net: provide a default dev->ethtool_ops
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (ptype->af_packet_priv == NULL)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (!can_checksum_protocol(features, protocol)) {
2160 features &= ~NETIF_F_ALL_CSUM;
2161 features &= ~NETIF_F_SG;
2162 } else if (illegal_highdma(skb->dev, skb)) {
2163 features &= ~NETIF_F_SG;
2164 }
2165
2166 return features;
2167 }
2168
2169 netdev_features_t netif_skb_features(struct sk_buff *skb)
2170 {
2171 __be16 protocol = skb->protocol;
2172 netdev_features_t features = skb->dev->features;
2173
2174 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2175 features &= ~NETIF_F_GSO_MASK;
2176
2177 if (protocol == htons(ETH_P_8021Q)) {
2178 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2179 protocol = veh->h_vlan_encapsulated_proto;
2180 } else if (!vlan_tx_tag_present(skb)) {
2181 return harmonize_features(skb, protocol, features);
2182 }
2183
2184 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2185
2186 if (protocol != htons(ETH_P_8021Q)) {
2187 return harmonize_features(skb, protocol, features);
2188 } else {
2189 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2190 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2191 return harmonize_features(skb, protocol, features);
2192 }
2193 }
2194 EXPORT_SYMBOL(netif_skb_features);
2195
2196 /*
2197 * Returns true if either:
2198 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2199 * 2. skb is fragmented and the device does not support SG.
2200 */
2201 static inline int skb_needs_linearize(struct sk_buff *skb,
2202 int features)
2203 {
2204 return skb_is_nonlinear(skb) &&
2205 ((skb_has_frag_list(skb) &&
2206 !(features & NETIF_F_FRAGLIST)) ||
2207 (skb_shinfo(skb)->nr_frags &&
2208 !(features & NETIF_F_SG)));
2209 }
2210
2211 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2212 struct netdev_queue *txq)
2213 {
2214 const struct net_device_ops *ops = dev->netdev_ops;
2215 int rc = NETDEV_TX_OK;
2216 unsigned int skb_len;
2217
2218 if (likely(!skb->next)) {
2219 netdev_features_t features;
2220
2221 /*
2222 * If device doesn't need skb->dst, release it right now while
2223 * its hot in this cpu cache
2224 */
2225 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2226 skb_dst_drop(skb);
2227
2228 features = netif_skb_features(skb);
2229
2230 if (vlan_tx_tag_present(skb) &&
2231 !(features & NETIF_F_HW_VLAN_TX)) {
2232 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2233 if (unlikely(!skb))
2234 goto out;
2235
2236 skb->vlan_tci = 0;
2237 }
2238
2239 if (netif_needs_gso(skb, features)) {
2240 if (unlikely(dev_gso_segment(skb, features)))
2241 goto out_kfree_skb;
2242 if (skb->next)
2243 goto gso;
2244 } else {
2245 if (skb_needs_linearize(skb, features) &&
2246 __skb_linearize(skb))
2247 goto out_kfree_skb;
2248
2249 /* If packet is not checksummed and device does not
2250 * support checksumming for this protocol, complete
2251 * checksumming here.
2252 */
2253 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2254 skb_set_transport_header(skb,
2255 skb_checksum_start_offset(skb));
2256 if (!(features & NETIF_F_ALL_CSUM) &&
2257 skb_checksum_help(skb))
2258 goto out_kfree_skb;
2259 }
2260 }
2261
2262 if (!list_empty(&ptype_all))
2263 dev_queue_xmit_nit(skb, dev);
2264
2265 skb_len = skb->len;
2266 rc = ops->ndo_start_xmit(skb, dev);
2267 trace_net_dev_xmit(skb, rc, dev, skb_len);
2268 if (rc == NETDEV_TX_OK)
2269 txq_trans_update(txq);
2270 return rc;
2271 }
2272
2273 gso:
2274 do {
2275 struct sk_buff *nskb = skb->next;
2276
2277 skb->next = nskb->next;
2278 nskb->next = NULL;
2279
2280 /*
2281 * If device doesn't need nskb->dst, release it right now while
2282 * its hot in this cpu cache
2283 */
2284 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2285 skb_dst_drop(nskb);
2286
2287 if (!list_empty(&ptype_all))
2288 dev_queue_xmit_nit(nskb, dev);
2289
2290 skb_len = nskb->len;
2291 rc = ops->ndo_start_xmit(nskb, dev);
2292 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2293 if (unlikely(rc != NETDEV_TX_OK)) {
2294 if (rc & ~NETDEV_TX_MASK)
2295 goto out_kfree_gso_skb;
2296 nskb->next = skb->next;
2297 skb->next = nskb;
2298 return rc;
2299 }
2300 txq_trans_update(txq);
2301 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2302 return NETDEV_TX_BUSY;
2303 } while (skb->next);
2304
2305 out_kfree_gso_skb:
2306 if (likely(skb->next == NULL))
2307 skb->destructor = DEV_GSO_CB(skb)->destructor;
2308 out_kfree_skb:
2309 kfree_skb(skb);
2310 out:
2311 return rc;
2312 }
2313
2314 static u32 hashrnd __read_mostly;
2315
2316 /*
2317 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2318 * to be used as a distribution range.
2319 */
2320 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2321 unsigned int num_tx_queues)
2322 {
2323 u32 hash;
2324 u16 qoffset = 0;
2325 u16 qcount = num_tx_queues;
2326
2327 if (skb_rx_queue_recorded(skb)) {
2328 hash = skb_get_rx_queue(skb);
2329 while (unlikely(hash >= num_tx_queues))
2330 hash -= num_tx_queues;
2331 return hash;
2332 }
2333
2334 if (dev->num_tc) {
2335 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2336 qoffset = dev->tc_to_txq[tc].offset;
2337 qcount = dev->tc_to_txq[tc].count;
2338 }
2339
2340 if (skb->sk && skb->sk->sk_hash)
2341 hash = skb->sk->sk_hash;
2342 else
2343 hash = (__force u16) skb->protocol;
2344 hash = jhash_1word(hash, hashrnd);
2345
2346 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2347 }
2348 EXPORT_SYMBOL(__skb_tx_hash);
2349
2350 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2351 {
2352 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2353 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2354 dev->name, queue_index,
2355 dev->real_num_tx_queues);
2356 return 0;
2357 }
2358 return queue_index;
2359 }
2360
2361 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2362 {
2363 #ifdef CONFIG_XPS
2364 struct xps_dev_maps *dev_maps;
2365 struct xps_map *map;
2366 int queue_index = -1;
2367
2368 rcu_read_lock();
2369 dev_maps = rcu_dereference(dev->xps_maps);
2370 if (dev_maps) {
2371 map = rcu_dereference(
2372 dev_maps->cpu_map[raw_smp_processor_id()]);
2373 if (map) {
2374 if (map->len == 1)
2375 queue_index = map->queues[0];
2376 else {
2377 u32 hash;
2378 if (skb->sk && skb->sk->sk_hash)
2379 hash = skb->sk->sk_hash;
2380 else
2381 hash = (__force u16) skb->protocol ^
2382 skb->rxhash;
2383 hash = jhash_1word(hash, hashrnd);
2384 queue_index = map->queues[
2385 ((u64)hash * map->len) >> 32];
2386 }
2387 if (unlikely(queue_index >= dev->real_num_tx_queues))
2388 queue_index = -1;
2389 }
2390 }
2391 rcu_read_unlock();
2392
2393 return queue_index;
2394 #else
2395 return -1;
2396 #endif
2397 }
2398
2399 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2400 struct sk_buff *skb)
2401 {
2402 int queue_index;
2403 const struct net_device_ops *ops = dev->netdev_ops;
2404
2405 if (dev->real_num_tx_queues == 1)
2406 queue_index = 0;
2407 else if (ops->ndo_select_queue) {
2408 queue_index = ops->ndo_select_queue(dev, skb);
2409 queue_index = dev_cap_txqueue(dev, queue_index);
2410 } else {
2411 struct sock *sk = skb->sk;
2412 queue_index = sk_tx_queue_get(sk);
2413
2414 if (queue_index < 0 || skb->ooo_okay ||
2415 queue_index >= dev->real_num_tx_queues) {
2416 int old_index = queue_index;
2417
2418 queue_index = get_xps_queue(dev, skb);
2419 if (queue_index < 0)
2420 queue_index = skb_tx_hash(dev, skb);
2421
2422 if (queue_index != old_index && sk) {
2423 struct dst_entry *dst =
2424 rcu_dereference_check(sk->sk_dst_cache, 1);
2425
2426 if (dst && skb_dst(skb) == dst)
2427 sk_tx_queue_set(sk, queue_index);
2428 }
2429 }
2430 }
2431
2432 skb_set_queue_mapping(skb, queue_index);
2433 return netdev_get_tx_queue(dev, queue_index);
2434 }
2435
2436 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2437 struct net_device *dev,
2438 struct netdev_queue *txq)
2439 {
2440 spinlock_t *root_lock = qdisc_lock(q);
2441 bool contended;
2442 int rc;
2443
2444 qdisc_skb_cb(skb)->pkt_len = skb->len;
2445 qdisc_calculate_pkt_len(skb, q);
2446 /*
2447 * Heuristic to force contended enqueues to serialize on a
2448 * separate lock before trying to get qdisc main lock.
2449 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2450 * and dequeue packets faster.
2451 */
2452 contended = qdisc_is_running(q);
2453 if (unlikely(contended))
2454 spin_lock(&q->busylock);
2455
2456 spin_lock(root_lock);
2457 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2458 kfree_skb(skb);
2459 rc = NET_XMIT_DROP;
2460 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2461 qdisc_run_begin(q)) {
2462 /*
2463 * This is a work-conserving queue; there are no old skbs
2464 * waiting to be sent out; and the qdisc is not running -
2465 * xmit the skb directly.
2466 */
2467 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2468 skb_dst_force(skb);
2469
2470 qdisc_bstats_update(q, skb);
2471
2472 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2473 if (unlikely(contended)) {
2474 spin_unlock(&q->busylock);
2475 contended = false;
2476 }
2477 __qdisc_run(q);
2478 } else
2479 qdisc_run_end(q);
2480
2481 rc = NET_XMIT_SUCCESS;
2482 } else {
2483 skb_dst_force(skb);
2484 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2485 if (qdisc_run_begin(q)) {
2486 if (unlikely(contended)) {
2487 spin_unlock(&q->busylock);
2488 contended = false;
2489 }
2490 __qdisc_run(q);
2491 }
2492 }
2493 spin_unlock(root_lock);
2494 if (unlikely(contended))
2495 spin_unlock(&q->busylock);
2496 return rc;
2497 }
2498
2499 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2500 static void skb_update_prio(struct sk_buff *skb)
2501 {
2502 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2503
2504 if (!skb->priority && skb->sk && map) {
2505 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2506
2507 if (prioidx < map->priomap_len)
2508 skb->priority = map->priomap[prioidx];
2509 }
2510 }
2511 #else
2512 #define skb_update_prio(skb)
2513 #endif
2514
2515 static DEFINE_PER_CPU(int, xmit_recursion);
2516 #define RECURSION_LIMIT 10
2517
2518 /**
2519 * dev_loopback_xmit - loop back @skb
2520 * @skb: buffer to transmit
2521 */
2522 int dev_loopback_xmit(struct sk_buff *skb)
2523 {
2524 skb_reset_mac_header(skb);
2525 __skb_pull(skb, skb_network_offset(skb));
2526 skb->pkt_type = PACKET_LOOPBACK;
2527 skb->ip_summed = CHECKSUM_UNNECESSARY;
2528 WARN_ON(!skb_dst(skb));
2529 skb_dst_force(skb);
2530 netif_rx_ni(skb);
2531 return 0;
2532 }
2533 EXPORT_SYMBOL(dev_loopback_xmit);
2534
2535 /**
2536 * dev_queue_xmit - transmit a buffer
2537 * @skb: buffer to transmit
2538 *
2539 * Queue a buffer for transmission to a network device. The caller must
2540 * have set the device and priority and built the buffer before calling
2541 * this function. The function can be called from an interrupt.
2542 *
2543 * A negative errno code is returned on a failure. A success does not
2544 * guarantee the frame will be transmitted as it may be dropped due
2545 * to congestion or traffic shaping.
2546 *
2547 * -----------------------------------------------------------------------------------
2548 * I notice this method can also return errors from the queue disciplines,
2549 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2550 * be positive.
2551 *
2552 * Regardless of the return value, the skb is consumed, so it is currently
2553 * difficult to retry a send to this method. (You can bump the ref count
2554 * before sending to hold a reference for retry if you are careful.)
2555 *
2556 * When calling this method, interrupts MUST be enabled. This is because
2557 * the BH enable code must have IRQs enabled so that it will not deadlock.
2558 * --BLG
2559 */
2560 int dev_queue_xmit(struct sk_buff *skb)
2561 {
2562 struct net_device *dev = skb->dev;
2563 struct netdev_queue *txq;
2564 struct Qdisc *q;
2565 int rc = -ENOMEM;
2566
2567 /* Disable soft irqs for various locks below. Also
2568 * stops preemption for RCU.
2569 */
2570 rcu_read_lock_bh();
2571
2572 skb_update_prio(skb);
2573
2574 txq = dev_pick_tx(dev, skb);
2575 q = rcu_dereference_bh(txq->qdisc);
2576
2577 #ifdef CONFIG_NET_CLS_ACT
2578 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2579 #endif
2580 trace_net_dev_queue(skb);
2581 if (q->enqueue) {
2582 rc = __dev_xmit_skb(skb, q, dev, txq);
2583 goto out;
2584 }
2585
2586 /* The device has no queue. Common case for software devices:
2587 loopback, all the sorts of tunnels...
2588
2589 Really, it is unlikely that netif_tx_lock protection is necessary
2590 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2591 counters.)
2592 However, it is possible, that they rely on protection
2593 made by us here.
2594
2595 Check this and shot the lock. It is not prone from deadlocks.
2596 Either shot noqueue qdisc, it is even simpler 8)
2597 */
2598 if (dev->flags & IFF_UP) {
2599 int cpu = smp_processor_id(); /* ok because BHs are off */
2600
2601 if (txq->xmit_lock_owner != cpu) {
2602
2603 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2604 goto recursion_alert;
2605
2606 HARD_TX_LOCK(dev, txq, cpu);
2607
2608 if (!netif_xmit_stopped(txq)) {
2609 __this_cpu_inc(xmit_recursion);
2610 rc = dev_hard_start_xmit(skb, dev, txq);
2611 __this_cpu_dec(xmit_recursion);
2612 if (dev_xmit_complete(rc)) {
2613 HARD_TX_UNLOCK(dev, txq);
2614 goto out;
2615 }
2616 }
2617 HARD_TX_UNLOCK(dev, txq);
2618 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2619 dev->name);
2620 } else {
2621 /* Recursion is detected! It is possible,
2622 * unfortunately
2623 */
2624 recursion_alert:
2625 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2626 dev->name);
2627 }
2628 }
2629
2630 rc = -ENETDOWN;
2631 rcu_read_unlock_bh();
2632
2633 kfree_skb(skb);
2634 return rc;
2635 out:
2636 rcu_read_unlock_bh();
2637 return rc;
2638 }
2639 EXPORT_SYMBOL(dev_queue_xmit);
2640
2641
2642 /*=======================================================================
2643 Receiver routines
2644 =======================================================================*/
2645
2646 int netdev_max_backlog __read_mostly = 1000;
2647 int netdev_tstamp_prequeue __read_mostly = 1;
2648 int netdev_budget __read_mostly = 300;
2649 int weight_p __read_mostly = 64; /* old backlog weight */
2650
2651 /* Called with irq disabled */
2652 static inline void ____napi_schedule(struct softnet_data *sd,
2653 struct napi_struct *napi)
2654 {
2655 list_add_tail(&napi->poll_list, &sd->poll_list);
2656 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2657 }
2658
2659 /*
2660 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2661 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2662 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2663 * if hash is a canonical 4-tuple hash over transport ports.
2664 */
2665 void __skb_get_rxhash(struct sk_buff *skb)
2666 {
2667 struct flow_keys keys;
2668 u32 hash;
2669
2670 if (!skb_flow_dissect(skb, &keys))
2671 return;
2672
2673 if (keys.ports)
2674 skb->l4_rxhash = 1;
2675
2676 /* get a consistent hash (same value on both flow directions) */
2677 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2678 (((__force u32)keys.dst == (__force u32)keys.src) &&
2679 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2680 swap(keys.dst, keys.src);
2681 swap(keys.port16[0], keys.port16[1]);
2682 }
2683
2684 hash = jhash_3words((__force u32)keys.dst,
2685 (__force u32)keys.src,
2686 (__force u32)keys.ports, hashrnd);
2687 if (!hash)
2688 hash = 1;
2689
2690 skb->rxhash = hash;
2691 }
2692 EXPORT_SYMBOL(__skb_get_rxhash);
2693
2694 #ifdef CONFIG_RPS
2695
2696 /* One global table that all flow-based protocols share. */
2697 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2698 EXPORT_SYMBOL(rps_sock_flow_table);
2699
2700 struct static_key rps_needed __read_mostly;
2701
2702 static struct rps_dev_flow *
2703 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2704 struct rps_dev_flow *rflow, u16 next_cpu)
2705 {
2706 if (next_cpu != RPS_NO_CPU) {
2707 #ifdef CONFIG_RFS_ACCEL
2708 struct netdev_rx_queue *rxqueue;
2709 struct rps_dev_flow_table *flow_table;
2710 struct rps_dev_flow *old_rflow;
2711 u32 flow_id;
2712 u16 rxq_index;
2713 int rc;
2714
2715 /* Should we steer this flow to a different hardware queue? */
2716 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2717 !(dev->features & NETIF_F_NTUPLE))
2718 goto out;
2719 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2720 if (rxq_index == skb_get_rx_queue(skb))
2721 goto out;
2722
2723 rxqueue = dev->_rx + rxq_index;
2724 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2725 if (!flow_table)
2726 goto out;
2727 flow_id = skb->rxhash & flow_table->mask;
2728 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2729 rxq_index, flow_id);
2730 if (rc < 0)
2731 goto out;
2732 old_rflow = rflow;
2733 rflow = &flow_table->flows[flow_id];
2734 rflow->filter = rc;
2735 if (old_rflow->filter == rflow->filter)
2736 old_rflow->filter = RPS_NO_FILTER;
2737 out:
2738 #endif
2739 rflow->last_qtail =
2740 per_cpu(softnet_data, next_cpu).input_queue_head;
2741 }
2742
2743 rflow->cpu = next_cpu;
2744 return rflow;
2745 }
2746
2747 /*
2748 * get_rps_cpu is called from netif_receive_skb and returns the target
2749 * CPU from the RPS map of the receiving queue for a given skb.
2750 * rcu_read_lock must be held on entry.
2751 */
2752 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2753 struct rps_dev_flow **rflowp)
2754 {
2755 struct netdev_rx_queue *rxqueue;
2756 struct rps_map *map;
2757 struct rps_dev_flow_table *flow_table;
2758 struct rps_sock_flow_table *sock_flow_table;
2759 int cpu = -1;
2760 u16 tcpu;
2761
2762 if (skb_rx_queue_recorded(skb)) {
2763 u16 index = skb_get_rx_queue(skb);
2764 if (unlikely(index >= dev->real_num_rx_queues)) {
2765 WARN_ONCE(dev->real_num_rx_queues > 1,
2766 "%s received packet on queue %u, but number "
2767 "of RX queues is %u\n",
2768 dev->name, index, dev->real_num_rx_queues);
2769 goto done;
2770 }
2771 rxqueue = dev->_rx + index;
2772 } else
2773 rxqueue = dev->_rx;
2774
2775 map = rcu_dereference(rxqueue->rps_map);
2776 if (map) {
2777 if (map->len == 1 &&
2778 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2779 tcpu = map->cpus[0];
2780 if (cpu_online(tcpu))
2781 cpu = tcpu;
2782 goto done;
2783 }
2784 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2785 goto done;
2786 }
2787
2788 skb_reset_network_header(skb);
2789 if (!skb_get_rxhash(skb))
2790 goto done;
2791
2792 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2793 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2794 if (flow_table && sock_flow_table) {
2795 u16 next_cpu;
2796 struct rps_dev_flow *rflow;
2797
2798 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2799 tcpu = rflow->cpu;
2800
2801 next_cpu = sock_flow_table->ents[skb->rxhash &
2802 sock_flow_table->mask];
2803
2804 /*
2805 * If the desired CPU (where last recvmsg was done) is
2806 * different from current CPU (one in the rx-queue flow
2807 * table entry), switch if one of the following holds:
2808 * - Current CPU is unset (equal to RPS_NO_CPU).
2809 * - Current CPU is offline.
2810 * - The current CPU's queue tail has advanced beyond the
2811 * last packet that was enqueued using this table entry.
2812 * This guarantees that all previous packets for the flow
2813 * have been dequeued, thus preserving in order delivery.
2814 */
2815 if (unlikely(tcpu != next_cpu) &&
2816 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2817 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2818 rflow->last_qtail)) >= 0))
2819 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2820
2821 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2822 *rflowp = rflow;
2823 cpu = tcpu;
2824 goto done;
2825 }
2826 }
2827
2828 if (map) {
2829 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2830
2831 if (cpu_online(tcpu)) {
2832 cpu = tcpu;
2833 goto done;
2834 }
2835 }
2836
2837 done:
2838 return cpu;
2839 }
2840
2841 #ifdef CONFIG_RFS_ACCEL
2842
2843 /**
2844 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2845 * @dev: Device on which the filter was set
2846 * @rxq_index: RX queue index
2847 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2848 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2849 *
2850 * Drivers that implement ndo_rx_flow_steer() should periodically call
2851 * this function for each installed filter and remove the filters for
2852 * which it returns %true.
2853 */
2854 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2855 u32 flow_id, u16 filter_id)
2856 {
2857 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2858 struct rps_dev_flow_table *flow_table;
2859 struct rps_dev_flow *rflow;
2860 bool expire = true;
2861 int cpu;
2862
2863 rcu_read_lock();
2864 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2865 if (flow_table && flow_id <= flow_table->mask) {
2866 rflow = &flow_table->flows[flow_id];
2867 cpu = ACCESS_ONCE(rflow->cpu);
2868 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2869 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2870 rflow->last_qtail) <
2871 (int)(10 * flow_table->mask)))
2872 expire = false;
2873 }
2874 rcu_read_unlock();
2875 return expire;
2876 }
2877 EXPORT_SYMBOL(rps_may_expire_flow);
2878
2879 #endif /* CONFIG_RFS_ACCEL */
2880
2881 /* Called from hardirq (IPI) context */
2882 static void rps_trigger_softirq(void *data)
2883 {
2884 struct softnet_data *sd = data;
2885
2886 ____napi_schedule(sd, &sd->backlog);
2887 sd->received_rps++;
2888 }
2889
2890 #endif /* CONFIG_RPS */
2891
2892 /*
2893 * Check if this softnet_data structure is another cpu one
2894 * If yes, queue it to our IPI list and return 1
2895 * If no, return 0
2896 */
2897 static int rps_ipi_queued(struct softnet_data *sd)
2898 {
2899 #ifdef CONFIG_RPS
2900 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2901
2902 if (sd != mysd) {
2903 sd->rps_ipi_next = mysd->rps_ipi_list;
2904 mysd->rps_ipi_list = sd;
2905
2906 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2907 return 1;
2908 }
2909 #endif /* CONFIG_RPS */
2910 return 0;
2911 }
2912
2913 /*
2914 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2915 * queue (may be a remote CPU queue).
2916 */
2917 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2918 unsigned int *qtail)
2919 {
2920 struct softnet_data *sd;
2921 unsigned long flags;
2922
2923 sd = &per_cpu(softnet_data, cpu);
2924
2925 local_irq_save(flags);
2926
2927 rps_lock(sd);
2928 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2929 if (skb_queue_len(&sd->input_pkt_queue)) {
2930 enqueue:
2931 __skb_queue_tail(&sd->input_pkt_queue, skb);
2932 input_queue_tail_incr_save(sd, qtail);
2933 rps_unlock(sd);
2934 local_irq_restore(flags);
2935 return NET_RX_SUCCESS;
2936 }
2937
2938 /* Schedule NAPI for backlog device
2939 * We can use non atomic operation since we own the queue lock
2940 */
2941 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2942 if (!rps_ipi_queued(sd))
2943 ____napi_schedule(sd, &sd->backlog);
2944 }
2945 goto enqueue;
2946 }
2947
2948 sd->dropped++;
2949 rps_unlock(sd);
2950
2951 local_irq_restore(flags);
2952
2953 atomic_long_inc(&skb->dev->rx_dropped);
2954 kfree_skb(skb);
2955 return NET_RX_DROP;
2956 }
2957
2958 /**
2959 * netif_rx - post buffer to the network code
2960 * @skb: buffer to post
2961 *
2962 * This function receives a packet from a device driver and queues it for
2963 * the upper (protocol) levels to process. It always succeeds. The buffer
2964 * may be dropped during processing for congestion control or by the
2965 * protocol layers.
2966 *
2967 * return values:
2968 * NET_RX_SUCCESS (no congestion)
2969 * NET_RX_DROP (packet was dropped)
2970 *
2971 */
2972
2973 int netif_rx(struct sk_buff *skb)
2974 {
2975 int ret;
2976
2977 /* if netpoll wants it, pretend we never saw it */
2978 if (netpoll_rx(skb))
2979 return NET_RX_DROP;
2980
2981 net_timestamp_check(netdev_tstamp_prequeue, skb);
2982
2983 trace_netif_rx(skb);
2984 #ifdef CONFIG_RPS
2985 if (static_key_false(&rps_needed)) {
2986 struct rps_dev_flow voidflow, *rflow = &voidflow;
2987 int cpu;
2988
2989 preempt_disable();
2990 rcu_read_lock();
2991
2992 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2993 if (cpu < 0)
2994 cpu = smp_processor_id();
2995
2996 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2997
2998 rcu_read_unlock();
2999 preempt_enable();
3000 } else
3001 #endif
3002 {
3003 unsigned int qtail;
3004 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3005 put_cpu();
3006 }
3007 return ret;
3008 }
3009 EXPORT_SYMBOL(netif_rx);
3010
3011 int netif_rx_ni(struct sk_buff *skb)
3012 {
3013 int err;
3014
3015 preempt_disable();
3016 err = netif_rx(skb);
3017 if (local_softirq_pending())
3018 do_softirq();
3019 preempt_enable();
3020
3021 return err;
3022 }
3023 EXPORT_SYMBOL(netif_rx_ni);
3024
3025 static void net_tx_action(struct softirq_action *h)
3026 {
3027 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3028
3029 if (sd->completion_queue) {
3030 struct sk_buff *clist;
3031
3032 local_irq_disable();
3033 clist = sd->completion_queue;
3034 sd->completion_queue = NULL;
3035 local_irq_enable();
3036
3037 while (clist) {
3038 struct sk_buff *skb = clist;
3039 clist = clist->next;
3040
3041 WARN_ON(atomic_read(&skb->users));
3042 trace_kfree_skb(skb, net_tx_action);
3043 __kfree_skb(skb);
3044 }
3045 }
3046
3047 if (sd->output_queue) {
3048 struct Qdisc *head;
3049
3050 local_irq_disable();
3051 head = sd->output_queue;
3052 sd->output_queue = NULL;
3053 sd->output_queue_tailp = &sd->output_queue;
3054 local_irq_enable();
3055
3056 while (head) {
3057 struct Qdisc *q = head;
3058 spinlock_t *root_lock;
3059
3060 head = head->next_sched;
3061
3062 root_lock = qdisc_lock(q);
3063 if (spin_trylock(root_lock)) {
3064 smp_mb__before_clear_bit();
3065 clear_bit(__QDISC_STATE_SCHED,
3066 &q->state);
3067 qdisc_run(q);
3068 spin_unlock(root_lock);
3069 } else {
3070 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3071 &q->state)) {
3072 __netif_reschedule(q);
3073 } else {
3074 smp_mb__before_clear_bit();
3075 clear_bit(__QDISC_STATE_SCHED,
3076 &q->state);
3077 }
3078 }
3079 }
3080 }
3081 }
3082
3083 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3084 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3085 /* This hook is defined here for ATM LANE */
3086 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3087 unsigned char *addr) __read_mostly;
3088 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3089 #endif
3090
3091 #ifdef CONFIG_NET_CLS_ACT
3092 /* TODO: Maybe we should just force sch_ingress to be compiled in
3093 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3094 * a compare and 2 stores extra right now if we dont have it on
3095 * but have CONFIG_NET_CLS_ACT
3096 * NOTE: This doesn't stop any functionality; if you dont have
3097 * the ingress scheduler, you just can't add policies on ingress.
3098 *
3099 */
3100 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3101 {
3102 struct net_device *dev = skb->dev;
3103 u32 ttl = G_TC_RTTL(skb->tc_verd);
3104 int result = TC_ACT_OK;
3105 struct Qdisc *q;
3106
3107 if (unlikely(MAX_RED_LOOP < ttl++)) {
3108 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3109 skb->skb_iif, dev->ifindex);
3110 return TC_ACT_SHOT;
3111 }
3112
3113 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3114 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3115
3116 q = rxq->qdisc;
3117 if (q != &noop_qdisc) {
3118 spin_lock(qdisc_lock(q));
3119 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3120 result = qdisc_enqueue_root(skb, q);
3121 spin_unlock(qdisc_lock(q));
3122 }
3123
3124 return result;
3125 }
3126
3127 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3128 struct packet_type **pt_prev,
3129 int *ret, struct net_device *orig_dev)
3130 {
3131 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3132
3133 if (!rxq || rxq->qdisc == &noop_qdisc)
3134 goto out;
3135
3136 if (*pt_prev) {
3137 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3138 *pt_prev = NULL;
3139 }
3140
3141 switch (ing_filter(skb, rxq)) {
3142 case TC_ACT_SHOT:
3143 case TC_ACT_STOLEN:
3144 kfree_skb(skb);
3145 return NULL;
3146 }
3147
3148 out:
3149 skb->tc_verd = 0;
3150 return skb;
3151 }
3152 #endif
3153
3154 /**
3155 * netdev_rx_handler_register - register receive handler
3156 * @dev: device to register a handler for
3157 * @rx_handler: receive handler to register
3158 * @rx_handler_data: data pointer that is used by rx handler
3159 *
3160 * Register a receive hander for a device. This handler will then be
3161 * called from __netif_receive_skb. A negative errno code is returned
3162 * on a failure.
3163 *
3164 * The caller must hold the rtnl_mutex.
3165 *
3166 * For a general description of rx_handler, see enum rx_handler_result.
3167 */
3168 int netdev_rx_handler_register(struct net_device *dev,
3169 rx_handler_func_t *rx_handler,
3170 void *rx_handler_data)
3171 {
3172 ASSERT_RTNL();
3173
3174 if (dev->rx_handler)
3175 return -EBUSY;
3176
3177 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3178 rcu_assign_pointer(dev->rx_handler, rx_handler);
3179
3180 return 0;
3181 }
3182 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3183
3184 /**
3185 * netdev_rx_handler_unregister - unregister receive handler
3186 * @dev: device to unregister a handler from
3187 *
3188 * Unregister a receive hander from a device.
3189 *
3190 * The caller must hold the rtnl_mutex.
3191 */
3192 void netdev_rx_handler_unregister(struct net_device *dev)
3193 {
3194
3195 ASSERT_RTNL();
3196 RCU_INIT_POINTER(dev->rx_handler, NULL);
3197 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3198 }
3199 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3200
3201 /*
3202 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3203 * the special handling of PFMEMALLOC skbs.
3204 */
3205 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3206 {
3207 switch (skb->protocol) {
3208 case __constant_htons(ETH_P_ARP):
3209 case __constant_htons(ETH_P_IP):
3210 case __constant_htons(ETH_P_IPV6):
3211 case __constant_htons(ETH_P_8021Q):
3212 return true;
3213 default:
3214 return false;
3215 }
3216 }
3217
3218 static int __netif_receive_skb(struct sk_buff *skb)
3219 {
3220 struct packet_type *ptype, *pt_prev;
3221 rx_handler_func_t *rx_handler;
3222 struct net_device *orig_dev;
3223 struct net_device *null_or_dev;
3224 bool deliver_exact = false;
3225 int ret = NET_RX_DROP;
3226 __be16 type;
3227 unsigned long pflags = current->flags;
3228
3229 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3230
3231 trace_netif_receive_skb(skb);
3232
3233 /*
3234 * PFMEMALLOC skbs are special, they should
3235 * - be delivered to SOCK_MEMALLOC sockets only
3236 * - stay away from userspace
3237 * - have bounded memory usage
3238 *
3239 * Use PF_MEMALLOC as this saves us from propagating the allocation
3240 * context down to all allocation sites.
3241 */
3242 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3243 current->flags |= PF_MEMALLOC;
3244
3245 /* if we've gotten here through NAPI, check netpoll */
3246 if (netpoll_receive_skb(skb))
3247 goto out;
3248
3249 orig_dev = skb->dev;
3250
3251 skb_reset_network_header(skb);
3252 skb_reset_transport_header(skb);
3253 skb_reset_mac_len(skb);
3254
3255 pt_prev = NULL;
3256
3257 rcu_read_lock();
3258
3259 another_round:
3260 skb->skb_iif = skb->dev->ifindex;
3261
3262 __this_cpu_inc(softnet_data.processed);
3263
3264 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3265 skb = vlan_untag(skb);
3266 if (unlikely(!skb))
3267 goto unlock;
3268 }
3269
3270 #ifdef CONFIG_NET_CLS_ACT
3271 if (skb->tc_verd & TC_NCLS) {
3272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3273 goto ncls;
3274 }
3275 #endif
3276
3277 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3278 goto skip_taps;
3279
3280 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3281 if (!ptype->dev || ptype->dev == skb->dev) {
3282 if (pt_prev)
3283 ret = deliver_skb(skb, pt_prev, orig_dev);
3284 pt_prev = ptype;
3285 }
3286 }
3287
3288 skip_taps:
3289 #ifdef CONFIG_NET_CLS_ACT
3290 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3291 if (!skb)
3292 goto unlock;
3293 ncls:
3294 #endif
3295
3296 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3297 && !skb_pfmemalloc_protocol(skb))
3298 goto drop;
3299
3300 rx_handler = rcu_dereference(skb->dev->rx_handler);
3301 if (vlan_tx_tag_present(skb)) {
3302 if (pt_prev) {
3303 ret = deliver_skb(skb, pt_prev, orig_dev);
3304 pt_prev = NULL;
3305 }
3306 if (vlan_do_receive(&skb, !rx_handler))
3307 goto another_round;
3308 else if (unlikely(!skb))
3309 goto unlock;
3310 }
3311
3312 if (rx_handler) {
3313 if (pt_prev) {
3314 ret = deliver_skb(skb, pt_prev, orig_dev);
3315 pt_prev = NULL;
3316 }
3317 switch (rx_handler(&skb)) {
3318 case RX_HANDLER_CONSUMED:
3319 goto unlock;
3320 case RX_HANDLER_ANOTHER:
3321 goto another_round;
3322 case RX_HANDLER_EXACT:
3323 deliver_exact = true;
3324 case RX_HANDLER_PASS:
3325 break;
3326 default:
3327 BUG();
3328 }
3329 }
3330
3331 /* deliver only exact match when indicated */
3332 null_or_dev = deliver_exact ? skb->dev : NULL;
3333
3334 type = skb->protocol;
3335 list_for_each_entry_rcu(ptype,
3336 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3337 if (ptype->type == type &&
3338 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3339 ptype->dev == orig_dev)) {
3340 if (pt_prev)
3341 ret = deliver_skb(skb, pt_prev, orig_dev);
3342 pt_prev = ptype;
3343 }
3344 }
3345
3346 if (pt_prev) {
3347 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3348 ret = -ENOMEM;
3349 else
3350 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3351 } else {
3352 drop:
3353 atomic_long_inc(&skb->dev->rx_dropped);
3354 kfree_skb(skb);
3355 /* Jamal, now you will not able to escape explaining
3356 * me how you were going to use this. :-)
3357 */
3358 ret = NET_RX_DROP;
3359 }
3360
3361 unlock:
3362 rcu_read_unlock();
3363 out:
3364 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3365 return ret;
3366 }
3367
3368 /**
3369 * netif_receive_skb - process receive buffer from network
3370 * @skb: buffer to process
3371 *
3372 * netif_receive_skb() is the main receive data processing function.
3373 * It always succeeds. The buffer may be dropped during processing
3374 * for congestion control or by the protocol layers.
3375 *
3376 * This function may only be called from softirq context and interrupts
3377 * should be enabled.
3378 *
3379 * Return values (usually ignored):
3380 * NET_RX_SUCCESS: no congestion
3381 * NET_RX_DROP: packet was dropped
3382 */
3383 int netif_receive_skb(struct sk_buff *skb)
3384 {
3385 net_timestamp_check(netdev_tstamp_prequeue, skb);
3386
3387 if (skb_defer_rx_timestamp(skb))
3388 return NET_RX_SUCCESS;
3389
3390 #ifdef CONFIG_RPS
3391 if (static_key_false(&rps_needed)) {
3392 struct rps_dev_flow voidflow, *rflow = &voidflow;
3393 int cpu, ret;
3394
3395 rcu_read_lock();
3396
3397 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3398
3399 if (cpu >= 0) {
3400 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3401 rcu_read_unlock();
3402 return ret;
3403 }
3404 rcu_read_unlock();
3405 }
3406 #endif
3407 return __netif_receive_skb(skb);
3408 }
3409 EXPORT_SYMBOL(netif_receive_skb);
3410
3411 /* Network device is going away, flush any packets still pending
3412 * Called with irqs disabled.
3413 */
3414 static void flush_backlog(void *arg)
3415 {
3416 struct net_device *dev = arg;
3417 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3418 struct sk_buff *skb, *tmp;
3419
3420 rps_lock(sd);
3421 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3422 if (skb->dev == dev) {
3423 __skb_unlink(skb, &sd->input_pkt_queue);
3424 kfree_skb(skb);
3425 input_queue_head_incr(sd);
3426 }
3427 }
3428 rps_unlock(sd);
3429
3430 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3431 if (skb->dev == dev) {
3432 __skb_unlink(skb, &sd->process_queue);
3433 kfree_skb(skb);
3434 input_queue_head_incr(sd);
3435 }
3436 }
3437 }
3438
3439 static int napi_gro_complete(struct sk_buff *skb)
3440 {
3441 struct packet_type *ptype;
3442 __be16 type = skb->protocol;
3443 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3444 int err = -ENOENT;
3445
3446 if (NAPI_GRO_CB(skb)->count == 1) {
3447 skb_shinfo(skb)->gso_size = 0;
3448 goto out;
3449 }
3450
3451 rcu_read_lock();
3452 list_for_each_entry_rcu(ptype, head, list) {
3453 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3454 continue;
3455
3456 err = ptype->gro_complete(skb);
3457 break;
3458 }
3459 rcu_read_unlock();
3460
3461 if (err) {
3462 WARN_ON(&ptype->list == head);
3463 kfree_skb(skb);
3464 return NET_RX_SUCCESS;
3465 }
3466
3467 out:
3468 return netif_receive_skb(skb);
3469 }
3470
3471 inline void napi_gro_flush(struct napi_struct *napi)
3472 {
3473 struct sk_buff *skb, *next;
3474
3475 for (skb = napi->gro_list; skb; skb = next) {
3476 next = skb->next;
3477 skb->next = NULL;
3478 napi_gro_complete(skb);
3479 }
3480
3481 napi->gro_count = 0;
3482 napi->gro_list = NULL;
3483 }
3484 EXPORT_SYMBOL(napi_gro_flush);
3485
3486 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3487 {
3488 struct sk_buff **pp = NULL;
3489 struct packet_type *ptype;
3490 __be16 type = skb->protocol;
3491 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3492 int same_flow;
3493 int mac_len;
3494 enum gro_result ret;
3495
3496 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3497 goto normal;
3498
3499 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3500 goto normal;
3501
3502 rcu_read_lock();
3503 list_for_each_entry_rcu(ptype, head, list) {
3504 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3505 continue;
3506
3507 skb_set_network_header(skb, skb_gro_offset(skb));
3508 mac_len = skb->network_header - skb->mac_header;
3509 skb->mac_len = mac_len;
3510 NAPI_GRO_CB(skb)->same_flow = 0;
3511 NAPI_GRO_CB(skb)->flush = 0;
3512 NAPI_GRO_CB(skb)->free = 0;
3513
3514 pp = ptype->gro_receive(&napi->gro_list, skb);
3515 break;
3516 }
3517 rcu_read_unlock();
3518
3519 if (&ptype->list == head)
3520 goto normal;
3521
3522 same_flow = NAPI_GRO_CB(skb)->same_flow;
3523 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3524
3525 if (pp) {
3526 struct sk_buff *nskb = *pp;
3527
3528 *pp = nskb->next;
3529 nskb->next = NULL;
3530 napi_gro_complete(nskb);
3531 napi->gro_count--;
3532 }
3533
3534 if (same_flow)
3535 goto ok;
3536
3537 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3538 goto normal;
3539
3540 napi->gro_count++;
3541 NAPI_GRO_CB(skb)->count = 1;
3542 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3543 skb->next = napi->gro_list;
3544 napi->gro_list = skb;
3545 ret = GRO_HELD;
3546
3547 pull:
3548 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3549 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3550
3551 BUG_ON(skb->end - skb->tail < grow);
3552
3553 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3554
3555 skb->tail += grow;
3556 skb->data_len -= grow;
3557
3558 skb_shinfo(skb)->frags[0].page_offset += grow;
3559 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3560
3561 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3562 skb_frag_unref(skb, 0);
3563 memmove(skb_shinfo(skb)->frags,
3564 skb_shinfo(skb)->frags + 1,
3565 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3566 }
3567 }
3568
3569 ok:
3570 return ret;
3571
3572 normal:
3573 ret = GRO_NORMAL;
3574 goto pull;
3575 }
3576 EXPORT_SYMBOL(dev_gro_receive);
3577
3578 static inline gro_result_t
3579 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3580 {
3581 struct sk_buff *p;
3582 unsigned int maclen = skb->dev->hard_header_len;
3583
3584 for (p = napi->gro_list; p; p = p->next) {
3585 unsigned long diffs;
3586
3587 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3588 diffs |= p->vlan_tci ^ skb->vlan_tci;
3589 if (maclen == ETH_HLEN)
3590 diffs |= compare_ether_header(skb_mac_header(p),
3591 skb_gro_mac_header(skb));
3592 else if (!diffs)
3593 diffs = memcmp(skb_mac_header(p),
3594 skb_gro_mac_header(skb),
3595 maclen);
3596 NAPI_GRO_CB(p)->same_flow = !diffs;
3597 NAPI_GRO_CB(p)->flush = 0;
3598 }
3599
3600 return dev_gro_receive(napi, skb);
3601 }
3602
3603 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3604 {
3605 switch (ret) {
3606 case GRO_NORMAL:
3607 if (netif_receive_skb(skb))
3608 ret = GRO_DROP;
3609 break;
3610
3611 case GRO_DROP:
3612 kfree_skb(skb);
3613 break;
3614
3615 case GRO_MERGED_FREE:
3616 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3617 kmem_cache_free(skbuff_head_cache, skb);
3618 else
3619 __kfree_skb(skb);
3620 break;
3621
3622 case GRO_HELD:
3623 case GRO_MERGED:
3624 break;
3625 }
3626
3627 return ret;
3628 }
3629 EXPORT_SYMBOL(napi_skb_finish);
3630
3631 void skb_gro_reset_offset(struct sk_buff *skb)
3632 {
3633 NAPI_GRO_CB(skb)->data_offset = 0;
3634 NAPI_GRO_CB(skb)->frag0 = NULL;
3635 NAPI_GRO_CB(skb)->frag0_len = 0;
3636
3637 if (skb->mac_header == skb->tail &&
3638 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3639 NAPI_GRO_CB(skb)->frag0 =
3640 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3641 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3642 }
3643 }
3644 EXPORT_SYMBOL(skb_gro_reset_offset);
3645
3646 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3647 {
3648 skb_gro_reset_offset(skb);
3649
3650 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3651 }
3652 EXPORT_SYMBOL(napi_gro_receive);
3653
3654 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3655 {
3656 __skb_pull(skb, skb_headlen(skb));
3657 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3658 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3659 skb->vlan_tci = 0;
3660 skb->dev = napi->dev;
3661 skb->skb_iif = 0;
3662
3663 napi->skb = skb;
3664 }
3665
3666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3667 {
3668 struct sk_buff *skb = napi->skb;
3669
3670 if (!skb) {
3671 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3672 if (skb)
3673 napi->skb = skb;
3674 }
3675 return skb;
3676 }
3677 EXPORT_SYMBOL(napi_get_frags);
3678
3679 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3680 gro_result_t ret)
3681 {
3682 switch (ret) {
3683 case GRO_NORMAL:
3684 case GRO_HELD:
3685 skb->protocol = eth_type_trans(skb, skb->dev);
3686
3687 if (ret == GRO_HELD)
3688 skb_gro_pull(skb, -ETH_HLEN);
3689 else if (netif_receive_skb(skb))
3690 ret = GRO_DROP;
3691 break;
3692
3693 case GRO_DROP:
3694 case GRO_MERGED_FREE:
3695 napi_reuse_skb(napi, skb);
3696 break;
3697
3698 case GRO_MERGED:
3699 break;
3700 }
3701
3702 return ret;
3703 }
3704 EXPORT_SYMBOL(napi_frags_finish);
3705
3706 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3707 {
3708 struct sk_buff *skb = napi->skb;
3709 struct ethhdr *eth;
3710 unsigned int hlen;
3711 unsigned int off;
3712
3713 napi->skb = NULL;
3714
3715 skb_reset_mac_header(skb);
3716 skb_gro_reset_offset(skb);
3717
3718 off = skb_gro_offset(skb);
3719 hlen = off + sizeof(*eth);
3720 eth = skb_gro_header_fast(skb, off);
3721 if (skb_gro_header_hard(skb, hlen)) {
3722 eth = skb_gro_header_slow(skb, hlen, off);
3723 if (unlikely(!eth)) {
3724 napi_reuse_skb(napi, skb);
3725 skb = NULL;
3726 goto out;
3727 }
3728 }
3729
3730 skb_gro_pull(skb, sizeof(*eth));
3731
3732 /*
3733 * This works because the only protocols we care about don't require
3734 * special handling. We'll fix it up properly at the end.
3735 */
3736 skb->protocol = eth->h_proto;
3737
3738 out:
3739 return skb;
3740 }
3741
3742 gro_result_t napi_gro_frags(struct napi_struct *napi)
3743 {
3744 struct sk_buff *skb = napi_frags_skb(napi);
3745
3746 if (!skb)
3747 return GRO_DROP;
3748
3749 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3750 }
3751 EXPORT_SYMBOL(napi_gro_frags);
3752
3753 /*
3754 * net_rps_action sends any pending IPI's for rps.
3755 * Note: called with local irq disabled, but exits with local irq enabled.
3756 */
3757 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3758 {
3759 #ifdef CONFIG_RPS
3760 struct softnet_data *remsd = sd->rps_ipi_list;
3761
3762 if (remsd) {
3763 sd->rps_ipi_list = NULL;
3764
3765 local_irq_enable();
3766
3767 /* Send pending IPI's to kick RPS processing on remote cpus. */
3768 while (remsd) {
3769 struct softnet_data *next = remsd->rps_ipi_next;
3770
3771 if (cpu_online(remsd->cpu))
3772 __smp_call_function_single(remsd->cpu,
3773 &remsd->csd, 0);
3774 remsd = next;
3775 }
3776 } else
3777 #endif
3778 local_irq_enable();
3779 }
3780
3781 static int process_backlog(struct napi_struct *napi, int quota)
3782 {
3783 int work = 0;
3784 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3785
3786 #ifdef CONFIG_RPS
3787 /* Check if we have pending ipi, its better to send them now,
3788 * not waiting net_rx_action() end.
3789 */
3790 if (sd->rps_ipi_list) {
3791 local_irq_disable();
3792 net_rps_action_and_irq_enable(sd);
3793 }
3794 #endif
3795 napi->weight = weight_p;
3796 local_irq_disable();
3797 while (work < quota) {
3798 struct sk_buff *skb;
3799 unsigned int qlen;
3800
3801 while ((skb = __skb_dequeue(&sd->process_queue))) {
3802 local_irq_enable();
3803 __netif_receive_skb(skb);
3804 local_irq_disable();
3805 input_queue_head_incr(sd);
3806 if (++work >= quota) {
3807 local_irq_enable();
3808 return work;
3809 }
3810 }
3811
3812 rps_lock(sd);
3813 qlen = skb_queue_len(&sd->input_pkt_queue);
3814 if (qlen)
3815 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3816 &sd->process_queue);
3817
3818 if (qlen < quota - work) {
3819 /*
3820 * Inline a custom version of __napi_complete().
3821 * only current cpu owns and manipulates this napi,
3822 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3823 * we can use a plain write instead of clear_bit(),
3824 * and we dont need an smp_mb() memory barrier.
3825 */
3826 list_del(&napi->poll_list);
3827 napi->state = 0;
3828
3829 quota = work + qlen;
3830 }
3831 rps_unlock(sd);
3832 }
3833 local_irq_enable();
3834
3835 return work;
3836 }
3837
3838 /**
3839 * __napi_schedule - schedule for receive
3840 * @n: entry to schedule
3841 *
3842 * The entry's receive function will be scheduled to run
3843 */
3844 void __napi_schedule(struct napi_struct *n)
3845 {
3846 unsigned long flags;
3847
3848 local_irq_save(flags);
3849 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3850 local_irq_restore(flags);
3851 }
3852 EXPORT_SYMBOL(__napi_schedule);
3853
3854 void __napi_complete(struct napi_struct *n)
3855 {
3856 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3857 BUG_ON(n->gro_list);
3858
3859 list_del(&n->poll_list);
3860 smp_mb__before_clear_bit();
3861 clear_bit(NAPI_STATE_SCHED, &n->state);
3862 }
3863 EXPORT_SYMBOL(__napi_complete);
3864
3865 void napi_complete(struct napi_struct *n)
3866 {
3867 unsigned long flags;
3868
3869 /*
3870 * don't let napi dequeue from the cpu poll list
3871 * just in case its running on a different cpu
3872 */
3873 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3874 return;
3875
3876 napi_gro_flush(n);
3877 local_irq_save(flags);
3878 __napi_complete(n);
3879 local_irq_restore(flags);
3880 }
3881 EXPORT_SYMBOL(napi_complete);
3882
3883 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3884 int (*poll)(struct napi_struct *, int), int weight)
3885 {
3886 INIT_LIST_HEAD(&napi->poll_list);
3887 napi->gro_count = 0;
3888 napi->gro_list = NULL;
3889 napi->skb = NULL;
3890 napi->poll = poll;
3891 napi->weight = weight;
3892 list_add(&napi->dev_list, &dev->napi_list);
3893 napi->dev = dev;
3894 #ifdef CONFIG_NETPOLL
3895 spin_lock_init(&napi->poll_lock);
3896 napi->poll_owner = -1;
3897 #endif
3898 set_bit(NAPI_STATE_SCHED, &napi->state);
3899 }
3900 EXPORT_SYMBOL(netif_napi_add);
3901
3902 void netif_napi_del(struct napi_struct *napi)
3903 {
3904 struct sk_buff *skb, *next;
3905
3906 list_del_init(&napi->dev_list);
3907 napi_free_frags(napi);
3908
3909 for (skb = napi->gro_list; skb; skb = next) {
3910 next = skb->next;
3911 skb->next = NULL;
3912 kfree_skb(skb);
3913 }
3914
3915 napi->gro_list = NULL;
3916 napi->gro_count = 0;
3917 }
3918 EXPORT_SYMBOL(netif_napi_del);
3919
3920 static void net_rx_action(struct softirq_action *h)
3921 {
3922 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3923 unsigned long time_limit = jiffies + 2;
3924 int budget = netdev_budget;
3925 void *have;
3926
3927 local_irq_disable();
3928
3929 while (!list_empty(&sd->poll_list)) {
3930 struct napi_struct *n;
3931 int work, weight;
3932
3933 /* If softirq window is exhuasted then punt.
3934 * Allow this to run for 2 jiffies since which will allow
3935 * an average latency of 1.5/HZ.
3936 */
3937 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3938 goto softnet_break;
3939
3940 local_irq_enable();
3941
3942 /* Even though interrupts have been re-enabled, this
3943 * access is safe because interrupts can only add new
3944 * entries to the tail of this list, and only ->poll()
3945 * calls can remove this head entry from the list.
3946 */
3947 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3948
3949 have = netpoll_poll_lock(n);
3950
3951 weight = n->weight;
3952
3953 /* This NAPI_STATE_SCHED test is for avoiding a race
3954 * with netpoll's poll_napi(). Only the entity which
3955 * obtains the lock and sees NAPI_STATE_SCHED set will
3956 * actually make the ->poll() call. Therefore we avoid
3957 * accidentally calling ->poll() when NAPI is not scheduled.
3958 */
3959 work = 0;
3960 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3961 work = n->poll(n, weight);
3962 trace_napi_poll(n);
3963 }
3964
3965 WARN_ON_ONCE(work > weight);
3966
3967 budget -= work;
3968
3969 local_irq_disable();
3970
3971 /* Drivers must not modify the NAPI state if they
3972 * consume the entire weight. In such cases this code
3973 * still "owns" the NAPI instance and therefore can
3974 * move the instance around on the list at-will.
3975 */
3976 if (unlikely(work == weight)) {
3977 if (unlikely(napi_disable_pending(n))) {
3978 local_irq_enable();
3979 napi_complete(n);
3980 local_irq_disable();
3981 } else
3982 list_move_tail(&n->poll_list, &sd->poll_list);
3983 }
3984
3985 netpoll_poll_unlock(have);
3986 }
3987 out:
3988 net_rps_action_and_irq_enable(sd);
3989
3990 #ifdef CONFIG_NET_DMA
3991 /*
3992 * There may not be any more sk_buffs coming right now, so push
3993 * any pending DMA copies to hardware
3994 */
3995 dma_issue_pending_all();
3996 #endif
3997
3998 return;
3999
4000 softnet_break:
4001 sd->time_squeeze++;
4002 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4003 goto out;
4004 }
4005
4006 static gifconf_func_t *gifconf_list[NPROTO];
4007
4008 /**
4009 * register_gifconf - register a SIOCGIF handler
4010 * @family: Address family
4011 * @gifconf: Function handler
4012 *
4013 * Register protocol dependent address dumping routines. The handler
4014 * that is passed must not be freed or reused until it has been replaced
4015 * by another handler.
4016 */
4017 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4018 {
4019 if (family >= NPROTO)
4020 return -EINVAL;
4021 gifconf_list[family] = gifconf;
4022 return 0;
4023 }
4024 EXPORT_SYMBOL(register_gifconf);
4025
4026
4027 /*
4028 * Map an interface index to its name (SIOCGIFNAME)
4029 */
4030
4031 /*
4032 * We need this ioctl for efficient implementation of the
4033 * if_indextoname() function required by the IPv6 API. Without
4034 * it, we would have to search all the interfaces to find a
4035 * match. --pb
4036 */
4037
4038 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4039 {
4040 struct net_device *dev;
4041 struct ifreq ifr;
4042
4043 /*
4044 * Fetch the caller's info block.
4045 */
4046
4047 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4048 return -EFAULT;
4049
4050 rcu_read_lock();
4051 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4052 if (!dev) {
4053 rcu_read_unlock();
4054 return -ENODEV;
4055 }
4056
4057 strcpy(ifr.ifr_name, dev->name);
4058 rcu_read_unlock();
4059
4060 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4061 return -EFAULT;
4062 return 0;
4063 }
4064
4065 /*
4066 * Perform a SIOCGIFCONF call. This structure will change
4067 * size eventually, and there is nothing I can do about it.
4068 * Thus we will need a 'compatibility mode'.
4069 */
4070
4071 static int dev_ifconf(struct net *net, char __user *arg)
4072 {
4073 struct ifconf ifc;
4074 struct net_device *dev;
4075 char __user *pos;
4076 int len;
4077 int total;
4078 int i;
4079
4080 /*
4081 * Fetch the caller's info block.
4082 */
4083
4084 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4085 return -EFAULT;
4086
4087 pos = ifc.ifc_buf;
4088 len = ifc.ifc_len;
4089
4090 /*
4091 * Loop over the interfaces, and write an info block for each.
4092 */
4093
4094 total = 0;
4095 for_each_netdev(net, dev) {
4096 for (i = 0; i < NPROTO; i++) {
4097 if (gifconf_list[i]) {
4098 int done;
4099 if (!pos)
4100 done = gifconf_list[i](dev, NULL, 0);
4101 else
4102 done = gifconf_list[i](dev, pos + total,
4103 len - total);
4104 if (done < 0)
4105 return -EFAULT;
4106 total += done;
4107 }
4108 }
4109 }
4110
4111 /*
4112 * All done. Write the updated control block back to the caller.
4113 */
4114 ifc.ifc_len = total;
4115
4116 /*
4117 * Both BSD and Solaris return 0 here, so we do too.
4118 */
4119 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4120 }
4121
4122 #ifdef CONFIG_PROC_FS
4123
4124 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4125
4126 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4127 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4128 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4129
4130 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4131 {
4132 struct net *net = seq_file_net(seq);
4133 struct net_device *dev;
4134 struct hlist_node *p;
4135 struct hlist_head *h;
4136 unsigned int count = 0, offset = get_offset(*pos);
4137
4138 h = &net->dev_name_head[get_bucket(*pos)];
4139 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4140 if (++count == offset)
4141 return dev;
4142 }
4143
4144 return NULL;
4145 }
4146
4147 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4148 {
4149 struct net_device *dev;
4150 unsigned int bucket;
4151
4152 do {
4153 dev = dev_from_same_bucket(seq, pos);
4154 if (dev)
4155 return dev;
4156
4157 bucket = get_bucket(*pos) + 1;
4158 *pos = set_bucket_offset(bucket, 1);
4159 } while (bucket < NETDEV_HASHENTRIES);
4160
4161 return NULL;
4162 }
4163
4164 /*
4165 * This is invoked by the /proc filesystem handler to display a device
4166 * in detail.
4167 */
4168 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4169 __acquires(RCU)
4170 {
4171 rcu_read_lock();
4172 if (!*pos)
4173 return SEQ_START_TOKEN;
4174
4175 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4176 return NULL;
4177
4178 return dev_from_bucket(seq, pos);
4179 }
4180
4181 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4182 {
4183 ++*pos;
4184 return dev_from_bucket(seq, pos);
4185 }
4186
4187 void dev_seq_stop(struct seq_file *seq, void *v)
4188 __releases(RCU)
4189 {
4190 rcu_read_unlock();
4191 }
4192
4193 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4194 {
4195 struct rtnl_link_stats64 temp;
4196 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4197
4198 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4199 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4200 dev->name, stats->rx_bytes, stats->rx_packets,
4201 stats->rx_errors,
4202 stats->rx_dropped + stats->rx_missed_errors,
4203 stats->rx_fifo_errors,
4204 stats->rx_length_errors + stats->rx_over_errors +
4205 stats->rx_crc_errors + stats->rx_frame_errors,
4206 stats->rx_compressed, stats->multicast,
4207 stats->tx_bytes, stats->tx_packets,
4208 stats->tx_errors, stats->tx_dropped,
4209 stats->tx_fifo_errors, stats->collisions,
4210 stats->tx_carrier_errors +
4211 stats->tx_aborted_errors +
4212 stats->tx_window_errors +
4213 stats->tx_heartbeat_errors,
4214 stats->tx_compressed);
4215 }
4216
4217 /*
4218 * Called from the PROCfs module. This now uses the new arbitrary sized
4219 * /proc/net interface to create /proc/net/dev
4220 */
4221 static int dev_seq_show(struct seq_file *seq, void *v)
4222 {
4223 if (v == SEQ_START_TOKEN)
4224 seq_puts(seq, "Inter-| Receive "
4225 " | Transmit\n"
4226 " face |bytes packets errs drop fifo frame "
4227 "compressed multicast|bytes packets errs "
4228 "drop fifo colls carrier compressed\n");
4229 else
4230 dev_seq_printf_stats(seq, v);
4231 return 0;
4232 }
4233
4234 static struct softnet_data *softnet_get_online(loff_t *pos)
4235 {
4236 struct softnet_data *sd = NULL;
4237
4238 while (*pos < nr_cpu_ids)
4239 if (cpu_online(*pos)) {
4240 sd = &per_cpu(softnet_data, *pos);
4241 break;
4242 } else
4243 ++*pos;
4244 return sd;
4245 }
4246
4247 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4248 {
4249 return softnet_get_online(pos);
4250 }
4251
4252 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4253 {
4254 ++*pos;
4255 return softnet_get_online(pos);
4256 }
4257
4258 static void softnet_seq_stop(struct seq_file *seq, void *v)
4259 {
4260 }
4261
4262 static int softnet_seq_show(struct seq_file *seq, void *v)
4263 {
4264 struct softnet_data *sd = v;
4265
4266 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4267 sd->processed, sd->dropped, sd->time_squeeze, 0,
4268 0, 0, 0, 0, /* was fastroute */
4269 sd->cpu_collision, sd->received_rps);
4270 return 0;
4271 }
4272
4273 static const struct seq_operations dev_seq_ops = {
4274 .start = dev_seq_start,
4275 .next = dev_seq_next,
4276 .stop = dev_seq_stop,
4277 .show = dev_seq_show,
4278 };
4279
4280 static int dev_seq_open(struct inode *inode, struct file *file)
4281 {
4282 return seq_open_net(inode, file, &dev_seq_ops,
4283 sizeof(struct seq_net_private));
4284 }
4285
4286 static const struct file_operations dev_seq_fops = {
4287 .owner = THIS_MODULE,
4288 .open = dev_seq_open,
4289 .read = seq_read,
4290 .llseek = seq_lseek,
4291 .release = seq_release_net,
4292 };
4293
4294 static const struct seq_operations softnet_seq_ops = {
4295 .start = softnet_seq_start,
4296 .next = softnet_seq_next,
4297 .stop = softnet_seq_stop,
4298 .show = softnet_seq_show,
4299 };
4300
4301 static int softnet_seq_open(struct inode *inode, struct file *file)
4302 {
4303 return seq_open(file, &softnet_seq_ops);
4304 }
4305
4306 static const struct file_operations softnet_seq_fops = {
4307 .owner = THIS_MODULE,
4308 .open = softnet_seq_open,
4309 .read = seq_read,
4310 .llseek = seq_lseek,
4311 .release = seq_release,
4312 };
4313
4314 static void *ptype_get_idx(loff_t pos)
4315 {
4316 struct packet_type *pt = NULL;
4317 loff_t i = 0;
4318 int t;
4319
4320 list_for_each_entry_rcu(pt, &ptype_all, list) {
4321 if (i == pos)
4322 return pt;
4323 ++i;
4324 }
4325
4326 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4327 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4328 if (i == pos)
4329 return pt;
4330 ++i;
4331 }
4332 }
4333 return NULL;
4334 }
4335
4336 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4337 __acquires(RCU)
4338 {
4339 rcu_read_lock();
4340 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4341 }
4342
4343 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4344 {
4345 struct packet_type *pt;
4346 struct list_head *nxt;
4347 int hash;
4348
4349 ++*pos;
4350 if (v == SEQ_START_TOKEN)
4351 return ptype_get_idx(0);
4352
4353 pt = v;
4354 nxt = pt->list.next;
4355 if (pt->type == htons(ETH_P_ALL)) {
4356 if (nxt != &ptype_all)
4357 goto found;
4358 hash = 0;
4359 nxt = ptype_base[0].next;
4360 } else
4361 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4362
4363 while (nxt == &ptype_base[hash]) {
4364 if (++hash >= PTYPE_HASH_SIZE)
4365 return NULL;
4366 nxt = ptype_base[hash].next;
4367 }
4368 found:
4369 return list_entry(nxt, struct packet_type, list);
4370 }
4371
4372 static void ptype_seq_stop(struct seq_file *seq, void *v)
4373 __releases(RCU)
4374 {
4375 rcu_read_unlock();
4376 }
4377
4378 static int ptype_seq_show(struct seq_file *seq, void *v)
4379 {
4380 struct packet_type *pt = v;
4381
4382 if (v == SEQ_START_TOKEN)
4383 seq_puts(seq, "Type Device Function\n");
4384 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4385 if (pt->type == htons(ETH_P_ALL))
4386 seq_puts(seq, "ALL ");
4387 else
4388 seq_printf(seq, "%04x", ntohs(pt->type));
4389
4390 seq_printf(seq, " %-8s %pF\n",
4391 pt->dev ? pt->dev->name : "", pt->func);
4392 }
4393
4394 return 0;
4395 }
4396
4397 static const struct seq_operations ptype_seq_ops = {
4398 .start = ptype_seq_start,
4399 .next = ptype_seq_next,
4400 .stop = ptype_seq_stop,
4401 .show = ptype_seq_show,
4402 };
4403
4404 static int ptype_seq_open(struct inode *inode, struct file *file)
4405 {
4406 return seq_open_net(inode, file, &ptype_seq_ops,
4407 sizeof(struct seq_net_private));
4408 }
4409
4410 static const struct file_operations ptype_seq_fops = {
4411 .owner = THIS_MODULE,
4412 .open = ptype_seq_open,
4413 .read = seq_read,
4414 .llseek = seq_lseek,
4415 .release = seq_release_net,
4416 };
4417
4418
4419 static int __net_init dev_proc_net_init(struct net *net)
4420 {
4421 int rc = -ENOMEM;
4422
4423 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4424 goto out;
4425 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4426 goto out_dev;
4427 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4428 goto out_softnet;
4429
4430 if (wext_proc_init(net))
4431 goto out_ptype;
4432 rc = 0;
4433 out:
4434 return rc;
4435 out_ptype:
4436 proc_net_remove(net, "ptype");
4437 out_softnet:
4438 proc_net_remove(net, "softnet_stat");
4439 out_dev:
4440 proc_net_remove(net, "dev");
4441 goto out;
4442 }
4443
4444 static void __net_exit dev_proc_net_exit(struct net *net)
4445 {
4446 wext_proc_exit(net);
4447
4448 proc_net_remove(net, "ptype");
4449 proc_net_remove(net, "softnet_stat");
4450 proc_net_remove(net, "dev");
4451 }
4452
4453 static struct pernet_operations __net_initdata dev_proc_ops = {
4454 .init = dev_proc_net_init,
4455 .exit = dev_proc_net_exit,
4456 };
4457
4458 static int __init dev_proc_init(void)
4459 {
4460 return register_pernet_subsys(&dev_proc_ops);
4461 }
4462 #else
4463 #define dev_proc_init() 0
4464 #endif /* CONFIG_PROC_FS */
4465
4466
4467 /**
4468 * netdev_set_master - set up master pointer
4469 * @slave: slave device
4470 * @master: new master device
4471 *
4472 * Changes the master device of the slave. Pass %NULL to break the
4473 * bonding. The caller must hold the RTNL semaphore. On a failure
4474 * a negative errno code is returned. On success the reference counts
4475 * are adjusted and the function returns zero.
4476 */
4477 int netdev_set_master(struct net_device *slave, struct net_device *master)
4478 {
4479 struct net_device *old = slave->master;
4480
4481 ASSERT_RTNL();
4482
4483 if (master) {
4484 if (old)
4485 return -EBUSY;
4486 dev_hold(master);
4487 }
4488
4489 slave->master = master;
4490
4491 if (old)
4492 dev_put(old);
4493 return 0;
4494 }
4495 EXPORT_SYMBOL(netdev_set_master);
4496
4497 /**
4498 * netdev_set_bond_master - set up bonding master/slave pair
4499 * @slave: slave device
4500 * @master: new master device
4501 *
4502 * Changes the master device of the slave. Pass %NULL to break the
4503 * bonding. The caller must hold the RTNL semaphore. On a failure
4504 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4505 * to the routing socket and the function returns zero.
4506 */
4507 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4508 {
4509 int err;
4510
4511 ASSERT_RTNL();
4512
4513 err = netdev_set_master(slave, master);
4514 if (err)
4515 return err;
4516 if (master)
4517 slave->flags |= IFF_SLAVE;
4518 else
4519 slave->flags &= ~IFF_SLAVE;
4520
4521 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4522 return 0;
4523 }
4524 EXPORT_SYMBOL(netdev_set_bond_master);
4525
4526 static void dev_change_rx_flags(struct net_device *dev, int flags)
4527 {
4528 const struct net_device_ops *ops = dev->netdev_ops;
4529
4530 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4531 ops->ndo_change_rx_flags(dev, flags);
4532 }
4533
4534 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4535 {
4536 unsigned int old_flags = dev->flags;
4537 kuid_t uid;
4538 kgid_t gid;
4539
4540 ASSERT_RTNL();
4541
4542 dev->flags |= IFF_PROMISC;
4543 dev->promiscuity += inc;
4544 if (dev->promiscuity == 0) {
4545 /*
4546 * Avoid overflow.
4547 * If inc causes overflow, untouch promisc and return error.
4548 */
4549 if (inc < 0)
4550 dev->flags &= ~IFF_PROMISC;
4551 else {
4552 dev->promiscuity -= inc;
4553 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4554 dev->name);
4555 return -EOVERFLOW;
4556 }
4557 }
4558 if (dev->flags != old_flags) {
4559 pr_info("device %s %s promiscuous mode\n",
4560 dev->name,
4561 dev->flags & IFF_PROMISC ? "entered" : "left");
4562 if (audit_enabled) {
4563 current_uid_gid(&uid, &gid);
4564 audit_log(current->audit_context, GFP_ATOMIC,
4565 AUDIT_ANOM_PROMISCUOUS,
4566 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4567 dev->name, (dev->flags & IFF_PROMISC),
4568 (old_flags & IFF_PROMISC),
4569 audit_get_loginuid(current),
4570 from_kuid(&init_user_ns, uid),
4571 from_kgid(&init_user_ns, gid),
4572 audit_get_sessionid(current));
4573 }
4574
4575 dev_change_rx_flags(dev, IFF_PROMISC);
4576 }
4577 return 0;
4578 }
4579
4580 /**
4581 * dev_set_promiscuity - update promiscuity count on a device
4582 * @dev: device
4583 * @inc: modifier
4584 *
4585 * Add or remove promiscuity from a device. While the count in the device
4586 * remains above zero the interface remains promiscuous. Once it hits zero
4587 * the device reverts back to normal filtering operation. A negative inc
4588 * value is used to drop promiscuity on the device.
4589 * Return 0 if successful or a negative errno code on error.
4590 */
4591 int dev_set_promiscuity(struct net_device *dev, int inc)
4592 {
4593 unsigned int old_flags = dev->flags;
4594 int err;
4595
4596 err = __dev_set_promiscuity(dev, inc);
4597 if (err < 0)
4598 return err;
4599 if (dev->flags != old_flags)
4600 dev_set_rx_mode(dev);
4601 return err;
4602 }
4603 EXPORT_SYMBOL(dev_set_promiscuity);
4604
4605 /**
4606 * dev_set_allmulti - update allmulti count on a device
4607 * @dev: device
4608 * @inc: modifier
4609 *
4610 * Add or remove reception of all multicast frames to a device. While the
4611 * count in the device remains above zero the interface remains listening
4612 * to all interfaces. Once it hits zero the device reverts back to normal
4613 * filtering operation. A negative @inc value is used to drop the counter
4614 * when releasing a resource needing all multicasts.
4615 * Return 0 if successful or a negative errno code on error.
4616 */
4617
4618 int dev_set_allmulti(struct net_device *dev, int inc)
4619 {
4620 unsigned int old_flags = dev->flags;
4621
4622 ASSERT_RTNL();
4623
4624 dev->flags |= IFF_ALLMULTI;
4625 dev->allmulti += inc;
4626 if (dev->allmulti == 0) {
4627 /*
4628 * Avoid overflow.
4629 * If inc causes overflow, untouch allmulti and return error.
4630 */
4631 if (inc < 0)
4632 dev->flags &= ~IFF_ALLMULTI;
4633 else {
4634 dev->allmulti -= inc;
4635 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4636 dev->name);
4637 return -EOVERFLOW;
4638 }
4639 }
4640 if (dev->flags ^ old_flags) {
4641 dev_change_rx_flags(dev, IFF_ALLMULTI);
4642 dev_set_rx_mode(dev);
4643 }
4644 return 0;
4645 }
4646 EXPORT_SYMBOL(dev_set_allmulti);
4647
4648 /*
4649 * Upload unicast and multicast address lists to device and
4650 * configure RX filtering. When the device doesn't support unicast
4651 * filtering it is put in promiscuous mode while unicast addresses
4652 * are present.
4653 */
4654 void __dev_set_rx_mode(struct net_device *dev)
4655 {
4656 const struct net_device_ops *ops = dev->netdev_ops;
4657
4658 /* dev_open will call this function so the list will stay sane. */
4659 if (!(dev->flags&IFF_UP))
4660 return;
4661
4662 if (!netif_device_present(dev))
4663 return;
4664
4665 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4666 /* Unicast addresses changes may only happen under the rtnl,
4667 * therefore calling __dev_set_promiscuity here is safe.
4668 */
4669 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4670 __dev_set_promiscuity(dev, 1);
4671 dev->uc_promisc = true;
4672 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4673 __dev_set_promiscuity(dev, -1);
4674 dev->uc_promisc = false;
4675 }
4676 }
4677
4678 if (ops->ndo_set_rx_mode)
4679 ops->ndo_set_rx_mode(dev);
4680 }
4681
4682 void dev_set_rx_mode(struct net_device *dev)
4683 {
4684 netif_addr_lock_bh(dev);
4685 __dev_set_rx_mode(dev);
4686 netif_addr_unlock_bh(dev);
4687 }
4688
4689 /**
4690 * dev_get_flags - get flags reported to userspace
4691 * @dev: device
4692 *
4693 * Get the combination of flag bits exported through APIs to userspace.
4694 */
4695 unsigned int dev_get_flags(const struct net_device *dev)
4696 {
4697 unsigned int flags;
4698
4699 flags = (dev->flags & ~(IFF_PROMISC |
4700 IFF_ALLMULTI |
4701 IFF_RUNNING |
4702 IFF_LOWER_UP |
4703 IFF_DORMANT)) |
4704 (dev->gflags & (IFF_PROMISC |
4705 IFF_ALLMULTI));
4706
4707 if (netif_running(dev)) {
4708 if (netif_oper_up(dev))
4709 flags |= IFF_RUNNING;
4710 if (netif_carrier_ok(dev))
4711 flags |= IFF_LOWER_UP;
4712 if (netif_dormant(dev))
4713 flags |= IFF_DORMANT;
4714 }
4715
4716 return flags;
4717 }
4718 EXPORT_SYMBOL(dev_get_flags);
4719
4720 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4721 {
4722 unsigned int old_flags = dev->flags;
4723 int ret;
4724
4725 ASSERT_RTNL();
4726
4727 /*
4728 * Set the flags on our device.
4729 */
4730
4731 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4732 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4733 IFF_AUTOMEDIA)) |
4734 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4735 IFF_ALLMULTI));
4736
4737 /*
4738 * Load in the correct multicast list now the flags have changed.
4739 */
4740
4741 if ((old_flags ^ flags) & IFF_MULTICAST)
4742 dev_change_rx_flags(dev, IFF_MULTICAST);
4743
4744 dev_set_rx_mode(dev);
4745
4746 /*
4747 * Have we downed the interface. We handle IFF_UP ourselves
4748 * according to user attempts to set it, rather than blindly
4749 * setting it.
4750 */
4751
4752 ret = 0;
4753 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4754 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4755
4756 if (!ret)
4757 dev_set_rx_mode(dev);
4758 }
4759
4760 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4761 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4762
4763 dev->gflags ^= IFF_PROMISC;
4764 dev_set_promiscuity(dev, inc);
4765 }
4766
4767 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4768 is important. Some (broken) drivers set IFF_PROMISC, when
4769 IFF_ALLMULTI is requested not asking us and not reporting.
4770 */
4771 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4772 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4773
4774 dev->gflags ^= IFF_ALLMULTI;
4775 dev_set_allmulti(dev, inc);
4776 }
4777
4778 return ret;
4779 }
4780
4781 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4782 {
4783 unsigned int changes = dev->flags ^ old_flags;
4784
4785 if (changes & IFF_UP) {
4786 if (dev->flags & IFF_UP)
4787 call_netdevice_notifiers(NETDEV_UP, dev);
4788 else
4789 call_netdevice_notifiers(NETDEV_DOWN, dev);
4790 }
4791
4792 if (dev->flags & IFF_UP &&
4793 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4794 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4795 }
4796
4797 /**
4798 * dev_change_flags - change device settings
4799 * @dev: device
4800 * @flags: device state flags
4801 *
4802 * Change settings on device based state flags. The flags are
4803 * in the userspace exported format.
4804 */
4805 int dev_change_flags(struct net_device *dev, unsigned int flags)
4806 {
4807 int ret;
4808 unsigned int changes, old_flags = dev->flags;
4809
4810 ret = __dev_change_flags(dev, flags);
4811 if (ret < 0)
4812 return ret;
4813
4814 changes = old_flags ^ dev->flags;
4815 if (changes)
4816 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4817
4818 __dev_notify_flags(dev, old_flags);
4819 return ret;
4820 }
4821 EXPORT_SYMBOL(dev_change_flags);
4822
4823 /**
4824 * dev_set_mtu - Change maximum transfer unit
4825 * @dev: device
4826 * @new_mtu: new transfer unit
4827 *
4828 * Change the maximum transfer size of the network device.
4829 */
4830 int dev_set_mtu(struct net_device *dev, int new_mtu)
4831 {
4832 const struct net_device_ops *ops = dev->netdev_ops;
4833 int err;
4834
4835 if (new_mtu == dev->mtu)
4836 return 0;
4837
4838 /* MTU must be positive. */
4839 if (new_mtu < 0)
4840 return -EINVAL;
4841
4842 if (!netif_device_present(dev))
4843 return -ENODEV;
4844
4845 err = 0;
4846 if (ops->ndo_change_mtu)
4847 err = ops->ndo_change_mtu(dev, new_mtu);
4848 else
4849 dev->mtu = new_mtu;
4850
4851 if (!err && dev->flags & IFF_UP)
4852 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4853 return err;
4854 }
4855 EXPORT_SYMBOL(dev_set_mtu);
4856
4857 /**
4858 * dev_set_group - Change group this device belongs to
4859 * @dev: device
4860 * @new_group: group this device should belong to
4861 */
4862 void dev_set_group(struct net_device *dev, int new_group)
4863 {
4864 dev->group = new_group;
4865 }
4866 EXPORT_SYMBOL(dev_set_group);
4867
4868 /**
4869 * dev_set_mac_address - Change Media Access Control Address
4870 * @dev: device
4871 * @sa: new address
4872 *
4873 * Change the hardware (MAC) address of the device
4874 */
4875 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4876 {
4877 const struct net_device_ops *ops = dev->netdev_ops;
4878 int err;
4879
4880 if (!ops->ndo_set_mac_address)
4881 return -EOPNOTSUPP;
4882 if (sa->sa_family != dev->type)
4883 return -EINVAL;
4884 if (!netif_device_present(dev))
4885 return -ENODEV;
4886 err = ops->ndo_set_mac_address(dev, sa);
4887 if (!err)
4888 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4889 add_device_randomness(dev->dev_addr, dev->addr_len);
4890 return err;
4891 }
4892 EXPORT_SYMBOL(dev_set_mac_address);
4893
4894 /*
4895 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4896 */
4897 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4898 {
4899 int err;
4900 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4901
4902 if (!dev)
4903 return -ENODEV;
4904
4905 switch (cmd) {
4906 case SIOCGIFFLAGS: /* Get interface flags */
4907 ifr->ifr_flags = (short) dev_get_flags(dev);
4908 return 0;
4909
4910 case SIOCGIFMETRIC: /* Get the metric on the interface
4911 (currently unused) */
4912 ifr->ifr_metric = 0;
4913 return 0;
4914
4915 case SIOCGIFMTU: /* Get the MTU of a device */
4916 ifr->ifr_mtu = dev->mtu;
4917 return 0;
4918
4919 case SIOCGIFHWADDR:
4920 if (!dev->addr_len)
4921 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4922 else
4923 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4924 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4925 ifr->ifr_hwaddr.sa_family = dev->type;
4926 return 0;
4927
4928 case SIOCGIFSLAVE:
4929 err = -EINVAL;
4930 break;
4931
4932 case SIOCGIFMAP:
4933 ifr->ifr_map.mem_start = dev->mem_start;
4934 ifr->ifr_map.mem_end = dev->mem_end;
4935 ifr->ifr_map.base_addr = dev->base_addr;
4936 ifr->ifr_map.irq = dev->irq;
4937 ifr->ifr_map.dma = dev->dma;
4938 ifr->ifr_map.port = dev->if_port;
4939 return 0;
4940
4941 case SIOCGIFINDEX:
4942 ifr->ifr_ifindex = dev->ifindex;
4943 return 0;
4944
4945 case SIOCGIFTXQLEN:
4946 ifr->ifr_qlen = dev->tx_queue_len;
4947 return 0;
4948
4949 default:
4950 /* dev_ioctl() should ensure this case
4951 * is never reached
4952 */
4953 WARN_ON(1);
4954 err = -ENOTTY;
4955 break;
4956
4957 }
4958 return err;
4959 }
4960
4961 /*
4962 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4963 */
4964 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4965 {
4966 int err;
4967 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4968 const struct net_device_ops *ops;
4969
4970 if (!dev)
4971 return -ENODEV;
4972
4973 ops = dev->netdev_ops;
4974
4975 switch (cmd) {
4976 case SIOCSIFFLAGS: /* Set interface flags */
4977 return dev_change_flags(dev, ifr->ifr_flags);
4978
4979 case SIOCSIFMETRIC: /* Set the metric on the interface
4980 (currently unused) */
4981 return -EOPNOTSUPP;
4982
4983 case SIOCSIFMTU: /* Set the MTU of a device */
4984 return dev_set_mtu(dev, ifr->ifr_mtu);
4985
4986 case SIOCSIFHWADDR:
4987 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4988
4989 case SIOCSIFHWBROADCAST:
4990 if (ifr->ifr_hwaddr.sa_family != dev->type)
4991 return -EINVAL;
4992 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4993 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4994 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4995 return 0;
4996
4997 case SIOCSIFMAP:
4998 if (ops->ndo_set_config) {
4999 if (!netif_device_present(dev))
5000 return -ENODEV;
5001 return ops->ndo_set_config(dev, &ifr->ifr_map);
5002 }
5003 return -EOPNOTSUPP;
5004
5005 case SIOCADDMULTI:
5006 if (!ops->ndo_set_rx_mode ||
5007 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5008 return -EINVAL;
5009 if (!netif_device_present(dev))
5010 return -ENODEV;
5011 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5012
5013 case SIOCDELMULTI:
5014 if (!ops->ndo_set_rx_mode ||
5015 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5016 return -EINVAL;
5017 if (!netif_device_present(dev))
5018 return -ENODEV;
5019 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5020
5021 case SIOCSIFTXQLEN:
5022 if (ifr->ifr_qlen < 0)
5023 return -EINVAL;
5024 dev->tx_queue_len = ifr->ifr_qlen;
5025 return 0;
5026
5027 case SIOCSIFNAME:
5028 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5029 return dev_change_name(dev, ifr->ifr_newname);
5030
5031 case SIOCSHWTSTAMP:
5032 err = net_hwtstamp_validate(ifr);
5033 if (err)
5034 return err;
5035 /* fall through */
5036
5037 /*
5038 * Unknown or private ioctl
5039 */
5040 default:
5041 if ((cmd >= SIOCDEVPRIVATE &&
5042 cmd <= SIOCDEVPRIVATE + 15) ||
5043 cmd == SIOCBONDENSLAVE ||
5044 cmd == SIOCBONDRELEASE ||
5045 cmd == SIOCBONDSETHWADDR ||
5046 cmd == SIOCBONDSLAVEINFOQUERY ||
5047 cmd == SIOCBONDINFOQUERY ||
5048 cmd == SIOCBONDCHANGEACTIVE ||
5049 cmd == SIOCGMIIPHY ||
5050 cmd == SIOCGMIIREG ||
5051 cmd == SIOCSMIIREG ||
5052 cmd == SIOCBRADDIF ||
5053 cmd == SIOCBRDELIF ||
5054 cmd == SIOCSHWTSTAMP ||
5055 cmd == SIOCWANDEV) {
5056 err = -EOPNOTSUPP;
5057 if (ops->ndo_do_ioctl) {
5058 if (netif_device_present(dev))
5059 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5060 else
5061 err = -ENODEV;
5062 }
5063 } else
5064 err = -EINVAL;
5065
5066 }
5067 return err;
5068 }
5069
5070 /*
5071 * This function handles all "interface"-type I/O control requests. The actual
5072 * 'doing' part of this is dev_ifsioc above.
5073 */
5074
5075 /**
5076 * dev_ioctl - network device ioctl
5077 * @net: the applicable net namespace
5078 * @cmd: command to issue
5079 * @arg: pointer to a struct ifreq in user space
5080 *
5081 * Issue ioctl functions to devices. This is normally called by the
5082 * user space syscall interfaces but can sometimes be useful for
5083 * other purposes. The return value is the return from the syscall if
5084 * positive or a negative errno code on error.
5085 */
5086
5087 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5088 {
5089 struct ifreq ifr;
5090 int ret;
5091 char *colon;
5092
5093 /* One special case: SIOCGIFCONF takes ifconf argument
5094 and requires shared lock, because it sleeps writing
5095 to user space.
5096 */
5097
5098 if (cmd == SIOCGIFCONF) {
5099 rtnl_lock();
5100 ret = dev_ifconf(net, (char __user *) arg);
5101 rtnl_unlock();
5102 return ret;
5103 }
5104 if (cmd == SIOCGIFNAME)
5105 return dev_ifname(net, (struct ifreq __user *)arg);
5106
5107 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5108 return -EFAULT;
5109
5110 ifr.ifr_name[IFNAMSIZ-1] = 0;
5111
5112 colon = strchr(ifr.ifr_name, ':');
5113 if (colon)
5114 *colon = 0;
5115
5116 /*
5117 * See which interface the caller is talking about.
5118 */
5119
5120 switch (cmd) {
5121 /*
5122 * These ioctl calls:
5123 * - can be done by all.
5124 * - atomic and do not require locking.
5125 * - return a value
5126 */
5127 case SIOCGIFFLAGS:
5128 case SIOCGIFMETRIC:
5129 case SIOCGIFMTU:
5130 case SIOCGIFHWADDR:
5131 case SIOCGIFSLAVE:
5132 case SIOCGIFMAP:
5133 case SIOCGIFINDEX:
5134 case SIOCGIFTXQLEN:
5135 dev_load(net, ifr.ifr_name);
5136 rcu_read_lock();
5137 ret = dev_ifsioc_locked(net, &ifr, cmd);
5138 rcu_read_unlock();
5139 if (!ret) {
5140 if (colon)
5141 *colon = ':';
5142 if (copy_to_user(arg, &ifr,
5143 sizeof(struct ifreq)))
5144 ret = -EFAULT;
5145 }
5146 return ret;
5147
5148 case SIOCETHTOOL:
5149 dev_load(net, ifr.ifr_name);
5150 rtnl_lock();
5151 ret = dev_ethtool(net, &ifr);
5152 rtnl_unlock();
5153 if (!ret) {
5154 if (colon)
5155 *colon = ':';
5156 if (copy_to_user(arg, &ifr,
5157 sizeof(struct ifreq)))
5158 ret = -EFAULT;
5159 }
5160 return ret;
5161
5162 /*
5163 * These ioctl calls:
5164 * - require superuser power.
5165 * - require strict serialization.
5166 * - return a value
5167 */
5168 case SIOCGMIIPHY:
5169 case SIOCGMIIREG:
5170 case SIOCSIFNAME:
5171 if (!capable(CAP_NET_ADMIN))
5172 return -EPERM;
5173 dev_load(net, ifr.ifr_name);
5174 rtnl_lock();
5175 ret = dev_ifsioc(net, &ifr, cmd);
5176 rtnl_unlock();
5177 if (!ret) {
5178 if (colon)
5179 *colon = ':';
5180 if (copy_to_user(arg, &ifr,
5181 sizeof(struct ifreq)))
5182 ret = -EFAULT;
5183 }
5184 return ret;
5185
5186 /*
5187 * These ioctl calls:
5188 * - require superuser power.
5189 * - require strict serialization.
5190 * - do not return a value
5191 */
5192 case SIOCSIFFLAGS:
5193 case SIOCSIFMETRIC:
5194 case SIOCSIFMTU:
5195 case SIOCSIFMAP:
5196 case SIOCSIFHWADDR:
5197 case SIOCSIFSLAVE:
5198 case SIOCADDMULTI:
5199 case SIOCDELMULTI:
5200 case SIOCSIFHWBROADCAST:
5201 case SIOCSIFTXQLEN:
5202 case SIOCSMIIREG:
5203 case SIOCBONDENSLAVE:
5204 case SIOCBONDRELEASE:
5205 case SIOCBONDSETHWADDR:
5206 case SIOCBONDCHANGEACTIVE:
5207 case SIOCBRADDIF:
5208 case SIOCBRDELIF:
5209 case SIOCSHWTSTAMP:
5210 if (!capable(CAP_NET_ADMIN))
5211 return -EPERM;
5212 /* fall through */
5213 case SIOCBONDSLAVEINFOQUERY:
5214 case SIOCBONDINFOQUERY:
5215 dev_load(net, ifr.ifr_name);
5216 rtnl_lock();
5217 ret = dev_ifsioc(net, &ifr, cmd);
5218 rtnl_unlock();
5219 return ret;
5220
5221 case SIOCGIFMEM:
5222 /* Get the per device memory space. We can add this but
5223 * currently do not support it */
5224 case SIOCSIFMEM:
5225 /* Set the per device memory buffer space.
5226 * Not applicable in our case */
5227 case SIOCSIFLINK:
5228 return -ENOTTY;
5229
5230 /*
5231 * Unknown or private ioctl.
5232 */
5233 default:
5234 if (cmd == SIOCWANDEV ||
5235 (cmd >= SIOCDEVPRIVATE &&
5236 cmd <= SIOCDEVPRIVATE + 15)) {
5237 dev_load(net, ifr.ifr_name);
5238 rtnl_lock();
5239 ret = dev_ifsioc(net, &ifr, cmd);
5240 rtnl_unlock();
5241 if (!ret && copy_to_user(arg, &ifr,
5242 sizeof(struct ifreq)))
5243 ret = -EFAULT;
5244 return ret;
5245 }
5246 /* Take care of Wireless Extensions */
5247 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5248 return wext_handle_ioctl(net, &ifr, cmd, arg);
5249 return -ENOTTY;
5250 }
5251 }
5252
5253
5254 /**
5255 * dev_new_index - allocate an ifindex
5256 * @net: the applicable net namespace
5257 *
5258 * Returns a suitable unique value for a new device interface
5259 * number. The caller must hold the rtnl semaphore or the
5260 * dev_base_lock to be sure it remains unique.
5261 */
5262 static int dev_new_index(struct net *net)
5263 {
5264 int ifindex = net->ifindex;
5265 for (;;) {
5266 if (++ifindex <= 0)
5267 ifindex = 1;
5268 if (!__dev_get_by_index(net, ifindex))
5269 return net->ifindex = ifindex;
5270 }
5271 }
5272
5273 /* Delayed registration/unregisteration */
5274 static LIST_HEAD(net_todo_list);
5275
5276 static void net_set_todo(struct net_device *dev)
5277 {
5278 list_add_tail(&dev->todo_list, &net_todo_list);
5279 }
5280
5281 static void rollback_registered_many(struct list_head *head)
5282 {
5283 struct net_device *dev, *tmp;
5284
5285 BUG_ON(dev_boot_phase);
5286 ASSERT_RTNL();
5287
5288 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5289 /* Some devices call without registering
5290 * for initialization unwind. Remove those
5291 * devices and proceed with the remaining.
5292 */
5293 if (dev->reg_state == NETREG_UNINITIALIZED) {
5294 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5295 dev->name, dev);
5296
5297 WARN_ON(1);
5298 list_del(&dev->unreg_list);
5299 continue;
5300 }
5301 dev->dismantle = true;
5302 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5303 }
5304
5305 /* If device is running, close it first. */
5306 dev_close_many(head);
5307
5308 list_for_each_entry(dev, head, unreg_list) {
5309 /* And unlink it from device chain. */
5310 unlist_netdevice(dev);
5311
5312 dev->reg_state = NETREG_UNREGISTERING;
5313 }
5314
5315 synchronize_net();
5316
5317 list_for_each_entry(dev, head, unreg_list) {
5318 /* Shutdown queueing discipline. */
5319 dev_shutdown(dev);
5320
5321
5322 /* Notify protocols, that we are about to destroy
5323 this device. They should clean all the things.
5324 */
5325 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5326
5327 if (!dev->rtnl_link_ops ||
5328 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5329 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5330
5331 /*
5332 * Flush the unicast and multicast chains
5333 */
5334 dev_uc_flush(dev);
5335 dev_mc_flush(dev);
5336
5337 if (dev->netdev_ops->ndo_uninit)
5338 dev->netdev_ops->ndo_uninit(dev);
5339
5340 /* Notifier chain MUST detach us from master device. */
5341 WARN_ON(dev->master);
5342
5343 /* Remove entries from kobject tree */
5344 netdev_unregister_kobject(dev);
5345 }
5346
5347 synchronize_net();
5348
5349 list_for_each_entry(dev, head, unreg_list)
5350 dev_put(dev);
5351 }
5352
5353 static void rollback_registered(struct net_device *dev)
5354 {
5355 LIST_HEAD(single);
5356
5357 list_add(&dev->unreg_list, &single);
5358 rollback_registered_many(&single);
5359 list_del(&single);
5360 }
5361
5362 static netdev_features_t netdev_fix_features(struct net_device *dev,
5363 netdev_features_t features)
5364 {
5365 /* Fix illegal checksum combinations */
5366 if ((features & NETIF_F_HW_CSUM) &&
5367 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5368 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5369 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5370 }
5371
5372 /* Fix illegal SG+CSUM combinations. */
5373 if ((features & NETIF_F_SG) &&
5374 !(features & NETIF_F_ALL_CSUM)) {
5375 netdev_dbg(dev,
5376 "Dropping NETIF_F_SG since no checksum feature.\n");
5377 features &= ~NETIF_F_SG;
5378 }
5379
5380 /* TSO requires that SG is present as well. */
5381 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5382 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5383 features &= ~NETIF_F_ALL_TSO;
5384 }
5385
5386 /* TSO ECN requires that TSO is present as well. */
5387 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5388 features &= ~NETIF_F_TSO_ECN;
5389
5390 /* Software GSO depends on SG. */
5391 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5392 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5393 features &= ~NETIF_F_GSO;
5394 }
5395
5396 /* UFO needs SG and checksumming */
5397 if (features & NETIF_F_UFO) {
5398 /* maybe split UFO into V4 and V6? */
5399 if (!((features & NETIF_F_GEN_CSUM) ||
5400 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5401 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5402 netdev_dbg(dev,
5403 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5404 features &= ~NETIF_F_UFO;
5405 }
5406
5407 if (!(features & NETIF_F_SG)) {
5408 netdev_dbg(dev,
5409 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5410 features &= ~NETIF_F_UFO;
5411 }
5412 }
5413
5414 return features;
5415 }
5416
5417 int __netdev_update_features(struct net_device *dev)
5418 {
5419 netdev_features_t features;
5420 int err = 0;
5421
5422 ASSERT_RTNL();
5423
5424 features = netdev_get_wanted_features(dev);
5425
5426 if (dev->netdev_ops->ndo_fix_features)
5427 features = dev->netdev_ops->ndo_fix_features(dev, features);
5428
5429 /* driver might be less strict about feature dependencies */
5430 features = netdev_fix_features(dev, features);
5431
5432 if (dev->features == features)
5433 return 0;
5434
5435 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5436 &dev->features, &features);
5437
5438 if (dev->netdev_ops->ndo_set_features)
5439 err = dev->netdev_ops->ndo_set_features(dev, features);
5440
5441 if (unlikely(err < 0)) {
5442 netdev_err(dev,
5443 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5444 err, &features, &dev->features);
5445 return -1;
5446 }
5447
5448 if (!err)
5449 dev->features = features;
5450
5451 return 1;
5452 }
5453
5454 /**
5455 * netdev_update_features - recalculate device features
5456 * @dev: the device to check
5457 *
5458 * Recalculate dev->features set and send notifications if it
5459 * has changed. Should be called after driver or hardware dependent
5460 * conditions might have changed that influence the features.
5461 */
5462 void netdev_update_features(struct net_device *dev)
5463 {
5464 if (__netdev_update_features(dev))
5465 netdev_features_change(dev);
5466 }
5467 EXPORT_SYMBOL(netdev_update_features);
5468
5469 /**
5470 * netdev_change_features - recalculate device features
5471 * @dev: the device to check
5472 *
5473 * Recalculate dev->features set and send notifications even
5474 * if they have not changed. Should be called instead of
5475 * netdev_update_features() if also dev->vlan_features might
5476 * have changed to allow the changes to be propagated to stacked
5477 * VLAN devices.
5478 */
5479 void netdev_change_features(struct net_device *dev)
5480 {
5481 __netdev_update_features(dev);
5482 netdev_features_change(dev);
5483 }
5484 EXPORT_SYMBOL(netdev_change_features);
5485
5486 /**
5487 * netif_stacked_transfer_operstate - transfer operstate
5488 * @rootdev: the root or lower level device to transfer state from
5489 * @dev: the device to transfer operstate to
5490 *
5491 * Transfer operational state from root to device. This is normally
5492 * called when a stacking relationship exists between the root
5493 * device and the device(a leaf device).
5494 */
5495 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5496 struct net_device *dev)
5497 {
5498 if (rootdev->operstate == IF_OPER_DORMANT)
5499 netif_dormant_on(dev);
5500 else
5501 netif_dormant_off(dev);
5502
5503 if (netif_carrier_ok(rootdev)) {
5504 if (!netif_carrier_ok(dev))
5505 netif_carrier_on(dev);
5506 } else {
5507 if (netif_carrier_ok(dev))
5508 netif_carrier_off(dev);
5509 }
5510 }
5511 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5512
5513 #ifdef CONFIG_RPS
5514 static int netif_alloc_rx_queues(struct net_device *dev)
5515 {
5516 unsigned int i, count = dev->num_rx_queues;
5517 struct netdev_rx_queue *rx;
5518
5519 BUG_ON(count < 1);
5520
5521 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5522 if (!rx) {
5523 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5524 return -ENOMEM;
5525 }
5526 dev->_rx = rx;
5527
5528 for (i = 0; i < count; i++)
5529 rx[i].dev = dev;
5530 return 0;
5531 }
5532 #endif
5533
5534 static void netdev_init_one_queue(struct net_device *dev,
5535 struct netdev_queue *queue, void *_unused)
5536 {
5537 /* Initialize queue lock */
5538 spin_lock_init(&queue->_xmit_lock);
5539 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5540 queue->xmit_lock_owner = -1;
5541 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5542 queue->dev = dev;
5543 #ifdef CONFIG_BQL
5544 dql_init(&queue->dql, HZ);
5545 #endif
5546 }
5547
5548 static int netif_alloc_netdev_queues(struct net_device *dev)
5549 {
5550 unsigned int count = dev->num_tx_queues;
5551 struct netdev_queue *tx;
5552
5553 BUG_ON(count < 1);
5554
5555 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5556 if (!tx) {
5557 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5558 return -ENOMEM;
5559 }
5560 dev->_tx = tx;
5561
5562 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5563 spin_lock_init(&dev->tx_global_lock);
5564
5565 return 0;
5566 }
5567
5568 /**
5569 * register_netdevice - register a network device
5570 * @dev: device to register
5571 *
5572 * Take a completed network device structure and add it to the kernel
5573 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5574 * chain. 0 is returned on success. A negative errno code is returned
5575 * on a failure to set up the device, or if the name is a duplicate.
5576 *
5577 * Callers must hold the rtnl semaphore. You may want
5578 * register_netdev() instead of this.
5579 *
5580 * BUGS:
5581 * The locking appears insufficient to guarantee two parallel registers
5582 * will not get the same name.
5583 */
5584
5585 int register_netdevice(struct net_device *dev)
5586 {
5587 int ret;
5588 struct net *net = dev_net(dev);
5589
5590 BUG_ON(dev_boot_phase);
5591 ASSERT_RTNL();
5592
5593 might_sleep();
5594
5595 /* When net_device's are persistent, this will be fatal. */
5596 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5597 BUG_ON(!net);
5598
5599 spin_lock_init(&dev->addr_list_lock);
5600 netdev_set_addr_lockdep_class(dev);
5601
5602 dev->iflink = -1;
5603
5604 ret = dev_get_valid_name(net, dev, dev->name);
5605 if (ret < 0)
5606 goto out;
5607
5608 /* Init, if this function is available */
5609 if (dev->netdev_ops->ndo_init) {
5610 ret = dev->netdev_ops->ndo_init(dev);
5611 if (ret) {
5612 if (ret > 0)
5613 ret = -EIO;
5614 goto out;
5615 }
5616 }
5617
5618 ret = -EBUSY;
5619 if (!dev->ifindex)
5620 dev->ifindex = dev_new_index(net);
5621 else if (__dev_get_by_index(net, dev->ifindex))
5622 goto err_uninit;
5623
5624 if (dev->iflink == -1)
5625 dev->iflink = dev->ifindex;
5626
5627 /* Transfer changeable features to wanted_features and enable
5628 * software offloads (GSO and GRO).
5629 */
5630 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5631 dev->features |= NETIF_F_SOFT_FEATURES;
5632 dev->wanted_features = dev->features & dev->hw_features;
5633
5634 /* Turn on no cache copy if HW is doing checksum */
5635 if (!(dev->flags & IFF_LOOPBACK)) {
5636 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5637 if (dev->features & NETIF_F_ALL_CSUM) {
5638 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5639 dev->features |= NETIF_F_NOCACHE_COPY;
5640 }
5641 }
5642
5643 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5644 */
5645 dev->vlan_features |= NETIF_F_HIGHDMA;
5646
5647 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5648 ret = notifier_to_errno(ret);
5649 if (ret)
5650 goto err_uninit;
5651
5652 ret = netdev_register_kobject(dev);
5653 if (ret)
5654 goto err_uninit;
5655 dev->reg_state = NETREG_REGISTERED;
5656
5657 __netdev_update_features(dev);
5658
5659 /*
5660 * Default initial state at registry is that the
5661 * device is present.
5662 */
5663
5664 set_bit(__LINK_STATE_PRESENT, &dev->state);
5665
5666 linkwatch_init_dev(dev);
5667
5668 dev_init_scheduler(dev);
5669 dev_hold(dev);
5670 list_netdevice(dev);
5671 add_device_randomness(dev->dev_addr, dev->addr_len);
5672
5673 /* Notify protocols, that a new device appeared. */
5674 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5675 ret = notifier_to_errno(ret);
5676 if (ret) {
5677 rollback_registered(dev);
5678 dev->reg_state = NETREG_UNREGISTERED;
5679 }
5680 /*
5681 * Prevent userspace races by waiting until the network
5682 * device is fully setup before sending notifications.
5683 */
5684 if (!dev->rtnl_link_ops ||
5685 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5686 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5687
5688 out:
5689 return ret;
5690
5691 err_uninit:
5692 if (dev->netdev_ops->ndo_uninit)
5693 dev->netdev_ops->ndo_uninit(dev);
5694 goto out;
5695 }
5696 EXPORT_SYMBOL(register_netdevice);
5697
5698 /**
5699 * init_dummy_netdev - init a dummy network device for NAPI
5700 * @dev: device to init
5701 *
5702 * This takes a network device structure and initialize the minimum
5703 * amount of fields so it can be used to schedule NAPI polls without
5704 * registering a full blown interface. This is to be used by drivers
5705 * that need to tie several hardware interfaces to a single NAPI
5706 * poll scheduler due to HW limitations.
5707 */
5708 int init_dummy_netdev(struct net_device *dev)
5709 {
5710 /* Clear everything. Note we don't initialize spinlocks
5711 * are they aren't supposed to be taken by any of the
5712 * NAPI code and this dummy netdev is supposed to be
5713 * only ever used for NAPI polls
5714 */
5715 memset(dev, 0, sizeof(struct net_device));
5716
5717 /* make sure we BUG if trying to hit standard
5718 * register/unregister code path
5719 */
5720 dev->reg_state = NETREG_DUMMY;
5721
5722 /* NAPI wants this */
5723 INIT_LIST_HEAD(&dev->napi_list);
5724
5725 /* a dummy interface is started by default */
5726 set_bit(__LINK_STATE_PRESENT, &dev->state);
5727 set_bit(__LINK_STATE_START, &dev->state);
5728
5729 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5730 * because users of this 'device' dont need to change
5731 * its refcount.
5732 */
5733
5734 return 0;
5735 }
5736 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5737
5738
5739 /**
5740 * register_netdev - register a network device
5741 * @dev: device to register
5742 *
5743 * Take a completed network device structure and add it to the kernel
5744 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5745 * chain. 0 is returned on success. A negative errno code is returned
5746 * on a failure to set up the device, or if the name is a duplicate.
5747 *
5748 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5749 * and expands the device name if you passed a format string to
5750 * alloc_netdev.
5751 */
5752 int register_netdev(struct net_device *dev)
5753 {
5754 int err;
5755
5756 rtnl_lock();
5757 err = register_netdevice(dev);
5758 rtnl_unlock();
5759 return err;
5760 }
5761 EXPORT_SYMBOL(register_netdev);
5762
5763 int netdev_refcnt_read(const struct net_device *dev)
5764 {
5765 int i, refcnt = 0;
5766
5767 for_each_possible_cpu(i)
5768 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5769 return refcnt;
5770 }
5771 EXPORT_SYMBOL(netdev_refcnt_read);
5772
5773 /**
5774 * netdev_wait_allrefs - wait until all references are gone.
5775 * @dev: target net_device
5776 *
5777 * This is called when unregistering network devices.
5778 *
5779 * Any protocol or device that holds a reference should register
5780 * for netdevice notification, and cleanup and put back the
5781 * reference if they receive an UNREGISTER event.
5782 * We can get stuck here if buggy protocols don't correctly
5783 * call dev_put.
5784 */
5785 static void netdev_wait_allrefs(struct net_device *dev)
5786 {
5787 unsigned long rebroadcast_time, warning_time;
5788 int refcnt;
5789
5790 linkwatch_forget_dev(dev);
5791
5792 rebroadcast_time = warning_time = jiffies;
5793 refcnt = netdev_refcnt_read(dev);
5794
5795 while (refcnt != 0) {
5796 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5797 rtnl_lock();
5798
5799 /* Rebroadcast unregister notification */
5800 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5801
5802 __rtnl_unlock();
5803 rcu_barrier();
5804 rtnl_lock();
5805
5806 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5807 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5808 &dev->state)) {
5809 /* We must not have linkwatch events
5810 * pending on unregister. If this
5811 * happens, we simply run the queue
5812 * unscheduled, resulting in a noop
5813 * for this device.
5814 */
5815 linkwatch_run_queue();
5816 }
5817
5818 __rtnl_unlock();
5819
5820 rebroadcast_time = jiffies;
5821 }
5822
5823 msleep(250);
5824
5825 refcnt = netdev_refcnt_read(dev);
5826
5827 if (time_after(jiffies, warning_time + 10 * HZ)) {
5828 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5829 dev->name, refcnt);
5830 warning_time = jiffies;
5831 }
5832 }
5833 }
5834
5835 /* The sequence is:
5836 *
5837 * rtnl_lock();
5838 * ...
5839 * register_netdevice(x1);
5840 * register_netdevice(x2);
5841 * ...
5842 * unregister_netdevice(y1);
5843 * unregister_netdevice(y2);
5844 * ...
5845 * rtnl_unlock();
5846 * free_netdev(y1);
5847 * free_netdev(y2);
5848 *
5849 * We are invoked by rtnl_unlock().
5850 * This allows us to deal with problems:
5851 * 1) We can delete sysfs objects which invoke hotplug
5852 * without deadlocking with linkwatch via keventd.
5853 * 2) Since we run with the RTNL semaphore not held, we can sleep
5854 * safely in order to wait for the netdev refcnt to drop to zero.
5855 *
5856 * We must not return until all unregister events added during
5857 * the interval the lock was held have been completed.
5858 */
5859 void netdev_run_todo(void)
5860 {
5861 struct list_head list;
5862
5863 /* Snapshot list, allow later requests */
5864 list_replace_init(&net_todo_list, &list);
5865
5866 __rtnl_unlock();
5867
5868
5869 /* Wait for rcu callbacks to finish before next phase */
5870 if (!list_empty(&list))
5871 rcu_barrier();
5872
5873 while (!list_empty(&list)) {
5874 struct net_device *dev
5875 = list_first_entry(&list, struct net_device, todo_list);
5876 list_del(&dev->todo_list);
5877
5878 rtnl_lock();
5879 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5880 __rtnl_unlock();
5881
5882 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5883 pr_err("network todo '%s' but state %d\n",
5884 dev->name, dev->reg_state);
5885 dump_stack();
5886 continue;
5887 }
5888
5889 dev->reg_state = NETREG_UNREGISTERED;
5890
5891 on_each_cpu(flush_backlog, dev, 1);
5892
5893 netdev_wait_allrefs(dev);
5894
5895 /* paranoia */
5896 BUG_ON(netdev_refcnt_read(dev));
5897 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5898 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5899 WARN_ON(dev->dn_ptr);
5900
5901 if (dev->destructor)
5902 dev->destructor(dev);
5903
5904 /* Free network device */
5905 kobject_put(&dev->dev.kobj);
5906 }
5907 }
5908
5909 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5910 * fields in the same order, with only the type differing.
5911 */
5912 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5913 const struct net_device_stats *netdev_stats)
5914 {
5915 #if BITS_PER_LONG == 64
5916 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5917 memcpy(stats64, netdev_stats, sizeof(*stats64));
5918 #else
5919 size_t i, n = sizeof(*stats64) / sizeof(u64);
5920 const unsigned long *src = (const unsigned long *)netdev_stats;
5921 u64 *dst = (u64 *)stats64;
5922
5923 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5924 sizeof(*stats64) / sizeof(u64));
5925 for (i = 0; i < n; i++)
5926 dst[i] = src[i];
5927 #endif
5928 }
5929 EXPORT_SYMBOL(netdev_stats_to_stats64);
5930
5931 /**
5932 * dev_get_stats - get network device statistics
5933 * @dev: device to get statistics from
5934 * @storage: place to store stats
5935 *
5936 * Get network statistics from device. Return @storage.
5937 * The device driver may provide its own method by setting
5938 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5939 * otherwise the internal statistics structure is used.
5940 */
5941 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5942 struct rtnl_link_stats64 *storage)
5943 {
5944 const struct net_device_ops *ops = dev->netdev_ops;
5945
5946 if (ops->ndo_get_stats64) {
5947 memset(storage, 0, sizeof(*storage));
5948 ops->ndo_get_stats64(dev, storage);
5949 } else if (ops->ndo_get_stats) {
5950 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5951 } else {
5952 netdev_stats_to_stats64(storage, &dev->stats);
5953 }
5954 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5955 return storage;
5956 }
5957 EXPORT_SYMBOL(dev_get_stats);
5958
5959 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5960 {
5961 struct netdev_queue *queue = dev_ingress_queue(dev);
5962
5963 #ifdef CONFIG_NET_CLS_ACT
5964 if (queue)
5965 return queue;
5966 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5967 if (!queue)
5968 return NULL;
5969 netdev_init_one_queue(dev, queue, NULL);
5970 queue->qdisc = &noop_qdisc;
5971 queue->qdisc_sleeping = &noop_qdisc;
5972 rcu_assign_pointer(dev->ingress_queue, queue);
5973 #endif
5974 return queue;
5975 }
5976
5977 static const struct ethtool_ops default_ethtool_ops;
5978
5979 /**
5980 * alloc_netdev_mqs - allocate network device
5981 * @sizeof_priv: size of private data to allocate space for
5982 * @name: device name format string
5983 * @setup: callback to initialize device
5984 * @txqs: the number of TX subqueues to allocate
5985 * @rxqs: the number of RX subqueues to allocate
5986 *
5987 * Allocates a struct net_device with private data area for driver use
5988 * and performs basic initialization. Also allocates subquue structs
5989 * for each queue on the device.
5990 */
5991 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5992 void (*setup)(struct net_device *),
5993 unsigned int txqs, unsigned int rxqs)
5994 {
5995 struct net_device *dev;
5996 size_t alloc_size;
5997 struct net_device *p;
5998
5999 BUG_ON(strlen(name) >= sizeof(dev->name));
6000
6001 if (txqs < 1) {
6002 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6003 return NULL;
6004 }
6005
6006 #ifdef CONFIG_RPS
6007 if (rxqs < 1) {
6008 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6009 return NULL;
6010 }
6011 #endif
6012
6013 alloc_size = sizeof(struct net_device);
6014 if (sizeof_priv) {
6015 /* ensure 32-byte alignment of private area */
6016 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6017 alloc_size += sizeof_priv;
6018 }
6019 /* ensure 32-byte alignment of whole construct */
6020 alloc_size += NETDEV_ALIGN - 1;
6021
6022 p = kzalloc(alloc_size, GFP_KERNEL);
6023 if (!p) {
6024 pr_err("alloc_netdev: Unable to allocate device\n");
6025 return NULL;
6026 }
6027
6028 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6029 dev->padded = (char *)dev - (char *)p;
6030
6031 dev->pcpu_refcnt = alloc_percpu(int);
6032 if (!dev->pcpu_refcnt)
6033 goto free_p;
6034
6035 if (dev_addr_init(dev))
6036 goto free_pcpu;
6037
6038 dev_mc_init(dev);
6039 dev_uc_init(dev);
6040
6041 dev_net_set(dev, &init_net);
6042
6043 dev->gso_max_size = GSO_MAX_SIZE;
6044 dev->gso_max_segs = GSO_MAX_SEGS;
6045
6046 INIT_LIST_HEAD(&dev->napi_list);
6047 INIT_LIST_HEAD(&dev->unreg_list);
6048 INIT_LIST_HEAD(&dev->link_watch_list);
6049 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6050 setup(dev);
6051
6052 dev->num_tx_queues = txqs;
6053 dev->real_num_tx_queues = txqs;
6054 if (netif_alloc_netdev_queues(dev))
6055 goto free_all;
6056
6057 #ifdef CONFIG_RPS
6058 dev->num_rx_queues = rxqs;
6059 dev->real_num_rx_queues = rxqs;
6060 if (netif_alloc_rx_queues(dev))
6061 goto free_all;
6062 #endif
6063
6064 strcpy(dev->name, name);
6065 dev->group = INIT_NETDEV_GROUP;
6066 if (!dev->ethtool_ops)
6067 dev->ethtool_ops = &default_ethtool_ops;
6068 return dev;
6069
6070 free_all:
6071 free_netdev(dev);
6072 return NULL;
6073
6074 free_pcpu:
6075 free_percpu(dev->pcpu_refcnt);
6076 kfree(dev->_tx);
6077 #ifdef CONFIG_RPS
6078 kfree(dev->_rx);
6079 #endif
6080
6081 free_p:
6082 kfree(p);
6083 return NULL;
6084 }
6085 EXPORT_SYMBOL(alloc_netdev_mqs);
6086
6087 /**
6088 * free_netdev - free network device
6089 * @dev: device
6090 *
6091 * This function does the last stage of destroying an allocated device
6092 * interface. The reference to the device object is released.
6093 * If this is the last reference then it will be freed.
6094 */
6095 void free_netdev(struct net_device *dev)
6096 {
6097 struct napi_struct *p, *n;
6098
6099 release_net(dev_net(dev));
6100
6101 kfree(dev->_tx);
6102 #ifdef CONFIG_RPS
6103 kfree(dev->_rx);
6104 #endif
6105
6106 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6107
6108 /* Flush device addresses */
6109 dev_addr_flush(dev);
6110
6111 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6112 netif_napi_del(p);
6113
6114 free_percpu(dev->pcpu_refcnt);
6115 dev->pcpu_refcnt = NULL;
6116
6117 /* Compatibility with error handling in drivers */
6118 if (dev->reg_state == NETREG_UNINITIALIZED) {
6119 kfree((char *)dev - dev->padded);
6120 return;
6121 }
6122
6123 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6124 dev->reg_state = NETREG_RELEASED;
6125
6126 /* will free via device release */
6127 put_device(&dev->dev);
6128 }
6129 EXPORT_SYMBOL(free_netdev);
6130
6131 /**
6132 * synchronize_net - Synchronize with packet receive processing
6133 *
6134 * Wait for packets currently being received to be done.
6135 * Does not block later packets from starting.
6136 */
6137 void synchronize_net(void)
6138 {
6139 might_sleep();
6140 if (rtnl_is_locked())
6141 synchronize_rcu_expedited();
6142 else
6143 synchronize_rcu();
6144 }
6145 EXPORT_SYMBOL(synchronize_net);
6146
6147 /**
6148 * unregister_netdevice_queue - remove device from the kernel
6149 * @dev: device
6150 * @head: list
6151 *
6152 * This function shuts down a device interface and removes it
6153 * from the kernel tables.
6154 * If head not NULL, device is queued to be unregistered later.
6155 *
6156 * Callers must hold the rtnl semaphore. You may want
6157 * unregister_netdev() instead of this.
6158 */
6159
6160 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6161 {
6162 ASSERT_RTNL();
6163
6164 if (head) {
6165 list_move_tail(&dev->unreg_list, head);
6166 } else {
6167 rollback_registered(dev);
6168 /* Finish processing unregister after unlock */
6169 net_set_todo(dev);
6170 }
6171 }
6172 EXPORT_SYMBOL(unregister_netdevice_queue);
6173
6174 /**
6175 * unregister_netdevice_many - unregister many devices
6176 * @head: list of devices
6177 */
6178 void unregister_netdevice_many(struct list_head *head)
6179 {
6180 struct net_device *dev;
6181
6182 if (!list_empty(head)) {
6183 rollback_registered_many(head);
6184 list_for_each_entry(dev, head, unreg_list)
6185 net_set_todo(dev);
6186 }
6187 }
6188 EXPORT_SYMBOL(unregister_netdevice_many);
6189
6190 /**
6191 * unregister_netdev - remove device from the kernel
6192 * @dev: device
6193 *
6194 * This function shuts down a device interface and removes it
6195 * from the kernel tables.
6196 *
6197 * This is just a wrapper for unregister_netdevice that takes
6198 * the rtnl semaphore. In general you want to use this and not
6199 * unregister_netdevice.
6200 */
6201 void unregister_netdev(struct net_device *dev)
6202 {
6203 rtnl_lock();
6204 unregister_netdevice(dev);
6205 rtnl_unlock();
6206 }
6207 EXPORT_SYMBOL(unregister_netdev);
6208
6209 /**
6210 * dev_change_net_namespace - move device to different nethost namespace
6211 * @dev: device
6212 * @net: network namespace
6213 * @pat: If not NULL name pattern to try if the current device name
6214 * is already taken in the destination network namespace.
6215 *
6216 * This function shuts down a device interface and moves it
6217 * to a new network namespace. On success 0 is returned, on
6218 * a failure a netagive errno code is returned.
6219 *
6220 * Callers must hold the rtnl semaphore.
6221 */
6222
6223 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6224 {
6225 int err;
6226
6227 ASSERT_RTNL();
6228
6229 /* Don't allow namespace local devices to be moved. */
6230 err = -EINVAL;
6231 if (dev->features & NETIF_F_NETNS_LOCAL)
6232 goto out;
6233
6234 /* Ensure the device has been registrered */
6235 err = -EINVAL;
6236 if (dev->reg_state != NETREG_REGISTERED)
6237 goto out;
6238
6239 /* Get out if there is nothing todo */
6240 err = 0;
6241 if (net_eq(dev_net(dev), net))
6242 goto out;
6243
6244 /* Pick the destination device name, and ensure
6245 * we can use it in the destination network namespace.
6246 */
6247 err = -EEXIST;
6248 if (__dev_get_by_name(net, dev->name)) {
6249 /* We get here if we can't use the current device name */
6250 if (!pat)
6251 goto out;
6252 if (dev_get_valid_name(net, dev, pat) < 0)
6253 goto out;
6254 }
6255
6256 /*
6257 * And now a mini version of register_netdevice unregister_netdevice.
6258 */
6259
6260 /* If device is running close it first. */
6261 dev_close(dev);
6262
6263 /* And unlink it from device chain */
6264 err = -ENODEV;
6265 unlist_netdevice(dev);
6266
6267 synchronize_net();
6268
6269 /* Shutdown queueing discipline. */
6270 dev_shutdown(dev);
6271
6272 /* Notify protocols, that we are about to destroy
6273 this device. They should clean all the things.
6274
6275 Note that dev->reg_state stays at NETREG_REGISTERED.
6276 This is wanted because this way 8021q and macvlan know
6277 the device is just moving and can keep their slaves up.
6278 */
6279 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6280 rcu_barrier();
6281 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6282 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6283
6284 /*
6285 * Flush the unicast and multicast chains
6286 */
6287 dev_uc_flush(dev);
6288 dev_mc_flush(dev);
6289
6290 /* Actually switch the network namespace */
6291 dev_net_set(dev, net);
6292
6293 /* If there is an ifindex conflict assign a new one */
6294 if (__dev_get_by_index(net, dev->ifindex)) {
6295 int iflink = (dev->iflink == dev->ifindex);
6296 dev->ifindex = dev_new_index(net);
6297 if (iflink)
6298 dev->iflink = dev->ifindex;
6299 }
6300
6301 /* Fixup kobjects */
6302 err = device_rename(&dev->dev, dev->name);
6303 WARN_ON(err);
6304
6305 /* Add the device back in the hashes */
6306 list_netdevice(dev);
6307
6308 /* Notify protocols, that a new device appeared. */
6309 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6310
6311 /*
6312 * Prevent userspace races by waiting until the network
6313 * device is fully setup before sending notifications.
6314 */
6315 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6316
6317 synchronize_net();
6318 err = 0;
6319 out:
6320 return err;
6321 }
6322 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6323
6324 static int dev_cpu_callback(struct notifier_block *nfb,
6325 unsigned long action,
6326 void *ocpu)
6327 {
6328 struct sk_buff **list_skb;
6329 struct sk_buff *skb;
6330 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6331 struct softnet_data *sd, *oldsd;
6332
6333 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6334 return NOTIFY_OK;
6335
6336 local_irq_disable();
6337 cpu = smp_processor_id();
6338 sd = &per_cpu(softnet_data, cpu);
6339 oldsd = &per_cpu(softnet_data, oldcpu);
6340
6341 /* Find end of our completion_queue. */
6342 list_skb = &sd->completion_queue;
6343 while (*list_skb)
6344 list_skb = &(*list_skb)->next;
6345 /* Append completion queue from offline CPU. */
6346 *list_skb = oldsd->completion_queue;
6347 oldsd->completion_queue = NULL;
6348
6349 /* Append output queue from offline CPU. */
6350 if (oldsd->output_queue) {
6351 *sd->output_queue_tailp = oldsd->output_queue;
6352 sd->output_queue_tailp = oldsd->output_queue_tailp;
6353 oldsd->output_queue = NULL;
6354 oldsd->output_queue_tailp = &oldsd->output_queue;
6355 }
6356 /* Append NAPI poll list from offline CPU. */
6357 if (!list_empty(&oldsd->poll_list)) {
6358 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6359 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6360 }
6361
6362 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6363 local_irq_enable();
6364
6365 /* Process offline CPU's input_pkt_queue */
6366 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6367 netif_rx(skb);
6368 input_queue_head_incr(oldsd);
6369 }
6370 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6371 netif_rx(skb);
6372 input_queue_head_incr(oldsd);
6373 }
6374
6375 return NOTIFY_OK;
6376 }
6377
6378
6379 /**
6380 * netdev_increment_features - increment feature set by one
6381 * @all: current feature set
6382 * @one: new feature set
6383 * @mask: mask feature set
6384 *
6385 * Computes a new feature set after adding a device with feature set
6386 * @one to the master device with current feature set @all. Will not
6387 * enable anything that is off in @mask. Returns the new feature set.
6388 */
6389 netdev_features_t netdev_increment_features(netdev_features_t all,
6390 netdev_features_t one, netdev_features_t mask)
6391 {
6392 if (mask & NETIF_F_GEN_CSUM)
6393 mask |= NETIF_F_ALL_CSUM;
6394 mask |= NETIF_F_VLAN_CHALLENGED;
6395
6396 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6397 all &= one | ~NETIF_F_ALL_FOR_ALL;
6398
6399 /* If one device supports hw checksumming, set for all. */
6400 if (all & NETIF_F_GEN_CSUM)
6401 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6402
6403 return all;
6404 }
6405 EXPORT_SYMBOL(netdev_increment_features);
6406
6407 static struct hlist_head *netdev_create_hash(void)
6408 {
6409 int i;
6410 struct hlist_head *hash;
6411
6412 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6413 if (hash != NULL)
6414 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6415 INIT_HLIST_HEAD(&hash[i]);
6416
6417 return hash;
6418 }
6419
6420 /* Initialize per network namespace state */
6421 static int __net_init netdev_init(struct net *net)
6422 {
6423 if (net != &init_net)
6424 INIT_LIST_HEAD(&net->dev_base_head);
6425
6426 net->dev_name_head = netdev_create_hash();
6427 if (net->dev_name_head == NULL)
6428 goto err_name;
6429
6430 net->dev_index_head = netdev_create_hash();
6431 if (net->dev_index_head == NULL)
6432 goto err_idx;
6433
6434 return 0;
6435
6436 err_idx:
6437 kfree(net->dev_name_head);
6438 err_name:
6439 return -ENOMEM;
6440 }
6441
6442 /**
6443 * netdev_drivername - network driver for the device
6444 * @dev: network device
6445 *
6446 * Determine network driver for device.
6447 */
6448 const char *netdev_drivername(const struct net_device *dev)
6449 {
6450 const struct device_driver *driver;
6451 const struct device *parent;
6452 const char *empty = "";
6453
6454 parent = dev->dev.parent;
6455 if (!parent)
6456 return empty;
6457
6458 driver = parent->driver;
6459 if (driver && driver->name)
6460 return driver->name;
6461 return empty;
6462 }
6463
6464 int __netdev_printk(const char *level, const struct net_device *dev,
6465 struct va_format *vaf)
6466 {
6467 int r;
6468
6469 if (dev && dev->dev.parent)
6470 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6471 netdev_name(dev), vaf);
6472 else if (dev)
6473 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6474 else
6475 r = printk("%s(NULL net_device): %pV", level, vaf);
6476
6477 return r;
6478 }
6479 EXPORT_SYMBOL(__netdev_printk);
6480
6481 int netdev_printk(const char *level, const struct net_device *dev,
6482 const char *format, ...)
6483 {
6484 struct va_format vaf;
6485 va_list args;
6486 int r;
6487
6488 va_start(args, format);
6489
6490 vaf.fmt = format;
6491 vaf.va = &args;
6492
6493 r = __netdev_printk(level, dev, &vaf);
6494 va_end(args);
6495
6496 return r;
6497 }
6498 EXPORT_SYMBOL(netdev_printk);
6499
6500 #define define_netdev_printk_level(func, level) \
6501 int func(const struct net_device *dev, const char *fmt, ...) \
6502 { \
6503 int r; \
6504 struct va_format vaf; \
6505 va_list args; \
6506 \
6507 va_start(args, fmt); \
6508 \
6509 vaf.fmt = fmt; \
6510 vaf.va = &args; \
6511 \
6512 r = __netdev_printk(level, dev, &vaf); \
6513 va_end(args); \
6514 \
6515 return r; \
6516 } \
6517 EXPORT_SYMBOL(func);
6518
6519 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6520 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6521 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6522 define_netdev_printk_level(netdev_err, KERN_ERR);
6523 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6524 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6525 define_netdev_printk_level(netdev_info, KERN_INFO);
6526
6527 static void __net_exit netdev_exit(struct net *net)
6528 {
6529 kfree(net->dev_name_head);
6530 kfree(net->dev_index_head);
6531 }
6532
6533 static struct pernet_operations __net_initdata netdev_net_ops = {
6534 .init = netdev_init,
6535 .exit = netdev_exit,
6536 };
6537
6538 static void __net_exit default_device_exit(struct net *net)
6539 {
6540 struct net_device *dev, *aux;
6541 /*
6542 * Push all migratable network devices back to the
6543 * initial network namespace
6544 */
6545 rtnl_lock();
6546 for_each_netdev_safe(net, dev, aux) {
6547 int err;
6548 char fb_name[IFNAMSIZ];
6549
6550 /* Ignore unmoveable devices (i.e. loopback) */
6551 if (dev->features & NETIF_F_NETNS_LOCAL)
6552 continue;
6553
6554 /* Leave virtual devices for the generic cleanup */
6555 if (dev->rtnl_link_ops)
6556 continue;
6557
6558 /* Push remaining network devices to init_net */
6559 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6560 err = dev_change_net_namespace(dev, &init_net, fb_name);
6561 if (err) {
6562 pr_emerg("%s: failed to move %s to init_net: %d\n",
6563 __func__, dev->name, err);
6564 BUG();
6565 }
6566 }
6567 rtnl_unlock();
6568 }
6569
6570 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6571 {
6572 /* At exit all network devices most be removed from a network
6573 * namespace. Do this in the reverse order of registration.
6574 * Do this across as many network namespaces as possible to
6575 * improve batching efficiency.
6576 */
6577 struct net_device *dev;
6578 struct net *net;
6579 LIST_HEAD(dev_kill_list);
6580
6581 rtnl_lock();
6582 list_for_each_entry(net, net_list, exit_list) {
6583 for_each_netdev_reverse(net, dev) {
6584 if (dev->rtnl_link_ops)
6585 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6586 else
6587 unregister_netdevice_queue(dev, &dev_kill_list);
6588 }
6589 }
6590 unregister_netdevice_many(&dev_kill_list);
6591 list_del(&dev_kill_list);
6592 rtnl_unlock();
6593 }
6594
6595 static struct pernet_operations __net_initdata default_device_ops = {
6596 .exit = default_device_exit,
6597 .exit_batch = default_device_exit_batch,
6598 };
6599
6600 /*
6601 * Initialize the DEV module. At boot time this walks the device list and
6602 * unhooks any devices that fail to initialise (normally hardware not
6603 * present) and leaves us with a valid list of present and active devices.
6604 *
6605 */
6606
6607 /*
6608 * This is called single threaded during boot, so no need
6609 * to take the rtnl semaphore.
6610 */
6611 static int __init net_dev_init(void)
6612 {
6613 int i, rc = -ENOMEM;
6614
6615 BUG_ON(!dev_boot_phase);
6616
6617 if (dev_proc_init())
6618 goto out;
6619
6620 if (netdev_kobject_init())
6621 goto out;
6622
6623 INIT_LIST_HEAD(&ptype_all);
6624 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6625 INIT_LIST_HEAD(&ptype_base[i]);
6626
6627 if (register_pernet_subsys(&netdev_net_ops))
6628 goto out;
6629
6630 /*
6631 * Initialise the packet receive queues.
6632 */
6633
6634 for_each_possible_cpu(i) {
6635 struct softnet_data *sd = &per_cpu(softnet_data, i);
6636
6637 memset(sd, 0, sizeof(*sd));
6638 skb_queue_head_init(&sd->input_pkt_queue);
6639 skb_queue_head_init(&sd->process_queue);
6640 sd->completion_queue = NULL;
6641 INIT_LIST_HEAD(&sd->poll_list);
6642 sd->output_queue = NULL;
6643 sd->output_queue_tailp = &sd->output_queue;
6644 #ifdef CONFIG_RPS
6645 sd->csd.func = rps_trigger_softirq;
6646 sd->csd.info = sd;
6647 sd->csd.flags = 0;
6648 sd->cpu = i;
6649 #endif
6650
6651 sd->backlog.poll = process_backlog;
6652 sd->backlog.weight = weight_p;
6653 sd->backlog.gro_list = NULL;
6654 sd->backlog.gro_count = 0;
6655 }
6656
6657 dev_boot_phase = 0;
6658
6659 /* The loopback device is special if any other network devices
6660 * is present in a network namespace the loopback device must
6661 * be present. Since we now dynamically allocate and free the
6662 * loopback device ensure this invariant is maintained by
6663 * keeping the loopback device as the first device on the
6664 * list of network devices. Ensuring the loopback devices
6665 * is the first device that appears and the last network device
6666 * that disappears.
6667 */
6668 if (register_pernet_device(&loopback_net_ops))
6669 goto out;
6670
6671 if (register_pernet_device(&default_device_ops))
6672 goto out;
6673
6674 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6675 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6676
6677 hotcpu_notifier(dev_cpu_callback, 0);
6678 dst_init();
6679 dev_mcast_init();
6680 rc = 0;
6681 out:
6682 return rc;
6683 }
6684
6685 subsys_initcall(net_dev_init);
6686
6687 static int __init initialize_hashrnd(void)
6688 {
6689 get_random_bytes(&hashrnd, sizeof(hashrnd));
6690 return 0;
6691 }
6692
6693 late_initcall_sync(initialize_hashrnd);
6694
This page took 0.172898 seconds and 5 git commands to generate.