_buff *next = skb->next;
2697
2698 skb->next = NULL;
2699 rc = xmit_one(skb, dev, txq, next != NULL);
2700 if (unlikely(!dev_xmit_complete(rc))) {
2701 skb->next = next;
2702 goto out;
2703 }
2704
2705 skb = next;
2706 if (netif_xmit_stopped(txq) && skb) {
2707 rc = NETDEV_TX_BUSY;
2708 break;
2709 }
2710 }
2711
2712 out:
2713 *ret = rc;
2714 return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 netdev_features_t features)
2719 {
2720 if (skb_vlan_tag_present(skb) &&
2721 !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 skb = __vlan_hwaccel_push_inside(skb);
2723 return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 netdev_features_t features;
2729
2730 if (skb->next)
2731 return skb;
2732
2733 features = netif_skb_features(skb);
2734 skb = validate_xmit_vlan(skb, features);
2735 if (unlikely(!skb))
2736 goto out_null;
2737
2738 if (netif_needs_gso(skb, features)) {
2739 struct sk_buff *segs;
2740
2741 segs = skb_gso_segment(skb, features);
2742 if (IS_ERR(segs)) {
2743 goto out_kfree_skb;
2744 } else if (segs) {
2745 consume_skb(skb);
2746 skb = segs;
2747 }
2748 } else {
2749 if (skb_needs_linearize(skb, features) &&
2750 __skb_linearize(skb))
2751 goto out_kfree_skb;
2752
2753 /* If packet is not checksummed and device does not
2754 * support checksumming for this protocol, complete
2755 * checksumming here.
2756 */
2757 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 if (skb->encapsulation)
2759 skb_set_inner_transport_header(skb,
2760 skb_checksum_start_offset(skb));
2761 else
2762 skb_set_transport_header(skb,
2763 skb_checksum_start_offset(skb));
2764 if (!(features & NETIF_F_ALL_CSUM) &&
2765 skb_checksum_help(skb))
2766 goto out_kfree_skb;
2767 }
2768 }
2769
2770 return skb;
2771
2772 out_kfree_skb:
2773 kfree_skb(skb);
2774 out_null:
2775 return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 struct sk_buff *next, *head = NULL, *tail;
2781
2782 for (; skb != NULL; skb = next) {
2783 next = skb->next;
2784 skb->next = NULL;
2785
2786 /* in case skb wont be segmented, point to itself */
2787 skb->prev = skb;
2788
2789 skb = validate_xmit_skb(skb, dev);
2790 if (!skb)
2791 continue;
2792
2793 if (!head)
2794 head = skb;
2795 else
2796 tail->next = skb;
2797 /* If skb was segmented, skb->prev points to
2798 * the last segment. If not, it still contains skb.
2799 */
2800 tail = skb->prev;
2801 }
2802 return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809 qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811 /* To get more precise estimation of bytes sent on wire,
2812 * we add to pkt_len the headers size of all segments
2813 */
2814 if (shinfo->gso_size) {
2815 unsigned int hdr_len;
2816 u16 gso_segs = shinfo->gso_segs;
2817
2818 /* mac layer + network layer */
2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821 /* + transport layer */
2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 hdr_len += tcp_hdrlen(skb);
2824 else
2825 hdr_len += sizeof(struct udphdr);
2826
2827 if (shinfo->gso_type & SKB_GSO_DODGY)
2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 shinfo->gso_size);
2830
2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 struct net_device *dev,
2837 struct netdev_queue *txq)
2838 {
2839 spinlock_t *root_lock = qdisc_lock(q);
2840 bool contended;
2841 int rc;
2842
2843 qdisc_pkt_len_init(skb);
2844 qdisc_calculate_pkt_len(skb, q);
2845 /*
2846 * Heuristic to force contended enqueues to serialize on a
2847 * separate lock before trying to get qdisc main lock.
2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 * often and dequeue packets faster.
2850 */
2851 contended = qdisc_is_running(q);
2852 if (unlikely(contended))
2853 spin_lock(&q->busylock);
2854
2855 spin_lock(root_lock);
2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 kfree_skb(skb);
2858 rc = NET_XMIT_DROP;
2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 qdisc_run_begin(q)) {
2861 /*
2862 * This is a work-conserving queue; there are no old skbs
2863 * waiting to be sent out; and the qdisc is not running -
2864 * xmit the skb directly.
2865 */
2866
2867 qdisc_bstats_update(q, skb);
2868
2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 if (unlikely(contended)) {
2871 spin_unlock(&q->busylock);
2872 contended = false;
2873 }
2874 __qdisc_run(q);
2875 } else
2876 qdisc_run_end(q);
2877
2878 rc = NET_XMIT_SUCCESS;
2879 } else {
2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 if (qdisc_run_begin(q)) {
2882 if (unlikely(contended)) {
2883 spin_unlock(&q->busylock);
2884 contended = false;
2885 }
2886 __qdisc_run(q);
2887 }
2888 }
2889 spin_unlock(root_lock);
2890 if (unlikely(contended))
2891 spin_unlock(&q->busylock);
2892 return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900 if (!skb->priority && skb->sk && map) {
2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903 if (prioidx < map->priomap_len)
2904 skb->priority = map->priomap[prioidx];
2905 }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917 * dev_loopback_xmit - loop back @skb
2918 * @skb: buffer to transmit
2919 */
2920 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2921 {
2922 skb_reset_mac_header(skb);
2923 __skb_pull(skb, skb_network_offset(skb));
2924 skb->pkt_type = PACKET_LOOPBACK;
2925 skb->ip_summed = CHECKSUM_UNNECESSARY;
2926 WARN_ON(!skb_dst(skb));
2927 skb_dst_force(skb);
2928 netif_rx_ni(skb);
2929 return 0;
2930 }
2931 EXPORT_SYMBOL(dev_loopback_xmit);
2932
2933 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2934 {
2935 #ifdef CONFIG_XPS
2936 struct xps_dev_maps *dev_maps;
2937 struct xps_map *map;
2938 int queue_index = -1;
2939
2940 rcu_read_lock();
2941 dev_maps = rcu_dereference(dev->xps_maps);
2942 if (dev_maps) {
2943 map = rcu_dereference(
2944 dev_maps->cpu_map[skb->sender_cpu - 1]);
2945 if (map) {
2946 if (map->len == 1)
2947 queue_index = map->queues[0];
2948 else
2949 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2950 map->len)];
2951 if (unlikely(queue_index >= dev->real_num_tx_queues))
2952 queue_index = -1;
2953 }
2954 }
2955 rcu_read_unlock();
2956
2957 return queue_index;
2958 #else
2959 return -1;
2960 #endif
2961 }
2962
2963 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2964 {
2965 struct sock *sk = skb->sk;
2966 int queue_index = sk_tx_queue_get(sk);
2967
2968 if (queue_index < 0 || skb->ooo_okay ||
2969 queue_index >= dev->real_num_tx_queues) {
2970 int new_index = get_xps_queue(dev, skb);
2971 if (new_index < 0)
2972 new_index = skb_tx_hash(dev, skb);
2973
2974 if (queue_index != new_index && sk &&
2975 rcu_access_pointer(sk->sk_dst_cache))
2976 sk_tx_queue_set(sk, new_index);
2977
2978 queue_index = new_index;
2979 }
2980
2981 return queue_index;
2982 }
2983
2984 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2985 struct sk_buff *skb,
2986 void *accel_priv)
2987 {
2988 int queue_index = 0;
2989
2990 #ifdef CONFIG_XPS
2991 if (skb->sender_cpu == 0)
2992 skb->sender_cpu = raw_smp_processor_id() + 1;
2993 #endif
2994
2995 if (dev->real_num_tx_queues != 1) {
2996 const struct net_device_ops *ops = dev->netdev_ops;
2997 if (ops->ndo_select_queue)
2998 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
2999 __netdev_pick_tx);
3000 else
3001 queue_index = __netdev_pick_tx(dev, skb);
3002
3003 if (!accel_priv)
3004 queue_index = netdev_cap_txqueue(dev, queue_index);
3005 }
3006
3007 skb_set_queue_mapping(skb, queue_index);
3008 return netdev_get_tx_queue(dev, queue_index);
3009 }
3010
3011 /**
3012 * __dev_queue_xmit - transmit a buffer
3013 * @skb: buffer to transmit
3014 * @accel_priv: private data used for L2 forwarding offload
3015 *
3016 * Queue a buffer for transmission to a network device. The caller must
3017 * have set the device and priority and built the buffer before calling
3018 * this function. The function can be called from an interrupt.
3019 *
3020 * A negative errno code is returned on a failure. A success does not
3021 * guarantee the frame will be transmitted as it may be dropped due
3022 * to congestion or traffic shaping.
3023 *
3024 * -----------------------------------------------------------------------------------
3025 * I notice this method can also return errors from the queue disciplines,
3026 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3027 * be positive.
3028 *
3029 * Regardless of the return value, the skb is consumed, so it is currently
3030 * difficult to retry a send to this method. (You can bump the ref count
3031 * before sending to hold a reference for retry if you are careful.)
3032 *
3033 * When calling this method, interrupts MUST be enabled. This is because
3034 * the BH enable code must have IRQs enabled so that it will not deadlock.
3035 * --BLG
3036 */
3037 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3038 {
3039 struct net_device *dev = skb->dev;
3040 struct netdev_queue *txq;
3041 struct Qdisc *q;
3042 int rc = -ENOMEM;
3043
3044 skb_reset_mac_header(skb);
3045
3046 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3047 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3048
3049 /* Disable soft irqs for various locks below. Also
3050 * stops preemption for RCU.
3051 */
3052 rcu_read_lock_bh();
3053
3054 skb_update_prio(skb);
3055
3056 /* If device/qdisc don't need skb->dst, release it right now while
3057 * its hot in this cpu cache.
3058 */
3059 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3060 skb_dst_drop(skb);
3061 else
3062 skb_dst_force(skb);
3063
3064 txq = netdev_pick_tx(dev, skb, accel_priv);
3065 q = rcu_dereference_bh(txq->qdisc);
3066
3067 #ifdef CONFIG_NET_CLS_ACT
3068 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3069 #endif
3070 trace_net_dev_queue(skb);
3071 if (q->enqueue) {
3072 rc = __dev_xmit_skb(skb, q, dev, txq);
3073 goto out;
3074 }
3075
3076 /* The device has no queue. Common case for software devices:
3077 loopback, all the sorts of tunnels...
3078
3079 Really, it is unlikely that netif_tx_lock protection is necessary
3080 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3081 counters.)
3082 However, it is possible, that they rely on protection
3083 made by us here.
3084
3085 Check this and shot the lock. It is not prone from deadlocks.
3086 Either shot noqueue qdisc, it is even simpler 8)
3087 */
3088 if (dev->flags & IFF_UP) {
3089 int cpu = smp_processor_id(); /* ok because BHs are off */
3090
3091 if (txq->xmit_lock_owner != cpu) {
3092
3093 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3094 goto recursion_alert;
3095
3096 skb = validate_xmit_skb(skb, dev);
3097 if (!skb)
3098 goto drop;
3099
3100 HARD_TX_LOCK(dev, txq, cpu);
3101
3102 if (!netif_xmit_stopped(txq)) {
3103 __this_cpu_inc(xmit_recursion);
3104 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3105 __this_cpu_dec(xmit_recursion);
3106 if (dev_xmit_complete(rc)) {
3107 HARD_TX_UNLOCK(dev, txq);
3108 goto out;
3109 }
3110 }
3111 HARD_TX_UNLOCK(dev, txq);
3112 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3113 dev->name);
3114 } else {
3115 /* Recursion is detected! It is possible,
3116 * unfortunately
3117 */
3118 recursion_alert:
3119 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3120 dev->name);
3121 }
3122 }
3123
3124 rc = -ENETDOWN;
3125 drop:
3126 rcu_read_unlock_bh();
3127
3128 atomic_long_inc(&dev->tx_dropped);
3129 kfree_skb_list(skb);
3130 return rc;
3131 out:
3132 rcu_read_unlock_bh();
3133 return rc;
3134 }
3135
3136 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3137 {
3138 return __dev_queue_xmit(skb, NULL);
3139 }
3140 EXPORT_SYMBOL(dev_queue_xmit_sk);
3141
3142 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3143 {
3144 return __dev_queue_xmit(skb, accel_priv);
3145 }
3146 EXPORT_SYMBOL(dev_queue_xmit_accel);
3147
3148
3149 /*=======================================================================
3150 Receiver routines
3151 =======================================================================*/
3152
3153 int netdev_max_backlog __read_mostly = 1000;
3154 EXPORT_SYMBOL(netdev_max_backlog);
3155
3156 int netdev_tstamp_prequeue __read_mostly = 1;
3157 int netdev_budget __read_mostly = 300;
3158 int weight_p __read_mostly = 64; /* old backlog weight */
3159
3160 /* Called with irq disabled */
3161 static inline void ____napi_schedule(struct softnet_data *sd,
3162 struct napi_struct *napi)
3163 {
3164 list_add_tail(&napi->poll_list, &sd->poll_list);
3165 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3166 }
3167
3168 #ifdef CONFIG_RPS
3169
3170 /* One global table that all flow-based protocols share. */
3171 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3172 EXPORT_SYMBOL(rps_sock_flow_table);
3173 u32 rps_cpu_mask __read_mostly;
3174 EXPORT_SYMBOL(rps_cpu_mask);
3175
3176 struct static_key rps_needed __read_mostly;
3177
3178 static struct rps_dev_flow *
3179 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3180 struct rps_dev_flow *rflow, u16 next_cpu)
3181 {
3182 if (next_cpu < nr_cpu_ids) {
3183 #ifdef CONFIG_RFS_ACCEL
3184 struct netdev_rx_queue *rxqueue;
3185 struct rps_dev_flow_table *flow_table;
3186 struct rps_dev_flow *old_rflow;
3187 u32 flow_id;
3188 u16 rxq_index;
3189 int rc;
3190
3191 /* Should we steer this flow to a different hardware queue? */
3192 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3193 !(dev->features & NETIF_F_NTUPLE))
3194 goto out;
3195 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3196 if (rxq_index == skb_get_rx_queue(skb))
3197 goto out;
3198
3199 rxqueue = dev->_rx + rxq_index;
3200 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3201 if (!flow_table)
3202 goto out;
3203 flow_id = skb_get_hash(skb) & flow_table->mask;
3204 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3205 rxq_index, flow_id);
3206 if (rc < 0)
3207 goto out;
3208 old_rflow = rflow;
3209 rflow = &flow_table->flows[flow_id];
3210 rflow->filter = rc;
3211 if (old_rflow->filter == rflow->filter)
3212 old_rflow->filter = RPS_NO_FILTER;
3213 out:
3214 #endif
3215 rflow->last_qtail =
3216 per_cpu(softnet_data, next_cpu).input_queue_head;
3217 }
3218
3219 rflow->cpu = next_cpu;
3220 return rflow;
3221 }
3222
3223 /*
3224 * get_rps_cpu is called from netif_receive_skb and returns the target
3225 * CPU from the RPS map of the receiving queue for a given skb.
3226 * rcu_read_lock must be held on entry.
3227 */
3228 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3229 struct rps_dev_flow **rflowp)
3230 {
3231 const struct rps_sock_flow_table *sock_flow_table;
3232 struct netdev_rx_queue *rxqueue = dev->_rx;
3233 struct rps_dev_flow_table *flow_table;
3234 struct rps_map *map;
3235 int cpu = -1;
3236 u32 tcpu;
3237 u32 hash;
3238
3239 if (skb_rx_queue_recorded(skb)) {
3240 u16 index = skb_get_rx_queue(skb);
3241
3242 if (unlikely(index >= dev->real_num_rx_queues)) {
3243 WARN_ONCE(dev->real_num_rx_queues > 1,
3244 "%s received packet on queue %u, but number "
3245 "of RX queues is %u\n",
3246 dev->name, index, dev->real_num_rx_queues);
3247 goto done;
3248 }
3249 rxqueue += index;
3250 }
3251
3252 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3253
3254 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3255 map = rcu_dereference(rxqueue->rps_map);
3256 if (!flow_table && !map)
3257 goto done;
3258
3259 skb_reset_network_header(skb);
3260 hash = skb_get_hash(skb);
3261 if (!hash)
3262 goto done;
3263
3264 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3265 if (flow_table && sock_flow_table) {
3266 struct rps_dev_flow *rflow;
3267 u32 next_cpu;
3268 u32 ident;
3269
3270 /* First check into global flow table if there is a match */
3271 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3272 if ((ident ^ hash) & ~rps_cpu_mask)
3273 goto try_rps;
3274
3275 next_cpu = ident & rps_cpu_mask;
3276
3277 /* OK, now we know there is a match,
3278 * we can look at the local (per receive queue) flow table
3279 */
3280 rflow = &flow_table->flows[hash & flow_table->mask];
3281 tcpu = rflow->cpu;
3282
3283 /*
3284 * If the desired CPU (where last recvmsg was done) is
3285 * different from current CPU (one in the rx-queue flow
3286 * table entry), switch if one of the following holds:
3287 * - Current CPU is unset (>= nr_cpu_ids).
3288 * - Current CPU is offline.
3289 * - The current CPU's queue tail has advanced beyond the
3290 * last packet that was enqueued using this table entry.
3291 * This guarantees that all previous packets for the flow
3292 * have been dequeued, thus preserving in order delivery.
3293 */
3294 if (unlikely(tcpu != next_cpu) &&
3295 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3296 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3297 rflow->last_qtail)) >= 0)) {
3298 tcpu = next_cpu;
3299 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3300 }
3301
3302 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3303 *rflowp = rflow;
3304 cpu = tcpu;
3305 goto done;
3306 }
3307 }
3308
3309 try_rps:
3310
3311 if (map) {
3312 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3313 if (cpu_online(tcpu)) {
3314 cpu = tcpu;
3315 goto done;
3316 }
3317 }
3318
3319 done:
3320 return cpu;
3321 }
3322
3323 #ifdef CONFIG_RFS_ACCEL
3324
3325 /**
3326 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3327 * @dev: Device on which the filter was set
3328 * @rxq_index: RX queue index
3329 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3330 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3331 *
3332 * Drivers that implement ndo_rx_flow_steer() should periodically call
3333 * this function for each installed filter and remove the filters for
3334 * which it returns %true.
3335 */
3336 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3337 u32 flow_id, u16 filter_id)
3338 {
3339 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3340 struct rps_dev_flow_table *flow_table;
3341 struct rps_dev_flow *rflow;
3342 bool expire = true;
3343 unsigned int cpu;
3344
3345 rcu_read_lock();
3346 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3347 if (flow_table && flow_id <= flow_table->mask) {
3348 rflow = &flow_table->flows[flow_id];
3349 cpu = ACCESS_ONCE(rflow->cpu);
3350 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3351 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3352 rflow->last_qtail) <
3353 (int)(10 * flow_table->mask)))
3354 expire = false;
3355 }
3356 rcu_read_unlock();
3357 return expire;
3358 }
3359 EXPORT_SYMBOL(rps_may_expire_flow);
3360
3361 #endif /* CONFIG_RFS_ACCEL */
3362
3363 /* Called from hardirq (IPI) context */
3364 static void rps_trigger_softirq(void *data)
3365 {
3366 struct softnet_data *sd = data;
3367
3368 ____napi_schedule(sd, &sd->backlog);
3369 sd->received_rps++;
3370 }
3371
3372 #endif /* CONFIG_RPS */
3373
3374 /*
3375 * Check if this softnet_data structure is another cpu one
3376 * If yes, queue it to our IPI list and return 1
3377 * If no, return 0
3378 */
3379 static int rps_ipi_queued(struct softnet_data *sd)
3380 {
3381 #ifdef CONFIG_RPS
3382 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3383
3384 if (sd != mysd) {
3385 sd->rps_ipi_next = mysd->rps_ipi_list;
3386 mysd->rps_ipi_list = sd;
3387
3388 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3389 return 1;
3390 }
3391 #endif /* CONFIG_RPS */
3392 return 0;
3393 }
3394
3395 #ifdef CONFIG_NET_FLOW_LIMIT
3396 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3397 #endif
3398
3399 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3400 {
3401 #ifdef CONFIG_NET_FLOW_LIMIT
3402 struct sd_flow_limit *fl;
3403 struct softnet_data *sd;
3404 unsigned int old_flow, new_flow;
3405
3406 if (qlen < (netdev_max_backlog >> 1))
3407 return false;
3408
3409 sd = this_cpu_ptr(&softnet_data);
3410
3411 rcu_read_lock();
3412 fl = rcu_dereference(sd->flow_limit);
3413 if (fl) {
3414 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3415 old_flow = fl->history[fl->history_head];
3416 fl->history[fl->history_head] = new_flow;
3417
3418 fl->history_head++;
3419 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3420
3421 if (likely(fl->buckets[old_flow]))
3422 fl->buckets[old_flow]--;
3423
3424 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3425 fl->count++;
3426 rcu_read_unlock();
3427 return true;
3428 }
3429 }
3430 rcu_read_unlock();
3431 #endif
3432 return false;
3433 }
3434
3435 /*
3436 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3437 * queue (may be a remote CPU queue).
3438 */
3439 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3440 unsigned int *qtail)
3441 {
3442 struct softnet_data *sd;
3443 unsigned long flags;
3444 unsigned int qlen;
3445
3446 sd = &per_cpu(softnet_data, cpu);
3447
3448 local_irq_save(flags);
3449
3450 rps_lock(sd);
3451 if (!netif_running(skb->dev))
3452 goto drop;
3453 qlen = skb_queue_len(&sd->input_pkt_queue);
3454 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3455 if (qlen) {
3456 enqueue:
3457 __skb_queue_tail(&sd->input_pkt_queue, skb);
3458 input_queue_tail_incr_save(sd, qtail);
3459 rps_unlock(sd);
3460 local_irq_restore(flags);
3461 return NET_RX_SUCCESS;
3462 }
3463
3464 /* Schedule NAPI for backlog device
3465 * We can use non atomic operation since we own the queue lock
3466 */
3467 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3468 if (!rps_ipi_queued(sd))
3469 ____napi_schedule(sd, &sd->backlog);
3470 }
3471 goto enqueue;
3472 }
3473
3474 drop:
3475 sd->dropped++;
3476 rps_unlock(sd);
3477
3478 local_irq_restore(flags);
3479
3480 atomic_long_inc(&skb->dev->rx_dropped);
3481 kfree_skb(skb);
3482 return NET_RX_DROP;
3483 }
3484
3485 static int netif_rx_internal(struct sk_buff *skb)
3486 {
3487 int ret;
3488
3489 net_timestamp_check(netdev_tstamp_prequeue, skb);
3490
3491 trace_netif_rx(skb);
3492 #ifdef CONFIG_RPS
3493 if (static_key_false(&rps_needed)) {
3494 struct rps_dev_flow voidflow, *rflow = &voidflow;
3495 int cpu;
3496
3497 preempt_disable();
3498 rcu_read_lock();
3499
3500 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3501 if (cpu < 0)
3502 cpu = smp_processor_id();
3503
3504 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3505
3506 rcu_read_unlock();
3507 preempt_enable();
3508 } else
3509 #endif
3510 {
3511 unsigned int qtail;
3512 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3513 put_cpu();
3514 }
3515 return ret;
3516 }
3517
3518 /**
3519 * netif_rx - post buffer to the network code
3520 * @skb: buffer to post
3521 *
3522 * This function receives a packet from a device driver and queues it for
3523 * the upper (protocol) levels to process. It always succeeds. The buffer
3524 * may be dropped during processing for congestion control or by the
3525 * protocol layers.
3526 *
3527 * return values:
3528 * NET_RX_SUCCESS (no congestion)
3529 * NET_RX_DROP (packet was dropped)
3530 *
3531 */
3532
3533 int netif_rx(struct sk_buff *skb)
3534 {
3535 trace_netif_rx_entry(skb);
3536
3537 return netif_rx_internal(skb);
3538 }
3539 EXPORT_SYMBOL(netif_rx);
3540
3541 int netif_rx_ni(struct sk_buff *skb)
3542 {
3543 int err;
3544
3545 trace_netif_rx_ni_entry(skb);
3546
3547 preempt_disable();
3548 err = netif_rx_internal(skb);
3549 if (local_softirq_pending())
3550 do_softirq();
3551 preempt_enable();
3552
3553 return err;
3554 }
3555 EXPORT_SYMBOL(netif_rx_ni);
3556
3557 static void net_tx_action(struct softirq_action *h)
3558 {
3559 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3560
3561 if (sd->completion_queue) {
3562 struct sk_buff *clist;
3563
3564 local_irq_disable();
3565 clist = sd->completion_queue;
3566 sd->completion_queue = NULL;
3567 local_irq_enable();
3568
3569 while (clist) {
3570 struct sk_buff *skb = clist;
3571 clist = clist->next;
3572
3573 WARN_ON(atomic_read(&skb->users));
3574 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3575 trace_consume_skb(skb);
3576 else
3577 trace_kfree_skb(skb, net_tx_action);
3578 __kfree_skb(skb);
3579 }
3580 }
3581
3582 if (sd->output_queue) {
3583 struct Qdisc *head;
3584
3585 local_irq_disable();
3586 head = sd->output_queue;
3587 sd->output_queue = NULL;
3588 sd->output_queue_tailp = &sd->output_queue;
3589 local_irq_enable();
3590
3591 while (head) {
3592 struct Qdisc *q = head;
3593 spinlock_t *root_lock;
3594
3595 head = head->next_sched;
3596
3597 root_lock = qdisc_lock(q);
3598 if (spin_trylock(root_lock)) {
3599 smp_mb__before_atomic();
3600 clear_bit(__QDISC_STATE_SCHED,
3601 &q->state);
3602 qdisc_run(q);
3603 spin_unlock(root_lock);
3604 } else {
3605 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3606 &q->state)) {
3607 __netif_reschedule(q);
3608 } else {
3609 smp_mb__before_atomic();
3610 clear_bit(__QDISC_STATE_SCHED,
3611 &q->state);
3612 }
3613 }
3614 }
3615 }
3616 }
3617
3618 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3619 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3620 /* This hook is defined here for ATM LANE */
3621 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3622 unsigned char *addr) __read_mostly;
3623 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3624 #endif
3625
3626 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3627 struct packet_type **pt_prev,
3628 int *ret, struct net_device *orig_dev)
3629 {
3630 #ifdef CONFIG_NET_CLS_ACT
3631 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3632 struct tcf_result cl_res;
3633
3634 /* If there's at least one ingress present somewhere (so
3635 * we get here via enabled static key), remaining devices
3636 * that are not configured with an ingress qdisc will bail
3637 * out here.
3638 */
3639 if (!cl)
3640 return skb;
3641 if (*pt_prev) {
3642 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3643 *pt_prev = NULL;
3644 }
3645
3646 qdisc_skb_cb(skb)->pkt_len = skb->len;
3647 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3648 qdisc_bstats_update_cpu(cl->q, skb);
3649
3650 switch (tc_classify(skb, cl, &cl_res)) {
3651 case TC_ACT_OK:
3652 case TC_ACT_RECLASSIFY:
3653 skb->tc_index = TC_H_MIN(cl_res.classid);
3654 break;
3655 case TC_ACT_SHOT:
3656 qdisc_qstats_drop_cpu(cl->q);
3657 case TC_ACT_STOLEN:
3658 case TC_ACT_QUEUED:
3659 kfree_skb(skb);
3660 return NULL;
3661 default:
3662 break;
3663 }
3664 #endif /* CONFIG_NET_CLS_ACT */
3665 return skb;
3666 }
3667
3668 /**
3669 * netdev_rx_handler_register - register receive handler
3670 * @dev: device to register a handler for
3671 * @rx_handler: receive handler to register
3672 * @rx_handler_data: data pointer that is used by rx handler
3673 *
3674 * Register a receive handler for a device. This handler will then be
3675 * called from __netif_receive_skb. A negative errno code is returned
3676 * on a failure.
3677 *
3678 * The caller must hold the rtnl_mutex.
3679 *
3680 * For a general description of rx_handler, see enum rx_handler_result.
3681 */
3682 int netdev_rx_handler_register(struct net_device *dev,
3683 rx_handler_func_t *rx_handler,
3684 void *rx_handler_data)
3685 {
3686 ASSERT_RTNL();
3687
3688 if (dev->rx_handler)
3689 return -EBUSY;
3690
3691 /* Note: rx_handler_data must be set before rx_handler */
3692 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3693 rcu_assign_pointer(dev->rx_handler, rx_handler);
3694
3695 return 0;
3696 }
3697 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3698
3699 /**
3700 * netdev_rx_handler_unregister - unregister receive handler
3701 * @dev: device to unregister a handler from
3702 *
3703 * Unregister a receive handler from a device.
3704 *
3705 * The caller must hold the rtnl_mutex.
3706 */
3707 void netdev_rx_handler_unregister(struct net_device *dev)
3708 {
3709
3710 ASSERT_RTNL();
3711 RCU_INIT_POINTER(dev->rx_handler, NULL);
3712 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3713 * section has a guarantee to see a non NULL rx_handler_data
3714 * as well.
3715 */
3716 synchronize_net();
3717 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3718 }
3719 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3720
3721 /*
3722 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3723 * the special handling of PFMEMALLOC skbs.
3724 */
3725 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3726 {
3727 switch (skb->protocol) {
3728 case htons(ETH_P_ARP):
3729 case htons(ETH_P_IP):
3730 case htons(ETH_P_IPV6):
3731 case htons(ETH_P_8021Q):
3732 case htons(ETH_P_8021AD):
3733 return true;
3734 default:
3735 return false;
3736 }
3737 }
3738
3739 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3740 int *ret, struct net_device *orig_dev)
3741 {
3742 #ifdef CONFIG_NETFILTER_INGRESS
3743 if (nf_hook_ingress_active(skb)) {
3744 if (*pt_prev) {
3745 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3746 *pt_prev = NULL;
3747 }
3748
3749 return nf_hook_ingress(skb);
3750 }
3751 #endif /* CONFIG_NETFILTER_INGRESS */
3752 return 0;
3753 }
3754
3755 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3756 {
3757 struct packet_type *ptype, *pt_prev;
3758 rx_handler_func_t *rx_handler;
3759 struct net_device *orig_dev;
3760 bool deliver_exact = false;
3761 int ret = NET_RX_DROP;
3762 __be16 type;
3763
3764 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3765
3766 trace_netif_receive_skb(skb);
3767
3768 orig_dev = skb->dev;
3769
3770 skb_reset_network_header(skb);
3771 if (!skb_transport_header_was_set(skb))
3772 skb_reset_transport_header(skb);
3773 skb_reset_mac_len(skb);
3774
3775 pt_prev = NULL;
3776
3777 another_round:
3778 skb->skb_iif = skb->dev->ifindex;
3779
3780 __this_cpu_inc(softnet_data.processed);
3781
3782 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3783 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3784 skb = skb_vlan_untag(skb);
3785 if (unlikely(!skb))
3786 goto out;
3787 }
3788
3789 #ifdef CONFIG_NET_CLS_ACT
3790 if (skb->tc_verd & TC_NCLS) {
3791 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3792 goto ncls;
3793 }
3794 #endif
3795
3796 if (pfmemalloc)
3797 goto skip_taps;
3798
3799 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3800 if (pt_prev)
3801 ret = deliver_skb(skb, pt_prev, orig_dev);
3802 pt_prev = ptype;
3803 }
3804
3805 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3806 if (pt_prev)
3807 ret = deliver_skb(skb, pt_prev, orig_dev);
3808 pt_prev = ptype;
3809 }
3810
3811 skip_taps:
3812 #ifdef CONFIG_NET_INGRESS
3813 if (static_key_false(&ingress_needed)) {
3814 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3815 if (!skb)
3816 goto out;
3817
3818 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3819 goto out;
3820 }
3821 #endif
3822 #ifdef CONFIG_NET_CLS_ACT
3823 skb->tc_verd = 0;
3824 ncls:
3825 #endif
3826 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3827 goto drop;
3828
3829 if (skb_vlan_tag_present(skb)) {
3830 if (pt_prev) {
3831 ret = deliver_skb(skb, pt_prev, orig_dev);
3832 pt_prev = NULL;
3833 }
3834 if (vlan_do_receive(&skb))
3835 goto another_round;
3836 else if (unlikely(!skb))
3837 goto out;
3838 }
3839
3840 rx_handler = rcu_dereference(skb->dev->rx_handler);
3841 if (rx_handler) {
3842 if (pt_prev) {
3843 ret = deliver_skb(skb, pt_prev, orig_dev);
3844 pt_prev = NULL;
3845 }
3846 switch (rx_handler(&skb)) {
3847 case RX_HANDLER_CONSUMED:
3848 ret = NET_RX_SUCCESS;
3849 goto out;
3850 case RX_HANDLER_ANOTHER:
3851 goto another_round;
3852 case RX_HANDLER_EXACT:
3853 deliver_exact = true;
3854 case RX_HANDLER_PASS:
3855 break;
3856 default:
3857 BUG();
3858 }
3859 }
3860
3861 if (unlikely(skb_vlan_tag_present(skb))) {
3862 if (skb_vlan_tag_get_id(skb))
3863 skb->pkt_type = PACKET_OTHERHOST;
3864 /* Note: we might in the future use prio bits
3865 * and set skb->priority like in vlan_do_receive()
3866 * For the time being, just ignore Priority Code Point
3867 */
3868 skb->vlan_tci = 0;
3869 }
3870
3871 type = skb->protocol;
3872
3873 /* deliver only exact match when indicated */
3874 if (likely(!deliver_exact)) {
3875 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3876 &ptype_base[ntohs(type) &
3877 PTYPE_HASH_MASK]);
3878 }
3879
3880 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3881 &orig_dev->ptype_specific);
3882
3883 if (unlikely(skb->dev != orig_dev)) {
3884 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3885 &skb->dev->ptype_specific);
3886 }
3887
3888 if (pt_prev) {
3889 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3890 goto drop;
3891 else
3892 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3893 } else {
3894 drop:
3895 atomic_long_inc(&skb->dev->rx_dropped);
3896 kfree_skb(skb);
3897 /* Jamal, now you will not able to escape explaining
3898 * me how you were going to use this. :-)
3899 */
3900 ret = NET_RX_DROP;
3901 }
3902
3903 out:
3904 return ret;
3905 }
3906
3907 static int __netif_receive_skb(struct sk_buff *skb)
3908 {
3909 int ret;
3910
3911 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3912 unsigned long pflags = current->flags;
3913
3914 /*
3915 * PFMEMALLOC skbs are special, they should
3916 * - be delivered to SOCK_MEMALLOC sockets only
3917 * - stay away from userspace
3918 * - have bounded memory usage
3919 *
3920 * Use PF_MEMALLOC as this saves us from propagating the allocation
3921 * context down to all allocation sites.
3922 */
3923 current->flags |= PF_MEMALLOC;
3924 ret = __netif_receive_skb_core(skb, true);
3925 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3926 } else
3927 ret = __netif_receive_skb_core(skb, false);
3928
3929 return ret;
3930 }
3931
3932 static int netif_receive_skb_internal(struct sk_buff *skb)
3933 {
3934 int ret;
3935
3936 net_timestamp_check(netdev_tstamp_prequeue, skb);
3937
3938 if (skb_defer_rx_timestamp(skb))
3939 return NET_RX_SUCCESS;
3940
3941 rcu_read_lock();
3942
3943 #ifdef CONFIG_RPS
3944 if (static_key_false(&rps_needed)) {
3945 struct rps_dev_flow voidflow, *rflow = &voidflow;
3946 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3947
3948 if (cpu >= 0) {
3949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3950 rcu_read_unlock();
3951 return ret;
3952 }
3953 }
3954 #endif
3955 ret = __netif_receive_skb(skb);
3956 rcu_read_unlock();
3957 return ret;
3958 }
3959
3960 /**
3961 * netif_receive_skb - process receive buffer from network
3962 * @skb: buffer to process
3963 *
3964 * netif_receive_skb() is the main receive data processing function.
3965 * It always succeeds. The buffer may be dropped during processing
3966 * for congestion control or by the protocol layers.
3967 *
3968 * This function may only be called from softirq context and interrupts
3969 * should be enabled.
3970 *
3971 * Return values (usually ignored):
3972 * NET_RX_SUCCESS: no congestion
3973 * NET_RX_DROP: packet was dropped
3974 */
3975 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3976 {
3977 trace_netif_receive_skb_entry(skb);
3978
3979 return netif_receive_skb_internal(skb);
3980 }
3981 EXPORT_SYMBOL(netif_receive_skb_sk);
3982
3983 /* Network device is going away, flush any packets still pending
3984 * Called with irqs disabled.
3985 */
3986 static void flush_backlog(void *arg)
3987 {
3988 struct net_device *dev = arg;
3989 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3990 struct sk_buff *skb, *tmp;
3991
3992 rps_lock(sd);
3993 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3994 if (skb->dev == dev) {
3995 __skb_unlink(skb, &sd->input_pkt_queue);
3996 kfree_skb(skb);
3997 input_queue_head_incr(sd);
3998 }
3999 }
4000 rps_unlock(sd);
4001
4002 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4003 if (skb->dev == dev) {
4004 __skb_unlink(skb, &sd->process_queue);
4005 kfree_skb(skb);
4006 input_queue_head_incr(sd);
4007 }
4008 }
4009 }
4010
4011 static int napi_gro_complete(struct sk_buff *skb)
4012 {
4013 struct packet_offload *ptype;
4014 __be16 type = skb->protocol;
4015 struct list_head *head = &offload_base;
4016 int err = -ENOENT;
4017
4018 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4019
4020 if (NAPI_GRO_CB(skb)->count == 1) {
4021 skb_shinfo(skb)->gso_size = 0;
4022 goto out;
4023 }
4024
4025 rcu_read_lock();
4026 list_for_each_entry_rcu(ptype, head, list) {
4027 if (ptype->type != type || !ptype->callbacks.gro_complete)
4028 continue;
4029
4030 err = ptype->callbacks.gro_complete(skb, 0);
4031 break;
4032 }
4033 rcu_read_unlock();
4034
4035 if (err) {
4036 WARN_ON(&ptype->list == head);
4037 kfree_skb(skb);
4038 return NET_RX_SUCCESS;
4039 }
4040
4041 out:
4042 return netif_receive_skb_internal(skb);
4043 }
4044
4045 /* napi->gro_list contains packets ordered by age.
4046 * youngest packets at the head of it.
4047 * Complete skbs in reverse order to reduce latencies.
4048 */
4049 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4050 {
4051 struct sk_buff *skb, *prev = NULL;
4052
4053 /* scan list and build reverse chain */
4054 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4055 skb->prev = prev;
4056 prev = skb;
4057 }
4058
4059 for (skb = prev; skb; skb = prev) {
4060 skb->next = NULL;
4061
4062 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4063 return;
4064
4065 prev = skb->prev;
4066 napi_gro_complete(skb);
4067 napi->gro_count--;
4068 }
4069
4070 napi->gro_list = NULL;
4071 }
4072 EXPORT_SYMBOL(napi_gro_flush);
4073
4074 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4075 {
4076 struct sk_buff *p;
4077 unsigned int maclen = skb->dev->hard_header_len;
4078 u32 hash = skb_get_hash_raw(skb);
4079
4080 for (p = napi->gro_list; p; p = p->next) {
4081 unsigned long diffs;
4082
4083 NAPI_GRO_CB(p)->flush = 0;
4084
4085 if (hash != skb_get_hash_raw(p)) {
4086 NAPI_GRO_CB(p)->same_flow = 0;
4087 continue;
4088 }
4089
4090 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4091 diffs |= p->vlan_tci ^ skb->vlan_tci;
4092 if (maclen == ETH_HLEN)
4093 diffs |= compare_ether_header(skb_mac_header(p),
4094 skb_mac_header(skb));
4095 else if (!diffs)
4096 diffs = memcmp(skb_mac_header(p),
4097 skb_mac_header(skb),
4098 maclen);
4099 NAPI_GRO_CB(p)->same_flow = !diffs;
4100 }
4101 }
4102
4103 static void skb_gro_reset_offset(struct sk_buff *skb)
4104 {
4105 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4106 const skb_frag_t *frag0 = &pinfo->frags[0];
4107
4108 NAPI_GRO_CB(skb)->data_offset = 0;
4109 NAPI_GRO_CB(skb)->frag0 = NULL;
4110 NAPI_GRO_CB(skb)->frag0_len = 0;
4111
4112 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4113 pinfo->nr_frags &&
4114 !PageHighMem(skb_frag_page(frag0))) {
4115 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4116 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4117 }
4118 }
4119
4120 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4121 {
4122 struct skb_shared_info *pinfo = skb_shinfo(skb);
4123
4124 BUG_ON(skb->end - skb->tail < grow);
4125
4126 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4127
4128 skb->data_len -= grow;
4129 skb->tail += grow;
4130
4131 pinfo->frags[0].page_offset += grow;
4132 skb_frag_size_sub(&pinfo->frags[0], grow);
4133
4134 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4135 skb_frag_unref(skb, 0);
4136 memmove(pinfo->frags, pinfo->frags + 1,
4137 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4138 }
4139 }
4140
4141 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4142 {
4143 struct sk_buff **pp = NULL;
4144 struct packet_offload *ptype;
4145 __be16 type = skb->protocol;
4146 struct list_head *head = &offload_base;
4147 int same_flow;
4148 enum gro_result ret;
4149 int grow;
4150
4151 if (!(skb->dev->features & NETIF_F_GRO))
4152 goto normal;
4153
4154 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4155 goto normal;
4156
4157 gro_list_prepare(napi, skb);
4158
4159 rcu_read_lock();
4160 list_for_each_entry_rcu(ptype, head, list) {
4161 if (ptype->type != type || !ptype->callbacks.gro_receive)
4162 continue;
4163
4164 skb_set_network_header(skb, skb_gro_offset(skb));
4165 skb_reset_mac_len(skb);
4166 NAPI_GRO_CB(skb)->same_flow = 0;
4167 NAPI_GRO_CB(skb)->flush = 0;
4168 NAPI_GRO_CB(skb)->free = 0;
4169 NAPI_GRO_CB(skb)->udp_mark = 0;
4170 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4171
4172 /* Setup for GRO checksum validation */
4173 switch (skb->ip_summed) {
4174 case CHECKSUM_COMPLETE:
4175 NAPI_GRO_CB(skb)->csum = skb->csum;
4176 NAPI_GRO_CB(skb)->csum_valid = 1;
4177 NAPI_GRO_CB(skb)->csum_cnt = 0;
4178 break;
4179 case CHECKSUM_UNNECESSARY:
4180 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4181 NAPI_GRO_CB(skb)->csum_valid = 0;
4182 break;
4183 default:
4184 NAPI_GRO_CB(skb)->csum_cnt = 0;
4185 NAPI_GRO_CB(skb)->csum_valid = 0;
4186 }
4187
4188 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4189 break;
4190 }
4191 rcu_read_unlock();
4192
4193 if (&ptype->list == head)
4194 goto normal;
4195
4196 same_flow = NAPI_GRO_CB(skb)->same_flow;
4197 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4198
4199 if (pp) {
4200 struct sk_buff *nskb = *pp;
4201
4202 *pp = nskb->next;
4203 nskb->next = NULL;
4204 napi_gro_complete(nskb);
4205 napi->gro_count--;
4206 }
4207
4208 if (same_flow)
4209 goto ok;
4210
4211 if (NAPI_GRO_CB(skb)->flush)
4212 goto normal;
4213
4214 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4215 struct sk_buff *nskb = napi->gro_list;
4216
4217 /* locate the end of the list to select the 'oldest' flow */
4218 while (nskb->next) {
4219 pp = &nskb->next;
4220 nskb = *pp;
4221 }
4222 *pp = NULL;
4223 nskb->next = NULL;
4224 napi_gro_complete(nskb);
4225 } else {
4226 napi->gro_count++;
4227 }
4228 NAPI_GRO_CB(skb)->count = 1;
4229 NAPI_GRO_CB(skb)->age = jiffies;
4230 NAPI_GRO_CB(skb)->last = skb;
4231 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4232 skb->next = napi->gro_list;
4233 napi->gro_list = skb;
4234 ret = GRO_HELD;
4235
4236 pull:
4237 grow = skb_gro_offset(skb) - skb_headlen(skb);
4238 if (grow > 0)
4239 gro_pull_from_frag0(skb, grow);
4240 ok:
4241 return ret;
4242
4243 normal:
4244 ret = GRO_NORMAL;
4245 goto pull;
4246 }
4247
4248 struct packet_offload *gro_find_receive_by_type(__be16 type)
4249 {
4250 struct list_head *offload_head = &offload_base;
4251 struct packet_offload *ptype;
4252
4253 list_for_each_entry_rcu(ptype, offload_head, list) {
4254 if (ptype->type != type || !ptype->callbacks.gro_receive)
4255 continue;
4256 return ptype;
4257 }
4258 return NULL;
4259 }
4260 EXPORT_SYMBOL(gro_find_receive_by_type);
4261
4262 struct packet_offload *gro_find_complete_by_type(__be16 type)
4263 {
4264 struct list_head *offload_head = &offload_base;
4265 struct packet_offload *ptype;
4266
4267 list_for_each_entry_rcu(ptype, offload_head, list) {
4268 if (ptype->type != type || !ptype->callbacks.gro_complete)
4269 continue;
4270 return ptype;
4271 }
4272 return NULL;
4273 }
4274 EXPORT_SYMBOL(gro_find_complete_by_type);
4275
4276 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4277 {
4278 switch (ret) {
4279 case GRO_NORMAL:
4280 if (netif_receive_skb_internal(skb))
4281 ret = GRO_DROP;
4282 break;
4283
4284 case GRO_DROP:
4285 kfree_skb(skb);
4286 break;
4287
4288 case GRO_MERGED_FREE:
4289 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4290 kmem_cache_free(skbuff_head_cache, skb);
4291 else
4292 __kfree_skb(skb);
4293 break;
4294
4295 case GRO_HELD:
4296 case GRO_MERGED:
4297 break;
4298 }
4299
4300 return ret;
4301 }
4302
4303 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4304 {
4305 trace_napi_gro_receive_entry(skb);
4306
4307 skb_gro_reset_offset(skb);
4308
4309 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4310 }
4311 EXPORT_SYMBOL(napi_gro_receive);
4312
4313 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4314 {
4315 if (unlikely(skb->pfmemalloc)) {
4316 consume_skb(skb);
4317 return;
4318 }
4319 __skb_pull(skb, skb_headlen(skb));
4320 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4321 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4322 skb->vlan_tci = 0;
4323 skb->dev = napi->dev;
4324 skb->skb_iif = 0;
4325 skb->encapsulation = 0;
4326 skb_shinfo(skb)->gso_type = 0;
4327 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4328
4329 napi->skb = skb;
4330 }
4331
4332 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4333 {
4334 struct sk_buff *skb = napi->skb;
4335
4336 if (!skb) {
4337 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4338 napi->skb = skb;
4339 }
4340 return skb;
4341 }
4342 EXPORT_SYMBOL(napi_get_frags);
4343
4344 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4345 struct sk_buff *skb,
4346 gro_result_t ret)
4347 {
4348 switch (ret) {
4349 case GRO_NORMAL:
4350 case GRO_HELD:
4351 __skb_push(skb, ETH_HLEN);
4352 skb->protocol = eth_type_trans(skb, skb->dev);
4353 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4354 ret = GRO_DROP;
4355 break;
4356
4357 case GRO_DROP:
4358 case GRO_MERGED_FREE:
4359 napi_reuse_skb(napi, skb);
4360 break;
4361
4362 case GRO_MERGED:
4363 break;
4364 }
4365
4366 return ret;
4367 }
4368
4369 /* Upper GRO stack assumes network header starts at gro_offset=0
4370 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4371 * We copy ethernet header into skb->data to have a common layout.
4372 */
4373 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4374 {
4375 struct sk_buff *skb = napi->skb;
4376 const struct ethhdr *eth;
4377 unsigned int hlen = sizeof(*eth);
4378
4379 napi->skb = NULL;
4380
4381 skb_reset_mac_header(skb);
4382 skb_gro_reset_offset(skb);
4383
4384 eth = skb_gro_header_fast(skb, 0);
4385 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4386 eth = skb_gro_header_slow(skb, hlen, 0);
4387 if (unlikely(!eth)) {
4388 napi_reuse_skb(napi, skb);
4389 return NULL;
4390 }
4391 } else {
4392 gro_pull_from_frag0(skb, hlen);
4393 NAPI_GRO_CB(skb)->frag0 += hlen;
4394 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4395 }
4396 __skb_pull(skb, hlen);
4397
4398 /*
4399 * This works because the only protocols we care about don't require
4400 * special handling.
4401 * We'll fix it up properly in napi_frags_finish()
4402 */
4403 skb->protocol = eth->h_proto;
4404
4405 return skb;
4406 }
4407
4408 gro_result_t napi_gro_frags(struct napi_struct *napi)
4409 {
4410 struct sk_buff *skb = napi_frags_skb(napi);
4411
4412 if (!skb)
4413 return GRO_DROP;
4414
4415 trace_napi_gro_frags_entry(skb);
4416
4417 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4418 }
4419 EXPORT_SYMBOL(napi_gro_frags);
4420
4421 /* Compute the checksum from gro_offset and return the folded value
4422 * after adding in any pseudo checksum.
4423 */
4424 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4425 {
4426 __wsum wsum;
4427 __sum16 sum;
4428
4429 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4430
4431 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4432 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4433 if (likely(!sum)) {
4434 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4435 !skb->csum_complete_sw)
4436 netdev_rx_csum_fault(skb->dev);
4437 }
4438
4439 NAPI_GRO_CB(skb)->csum = wsum;
4440 NAPI_GRO_CB(skb)->csum_valid = 1;
4441
4442 return sum;
4443 }
4444 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4445
4446 /*
4447 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4448 * Note: called with local irq disabled, but exits with local irq enabled.
4449 */
4450 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4451 {
4452 #ifdef CONFIG_RPS
4453 struct softnet_data *remsd = sd->rps_ipi_list;
4454
4455 if (remsd) {
4456 sd->rps_ipi_list = NULL;
4457
4458 local_irq_enable();
4459
4460 /* Send pending IPI's to kick RPS processing on remote cpus. */
4461 while (remsd) {
4462 struct softnet_data *next = remsd->rps_ipi_next;
4463
4464 if (cpu_online(remsd->cpu))
4465 smp_call_function_single_async(remsd->cpu,
4466 &remsd->csd);
4467 remsd = next;
4468 }
4469 } else
4470 #endif
4471 local_irq_enable();
4472 }
4473
4474 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4475 {
4476 #ifdef CONFIG_RPS
4477 return sd->rps_ipi_list != NULL;
4478 #else
4479 return false;
4480 #endif
4481 }
4482
4483 static int process_backlog(struct napi_struct *napi, int quota)
4484 {
4485 int work = 0;
4486 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4487
4488 /* Check if we have pending ipi, its better to send them now,
4489 * not waiting net_rx_action() end.
4490 */
4491 if (sd_has_rps_ipi_waiting(sd)) {
4492 local_irq_disable();
4493 net_rps_action_and_irq_enable(sd);
4494 }
4495
4496 napi->weight = weight_p;
4497 local_irq_disable();
4498 while (1) {
4499 struct sk_buff *skb;
4500
4501 while ((skb = __skb_dequeue(&sd->process_queue))) {
4502 rcu_read_lock();
4503 local_irq_enable();
4504 __netif_receive_skb(skb);
4505 rcu_read_unlock();
4506 local_irq_disable();
4507 input_queue_head_incr(sd);
4508 if (++work >= quota) {
4509 local_irq_enable();
4510 return work;
4511 }
4512 }
4513
4514 rps_lock(sd);
4515 if (skb_queue_empty(&sd->input_pkt_queue)) {
4516 /*
4517 * Inline a custom version of __napi_complete().
4518 * only current cpu owns and manipulates this napi,
4519 * and NAPI_STATE_SCHED is the only possible flag set
4520 * on backlog.
4521 * We can use a plain write instead of clear_bit(),
4522 * and we dont need an smp_mb() memory barrier.
4523 */
4524 napi->state = 0;
4525 rps_unlock(sd);
4526
4527 break;
4528 }
4529
4530 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4531 &sd->process_queue);
4532 rps_unlock(sd);
4533 }
4534 local_irq_enable();
4535
4536 return work;
4537 }
4538
4539 /**
4540 * __napi_schedule - schedule for receive
4541 * @n: entry to schedule
4542 *
4543 * The entry's receive function will be scheduled to run.
4544 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4545 */
4546 void __napi_schedule(struct napi_struct *n)
4547 {
4548 unsigned long flags;
4549
4550 local_irq_save(flags);
4551 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4552 local_irq_restore(flags);
4553 }
4554 EXPORT_SYMBOL(__napi_schedule);
4555
4556 /**
4557 * __napi_schedule_irqoff - schedule for receive
4558 * @n: entry to schedule
4559 *
4560 * Variant of __napi_schedule() assuming hard irqs are masked
4561 */
4562 void __napi_schedule_irqoff(struct napi_struct *n)
4563 {
4564 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4565 }
4566 EXPORT_SYMBOL(__napi_schedule_irqoff);
4567
4568 void __napi_complete(struct napi_struct *n)
4569 {
4570 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4571
4572 list_del_init(&n->poll_list);
4573 smp_mb__before_atomic();
4574 clear_bit(NAPI_STATE_SCHED, &n->state);
4575 }
4576 EXPORT_SYMBOL(__napi_complete);
4577
4578 void napi_complete_done(struct napi_struct *n, int work_done)
4579 {
4580 unsigned long flags;
4581
4582 /*
4583 * don't let napi dequeue from the cpu poll list
4584 * just in case its running on a different cpu
4585 */
4586 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4587 return;
4588
4589 if (n->gro_list) {
4590 unsigned long timeout = 0;
4591
4592 if (work_done)
4593 timeout = n->dev->gro_flush_timeout;
4594
4595 if (timeout)
4596 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4597 HRTIMER_MODE_REL_PINNED);
4598 else
4599 napi_gro_flush(n, false);
4600 }
4601 if (likely(list_empty(&n->poll_list))) {
4602 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4603 } else {
4604 /* If n->poll_list is not empty, we need to mask irqs */
4605 local_irq_save(flags);
4606 __napi_complete(n);
4607 local_irq_restore(flags);
4608 }
4609 }
4610 EXPORT_SYMBOL(napi_complete_done);
4611
4612 /* must be called under rcu_read_lock(), as we dont take a reference */
4613 struct napi_struct *napi_by_id(unsigned int napi_id)
4614 {
4615 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4616 struct napi_struct *napi;
4617
4618 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4619 if (napi->napi_id == napi_id)
4620 return napi;
4621
4622 return NULL;
4623 }
4624 EXPORT_SYMBOL_GPL(napi_by_id);
4625
4626 void napi_hash_add(struct napi_struct *napi)
4627 {
4628 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4629
4630 spin_lock(&napi_hash_lock);
4631
4632 /* 0 is not a valid id, we also skip an id that is taken
4633 * we expect both events to be extremely rare
4634 */
4635 napi->napi_id = 0;
4636 while (!napi->napi_id) {
4637 napi->napi_id = ++napi_gen_id;
4638 if (napi_by_id(napi->napi_id))
4639 napi->napi_id = 0;
4640 }
4641
4642 hlist_add_head_rcu(&napi->napi_hash_node,
4643 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4644
4645 spin_unlock(&napi_hash_lock);
4646 }
4647 }
4648 EXPORT_SYMBOL_GPL(napi_hash_add);
4649
4650 /* Warning : caller is responsible to make sure rcu grace period
4651 * is respected before freeing memory containing @napi
4652 */
4653 void napi_hash_del(struct napi_struct *napi)
4654 {
4655 spin_lock(&napi_hash_lock);
4656
4657 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4658 hlist_del_rcu(&napi->napi_hash_node);
4659
4660 spin_unlock(&napi_hash_lock);
4661 }
4662 EXPORT_SYMBOL_GPL(napi_hash_del);
4663
4664 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4665 {
4666 struct napi_struct *napi;
4667
4668 napi = container_of(timer, struct napi_struct, timer);
4669 if (napi->gro_list)
4670 napi_schedule(napi);
4671
4672 return HRTIMER_NORESTART;
4673 }
4674
4675 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4676 int (*poll)(struct napi_struct *, int), int weight)
4677 {
4678 INIT_LIST_HEAD(&napi->poll_list);
4679 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4680 napi->timer.function = napi_watchdog;
4681 napi->gro_count = 0;
4682 napi->gro_list = NULL;
4683 napi->skb = NULL;
4684 napi->poll = poll;
4685 if (weight > NAPI_POLL_WEIGHT)
4686 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4687 weight, dev->name);
4688 napi->weight = weight;
4689 list_add(&napi->dev_list, &dev->napi_list);
4690 napi->dev = dev;
4691 #ifdef CONFIG_NETPOLL
4692 spin_lock_init(&napi->poll_lock);
4693 napi->poll_owner = -1;
4694 #endif
4695 set_bit(NAPI_STATE_SCHED, &napi->state);
4696 }
4697 EXPORT_SYMBOL(netif_napi_add);
4698
4699 void napi_disable(struct napi_struct *n)
4700 {
4701 might_sleep();
4702 set_bit(NAPI_STATE_DISABLE, &n->state);
4703
4704 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4705 msleep(1);
4706
4707 hrtimer_cancel(&n->timer);
4708
4709 clear_bit(NAPI_STATE_DISABLE, &n->state);
4710 }
4711 EXPORT_SYMBOL(napi_disable);
4712
4713 void netif_napi_del(struct napi_struct *napi)
4714 {
4715 list_del_init(&napi->dev_list);
4716 napi_free_frags(napi);
4717
4718 kfree_skb_list(napi->gro_list);
4719 napi->gro_list = NULL;
4720 napi->gro_count = 0;
4721 }
4722 EXPORT_SYMBOL(netif_napi_del);
4723
4724 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4725 {
4726 void *have;
4727 int work, weight;
4728
4729 list_del_init(&n->poll_list);
4730
4731 have = netpoll_poll_lock(n);
4732
4733 weight = n->weight;
4734
4735 /* This NAPI_STATE_SCHED test is for avoiding a race
4736 * with netpoll's poll_napi(). Only the entity which
4737 * obtains the lock and sees NAPI_STATE_SCHED set will
4738 * actually make the ->poll() call. Therefore we avoid
4739 * accidentally calling ->poll() when NAPI is not scheduled.
4740 */
4741 work = 0;
4742 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4743 work = n->poll(n, weight);
4744 trace_napi_poll(n);
4745 }
4746
4747 WARN_ON_ONCE(work > weight);
4748
4749 if (likely(work < weight))
4750 goto out_unlock;
4751
4752 /* Drivers must not modify the NAPI state if they
4753 * consume the entire weight. In such cases this code
4754 * still "owns" the NAPI instance and therefore can
4755 * move the instance around on the list at-will.
4756 */
4757 if (unlikely(napi_disable_pending(n))) {
4758 napi_complete(n);
4759 goto out_unlock;
4760 }
4761
4762 if (n->gro_list) {
4763 /* flush too old packets
4764 * If HZ < 1000, flush all packets.
4765 */
4766 napi_gro_flush(n, HZ >= 1000);
4767 }
4768
4769 /* Some drivers may have called napi_schedule
4770 * prior to exhausting their budget.
4771 */
4772 if (unlikely(!list_empty(&n->poll_list))) {
4773 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4774 n->dev ? n->dev->name : "backlog");
4775 goto out_unlock;
4776 }
4777
4778 list_add_tail(&n->poll_list, repoll);
4779
4780 out_unlock:
4781 netpoll_poll_unlock(have);
4782
4783 return work;
4784 }
4785
4786 static void net_rx_action(struct softirq_action *h)
4787 {
4788 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4789 unsigned long time_limit = jiffies + 2;
4790 int budget = netdev_budget;
4791 LIST_HEAD(list);
4792 LIST_HEAD(repoll);
4793
4794 local_irq_disable();
4795 list_splice_init(&sd->poll_list, &list);
4796 local_irq_enable();
4797
4798 for (;;) {
4799 struct napi_struct *n;
4800
4801 if (list_empty(&list)) {
4802 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4803 return;
4804 break;
4805 }
4806
4807 n = list_first_entry(&list, struct napi_struct, poll_list);
4808 budget -= napi_poll(n, &repoll);
4809
4810 /* If softirq window is exhausted then punt.
4811 * Allow this to run for 2 jiffies since which will allow
4812 * an average latency of 1.5/HZ.
4813 */
4814 if (unlikely(budget <= 0 ||
4815 time_after_eq(jiffies, time_limit))) {
4816 sd->time_squeeze++;
4817 break;
4818 }
4819 }
4820
4821 local_irq_disable();
4822
4823 list_splice_tail_init(&sd->poll_list, &list);
4824 list_splice_tail(&repoll, &list);
4825 list_splice(&list, &sd->poll_list);
4826 if (!list_empty(&sd->poll_list))
4827 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4828
4829 net_rps_action_and_irq_enable(sd);
4830 }
4831
4832 struct netdev_adjacent {
4833 struct net_device *dev;
4834
4835 /* upper master flag, there can only be one master device per list */
4836 bool master;
4837
4838 /* counter for the number of times this device was added to us */
4839 u16 ref_nr;
4840
4841 /* private field for the users */
4842 void *private;
4843
4844 struct list_head list;
4845 struct rcu_head rcu;
4846 };
4847
4848 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4849 struct net_device *adj_dev,
4850 struct list_head *adj_list)
4851 {
4852 struct netdev_adjacent *adj;
4853
4854 list_for_each_entry(adj, adj_list, list) {
4855 if (adj->dev == adj_dev)
4856 return adj;
4857 }
4858 return NULL;
4859 }
4860
4861 /**
4862 * netdev_has_upper_dev - Check if device is linked to an upper device
4863 * @dev: device
4864 * @upper_dev: upper device to check
4865 *
4866 * Find out if a device is linked to specified upper device and return true
4867 * in case it is. Note that this checks only immediate upper device,
4868 * not through a complete stack of devices. The caller must hold the RTNL lock.
4869 */
4870 bool netdev_has_upper_dev(struct net_device *dev,
4871 struct net_device *upper_dev)
4872 {
4873 ASSERT_RTNL();
4874
4875 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4876 }
4877 EXPORT_SYMBOL(netdev_has_upper_dev);
4878
4879 /**
4880 * netdev_has_any_upper_dev - Check if device is linked to some device
4881 * @dev: device
4882 *
4883 * Find out if a device is linked to an upper device and return true in case
4884 * it is. The caller must hold the RTNL lock.
4885 */
4886 static bool netdev_has_any_upper_dev(struct net_device *dev)
4887 {
4888 ASSERT_RTNL();
4889
4890 return !list_empty(&dev->all_adj_list.upper);
4891 }
4892
4893 /**
4894 * netdev_master_upper_dev_get - Get master upper device
4895 * @dev: device
4896 *
4897 * Find a master upper device and return pointer to it or NULL in case
4898 * it's not there. The caller must hold the RTNL lock.
4899 */
4900 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4901 {
4902 struct netdev_adjacent *upper;
4903
4904 ASSERT_RTNL();
4905
4906 if (list_empty(&dev->adj_list.upper))
4907 return NULL;
4908
4909 upper = list_first_entry(&dev->adj_list.upper,
4910 struct netdev_adjacent, list);
4911 if (likely(upper->master))
4912 return upper->dev;
4913 return NULL;
4914 }
4915 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4916
4917 void *netdev_adjacent_get_private(struct list_head *adj_list)
4918 {
4919 struct netdev_adjacent *adj;
4920
4921 adj = list_entry(adj_list, struct netdev_adjacent, list);
4922
4923 return adj->private;
4924 }
4925 EXPORT_SYMBOL(netdev_adjacent_get_private);
4926
4927 /**
4928 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4929 * @dev: device
4930 * @iter: list_head ** of the current position
4931 *
4932 * Gets the next device from the dev's upper list, starting from iter
4933 * position. The caller must hold RCU read lock.
4934 */
4935 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4936 struct list_head **iter)
4937 {
4938 struct netdev_adjacent *upper;
4939
4940 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4941
4942 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4943
4944 if (&upper->list == &dev->adj_list.upper)
4945 return NULL;
4946
4947 *iter = &upper->list;
4948
4949 return upper->dev;
4950 }
4951 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4952
4953 /**
4954 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4955 * @dev: device
4956 * @iter: list_head ** of the current position
4957 *
4958 * Gets the next device from the dev's upper list, starting from iter
4959 * position. The caller must hold RCU read lock.
4960 */
4961 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4962 struct list_head **iter)
4963 {
4964 struct netdev_adjacent *upper;
4965
4966 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4967
4968 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4969
4970 if (&upper->list == &dev->all_adj_list.upper)
4971 return NULL;
4972
4973 *iter = &upper->list;
4974
4975 return upper->dev;
4976 }
4977 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4978
4979 /**
4980 * netdev_lower_get_next_private - Get the next ->private from the
4981 * lower neighbour list
4982 * @dev: device
4983 * @iter: list_head ** of the current position
4984 *
4985 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4986 * list, starting from iter position. The caller must hold either hold the
4987 * RTNL lock or its own locking that guarantees that the neighbour lower
4988 * list will remain unchainged.
4989 */
4990 void *netdev_lower_get_next_private(struct net_device *dev,
4991 struct list_head **iter)
4992 {
4993 struct netdev_adjacent *lower;
4994
4995 lower = list_entry(*iter, struct netdev_adjacent, list);
4996
4997 if (&lower->list == &dev->adj_list.lower)
4998 return NULL;
4999
5000 *iter = lower->list.next;
5001
5002 return lower->private;
5003 }
5004 EXPORT_SYMBOL(netdev_lower_get_next_private);
5005
5006 /**
5007 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5008 * lower neighbour list, RCU
5009 * variant
5010 * @dev: device
5011 * @iter: list_head ** of the current position
5012 *
5013 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5014 * list, starting from iter position. The caller must hold RCU read lock.
5015 */
5016 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5017 struct list_head **iter)
5018 {
5019 struct netdev_adjacent *lower;
5020
5021 WARN_ON_ONCE(!rcu_read_lock_held());
5022
5023 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5024
5025 if (&lower->list == &dev->adj_list.lower)
5026 return NULL;
5027
5028 *iter = &lower->list;
5029
5030 return lower->private;
5031 }
5032 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5033
5034 /**
5035 * netdev_lower_get_next - Get the next device from the lower neighbour
5036 * list
5037 * @dev: device
5038 * @iter: list_head ** of the current position
5039 *
5040 * Gets the next netdev_adjacent from the dev's lower neighbour
5041 * list, starting from iter position. The caller must hold RTNL lock or
5042 * its own locking that guarantees that the neighbour lower
5043 * list will remain unchainged.
5044 */
5045 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5046 {
5047 struct netdev_adjacent *lower;
5048
5049 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5050
5051 if (&lower->list == &dev->adj_list.lower)
5052 return NULL;
5053
5054 *iter = &lower->list;
5055
5056 return lower->dev;
5057 }
5058 EXPORT_SYMBOL(netdev_lower_get_next);
5059
5060 /**
5061 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5062 * lower neighbour list, RCU
5063 * variant
5064 * @dev: device
5065 *
5066 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5067 * list. The caller must hold RCU read lock.
5068 */
5069 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5070 {
5071 struct netdev_adjacent *lower;
5072
5073 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5074 struct netdev_adjacent, list);
5075 if (lower)
5076 return lower->private;
5077 return NULL;
5078 }
5079 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5080
5081 /**
5082 * netdev_master_upper_dev_get_rcu - Get master upper device
5083 * @dev: device
5084 *
5085 * Find a master upper device and return pointer to it or NULL in case
5086 * it's not there. The caller must hold the RCU read lock.
5087 */
5088 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5089 {
5090 struct netdev_adjacent *upper;
5091
5092 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5093 struct netdev_adjacent, list);
5094 if (upper && likely(upper->master))
5095 return upper->dev;
5096 return NULL;
5097 }
5098 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5099
5100 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5101 struct net_device *adj_dev,
5102 struct list_head *dev_list)
5103 {
5104 char linkname[IFNAMSIZ+7];
5105 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5106 "upper_%s" : "lower_%s", adj_dev->name);
5107 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5108 linkname);
5109 }
5110 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5111 char *name,
5112 struct list_head *dev_list)
5113 {
5114 char linkname[IFNAMSIZ+7];
5115 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5116 "upper_%s" : "lower_%s", name);
5117 sysfs_remove_link(&(dev->dev.kobj), linkname);
5118 }
5119
5120 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5121 struct net_device *adj_dev,
5122 struct list_head *dev_list)
5123 {
5124 return (dev_list == &dev->adj_list.upper ||
5125 dev_list == &dev->adj_list.lower) &&
5126 net_eq(dev_net(dev), dev_net(adj_dev));
5127 }
5128
5129 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5130 struct net_device *adj_dev,
5131 struct list_head *dev_list,
5132 void *private, bool master)
5133 {
5134 struct netdev_adjacent *adj;
5135 int ret;
5136
5137 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5138
5139 if (adj) {
5140 adj->ref_nr++;
5141 return 0;
5142 }
5143
5144 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5145 if (!adj)
5146 return -ENOMEM;
5147
5148 adj->dev = adj_dev;
5149 adj->master = master;
5150 adj->ref_nr = 1;
5151 adj->private = private;
5152 dev_hold(adj_dev);
5153
5154 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5155 adj_dev->name, dev->name, adj_dev->name);
5156
5157 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5158 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5159 if (ret)
5160 goto free_adj;
5161 }
5162
5163 /* Ensure that master link is always the first item in list. */
5164 if (master) {
5165 ret = sysfs_create_link(&(dev->dev.kobj),
5166 &(adj_dev->dev.kobj), "master");
5167 if (ret)
5168 goto remove_symlinks;
5169
5170 list_add_rcu(&adj->list, dev_list);
5171 } else {
5172 list_add_tail_rcu(&adj->list, dev_list);
5173 }
5174
5175 return 0;
5176
5177 remove_symlinks:
5178 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5179 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5180 free_adj:
5181 kfree(adj);
5182 dev_put(adj_dev);
5183
5184 return ret;
5185 }
5186
5187 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5188 struct net_device *adj_dev,
5189 struct list_head *dev_list)
5190 {
5191 struct netdev_adjacent *adj;
5192
5193 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5194
5195 if (!adj) {
5196 pr_err("tried to remove device %s from %s\n",
5197 dev->name, adj_dev->name);
5198 BUG();
5199 }
5200
5201 if (adj->ref_nr > 1) {
5202 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5203 adj->ref_nr-1);
5204 adj->ref_nr--;
5205 return;
5206 }
5207
5208 if (adj->master)
5209 sysfs_remove_link(&(dev->dev.kobj), "master");
5210
5211 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5212 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5213
5214 list_del_rcu(&adj->list);
5215 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5216 adj_dev->name, dev->name, adj_dev->name);
5217 dev_put(adj_dev);
5218 kfree_rcu(adj, rcu);
5219 }
5220
5221 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5222 struct net_device *upper_dev,
5223 struct list_head *up_list,
5224 struct list_head *down_list,
5225 void *private, bool master)
5226 {
5227 int ret;
5228
5229 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5230 master);
5231 if (ret)
5232 return ret;
5233
5234 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5235 false);
5236 if (ret) {
5237 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5238 return ret;
5239 }
5240
5241 return 0;
5242 }
5243
5244 static int __netdev_adjacent_dev_link(struct net_device *dev,
5245 struct net_device *upper_dev)
5246 {
5247 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5248 &dev->all_adj_list.upper,
5249 &upper_dev->all_adj_list.lower,
5250 NULL, false);
5251 }
5252
5253 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5254 struct net_device *upper_dev,
5255 struct list_head *up_list,
5256 struct list_head *down_list)
5257 {
5258 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5259 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5260 }
5261
5262 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5263 struct net_device *upper_dev)
5264 {
5265 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5266 &dev->all_adj_list.upper,
5267 &upper_dev->all_adj_list.lower);
5268 }
5269
5270 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5271 struct net_device *upper_dev,
5272 void *private, bool master)
5273 {
5274 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5275
5276 if (ret)
5277 return ret;
5278
5279 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5280 &dev->adj_list.upper,
5281 &upper_dev->adj_list.lower,
5282 private, master);
5283 if (ret) {
5284 __netdev_adjacent_dev_unlink(dev, upper_dev);
5285 return ret;
5286 }
5287
5288 return 0;
5289 }
5290
5291 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5292 struct net_device *upper_dev)
5293 {
5294 __netdev_adjacent_dev_unlink(dev, upper_dev);
5295 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5296 &dev->adj_list.upper,
5297 &upper_dev->adj_list.lower);
5298 }
5299
5300 static int __netdev_upper_dev_link(struct net_device *dev,
5301 struct net_device *upper_dev, bool master,
5302 void *private)
5303 {
5304 struct netdev_adjacent *i, *j, *to_i, *to_j;
5305 int ret = 0;
5306
5307 ASSERT_RTNL();
5308
5309 if (dev == upper_dev)
5310 return -EBUSY;
5311
5312 /* To prevent loops, check if dev is not upper device to upper_dev. */
5313 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5314 return -EBUSY;
5315
5316 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5317 return -EEXIST;
5318
5319 if (master && netdev_master_upper_dev_get(dev))
5320 return -EBUSY;
5321
5322 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5323 master);
5324 if (ret)
5325 return ret;
5326
5327 /* Now that we linked these devs, make all the upper_dev's
5328 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5329 * versa, and don't forget the devices itself. All of these
5330 * links are non-neighbours.
5331 */
5332 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5333 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5334 pr_debug("Interlinking %s with %s, non-neighbour\n",
5335 i->dev->name, j->dev->name);
5336 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5337 if (ret)
5338 goto rollback_mesh;
5339 }
5340 }
5341
5342 /* add dev to every upper_dev's upper device */
5343 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5344 pr_debug("linking %s's upper device %s with %s\n",
5345 upper_dev->name, i->dev->name, dev->name);
5346 ret = __netdev_adjacent_dev_link(dev, i->dev);
5347 if (ret)
5348 goto rollback_upper_mesh;
5349 }
5350
5351 /* add upper_dev to every dev's lower device */
5352 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5353 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5354 i->dev->name, upper_dev->name);
5355 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5356 if (ret)
5357 goto rollback_lower_mesh;
5358 }
5359
5360 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5361 return 0;
5362
5363 rollback_lower_mesh:
5364 to_i = i;
5365 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5366 if (i == to_i)
5367 break;
5368 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5369 }
5370
5371 i = NULL;
5372
5373 rollback_upper_mesh:
5374 to_i = i;
5375 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5376 if (i == to_i)
5377 break;
5378 __netdev_adjacent_dev_unlink(dev, i->dev);
5379 }
5380
5381 i = j = NULL;
5382
5383 rollback_mesh:
5384 to_i = i;
5385 to_j = j;
5386 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5387 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5388 if (i == to_i && j == to_j)
5389 break;
5390 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5391 }
5392 if (i == to_i)
5393 break;
5394 }
5395
5396 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5397
5398 return ret;
5399 }
5400
5401 /**
5402 * netdev_upper_dev_link - Add a link to the upper device
5403 * @dev: device
5404 * @upper_dev: new upper device
5405 *
5406 * Adds a link to device which is upper to this one. The caller must hold
5407 * the RTNL lock. On a failure a negative errno code is returned.
5408 * On success the reference counts are adjusted and the function
5409 * returns zero.
5410 */
5411 int netdev_upper_dev_link(struct net_device *dev,
5412 struct net_device *upper_dev)
5413 {
5414 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5415 }
5416 EXPORT_SYMBOL(netdev_upper_dev_link);
5417
5418 /**
5419 * netdev_master_upper_dev_link - Add a master link to the upper device
5420 * @dev: device
5421 * @upper_dev: new upper device
5422 *
5423 * Adds a link to device which is upper to this one. In this case, only
5424 * one master upper device can be linked, although other non-master devices
5425 * might be linked as well. The caller must hold the RTNL lock.
5426 * On a failure a negative errno code is returned. On success the reference
5427 * counts are adjusted and the function returns zero.
5428 */
5429 int netdev_master_upper_dev_link(struct net_device *dev,
5430 struct net_device *upper_dev)
5431 {
5432 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5433 }
5434 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5435
5436 int netdev_master_upper_dev_link_private(struct net_device *dev,
5437 struct net_device *upper_dev,
5438 void *private)
5439 {
5440 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5441 }
5442 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5443
5444 /**
5445 * netdev_upper_dev_unlink - Removes a link to upper device
5446 * @dev: device
5447 * @upper_dev: new upper device
5448 *
5449 * Removes a link to device which is upper to this one. The caller must hold
5450 * the RTNL lock.
5451 */
5452 void netdev_upper_dev_unlink(struct net_device *dev,
5453 struct net_device *upper_dev)
5454 {
5455 struct netdev_adjacent *i, *j;
5456 ASSERT_RTNL();
5457
5458 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5459
5460 /* Here is the tricky part. We must remove all dev's lower
5461 * devices from all upper_dev's upper devices and vice
5462 * versa, to maintain the graph relationship.
5463 */
5464 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5465 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5466 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5467
5468 /* remove also the devices itself from lower/upper device
5469 * list
5470 */
5471 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5472 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5473
5474 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5475 __netdev_adjacent_dev_unlink(dev, i->dev);
5476
5477 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5478 }
5479 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5480
5481 /**
5482 * netdev_bonding_info_change - Dispatch event about slave change
5483 * @dev: device
5484 * @bonding_info: info to dispatch
5485 *
5486 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5487 * The caller must hold the RTNL lock.
5488 */
5489 void netdev_bonding_info_change(struct net_device *dev,
5490 struct netdev_bonding_info *bonding_info)
5491 {
5492 struct netdev_notifier_bonding_info info;
5493
5494 memcpy(&info.bonding_info, bonding_info,
5495 sizeof(struct netdev_bonding_info));
5496 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5497 &info.info);
5498 }
5499 EXPORT_SYMBOL(netdev_bonding_info_change);
5500
5501 static void netdev_adjacent_add_links(struct net_device *dev)
5502 {
5503 struct netdev_adjacent *iter;
5504
5505 struct net *net = dev_net(dev);
5506
5507 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5508 if (!net_eq(net,dev_net(iter->dev)))
5509 continue;
5510 netdev_adjacent_sysfs_add(iter->dev, dev,
5511 &iter->dev->adj_list.lower);
5512 netdev_adjacent_sysfs_add(dev, iter->dev,
5513 &dev->adj_list.upper);
5514 }
5515
5516 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5517 if (!net_eq(net,dev_net(iter->dev)))
5518 continue;
5519 netdev_adjacent_sysfs_add(iter->dev, dev,
5520 &iter->dev->adj_list.upper);
5521 netdev_adjacent_sysfs_add(dev, iter->dev,
5522 &dev->adj_list.lower);
5523 }
5524 }
5525
5526 static void netdev_adjacent_del_links(struct net_device *dev)
5527 {
5528 struct netdev_adjacent *iter;
5529
5530 struct net *net = dev_net(dev);
5531
5532 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5533 if (!net_eq(net,dev_net(iter->dev)))
5534 continue;
5535 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5536 &iter->dev->adj_list.lower);
5537 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5538 &dev->adj_list.upper);
5539 }
5540
5541 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5542 if (!net_eq(net,dev_net(iter->dev)))
5543 continue;
5544 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5545 &iter->dev->adj_list.upper);
5546 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5547 &dev->adj_list.lower);
5548 }
5549 }
5550
5551 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5552 {
5553 struct netdev_adjacent *iter;
5554
5555 struct net *net = dev_net(dev);
5556
5557 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5558 if (!net_eq(net,dev_net(iter->dev)))
5559 continue;
5560 netdev_adjacent_sysfs_del(iter->dev, oldname,
5561 &iter->dev->adj_list.lower);
5562 netdev_adjacent_sysfs_add(iter->dev, dev,
5563 &iter->dev->adj_list.lower);
5564 }
5565
5566 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5567 if (!net_eq(net,dev_net(iter->dev)))
5568 continue;
5569 netdev_adjacent_sysfs_del(iter->dev, oldname,
5570 &iter->dev->adj_list.upper);
5571 netdev_adjacent_sysfs_add(iter->dev, dev,
5572 &iter->dev->adj_list.upper);
5573 }
5574 }
5575
5576 void *netdev_lower_dev_get_private(struct net_device *dev,
5577 struct net_device *lower_dev)
5578 {
5579 struct netdev_adjacent *lower;
5580
5581 if (!lower_dev)
5582 return NULL;
5583 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5584 if (!lower)
5585 return NULL;
5586
5587 return lower->private;
5588 }
5589 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5590
5591
5592 int dev_get_nest_level(struct net_device *dev,
5593 bool (*type_check)(struct net_device *dev))
5594 {
5595 struct net_device *lower = NULL;
5596 struct list_head *iter;
5597 int max_nest = -1;
5598 int nest;
5599
5600 ASSERT_RTNL();
5601
5602 netdev_for_each_lower_dev(dev, lower, iter) {
5603 nest = dev_get_nest_level(lower, type_check);
5604 if (max_nest < nest)
5605 max_nest = nest;
5606 }
5607
5608 if (type_check(dev))
5609 max_nest++;
5610
5611 return max_nest;
5612 }
5613 EXPORT_SYMBOL(dev_get_nest_level);
5614
5615 static void dev_change_rx_flags(struct net_device *dev, int flags)
5616 {
5617 const struct net_device_ops *ops = dev->netdev_ops;
5618
5619 if (ops->ndo_change_rx_flags)
5620 ops->ndo_change_rx_flags(dev, flags);
5621 }
5622
5623 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5624 {
5625 unsigned int old_flags = dev->flags;
5626 kuid_t uid;
5627 kgid_t gid;
5628
5629 ASSERT_RTNL();
5630
5631 dev->flags |= IFF_PROMISC;
5632 dev->promiscuity += inc;
5633 if (dev->promiscuity == 0) {
5634 /*
5635 * Avoid overflow.
5636 * If inc causes overflow, untouch promisc and return error.
5637 */
5638 if (inc < 0)
5639 dev->flags &= ~IFF_PROMISC;
5640 else {
5641 dev->promiscuity -= inc;
5642 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5643 dev->name);
5644 return -EOVERFLOW;
5645 }
5646 }
5647 if (dev->flags != old_flags) {
5648 pr_info("device %s %s promiscuous mode\n",
5649 dev->name,
5650 dev->flags & IFF_PROMISC ? "entered" : "left");
5651 if (audit_enabled) {
5652 current_uid_gid(&uid, &gid);
5653 audit_log(current->audit_context, GFP_ATOMIC,
5654 AUDIT_ANOM_PROMISCUOUS,
5655 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5656 dev->name, (dev->flags & IFF_PROMISC),
5657 (old_flags & IFF_PROMISC),
5658 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5659 from_kuid(&init_user_ns, uid),
5660 from_kgid(&init_user_ns, gid),
5661 audit_get_sessionid(current));
5662 }
5663
5664 dev_change_rx_flags(dev, IFF_PROMISC);
5665 }
5666 if (notify)
5667 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5668 return 0;
5669 }
5670
5671 /**
5672 * dev_set_promiscuity - update promiscuity count on a device
5673 * @dev: device
5674 * @inc: modifier
5675 *
5676 * Add or remove promiscuity from a device. While the count in the device
5677 * remains above zero the interface remains promiscuous. Once it hits zero
5678 * the device reverts back to normal filtering operation. A negative inc
5679 * value is used to drop promiscuity on the device.
5680 * Return 0 if successful or a negative errno code on error.
5681 */
5682 int dev_set_promiscuity(struct net_device *dev, int inc)
5683 {
5684 unsigned int old_flags = dev->flags;
5685 int err;
5686
5687 err = __dev_set_promiscuity(dev, inc, true);
5688 if (err < 0)
5689 return err;
5690 if (dev->flags != old_flags)
5691 dev_set_rx_mode(dev);
5692 return err;
5693 }
5694 EXPORT_SYMBOL(dev_set_promiscuity);
5695
5696 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5697 {
5698 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5699
5700 ASSERT_RTNL();
5701
5702 dev->flags |= IFF_ALLMULTI;
5703 dev->allmulti += inc;
5704 if (dev->allmulti == 0) {
5705 /*
5706 * Avoid overflow.
5707 * If inc causes overflow, untouch allmulti and return error.
5708 */
5709 if (inc < 0)
5710 dev->flags &= ~IFF_ALLMULTI;
5711 else {
5712 dev->allmulti -= inc;
5713 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5714 dev->name);
5715 return -EOVERFLOW;
5716 }
5717 }
5718 if (dev->flags ^ old_flags) {
5719 dev_change_rx_flags(dev, IFF_ALLMULTI);
5720 dev_set_rx_mode(dev);
5721 if (notify)
5722 __dev_notify_flags(dev, old_flags,
5723 dev->gflags ^ old_gflags);
5724 }
5725 return 0;
5726 }
5727
5728 /**
5729 * dev_set_allmulti - update allmulti count on a device
5730 * @dev: device
5731 * @inc: modifier
5732 *
5733 * Add or remove reception of all multicast frames to a device. While the
5734 * count in the device remains above zero the interface remains listening
5735 * to all interfaces. Once it hits zero the device reverts back to normal
5736 * filtering operation. A negative @inc value is used to drop the counter
5737 * when releasing a resource needing all multicasts.
5738 * Return 0 if successful or a negative errno code on error.
5739 */
5740
5741 int dev_set_allmulti(struct net_device *dev, int inc)
5742 {
5743 return __dev_set_allmulti(dev, inc, true);
5744 }
5745 EXPORT_SYMBOL(dev_set_allmulti);
5746
5747 /*
5748 * Upload unicast and multicast address lists to device and
5749 * configure RX filtering. When the device doesn't support unicast
5750 * filtering it is put in promiscuous mode while unicast addresses
5751 * are present.
5752 */
5753 void __dev_set_rx_mode(struct net_device *dev)
5754 {
5755 const struct net_device_ops *ops = dev->netdev_ops;
5756
5757 /* dev_open will call this function so the list will stay sane. */
5758 if (!(dev->flags&IFF_UP))
5759 return;
5760
5761 if (!netif_device_present(dev))
5762 return;
5763
5764 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5765 /* Unicast addresses changes may only happen under the rtnl,
5766 * therefore calling __dev_set_promiscuity here is safe.
5767 */
5768 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5769 __dev_set_promiscuity(dev, 1, false);
5770 dev->uc_promisc = true;
5771 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5772 __dev_set_promiscuity(dev, -1, false);
5773 dev->uc_promisc = false;
5774 }
5775 }
5776
5777 if (ops->ndo_set_rx_mode)
5778 ops->ndo_set_rx_mode(dev);
5779 }
5780
5781 void dev_set_rx_mode(struct net_device *dev)
5782 {
5783 netif_addr_lock_bh(dev);
5784 __dev_set_rx_mode(dev);
5785 netif_addr_unlock_bh(dev);
5786 }
5787
5788 /**
5789 * dev_get_flags - get flags reported to userspace
5790 * @dev: device
5791 *
5792 * Get the combination of flag bits exported through APIs to userspace.
5793 */
5794 unsigned int dev_get_flags(const struct net_device *dev)
5795 {
5796 unsigned int flags;
5797
5798 flags = (dev->flags & ~(IFF_PROMISC |
5799 IFF_ALLMULTI |
5800 IFF_RUNNING |
5801 IFF_LOWER_UP |
5802 IFF_DORMANT)) |
5803 (dev->gflags & (IFF_PROMISC |
5804 IFF_ALLMULTI));
5805
5806 if (netif_running(dev)) {
5807 if (netif_oper_up(dev))
5808 flags |= IFF_RUNNING;
5809 if (netif_carrier_ok(dev))
5810 flags |= IFF_LOWER_UP;
5811 if (netif_dormant(dev))
5812 flags |= IFF_DORMANT;
5813 }
5814
5815 return flags;
5816 }
5817 EXPORT_SYMBOL(dev_get_flags);
5818
5819 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5820 {
5821 unsigned int old_flags = dev->flags;
5822 int ret;
5823
5824 ASSERT_RTNL();
5825
5826 /*
5827 * Set the flags on our device.
5828 */
5829
5830 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5831 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5832 IFF_AUTOMEDIA)) |
5833 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5834 IFF_ALLMULTI));
5835
5836 /*
5837 * Load in the correct multicast list now the flags have changed.
5838 */
5839
5840 if ((old_flags ^ flags) & IFF_MULTICAST)
5841 dev_change_rx_flags(dev, IFF_MULTICAST);
5842
5843 dev_set_rx_mode(dev);
5844
5845 /*
5846 * Have we downed the interface. We handle IFF_UP ourselves
5847 * according to user attempts to set it, rather than blindly
5848 * setting it.
5849 */
5850
5851 ret = 0;
5852 if ((old_flags ^ flags) & IFF_UP)
5853 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5854
5855 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5856 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5857 unsigned int old_flags = dev->flags;
5858
5859 dev->gflags ^= IFF_PROMISC;
5860
5861 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5862 if (dev->flags != old_flags)
5863 dev_set_rx_mode(dev);
5864 }
5865
5866 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5867 is important. Some (broken) drivers set IFF_PROMISC, when
5868 IFF_ALLMULTI is requested not asking us and not reporting.
5869 */
5870 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5871 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5872
5873 dev->gflags ^= IFF_ALLMULTI;
5874 __dev_set_allmulti(dev, inc, false);
5875 }
5876
5877 return ret;
5878 }
5879
5880 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5881 unsigned int gchanges)
5882 {
5883 unsigned int changes = dev->flags ^ old_flags;
5884
5885 if (gchanges)
5886 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5887
5888 if (changes & IFF_UP) {
5889 if (dev->flags & IFF_UP)
5890 call_netdevice_notifiers(NETDEV_UP, dev);
5891 else
5892 call_netdevice_notifiers(NETDEV_DOWN, dev);
5893 }
5894
5895 if (dev->flags & IFF_UP &&
5896 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5897 struct netdev_notifier_change_info change_info;
5898
5899 change_info.flags_changed = changes;
5900 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5901 &change_info.info);
5902 }
5903 }
5904
5905 /**
5906 * dev_change_flags - change device settings
5907 * @dev: device
5908 * @flags: device state flags
5909 *
5910 * Change settings on device based state flags. The flags are
5911 * in the userspace exported format.
5912 */
5913 int dev_change_flags(struct net_device *dev, unsigned int flags)
5914 {
5915 int ret;
5916 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5917
5918 ret = __dev_change_flags(dev, flags);
5919 if (ret < 0)
5920 return ret;
5921
5922 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5923 __dev_notify_flags(dev, old_flags, changes);
5924 return ret;
5925 }
5926 EXPORT_SYMBOL(dev_change_flags);
5927
5928 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5929 {
5930 const struct net_device_ops *ops = dev->netdev_ops;
5931
5932 if (ops->ndo_change_mtu)
5933 return ops->ndo_change_mtu(dev, new_mtu);
5934
5935 dev->mtu = new_mtu;
5936 return 0;
5937 }
5938
5939 /**
5940 * dev_set_mtu - Change maximum transfer unit
5941 * @dev: device
5942 * @new_mtu: new transfer unit
5943 *
5944 * Change the maximum transfer size of the network device.
5945 */
5946 int dev_set_mtu(struct net_device *dev, int new_mtu)
5947 {
5948 int err, orig_mtu;
5949
5950 if (new_mtu == dev->mtu)
5951 return 0;
5952
5953 /* MTU must be positive. */
5954 if (new_mtu < 0)
5955 return -EINVAL;
5956
5957 if (!netif_device_present(dev))
5958 return -ENODEV;
5959
5960 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5961 err = notifier_to_errno(err);
5962 if (err)
5963 return err;
5964
5965 orig_mtu = dev->mtu;
5966 err = __dev_set_mtu(dev, new_mtu);
5967
5968 if (!err) {
5969 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5970 err = notifier_to_errno(err);
5971 if (err) {
5972 /* setting mtu back and notifying everyone again,
5973 * so that they have a chance to revert changes.
5974 */
5975 __dev_set_mtu(dev, orig_mtu);
5976 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5977 }
5978 }
5979 return err;
5980 }
5981 EXPORT_SYMBOL(dev_set_mtu);
5982
5983 /**
5984 * dev_set_group - Change group this device belongs to
5985 * @dev: device
5986 * @new_group: group this device should belong to
5987 */
5988 void dev_set_group(struct net_device *dev, int new_group)
5989 {
5990 dev->group = new_group;
5991 }
5992 EXPORT_SYMBOL(dev_set_group);
5993
5994 /**
5995 * dev_set_mac_address - Change Media Access Control Address
5996 * @dev: device
5997 * @sa: new address
5998 *
5999 * Change the hardware (MAC) address of the device
6000 */
6001 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6002 {
6003 const struct net_device_ops *ops = dev->netdev_ops;
6004 int err;
6005
6006 if (!ops->ndo_set_mac_address)
6007 return -EOPNOTSUPP;
6008 if (sa->sa_family != dev->type)
6009 return -EINVAL;
6010 if (!netif_device_present(dev))
6011 return -ENODEV;
6012 err = ops->ndo_set_mac_address(dev, sa);
6013 if (err)
6014 return err;
6015 dev->addr_assign_type = NET_ADDR_SET;
6016 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6017 add_device_randomness(dev->dev_addr, dev->addr_len);
6018 return 0;
6019 }
6020 EXPORT_SYMBOL(dev_set_mac_address);
6021
6022 /**
6023 * dev_change_carrier - Change device carrier
6024 * @dev: device
6025 * @new_carrier: new value
6026 *
6027 * Change device carrier
6028 */
6029 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6030 {
6031 const struct net_device_ops *ops = dev->netdev_ops;
6032
6033 if (!ops->ndo_change_carrier)
6034 return -EOPNOTSUPP;
6035 if (!netif_device_present(dev))
6036 return -ENODEV;
6037 return ops->ndo_change_carrier(dev, new_carrier);
6038 }
6039 EXPORT_SYMBOL(dev_change_carrier);
6040
6041 /**
6042 * dev_get_phys_port_id - Get device physical port ID
6043 * @dev: device
6044 * @ppid: port ID
6045 *
6046 * Get device physical port ID
6047 */
6048 int dev_get_phys_port_id(struct net_device *dev,
6049 struct netdev_phys_item_id *ppid)
6050 {
6051 const struct net_device_ops *ops = dev->netdev_ops;
6052
6053 if (!ops->ndo_get_phys_port_id)
6054 return -EOPNOTSUPP;
6055 return ops->ndo_get_phys_port_id(dev, ppid);
6056 }
6057 EXPORT_SYMBOL(dev_get_phys_port_id);
6058
6059 /**
6060 * dev_get_phys_port_name - Get device physical port name
6061 * @dev: device
6062 * @name: port name
6063 *
6064 * Get device physical port name
6065 */
6066 int dev_get_phys_port_name(struct net_device *dev,
6067 char *name, size_t len)
6068 {
6069 const struct net_device_ops *ops = dev->netdev_ops;
6070
6071 if (!ops->ndo_get_phys_port_name)
6072 return -EOPNOTSUPP;
6073 return ops->ndo_get_phys_port_name(dev, name, len);
6074 }
6075 EXPORT_SYMBOL(dev_get_phys_port_name);
6076
6077 /**
6078 * dev_new_index - allocate an ifindex
6079 * @net: the applicable net namespace
6080 *
6081 * Returns a suitable unique value for a new device interface
6082 * number. The caller must hold the rtnl semaphore or the
6083 * dev_base_lock to be sure it remains unique.
6084 */
6085 static int dev_new_index(struct net *net)
6086 {
6087 int ifindex = net->ifindex;
6088 for (;;) {
6089 if (++ifindex <= 0)
6090 ifindex = 1;
6091 if (!__dev_get_by_index(net, ifindex))
6092 return net->ifindex = ifindex;
6093 }
6094 }
6095
6096 /* Delayed registration/unregisteration */
6097 static LIST_HEAD(net_todo_list);
6098 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6099
6100 static void net_set_todo(struct net_device *dev)
6101 {
6102 list_add_tail(&dev->todo_list, &net_todo_list);
6103 dev_net(dev)->dev_unreg_count++;
6104 }
6105
6106 static void rollback_registered_many(struct list_head *head)
6107 {
6108 struct net_device *dev, *tmp;
6109 LIST_HEAD(close_head);
6110
6111 BUG_ON(dev_boot_phase);
6112 ASSERT_RTNL();
6113
6114 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6115 /* Some devices call without registering
6116 * for initialization unwind. Remove those
6117 * devices and proceed with the remaining.
6118 */
6119 if (dev->reg_state == NETREG_UNINITIALIZED) {
6120 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6121 dev->name, dev);
6122
6123 WARN_ON(1);
6124 list_del(&dev->unreg_list);
6125 continue;
6126 }
6127 dev->dismantle = true;
6128 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6129 }
6130
6131 /* If device is running, close it first. */
6132 list_for_each_entry(dev, head, unreg_list)
6133 list_add_tail(&dev->close_list, &close_head);
6134 dev_close_many(&close_head, true);
6135
6136 list_for_each_entry(dev, head, unreg_list) {
6137 /* And unlink it from device chain. */
6138 unlist_netdevice(dev);
6139
6140 dev->reg_state = NETREG_UNREGISTERING;
6141 on_each_cpu(flush_backlog, dev, 1);
6142 }
6143
6144 synchronize_net();
6145
6146 list_for_each_entry(dev, head, unreg_list) {
6147 struct sk_buff *skb = NULL;
6148
6149 /* Shutdown queueing discipline. */
6150 dev_shutdown(dev);
6151
6152
6153 /* Notify protocols, that we are about to destroy
6154 this device. They should clean all the things.
6155 */
6156 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6157
6158 if (!dev->rtnl_link_ops ||
6159 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6160 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6161 GFP_KERNEL);
6162
6163 /*
6164 * Flush the unicast and multicast chains
6165 */
6166 dev_uc_flush(dev);
6167 dev_mc_flush(dev);
6168
6169 if (dev->netdev_ops->ndo_uninit)
6170 dev->netdev_ops->ndo_uninit(dev);
6171
6172 if (skb)
6173 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6174
6175 /* Notifier chain MUST detach us all upper devices. */
6176 WARN_ON(netdev_has_any_upper_dev(dev));
6177
6178 /* Remove entries from kobject tree */
6179 netdev_unregister_kobject(dev);
6180 #ifdef CONFIG_XPS
6181 /* Remove XPS queueing entries */
6182 netif_reset_xps_queues_gt(dev, 0);
6183 #endif
6184 }
6185
6186 synchronize_net();
6187
6188 list_for_each_entry(dev, head, unreg_list)
6189 dev_put(dev);
6190 }
6191
6192 static void rollback_registered(struct net_device *dev)
6193 {
6194 LIST_HEAD(single);
6195
6196 list_add(&dev->unreg_list, &single);
6197 rollback_registered_many(&single);
6198 list_del(&single);
6199 }
6200
6201 static netdev_features_t netdev_fix_features(struct net_device *dev,
6202 netdev_features_t features)
6203 {
6204 /* Fix illegal checksum combinations */
6205 if ((features & NETIF_F_HW_CSUM) &&
6206 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6207 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6208 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6209 }
6210
6211 /* TSO requires that SG is present as well. */
6212 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6213 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6214 features &= ~NETIF_F_ALL_TSO;
6215 }
6216
6217 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6218 !(features & NETIF_F_IP_CSUM)) {
6219 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6220 features &= ~NETIF_F_TSO;
6221 features &= ~NETIF_F_TSO_ECN;
6222 }
6223
6224 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6225 !(features & NETIF_F_IPV6_CSUM)) {
6226 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6227 features &= ~NETIF_F_TSO6;
6228 }
6229
6230 /* TSO ECN requires that TSO is present as well. */
6231 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6232 features &= ~NETIF_F_TSO_ECN;
6233
6234 /* Software GSO depends on SG. */
6235 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6236 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6237 features &= ~NETIF_F_GSO;
6238 }
6239
6240 /* UFO needs SG and checksumming */
6241 if (features & NETIF_F_UFO) {
6242 /* maybe split UFO into V4 and V6? */
6243 if (!((features & NETIF_F_GEN_CSUM) ||
6244 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6245 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6246 netdev_dbg(dev,
6247 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6248 features &= ~NETIF_F_UFO;
6249 }
6250
6251 if (!(features & NETIF_F_SG)) {
6252 netdev_dbg(dev,
6253 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6254 features &= ~NETIF_F_UFO;
6255 }
6256 }
6257
6258 #ifdef CONFIG_NET_RX_BUSY_POLL
6259 if (dev->netdev_ops->ndo_busy_poll)
6260 features |= NETIF_F_BUSY_POLL;
6261 else
6262 #endif
6263 features &= ~NETIF_F_BUSY_POLL;
6264
6265 return features;
6266 }
6267
6268 int __netdev_update_features(struct net_device *dev)
6269 {
6270 netdev_features_t features;
6271 int err = 0;
6272
6273 ASSERT_RTNL();
6274
6275 features = netdev_get_wanted_features(dev);
6276
6277 if (dev->netdev_ops->ndo_fix_features)
6278 features = dev->netdev_ops->ndo_fix_features(dev, features);
6279
6280 /* driver might be less strict about feature dependencies */
6281 features = netdev_fix_features(dev, features);
6282
6283 if (dev->features == features)
6284 return 0;
6285
6286 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6287 &dev->features, &features);
6288
6289 if (dev->netdev_ops->ndo_set_features)
6290 err = dev->netdev_ops->ndo_set_features(dev, features);
6291
6292 if (unlikely(err < 0)) {
6293 netdev_err(dev,
6294 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6295 err, &features, &dev->features);
6296 return -1;
6297 }
6298
6299 if (!err)
6300 dev->features = features;
6301
6302 return 1;
6303 }
6304
6305 /**
6306 * netdev_update_features - recalculate device features
6307 * @dev: the device to check
6308 *
6309 * Recalculate dev->features set and send notifications if it
6310 * has changed. Should be called after driver or hardware dependent
6311 * conditions might have changed that influence the features.
6312 */
6313 void netdev_update_features(struct net_device *dev)
6314 {
6315 if (__netdev_update_features(dev))
6316 netdev_features_change(dev);
6317 }
6318 EXPORT_SYMBOL(netdev_update_features);
6319
6320 /**
6321 * netdev_change_features - recalculate device features
6322 * @dev: the device to check
6323 *
6324 * Recalculate dev->features set and send notifications even
6325 * if they have not changed. Should be called instead of
6326 * netdev_update_features() if also dev->vlan_features might
6327 * have changed to allow the changes to be propagated to stacked
6328 * VLAN devices.
6329 */
6330 void netdev_change_features(struct net_device *dev)
6331 {
6332 __netdev_update_features(dev);
6333 netdev_features_change(dev);
6334 }
6335 EXPORT_SYMBOL(netdev_change_features);
6336
6337 /**
6338 * netif_stacked_transfer_operstate - transfer operstate
6339 * @rootdev: the root or lower level device to transfer state from
6340 * @dev: the device to transfer operstate to
6341 *
6342 * Transfer operational state from root to device. This is normally
6343 * called when a stacking relationship exists between the root
6344 * device and the device(a leaf device).
6345 */
6346 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6347 struct net_device *dev)
6348 {
6349 if (rootdev->operstate == IF_OPER_DORMANT)
6350 netif_dormant_on(dev);
6351 else
6352 netif_dormant_off(dev);
6353
6354 if (netif_carrier_ok(rootdev)) {
6355 if (!netif_carrier_ok(dev))
6356 netif_carrier_on(dev);
6357 } else {
6358 if (netif_carrier_ok(dev))
6359 netif_carrier_off(dev);
6360 }
6361 }
6362 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6363
6364 #ifdef CONFIG_SYSFS
6365 static int netif_alloc_rx_queues(struct net_device *dev)
6366 {
6367 unsigned int i, count = dev->num_rx_queues;
6368 struct netdev_rx_queue *rx;
6369 size_t sz = count * sizeof(*rx);
6370
6371 BUG_ON(count < 1);
6372
6373 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6374 if (!rx) {
6375 rx = vzalloc(sz);
6376 if (!rx)
6377 return -ENOMEM;
6378 }
6379 dev->_rx = rx;
6380
6381 for (i = 0; i < count; i++)
6382 rx[i].dev = dev;
6383 return 0;
6384 }
6385 #endif
6386
6387 static void netdev_init_one_queue(struct net_device *dev,
6388 struct netdev_queue *queue, void *_unused)
6389 {
6390 /* Initialize queue lock */
6391 spin_lock_init(&queue->_xmit_lock);
6392 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6393 queue->xmit_lock_owner = -1;
6394 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6395 queue->dev = dev;
6396 #ifdef CONFIG_BQL
6397 dql_init(&queue->dql, HZ);
6398 #endif
6399 }
6400
6401 static void netif_free_tx_queues(struct net_device *dev)
6402 {
6403 kvfree(dev->_tx);
6404 }
6405
6406 static int netif_alloc_netdev_queues(struct net_device *dev)
6407 {
6408 unsigned int count = dev->num_tx_queues;
6409 struct netdev_queue *tx;
6410 size_t sz = count * sizeof(*tx);
6411
6412 if (count < 1 || count > 0xffff)
6413 return -EINVAL;
6414
6415 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6416 if (!tx) {
6417 tx = vzalloc(sz);
6418 if (!tx)
6419 return -ENOMEM;
6420 }
6421 dev->_tx = tx;
6422
6423 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6424 spin_lock_init(&dev->tx_global_lock);
6425
6426 return 0;
6427 }
6428
6429 void netif_tx_stop_all_queues(struct net_device *dev)
6430 {
6431 unsigned int i;
6432
6433 for (i = 0; i < dev->num_tx_queues; i++) {
6434 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6435 netif_tx_stop_queue(txq);
6436 }
6437 }
6438 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6439
6440 /**
6441 * register_netdevice - register a network device
6442 * @dev: device to register
6443 *
6444 * Take a completed network device structure and add it to the kernel
6445 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6446 * chain. 0 is returned on success. A negative errno code is returned
6447 * on a failure to set up the device, or if the name is a duplicate.
6448 *
6449 * Callers must hold the rtnl semaphore. You may want
6450 * register_netdev() instead of this.
6451 *
6452 * BUGS:
6453 * The locking appears insufficient to guarantee two parallel registers
6454 * will not get the same name.
6455 */
6456
6457 int register_netdevice(struct net_device *dev)
6458 {
6459 int ret;
6460 struct net *net = dev_net(dev);
6461
6462 BUG_ON(dev_boot_phase);
6463 ASSERT_RTNL();
6464
6465 might_sleep();
6466
6467 /* When net_device's are persistent, this will be fatal. */
6468 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6469 BUG_ON(!net);
6470
6471 spin_lock_init(&dev->addr_list_lock);
6472 netdev_set_addr_lockdep_class(dev);
6473
6474 ret = dev_get_valid_name(net, dev, dev->name);
6475 if (ret < 0)
6476 goto out;
6477
6478 /* Init, if this function is available */
6479 if (dev->netdev_ops->ndo_init) {
6480 ret = dev->netdev_ops->ndo_init(dev);
6481 if (ret) {
6482 if (ret > 0)
6483 ret = -EIO;
6484 goto out;
6485 }
6486 }
6487
6488 if (((dev->hw_features | dev->features) &
6489 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6490 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6491 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6492 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6493 ret = -EINVAL;
6494 goto err_uninit;
6495 }
6496
6497 ret = -EBUSY;
6498 if (!dev->ifindex)
6499 dev->ifindex = dev_new_index(net);
6500 else if (__dev_get_by_index(net, dev->ifindex))
6501 goto err_uninit;
6502
6503 /* Transfer changeable features to wanted_features and enable
6504 * software offloads (GSO and GRO).
6505 */
6506 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6507 dev->features |= NETIF_F_SOFT_FEATURES;
6508 dev->wanted_features = dev->features & dev->hw_features;
6509
6510 if (!(dev->flags & IFF_LOOPBACK)) {
6511 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6512 }
6513
6514 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6515 */
6516 dev->vlan_features |= NETIF_F_HIGHDMA;
6517
6518 /* Make NETIF_F_SG inheritable to tunnel devices.
6519 */
6520 dev->hw_enc_features |= NETIF_F_SG;
6521
6522 /* Make NETIF_F_SG inheritable to MPLS.
6523 */
6524 dev->mpls_features |= NETIF_F_SG;
6525
6526 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6527 ret = notifier_to_errno(ret);
6528 if (ret)
6529 goto err_uninit;
6530
6531 ret = netdev_register_kobject(dev);
6532 if (ret)
6533 goto err_uninit;
6534 dev->reg_state = NETREG_REGISTERED;
6535
6536 __netdev_update_features(dev);
6537
6538 /*
6539 * Default initial state at registry is that the
6540 * device is present.
6541 */
6542
6543 set_bit(__LINK_STATE_PRESENT, &dev->state);
6544
6545 linkwatch_init_dev(dev);
6546
6547 dev_init_scheduler(dev);
6548 dev_hold(dev);
6549 list_netdevice(dev);
6550 add_device_randomness(dev->dev_addr, dev->addr_len);
6551
6552 /* If the device has permanent device address, driver should
6553 * set dev_addr and also addr_assign_type should be set to
6554 * NET_ADDR_PERM (default value).
6555 */
6556 if (dev->addr_assign_type == NET_ADDR_PERM)
6557 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6558
6559 /* Notify protocols, that a new device appeared. */
6560 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6561 ret = notifier_to_errno(ret);
6562 if (ret) {
6563 rollback_registered(dev);
6564 dev->reg_state = NETREG_UNREGISTERED;
6565 }
6566 /*
6567 * Prevent userspace races by waiting until the network
6568 * device is fully setup before sending notifications.
6569 */
6570 if (!dev->rtnl_link_ops ||
6571 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6572 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6573
6574 out:
6575 return ret;
6576
6577 err_uninit:
6578 if (dev->netdev_ops->ndo_uninit)
6579 dev->netdev_ops->ndo_uninit(dev);
6580 goto out;
6581 }
6582 EXPORT_SYMBOL(register_netdevice);
6583
6584 /**
6585 * init_dummy_netdev - init a dummy network device for NAPI
6586 * @dev: device to init
6587 *
6588 * This takes a network device structure and initialize the minimum
6589 * amount of fields so it can be used to schedule NAPI polls without
6590 * registering a full blown interface. This is to be used by drivers
6591 * that need to tie several hardware interfaces to a single NAPI
6592 * poll scheduler due to HW limitations.
6593 */
6594 int init_dummy_netdev(struct net_device *dev)
6595 {
6596 /* Clear everything. Note we don't initialize spinlocks
6597 * are they aren't supposed to be taken by any of the
6598 * NAPI code and this dummy netdev is supposed to be
6599 * only ever used for NAPI polls
6600 */
6601 memset(dev, 0, sizeof(struct net_device));
6602
6603 /* make sure we BUG if trying to hit standard
6604 * register/unregister code path
6605 */
6606 dev->reg_state = NETREG_DUMMY;
6607
6608 /* NAPI wants this */
6609 INIT_LIST_HEAD(&dev->napi_list);
6610
6611 /* a dummy interface is started by default */
6612 set_bit(__LINK_STATE_PRESENT, &dev->state);
6613 set_bit(__LINK_STATE_START, &dev->state);
6614
6615 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6616 * because users of this 'device' dont need to change
6617 * its refcount.
6618 */
6619
6620 return 0;
6621 }
6622 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6623
6624
6625 /**
6626 * register_netdev - register a network device
6627 * @dev: device to register
6628 *
6629 * Take a completed network device structure and add it to the kernel
6630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6631 * chain. 0 is returned on success. A negative errno code is returned
6632 * on a failure to set up the device, or if the name is a duplicate.
6633 *
6634 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6635 * and expands the device name if you passed a format string to
6636 * alloc_netdev.
6637 */
6638 int register_netdev(struct net_device *dev)
6639 {
6640 int err;
6641
6642 rtnl_lock();
6643 err = register_netdevice(dev);
6644 rtnl_unlock();
6645 return err;
6646 }
6647 EXPORT_SYMBOL(register_netdev);
6648
6649 int netdev_refcnt_read(const struct net_device *dev)
6650 {
6651 int i, refcnt = 0;
6652
6653 for_each_possible_cpu(i)
6654 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6655 return refcnt;
6656 }
6657 EXPORT_SYMBOL(netdev_refcnt_read);
6658
6659 /**
6660 * netdev_wait_allrefs - wait until all references are gone.
6661 * @dev: target net_device
6662 *
6663 * This is called when unregistering network devices.
6664 *
6665 * Any protocol or device that holds a reference should register
6666 * for netdevice notification, and cleanup and put back the
6667 * reference if they receive an UNREGISTER event.
6668 * We can get stuck here if buggy protocols don't correctly
6669 * call dev_put.
6670 */
6671 static void netdev_wait_allrefs(struct net_device *dev)
6672 {
6673 unsigned long rebroadcast_time, warning_time;
6674 int refcnt;
6675
6676 linkwatch_forget_dev(dev);
6677
6678 rebroadcast_time = warning_time = jiffies;
6679 refcnt = netdev_refcnt_read(dev);
6680
6681 while (refcnt != 0) {
6682 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6683 rtnl_lock();
6684
6685 /* Rebroadcast unregister notification */
6686 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6687
6688 __rtnl_unlock();
6689 rcu_barrier();
6690 rtnl_lock();
6691
6692 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6694 &dev->state)) {
6695 /* We must not have linkwatch events
6696 * pending on unregister. If this
6697 * happens, we simply run the queue
6698 * unscheduled, resulting in a noop
6699 * for this device.
6700 */
6701 linkwatch_run_queue();
6702 }
6703
6704 __rtnl_unlock();
6705
6706 rebroadcast_time = jiffies;
6707 }
6708
6709 msleep(250);
6710
6711 refcnt = netdev_refcnt_read(dev);
6712
6713 if (time_after(jiffies, warning_time + 10 * HZ)) {
6714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6715 dev->name, refcnt);
6716 warning_time = jiffies;
6717 }
6718 }
6719 }
6720
6721 /* The sequence is:
6722 *
6723 * rtnl_lock();
6724 * ...
6725 * register_netdevice(x1);
6726 * register_netdevice(x2);
6727 * ...
6728 * unregister_netdevice(y1);
6729 * unregister_netdevice(y2);
6730 * ...
6731 * rtnl_unlock();
6732 * free_netdev(y1);
6733 * free_netdev(y2);
6734 *
6735 * We are invoked by rtnl_unlock().
6736 * This allows us to deal with problems:
6737 * 1) We can delete sysfs objects which invoke hotplug
6738 * without deadlocking with linkwatch via keventd.
6739 * 2) Since we run with the RTNL semaphore not held, we can sleep
6740 * safely in order to wait for the netdev refcnt to drop to zero.
6741 *
6742 * We must not return until all unregister events added during
6743 * the interval the lock was held have been completed.
6744 */
6745 void netdev_run_todo(void)
6746 {
6747 struct list_head list;
6748
6749 /* Snapshot list, allow later requests */
6750 list_replace_init(&net_todo_list, &list);
6751
6752 __rtnl_unlock();
6753
6754
6755 /* Wait for rcu callbacks to finish before next phase */
6756 if (!list_empty(&list))
6757 rcu_barrier();
6758
6759 while (!list_empty(&list)) {
6760 struct net_device *dev
6761 = list_first_entry(&list, struct net_device, todo_list);
6762 list_del(&dev->todo_list);
6763
6764 rtnl_lock();
6765 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6766 __rtnl_unlock();
6767
6768 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6769 pr_err("network todo '%s' but state %d\n",
6770 dev->name, dev->reg_state);
6771 dump_stack();
6772 continue;
6773 }
6774
6775 dev->reg_state = NETREG_UNREGISTERED;
6776
6777 netdev_wait_allrefs(dev);
6778
6779 /* paranoia */
6780 BUG_ON(netdev_refcnt_read(dev));
6781 BUG_ON(!list_empty(&dev->ptype_all));
6782 BUG_ON(!list_empty(&dev->ptype_specific));
6783 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6784 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6785 WARN_ON(dev->dn_ptr);
6786
6787 if (dev->destructor)
6788 dev->destructor(dev);
6789
6790 /* Report a network device has been unregistered */
6791 rtnl_lock();
6792 dev_net(dev)->dev_unreg_count--;
6793 __rtnl_unlock();
6794 wake_up(&netdev_unregistering_wq);
6795
6796 /* Free network device */
6797 kobject_put(&dev->dev.kobj);
6798 }
6799 }
6800
6801 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6802 * fields in the same order, with only the type differing.
6803 */
6804 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6805 const struct net_device_stats *netdev_stats)
6806 {
6807 #if BITS_PER_LONG == 64
6808 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6809 memcpy(stats64, netdev_stats, sizeof(*stats64));
6810 #else
6811 size_t i, n = sizeof(*stats64) / sizeof(u64);
6812 const unsigned long *src = (const unsigned long *)netdev_stats;
6813 u64 *dst = (u64 *)stats64;
6814
6815 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6816 sizeof(*stats64) / sizeof(u64));
6817 for (i = 0; i < n; i++)
6818 dst[i] = src[i];
6819 #endif
6820 }
6821 EXPORT_SYMBOL(netdev_stats_to_stats64);
6822
6823 /**
6824 * dev_get_stats - get network device statistics
6825 * @dev: device to get statistics from
6826 * @storage: place to store stats
6827 *
6828 * Get network statistics from device. Return @storage.
6829 * The device driver may provide its own method by setting
6830 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6831 * otherwise the internal statistics structure is used.
6832 */
6833 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6834 struct rtnl_link_stats64 *storage)
6835 {
6836 const struct net_device_ops *ops = dev->netdev_ops;
6837
6838 if (ops->ndo_get_stats64) {
6839 memset(storage, 0, sizeof(*storage));
6840 ops->ndo_get_stats64(dev, storage);
6841 } else if (ops->ndo_get_stats) {
6842 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6843 } else {
6844 netdev_stats_to_stats64(storage, &dev->stats);
6845 }
6846 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6847 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6848 return storage;
6849 }
6850 EXPORT_SYMBOL(dev_get_stats);
6851
6852 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6853 {
6854 struct netdev_queue *queue = dev_ingress_queue(dev);
6855
6856 #ifdef CONFIG_NET_CLS_ACT
6857 if (queue)
6858 return queue;
6859 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6860 if (!queue)
6861 return NULL;
6862 netdev_init_one_queue(dev, queue, NULL);
6863 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6864 queue->qdisc_sleeping = &noop_qdisc;
6865 rcu_assign_pointer(dev->ingress_queue, queue);
6866 #endif
6867 return queue;
6868 }
6869
6870 static const struct ethtool_ops default_ethtool_ops;
6871
6872 void netdev_set_default_ethtool_ops(struct net_device *dev,
6873 const struct ethtool_ops *ops)
6874 {
6875 if (dev->ethtool_ops == &default_ethtool_ops)
6876 dev->ethtool_ops = ops;
6877 }
6878 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6879
6880 void netdev_freemem(struct net_device *dev)
6881 {
6882 char *addr = (char *)dev - dev->padded;
6883
6884 kvfree(addr);
6885 }
6886
6887 /**
6888 * alloc_netdev_mqs - allocate network device
6889 * @sizeof_priv: size of private data to allocate space for
6890 * @name: device name format string
6891 * @name_assign_type: origin of device name
6892 * @setup: callback to initialize device
6893 * @txqs: the number of TX subqueues to allocate
6894 * @rxqs: the number of RX subqueues to allocate
6895 *
6896 * Allocates a struct net_device with private data area for driver use
6897 * and performs basic initialization. Also allocates subqueue structs
6898 * for each queue on the device.
6899 */
6900 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6901 unsigned char name_assign_type,
6902 void (*setup)(struct net_device *),
6903 unsigned int txqs, unsigned int rxqs)
6904 {
6905 struct net_device *dev;
6906 size_t alloc_size;
6907 struct net_device *p;
6908
6909 BUG_ON(strlen(name) >= sizeof(dev->name));
6910
6911 if (txqs < 1) {
6912 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6913 return NULL;
6914 }
6915
6916 #ifdef CONFIG_SYSFS
6917 if (rxqs < 1) {
6918 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6919 return NULL;
6920 }
6921 #endif
6922
6923 alloc_size = sizeof(struct net_device);
6924 if (sizeof_priv) {
6925 /* ensure 32-byte alignment of private area */
6926 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6927 alloc_size += sizeof_priv;
6928 }
6929 /* ensure 32-byte alignment of whole construct */
6930 alloc_size += NETDEV_ALIGN - 1;
6931
6932 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6933 if (!p)
6934 p = vzalloc(alloc_size);
6935 if (!p)
6936 return NULL;
6937
6938 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6939 dev->padded = (char *)dev - (char *)p;
6940
6941 dev->pcpu_refcnt = alloc_percpu(int);
6942 if (!dev->pcpu_refcnt)
6943 goto free_dev;
6944
6945 if (dev_addr_init(dev))
6946 goto free_pcpu;
6947
6948 dev_mc_init(dev);
6949 dev_uc_init(dev);
6950
6951 dev_net_set(dev, &init_net);
6952
6953 dev->gso_max_size = GSO_MAX_SIZE;
6954 dev->gso_max_segs = GSO_MAX_SEGS;
6955 dev->gso_min_segs = 0;
6956
6957 INIT_LIST_HEAD(&dev->napi_list);
6958 INIT_LIST_HEAD(&dev->unreg_list);
6959 INIT_LIST_HEAD(&dev->close_list);
6960 INIT_LIST_HEAD(&dev->link_watch_list);
6961 INIT_LIST_HEAD(&dev->adj_list.upper);
6962 INIT_LIST_HEAD(&dev->adj_list.lower);
6963 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6964 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6965 INIT_LIST_HEAD(&dev->ptype_all);
6966 INIT_LIST_HEAD(&dev->ptype_specific);
6967 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6968 setup(dev);
6969
6970 dev->num_tx_queues = txqs;
6971 dev->real_num_tx_queues = txqs;
6972 if (netif_alloc_netdev_queues(dev))
6973 goto free_all;
6974
6975 #ifdef CONFIG_SYSFS
6976 dev->num_rx_queues = rxqs;
6977 dev->real_num_rx_queues = rxqs;
6978 if (netif_alloc_rx_queues(dev))
6979 goto free_all;
6980 #endif
6981
6982 strcpy(dev->name, name);
6983 dev->name_assign_type = name_assign_type;
6984 dev->group = INIT_NETDEV_GROUP;
6985 if (!dev->ethtool_ops)
6986 dev->ethtool_ops = &default_ethtool_ops;
6987
6988 nf_hook_ingress_init(dev);
6989
6990 return dev;
6991
6992 free_all:
6993 free_netdev(dev);
6994 return NULL;
6995
6996 free_pcpu:
6997 free_percpu(dev->pcpu_refcnt);
6998 free_dev:
6999 netdev_freemem(dev);
7000 return NULL;
7001 }
7002 EXPORT_SYMBOL(alloc_netdev_mqs);
7003
7004 /**
7005 * free_netdev - free network device
7006 * @dev: device
7007 *
7008 * This function does the last stage of destroying an allocated device
7009 * interface. The reference to the device object is released.
7010 * If this is the last reference then it will be freed.
7011 */
7012 void free_netdev(struct net_device *dev)
7013 {
7014 struct napi_struct *p, *n;
7015
7016 netif_free_tx_queues(dev);
7017 #ifdef CONFIG_SYSFS
7018 kvfree(dev->_rx);
7019 #endif
7020
7021 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7022
7023 /* Flush device addresses */
7024 dev_addr_flush(dev);
7025
7026 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7027 netif_napi_del(p);
7028
7029 free_percpu(dev->pcpu_refcnt);
7030 dev->pcpu_refcnt = NULL;
7031
7032 /* Compatibility with error handling in drivers */
7033 if (dev->reg_state == NETREG_UNINITIALIZED) {
7034 netdev_freemem(dev);
7035 return;
7036 }
7037
7038 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7039 dev->reg_state = NETREG_RELEASED;
7040
7041 /* will free via device release */
7042 put_device(&dev->dev);
7043 }
7044 EXPORT_SYMBOL(free_netdev);
7045
7046 /**
7047 * synchronize_net - Synchronize with packet receive processing
7048 *
7049 * Wait for packets currently being received to be done.
7050 * Does not block later packets from starting.
7051 */
7052 void synchronize_net(void)
7053 {
7054 might_sleep();
7055 if (rtnl_is_locked())
7056 synchronize_rcu_expedited();
7057 else
7058 synchronize_rcu();
7059 }
7060 EXPORT_SYMBOL(synchronize_net);
7061
7062 /**
7063 * unregister_netdevice_queue - remove device from the kernel
7064 * @dev: device
7065 * @head: list
7066 *
7067 * This function shuts down a device interface and removes it
7068 * from the kernel tables.
7069 * If head not NULL, device is queued to be unregistered later.
7070 *
7071 * Callers must hold the rtnl semaphore. You may want
7072 * unregister_netdev() instead of this.
7073 */
7074
7075 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7076 {
7077 ASSERT_RTNL();
7078
7079 if (head) {
7080 list_move_tail(&dev->unreg_list, head);
7081 } else {
7082 rollback_registered(dev);
7083 /* Finish processing unregister after unlock */
7084 net_set_todo(dev);
7085 }
7086 }
7087 EXPORT_SYMBOL(unregister_netdevice_queue);
7088
7089 /**
7090 * unregister_netdevice_many - unregister many devices
7091 * @head: list of devices
7092 *
7093 * Note: As most callers use a stack allocated list_head,
7094 * we force a list_del() to make sure stack wont be corrupted later.
7095 */
7096 void unregister_netdevice_many(struct list_head *head)
7097 {
7098 struct net_device *dev;
7099
7100 if (!list_empty(head)) {
7101 rollback_registered_many(head);
7102 list_for_each_entry(dev, head, unreg_list)
7103 net_set_todo(dev);
7104 list_del(head);
7105 }
7106 }
7107 EXPORT_SYMBOL(unregister_netdevice_many);
7108
7109 /**
7110 * unregister_netdev - remove device from the kernel
7111 * @dev: device
7112 *
7113 * This function shuts down a device interface and removes it
7114 * from the kernel tables.
7115 *
7116 * This is just a wrapper for unregister_netdevice that takes
7117 * the rtnl semaphore. In general you want to use this and not
7118 * unregister_netdevice.
7119 */
7120 void unregister_netdev(struct net_device *dev)
7121 {
7122 rtnl_lock();
7123 unregister_netdevice(dev);
7124 rtnl_unlock();
7125 }
7126 EXPORT_SYMBOL(unregister_netdev);
7127
7128 /**
7129 * dev_change_net_namespace - move device to different nethost namespace
7130 * @dev: device
7131 * @net: network namespace
7132 * @pat: If not NULL name pattern to try if the current device name
7133 * is already taken in the destination network namespace.
7134 *
7135 * This function shuts down a device interface and moves it
7136 * to a new network namespace. On success 0 is returned, on
7137 * a failure a netagive errno code is returned.
7138 *
7139 * Callers must hold the rtnl semaphore.
7140 */
7141
7142 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7143 {
7144 int err;
7145
7146 ASSERT_RTNL();
7147
7148 /* Don't allow namespace local devices to be moved. */
7149 err = -EINVAL;
7150 if (dev->features & NETIF_F_NETNS_LOCAL)
7151 goto out;
7152
7153 /* Ensure the device has been registrered */
7154 if (dev->reg_state != NETREG_REGISTERED)
7155 goto out;
7156
7157 /* Get out if there is nothing todo */
7158 err = 0;
7159 if (net_eq(dev_net(dev), net))
7160 goto out;
7161
7162 /* Pick the destination device name, and ensure
7163 * we can use it in the destination network namespace.
7164 */
7165 err = -EEXIST;
7166 if (__dev_get_by_name(net, dev->name)) {
7167 /* We get here if we can't use the current device name */
7168 if (!pat)
7169 goto out;
7170 if (dev_get_valid_name(net, dev, pat) < 0)
7171 goto out;
7172 }
7173
7174 /*
7175 * And now a mini version of register_netdevice unregister_netdevice.
7176 */
7177
7178 /* If device is running close it first. */
7179 dev_close(dev);
7180
7181 /* And unlink it from device chain */
7182 err = -ENODEV;
7183 unlist_netdevice(dev);
7184
7185 synchronize_net();
7186
7187 /* Shutdown queueing discipline. */
7188 dev_shutdown(dev);
7189
7190 /* Notify protocols, that we are about to destroy
7191 this device. They should clean all the things.
7192
7193 Note that dev->reg_state stays at NETREG_REGISTERED.
7194 This is wanted because this way 8021q and macvlan know
7195 the device is just moving and can keep their slaves up.
7196 */
7197 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7198 rcu_barrier();
7199 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7200 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7201
7202 /*
7203 * Flush the unicast and multicast chains
7204 */
7205 dev_uc_flush(dev);
7206 dev_mc_flush(dev);
7207
7208 /* Send a netdev-removed uevent to the old namespace */
7209 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7210 netdev_adjacent_del_links(dev);
7211
7212 /* Actually switch the network namespace */
7213 dev_net_set(dev, net);
7214
7215 /* If there is an ifindex conflict assign a new one */
7216 if (__dev_get_by_index(net, dev->ifindex))
7217 dev->ifindex = dev_new_index(net);
7218
7219 /* Send a netdev-add uevent to the new namespace */
7220 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7221 netdev_adjacent_add_links(dev);
7222
7223 /* Fixup kobjects */
7224 err = device_rename(&dev->dev, dev->name);
7225 WARN_ON(err);
7226
7227 /* Add the device back in the hashes */
7228 list_netdevice(dev);
7229
7230 /* Notify protocols, that a new device appeared. */
7231 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7232
7233 /*
7234 * Prevent userspace races by waiting until the network
7235 * device is fully setup before sending notifications.
7236 */
7237 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7238
7239 synchronize_net();
7240 err = 0;
7241 out:
7242 return err;
7243 }
7244 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7245
7246 static int dev_cpu_callback(struct notifier_block *nfb,
7247 unsigned long action,
7248 void *ocpu)
7249 {
7250 struct sk_buff **list_skb;
7251 struct sk_buff *skb;
7252 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7253 struct softnet_data *sd, *oldsd;
7254
7255 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7256 return NOTIFY_OK;
7257
7258 local_irq_disable();
7259 cpu = smp_processor_id();
7260 sd = &per_cpu(softnet_data, cpu);
7261 oldsd = &per_cpu(softnet_data, oldcpu);
7262
7263 /* Find end of our completion_queue. */
7264 list_skb = &sd->completion_queue;
7265 while (*list_skb)
7266 list_skb = &(*list_skb)->next;
7267 /* Append completion queue from offline CPU. */
7268 *list_skb = oldsd->completion_queue;
7269 oldsd->completion_queue = NULL;
7270
7271 /* Append output queue from offline CPU. */
7272 if (oldsd->output_queue) {
7273 *sd->output_queue_tailp = oldsd->output_queue;
7274 sd->output_queue_tailp = oldsd->output_queue_tailp;
7275 oldsd->output_queue = NULL;
7276 oldsd->output_queue_tailp = &oldsd->output_queue;
7277 }
7278 /* Append NAPI poll list from offline CPU, with one exception :
7279 * process_backlog() must be called by cpu owning percpu backlog.
7280 * We properly handle process_queue & input_pkt_queue later.
7281 */
7282 while (!list_empty(&oldsd->poll_list)) {
7283 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7284 struct napi_struct,
7285 poll_list);
7286
7287 list_del_init(&napi->poll_list);
7288 if (napi->poll == process_backlog)
7289 napi->state = 0;
7290 else
7291 ____napi_schedule(sd, napi);
7292 }
7293
7294 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7295 local_irq_enable();
7296
7297 /* Process offline CPU's input_pkt_queue */
7298 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7299 netif_rx_ni(skb);
7300 input_queue_head_incr(oldsd);
7301 }
7302 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7303 netif_rx_ni(skb);
7304 input_queue_head_incr(oldsd);
7305 }
7306
7307 return NOTIFY_OK;
7308 }
7309
7310
7311 /**
7312 * netdev_increment_features - increment feature set by one
7313 * @all: current feature set
7314 * @one: new feature set
7315 * @mask: mask feature set
7316 *
7317 * Computes a new feature set after adding a device with feature set
7318 * @one to the master device with current feature set @all. Will not
7319 * enable anything that is off in @mask. Returns the new feature set.
7320 */
7321 netdev_features_t netdev_increment_features(netdev_features_t all,
7322 netdev_features_t one, netdev_features_t mask)
7323 {
7324 if (mask & NETIF_F_GEN_CSUM)
7325 mask |= NETIF_F_ALL_CSUM;
7326 mask |= NETIF_F_VLAN_CHALLENGED;
7327
7328 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7329 all &= one | ~NETIF_F_ALL_FOR_ALL;
7330
7331 /* If one device supports hw checksumming, set for all. */
7332 if (all & NETIF_F_GEN_CSUM)
7333 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7334
7335 return all;
7336 }
7337 EXPORT_SYMBOL(netdev_increment_features);
7338
7339 static struct hlist_head * __net_init netdev_create_hash(void)
7340 {
7341 int i;
7342 struct hlist_head *hash;
7343
7344 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7345 if (hash != NULL)
7346 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7347 INIT_HLIST_HEAD(&hash[i]);
7348
7349 return hash;
7350 }
7351
7352 /* Initialize per network namespace state */
7353 static int __net_init netdev_init(struct net *net)
7354 {
7355 if (net != &init_net)
7356 INIT_LIST_HEAD(&net->dev_base_head);
7357
7358 net->dev_name_head = netdev_create_hash();
7359 if (net->dev_name_head == NULL)
7360 goto err_name;
7361
7362 net->dev_index_head = netdev_create_hash();
7363 if (net->dev_index_head == NULL)
7364 goto err_idx;
7365
7366 return 0;
7367
7368 err_idx:
7369 kfree(net->dev_name_head);
7370 err_name:
7371 return -ENOMEM;
7372 }
7373
7374 /**
7375 * netdev_drivername - network driver for the device
7376 * @dev: network device
7377 *
7378 * Determine network driver for device.
7379 */
7380 const char *netdev_drivername(const struct net_device *dev)
7381 {
7382 const struct device_driver *driver;
7383 const struct device *parent;
7384 const char *empty = "";
7385
7386 parent = dev->dev.parent;
7387 if (!parent)
7388 return empty;
7389
7390 driver = parent->driver;
7391 if (driver && driver->name)
7392 return driver->name;
7393 return empty;
7394 }
7395
7396 static void __netdev_printk(const char *level, const struct net_device *dev,
7397 struct va_format *vaf)
7398 {
7399 if (dev && dev->dev.parent) {
7400 dev_printk_emit(level[1] - '0',
7401 dev->dev.parent,
7402 "%s %s %s%s: %pV",
7403 dev_driver_string(dev->dev.parent),
7404 dev_name(dev->dev.parent),
7405 netdev_name(dev), netdev_reg_state(dev),
7406 vaf);
7407 } else if (dev) {
7408 printk("%s%s%s: %pV",
7409 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7410 } else {
7411 printk("%s(NULL net_device): %pV", level, vaf);
7412 }
7413 }
7414
7415 void netdev_printk(const char *level, const struct net_device *dev,
7416 const char *format, ...)
7417 {
7418 struct va_format vaf;
7419 va_list args;
7420
7421 va_start(args, format);
7422
7423 vaf.fmt = format;
7424 vaf.va = &args;
7425
7426 __netdev_printk(level, dev, &vaf);
7427
7428 va_end(args);
7429 }
7430 EXPORT_SYMBOL(netdev_printk);
7431
7432 #define define_netdev_printk_level(func, level) \
7433 void func(const struct net_device *dev, const char *fmt, ...) \
7434 { \
7435 struct va_format vaf; \
7436 va_list args; \
7437 \
7438 va_start(args, fmt); \
7439 \
7440 vaf.fmt = fmt; \
7441 vaf.va = &args; \
7442 \
7443 __netdev_printk(level, dev, &vaf); \
7444 \
7445 va_end(args); \
7446 } \
7447 EXPORT_SYMBOL(func);
7448
7449 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7450 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7451 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7452 define_netdev_printk_level(netdev_err, KERN_ERR);
7453 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7454 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7455 define_netdev_printk_level(netdev_info, KERN_INFO);
7456
7457 static void __net_exit netdev_exit(struct net *net)
7458 {
7459 kfree(net->dev_name_head);
7460 kfree(net->dev_index_head);
7461 }
7462
7463 static struct pernet_operations __net_initdata netdev_net_ops = {
7464 .init = netdev_init,
7465 .exit = netdev_exit,
7466 };
7467
7468 static void __net_exit default_device_exit(struct net *net)
7469 {
7470 struct net_device *dev, *aux;
7471 /*
7472 * Push all migratable network devices back to the
7473 * initial network namespace
7474 */
7475 rtnl_lock();
7476 for_each_netdev_safe(net, dev, aux) {
7477 int err;
7478 char fb_name[IFNAMSIZ];
7479
7480 /* Ignore unmoveable devices (i.e. loopback) */
7481 if (dev->features & NETIF_F_NETNS_LOCAL)
7482 continue;
7483
7484 /* Leave virtual devices for the generic cleanup */
7485 if (dev->rtnl_link_ops)
7486 continue;
7487
7488 /* Push remaining network devices to init_net */
7489 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7490 err = dev_change_net_namespace(dev, &init_net, fb_name);
7491 if (err) {
7492 pr_emerg("%s: failed to move %s to init_net: %d\n",
7493 __func__, dev->name, err);
7494 BUG();
7495 }
7496 }
7497 rtnl_unlock();
7498 }
7499
7500 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7501 {
7502 /* Return with the rtnl_lock held when there are no network
7503 * devices unregistering in any network namespace in net_list.
7504 */
7505 struct net *net;
7506 bool unregistering;
7507 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7508
7509 add_wait_queue(&netdev_unregistering_wq, &wait);
7510 for (;;) {
7511 unregistering = false;
7512 rtnl_lock();
7513 list_for_each_entry(net, net_list, exit_list) {
7514 if (net->dev_unreg_count > 0) {
7515 unregistering = true;
7516 break;
7517 }
7518 }
7519 if (!unregistering)
7520 break;
7521 __rtnl_unlock();
7522
7523 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7524 }
7525 remove_wait_queue(&netdev_unregistering_wq, &wait);
7526 }
7527
7528 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7529 {
7530 /* At exit all network devices most be removed from a network
7531 * namespace. Do this in the reverse order of registration.
7532 * Do this across as many network namespaces as possible to
7533 * improve batching efficiency.
7534 */
7535 struct net_device *dev;
7536 struct net *net;
7537 LIST_HEAD(dev_kill_list);
7538
7539 /* To prevent network device cleanup code from dereferencing
7540 * loopback devices or network devices that have been freed
7541 * wait here for all pending unregistrations to complete,
7542 * before unregistring the loopback device and allowing the
7543 * network namespace be freed.
7544 *
7545 * The netdev todo list containing all network devices
7546 * unregistrations that happen in default_device_exit_batch
7547 * will run in the rtnl_unlock() at the end of
7548 * default_device_exit_batch.
7549 */
7550 rtnl_lock_unregistering(net_list);
7551 list_for_each_entry(net, net_list, exit_list) {
7552 for_each_netdev_reverse(net, dev) {
7553 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7554 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7555 else
7556 unregister_netdevice_queue(dev, &dev_kill_list);
7557 }
7558 }
7559 unregister_netdevice_many(&dev_kill_list);
7560 rtnl_unlock();
7561 }
7562
7563 static struct pernet_operations __net_initdata default_device_ops = {
7564 .exit = default_device_exit,
7565 .exit_batch = default_device_exit_batch,
7566 };
7567
7568 /*
7569 * Initialize the DEV module. At boot time this walks the device list and
7570 * unhooks any devices that fail to initialise (normally hardware not
7571 * present) and leaves us with a valid list of present and active devices.
7572 *
7573 */
7574
7575 /*
7576 * This is called single threaded during boot, so no need
7577 * to take the rtnl semaphore.
7578 */
7579 static int __init net_dev_init(void)
7580 {
7581 int i, rc = -ENOMEM;
7582
7583 BUG_ON(!dev_boot_phase);
7584
7585 if (dev_proc_init())
7586 goto out;
7587
7588 if (netdev_kobject_init())
7589 goto out;
7590
7591 INIT_LIST_HEAD(&ptype_all);
7592 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7593 INIT_LIST_HEAD(&ptype_base[i]);
7594
7595 INIT_LIST_HEAD(&offload_base);
7596
7597 if (register_pernet_subsys(&netdev_net_ops))
7598 goto out;
7599
7600 /*
7601 * Initialise the packet receive queues.
7602 */
7603
7604 for_each_possible_cpu(i) {
7605 struct softnet_data *sd = &per_cpu(softnet_data, i);
7606
7607 skb_queue_head_init(&sd->input_pkt_queue);
7608 skb_queue_head_init(&sd->process_queue);
7609 INIT_LIST_HEAD(&sd->poll_list);
7610 sd->output_queue_tailp = &sd->output_queue;
7611 #ifdef CONFIG_RPS
7612 sd->csd.func = rps_trigger_softirq;
7613 sd->csd.info = sd;
7614 sd->cpu = i;
7615 #endif
7616
7617 sd->backlog.poll = process_backlog;
7618 sd->backlog.weight = weight_p;
7619 }
7620
7621 dev_boot_phase = 0;
7622
7623 /* The loopback device is special if any other network devices
7624 * is present in a network namespace the loopback device must
7625 * be present. Since we now dynamically allocate and free the
7626 * loopback device ensure this invariant is maintained by
7627 * keeping the loopback device as the first device on the
7628 * list of network devices. Ensuring the loopback devices
7629 * is the first device that appears and the last network device
7630 * that disappears.
7631 */
7632 if (register_pernet_device(&loopback_net_ops))
7633 goto out;
7634
7635 if (register_pernet_device(&default_device_ops))
7636 goto out;
7637
7638 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7639 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7640
7641 hotcpu_notifier(dev_cpu_callback, 0);
7642 dst_init();
7643 rc = 0;
7644 out:
7645 return rc;
7646 }
7647
7648 subsys_initcall(net_dev_init);
This page took 0.69661 seconds and 5 git commands to generate.