b668a3d9a18940a4831946d38d0dbf317c4ef253
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251 }
252
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268 }
269
270 /*
271 * Our notifier list
272 */
273
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275
276 /*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284 #ifdef CONFIG_LOCKDEP
285 /*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341 {
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347 }
348
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367
368 /*******************************************************************************
369
370 Protocol management and registration routines
371
372 *******************************************************************************/
373
374 /*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397
398 /**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411 void dev_add_pack(struct packet_type *pt)
412 {
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420
421 /**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
449 out:
450 spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453
454 /**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473
474 /******************************************************************************
475
476 Device Boot-time Settings Routines
477
478 *******************************************************************************/
479
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483 /**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509
510 /**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539 /**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568 }
569
570 /*
571 * Saves at boot time configured settings for any netdevice.
572 */
573 int __init netdev_boot_setup(char *str)
574 {
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595 }
596
597 __setup("netdev=", netdev_boot_setup);
598
599 /*******************************************************************************
600
601 Device Interface Subroutines
602
603 *******************************************************************************/
604
605 /**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630
631 /**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657 /**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681
682 /**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707
708 /**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734 /**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757
758 /**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774 {
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815 /**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828 {
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842 /**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
850 int dev_valid_name(const char *name)
851 {
852 if (*name == '\0')
853 return 0;
854 if (strlen(name) >= IFNAMSIZ)
855 return 0;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return 0;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return 0;
862 name++;
863 }
864 return 1;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867
868 /**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932 }
933
934 /**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981 }
982
983 /**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014 rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 printk(KERN_ERR
1042 "%s: name change rollback failed: %d.\n",
1043 dev->name, ret);
1044 }
1045 }
1046
1047 return err;
1048 }
1049
1050 /**
1051 * dev_set_alias - change ifalias of a device
1052 * @dev: device
1053 * @alias: name up to IFALIASZ
1054 * @len: limit of bytes to copy from info
1055 *
1056 * Set ifalias for a device,
1057 */
1058 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1059 {
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!dev->ifalias)
1075 return -ENOMEM;
1076
1077 strlcpy(dev->ifalias, alias, len+1);
1078 return len;
1079 }
1080
1081
1082 /**
1083 * netdev_features_change - device changes features
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed features.
1087 */
1088 void netdev_features_change(struct net_device *dev)
1089 {
1090 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_features_change);
1093
1094 /**
1095 * netdev_state_change - device changes state
1096 * @dev: device to cause notification
1097 *
1098 * Called to indicate a device has changed state. This function calls
1099 * the notifier chains for netdev_chain and sends a NEWLINK message
1100 * to the routing socket.
1101 */
1102 void netdev_state_change(struct net_device *dev)
1103 {
1104 if (dev->flags & IFF_UP) {
1105 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1106 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1107 }
1108 }
1109 EXPORT_SYMBOL(netdev_state_change);
1110
1111 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1112 {
1113 return call_netdevice_notifiers(event, dev);
1114 }
1115 EXPORT_SYMBOL(netdev_bonding_change);
1116
1117 /**
1118 * dev_load - load a network module
1119 * @net: the applicable net namespace
1120 * @name: name of interface
1121 *
1122 * If a network interface is not present and the process has suitable
1123 * privileges this function loads the module. If module loading is not
1124 * available in this kernel then it becomes a nop.
1125 */
1126
1127 void dev_load(struct net *net, const char *name)
1128 {
1129 struct net_device *dev;
1130 int no_module;
1131
1132 rcu_read_lock();
1133 dev = dev_get_by_name_rcu(net, name);
1134 rcu_read_unlock();
1135
1136 no_module = !dev;
1137 if (no_module && capable(CAP_NET_ADMIN))
1138 no_module = request_module("netdev-%s", name);
1139 if (no_module && capable(CAP_SYS_MODULE)) {
1140 if (!request_module("%s", name))
1141 pr_err("Loading kernel module for a network device "
1142 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1143 "instead\n", name);
1144 }
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 }
1179
1180 return ret;
1181 }
1182
1183 /**
1184 * dev_open - prepare an interface for use.
1185 * @dev: device to open
1186 *
1187 * Takes a device from down to up state. The device's private open
1188 * function is invoked and then the multicast lists are loaded. Finally
1189 * the device is moved into the up state and a %NETDEV_UP message is
1190 * sent to the netdev notifier chain.
1191 *
1192 * Calling this function on an active interface is a nop. On a failure
1193 * a negative errno code is returned.
1194 */
1195 int dev_open(struct net_device *dev)
1196 {
1197 int ret;
1198
1199 if (dev->flags & IFF_UP)
1200 return 0;
1201
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1205
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1207 call_netdevice_notifiers(NETDEV_UP, dev);
1208
1209 return ret;
1210 }
1211 EXPORT_SYMBOL(dev_open);
1212
1213 static int __dev_close_many(struct list_head *head)
1214 {
1215 struct net_device *dev;
1216
1217 ASSERT_RTNL();
1218 might_sleep();
1219
1220 list_for_each_entry(dev, head, unreg_list) {
1221 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1222
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224
1225 /* Synchronize to scheduled poll. We cannot touch poll list, it
1226 * can be even on different cpu. So just clear netif_running().
1227 *
1228 * dev->stop() will invoke napi_disable() on all of it's
1229 * napi_struct instances on this device.
1230 */
1231 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1232 }
1233
1234 dev_deactivate_many(head);
1235
1236 list_for_each_entry(dev, head, unreg_list) {
1237 const struct net_device_ops *ops = dev->netdev_ops;
1238
1239 /*
1240 * Call the device specific close. This cannot fail.
1241 * Only if device is UP
1242 *
1243 * We allow it to be called even after a DETACH hot-plug
1244 * event.
1245 */
1246 if (ops->ndo_stop)
1247 ops->ndo_stop(dev);
1248
1249 dev->flags &= ~IFF_UP;
1250 net_dmaengine_put();
1251 }
1252
1253 return 0;
1254 }
1255
1256 static int __dev_close(struct net_device *dev)
1257 {
1258 int retval;
1259 LIST_HEAD(single);
1260
1261 list_add(&dev->unreg_list, &single);
1262 retval = __dev_close_many(&single);
1263 list_del(&single);
1264 return retval;
1265 }
1266
1267 static int dev_close_many(struct list_head *head)
1268 {
1269 struct net_device *dev, *tmp;
1270 LIST_HEAD(tmp_list);
1271
1272 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1273 if (!(dev->flags & IFF_UP))
1274 list_move(&dev->unreg_list, &tmp_list);
1275
1276 __dev_close_many(head);
1277
1278 list_for_each_entry(dev, head, unreg_list) {
1279 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1280 call_netdevice_notifiers(NETDEV_DOWN, dev);
1281 }
1282
1283 /* rollback_registered_many needs the complete original list */
1284 list_splice(&tmp_list, head);
1285 return 0;
1286 }
1287
1288 /**
1289 * dev_close - shutdown an interface.
1290 * @dev: device to shutdown
1291 *
1292 * This function moves an active device into down state. A
1293 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1294 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1295 * chain.
1296 */
1297 int dev_close(struct net_device *dev)
1298 {
1299 if (dev->flags & IFF_UP) {
1300 LIST_HEAD(single);
1301
1302 list_add(&dev->unreg_list, &single);
1303 dev_close_many(&single);
1304 list_del(&single);
1305 }
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(dev_close);
1309
1310
1311 /**
1312 * dev_disable_lro - disable Large Receive Offload on a device
1313 * @dev: device
1314 *
1315 * Disable Large Receive Offload (LRO) on a net device. Must be
1316 * called under RTNL. This is needed if received packets may be
1317 * forwarded to another interface.
1318 */
1319 void dev_disable_lro(struct net_device *dev)
1320 {
1321 u32 flags;
1322
1323 /*
1324 * If we're trying to disable lro on a vlan device
1325 * use the underlying physical device instead
1326 */
1327 if (is_vlan_dev(dev))
1328 dev = vlan_dev_real_dev(dev);
1329
1330 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1331 flags = dev->ethtool_ops->get_flags(dev);
1332 else
1333 flags = ethtool_op_get_flags(dev);
1334
1335 if (!(flags & ETH_FLAG_LRO))
1336 return;
1337
1338 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1339 if (unlikely(dev->features & NETIF_F_LRO))
1340 netdev_WARN(dev, "failed to disable LRO!\n");
1341 }
1342 EXPORT_SYMBOL(dev_disable_lro);
1343
1344
1345 static int dev_boot_phase = 1;
1346
1347 /**
1348 * register_netdevice_notifier - register a network notifier block
1349 * @nb: notifier
1350 *
1351 * Register a notifier to be called when network device events occur.
1352 * The notifier passed is linked into the kernel structures and must
1353 * not be reused until it has been unregistered. A negative errno code
1354 * is returned on a failure.
1355 *
1356 * When registered all registration and up events are replayed
1357 * to the new notifier to allow device to have a race free
1358 * view of the network device list.
1359 */
1360
1361 int register_netdevice_notifier(struct notifier_block *nb)
1362 {
1363 struct net_device *dev;
1364 struct net_device *last;
1365 struct net *net;
1366 int err;
1367
1368 rtnl_lock();
1369 err = raw_notifier_chain_register(&netdev_chain, nb);
1370 if (err)
1371 goto unlock;
1372 if (dev_boot_phase)
1373 goto unlock;
1374 for_each_net(net) {
1375 for_each_netdev(net, dev) {
1376 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1377 err = notifier_to_errno(err);
1378 if (err)
1379 goto rollback;
1380
1381 if (!(dev->flags & IFF_UP))
1382 continue;
1383
1384 nb->notifier_call(nb, NETDEV_UP, dev);
1385 }
1386 }
1387
1388 unlock:
1389 rtnl_unlock();
1390 return err;
1391
1392 rollback:
1393 last = dev;
1394 for_each_net(net) {
1395 for_each_netdev(net, dev) {
1396 if (dev == last)
1397 break;
1398
1399 if (dev->flags & IFF_UP) {
1400 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1401 nb->notifier_call(nb, NETDEV_DOWN, dev);
1402 }
1403 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1404 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1405 }
1406 }
1407
1408 raw_notifier_chain_unregister(&netdev_chain, nb);
1409 goto unlock;
1410 }
1411 EXPORT_SYMBOL(register_netdevice_notifier);
1412
1413 /**
1414 * unregister_netdevice_notifier - unregister a network notifier block
1415 * @nb: notifier
1416 *
1417 * Unregister a notifier previously registered by
1418 * register_netdevice_notifier(). The notifier is unlinked into the
1419 * kernel structures and may then be reused. A negative errno code
1420 * is returned on a failure.
1421 */
1422
1423 int unregister_netdevice_notifier(struct notifier_block *nb)
1424 {
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 rtnl_unlock();
1430 return err;
1431 }
1432 EXPORT_SYMBOL(unregister_netdevice_notifier);
1433
1434 /**
1435 * call_netdevice_notifiers - call all network notifier blocks
1436 * @val: value passed unmodified to notifier function
1437 * @dev: net_device pointer passed unmodified to notifier function
1438 *
1439 * Call all network notifier blocks. Parameters and return value
1440 * are as for raw_notifier_call_chain().
1441 */
1442
1443 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1444 {
1445 ASSERT_RTNL();
1446 return raw_notifier_call_chain(&netdev_chain, val, dev);
1447 }
1448 EXPORT_SYMBOL(call_netdevice_notifiers);
1449
1450 /* When > 0 there are consumers of rx skb time stamps */
1451 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1452
1453 void net_enable_timestamp(void)
1454 {
1455 atomic_inc(&netstamp_needed);
1456 }
1457 EXPORT_SYMBOL(net_enable_timestamp);
1458
1459 void net_disable_timestamp(void)
1460 {
1461 atomic_dec(&netstamp_needed);
1462 }
1463 EXPORT_SYMBOL(net_disable_timestamp);
1464
1465 static inline void net_timestamp_set(struct sk_buff *skb)
1466 {
1467 if (atomic_read(&netstamp_needed))
1468 __net_timestamp(skb);
1469 else
1470 skb->tstamp.tv64 = 0;
1471 }
1472
1473 static inline void net_timestamp_check(struct sk_buff *skb)
1474 {
1475 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1476 __net_timestamp(skb);
1477 }
1478
1479 static inline bool is_skb_forwardable(struct net_device *dev,
1480 struct sk_buff *skb)
1481 {
1482 unsigned int len;
1483
1484 if (!(dev->flags & IFF_UP))
1485 return false;
1486
1487 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1488 if (skb->len <= len)
1489 return true;
1490
1491 /* if TSO is enabled, we don't care about the length as the packet
1492 * could be forwarded without being segmented before
1493 */
1494 if (skb_is_gso(skb))
1495 return true;
1496
1497 return false;
1498 }
1499
1500 /**
1501 * dev_forward_skb - loopback an skb to another netif
1502 *
1503 * @dev: destination network device
1504 * @skb: buffer to forward
1505 *
1506 * return values:
1507 * NET_RX_SUCCESS (no congestion)
1508 * NET_RX_DROP (packet was dropped, but freed)
1509 *
1510 * dev_forward_skb can be used for injecting an skb from the
1511 * start_xmit function of one device into the receive queue
1512 * of another device.
1513 *
1514 * The receiving device may be in another namespace, so
1515 * we have to clear all information in the skb that could
1516 * impact namespace isolation.
1517 */
1518 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1519 {
1520 skb_orphan(skb);
1521 nf_reset(skb);
1522
1523 if (unlikely(!is_skb_forwardable(dev, skb))) {
1524 atomic_long_inc(&dev->rx_dropped);
1525 kfree_skb(skb);
1526 return NET_RX_DROP;
1527 }
1528 skb_set_dev(skb, dev);
1529 skb->tstamp.tv64 = 0;
1530 skb->pkt_type = PACKET_HOST;
1531 skb->protocol = eth_type_trans(skb, dev);
1532 return netif_rx(skb);
1533 }
1534 EXPORT_SYMBOL_GPL(dev_forward_skb);
1535
1536 static inline int deliver_skb(struct sk_buff *skb,
1537 struct packet_type *pt_prev,
1538 struct net_device *orig_dev)
1539 {
1540 atomic_inc(&skb->users);
1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1542 }
1543
1544 /*
1545 * Support routine. Sends outgoing frames to any network
1546 * taps currently in use.
1547 */
1548
1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1550 {
1551 struct packet_type *ptype;
1552 struct sk_buff *skb2 = NULL;
1553 struct packet_type *pt_prev = NULL;
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1557 /* Never send packets back to the socket
1558 * they originated from - MvS (miquels@drinkel.ow.org)
1559 */
1560 if ((ptype->dev == dev || !ptype->dev) &&
1561 (ptype->af_packet_priv == NULL ||
1562 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1563 if (pt_prev) {
1564 deliver_skb(skb2, pt_prev, skb->dev);
1565 pt_prev = ptype;
1566 continue;
1567 }
1568
1569 skb2 = skb_clone(skb, GFP_ATOMIC);
1570 if (!skb2)
1571 break;
1572
1573 net_timestamp_set(skb2);
1574
1575 /* skb->nh should be correctly
1576 set by sender, so that the second statement is
1577 just protection against buggy protocols.
1578 */
1579 skb_reset_mac_header(skb2);
1580
1581 if (skb_network_header(skb2) < skb2->data ||
1582 skb2->network_header > skb2->tail) {
1583 if (net_ratelimit())
1584 printk(KERN_CRIT "protocol %04x is "
1585 "buggy, dev %s\n",
1586 ntohs(skb2->protocol),
1587 dev->name);
1588 skb_reset_network_header(skb2);
1589 }
1590
1591 skb2->transport_header = skb2->network_header;
1592 skb2->pkt_type = PACKET_OUTGOING;
1593 pt_prev = ptype;
1594 }
1595 }
1596 if (pt_prev)
1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1598 rcu_read_unlock();
1599 }
1600
1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1602 * @dev: Network device
1603 * @txq: number of queues available
1604 *
1605 * If real_num_tx_queues is changed the tc mappings may no longer be
1606 * valid. To resolve this verify the tc mapping remains valid and if
1607 * not NULL the mapping. With no priorities mapping to this
1608 * offset/count pair it will no longer be used. In the worst case TC0
1609 * is invalid nothing can be done so disable priority mappings. If is
1610 * expected that drivers will fix this mapping if they can before
1611 * calling netif_set_real_num_tx_queues.
1612 */
1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1614 {
1615 int i;
1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1617
1618 /* If TC0 is invalidated disable TC mapping */
1619 if (tc->offset + tc->count > txq) {
1620 pr_warning("Number of in use tx queues changed "
1621 "invalidating tc mappings. Priority "
1622 "traffic classification disabled!\n");
1623 dev->num_tc = 0;
1624 return;
1625 }
1626
1627 /* Invalidated prio to tc mappings set to TC0 */
1628 for (i = 1; i < TC_BITMASK + 1; i++) {
1629 int q = netdev_get_prio_tc_map(dev, i);
1630
1631 tc = &dev->tc_to_txq[q];
1632 if (tc->offset + tc->count > txq) {
1633 pr_warning("Number of in use tx queues "
1634 "changed. Priority %i to tc "
1635 "mapping %i is no longer valid "
1636 "setting map to 0\n",
1637 i, q);
1638 netdev_set_prio_tc_map(dev, i, 0);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1646 */
1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1648 {
1649 int rc;
1650
1651 if (txq < 1 || txq > dev->num_tx_queues)
1652 return -EINVAL;
1653
1654 if (dev->reg_state == NETREG_REGISTERED ||
1655 dev->reg_state == NETREG_UNREGISTERING) {
1656 ASSERT_RTNL();
1657
1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1659 txq);
1660 if (rc)
1661 return rc;
1662
1663 if (dev->num_tc)
1664 netif_setup_tc(dev, txq);
1665
1666 if (txq < dev->real_num_tx_queues)
1667 qdisc_reset_all_tx_gt(dev, txq);
1668 }
1669
1670 dev->real_num_tx_queues = txq;
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1674
1675 #ifdef CONFIG_RPS
1676 /**
1677 * netif_set_real_num_rx_queues - set actual number of RX queues used
1678 * @dev: Network device
1679 * @rxq: Actual number of RX queues
1680 *
1681 * This must be called either with the rtnl_lock held or before
1682 * registration of the net device. Returns 0 on success, or a
1683 * negative error code. If called before registration, it always
1684 * succeeds.
1685 */
1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1687 {
1688 int rc;
1689
1690 if (rxq < 1 || rxq > dev->num_rx_queues)
1691 return -EINVAL;
1692
1693 if (dev->reg_state == NETREG_REGISTERED) {
1694 ASSERT_RTNL();
1695
1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1697 rxq);
1698 if (rc)
1699 return rc;
1700 }
1701
1702 dev->real_num_rx_queues = rxq;
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1706 #endif
1707
1708 static inline void __netif_reschedule(struct Qdisc *q)
1709 {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 q->next_sched = NULL;
1716 *sd->output_queue_tailp = q;
1717 sd->output_queue_tailp = &q->next_sched;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1720 }
1721
1722 void __netif_schedule(struct Qdisc *q)
1723 {
1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1725 __netif_reschedule(q);
1726 }
1727 EXPORT_SYMBOL(__netif_schedule);
1728
1729 void dev_kfree_skb_irq(struct sk_buff *skb)
1730 {
1731 if (atomic_dec_and_test(&skb->users)) {
1732 struct softnet_data *sd;
1733 unsigned long flags;
1734
1735 local_irq_save(flags);
1736 sd = &__get_cpu_var(softnet_data);
1737 skb->next = sd->completion_queue;
1738 sd->completion_queue = skb;
1739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1740 local_irq_restore(flags);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_kfree_skb_irq);
1744
1745 void dev_kfree_skb_any(struct sk_buff *skb)
1746 {
1747 if (in_irq() || irqs_disabled())
1748 dev_kfree_skb_irq(skb);
1749 else
1750 dev_kfree_skb(skb);
1751 }
1752 EXPORT_SYMBOL(dev_kfree_skb_any);
1753
1754
1755 /**
1756 * netif_device_detach - mark device as removed
1757 * @dev: network device
1758 *
1759 * Mark device as removed from system and therefore no longer available.
1760 */
1761 void netif_device_detach(struct net_device *dev)
1762 {
1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1764 netif_running(dev)) {
1765 netif_tx_stop_all_queues(dev);
1766 }
1767 }
1768 EXPORT_SYMBOL(netif_device_detach);
1769
1770 /**
1771 * netif_device_attach - mark device as attached
1772 * @dev: network device
1773 *
1774 * Mark device as attached from system and restart if needed.
1775 */
1776 void netif_device_attach(struct net_device *dev)
1777 {
1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1779 netif_running(dev)) {
1780 netif_tx_wake_all_queues(dev);
1781 __netdev_watchdog_up(dev);
1782 }
1783 }
1784 EXPORT_SYMBOL(netif_device_attach);
1785
1786 /**
1787 * skb_dev_set -- assign a new device to a buffer
1788 * @skb: buffer for the new device
1789 * @dev: network device
1790 *
1791 * If an skb is owned by a device already, we have to reset
1792 * all data private to the namespace a device belongs to
1793 * before assigning it a new device.
1794 */
1795 #ifdef CONFIG_NET_NS
1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1797 {
1798 skb_dst_drop(skb);
1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1800 secpath_reset(skb);
1801 nf_reset(skb);
1802 skb_init_secmark(skb);
1803 skb->mark = 0;
1804 skb->priority = 0;
1805 skb->nf_trace = 0;
1806 skb->ipvs_property = 0;
1807 #ifdef CONFIG_NET_SCHED
1808 skb->tc_index = 0;
1809 #endif
1810 }
1811 skb->dev = dev;
1812 }
1813 EXPORT_SYMBOL(skb_set_dev);
1814 #endif /* CONFIG_NET_NS */
1815
1816 /*
1817 * Invalidate hardware checksum when packet is to be mangled, and
1818 * complete checksum manually on outgoing path.
1819 */
1820 int skb_checksum_help(struct sk_buff *skb)
1821 {
1822 __wsum csum;
1823 int ret = 0, offset;
1824
1825 if (skb->ip_summed == CHECKSUM_COMPLETE)
1826 goto out_set_summed;
1827
1828 if (unlikely(skb_shinfo(skb)->gso_size)) {
1829 /* Let GSO fix up the checksum. */
1830 goto out_set_summed;
1831 }
1832
1833 offset = skb_checksum_start_offset(skb);
1834 BUG_ON(offset >= skb_headlen(skb));
1835 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1836
1837 offset += skb->csum_offset;
1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1839
1840 if (skb_cloned(skb) &&
1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1843 if (ret)
1844 goto out;
1845 }
1846
1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1848 out_set_summed:
1849 skb->ip_summed = CHECKSUM_NONE;
1850 out:
1851 return ret;
1852 }
1853 EXPORT_SYMBOL(skb_checksum_help);
1854
1855 /**
1856 * skb_gso_segment - Perform segmentation on skb.
1857 * @skb: buffer to segment
1858 * @features: features for the output path (see dev->features)
1859 *
1860 * This function segments the given skb and returns a list of segments.
1861 *
1862 * It may return NULL if the skb requires no segmentation. This is
1863 * only possible when GSO is used for verifying header integrity.
1864 */
1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1866 {
1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1868 struct packet_type *ptype;
1869 __be16 type = skb->protocol;
1870 int vlan_depth = ETH_HLEN;
1871 int err;
1872
1873 while (type == htons(ETH_P_8021Q)) {
1874 struct vlan_hdr *vh;
1875
1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1877 return ERR_PTR(-EINVAL);
1878
1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1880 type = vh->h_vlan_encapsulated_proto;
1881 vlan_depth += VLAN_HLEN;
1882 }
1883
1884 skb_reset_mac_header(skb);
1885 skb->mac_len = skb->network_header - skb->mac_header;
1886 __skb_pull(skb, skb->mac_len);
1887
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 struct net_device *dev = skb->dev;
1890 struct ethtool_drvinfo info = {};
1891
1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1893 dev->ethtool_ops->get_drvinfo(dev, &info);
1894
1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1896 info.driver, dev ? dev->features : 0L,
1897 skb->sk ? skb->sk->sk_route_caps : 0L,
1898 skb->len, skb->data_len, skb->ip_summed);
1899
1900 if (skb_header_cloned(skb) &&
1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1902 return ERR_PTR(err);
1903 }
1904
1905 rcu_read_lock();
1906 list_for_each_entry_rcu(ptype,
1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1910 err = ptype->gso_send_check(skb);
1911 segs = ERR_PTR(err);
1912 if (err || skb_gso_ok(skb, features))
1913 break;
1914 __skb_push(skb, (skb->data -
1915 skb_network_header(skb)));
1916 }
1917 segs = ptype->gso_segment(skb, features);
1918 break;
1919 }
1920 }
1921 rcu_read_unlock();
1922
1923 __skb_push(skb, skb->data - skb_mac_header(skb));
1924
1925 return segs;
1926 }
1927 EXPORT_SYMBOL(skb_gso_segment);
1928
1929 /* Take action when hardware reception checksum errors are detected. */
1930 #ifdef CONFIG_BUG
1931 void netdev_rx_csum_fault(struct net_device *dev)
1932 {
1933 if (net_ratelimit()) {
1934 printk(KERN_ERR "%s: hw csum failure.\n",
1935 dev ? dev->name : "<unknown>");
1936 dump_stack();
1937 }
1938 }
1939 EXPORT_SYMBOL(netdev_rx_csum_fault);
1940 #endif
1941
1942 /* Actually, we should eliminate this check as soon as we know, that:
1943 * 1. IOMMU is present and allows to map all the memory.
1944 * 2. No high memory really exists on this machine.
1945 */
1946
1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1948 {
1949 #ifdef CONFIG_HIGHMEM
1950 int i;
1951 if (!(dev->features & NETIF_F_HIGHDMA)) {
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1953 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1954 return 1;
1955 }
1956
1957 if (PCI_DMA_BUS_IS_PHYS) {
1958 struct device *pdev = dev->dev.parent;
1959
1960 if (!pdev)
1961 return 0;
1962 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1963 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1964 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1965 return 1;
1966 }
1967 }
1968 #endif
1969 return 0;
1970 }
1971
1972 struct dev_gso_cb {
1973 void (*destructor)(struct sk_buff *skb);
1974 };
1975
1976 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1977
1978 static void dev_gso_skb_destructor(struct sk_buff *skb)
1979 {
1980 struct dev_gso_cb *cb;
1981
1982 do {
1983 struct sk_buff *nskb = skb->next;
1984
1985 skb->next = nskb->next;
1986 nskb->next = NULL;
1987 kfree_skb(nskb);
1988 } while (skb->next);
1989
1990 cb = DEV_GSO_CB(skb);
1991 if (cb->destructor)
1992 cb->destructor(skb);
1993 }
1994
1995 /**
1996 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1997 * @skb: buffer to segment
1998 * @features: device features as applicable to this skb
1999 *
2000 * This function segments the given skb and stores the list of segments
2001 * in skb->next.
2002 */
2003 static int dev_gso_segment(struct sk_buff *skb, int features)
2004 {
2005 struct sk_buff *segs;
2006
2007 segs = skb_gso_segment(skb, features);
2008
2009 /* Verifying header integrity only. */
2010 if (!segs)
2011 return 0;
2012
2013 if (IS_ERR(segs))
2014 return PTR_ERR(segs);
2015
2016 skb->next = segs;
2017 DEV_GSO_CB(skb)->destructor = skb->destructor;
2018 skb->destructor = dev_gso_skb_destructor;
2019
2020 return 0;
2021 }
2022
2023 /*
2024 * Try to orphan skb early, right before transmission by the device.
2025 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2026 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2027 */
2028 static inline void skb_orphan_try(struct sk_buff *skb)
2029 {
2030 struct sock *sk = skb->sk;
2031
2032 if (sk && !skb_shinfo(skb)->tx_flags) {
2033 /* skb_tx_hash() wont be able to get sk.
2034 * We copy sk_hash into skb->rxhash
2035 */
2036 if (!skb->rxhash)
2037 skb->rxhash = sk->sk_hash;
2038 skb_orphan(skb);
2039 }
2040 }
2041
2042 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2043 {
2044 return ((features & NETIF_F_GEN_CSUM) ||
2045 ((features & NETIF_F_V4_CSUM) &&
2046 protocol == htons(ETH_P_IP)) ||
2047 ((features & NETIF_F_V6_CSUM) &&
2048 protocol == htons(ETH_P_IPV6)) ||
2049 ((features & NETIF_F_FCOE_CRC) &&
2050 protocol == htons(ETH_P_FCOE)));
2051 }
2052
2053 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2054 {
2055 if (!can_checksum_protocol(features, protocol)) {
2056 features &= ~NETIF_F_ALL_CSUM;
2057 features &= ~NETIF_F_SG;
2058 } else if (illegal_highdma(skb->dev, skb)) {
2059 features &= ~NETIF_F_SG;
2060 }
2061
2062 return features;
2063 }
2064
2065 u32 netif_skb_features(struct sk_buff *skb)
2066 {
2067 __be16 protocol = skb->protocol;
2068 u32 features = skb->dev->features;
2069
2070 if (protocol == htons(ETH_P_8021Q)) {
2071 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2072 protocol = veh->h_vlan_encapsulated_proto;
2073 } else if (!vlan_tx_tag_present(skb)) {
2074 return harmonize_features(skb, protocol, features);
2075 }
2076
2077 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2078
2079 if (protocol != htons(ETH_P_8021Q)) {
2080 return harmonize_features(skb, protocol, features);
2081 } else {
2082 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2083 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2084 return harmonize_features(skb, protocol, features);
2085 }
2086 }
2087 EXPORT_SYMBOL(netif_skb_features);
2088
2089 /*
2090 * Returns true if either:
2091 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2092 * 2. skb is fragmented and the device does not support SG, or if
2093 * at least one of fragments is in highmem and device does not
2094 * support DMA from it.
2095 */
2096 static inline int skb_needs_linearize(struct sk_buff *skb,
2097 int features)
2098 {
2099 return skb_is_nonlinear(skb) &&
2100 ((skb_has_frag_list(skb) &&
2101 !(features & NETIF_F_FRAGLIST)) ||
2102 (skb_shinfo(skb)->nr_frags &&
2103 !(features & NETIF_F_SG)));
2104 }
2105
2106 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2107 struct netdev_queue *txq)
2108 {
2109 const struct net_device_ops *ops = dev->netdev_ops;
2110 int rc = NETDEV_TX_OK;
2111 unsigned int skb_len;
2112
2113 if (likely(!skb->next)) {
2114 u32 features;
2115
2116 /*
2117 * If device doesn't need skb->dst, release it right now while
2118 * its hot in this cpu cache
2119 */
2120 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2121 skb_dst_drop(skb);
2122
2123 if (!list_empty(&ptype_all))
2124 dev_queue_xmit_nit(skb, dev);
2125
2126 skb_orphan_try(skb);
2127
2128 features = netif_skb_features(skb);
2129
2130 if (vlan_tx_tag_present(skb) &&
2131 !(features & NETIF_F_HW_VLAN_TX)) {
2132 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2133 if (unlikely(!skb))
2134 goto out;
2135
2136 skb->vlan_tci = 0;
2137 }
2138
2139 if (netif_needs_gso(skb, features)) {
2140 if (unlikely(dev_gso_segment(skb, features)))
2141 goto out_kfree_skb;
2142 if (skb->next)
2143 goto gso;
2144 } else {
2145 if (skb_needs_linearize(skb, features) &&
2146 __skb_linearize(skb))
2147 goto out_kfree_skb;
2148
2149 /* If packet is not checksummed and device does not
2150 * support checksumming for this protocol, complete
2151 * checksumming here.
2152 */
2153 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2154 skb_set_transport_header(skb,
2155 skb_checksum_start_offset(skb));
2156 if (!(features & NETIF_F_ALL_CSUM) &&
2157 skb_checksum_help(skb))
2158 goto out_kfree_skb;
2159 }
2160 }
2161
2162 skb_len = skb->len;
2163 rc = ops->ndo_start_xmit(skb, dev);
2164 trace_net_dev_xmit(skb, rc, dev, skb_len);
2165 if (rc == NETDEV_TX_OK)
2166 txq_trans_update(txq);
2167 return rc;
2168 }
2169
2170 gso:
2171 do {
2172 struct sk_buff *nskb = skb->next;
2173
2174 skb->next = nskb->next;
2175 nskb->next = NULL;
2176
2177 /*
2178 * If device doesn't need nskb->dst, release it right now while
2179 * its hot in this cpu cache
2180 */
2181 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2182 skb_dst_drop(nskb);
2183
2184 skb_len = nskb->len;
2185 rc = ops->ndo_start_xmit(nskb, dev);
2186 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2187 if (unlikely(rc != NETDEV_TX_OK)) {
2188 if (rc & ~NETDEV_TX_MASK)
2189 goto out_kfree_gso_skb;
2190 nskb->next = skb->next;
2191 skb->next = nskb;
2192 return rc;
2193 }
2194 txq_trans_update(txq);
2195 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2196 return NETDEV_TX_BUSY;
2197 } while (skb->next);
2198
2199 out_kfree_gso_skb:
2200 if (likely(skb->next == NULL))
2201 skb->destructor = DEV_GSO_CB(skb)->destructor;
2202 out_kfree_skb:
2203 kfree_skb(skb);
2204 out:
2205 return rc;
2206 }
2207
2208 static u32 hashrnd __read_mostly;
2209
2210 /*
2211 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2212 * to be used as a distribution range.
2213 */
2214 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2215 unsigned int num_tx_queues)
2216 {
2217 u32 hash;
2218 u16 qoffset = 0;
2219 u16 qcount = num_tx_queues;
2220
2221 if (skb_rx_queue_recorded(skb)) {
2222 hash = skb_get_rx_queue(skb);
2223 while (unlikely(hash >= num_tx_queues))
2224 hash -= num_tx_queues;
2225 return hash;
2226 }
2227
2228 if (dev->num_tc) {
2229 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2230 qoffset = dev->tc_to_txq[tc].offset;
2231 qcount = dev->tc_to_txq[tc].count;
2232 }
2233
2234 if (skb->sk && skb->sk->sk_hash)
2235 hash = skb->sk->sk_hash;
2236 else
2237 hash = (__force u16) skb->protocol ^ skb->rxhash;
2238 hash = jhash_1word(hash, hashrnd);
2239
2240 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2241 }
2242 EXPORT_SYMBOL(__skb_tx_hash);
2243
2244 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2245 {
2246 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2247 if (net_ratelimit()) {
2248 pr_warning("%s selects TX queue %d, but "
2249 "real number of TX queues is %d\n",
2250 dev->name, queue_index, dev->real_num_tx_queues);
2251 }
2252 return 0;
2253 }
2254 return queue_index;
2255 }
2256
2257 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2258 {
2259 #ifdef CONFIG_XPS
2260 struct xps_dev_maps *dev_maps;
2261 struct xps_map *map;
2262 int queue_index = -1;
2263
2264 rcu_read_lock();
2265 dev_maps = rcu_dereference(dev->xps_maps);
2266 if (dev_maps) {
2267 map = rcu_dereference(
2268 dev_maps->cpu_map[raw_smp_processor_id()]);
2269 if (map) {
2270 if (map->len == 1)
2271 queue_index = map->queues[0];
2272 else {
2273 u32 hash;
2274 if (skb->sk && skb->sk->sk_hash)
2275 hash = skb->sk->sk_hash;
2276 else
2277 hash = (__force u16) skb->protocol ^
2278 skb->rxhash;
2279 hash = jhash_1word(hash, hashrnd);
2280 queue_index = map->queues[
2281 ((u64)hash * map->len) >> 32];
2282 }
2283 if (unlikely(queue_index >= dev->real_num_tx_queues))
2284 queue_index = -1;
2285 }
2286 }
2287 rcu_read_unlock();
2288
2289 return queue_index;
2290 #else
2291 return -1;
2292 #endif
2293 }
2294
2295 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2296 struct sk_buff *skb)
2297 {
2298 int queue_index;
2299 const struct net_device_ops *ops = dev->netdev_ops;
2300
2301 if (dev->real_num_tx_queues == 1)
2302 queue_index = 0;
2303 else if (ops->ndo_select_queue) {
2304 queue_index = ops->ndo_select_queue(dev, skb);
2305 queue_index = dev_cap_txqueue(dev, queue_index);
2306 } else {
2307 struct sock *sk = skb->sk;
2308 queue_index = sk_tx_queue_get(sk);
2309
2310 if (queue_index < 0 || skb->ooo_okay ||
2311 queue_index >= dev->real_num_tx_queues) {
2312 int old_index = queue_index;
2313
2314 queue_index = get_xps_queue(dev, skb);
2315 if (queue_index < 0)
2316 queue_index = skb_tx_hash(dev, skb);
2317
2318 if (queue_index != old_index && sk) {
2319 struct dst_entry *dst =
2320 rcu_dereference_check(sk->sk_dst_cache, 1);
2321
2322 if (dst && skb_dst(skb) == dst)
2323 sk_tx_queue_set(sk, queue_index);
2324 }
2325 }
2326 }
2327
2328 skb_set_queue_mapping(skb, queue_index);
2329 return netdev_get_tx_queue(dev, queue_index);
2330 }
2331
2332 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2333 struct net_device *dev,
2334 struct netdev_queue *txq)
2335 {
2336 spinlock_t *root_lock = qdisc_lock(q);
2337 bool contended;
2338 int rc;
2339
2340 qdisc_skb_cb(skb)->pkt_len = skb->len;
2341 qdisc_calculate_pkt_len(skb, q);
2342 /*
2343 * Heuristic to force contended enqueues to serialize on a
2344 * separate lock before trying to get qdisc main lock.
2345 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2346 * and dequeue packets faster.
2347 */
2348 contended = qdisc_is_running(q);
2349 if (unlikely(contended))
2350 spin_lock(&q->busylock);
2351
2352 spin_lock(root_lock);
2353 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2354 kfree_skb(skb);
2355 rc = NET_XMIT_DROP;
2356 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2357 qdisc_run_begin(q)) {
2358 /*
2359 * This is a work-conserving queue; there are no old skbs
2360 * waiting to be sent out; and the qdisc is not running -
2361 * xmit the skb directly.
2362 */
2363 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2364 skb_dst_force(skb);
2365
2366 qdisc_bstats_update(q, skb);
2367
2368 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2369 if (unlikely(contended)) {
2370 spin_unlock(&q->busylock);
2371 contended = false;
2372 }
2373 __qdisc_run(q);
2374 } else
2375 qdisc_run_end(q);
2376
2377 rc = NET_XMIT_SUCCESS;
2378 } else {
2379 skb_dst_force(skb);
2380 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2381 if (qdisc_run_begin(q)) {
2382 if (unlikely(contended)) {
2383 spin_unlock(&q->busylock);
2384 contended = false;
2385 }
2386 __qdisc_run(q);
2387 }
2388 }
2389 spin_unlock(root_lock);
2390 if (unlikely(contended))
2391 spin_unlock(&q->busylock);
2392 return rc;
2393 }
2394
2395 static DEFINE_PER_CPU(int, xmit_recursion);
2396 #define RECURSION_LIMIT 10
2397
2398 /**
2399 * dev_queue_xmit - transmit a buffer
2400 * @skb: buffer to transmit
2401 *
2402 * Queue a buffer for transmission to a network device. The caller must
2403 * have set the device and priority and built the buffer before calling
2404 * this function. The function can be called from an interrupt.
2405 *
2406 * A negative errno code is returned on a failure. A success does not
2407 * guarantee the frame will be transmitted as it may be dropped due
2408 * to congestion or traffic shaping.
2409 *
2410 * -----------------------------------------------------------------------------------
2411 * I notice this method can also return errors from the queue disciplines,
2412 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2413 * be positive.
2414 *
2415 * Regardless of the return value, the skb is consumed, so it is currently
2416 * difficult to retry a send to this method. (You can bump the ref count
2417 * before sending to hold a reference for retry if you are careful.)
2418 *
2419 * When calling this method, interrupts MUST be enabled. This is because
2420 * the BH enable code must have IRQs enabled so that it will not deadlock.
2421 * --BLG
2422 */
2423 int dev_queue_xmit(struct sk_buff *skb)
2424 {
2425 struct net_device *dev = skb->dev;
2426 struct netdev_queue *txq;
2427 struct Qdisc *q;
2428 int rc = -ENOMEM;
2429
2430 /* Disable soft irqs for various locks below. Also
2431 * stops preemption for RCU.
2432 */
2433 rcu_read_lock_bh();
2434
2435 txq = dev_pick_tx(dev, skb);
2436 q = rcu_dereference_bh(txq->qdisc);
2437
2438 #ifdef CONFIG_NET_CLS_ACT
2439 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2440 #endif
2441 trace_net_dev_queue(skb);
2442 if (q->enqueue) {
2443 rc = __dev_xmit_skb(skb, q, dev, txq);
2444 goto out;
2445 }
2446
2447 /* The device has no queue. Common case for software devices:
2448 loopback, all the sorts of tunnels...
2449
2450 Really, it is unlikely that netif_tx_lock protection is necessary
2451 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2452 counters.)
2453 However, it is possible, that they rely on protection
2454 made by us here.
2455
2456 Check this and shot the lock. It is not prone from deadlocks.
2457 Either shot noqueue qdisc, it is even simpler 8)
2458 */
2459 if (dev->flags & IFF_UP) {
2460 int cpu = smp_processor_id(); /* ok because BHs are off */
2461
2462 if (txq->xmit_lock_owner != cpu) {
2463
2464 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2465 goto recursion_alert;
2466
2467 HARD_TX_LOCK(dev, txq, cpu);
2468
2469 if (!netif_tx_queue_stopped(txq)) {
2470 __this_cpu_inc(xmit_recursion);
2471 rc = dev_hard_start_xmit(skb, dev, txq);
2472 __this_cpu_dec(xmit_recursion);
2473 if (dev_xmit_complete(rc)) {
2474 HARD_TX_UNLOCK(dev, txq);
2475 goto out;
2476 }
2477 }
2478 HARD_TX_UNLOCK(dev, txq);
2479 if (net_ratelimit())
2480 printk(KERN_CRIT "Virtual device %s asks to "
2481 "queue packet!\n", dev->name);
2482 } else {
2483 /* Recursion is detected! It is possible,
2484 * unfortunately
2485 */
2486 recursion_alert:
2487 if (net_ratelimit())
2488 printk(KERN_CRIT "Dead loop on virtual device "
2489 "%s, fix it urgently!\n", dev->name);
2490 }
2491 }
2492
2493 rc = -ENETDOWN;
2494 rcu_read_unlock_bh();
2495
2496 kfree_skb(skb);
2497 return rc;
2498 out:
2499 rcu_read_unlock_bh();
2500 return rc;
2501 }
2502 EXPORT_SYMBOL(dev_queue_xmit);
2503
2504
2505 /*=======================================================================
2506 Receiver routines
2507 =======================================================================*/
2508
2509 int netdev_max_backlog __read_mostly = 1000;
2510 int netdev_tstamp_prequeue __read_mostly = 1;
2511 int netdev_budget __read_mostly = 300;
2512 int weight_p __read_mostly = 64; /* old backlog weight */
2513
2514 /* Called with irq disabled */
2515 static inline void ____napi_schedule(struct softnet_data *sd,
2516 struct napi_struct *napi)
2517 {
2518 list_add_tail(&napi->poll_list, &sd->poll_list);
2519 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2520 }
2521
2522 /*
2523 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2524 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2525 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2526 * if hash is a canonical 4-tuple hash over transport ports.
2527 */
2528 void __skb_get_rxhash(struct sk_buff *skb)
2529 {
2530 int nhoff, hash = 0, poff;
2531 const struct ipv6hdr *ip6;
2532 const struct iphdr *ip;
2533 const struct vlan_hdr *vlan;
2534 u8 ip_proto;
2535 u32 addr1, addr2;
2536 u16 proto;
2537 union {
2538 u32 v32;
2539 u16 v16[2];
2540 } ports;
2541
2542 nhoff = skb_network_offset(skb);
2543 proto = skb->protocol;
2544
2545 again:
2546 switch (proto) {
2547 case __constant_htons(ETH_P_IP):
2548 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2549 goto done;
2550
2551 ip = (const struct iphdr *) (skb->data + nhoff);
2552 if (ip_is_fragment(ip))
2553 ip_proto = 0;
2554 else
2555 ip_proto = ip->protocol;
2556 addr1 = (__force u32) ip->saddr;
2557 addr2 = (__force u32) ip->daddr;
2558 nhoff += ip->ihl * 4;
2559 break;
2560 case __constant_htons(ETH_P_IPV6):
2561 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2562 goto done;
2563
2564 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2565 ip_proto = ip6->nexthdr;
2566 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2567 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2568 nhoff += 40;
2569 break;
2570 case __constant_htons(ETH_P_8021Q):
2571 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2572 goto done;
2573 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2574 proto = vlan->h_vlan_encapsulated_proto;
2575 nhoff += sizeof(*vlan);
2576 goto again;
2577 case __constant_htons(ETH_P_PPP_SES):
2578 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2579 goto done;
2580 proto = *((__be16 *) (skb->data + nhoff +
2581 sizeof(struct pppoe_hdr)));
2582 nhoff += PPPOE_SES_HLEN;
2583 goto again;
2584 default:
2585 goto done;
2586 }
2587
2588 switch (ip_proto) {
2589 case IPPROTO_GRE:
2590 if (pskb_may_pull(skb, nhoff + 16)) {
2591 u8 *h = skb->data + nhoff;
2592 __be16 flags = *(__be16 *)h;
2593
2594 /*
2595 * Only look inside GRE if version zero and no
2596 * routing
2597 */
2598 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2599 proto = *(__be16 *)(h + 2);
2600 nhoff += 4;
2601 if (flags & GRE_CSUM)
2602 nhoff += 4;
2603 if (flags & GRE_KEY)
2604 nhoff += 4;
2605 if (flags & GRE_SEQ)
2606 nhoff += 4;
2607 goto again;
2608 }
2609 }
2610 break;
2611 case IPPROTO_IPIP:
2612 goto again;
2613 default:
2614 break;
2615 }
2616
2617 ports.v32 = 0;
2618 poff = proto_ports_offset(ip_proto);
2619 if (poff >= 0) {
2620 nhoff += poff;
2621 if (pskb_may_pull(skb, nhoff + 4)) {
2622 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2623 if (ports.v16[1] < ports.v16[0])
2624 swap(ports.v16[0], ports.v16[1]);
2625 skb->l4_rxhash = 1;
2626 }
2627 }
2628
2629 /* get a consistent hash (same value on both flow directions) */
2630 if (addr2 < addr1)
2631 swap(addr1, addr2);
2632
2633 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2634 if (!hash)
2635 hash = 1;
2636
2637 done:
2638 skb->rxhash = hash;
2639 }
2640 EXPORT_SYMBOL(__skb_get_rxhash);
2641
2642 #ifdef CONFIG_RPS
2643
2644 /* One global table that all flow-based protocols share. */
2645 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2646 EXPORT_SYMBOL(rps_sock_flow_table);
2647
2648 static struct rps_dev_flow *
2649 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2650 struct rps_dev_flow *rflow, u16 next_cpu)
2651 {
2652 u16 tcpu;
2653
2654 tcpu = rflow->cpu = next_cpu;
2655 if (tcpu != RPS_NO_CPU) {
2656 #ifdef CONFIG_RFS_ACCEL
2657 struct netdev_rx_queue *rxqueue;
2658 struct rps_dev_flow_table *flow_table;
2659 struct rps_dev_flow *old_rflow;
2660 u32 flow_id;
2661 u16 rxq_index;
2662 int rc;
2663
2664 /* Should we steer this flow to a different hardware queue? */
2665 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2666 !(dev->features & NETIF_F_NTUPLE))
2667 goto out;
2668 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2669 if (rxq_index == skb_get_rx_queue(skb))
2670 goto out;
2671
2672 rxqueue = dev->_rx + rxq_index;
2673 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2674 if (!flow_table)
2675 goto out;
2676 flow_id = skb->rxhash & flow_table->mask;
2677 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2678 rxq_index, flow_id);
2679 if (rc < 0)
2680 goto out;
2681 old_rflow = rflow;
2682 rflow = &flow_table->flows[flow_id];
2683 rflow->cpu = next_cpu;
2684 rflow->filter = rc;
2685 if (old_rflow->filter == rflow->filter)
2686 old_rflow->filter = RPS_NO_FILTER;
2687 out:
2688 #endif
2689 rflow->last_qtail =
2690 per_cpu(softnet_data, tcpu).input_queue_head;
2691 }
2692
2693 return rflow;
2694 }
2695
2696 /*
2697 * get_rps_cpu is called from netif_receive_skb and returns the target
2698 * CPU from the RPS map of the receiving queue for a given skb.
2699 * rcu_read_lock must be held on entry.
2700 */
2701 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2702 struct rps_dev_flow **rflowp)
2703 {
2704 struct netdev_rx_queue *rxqueue;
2705 struct rps_map *map;
2706 struct rps_dev_flow_table *flow_table;
2707 struct rps_sock_flow_table *sock_flow_table;
2708 int cpu = -1;
2709 u16 tcpu;
2710
2711 if (skb_rx_queue_recorded(skb)) {
2712 u16 index = skb_get_rx_queue(skb);
2713 if (unlikely(index >= dev->real_num_rx_queues)) {
2714 WARN_ONCE(dev->real_num_rx_queues > 1,
2715 "%s received packet on queue %u, but number "
2716 "of RX queues is %u\n",
2717 dev->name, index, dev->real_num_rx_queues);
2718 goto done;
2719 }
2720 rxqueue = dev->_rx + index;
2721 } else
2722 rxqueue = dev->_rx;
2723
2724 map = rcu_dereference(rxqueue->rps_map);
2725 if (map) {
2726 if (map->len == 1 &&
2727 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2728 tcpu = map->cpus[0];
2729 if (cpu_online(tcpu))
2730 cpu = tcpu;
2731 goto done;
2732 }
2733 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2734 goto done;
2735 }
2736
2737 skb_reset_network_header(skb);
2738 if (!skb_get_rxhash(skb))
2739 goto done;
2740
2741 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2742 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2743 if (flow_table && sock_flow_table) {
2744 u16 next_cpu;
2745 struct rps_dev_flow *rflow;
2746
2747 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2748 tcpu = rflow->cpu;
2749
2750 next_cpu = sock_flow_table->ents[skb->rxhash &
2751 sock_flow_table->mask];
2752
2753 /*
2754 * If the desired CPU (where last recvmsg was done) is
2755 * different from current CPU (one in the rx-queue flow
2756 * table entry), switch if one of the following holds:
2757 * - Current CPU is unset (equal to RPS_NO_CPU).
2758 * - Current CPU is offline.
2759 * - The current CPU's queue tail has advanced beyond the
2760 * last packet that was enqueued using this table entry.
2761 * This guarantees that all previous packets for the flow
2762 * have been dequeued, thus preserving in order delivery.
2763 */
2764 if (unlikely(tcpu != next_cpu) &&
2765 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2766 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2767 rflow->last_qtail)) >= 0))
2768 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2769
2770 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2771 *rflowp = rflow;
2772 cpu = tcpu;
2773 goto done;
2774 }
2775 }
2776
2777 if (map) {
2778 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2779
2780 if (cpu_online(tcpu)) {
2781 cpu = tcpu;
2782 goto done;
2783 }
2784 }
2785
2786 done:
2787 return cpu;
2788 }
2789
2790 #ifdef CONFIG_RFS_ACCEL
2791
2792 /**
2793 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2794 * @dev: Device on which the filter was set
2795 * @rxq_index: RX queue index
2796 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2797 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2798 *
2799 * Drivers that implement ndo_rx_flow_steer() should periodically call
2800 * this function for each installed filter and remove the filters for
2801 * which it returns %true.
2802 */
2803 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2804 u32 flow_id, u16 filter_id)
2805 {
2806 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2807 struct rps_dev_flow_table *flow_table;
2808 struct rps_dev_flow *rflow;
2809 bool expire = true;
2810 int cpu;
2811
2812 rcu_read_lock();
2813 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2814 if (flow_table && flow_id <= flow_table->mask) {
2815 rflow = &flow_table->flows[flow_id];
2816 cpu = ACCESS_ONCE(rflow->cpu);
2817 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2818 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2819 rflow->last_qtail) <
2820 (int)(10 * flow_table->mask)))
2821 expire = false;
2822 }
2823 rcu_read_unlock();
2824 return expire;
2825 }
2826 EXPORT_SYMBOL(rps_may_expire_flow);
2827
2828 #endif /* CONFIG_RFS_ACCEL */
2829
2830 /* Called from hardirq (IPI) context */
2831 static void rps_trigger_softirq(void *data)
2832 {
2833 struct softnet_data *sd = data;
2834
2835 ____napi_schedule(sd, &sd->backlog);
2836 sd->received_rps++;
2837 }
2838
2839 #endif /* CONFIG_RPS */
2840
2841 /*
2842 * Check if this softnet_data structure is another cpu one
2843 * If yes, queue it to our IPI list and return 1
2844 * If no, return 0
2845 */
2846 static int rps_ipi_queued(struct softnet_data *sd)
2847 {
2848 #ifdef CONFIG_RPS
2849 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2850
2851 if (sd != mysd) {
2852 sd->rps_ipi_next = mysd->rps_ipi_list;
2853 mysd->rps_ipi_list = sd;
2854
2855 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2856 return 1;
2857 }
2858 #endif /* CONFIG_RPS */
2859 return 0;
2860 }
2861
2862 /*
2863 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2864 * queue (may be a remote CPU queue).
2865 */
2866 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2867 unsigned int *qtail)
2868 {
2869 struct softnet_data *sd;
2870 unsigned long flags;
2871
2872 sd = &per_cpu(softnet_data, cpu);
2873
2874 local_irq_save(flags);
2875
2876 rps_lock(sd);
2877 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2878 if (skb_queue_len(&sd->input_pkt_queue)) {
2879 enqueue:
2880 __skb_queue_tail(&sd->input_pkt_queue, skb);
2881 input_queue_tail_incr_save(sd, qtail);
2882 rps_unlock(sd);
2883 local_irq_restore(flags);
2884 return NET_RX_SUCCESS;
2885 }
2886
2887 /* Schedule NAPI for backlog device
2888 * We can use non atomic operation since we own the queue lock
2889 */
2890 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2891 if (!rps_ipi_queued(sd))
2892 ____napi_schedule(sd, &sd->backlog);
2893 }
2894 goto enqueue;
2895 }
2896
2897 sd->dropped++;
2898 rps_unlock(sd);
2899
2900 local_irq_restore(flags);
2901
2902 atomic_long_inc(&skb->dev->rx_dropped);
2903 kfree_skb(skb);
2904 return NET_RX_DROP;
2905 }
2906
2907 /**
2908 * netif_rx - post buffer to the network code
2909 * @skb: buffer to post
2910 *
2911 * This function receives a packet from a device driver and queues it for
2912 * the upper (protocol) levels to process. It always succeeds. The buffer
2913 * may be dropped during processing for congestion control or by the
2914 * protocol layers.
2915 *
2916 * return values:
2917 * NET_RX_SUCCESS (no congestion)
2918 * NET_RX_DROP (packet was dropped)
2919 *
2920 */
2921
2922 int netif_rx(struct sk_buff *skb)
2923 {
2924 int ret;
2925
2926 /* if netpoll wants it, pretend we never saw it */
2927 if (netpoll_rx(skb))
2928 return NET_RX_DROP;
2929
2930 if (netdev_tstamp_prequeue)
2931 net_timestamp_check(skb);
2932
2933 trace_netif_rx(skb);
2934 #ifdef CONFIG_RPS
2935 {
2936 struct rps_dev_flow voidflow, *rflow = &voidflow;
2937 int cpu;
2938
2939 preempt_disable();
2940 rcu_read_lock();
2941
2942 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2943 if (cpu < 0)
2944 cpu = smp_processor_id();
2945
2946 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2947
2948 rcu_read_unlock();
2949 preempt_enable();
2950 }
2951 #else
2952 {
2953 unsigned int qtail;
2954 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2955 put_cpu();
2956 }
2957 #endif
2958 return ret;
2959 }
2960 EXPORT_SYMBOL(netif_rx);
2961
2962 int netif_rx_ni(struct sk_buff *skb)
2963 {
2964 int err;
2965
2966 preempt_disable();
2967 err = netif_rx(skb);
2968 if (local_softirq_pending())
2969 do_softirq();
2970 preempt_enable();
2971
2972 return err;
2973 }
2974 EXPORT_SYMBOL(netif_rx_ni);
2975
2976 static void net_tx_action(struct softirq_action *h)
2977 {
2978 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2979
2980 if (sd->completion_queue) {
2981 struct sk_buff *clist;
2982
2983 local_irq_disable();
2984 clist = sd->completion_queue;
2985 sd->completion_queue = NULL;
2986 local_irq_enable();
2987
2988 while (clist) {
2989 struct sk_buff *skb = clist;
2990 clist = clist->next;
2991
2992 WARN_ON(atomic_read(&skb->users));
2993 trace_kfree_skb(skb, net_tx_action);
2994 __kfree_skb(skb);
2995 }
2996 }
2997
2998 if (sd->output_queue) {
2999 struct Qdisc *head;
3000
3001 local_irq_disable();
3002 head = sd->output_queue;
3003 sd->output_queue = NULL;
3004 sd->output_queue_tailp = &sd->output_queue;
3005 local_irq_enable();
3006
3007 while (head) {
3008 struct Qdisc *q = head;
3009 spinlock_t *root_lock;
3010
3011 head = head->next_sched;
3012
3013 root_lock = qdisc_lock(q);
3014 if (spin_trylock(root_lock)) {
3015 smp_mb__before_clear_bit();
3016 clear_bit(__QDISC_STATE_SCHED,
3017 &q->state);
3018 qdisc_run(q);
3019 spin_unlock(root_lock);
3020 } else {
3021 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3022 &q->state)) {
3023 __netif_reschedule(q);
3024 } else {
3025 smp_mb__before_clear_bit();
3026 clear_bit(__QDISC_STATE_SCHED,
3027 &q->state);
3028 }
3029 }
3030 }
3031 }
3032 }
3033
3034 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3035 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3036 /* This hook is defined here for ATM LANE */
3037 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3038 unsigned char *addr) __read_mostly;
3039 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3040 #endif
3041
3042 #ifdef CONFIG_NET_CLS_ACT
3043 /* TODO: Maybe we should just force sch_ingress to be compiled in
3044 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3045 * a compare and 2 stores extra right now if we dont have it on
3046 * but have CONFIG_NET_CLS_ACT
3047 * NOTE: This doesn't stop any functionality; if you dont have
3048 * the ingress scheduler, you just can't add policies on ingress.
3049 *
3050 */
3051 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3052 {
3053 struct net_device *dev = skb->dev;
3054 u32 ttl = G_TC_RTTL(skb->tc_verd);
3055 int result = TC_ACT_OK;
3056 struct Qdisc *q;
3057
3058 if (unlikely(MAX_RED_LOOP < ttl++)) {
3059 if (net_ratelimit())
3060 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3061 skb->skb_iif, dev->ifindex);
3062 return TC_ACT_SHOT;
3063 }
3064
3065 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3066 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3067
3068 q = rxq->qdisc;
3069 if (q != &noop_qdisc) {
3070 spin_lock(qdisc_lock(q));
3071 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3072 result = qdisc_enqueue_root(skb, q);
3073 spin_unlock(qdisc_lock(q));
3074 }
3075
3076 return result;
3077 }
3078
3079 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3080 struct packet_type **pt_prev,
3081 int *ret, struct net_device *orig_dev)
3082 {
3083 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3084
3085 if (!rxq || rxq->qdisc == &noop_qdisc)
3086 goto out;
3087
3088 if (*pt_prev) {
3089 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3090 *pt_prev = NULL;
3091 }
3092
3093 switch (ing_filter(skb, rxq)) {
3094 case TC_ACT_SHOT:
3095 case TC_ACT_STOLEN:
3096 kfree_skb(skb);
3097 return NULL;
3098 }
3099
3100 out:
3101 skb->tc_verd = 0;
3102 return skb;
3103 }
3104 #endif
3105
3106 /**
3107 * netdev_rx_handler_register - register receive handler
3108 * @dev: device to register a handler for
3109 * @rx_handler: receive handler to register
3110 * @rx_handler_data: data pointer that is used by rx handler
3111 *
3112 * Register a receive hander for a device. This handler will then be
3113 * called from __netif_receive_skb. A negative errno code is returned
3114 * on a failure.
3115 *
3116 * The caller must hold the rtnl_mutex.
3117 *
3118 * For a general description of rx_handler, see enum rx_handler_result.
3119 */
3120 int netdev_rx_handler_register(struct net_device *dev,
3121 rx_handler_func_t *rx_handler,
3122 void *rx_handler_data)
3123 {
3124 ASSERT_RTNL();
3125
3126 if (dev->rx_handler)
3127 return -EBUSY;
3128
3129 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3130 rcu_assign_pointer(dev->rx_handler, rx_handler);
3131
3132 return 0;
3133 }
3134 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3135
3136 /**
3137 * netdev_rx_handler_unregister - unregister receive handler
3138 * @dev: device to unregister a handler from
3139 *
3140 * Unregister a receive hander from a device.
3141 *
3142 * The caller must hold the rtnl_mutex.
3143 */
3144 void netdev_rx_handler_unregister(struct net_device *dev)
3145 {
3146
3147 ASSERT_RTNL();
3148 RCU_INIT_POINTER(dev->rx_handler, NULL);
3149 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3150 }
3151 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3152
3153 static int __netif_receive_skb(struct sk_buff *skb)
3154 {
3155 struct packet_type *ptype, *pt_prev;
3156 rx_handler_func_t *rx_handler;
3157 struct net_device *orig_dev;
3158 struct net_device *null_or_dev;
3159 bool deliver_exact = false;
3160 int ret = NET_RX_DROP;
3161 __be16 type;
3162
3163 if (!netdev_tstamp_prequeue)
3164 net_timestamp_check(skb);
3165
3166 trace_netif_receive_skb(skb);
3167
3168 /* if we've gotten here through NAPI, check netpoll */
3169 if (netpoll_receive_skb(skb))
3170 return NET_RX_DROP;
3171
3172 if (!skb->skb_iif)
3173 skb->skb_iif = skb->dev->ifindex;
3174 orig_dev = skb->dev;
3175
3176 skb_reset_network_header(skb);
3177 skb_reset_transport_header(skb);
3178 skb_reset_mac_len(skb);
3179
3180 pt_prev = NULL;
3181
3182 rcu_read_lock();
3183
3184 another_round:
3185
3186 __this_cpu_inc(softnet_data.processed);
3187
3188 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3189 skb = vlan_untag(skb);
3190 if (unlikely(!skb))
3191 goto out;
3192 }
3193
3194 #ifdef CONFIG_NET_CLS_ACT
3195 if (skb->tc_verd & TC_NCLS) {
3196 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3197 goto ncls;
3198 }
3199 #endif
3200
3201 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3202 if (!ptype->dev || ptype->dev == skb->dev) {
3203 if (pt_prev)
3204 ret = deliver_skb(skb, pt_prev, orig_dev);
3205 pt_prev = ptype;
3206 }
3207 }
3208
3209 #ifdef CONFIG_NET_CLS_ACT
3210 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3211 if (!skb)
3212 goto out;
3213 ncls:
3214 #endif
3215
3216 rx_handler = rcu_dereference(skb->dev->rx_handler);
3217 if (rx_handler) {
3218 if (pt_prev) {
3219 ret = deliver_skb(skb, pt_prev, orig_dev);
3220 pt_prev = NULL;
3221 }
3222 switch (rx_handler(&skb)) {
3223 case RX_HANDLER_CONSUMED:
3224 goto out;
3225 case RX_HANDLER_ANOTHER:
3226 goto another_round;
3227 case RX_HANDLER_EXACT:
3228 deliver_exact = true;
3229 case RX_HANDLER_PASS:
3230 break;
3231 default:
3232 BUG();
3233 }
3234 }
3235
3236 if (vlan_tx_tag_present(skb)) {
3237 if (pt_prev) {
3238 ret = deliver_skb(skb, pt_prev, orig_dev);
3239 pt_prev = NULL;
3240 }
3241 if (vlan_do_receive(&skb))
3242 goto another_round;
3243 else if (unlikely(!skb))
3244 goto out;
3245 }
3246
3247 /* deliver only exact match when indicated */
3248 null_or_dev = deliver_exact ? skb->dev : NULL;
3249
3250 type = skb->protocol;
3251 list_for_each_entry_rcu(ptype,
3252 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3253 if (ptype->type == type &&
3254 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3255 ptype->dev == orig_dev)) {
3256 if (pt_prev)
3257 ret = deliver_skb(skb, pt_prev, orig_dev);
3258 pt_prev = ptype;
3259 }
3260 }
3261
3262 if (pt_prev) {
3263 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3264 } else {
3265 atomic_long_inc(&skb->dev->rx_dropped);
3266 kfree_skb(skb);
3267 /* Jamal, now you will not able to escape explaining
3268 * me how you were going to use this. :-)
3269 */
3270 ret = NET_RX_DROP;
3271 }
3272
3273 out:
3274 rcu_read_unlock();
3275 return ret;
3276 }
3277
3278 /**
3279 * netif_receive_skb - process receive buffer from network
3280 * @skb: buffer to process
3281 *
3282 * netif_receive_skb() is the main receive data processing function.
3283 * It always succeeds. The buffer may be dropped during processing
3284 * for congestion control or by the protocol layers.
3285 *
3286 * This function may only be called from softirq context and interrupts
3287 * should be enabled.
3288 *
3289 * Return values (usually ignored):
3290 * NET_RX_SUCCESS: no congestion
3291 * NET_RX_DROP: packet was dropped
3292 */
3293 int netif_receive_skb(struct sk_buff *skb)
3294 {
3295 if (netdev_tstamp_prequeue)
3296 net_timestamp_check(skb);
3297
3298 if (skb_defer_rx_timestamp(skb))
3299 return NET_RX_SUCCESS;
3300
3301 #ifdef CONFIG_RPS
3302 {
3303 struct rps_dev_flow voidflow, *rflow = &voidflow;
3304 int cpu, ret;
3305
3306 rcu_read_lock();
3307
3308 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3309
3310 if (cpu >= 0) {
3311 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3312 rcu_read_unlock();
3313 } else {
3314 rcu_read_unlock();
3315 ret = __netif_receive_skb(skb);
3316 }
3317
3318 return ret;
3319 }
3320 #else
3321 return __netif_receive_skb(skb);
3322 #endif
3323 }
3324 EXPORT_SYMBOL(netif_receive_skb);
3325
3326 /* Network device is going away, flush any packets still pending
3327 * Called with irqs disabled.
3328 */
3329 static void flush_backlog(void *arg)
3330 {
3331 struct net_device *dev = arg;
3332 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3333 struct sk_buff *skb, *tmp;
3334
3335 rps_lock(sd);
3336 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3337 if (skb->dev == dev) {
3338 __skb_unlink(skb, &sd->input_pkt_queue);
3339 kfree_skb(skb);
3340 input_queue_head_incr(sd);
3341 }
3342 }
3343 rps_unlock(sd);
3344
3345 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3346 if (skb->dev == dev) {
3347 __skb_unlink(skb, &sd->process_queue);
3348 kfree_skb(skb);
3349 input_queue_head_incr(sd);
3350 }
3351 }
3352 }
3353
3354 static int napi_gro_complete(struct sk_buff *skb)
3355 {
3356 struct packet_type *ptype;
3357 __be16 type = skb->protocol;
3358 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3359 int err = -ENOENT;
3360
3361 if (NAPI_GRO_CB(skb)->count == 1) {
3362 skb_shinfo(skb)->gso_size = 0;
3363 goto out;
3364 }
3365
3366 rcu_read_lock();
3367 list_for_each_entry_rcu(ptype, head, list) {
3368 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3369 continue;
3370
3371 err = ptype->gro_complete(skb);
3372 break;
3373 }
3374 rcu_read_unlock();
3375
3376 if (err) {
3377 WARN_ON(&ptype->list == head);
3378 kfree_skb(skb);
3379 return NET_RX_SUCCESS;
3380 }
3381
3382 out:
3383 return netif_receive_skb(skb);
3384 }
3385
3386 inline void napi_gro_flush(struct napi_struct *napi)
3387 {
3388 struct sk_buff *skb, *next;
3389
3390 for (skb = napi->gro_list; skb; skb = next) {
3391 next = skb->next;
3392 skb->next = NULL;
3393 napi_gro_complete(skb);
3394 }
3395
3396 napi->gro_count = 0;
3397 napi->gro_list = NULL;
3398 }
3399 EXPORT_SYMBOL(napi_gro_flush);
3400
3401 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3402 {
3403 struct sk_buff **pp = NULL;
3404 struct packet_type *ptype;
3405 __be16 type = skb->protocol;
3406 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3407 int same_flow;
3408 int mac_len;
3409 enum gro_result ret;
3410
3411 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3412 goto normal;
3413
3414 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3415 goto normal;
3416
3417 rcu_read_lock();
3418 list_for_each_entry_rcu(ptype, head, list) {
3419 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3420 continue;
3421
3422 skb_set_network_header(skb, skb_gro_offset(skb));
3423 mac_len = skb->network_header - skb->mac_header;
3424 skb->mac_len = mac_len;
3425 NAPI_GRO_CB(skb)->same_flow = 0;
3426 NAPI_GRO_CB(skb)->flush = 0;
3427 NAPI_GRO_CB(skb)->free = 0;
3428
3429 pp = ptype->gro_receive(&napi->gro_list, skb);
3430 break;
3431 }
3432 rcu_read_unlock();
3433
3434 if (&ptype->list == head)
3435 goto normal;
3436
3437 same_flow = NAPI_GRO_CB(skb)->same_flow;
3438 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3439
3440 if (pp) {
3441 struct sk_buff *nskb = *pp;
3442
3443 *pp = nskb->next;
3444 nskb->next = NULL;
3445 napi_gro_complete(nskb);
3446 napi->gro_count--;
3447 }
3448
3449 if (same_flow)
3450 goto ok;
3451
3452 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3453 goto normal;
3454
3455 napi->gro_count++;
3456 NAPI_GRO_CB(skb)->count = 1;
3457 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3458 skb->next = napi->gro_list;
3459 napi->gro_list = skb;
3460 ret = GRO_HELD;
3461
3462 pull:
3463 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3464 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3465
3466 BUG_ON(skb->end - skb->tail < grow);
3467
3468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3469
3470 skb->tail += grow;
3471 skb->data_len -= grow;
3472
3473 skb_shinfo(skb)->frags[0].page_offset += grow;
3474 skb_shinfo(skb)->frags[0].size -= grow;
3475
3476 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3477 put_page(skb_shinfo(skb)->frags[0].page);
3478 memmove(skb_shinfo(skb)->frags,
3479 skb_shinfo(skb)->frags + 1,
3480 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3481 }
3482 }
3483
3484 ok:
3485 return ret;
3486
3487 normal:
3488 ret = GRO_NORMAL;
3489 goto pull;
3490 }
3491 EXPORT_SYMBOL(dev_gro_receive);
3492
3493 static inline gro_result_t
3494 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3495 {
3496 struct sk_buff *p;
3497
3498 for (p = napi->gro_list; p; p = p->next) {
3499 unsigned long diffs;
3500
3501 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3502 diffs |= p->vlan_tci ^ skb->vlan_tci;
3503 diffs |= compare_ether_header(skb_mac_header(p),
3504 skb_gro_mac_header(skb));
3505 NAPI_GRO_CB(p)->same_flow = !diffs;
3506 NAPI_GRO_CB(p)->flush = 0;
3507 }
3508
3509 return dev_gro_receive(napi, skb);
3510 }
3511
3512 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3513 {
3514 switch (ret) {
3515 case GRO_NORMAL:
3516 if (netif_receive_skb(skb))
3517 ret = GRO_DROP;
3518 break;
3519
3520 case GRO_DROP:
3521 case GRO_MERGED_FREE:
3522 kfree_skb(skb);
3523 break;
3524
3525 case GRO_HELD:
3526 case GRO_MERGED:
3527 break;
3528 }
3529
3530 return ret;
3531 }
3532 EXPORT_SYMBOL(napi_skb_finish);
3533
3534 void skb_gro_reset_offset(struct sk_buff *skb)
3535 {
3536 NAPI_GRO_CB(skb)->data_offset = 0;
3537 NAPI_GRO_CB(skb)->frag0 = NULL;
3538 NAPI_GRO_CB(skb)->frag0_len = 0;
3539
3540 if (skb->mac_header == skb->tail &&
3541 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3542 NAPI_GRO_CB(skb)->frag0 =
3543 page_address(skb_shinfo(skb)->frags[0].page) +
3544 skb_shinfo(skb)->frags[0].page_offset;
3545 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3546 }
3547 }
3548 EXPORT_SYMBOL(skb_gro_reset_offset);
3549
3550 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3551 {
3552 skb_gro_reset_offset(skb);
3553
3554 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3555 }
3556 EXPORT_SYMBOL(napi_gro_receive);
3557
3558 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3559 {
3560 __skb_pull(skb, skb_headlen(skb));
3561 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3562 skb->vlan_tci = 0;
3563 skb->dev = napi->dev;
3564 skb->skb_iif = 0;
3565
3566 napi->skb = skb;
3567 }
3568
3569 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3570 {
3571 struct sk_buff *skb = napi->skb;
3572
3573 if (!skb) {
3574 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3575 if (skb)
3576 napi->skb = skb;
3577 }
3578 return skb;
3579 }
3580 EXPORT_SYMBOL(napi_get_frags);
3581
3582 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3583 gro_result_t ret)
3584 {
3585 switch (ret) {
3586 case GRO_NORMAL:
3587 case GRO_HELD:
3588 skb->protocol = eth_type_trans(skb, skb->dev);
3589
3590 if (ret == GRO_HELD)
3591 skb_gro_pull(skb, -ETH_HLEN);
3592 else if (netif_receive_skb(skb))
3593 ret = GRO_DROP;
3594 break;
3595
3596 case GRO_DROP:
3597 case GRO_MERGED_FREE:
3598 napi_reuse_skb(napi, skb);
3599 break;
3600
3601 case GRO_MERGED:
3602 break;
3603 }
3604
3605 return ret;
3606 }
3607 EXPORT_SYMBOL(napi_frags_finish);
3608
3609 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3610 {
3611 struct sk_buff *skb = napi->skb;
3612 struct ethhdr *eth;
3613 unsigned int hlen;
3614 unsigned int off;
3615
3616 napi->skb = NULL;
3617
3618 skb_reset_mac_header(skb);
3619 skb_gro_reset_offset(skb);
3620
3621 off = skb_gro_offset(skb);
3622 hlen = off + sizeof(*eth);
3623 eth = skb_gro_header_fast(skb, off);
3624 if (skb_gro_header_hard(skb, hlen)) {
3625 eth = skb_gro_header_slow(skb, hlen, off);
3626 if (unlikely(!eth)) {
3627 napi_reuse_skb(napi, skb);
3628 skb = NULL;
3629 goto out;
3630 }
3631 }
3632
3633 skb_gro_pull(skb, sizeof(*eth));
3634
3635 /*
3636 * This works because the only protocols we care about don't require
3637 * special handling. We'll fix it up properly at the end.
3638 */
3639 skb->protocol = eth->h_proto;
3640
3641 out:
3642 return skb;
3643 }
3644 EXPORT_SYMBOL(napi_frags_skb);
3645
3646 gro_result_t napi_gro_frags(struct napi_struct *napi)
3647 {
3648 struct sk_buff *skb = napi_frags_skb(napi);
3649
3650 if (!skb)
3651 return GRO_DROP;
3652
3653 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3654 }
3655 EXPORT_SYMBOL(napi_gro_frags);
3656
3657 /*
3658 * net_rps_action sends any pending IPI's for rps.
3659 * Note: called with local irq disabled, but exits with local irq enabled.
3660 */
3661 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3662 {
3663 #ifdef CONFIG_RPS
3664 struct softnet_data *remsd = sd->rps_ipi_list;
3665
3666 if (remsd) {
3667 sd->rps_ipi_list = NULL;
3668
3669 local_irq_enable();
3670
3671 /* Send pending IPI's to kick RPS processing on remote cpus. */
3672 while (remsd) {
3673 struct softnet_data *next = remsd->rps_ipi_next;
3674
3675 if (cpu_online(remsd->cpu))
3676 __smp_call_function_single(remsd->cpu,
3677 &remsd->csd, 0);
3678 remsd = next;
3679 }
3680 } else
3681 #endif
3682 local_irq_enable();
3683 }
3684
3685 static int process_backlog(struct napi_struct *napi, int quota)
3686 {
3687 int work = 0;
3688 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3689
3690 #ifdef CONFIG_RPS
3691 /* Check if we have pending ipi, its better to send them now,
3692 * not waiting net_rx_action() end.
3693 */
3694 if (sd->rps_ipi_list) {
3695 local_irq_disable();
3696 net_rps_action_and_irq_enable(sd);
3697 }
3698 #endif
3699 napi->weight = weight_p;
3700 local_irq_disable();
3701 while (work < quota) {
3702 struct sk_buff *skb;
3703 unsigned int qlen;
3704
3705 while ((skb = __skb_dequeue(&sd->process_queue))) {
3706 local_irq_enable();
3707 __netif_receive_skb(skb);
3708 local_irq_disable();
3709 input_queue_head_incr(sd);
3710 if (++work >= quota) {
3711 local_irq_enable();
3712 return work;
3713 }
3714 }
3715
3716 rps_lock(sd);
3717 qlen = skb_queue_len(&sd->input_pkt_queue);
3718 if (qlen)
3719 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3720 &sd->process_queue);
3721
3722 if (qlen < quota - work) {
3723 /*
3724 * Inline a custom version of __napi_complete().
3725 * only current cpu owns and manipulates this napi,
3726 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3727 * we can use a plain write instead of clear_bit(),
3728 * and we dont need an smp_mb() memory barrier.
3729 */
3730 list_del(&napi->poll_list);
3731 napi->state = 0;
3732
3733 quota = work + qlen;
3734 }
3735 rps_unlock(sd);
3736 }
3737 local_irq_enable();
3738
3739 return work;
3740 }
3741
3742 /**
3743 * __napi_schedule - schedule for receive
3744 * @n: entry to schedule
3745 *
3746 * The entry's receive function will be scheduled to run
3747 */
3748 void __napi_schedule(struct napi_struct *n)
3749 {
3750 unsigned long flags;
3751
3752 local_irq_save(flags);
3753 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3754 local_irq_restore(flags);
3755 }
3756 EXPORT_SYMBOL(__napi_schedule);
3757
3758 void __napi_complete(struct napi_struct *n)
3759 {
3760 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3761 BUG_ON(n->gro_list);
3762
3763 list_del(&n->poll_list);
3764 smp_mb__before_clear_bit();
3765 clear_bit(NAPI_STATE_SCHED, &n->state);
3766 }
3767 EXPORT_SYMBOL(__napi_complete);
3768
3769 void napi_complete(struct napi_struct *n)
3770 {
3771 unsigned long flags;
3772
3773 /*
3774 * don't let napi dequeue from the cpu poll list
3775 * just in case its running on a different cpu
3776 */
3777 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3778 return;
3779
3780 napi_gro_flush(n);
3781 local_irq_save(flags);
3782 __napi_complete(n);
3783 local_irq_restore(flags);
3784 }
3785 EXPORT_SYMBOL(napi_complete);
3786
3787 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3788 int (*poll)(struct napi_struct *, int), int weight)
3789 {
3790 INIT_LIST_HEAD(&napi->poll_list);
3791 napi->gro_count = 0;
3792 napi->gro_list = NULL;
3793 napi->skb = NULL;
3794 napi->poll = poll;
3795 napi->weight = weight;
3796 list_add(&napi->dev_list, &dev->napi_list);
3797 napi->dev = dev;
3798 #ifdef CONFIG_NETPOLL
3799 spin_lock_init(&napi->poll_lock);
3800 napi->poll_owner = -1;
3801 #endif
3802 set_bit(NAPI_STATE_SCHED, &napi->state);
3803 }
3804 EXPORT_SYMBOL(netif_napi_add);
3805
3806 void netif_napi_del(struct napi_struct *napi)
3807 {
3808 struct sk_buff *skb, *next;
3809
3810 list_del_init(&napi->dev_list);
3811 napi_free_frags(napi);
3812
3813 for (skb = napi->gro_list; skb; skb = next) {
3814 next = skb->next;
3815 skb->next = NULL;
3816 kfree_skb(skb);
3817 }
3818
3819 napi->gro_list = NULL;
3820 napi->gro_count = 0;
3821 }
3822 EXPORT_SYMBOL(netif_napi_del);
3823
3824 static void net_rx_action(struct softirq_action *h)
3825 {
3826 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3827 unsigned long time_limit = jiffies + 2;
3828 int budget = netdev_budget;
3829 void *have;
3830
3831 local_irq_disable();
3832
3833 while (!list_empty(&sd->poll_list)) {
3834 struct napi_struct *n;
3835 int work, weight;
3836
3837 /* If softirq window is exhuasted then punt.
3838 * Allow this to run for 2 jiffies since which will allow
3839 * an average latency of 1.5/HZ.
3840 */
3841 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3842 goto softnet_break;
3843
3844 local_irq_enable();
3845
3846 /* Even though interrupts have been re-enabled, this
3847 * access is safe because interrupts can only add new
3848 * entries to the tail of this list, and only ->poll()
3849 * calls can remove this head entry from the list.
3850 */
3851 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3852
3853 have = netpoll_poll_lock(n);
3854
3855 weight = n->weight;
3856
3857 /* This NAPI_STATE_SCHED test is for avoiding a race
3858 * with netpoll's poll_napi(). Only the entity which
3859 * obtains the lock and sees NAPI_STATE_SCHED set will
3860 * actually make the ->poll() call. Therefore we avoid
3861 * accidentally calling ->poll() when NAPI is not scheduled.
3862 */
3863 work = 0;
3864 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3865 work = n->poll(n, weight);
3866 trace_napi_poll(n);
3867 }
3868
3869 WARN_ON_ONCE(work > weight);
3870
3871 budget -= work;
3872
3873 local_irq_disable();
3874
3875 /* Drivers must not modify the NAPI state if they
3876 * consume the entire weight. In such cases this code
3877 * still "owns" the NAPI instance and therefore can
3878 * move the instance around on the list at-will.
3879 */
3880 if (unlikely(work == weight)) {
3881 if (unlikely(napi_disable_pending(n))) {
3882 local_irq_enable();
3883 napi_complete(n);
3884 local_irq_disable();
3885 } else
3886 list_move_tail(&n->poll_list, &sd->poll_list);
3887 }
3888
3889 netpoll_poll_unlock(have);
3890 }
3891 out:
3892 net_rps_action_and_irq_enable(sd);
3893
3894 #ifdef CONFIG_NET_DMA
3895 /*
3896 * There may not be any more sk_buffs coming right now, so push
3897 * any pending DMA copies to hardware
3898 */
3899 dma_issue_pending_all();
3900 #endif
3901
3902 return;
3903
3904 softnet_break:
3905 sd->time_squeeze++;
3906 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3907 goto out;
3908 }
3909
3910 static gifconf_func_t *gifconf_list[NPROTO];
3911
3912 /**
3913 * register_gifconf - register a SIOCGIF handler
3914 * @family: Address family
3915 * @gifconf: Function handler
3916 *
3917 * Register protocol dependent address dumping routines. The handler
3918 * that is passed must not be freed or reused until it has been replaced
3919 * by another handler.
3920 */
3921 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3922 {
3923 if (family >= NPROTO)
3924 return -EINVAL;
3925 gifconf_list[family] = gifconf;
3926 return 0;
3927 }
3928 EXPORT_SYMBOL(register_gifconf);
3929
3930
3931 /*
3932 * Map an interface index to its name (SIOCGIFNAME)
3933 */
3934
3935 /*
3936 * We need this ioctl for efficient implementation of the
3937 * if_indextoname() function required by the IPv6 API. Without
3938 * it, we would have to search all the interfaces to find a
3939 * match. --pb
3940 */
3941
3942 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3943 {
3944 struct net_device *dev;
3945 struct ifreq ifr;
3946
3947 /*
3948 * Fetch the caller's info block.
3949 */
3950
3951 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3952 return -EFAULT;
3953
3954 rcu_read_lock();
3955 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3956 if (!dev) {
3957 rcu_read_unlock();
3958 return -ENODEV;
3959 }
3960
3961 strcpy(ifr.ifr_name, dev->name);
3962 rcu_read_unlock();
3963
3964 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3965 return -EFAULT;
3966 return 0;
3967 }
3968
3969 /*
3970 * Perform a SIOCGIFCONF call. This structure will change
3971 * size eventually, and there is nothing I can do about it.
3972 * Thus we will need a 'compatibility mode'.
3973 */
3974
3975 static int dev_ifconf(struct net *net, char __user *arg)
3976 {
3977 struct ifconf ifc;
3978 struct net_device *dev;
3979 char __user *pos;
3980 int len;
3981 int total;
3982 int i;
3983
3984 /*
3985 * Fetch the caller's info block.
3986 */
3987
3988 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3989 return -EFAULT;
3990
3991 pos = ifc.ifc_buf;
3992 len = ifc.ifc_len;
3993
3994 /*
3995 * Loop over the interfaces, and write an info block for each.
3996 */
3997
3998 total = 0;
3999 for_each_netdev(net, dev) {
4000 for (i = 0; i < NPROTO; i++) {
4001 if (gifconf_list[i]) {
4002 int done;
4003 if (!pos)
4004 done = gifconf_list[i](dev, NULL, 0);
4005 else
4006 done = gifconf_list[i](dev, pos + total,
4007 len - total);
4008 if (done < 0)
4009 return -EFAULT;
4010 total += done;
4011 }
4012 }
4013 }
4014
4015 /*
4016 * All done. Write the updated control block back to the caller.
4017 */
4018 ifc.ifc_len = total;
4019
4020 /*
4021 * Both BSD and Solaris return 0 here, so we do too.
4022 */
4023 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4024 }
4025
4026 #ifdef CONFIG_PROC_FS
4027 /*
4028 * This is invoked by the /proc filesystem handler to display a device
4029 * in detail.
4030 */
4031 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4032 __acquires(RCU)
4033 {
4034 struct net *net = seq_file_net(seq);
4035 loff_t off;
4036 struct net_device *dev;
4037
4038 rcu_read_lock();
4039 if (!*pos)
4040 return SEQ_START_TOKEN;
4041
4042 off = 1;
4043 for_each_netdev_rcu(net, dev)
4044 if (off++ == *pos)
4045 return dev;
4046
4047 return NULL;
4048 }
4049
4050 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4051 {
4052 struct net_device *dev = v;
4053
4054 if (v == SEQ_START_TOKEN)
4055 dev = first_net_device_rcu(seq_file_net(seq));
4056 else
4057 dev = next_net_device_rcu(dev);
4058
4059 ++*pos;
4060 return dev;
4061 }
4062
4063 void dev_seq_stop(struct seq_file *seq, void *v)
4064 __releases(RCU)
4065 {
4066 rcu_read_unlock();
4067 }
4068
4069 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4070 {
4071 struct rtnl_link_stats64 temp;
4072 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4073
4074 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4075 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4076 dev->name, stats->rx_bytes, stats->rx_packets,
4077 stats->rx_errors,
4078 stats->rx_dropped + stats->rx_missed_errors,
4079 stats->rx_fifo_errors,
4080 stats->rx_length_errors + stats->rx_over_errors +
4081 stats->rx_crc_errors + stats->rx_frame_errors,
4082 stats->rx_compressed, stats->multicast,
4083 stats->tx_bytes, stats->tx_packets,
4084 stats->tx_errors, stats->tx_dropped,
4085 stats->tx_fifo_errors, stats->collisions,
4086 stats->tx_carrier_errors +
4087 stats->tx_aborted_errors +
4088 stats->tx_window_errors +
4089 stats->tx_heartbeat_errors,
4090 stats->tx_compressed);
4091 }
4092
4093 /*
4094 * Called from the PROCfs module. This now uses the new arbitrary sized
4095 * /proc/net interface to create /proc/net/dev
4096 */
4097 static int dev_seq_show(struct seq_file *seq, void *v)
4098 {
4099 if (v == SEQ_START_TOKEN)
4100 seq_puts(seq, "Inter-| Receive "
4101 " | Transmit\n"
4102 " face |bytes packets errs drop fifo frame "
4103 "compressed multicast|bytes packets errs "
4104 "drop fifo colls carrier compressed\n");
4105 else
4106 dev_seq_printf_stats(seq, v);
4107 return 0;
4108 }
4109
4110 static struct softnet_data *softnet_get_online(loff_t *pos)
4111 {
4112 struct softnet_data *sd = NULL;
4113
4114 while (*pos < nr_cpu_ids)
4115 if (cpu_online(*pos)) {
4116 sd = &per_cpu(softnet_data, *pos);
4117 break;
4118 } else
4119 ++*pos;
4120 return sd;
4121 }
4122
4123 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4124 {
4125 return softnet_get_online(pos);
4126 }
4127
4128 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4129 {
4130 ++*pos;
4131 return softnet_get_online(pos);
4132 }
4133
4134 static void softnet_seq_stop(struct seq_file *seq, void *v)
4135 {
4136 }
4137
4138 static int softnet_seq_show(struct seq_file *seq, void *v)
4139 {
4140 struct softnet_data *sd = v;
4141
4142 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4143 sd->processed, sd->dropped, sd->time_squeeze, 0,
4144 0, 0, 0, 0, /* was fastroute */
4145 sd->cpu_collision, sd->received_rps);
4146 return 0;
4147 }
4148
4149 static const struct seq_operations dev_seq_ops = {
4150 .start = dev_seq_start,
4151 .next = dev_seq_next,
4152 .stop = dev_seq_stop,
4153 .show = dev_seq_show,
4154 };
4155
4156 static int dev_seq_open(struct inode *inode, struct file *file)
4157 {
4158 return seq_open_net(inode, file, &dev_seq_ops,
4159 sizeof(struct seq_net_private));
4160 }
4161
4162 static const struct file_operations dev_seq_fops = {
4163 .owner = THIS_MODULE,
4164 .open = dev_seq_open,
4165 .read = seq_read,
4166 .llseek = seq_lseek,
4167 .release = seq_release_net,
4168 };
4169
4170 static const struct seq_operations softnet_seq_ops = {
4171 .start = softnet_seq_start,
4172 .next = softnet_seq_next,
4173 .stop = softnet_seq_stop,
4174 .show = softnet_seq_show,
4175 };
4176
4177 static int softnet_seq_open(struct inode *inode, struct file *file)
4178 {
4179 return seq_open(file, &softnet_seq_ops);
4180 }
4181
4182 static const struct file_operations softnet_seq_fops = {
4183 .owner = THIS_MODULE,
4184 .open = softnet_seq_open,
4185 .read = seq_read,
4186 .llseek = seq_lseek,
4187 .release = seq_release,
4188 };
4189
4190 static void *ptype_get_idx(loff_t pos)
4191 {
4192 struct packet_type *pt = NULL;
4193 loff_t i = 0;
4194 int t;
4195
4196 list_for_each_entry_rcu(pt, &ptype_all, list) {
4197 if (i == pos)
4198 return pt;
4199 ++i;
4200 }
4201
4202 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4203 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4204 if (i == pos)
4205 return pt;
4206 ++i;
4207 }
4208 }
4209 return NULL;
4210 }
4211
4212 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4213 __acquires(RCU)
4214 {
4215 rcu_read_lock();
4216 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4217 }
4218
4219 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4220 {
4221 struct packet_type *pt;
4222 struct list_head *nxt;
4223 int hash;
4224
4225 ++*pos;
4226 if (v == SEQ_START_TOKEN)
4227 return ptype_get_idx(0);
4228
4229 pt = v;
4230 nxt = pt->list.next;
4231 if (pt->type == htons(ETH_P_ALL)) {
4232 if (nxt != &ptype_all)
4233 goto found;
4234 hash = 0;
4235 nxt = ptype_base[0].next;
4236 } else
4237 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4238
4239 while (nxt == &ptype_base[hash]) {
4240 if (++hash >= PTYPE_HASH_SIZE)
4241 return NULL;
4242 nxt = ptype_base[hash].next;
4243 }
4244 found:
4245 return list_entry(nxt, struct packet_type, list);
4246 }
4247
4248 static void ptype_seq_stop(struct seq_file *seq, void *v)
4249 __releases(RCU)
4250 {
4251 rcu_read_unlock();
4252 }
4253
4254 static int ptype_seq_show(struct seq_file *seq, void *v)
4255 {
4256 struct packet_type *pt = v;
4257
4258 if (v == SEQ_START_TOKEN)
4259 seq_puts(seq, "Type Device Function\n");
4260 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4261 if (pt->type == htons(ETH_P_ALL))
4262 seq_puts(seq, "ALL ");
4263 else
4264 seq_printf(seq, "%04x", ntohs(pt->type));
4265
4266 seq_printf(seq, " %-8s %pF\n",
4267 pt->dev ? pt->dev->name : "", pt->func);
4268 }
4269
4270 return 0;
4271 }
4272
4273 static const struct seq_operations ptype_seq_ops = {
4274 .start = ptype_seq_start,
4275 .next = ptype_seq_next,
4276 .stop = ptype_seq_stop,
4277 .show = ptype_seq_show,
4278 };
4279
4280 static int ptype_seq_open(struct inode *inode, struct file *file)
4281 {
4282 return seq_open_net(inode, file, &ptype_seq_ops,
4283 sizeof(struct seq_net_private));
4284 }
4285
4286 static const struct file_operations ptype_seq_fops = {
4287 .owner = THIS_MODULE,
4288 .open = ptype_seq_open,
4289 .read = seq_read,
4290 .llseek = seq_lseek,
4291 .release = seq_release_net,
4292 };
4293
4294
4295 static int __net_init dev_proc_net_init(struct net *net)
4296 {
4297 int rc = -ENOMEM;
4298
4299 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4300 goto out;
4301 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4302 goto out_dev;
4303 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4304 goto out_softnet;
4305
4306 if (wext_proc_init(net))
4307 goto out_ptype;
4308 rc = 0;
4309 out:
4310 return rc;
4311 out_ptype:
4312 proc_net_remove(net, "ptype");
4313 out_softnet:
4314 proc_net_remove(net, "softnet_stat");
4315 out_dev:
4316 proc_net_remove(net, "dev");
4317 goto out;
4318 }
4319
4320 static void __net_exit dev_proc_net_exit(struct net *net)
4321 {
4322 wext_proc_exit(net);
4323
4324 proc_net_remove(net, "ptype");
4325 proc_net_remove(net, "softnet_stat");
4326 proc_net_remove(net, "dev");
4327 }
4328
4329 static struct pernet_operations __net_initdata dev_proc_ops = {
4330 .init = dev_proc_net_init,
4331 .exit = dev_proc_net_exit,
4332 };
4333
4334 static int __init dev_proc_init(void)
4335 {
4336 return register_pernet_subsys(&dev_proc_ops);
4337 }
4338 #else
4339 #define dev_proc_init() 0
4340 #endif /* CONFIG_PROC_FS */
4341
4342
4343 /**
4344 * netdev_set_master - set up master pointer
4345 * @slave: slave device
4346 * @master: new master device
4347 *
4348 * Changes the master device of the slave. Pass %NULL to break the
4349 * bonding. The caller must hold the RTNL semaphore. On a failure
4350 * a negative errno code is returned. On success the reference counts
4351 * are adjusted and the function returns zero.
4352 */
4353 int netdev_set_master(struct net_device *slave, struct net_device *master)
4354 {
4355 struct net_device *old = slave->master;
4356
4357 ASSERT_RTNL();
4358
4359 if (master) {
4360 if (old)
4361 return -EBUSY;
4362 dev_hold(master);
4363 }
4364
4365 slave->master = master;
4366
4367 if (old)
4368 dev_put(old);
4369 return 0;
4370 }
4371 EXPORT_SYMBOL(netdev_set_master);
4372
4373 /**
4374 * netdev_set_bond_master - set up bonding master/slave pair
4375 * @slave: slave device
4376 * @master: new master device
4377 *
4378 * Changes the master device of the slave. Pass %NULL to break the
4379 * bonding. The caller must hold the RTNL semaphore. On a failure
4380 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4381 * to the routing socket and the function returns zero.
4382 */
4383 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4384 {
4385 int err;
4386
4387 ASSERT_RTNL();
4388
4389 err = netdev_set_master(slave, master);
4390 if (err)
4391 return err;
4392 if (master)
4393 slave->flags |= IFF_SLAVE;
4394 else
4395 slave->flags &= ~IFF_SLAVE;
4396
4397 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4398 return 0;
4399 }
4400 EXPORT_SYMBOL(netdev_set_bond_master);
4401
4402 static void dev_change_rx_flags(struct net_device *dev, int flags)
4403 {
4404 const struct net_device_ops *ops = dev->netdev_ops;
4405
4406 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4407 ops->ndo_change_rx_flags(dev, flags);
4408 }
4409
4410 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4411 {
4412 unsigned short old_flags = dev->flags;
4413 uid_t uid;
4414 gid_t gid;
4415
4416 ASSERT_RTNL();
4417
4418 dev->flags |= IFF_PROMISC;
4419 dev->promiscuity += inc;
4420 if (dev->promiscuity == 0) {
4421 /*
4422 * Avoid overflow.
4423 * If inc causes overflow, untouch promisc and return error.
4424 */
4425 if (inc < 0)
4426 dev->flags &= ~IFF_PROMISC;
4427 else {
4428 dev->promiscuity -= inc;
4429 printk(KERN_WARNING "%s: promiscuity touches roof, "
4430 "set promiscuity failed, promiscuity feature "
4431 "of device might be broken.\n", dev->name);
4432 return -EOVERFLOW;
4433 }
4434 }
4435 if (dev->flags != old_flags) {
4436 printk(KERN_INFO "device %s %s promiscuous mode\n",
4437 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4438 "left");
4439 if (audit_enabled) {
4440 current_uid_gid(&uid, &gid);
4441 audit_log(current->audit_context, GFP_ATOMIC,
4442 AUDIT_ANOM_PROMISCUOUS,
4443 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4444 dev->name, (dev->flags & IFF_PROMISC),
4445 (old_flags & IFF_PROMISC),
4446 audit_get_loginuid(current),
4447 uid, gid,
4448 audit_get_sessionid(current));
4449 }
4450
4451 dev_change_rx_flags(dev, IFF_PROMISC);
4452 }
4453 return 0;
4454 }
4455
4456 /**
4457 * dev_set_promiscuity - update promiscuity count on a device
4458 * @dev: device
4459 * @inc: modifier
4460 *
4461 * Add or remove promiscuity from a device. While the count in the device
4462 * remains above zero the interface remains promiscuous. Once it hits zero
4463 * the device reverts back to normal filtering operation. A negative inc
4464 * value is used to drop promiscuity on the device.
4465 * Return 0 if successful or a negative errno code on error.
4466 */
4467 int dev_set_promiscuity(struct net_device *dev, int inc)
4468 {
4469 unsigned short old_flags = dev->flags;
4470 int err;
4471
4472 err = __dev_set_promiscuity(dev, inc);
4473 if (err < 0)
4474 return err;
4475 if (dev->flags != old_flags)
4476 dev_set_rx_mode(dev);
4477 return err;
4478 }
4479 EXPORT_SYMBOL(dev_set_promiscuity);
4480
4481 /**
4482 * dev_set_allmulti - update allmulti count on a device
4483 * @dev: device
4484 * @inc: modifier
4485 *
4486 * Add or remove reception of all multicast frames to a device. While the
4487 * count in the device remains above zero the interface remains listening
4488 * to all interfaces. Once it hits zero the device reverts back to normal
4489 * filtering operation. A negative @inc value is used to drop the counter
4490 * when releasing a resource needing all multicasts.
4491 * Return 0 if successful or a negative errno code on error.
4492 */
4493
4494 int dev_set_allmulti(struct net_device *dev, int inc)
4495 {
4496 unsigned short old_flags = dev->flags;
4497
4498 ASSERT_RTNL();
4499
4500 dev->flags |= IFF_ALLMULTI;
4501 dev->allmulti += inc;
4502 if (dev->allmulti == 0) {
4503 /*
4504 * Avoid overflow.
4505 * If inc causes overflow, untouch allmulti and return error.
4506 */
4507 if (inc < 0)
4508 dev->flags &= ~IFF_ALLMULTI;
4509 else {
4510 dev->allmulti -= inc;
4511 printk(KERN_WARNING "%s: allmulti touches roof, "
4512 "set allmulti failed, allmulti feature of "
4513 "device might be broken.\n", dev->name);
4514 return -EOVERFLOW;
4515 }
4516 }
4517 if (dev->flags ^ old_flags) {
4518 dev_change_rx_flags(dev, IFF_ALLMULTI);
4519 dev_set_rx_mode(dev);
4520 }
4521 return 0;
4522 }
4523 EXPORT_SYMBOL(dev_set_allmulti);
4524
4525 /*
4526 * Upload unicast and multicast address lists to device and
4527 * configure RX filtering. When the device doesn't support unicast
4528 * filtering it is put in promiscuous mode while unicast addresses
4529 * are present.
4530 */
4531 void __dev_set_rx_mode(struct net_device *dev)
4532 {
4533 const struct net_device_ops *ops = dev->netdev_ops;
4534
4535 /* dev_open will call this function so the list will stay sane. */
4536 if (!(dev->flags&IFF_UP))
4537 return;
4538
4539 if (!netif_device_present(dev))
4540 return;
4541
4542 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4543 /* Unicast addresses changes may only happen under the rtnl,
4544 * therefore calling __dev_set_promiscuity here is safe.
4545 */
4546 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4547 __dev_set_promiscuity(dev, 1);
4548 dev->uc_promisc = true;
4549 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4550 __dev_set_promiscuity(dev, -1);
4551 dev->uc_promisc = false;
4552 }
4553 }
4554
4555 if (ops->ndo_set_rx_mode)
4556 ops->ndo_set_rx_mode(dev);
4557 }
4558
4559 void dev_set_rx_mode(struct net_device *dev)
4560 {
4561 netif_addr_lock_bh(dev);
4562 __dev_set_rx_mode(dev);
4563 netif_addr_unlock_bh(dev);
4564 }
4565
4566 /**
4567 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4568 * @dev: device
4569 * @cmd: memory area for ethtool_ops::get_settings() result
4570 *
4571 * The cmd arg is initialized properly (cleared and
4572 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4573 *
4574 * Return device's ethtool_ops::get_settings() result value or
4575 * -EOPNOTSUPP when device doesn't expose
4576 * ethtool_ops::get_settings() operation.
4577 */
4578 int dev_ethtool_get_settings(struct net_device *dev,
4579 struct ethtool_cmd *cmd)
4580 {
4581 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4582 return -EOPNOTSUPP;
4583
4584 memset(cmd, 0, sizeof(struct ethtool_cmd));
4585 cmd->cmd = ETHTOOL_GSET;
4586 return dev->ethtool_ops->get_settings(dev, cmd);
4587 }
4588 EXPORT_SYMBOL(dev_ethtool_get_settings);
4589
4590 /**
4591 * dev_get_flags - get flags reported to userspace
4592 * @dev: device
4593 *
4594 * Get the combination of flag bits exported through APIs to userspace.
4595 */
4596 unsigned dev_get_flags(const struct net_device *dev)
4597 {
4598 unsigned flags;
4599
4600 flags = (dev->flags & ~(IFF_PROMISC |
4601 IFF_ALLMULTI |
4602 IFF_RUNNING |
4603 IFF_LOWER_UP |
4604 IFF_DORMANT)) |
4605 (dev->gflags & (IFF_PROMISC |
4606 IFF_ALLMULTI));
4607
4608 if (netif_running(dev)) {
4609 if (netif_oper_up(dev))
4610 flags |= IFF_RUNNING;
4611 if (netif_carrier_ok(dev))
4612 flags |= IFF_LOWER_UP;
4613 if (netif_dormant(dev))
4614 flags |= IFF_DORMANT;
4615 }
4616
4617 return flags;
4618 }
4619 EXPORT_SYMBOL(dev_get_flags);
4620
4621 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4622 {
4623 int old_flags = dev->flags;
4624 int ret;
4625
4626 ASSERT_RTNL();
4627
4628 /*
4629 * Set the flags on our device.
4630 */
4631
4632 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4633 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4634 IFF_AUTOMEDIA)) |
4635 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4636 IFF_ALLMULTI));
4637
4638 /*
4639 * Load in the correct multicast list now the flags have changed.
4640 */
4641
4642 if ((old_flags ^ flags) & IFF_MULTICAST)
4643 dev_change_rx_flags(dev, IFF_MULTICAST);
4644
4645 dev_set_rx_mode(dev);
4646
4647 /*
4648 * Have we downed the interface. We handle IFF_UP ourselves
4649 * according to user attempts to set it, rather than blindly
4650 * setting it.
4651 */
4652
4653 ret = 0;
4654 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4655 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4656
4657 if (!ret)
4658 dev_set_rx_mode(dev);
4659 }
4660
4661 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4662 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4663
4664 dev->gflags ^= IFF_PROMISC;
4665 dev_set_promiscuity(dev, inc);
4666 }
4667
4668 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4669 is important. Some (broken) drivers set IFF_PROMISC, when
4670 IFF_ALLMULTI is requested not asking us and not reporting.
4671 */
4672 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4673 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4674
4675 dev->gflags ^= IFF_ALLMULTI;
4676 dev_set_allmulti(dev, inc);
4677 }
4678
4679 return ret;
4680 }
4681
4682 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4683 {
4684 unsigned int changes = dev->flags ^ old_flags;
4685
4686 if (changes & IFF_UP) {
4687 if (dev->flags & IFF_UP)
4688 call_netdevice_notifiers(NETDEV_UP, dev);
4689 else
4690 call_netdevice_notifiers(NETDEV_DOWN, dev);
4691 }
4692
4693 if (dev->flags & IFF_UP &&
4694 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4695 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4696 }
4697
4698 /**
4699 * dev_change_flags - change device settings
4700 * @dev: device
4701 * @flags: device state flags
4702 *
4703 * Change settings on device based state flags. The flags are
4704 * in the userspace exported format.
4705 */
4706 int dev_change_flags(struct net_device *dev, unsigned flags)
4707 {
4708 int ret, changes;
4709 int old_flags = dev->flags;
4710
4711 ret = __dev_change_flags(dev, flags);
4712 if (ret < 0)
4713 return ret;
4714
4715 changes = old_flags ^ dev->flags;
4716 if (changes)
4717 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4718
4719 __dev_notify_flags(dev, old_flags);
4720 return ret;
4721 }
4722 EXPORT_SYMBOL(dev_change_flags);
4723
4724 /**
4725 * dev_set_mtu - Change maximum transfer unit
4726 * @dev: device
4727 * @new_mtu: new transfer unit
4728 *
4729 * Change the maximum transfer size of the network device.
4730 */
4731 int dev_set_mtu(struct net_device *dev, int new_mtu)
4732 {
4733 const struct net_device_ops *ops = dev->netdev_ops;
4734 int err;
4735
4736 if (new_mtu == dev->mtu)
4737 return 0;
4738
4739 /* MTU must be positive. */
4740 if (new_mtu < 0)
4741 return -EINVAL;
4742
4743 if (!netif_device_present(dev))
4744 return -ENODEV;
4745
4746 err = 0;
4747 if (ops->ndo_change_mtu)
4748 err = ops->ndo_change_mtu(dev, new_mtu);
4749 else
4750 dev->mtu = new_mtu;
4751
4752 if (!err && dev->flags & IFF_UP)
4753 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4754 return err;
4755 }
4756 EXPORT_SYMBOL(dev_set_mtu);
4757
4758 /**
4759 * dev_set_group - Change group this device belongs to
4760 * @dev: device
4761 * @new_group: group this device should belong to
4762 */
4763 void dev_set_group(struct net_device *dev, int new_group)
4764 {
4765 dev->group = new_group;
4766 }
4767 EXPORT_SYMBOL(dev_set_group);
4768
4769 /**
4770 * dev_set_mac_address - Change Media Access Control Address
4771 * @dev: device
4772 * @sa: new address
4773 *
4774 * Change the hardware (MAC) address of the device
4775 */
4776 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4777 {
4778 const struct net_device_ops *ops = dev->netdev_ops;
4779 int err;
4780
4781 if (!ops->ndo_set_mac_address)
4782 return -EOPNOTSUPP;
4783 if (sa->sa_family != dev->type)
4784 return -EINVAL;
4785 if (!netif_device_present(dev))
4786 return -ENODEV;
4787 err = ops->ndo_set_mac_address(dev, sa);
4788 if (!err)
4789 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4790 return err;
4791 }
4792 EXPORT_SYMBOL(dev_set_mac_address);
4793
4794 /*
4795 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4796 */
4797 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4798 {
4799 int err;
4800 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4801
4802 if (!dev)
4803 return -ENODEV;
4804
4805 switch (cmd) {
4806 case SIOCGIFFLAGS: /* Get interface flags */
4807 ifr->ifr_flags = (short) dev_get_flags(dev);
4808 return 0;
4809
4810 case SIOCGIFMETRIC: /* Get the metric on the interface
4811 (currently unused) */
4812 ifr->ifr_metric = 0;
4813 return 0;
4814
4815 case SIOCGIFMTU: /* Get the MTU of a device */
4816 ifr->ifr_mtu = dev->mtu;
4817 return 0;
4818
4819 case SIOCGIFHWADDR:
4820 if (!dev->addr_len)
4821 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4822 else
4823 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4824 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4825 ifr->ifr_hwaddr.sa_family = dev->type;
4826 return 0;
4827
4828 case SIOCGIFSLAVE:
4829 err = -EINVAL;
4830 break;
4831
4832 case SIOCGIFMAP:
4833 ifr->ifr_map.mem_start = dev->mem_start;
4834 ifr->ifr_map.mem_end = dev->mem_end;
4835 ifr->ifr_map.base_addr = dev->base_addr;
4836 ifr->ifr_map.irq = dev->irq;
4837 ifr->ifr_map.dma = dev->dma;
4838 ifr->ifr_map.port = dev->if_port;
4839 return 0;
4840
4841 case SIOCGIFINDEX:
4842 ifr->ifr_ifindex = dev->ifindex;
4843 return 0;
4844
4845 case SIOCGIFTXQLEN:
4846 ifr->ifr_qlen = dev->tx_queue_len;
4847 return 0;
4848
4849 default:
4850 /* dev_ioctl() should ensure this case
4851 * is never reached
4852 */
4853 WARN_ON(1);
4854 err = -ENOTTY;
4855 break;
4856
4857 }
4858 return err;
4859 }
4860
4861 /*
4862 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4863 */
4864 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4865 {
4866 int err;
4867 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4868 const struct net_device_ops *ops;
4869
4870 if (!dev)
4871 return -ENODEV;
4872
4873 ops = dev->netdev_ops;
4874
4875 switch (cmd) {
4876 case SIOCSIFFLAGS: /* Set interface flags */
4877 return dev_change_flags(dev, ifr->ifr_flags);
4878
4879 case SIOCSIFMETRIC: /* Set the metric on the interface
4880 (currently unused) */
4881 return -EOPNOTSUPP;
4882
4883 case SIOCSIFMTU: /* Set the MTU of a device */
4884 return dev_set_mtu(dev, ifr->ifr_mtu);
4885
4886 case SIOCSIFHWADDR:
4887 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4888
4889 case SIOCSIFHWBROADCAST:
4890 if (ifr->ifr_hwaddr.sa_family != dev->type)
4891 return -EINVAL;
4892 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4893 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4894 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4895 return 0;
4896
4897 case SIOCSIFMAP:
4898 if (ops->ndo_set_config) {
4899 if (!netif_device_present(dev))
4900 return -ENODEV;
4901 return ops->ndo_set_config(dev, &ifr->ifr_map);
4902 }
4903 return -EOPNOTSUPP;
4904
4905 case SIOCADDMULTI:
4906 if (!ops->ndo_set_rx_mode ||
4907 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4908 return -EINVAL;
4909 if (!netif_device_present(dev))
4910 return -ENODEV;
4911 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4912
4913 case SIOCDELMULTI:
4914 if (!ops->ndo_set_rx_mode ||
4915 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4916 return -EINVAL;
4917 if (!netif_device_present(dev))
4918 return -ENODEV;
4919 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4920
4921 case SIOCSIFTXQLEN:
4922 if (ifr->ifr_qlen < 0)
4923 return -EINVAL;
4924 dev->tx_queue_len = ifr->ifr_qlen;
4925 return 0;
4926
4927 case SIOCSIFNAME:
4928 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4929 return dev_change_name(dev, ifr->ifr_newname);
4930
4931 /*
4932 * Unknown or private ioctl
4933 */
4934 default:
4935 if ((cmd >= SIOCDEVPRIVATE &&
4936 cmd <= SIOCDEVPRIVATE + 15) ||
4937 cmd == SIOCBONDENSLAVE ||
4938 cmd == SIOCBONDRELEASE ||
4939 cmd == SIOCBONDSETHWADDR ||
4940 cmd == SIOCBONDSLAVEINFOQUERY ||
4941 cmd == SIOCBONDINFOQUERY ||
4942 cmd == SIOCBONDCHANGEACTIVE ||
4943 cmd == SIOCGMIIPHY ||
4944 cmd == SIOCGMIIREG ||
4945 cmd == SIOCSMIIREG ||
4946 cmd == SIOCBRADDIF ||
4947 cmd == SIOCBRDELIF ||
4948 cmd == SIOCSHWTSTAMP ||
4949 cmd == SIOCWANDEV) {
4950 err = -EOPNOTSUPP;
4951 if (ops->ndo_do_ioctl) {
4952 if (netif_device_present(dev))
4953 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4954 else
4955 err = -ENODEV;
4956 }
4957 } else
4958 err = -EINVAL;
4959
4960 }
4961 return err;
4962 }
4963
4964 /*
4965 * This function handles all "interface"-type I/O control requests. The actual
4966 * 'doing' part of this is dev_ifsioc above.
4967 */
4968
4969 /**
4970 * dev_ioctl - network device ioctl
4971 * @net: the applicable net namespace
4972 * @cmd: command to issue
4973 * @arg: pointer to a struct ifreq in user space
4974 *
4975 * Issue ioctl functions to devices. This is normally called by the
4976 * user space syscall interfaces but can sometimes be useful for
4977 * other purposes. The return value is the return from the syscall if
4978 * positive or a negative errno code on error.
4979 */
4980
4981 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4982 {
4983 struct ifreq ifr;
4984 int ret;
4985 char *colon;
4986
4987 /* One special case: SIOCGIFCONF takes ifconf argument
4988 and requires shared lock, because it sleeps writing
4989 to user space.
4990 */
4991
4992 if (cmd == SIOCGIFCONF) {
4993 rtnl_lock();
4994 ret = dev_ifconf(net, (char __user *) arg);
4995 rtnl_unlock();
4996 return ret;
4997 }
4998 if (cmd == SIOCGIFNAME)
4999 return dev_ifname(net, (struct ifreq __user *)arg);
5000
5001 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5002 return -EFAULT;
5003
5004 ifr.ifr_name[IFNAMSIZ-1] = 0;
5005
5006 colon = strchr(ifr.ifr_name, ':');
5007 if (colon)
5008 *colon = 0;
5009
5010 /*
5011 * See which interface the caller is talking about.
5012 */
5013
5014 switch (cmd) {
5015 /*
5016 * These ioctl calls:
5017 * - can be done by all.
5018 * - atomic and do not require locking.
5019 * - return a value
5020 */
5021 case SIOCGIFFLAGS:
5022 case SIOCGIFMETRIC:
5023 case SIOCGIFMTU:
5024 case SIOCGIFHWADDR:
5025 case SIOCGIFSLAVE:
5026 case SIOCGIFMAP:
5027 case SIOCGIFINDEX:
5028 case SIOCGIFTXQLEN:
5029 dev_load(net, ifr.ifr_name);
5030 rcu_read_lock();
5031 ret = dev_ifsioc_locked(net, &ifr, cmd);
5032 rcu_read_unlock();
5033 if (!ret) {
5034 if (colon)
5035 *colon = ':';
5036 if (copy_to_user(arg, &ifr,
5037 sizeof(struct ifreq)))
5038 ret = -EFAULT;
5039 }
5040 return ret;
5041
5042 case SIOCETHTOOL:
5043 dev_load(net, ifr.ifr_name);
5044 rtnl_lock();
5045 ret = dev_ethtool(net, &ifr);
5046 rtnl_unlock();
5047 if (!ret) {
5048 if (colon)
5049 *colon = ':';
5050 if (copy_to_user(arg, &ifr,
5051 sizeof(struct ifreq)))
5052 ret = -EFAULT;
5053 }
5054 return ret;
5055
5056 /*
5057 * These ioctl calls:
5058 * - require superuser power.
5059 * - require strict serialization.
5060 * - return a value
5061 */
5062 case SIOCGMIIPHY:
5063 case SIOCGMIIREG:
5064 case SIOCSIFNAME:
5065 if (!capable(CAP_NET_ADMIN))
5066 return -EPERM;
5067 dev_load(net, ifr.ifr_name);
5068 rtnl_lock();
5069 ret = dev_ifsioc(net, &ifr, cmd);
5070 rtnl_unlock();
5071 if (!ret) {
5072 if (colon)
5073 *colon = ':';
5074 if (copy_to_user(arg, &ifr,
5075 sizeof(struct ifreq)))
5076 ret = -EFAULT;
5077 }
5078 return ret;
5079
5080 /*
5081 * These ioctl calls:
5082 * - require superuser power.
5083 * - require strict serialization.
5084 * - do not return a value
5085 */
5086 case SIOCSIFFLAGS:
5087 case SIOCSIFMETRIC:
5088 case SIOCSIFMTU:
5089 case SIOCSIFMAP:
5090 case SIOCSIFHWADDR:
5091 case SIOCSIFSLAVE:
5092 case SIOCADDMULTI:
5093 case SIOCDELMULTI:
5094 case SIOCSIFHWBROADCAST:
5095 case SIOCSIFTXQLEN:
5096 case SIOCSMIIREG:
5097 case SIOCBONDENSLAVE:
5098 case SIOCBONDRELEASE:
5099 case SIOCBONDSETHWADDR:
5100 case SIOCBONDCHANGEACTIVE:
5101 case SIOCBRADDIF:
5102 case SIOCBRDELIF:
5103 case SIOCSHWTSTAMP:
5104 if (!capable(CAP_NET_ADMIN))
5105 return -EPERM;
5106 /* fall through */
5107 case SIOCBONDSLAVEINFOQUERY:
5108 case SIOCBONDINFOQUERY:
5109 dev_load(net, ifr.ifr_name);
5110 rtnl_lock();
5111 ret = dev_ifsioc(net, &ifr, cmd);
5112 rtnl_unlock();
5113 return ret;
5114
5115 case SIOCGIFMEM:
5116 /* Get the per device memory space. We can add this but
5117 * currently do not support it */
5118 case SIOCSIFMEM:
5119 /* Set the per device memory buffer space.
5120 * Not applicable in our case */
5121 case SIOCSIFLINK:
5122 return -ENOTTY;
5123
5124 /*
5125 * Unknown or private ioctl.
5126 */
5127 default:
5128 if (cmd == SIOCWANDEV ||
5129 (cmd >= SIOCDEVPRIVATE &&
5130 cmd <= SIOCDEVPRIVATE + 15)) {
5131 dev_load(net, ifr.ifr_name);
5132 rtnl_lock();
5133 ret = dev_ifsioc(net, &ifr, cmd);
5134 rtnl_unlock();
5135 if (!ret && copy_to_user(arg, &ifr,
5136 sizeof(struct ifreq)))
5137 ret = -EFAULT;
5138 return ret;
5139 }
5140 /* Take care of Wireless Extensions */
5141 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5142 return wext_handle_ioctl(net, &ifr, cmd, arg);
5143 return -ENOTTY;
5144 }
5145 }
5146
5147
5148 /**
5149 * dev_new_index - allocate an ifindex
5150 * @net: the applicable net namespace
5151 *
5152 * Returns a suitable unique value for a new device interface
5153 * number. The caller must hold the rtnl semaphore or the
5154 * dev_base_lock to be sure it remains unique.
5155 */
5156 static int dev_new_index(struct net *net)
5157 {
5158 static int ifindex;
5159 for (;;) {
5160 if (++ifindex <= 0)
5161 ifindex = 1;
5162 if (!__dev_get_by_index(net, ifindex))
5163 return ifindex;
5164 }
5165 }
5166
5167 /* Delayed registration/unregisteration */
5168 static LIST_HEAD(net_todo_list);
5169
5170 static void net_set_todo(struct net_device *dev)
5171 {
5172 list_add_tail(&dev->todo_list, &net_todo_list);
5173 }
5174
5175 static void rollback_registered_many(struct list_head *head)
5176 {
5177 struct net_device *dev, *tmp;
5178
5179 BUG_ON(dev_boot_phase);
5180 ASSERT_RTNL();
5181
5182 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5183 /* Some devices call without registering
5184 * for initialization unwind. Remove those
5185 * devices and proceed with the remaining.
5186 */
5187 if (dev->reg_state == NETREG_UNINITIALIZED) {
5188 pr_debug("unregister_netdevice: device %s/%p never "
5189 "was registered\n", dev->name, dev);
5190
5191 WARN_ON(1);
5192 list_del(&dev->unreg_list);
5193 continue;
5194 }
5195 dev->dismantle = true;
5196 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5197 }
5198
5199 /* If device is running, close it first. */
5200 dev_close_many(head);
5201
5202 list_for_each_entry(dev, head, unreg_list) {
5203 /* And unlink it from device chain. */
5204 unlist_netdevice(dev);
5205
5206 dev->reg_state = NETREG_UNREGISTERING;
5207 }
5208
5209 synchronize_net();
5210
5211 list_for_each_entry(dev, head, unreg_list) {
5212 /* Shutdown queueing discipline. */
5213 dev_shutdown(dev);
5214
5215
5216 /* Notify protocols, that we are about to destroy
5217 this device. They should clean all the things.
5218 */
5219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5220
5221 if (!dev->rtnl_link_ops ||
5222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5223 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5224
5225 /*
5226 * Flush the unicast and multicast chains
5227 */
5228 dev_uc_flush(dev);
5229 dev_mc_flush(dev);
5230
5231 if (dev->netdev_ops->ndo_uninit)
5232 dev->netdev_ops->ndo_uninit(dev);
5233
5234 /* Notifier chain MUST detach us from master device. */
5235 WARN_ON(dev->master);
5236
5237 /* Remove entries from kobject tree */
5238 netdev_unregister_kobject(dev);
5239 }
5240
5241 /* Process any work delayed until the end of the batch */
5242 dev = list_first_entry(head, struct net_device, unreg_list);
5243 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5244
5245 rcu_barrier();
5246
5247 list_for_each_entry(dev, head, unreg_list)
5248 dev_put(dev);
5249 }
5250
5251 static void rollback_registered(struct net_device *dev)
5252 {
5253 LIST_HEAD(single);
5254
5255 list_add(&dev->unreg_list, &single);
5256 rollback_registered_many(&single);
5257 list_del(&single);
5258 }
5259
5260 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5261 {
5262 /* Fix illegal checksum combinations */
5263 if ((features & NETIF_F_HW_CSUM) &&
5264 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5265 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5266 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5267 }
5268
5269 if ((features & NETIF_F_NO_CSUM) &&
5270 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5271 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5272 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5273 }
5274
5275 /* Fix illegal SG+CSUM combinations. */
5276 if ((features & NETIF_F_SG) &&
5277 !(features & NETIF_F_ALL_CSUM)) {
5278 netdev_dbg(dev,
5279 "Dropping NETIF_F_SG since no checksum feature.\n");
5280 features &= ~NETIF_F_SG;
5281 }
5282
5283 /* TSO requires that SG is present as well. */
5284 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5285 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5286 features &= ~NETIF_F_ALL_TSO;
5287 }
5288
5289 /* TSO ECN requires that TSO is present as well. */
5290 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5291 features &= ~NETIF_F_TSO_ECN;
5292
5293 /* Software GSO depends on SG. */
5294 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5295 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5296 features &= ~NETIF_F_GSO;
5297 }
5298
5299 /* UFO needs SG and checksumming */
5300 if (features & NETIF_F_UFO) {
5301 /* maybe split UFO into V4 and V6? */
5302 if (!((features & NETIF_F_GEN_CSUM) ||
5303 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5304 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5305 netdev_dbg(dev,
5306 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5307 features &= ~NETIF_F_UFO;
5308 }
5309
5310 if (!(features & NETIF_F_SG)) {
5311 netdev_dbg(dev,
5312 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5313 features &= ~NETIF_F_UFO;
5314 }
5315 }
5316
5317 return features;
5318 }
5319
5320 int __netdev_update_features(struct net_device *dev)
5321 {
5322 u32 features;
5323 int err = 0;
5324
5325 ASSERT_RTNL();
5326
5327 features = netdev_get_wanted_features(dev);
5328
5329 if (dev->netdev_ops->ndo_fix_features)
5330 features = dev->netdev_ops->ndo_fix_features(dev, features);
5331
5332 /* driver might be less strict about feature dependencies */
5333 features = netdev_fix_features(dev, features);
5334
5335 if (dev->features == features)
5336 return 0;
5337
5338 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5339 dev->features, features);
5340
5341 if (dev->netdev_ops->ndo_set_features)
5342 err = dev->netdev_ops->ndo_set_features(dev, features);
5343
5344 if (unlikely(err < 0)) {
5345 netdev_err(dev,
5346 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5347 err, features, dev->features);
5348 return -1;
5349 }
5350
5351 if (!err)
5352 dev->features = features;
5353
5354 return 1;
5355 }
5356
5357 /**
5358 * netdev_update_features - recalculate device features
5359 * @dev: the device to check
5360 *
5361 * Recalculate dev->features set and send notifications if it
5362 * has changed. Should be called after driver or hardware dependent
5363 * conditions might have changed that influence the features.
5364 */
5365 void netdev_update_features(struct net_device *dev)
5366 {
5367 if (__netdev_update_features(dev))
5368 netdev_features_change(dev);
5369 }
5370 EXPORT_SYMBOL(netdev_update_features);
5371
5372 /**
5373 * netdev_change_features - recalculate device features
5374 * @dev: the device to check
5375 *
5376 * Recalculate dev->features set and send notifications even
5377 * if they have not changed. Should be called instead of
5378 * netdev_update_features() if also dev->vlan_features might
5379 * have changed to allow the changes to be propagated to stacked
5380 * VLAN devices.
5381 */
5382 void netdev_change_features(struct net_device *dev)
5383 {
5384 __netdev_update_features(dev);
5385 netdev_features_change(dev);
5386 }
5387 EXPORT_SYMBOL(netdev_change_features);
5388
5389 /**
5390 * netif_stacked_transfer_operstate - transfer operstate
5391 * @rootdev: the root or lower level device to transfer state from
5392 * @dev: the device to transfer operstate to
5393 *
5394 * Transfer operational state from root to device. This is normally
5395 * called when a stacking relationship exists between the root
5396 * device and the device(a leaf device).
5397 */
5398 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5399 struct net_device *dev)
5400 {
5401 if (rootdev->operstate == IF_OPER_DORMANT)
5402 netif_dormant_on(dev);
5403 else
5404 netif_dormant_off(dev);
5405
5406 if (netif_carrier_ok(rootdev)) {
5407 if (!netif_carrier_ok(dev))
5408 netif_carrier_on(dev);
5409 } else {
5410 if (netif_carrier_ok(dev))
5411 netif_carrier_off(dev);
5412 }
5413 }
5414 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5415
5416 #ifdef CONFIG_RPS
5417 static int netif_alloc_rx_queues(struct net_device *dev)
5418 {
5419 unsigned int i, count = dev->num_rx_queues;
5420 struct netdev_rx_queue *rx;
5421
5422 BUG_ON(count < 1);
5423
5424 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5425 if (!rx) {
5426 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5427 return -ENOMEM;
5428 }
5429 dev->_rx = rx;
5430
5431 for (i = 0; i < count; i++)
5432 rx[i].dev = dev;
5433 return 0;
5434 }
5435 #endif
5436
5437 static void netdev_init_one_queue(struct net_device *dev,
5438 struct netdev_queue *queue, void *_unused)
5439 {
5440 /* Initialize queue lock */
5441 spin_lock_init(&queue->_xmit_lock);
5442 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5443 queue->xmit_lock_owner = -1;
5444 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5445 queue->dev = dev;
5446 }
5447
5448 static int netif_alloc_netdev_queues(struct net_device *dev)
5449 {
5450 unsigned int count = dev->num_tx_queues;
5451 struct netdev_queue *tx;
5452
5453 BUG_ON(count < 1);
5454
5455 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5456 if (!tx) {
5457 pr_err("netdev: Unable to allocate %u tx queues.\n",
5458 count);
5459 return -ENOMEM;
5460 }
5461 dev->_tx = tx;
5462
5463 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5464 spin_lock_init(&dev->tx_global_lock);
5465
5466 return 0;
5467 }
5468
5469 /**
5470 * register_netdevice - register a network device
5471 * @dev: device to register
5472 *
5473 * Take a completed network device structure and add it to the kernel
5474 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5475 * chain. 0 is returned on success. A negative errno code is returned
5476 * on a failure to set up the device, or if the name is a duplicate.
5477 *
5478 * Callers must hold the rtnl semaphore. You may want
5479 * register_netdev() instead of this.
5480 *
5481 * BUGS:
5482 * The locking appears insufficient to guarantee two parallel registers
5483 * will not get the same name.
5484 */
5485
5486 int register_netdevice(struct net_device *dev)
5487 {
5488 int ret;
5489 struct net *net = dev_net(dev);
5490
5491 BUG_ON(dev_boot_phase);
5492 ASSERT_RTNL();
5493
5494 might_sleep();
5495
5496 /* When net_device's are persistent, this will be fatal. */
5497 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5498 BUG_ON(!net);
5499
5500 spin_lock_init(&dev->addr_list_lock);
5501 netdev_set_addr_lockdep_class(dev);
5502
5503 dev->iflink = -1;
5504
5505 ret = dev_get_valid_name(dev, dev->name);
5506 if (ret < 0)
5507 goto out;
5508
5509 /* Init, if this function is available */
5510 if (dev->netdev_ops->ndo_init) {
5511 ret = dev->netdev_ops->ndo_init(dev);
5512 if (ret) {
5513 if (ret > 0)
5514 ret = -EIO;
5515 goto out;
5516 }
5517 }
5518
5519 dev->ifindex = dev_new_index(net);
5520 if (dev->iflink == -1)
5521 dev->iflink = dev->ifindex;
5522
5523 /* Transfer changeable features to wanted_features and enable
5524 * software offloads (GSO and GRO).
5525 */
5526 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5527 dev->features |= NETIF_F_SOFT_FEATURES;
5528 dev->wanted_features = dev->features & dev->hw_features;
5529
5530 /* Turn on no cache copy if HW is doing checksum */
5531 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5532 if ((dev->features & NETIF_F_ALL_CSUM) &&
5533 !(dev->features & NETIF_F_NO_CSUM)) {
5534 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5535 dev->features |= NETIF_F_NOCACHE_COPY;
5536 }
5537
5538 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5539 */
5540 dev->vlan_features |= NETIF_F_HIGHDMA;
5541
5542 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5543 ret = notifier_to_errno(ret);
5544 if (ret)
5545 goto err_uninit;
5546
5547 ret = netdev_register_kobject(dev);
5548 if (ret)
5549 goto err_uninit;
5550 dev->reg_state = NETREG_REGISTERED;
5551
5552 __netdev_update_features(dev);
5553
5554 /*
5555 * Default initial state at registry is that the
5556 * device is present.
5557 */
5558
5559 set_bit(__LINK_STATE_PRESENT, &dev->state);
5560
5561 dev_init_scheduler(dev);
5562 dev_hold(dev);
5563 list_netdevice(dev);
5564
5565 /* Notify protocols, that a new device appeared. */
5566 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5567 ret = notifier_to_errno(ret);
5568 if (ret) {
5569 rollback_registered(dev);
5570 dev->reg_state = NETREG_UNREGISTERED;
5571 }
5572 /*
5573 * Prevent userspace races by waiting until the network
5574 * device is fully setup before sending notifications.
5575 */
5576 if (!dev->rtnl_link_ops ||
5577 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5578 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5579
5580 out:
5581 return ret;
5582
5583 err_uninit:
5584 if (dev->netdev_ops->ndo_uninit)
5585 dev->netdev_ops->ndo_uninit(dev);
5586 goto out;
5587 }
5588 EXPORT_SYMBOL(register_netdevice);
5589
5590 /**
5591 * init_dummy_netdev - init a dummy network device for NAPI
5592 * @dev: device to init
5593 *
5594 * This takes a network device structure and initialize the minimum
5595 * amount of fields so it can be used to schedule NAPI polls without
5596 * registering a full blown interface. This is to be used by drivers
5597 * that need to tie several hardware interfaces to a single NAPI
5598 * poll scheduler due to HW limitations.
5599 */
5600 int init_dummy_netdev(struct net_device *dev)
5601 {
5602 /* Clear everything. Note we don't initialize spinlocks
5603 * are they aren't supposed to be taken by any of the
5604 * NAPI code and this dummy netdev is supposed to be
5605 * only ever used for NAPI polls
5606 */
5607 memset(dev, 0, sizeof(struct net_device));
5608
5609 /* make sure we BUG if trying to hit standard
5610 * register/unregister code path
5611 */
5612 dev->reg_state = NETREG_DUMMY;
5613
5614 /* NAPI wants this */
5615 INIT_LIST_HEAD(&dev->napi_list);
5616
5617 /* a dummy interface is started by default */
5618 set_bit(__LINK_STATE_PRESENT, &dev->state);
5619 set_bit(__LINK_STATE_START, &dev->state);
5620
5621 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5622 * because users of this 'device' dont need to change
5623 * its refcount.
5624 */
5625
5626 return 0;
5627 }
5628 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5629
5630
5631 /**
5632 * register_netdev - register a network device
5633 * @dev: device to register
5634 *
5635 * Take a completed network device structure and add it to the kernel
5636 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5637 * chain. 0 is returned on success. A negative errno code is returned
5638 * on a failure to set up the device, or if the name is a duplicate.
5639 *
5640 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5641 * and expands the device name if you passed a format string to
5642 * alloc_netdev.
5643 */
5644 int register_netdev(struct net_device *dev)
5645 {
5646 int err;
5647
5648 rtnl_lock();
5649 err = register_netdevice(dev);
5650 rtnl_unlock();
5651 return err;
5652 }
5653 EXPORT_SYMBOL(register_netdev);
5654
5655 int netdev_refcnt_read(const struct net_device *dev)
5656 {
5657 int i, refcnt = 0;
5658
5659 for_each_possible_cpu(i)
5660 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5661 return refcnt;
5662 }
5663 EXPORT_SYMBOL(netdev_refcnt_read);
5664
5665 /*
5666 * netdev_wait_allrefs - wait until all references are gone.
5667 *
5668 * This is called when unregistering network devices.
5669 *
5670 * Any protocol or device that holds a reference should register
5671 * for netdevice notification, and cleanup and put back the
5672 * reference if they receive an UNREGISTER event.
5673 * We can get stuck here if buggy protocols don't correctly
5674 * call dev_put.
5675 */
5676 static void netdev_wait_allrefs(struct net_device *dev)
5677 {
5678 unsigned long rebroadcast_time, warning_time;
5679 int refcnt;
5680
5681 linkwatch_forget_dev(dev);
5682
5683 rebroadcast_time = warning_time = jiffies;
5684 refcnt = netdev_refcnt_read(dev);
5685
5686 while (refcnt != 0) {
5687 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5688 rtnl_lock();
5689
5690 /* Rebroadcast unregister notification */
5691 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5692 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5693 * should have already handle it the first time */
5694
5695 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5696 &dev->state)) {
5697 /* We must not have linkwatch events
5698 * pending on unregister. If this
5699 * happens, we simply run the queue
5700 * unscheduled, resulting in a noop
5701 * for this device.
5702 */
5703 linkwatch_run_queue();
5704 }
5705
5706 __rtnl_unlock();
5707
5708 rebroadcast_time = jiffies;
5709 }
5710
5711 msleep(250);
5712
5713 refcnt = netdev_refcnt_read(dev);
5714
5715 if (time_after(jiffies, warning_time + 10 * HZ)) {
5716 printk(KERN_EMERG "unregister_netdevice: "
5717 "waiting for %s to become free. Usage "
5718 "count = %d\n",
5719 dev->name, refcnt);
5720 warning_time = jiffies;
5721 }
5722 }
5723 }
5724
5725 /* The sequence is:
5726 *
5727 * rtnl_lock();
5728 * ...
5729 * register_netdevice(x1);
5730 * register_netdevice(x2);
5731 * ...
5732 * unregister_netdevice(y1);
5733 * unregister_netdevice(y2);
5734 * ...
5735 * rtnl_unlock();
5736 * free_netdev(y1);
5737 * free_netdev(y2);
5738 *
5739 * We are invoked by rtnl_unlock().
5740 * This allows us to deal with problems:
5741 * 1) We can delete sysfs objects which invoke hotplug
5742 * without deadlocking with linkwatch via keventd.
5743 * 2) Since we run with the RTNL semaphore not held, we can sleep
5744 * safely in order to wait for the netdev refcnt to drop to zero.
5745 *
5746 * We must not return until all unregister events added during
5747 * the interval the lock was held have been completed.
5748 */
5749 void netdev_run_todo(void)
5750 {
5751 struct list_head list;
5752
5753 /* Snapshot list, allow later requests */
5754 list_replace_init(&net_todo_list, &list);
5755
5756 __rtnl_unlock();
5757
5758 while (!list_empty(&list)) {
5759 struct net_device *dev
5760 = list_first_entry(&list, struct net_device, todo_list);
5761 list_del(&dev->todo_list);
5762
5763 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5764 printk(KERN_ERR "network todo '%s' but state %d\n",
5765 dev->name, dev->reg_state);
5766 dump_stack();
5767 continue;
5768 }
5769
5770 dev->reg_state = NETREG_UNREGISTERED;
5771
5772 on_each_cpu(flush_backlog, dev, 1);
5773
5774 netdev_wait_allrefs(dev);
5775
5776 /* paranoia */
5777 BUG_ON(netdev_refcnt_read(dev));
5778 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5779 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5780 WARN_ON(dev->dn_ptr);
5781
5782 if (dev->destructor)
5783 dev->destructor(dev);
5784
5785 /* Free network device */
5786 kobject_put(&dev->dev.kobj);
5787 }
5788 }
5789
5790 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5791 * fields in the same order, with only the type differing.
5792 */
5793 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5794 const struct net_device_stats *netdev_stats)
5795 {
5796 #if BITS_PER_LONG == 64
5797 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5798 memcpy(stats64, netdev_stats, sizeof(*stats64));
5799 #else
5800 size_t i, n = sizeof(*stats64) / sizeof(u64);
5801 const unsigned long *src = (const unsigned long *)netdev_stats;
5802 u64 *dst = (u64 *)stats64;
5803
5804 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5805 sizeof(*stats64) / sizeof(u64));
5806 for (i = 0; i < n; i++)
5807 dst[i] = src[i];
5808 #endif
5809 }
5810
5811 /**
5812 * dev_get_stats - get network device statistics
5813 * @dev: device to get statistics from
5814 * @storage: place to store stats
5815 *
5816 * Get network statistics from device. Return @storage.
5817 * The device driver may provide its own method by setting
5818 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5819 * otherwise the internal statistics structure is used.
5820 */
5821 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5822 struct rtnl_link_stats64 *storage)
5823 {
5824 const struct net_device_ops *ops = dev->netdev_ops;
5825
5826 if (ops->ndo_get_stats64) {
5827 memset(storage, 0, sizeof(*storage));
5828 ops->ndo_get_stats64(dev, storage);
5829 } else if (ops->ndo_get_stats) {
5830 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5831 } else {
5832 netdev_stats_to_stats64(storage, &dev->stats);
5833 }
5834 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5835 return storage;
5836 }
5837 EXPORT_SYMBOL(dev_get_stats);
5838
5839 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5840 {
5841 struct netdev_queue *queue = dev_ingress_queue(dev);
5842
5843 #ifdef CONFIG_NET_CLS_ACT
5844 if (queue)
5845 return queue;
5846 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5847 if (!queue)
5848 return NULL;
5849 netdev_init_one_queue(dev, queue, NULL);
5850 queue->qdisc = &noop_qdisc;
5851 queue->qdisc_sleeping = &noop_qdisc;
5852 rcu_assign_pointer(dev->ingress_queue, queue);
5853 #endif
5854 return queue;
5855 }
5856
5857 /**
5858 * alloc_netdev_mqs - allocate network device
5859 * @sizeof_priv: size of private data to allocate space for
5860 * @name: device name format string
5861 * @setup: callback to initialize device
5862 * @txqs: the number of TX subqueues to allocate
5863 * @rxqs: the number of RX subqueues to allocate
5864 *
5865 * Allocates a struct net_device with private data area for driver use
5866 * and performs basic initialization. Also allocates subquue structs
5867 * for each queue on the device.
5868 */
5869 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5870 void (*setup)(struct net_device *),
5871 unsigned int txqs, unsigned int rxqs)
5872 {
5873 struct net_device *dev;
5874 size_t alloc_size;
5875 struct net_device *p;
5876
5877 BUG_ON(strlen(name) >= sizeof(dev->name));
5878
5879 if (txqs < 1) {
5880 pr_err("alloc_netdev: Unable to allocate device "
5881 "with zero queues.\n");
5882 return NULL;
5883 }
5884
5885 #ifdef CONFIG_RPS
5886 if (rxqs < 1) {
5887 pr_err("alloc_netdev: Unable to allocate device "
5888 "with zero RX queues.\n");
5889 return NULL;
5890 }
5891 #endif
5892
5893 alloc_size = sizeof(struct net_device);
5894 if (sizeof_priv) {
5895 /* ensure 32-byte alignment of private area */
5896 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5897 alloc_size += sizeof_priv;
5898 }
5899 /* ensure 32-byte alignment of whole construct */
5900 alloc_size += NETDEV_ALIGN - 1;
5901
5902 p = kzalloc(alloc_size, GFP_KERNEL);
5903 if (!p) {
5904 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5905 return NULL;
5906 }
5907
5908 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5909 dev->padded = (char *)dev - (char *)p;
5910
5911 dev->pcpu_refcnt = alloc_percpu(int);
5912 if (!dev->pcpu_refcnt)
5913 goto free_p;
5914
5915 if (dev_addr_init(dev))
5916 goto free_pcpu;
5917
5918 dev_mc_init(dev);
5919 dev_uc_init(dev);
5920
5921 dev_net_set(dev, &init_net);
5922
5923 dev->gso_max_size = GSO_MAX_SIZE;
5924
5925 INIT_LIST_HEAD(&dev->napi_list);
5926 INIT_LIST_HEAD(&dev->unreg_list);
5927 INIT_LIST_HEAD(&dev->link_watch_list);
5928 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5929 setup(dev);
5930
5931 dev->num_tx_queues = txqs;
5932 dev->real_num_tx_queues = txqs;
5933 if (netif_alloc_netdev_queues(dev))
5934 goto free_all;
5935
5936 #ifdef CONFIG_RPS
5937 dev->num_rx_queues = rxqs;
5938 dev->real_num_rx_queues = rxqs;
5939 if (netif_alloc_rx_queues(dev))
5940 goto free_all;
5941 #endif
5942
5943 strcpy(dev->name, name);
5944 dev->group = INIT_NETDEV_GROUP;
5945 return dev;
5946
5947 free_all:
5948 free_netdev(dev);
5949 return NULL;
5950
5951 free_pcpu:
5952 free_percpu(dev->pcpu_refcnt);
5953 kfree(dev->_tx);
5954 #ifdef CONFIG_RPS
5955 kfree(dev->_rx);
5956 #endif
5957
5958 free_p:
5959 kfree(p);
5960 return NULL;
5961 }
5962 EXPORT_SYMBOL(alloc_netdev_mqs);
5963
5964 /**
5965 * free_netdev - free network device
5966 * @dev: device
5967 *
5968 * This function does the last stage of destroying an allocated device
5969 * interface. The reference to the device object is released.
5970 * If this is the last reference then it will be freed.
5971 */
5972 void free_netdev(struct net_device *dev)
5973 {
5974 struct napi_struct *p, *n;
5975
5976 release_net(dev_net(dev));
5977
5978 kfree(dev->_tx);
5979 #ifdef CONFIG_RPS
5980 kfree(dev->_rx);
5981 #endif
5982
5983 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5984
5985 /* Flush device addresses */
5986 dev_addr_flush(dev);
5987
5988 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5989 netif_napi_del(p);
5990
5991 free_percpu(dev->pcpu_refcnt);
5992 dev->pcpu_refcnt = NULL;
5993
5994 /* Compatibility with error handling in drivers */
5995 if (dev->reg_state == NETREG_UNINITIALIZED) {
5996 kfree((char *)dev - dev->padded);
5997 return;
5998 }
5999
6000 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6001 dev->reg_state = NETREG_RELEASED;
6002
6003 /* will free via device release */
6004 put_device(&dev->dev);
6005 }
6006 EXPORT_SYMBOL(free_netdev);
6007
6008 /**
6009 * synchronize_net - Synchronize with packet receive processing
6010 *
6011 * Wait for packets currently being received to be done.
6012 * Does not block later packets from starting.
6013 */
6014 void synchronize_net(void)
6015 {
6016 might_sleep();
6017 if (rtnl_is_locked())
6018 synchronize_rcu_expedited();
6019 else
6020 synchronize_rcu();
6021 }
6022 EXPORT_SYMBOL(synchronize_net);
6023
6024 /**
6025 * unregister_netdevice_queue - remove device from the kernel
6026 * @dev: device
6027 * @head: list
6028 *
6029 * This function shuts down a device interface and removes it
6030 * from the kernel tables.
6031 * If head not NULL, device is queued to be unregistered later.
6032 *
6033 * Callers must hold the rtnl semaphore. You may want
6034 * unregister_netdev() instead of this.
6035 */
6036
6037 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6038 {
6039 ASSERT_RTNL();
6040
6041 if (head) {
6042 list_move_tail(&dev->unreg_list, head);
6043 } else {
6044 rollback_registered(dev);
6045 /* Finish processing unregister after unlock */
6046 net_set_todo(dev);
6047 }
6048 }
6049 EXPORT_SYMBOL(unregister_netdevice_queue);
6050
6051 /**
6052 * unregister_netdevice_many - unregister many devices
6053 * @head: list of devices
6054 */
6055 void unregister_netdevice_many(struct list_head *head)
6056 {
6057 struct net_device *dev;
6058
6059 if (!list_empty(head)) {
6060 rollback_registered_many(head);
6061 list_for_each_entry(dev, head, unreg_list)
6062 net_set_todo(dev);
6063 }
6064 }
6065 EXPORT_SYMBOL(unregister_netdevice_many);
6066
6067 /**
6068 * unregister_netdev - remove device from the kernel
6069 * @dev: device
6070 *
6071 * This function shuts down a device interface and removes it
6072 * from the kernel tables.
6073 *
6074 * This is just a wrapper for unregister_netdevice that takes
6075 * the rtnl semaphore. In general you want to use this and not
6076 * unregister_netdevice.
6077 */
6078 void unregister_netdev(struct net_device *dev)
6079 {
6080 rtnl_lock();
6081 unregister_netdevice(dev);
6082 rtnl_unlock();
6083 }
6084 EXPORT_SYMBOL(unregister_netdev);
6085
6086 /**
6087 * dev_change_net_namespace - move device to different nethost namespace
6088 * @dev: device
6089 * @net: network namespace
6090 * @pat: If not NULL name pattern to try if the current device name
6091 * is already taken in the destination network namespace.
6092 *
6093 * This function shuts down a device interface and moves it
6094 * to a new network namespace. On success 0 is returned, on
6095 * a failure a netagive errno code is returned.
6096 *
6097 * Callers must hold the rtnl semaphore.
6098 */
6099
6100 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6101 {
6102 int err;
6103
6104 ASSERT_RTNL();
6105
6106 /* Don't allow namespace local devices to be moved. */
6107 err = -EINVAL;
6108 if (dev->features & NETIF_F_NETNS_LOCAL)
6109 goto out;
6110
6111 /* Ensure the device has been registrered */
6112 err = -EINVAL;
6113 if (dev->reg_state != NETREG_REGISTERED)
6114 goto out;
6115
6116 /* Get out if there is nothing todo */
6117 err = 0;
6118 if (net_eq(dev_net(dev), net))
6119 goto out;
6120
6121 /* Pick the destination device name, and ensure
6122 * we can use it in the destination network namespace.
6123 */
6124 err = -EEXIST;
6125 if (__dev_get_by_name(net, dev->name)) {
6126 /* We get here if we can't use the current device name */
6127 if (!pat)
6128 goto out;
6129 if (dev_get_valid_name(dev, pat) < 0)
6130 goto out;
6131 }
6132
6133 /*
6134 * And now a mini version of register_netdevice unregister_netdevice.
6135 */
6136
6137 /* If device is running close it first. */
6138 dev_close(dev);
6139
6140 /* And unlink it from device chain */
6141 err = -ENODEV;
6142 unlist_netdevice(dev);
6143
6144 synchronize_net();
6145
6146 /* Shutdown queueing discipline. */
6147 dev_shutdown(dev);
6148
6149 /* Notify protocols, that we are about to destroy
6150 this device. They should clean all the things.
6151
6152 Note that dev->reg_state stays at NETREG_REGISTERED.
6153 This is wanted because this way 8021q and macvlan know
6154 the device is just moving and can keep their slaves up.
6155 */
6156 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6157 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6158
6159 /*
6160 * Flush the unicast and multicast chains
6161 */
6162 dev_uc_flush(dev);
6163 dev_mc_flush(dev);
6164
6165 /* Actually switch the network namespace */
6166 dev_net_set(dev, net);
6167
6168 /* If there is an ifindex conflict assign a new one */
6169 if (__dev_get_by_index(net, dev->ifindex)) {
6170 int iflink = (dev->iflink == dev->ifindex);
6171 dev->ifindex = dev_new_index(net);
6172 if (iflink)
6173 dev->iflink = dev->ifindex;
6174 }
6175
6176 /* Fixup kobjects */
6177 err = device_rename(&dev->dev, dev->name);
6178 WARN_ON(err);
6179
6180 /* Add the device back in the hashes */
6181 list_netdevice(dev);
6182
6183 /* Notify protocols, that a new device appeared. */
6184 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6185
6186 /*
6187 * Prevent userspace races by waiting until the network
6188 * device is fully setup before sending notifications.
6189 */
6190 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6191
6192 synchronize_net();
6193 err = 0;
6194 out:
6195 return err;
6196 }
6197 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6198
6199 static int dev_cpu_callback(struct notifier_block *nfb,
6200 unsigned long action,
6201 void *ocpu)
6202 {
6203 struct sk_buff **list_skb;
6204 struct sk_buff *skb;
6205 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6206 struct softnet_data *sd, *oldsd;
6207
6208 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6209 return NOTIFY_OK;
6210
6211 local_irq_disable();
6212 cpu = smp_processor_id();
6213 sd = &per_cpu(softnet_data, cpu);
6214 oldsd = &per_cpu(softnet_data, oldcpu);
6215
6216 /* Find end of our completion_queue. */
6217 list_skb = &sd->completion_queue;
6218 while (*list_skb)
6219 list_skb = &(*list_skb)->next;
6220 /* Append completion queue from offline CPU. */
6221 *list_skb = oldsd->completion_queue;
6222 oldsd->completion_queue = NULL;
6223
6224 /* Append output queue from offline CPU. */
6225 if (oldsd->output_queue) {
6226 *sd->output_queue_tailp = oldsd->output_queue;
6227 sd->output_queue_tailp = oldsd->output_queue_tailp;
6228 oldsd->output_queue = NULL;
6229 oldsd->output_queue_tailp = &oldsd->output_queue;
6230 }
6231 /* Append NAPI poll list from offline CPU. */
6232 if (!list_empty(&oldsd->poll_list)) {
6233 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6234 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6235 }
6236
6237 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6238 local_irq_enable();
6239
6240 /* Process offline CPU's input_pkt_queue */
6241 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6242 netif_rx(skb);
6243 input_queue_head_incr(oldsd);
6244 }
6245 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6246 netif_rx(skb);
6247 input_queue_head_incr(oldsd);
6248 }
6249
6250 return NOTIFY_OK;
6251 }
6252
6253
6254 /**
6255 * netdev_increment_features - increment feature set by one
6256 * @all: current feature set
6257 * @one: new feature set
6258 * @mask: mask feature set
6259 *
6260 * Computes a new feature set after adding a device with feature set
6261 * @one to the master device with current feature set @all. Will not
6262 * enable anything that is off in @mask. Returns the new feature set.
6263 */
6264 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6265 {
6266 if (mask & NETIF_F_GEN_CSUM)
6267 mask |= NETIF_F_ALL_CSUM;
6268 mask |= NETIF_F_VLAN_CHALLENGED;
6269
6270 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6271 all &= one | ~NETIF_F_ALL_FOR_ALL;
6272
6273 /* If device needs checksumming, downgrade to it. */
6274 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6275 all &= ~NETIF_F_NO_CSUM;
6276
6277 /* If one device supports hw checksumming, set for all. */
6278 if (all & NETIF_F_GEN_CSUM)
6279 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6280
6281 return all;
6282 }
6283 EXPORT_SYMBOL(netdev_increment_features);
6284
6285 static struct hlist_head *netdev_create_hash(void)
6286 {
6287 int i;
6288 struct hlist_head *hash;
6289
6290 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6291 if (hash != NULL)
6292 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6293 INIT_HLIST_HEAD(&hash[i]);
6294
6295 return hash;
6296 }
6297
6298 /* Initialize per network namespace state */
6299 static int __net_init netdev_init(struct net *net)
6300 {
6301 INIT_LIST_HEAD(&net->dev_base_head);
6302
6303 net->dev_name_head = netdev_create_hash();
6304 if (net->dev_name_head == NULL)
6305 goto err_name;
6306
6307 net->dev_index_head = netdev_create_hash();
6308 if (net->dev_index_head == NULL)
6309 goto err_idx;
6310
6311 return 0;
6312
6313 err_idx:
6314 kfree(net->dev_name_head);
6315 err_name:
6316 return -ENOMEM;
6317 }
6318
6319 /**
6320 * netdev_drivername - network driver for the device
6321 * @dev: network device
6322 *
6323 * Determine network driver for device.
6324 */
6325 const char *netdev_drivername(const struct net_device *dev)
6326 {
6327 const struct device_driver *driver;
6328 const struct device *parent;
6329 const char *empty = "";
6330
6331 parent = dev->dev.parent;
6332 if (!parent)
6333 return empty;
6334
6335 driver = parent->driver;
6336 if (driver && driver->name)
6337 return driver->name;
6338 return empty;
6339 }
6340
6341 static int __netdev_printk(const char *level, const struct net_device *dev,
6342 struct va_format *vaf)
6343 {
6344 int r;
6345
6346 if (dev && dev->dev.parent)
6347 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6348 netdev_name(dev), vaf);
6349 else if (dev)
6350 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6351 else
6352 r = printk("%s(NULL net_device): %pV", level, vaf);
6353
6354 return r;
6355 }
6356
6357 int netdev_printk(const char *level, const struct net_device *dev,
6358 const char *format, ...)
6359 {
6360 struct va_format vaf;
6361 va_list args;
6362 int r;
6363
6364 va_start(args, format);
6365
6366 vaf.fmt = format;
6367 vaf.va = &args;
6368
6369 r = __netdev_printk(level, dev, &vaf);
6370 va_end(args);
6371
6372 return r;
6373 }
6374 EXPORT_SYMBOL(netdev_printk);
6375
6376 #define define_netdev_printk_level(func, level) \
6377 int func(const struct net_device *dev, const char *fmt, ...) \
6378 { \
6379 int r; \
6380 struct va_format vaf; \
6381 va_list args; \
6382 \
6383 va_start(args, fmt); \
6384 \
6385 vaf.fmt = fmt; \
6386 vaf.va = &args; \
6387 \
6388 r = __netdev_printk(level, dev, &vaf); \
6389 va_end(args); \
6390 \
6391 return r; \
6392 } \
6393 EXPORT_SYMBOL(func);
6394
6395 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6396 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6397 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6398 define_netdev_printk_level(netdev_err, KERN_ERR);
6399 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6400 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6401 define_netdev_printk_level(netdev_info, KERN_INFO);
6402
6403 static void __net_exit netdev_exit(struct net *net)
6404 {
6405 kfree(net->dev_name_head);
6406 kfree(net->dev_index_head);
6407 }
6408
6409 static struct pernet_operations __net_initdata netdev_net_ops = {
6410 .init = netdev_init,
6411 .exit = netdev_exit,
6412 };
6413
6414 static void __net_exit default_device_exit(struct net *net)
6415 {
6416 struct net_device *dev, *aux;
6417 /*
6418 * Push all migratable network devices back to the
6419 * initial network namespace
6420 */
6421 rtnl_lock();
6422 for_each_netdev_safe(net, dev, aux) {
6423 int err;
6424 char fb_name[IFNAMSIZ];
6425
6426 /* Ignore unmoveable devices (i.e. loopback) */
6427 if (dev->features & NETIF_F_NETNS_LOCAL)
6428 continue;
6429
6430 /* Leave virtual devices for the generic cleanup */
6431 if (dev->rtnl_link_ops)
6432 continue;
6433
6434 /* Push remaining network devices to init_net */
6435 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6436 err = dev_change_net_namespace(dev, &init_net, fb_name);
6437 if (err) {
6438 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6439 __func__, dev->name, err);
6440 BUG();
6441 }
6442 }
6443 rtnl_unlock();
6444 }
6445
6446 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6447 {
6448 /* At exit all network devices most be removed from a network
6449 * namespace. Do this in the reverse order of registration.
6450 * Do this across as many network namespaces as possible to
6451 * improve batching efficiency.
6452 */
6453 struct net_device *dev;
6454 struct net *net;
6455 LIST_HEAD(dev_kill_list);
6456
6457 rtnl_lock();
6458 list_for_each_entry(net, net_list, exit_list) {
6459 for_each_netdev_reverse(net, dev) {
6460 if (dev->rtnl_link_ops)
6461 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6462 else
6463 unregister_netdevice_queue(dev, &dev_kill_list);
6464 }
6465 }
6466 unregister_netdevice_many(&dev_kill_list);
6467 list_del(&dev_kill_list);
6468 rtnl_unlock();
6469 }
6470
6471 static struct pernet_operations __net_initdata default_device_ops = {
6472 .exit = default_device_exit,
6473 .exit_batch = default_device_exit_batch,
6474 };
6475
6476 /*
6477 * Initialize the DEV module. At boot time this walks the device list and
6478 * unhooks any devices that fail to initialise (normally hardware not
6479 * present) and leaves us with a valid list of present and active devices.
6480 *
6481 */
6482
6483 /*
6484 * This is called single threaded during boot, so no need
6485 * to take the rtnl semaphore.
6486 */
6487 static int __init net_dev_init(void)
6488 {
6489 int i, rc = -ENOMEM;
6490
6491 BUG_ON(!dev_boot_phase);
6492
6493 if (dev_proc_init())
6494 goto out;
6495
6496 if (netdev_kobject_init())
6497 goto out;
6498
6499 INIT_LIST_HEAD(&ptype_all);
6500 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6501 INIT_LIST_HEAD(&ptype_base[i]);
6502
6503 if (register_pernet_subsys(&netdev_net_ops))
6504 goto out;
6505
6506 /*
6507 * Initialise the packet receive queues.
6508 */
6509
6510 for_each_possible_cpu(i) {
6511 struct softnet_data *sd = &per_cpu(softnet_data, i);
6512
6513 memset(sd, 0, sizeof(*sd));
6514 skb_queue_head_init(&sd->input_pkt_queue);
6515 skb_queue_head_init(&sd->process_queue);
6516 sd->completion_queue = NULL;
6517 INIT_LIST_HEAD(&sd->poll_list);
6518 sd->output_queue = NULL;
6519 sd->output_queue_tailp = &sd->output_queue;
6520 #ifdef CONFIG_RPS
6521 sd->csd.func = rps_trigger_softirq;
6522 sd->csd.info = sd;
6523 sd->csd.flags = 0;
6524 sd->cpu = i;
6525 #endif
6526
6527 sd->backlog.poll = process_backlog;
6528 sd->backlog.weight = weight_p;
6529 sd->backlog.gro_list = NULL;
6530 sd->backlog.gro_count = 0;
6531 }
6532
6533 dev_boot_phase = 0;
6534
6535 /* The loopback device is special if any other network devices
6536 * is present in a network namespace the loopback device must
6537 * be present. Since we now dynamically allocate and free the
6538 * loopback device ensure this invariant is maintained by
6539 * keeping the loopback device as the first device on the
6540 * list of network devices. Ensuring the loopback devices
6541 * is the first device that appears and the last network device
6542 * that disappears.
6543 */
6544 if (register_pernet_device(&loopback_net_ops))
6545 goto out;
6546
6547 if (register_pernet_device(&default_device_ops))
6548 goto out;
6549
6550 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6551 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6552
6553 hotcpu_notifier(dev_cpu_callback, 0);
6554 dst_init();
6555 dev_mcast_init();
6556 rc = 0;
6557 out:
6558 return rc;
6559 }
6560
6561 subsys_initcall(net_dev_init);
6562
6563 static int __init initialize_hashrnd(void)
6564 {
6565 get_random_bytes(&hashrnd, sizeof(hashrnd));
6566 return 0;
6567 }
6568
6569 late_initcall_sync(initialize_hashrnd);
6570
This page took 0.17188 seconds and 4 git commands to generate.