c2442b46646eedd30561f607b47fa89964308d78
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_lock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 static inline void rps_unlock(struct softnet_data *sd)
228 {
229 #ifdef CONFIG_RPS
230 spin_unlock(&sd->input_pkt_queue.lock);
231 #endif
232 }
233
234 /* Device list insertion */
235 static int list_netdevice(struct net_device *dev)
236 {
237 struct net *net = dev_net(dev);
238
239 ASSERT_RTNL();
240
241 write_lock_bh(&dev_base_lock);
242 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
243 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
244 hlist_add_head_rcu(&dev->index_hlist,
245 dev_index_hash(net, dev->ifindex));
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(net);
249
250 return 0;
251 }
252
253 /* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
256 static void unlist_netdevice(struct net_device *dev)
257 {
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
262 list_del_rcu(&dev->dev_list);
263 hlist_del_rcu(&dev->name_hlist);
264 hlist_del_rcu(&dev->index_hlist);
265 write_unlock_bh(&dev_base_lock);
266
267 dev_base_seq_inc(dev_net(dev));
268 }
269
270 /*
271 * Our notifier list
272 */
273
274 static RAW_NOTIFIER_HEAD(netdev_chain);
275
276 /*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
280
281 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
282 EXPORT_PER_CPU_SYMBOL(softnet_data);
283
284 #ifdef CONFIG_LOCKDEP
285 /*
286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
287 * according to dev->type
288 */
289 static const unsigned short netdev_lock_type[] =
290 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
302 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
303 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
304 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
305 ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
321 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
322 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
323 "_xmit_VOID", "_xmit_NONE"};
324
325 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
327
328 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
329 {
330 int i;
331
332 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
333 if (netdev_lock_type[i] == dev_type)
334 return i;
335 /* the last key is used by default */
336 return ARRAY_SIZE(netdev_lock_type) - 1;
337 }
338
339 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
340 unsigned short dev_type)
341 {
342 int i;
343
344 i = netdev_lock_pos(dev_type);
345 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
346 netdev_lock_name[i]);
347 }
348
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 int i;
352
353 i = netdev_lock_pos(dev->type);
354 lockdep_set_class_and_name(&dev->addr_list_lock,
355 &netdev_addr_lock_key[i],
356 netdev_lock_name[i]);
357 }
358 #else
359 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
360 unsigned short dev_type)
361 {
362 }
363 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
364 {
365 }
366 #endif
367
368 /*******************************************************************************
369
370 Protocol management and registration routines
371
372 *******************************************************************************/
373
374 /*
375 * Add a protocol ID to the list. Now that the input handler is
376 * smarter we can dispense with all the messy stuff that used to be
377 * here.
378 *
379 * BEWARE!!! Protocol handlers, mangling input packets,
380 * MUST BE last in hash buckets and checking protocol handlers
381 * MUST start from promiscuous ptype_all chain in net_bh.
382 * It is true now, do not change it.
383 * Explanation follows: if protocol handler, mangling packet, will
384 * be the first on list, it is not able to sense, that packet
385 * is cloned and should be copied-on-write, so that it will
386 * change it and subsequent readers will get broken packet.
387 * --ANK (980803)
388 */
389
390 static inline struct list_head *ptype_head(const struct packet_type *pt)
391 {
392 if (pt->type == htons(ETH_P_ALL))
393 return &ptype_all;
394 else
395 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 }
397
398 /**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
406 * This call does not sleep therefore it can not
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411 void dev_add_pack(struct packet_type *pt)
412 {
413 struct list_head *head = ptype_head(pt);
414
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
418 }
419 EXPORT_SYMBOL(dev_add_pack);
420
421 /**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434 void __dev_remove_pack(struct packet_type *pt)
435 {
436 struct list_head *head = ptype_head(pt);
437 struct packet_type *pt1;
438
439 spin_lock(&ptype_lock);
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
448 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
449 out:
450 spin_unlock(&ptype_lock);
451 }
452 EXPORT_SYMBOL(__dev_remove_pack);
453
454 /**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466 void dev_remove_pack(struct packet_type *pt)
467 {
468 __dev_remove_pack(pt);
469
470 synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_pack);
473
474 /******************************************************************************
475
476 Device Boot-time Settings Routines
477
478 *******************************************************************************/
479
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483 /**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509
510 /**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539 /**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568 }
569
570 /*
571 * Saves at boot time configured settings for any netdevice.
572 */
573 int __init netdev_boot_setup(char *str)
574 {
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595 }
596
597 __setup("netdev=", netdev_boot_setup);
598
599 /*******************************************************************************
600
601 Device Interface Subroutines
602
603 *******************************************************************************/
604
605 /**
606 * __dev_get_by_name - find a device by its name
607 * @net: the applicable net namespace
608 * @name: name to find
609 *
610 * Find an interface by name. Must be called under RTNL semaphore
611 * or @dev_base_lock. If the name is found a pointer to the device
612 * is returned. If the name is not found then %NULL is returned. The
613 * reference counters are not incremented so the caller must be
614 * careful with locks.
615 */
616
617 struct net_device *__dev_get_by_name(struct net *net, const char *name)
618 {
619 struct hlist_node *p;
620 struct net_device *dev;
621 struct hlist_head *head = dev_name_hash(net, name);
622
623 hlist_for_each_entry(dev, p, head, name_hlist)
624 if (!strncmp(dev->name, name, IFNAMSIZ))
625 return dev;
626
627 return NULL;
628 }
629 EXPORT_SYMBOL(__dev_get_by_name);
630
631 /**
632 * dev_get_by_name_rcu - find a device by its name
633 * @net: the applicable net namespace
634 * @name: name to find
635 *
636 * Find an interface by name.
637 * If the name is found a pointer to the device is returned.
638 * If the name is not found then %NULL is returned.
639 * The reference counters are not incremented so the caller must be
640 * careful with locks. The caller must hold RCU lock.
641 */
642
643 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
644 {
645 struct hlist_node *p;
646 struct net_device *dev;
647 struct hlist_head *head = dev_name_hash(net, name);
648
649 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
650 if (!strncmp(dev->name, name, IFNAMSIZ))
651 return dev;
652
653 return NULL;
654 }
655 EXPORT_SYMBOL(dev_get_by_name_rcu);
656
657 /**
658 * dev_get_by_name - find a device by its name
659 * @net: the applicable net namespace
660 * @name: name to find
661 *
662 * Find an interface by name. This can be called from any
663 * context and does its own locking. The returned handle has
664 * the usage count incremented and the caller must use dev_put() to
665 * release it when it is no longer needed. %NULL is returned if no
666 * matching device is found.
667 */
668
669 struct net_device *dev_get_by_name(struct net *net, const char *name)
670 {
671 struct net_device *dev;
672
673 rcu_read_lock();
674 dev = dev_get_by_name_rcu(net, name);
675 if (dev)
676 dev_hold(dev);
677 rcu_read_unlock();
678 return dev;
679 }
680 EXPORT_SYMBOL(dev_get_by_name);
681
682 /**
683 * __dev_get_by_index - find a device by its ifindex
684 * @net: the applicable net namespace
685 * @ifindex: index of device
686 *
687 * Search for an interface by index. Returns %NULL if the device
688 * is not found or a pointer to the device. The device has not
689 * had its reference counter increased so the caller must be careful
690 * about locking. The caller must hold either the RTNL semaphore
691 * or @dev_base_lock.
692 */
693
694 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
695 {
696 struct hlist_node *p;
697 struct net_device *dev;
698 struct hlist_head *head = dev_index_hash(net, ifindex);
699
700 hlist_for_each_entry(dev, p, head, index_hlist)
701 if (dev->ifindex == ifindex)
702 return dev;
703
704 return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_index);
707
708 /**
709 * dev_get_by_index_rcu - find a device by its ifindex
710 * @net: the applicable net namespace
711 * @ifindex: index of device
712 *
713 * Search for an interface by index. Returns %NULL if the device
714 * is not found or a pointer to the device. The device has not
715 * had its reference counter increased so the caller must be careful
716 * about locking. The caller must hold RCU lock.
717 */
718
719 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
720 {
721 struct hlist_node *p;
722 struct net_device *dev;
723 struct hlist_head *head = dev_index_hash(net, ifindex);
724
725 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
726 if (dev->ifindex == ifindex)
727 return dev;
728
729 return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_index_rcu);
732
733
734 /**
735 * dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns NULL if the device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745 struct net_device *dev_get_by_index(struct net *net, int ifindex)
746 {
747 struct net_device *dev;
748
749 rcu_read_lock();
750 dev = dev_get_by_index_rcu(net, ifindex);
751 if (dev)
752 dev_hold(dev);
753 rcu_read_unlock();
754 return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_index);
757
758 /**
759 * dev_getbyhwaddr_rcu - find a device by its hardware address
760 * @net: the applicable net namespace
761 * @type: media type of device
762 * @ha: hardware address
763 *
764 * Search for an interface by MAC address. Returns NULL if the device
765 * is not found or a pointer to the device.
766 * The caller must hold RCU or RTNL.
767 * The returned device has not had its ref count increased
768 * and the caller must therefore be careful about locking
769 *
770 */
771
772 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
773 const char *ha)
774 {
775 struct net_device *dev;
776
777 for_each_netdev_rcu(net, dev)
778 if (dev->type == type &&
779 !memcmp(dev->dev_addr, ha, dev->addr_len))
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
785
786 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev;
789
790 ASSERT_RTNL();
791 for_each_netdev(net, dev)
792 if (dev->type == type)
793 return dev;
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
798
799 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
800 {
801 struct net_device *dev, *ret = NULL;
802
803 rcu_read_lock();
804 for_each_netdev_rcu(net, dev)
805 if (dev->type == type) {
806 dev_hold(dev);
807 ret = dev;
808 break;
809 }
810 rcu_read_unlock();
811 return ret;
812 }
813 EXPORT_SYMBOL(dev_getfirstbyhwtype);
814
815 /**
816 * dev_get_by_flags_rcu - find any device with given flags
817 * @net: the applicable net namespace
818 * @if_flags: IFF_* values
819 * @mask: bitmask of bits in if_flags to check
820 *
821 * Search for any interface with the given flags. Returns NULL if a device
822 * is not found or a pointer to the device. Must be called inside
823 * rcu_read_lock(), and result refcount is unchanged.
824 */
825
826 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
827 unsigned short mask)
828 {
829 struct net_device *dev, *ret;
830
831 ret = NULL;
832 for_each_netdev_rcu(net, dev) {
833 if (((dev->flags ^ if_flags) & mask) == 0) {
834 ret = dev;
835 break;
836 }
837 }
838 return ret;
839 }
840 EXPORT_SYMBOL(dev_get_by_flags_rcu);
841
842 /**
843 * dev_valid_name - check if name is okay for network device
844 * @name: name string
845 *
846 * Network device names need to be valid file names to
847 * to allow sysfs to work. We also disallow any kind of
848 * whitespace.
849 */
850 int dev_valid_name(const char *name)
851 {
852 if (*name == '\0')
853 return 0;
854 if (strlen(name) >= IFNAMSIZ)
855 return 0;
856 if (!strcmp(name, ".") || !strcmp(name, ".."))
857 return 0;
858
859 while (*name) {
860 if (*name == '/' || isspace(*name))
861 return 0;
862 name++;
863 }
864 return 1;
865 }
866 EXPORT_SYMBOL(dev_valid_name);
867
868 /**
869 * __dev_alloc_name - allocate a name for a device
870 * @net: network namespace to allocate the device name in
871 * @name: name format string
872 * @buf: scratch buffer and result name string
873 *
874 * Passed a format string - eg "lt%d" it will try and find a suitable
875 * id. It scans list of devices to build up a free map, then chooses
876 * the first empty slot. The caller must hold the dev_base or rtnl lock
877 * while allocating the name and adding the device in order to avoid
878 * duplicates.
879 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
880 * Returns the number of the unit assigned or a negative errno code.
881 */
882
883 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
884 {
885 int i = 0;
886 const char *p;
887 const int max_netdevices = 8*PAGE_SIZE;
888 unsigned long *inuse;
889 struct net_device *d;
890
891 p = strnchr(name, IFNAMSIZ-1, '%');
892 if (p) {
893 /*
894 * Verify the string as this thing may have come from
895 * the user. There must be either one "%d" and no other "%"
896 * characters.
897 */
898 if (p[1] != 'd' || strchr(p + 2, '%'))
899 return -EINVAL;
900
901 /* Use one page as a bit array of possible slots */
902 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
903 if (!inuse)
904 return -ENOMEM;
905
906 for_each_netdev(net, d) {
907 if (!sscanf(d->name, name, &i))
908 continue;
909 if (i < 0 || i >= max_netdevices)
910 continue;
911
912 /* avoid cases where sscanf is not exact inverse of printf */
913 snprintf(buf, IFNAMSIZ, name, i);
914 if (!strncmp(buf, d->name, IFNAMSIZ))
915 set_bit(i, inuse);
916 }
917
918 i = find_first_zero_bit(inuse, max_netdevices);
919 free_page((unsigned long) inuse);
920 }
921
922 if (buf != name)
923 snprintf(buf, IFNAMSIZ, name, i);
924 if (!__dev_get_by_name(net, buf))
925 return i;
926
927 /* It is possible to run out of possible slots
928 * when the name is long and there isn't enough space left
929 * for the digits, or if all bits are used.
930 */
931 return -ENFILE;
932 }
933
934 /**
935 * dev_alloc_name - allocate a name for a device
936 * @dev: device
937 * @name: name format string
938 *
939 * Passed a format string - eg "lt%d" it will try and find a suitable
940 * id. It scans list of devices to build up a free map, then chooses
941 * the first empty slot. The caller must hold the dev_base or rtnl lock
942 * while allocating the name and adding the device in order to avoid
943 * duplicates.
944 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
945 * Returns the number of the unit assigned or a negative errno code.
946 */
947
948 int dev_alloc_name(struct net_device *dev, const char *name)
949 {
950 char buf[IFNAMSIZ];
951 struct net *net;
952 int ret;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956 ret = __dev_alloc_name(net, name, buf);
957 if (ret >= 0)
958 strlcpy(dev->name, buf, IFNAMSIZ);
959 return ret;
960 }
961 EXPORT_SYMBOL(dev_alloc_name);
962
963 static int dev_get_valid_name(struct net_device *dev, const char *name)
964 {
965 struct net *net;
966
967 BUG_ON(!dev_net(dev));
968 net = dev_net(dev);
969
970 if (!dev_valid_name(name))
971 return -EINVAL;
972
973 if (strchr(name, '%'))
974 return dev_alloc_name(dev, name);
975 else if (__dev_get_by_name(net, name))
976 return -EEXIST;
977 else if (dev->name != name)
978 strlcpy(dev->name, name, IFNAMSIZ);
979
980 return 0;
981 }
982
983 /**
984 * dev_change_name - change name of a device
985 * @dev: device
986 * @newname: name (or format string) must be at least IFNAMSIZ
987 *
988 * Change name of a device, can pass format strings "eth%d".
989 * for wildcarding.
990 */
991 int dev_change_name(struct net_device *dev, const char *newname)
992 {
993 char oldname[IFNAMSIZ];
994 int err = 0;
995 int ret;
996 struct net *net;
997
998 ASSERT_RTNL();
999 BUG_ON(!dev_net(dev));
1000
1001 net = dev_net(dev);
1002 if (dev->flags & IFF_UP)
1003 return -EBUSY;
1004
1005 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1006 return 0;
1007
1008 memcpy(oldname, dev->name, IFNAMSIZ);
1009
1010 err = dev_get_valid_name(dev, newname);
1011 if (err < 0)
1012 return err;
1013
1014 rollback:
1015 ret = device_rename(&dev->dev, dev->name);
1016 if (ret) {
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 return ret;
1019 }
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_del_rcu(&dev->name_hlist);
1023 write_unlock_bh(&dev_base_lock);
1024
1025 synchronize_rcu();
1026
1027 write_lock_bh(&dev_base_lock);
1028 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1029 write_unlock_bh(&dev_base_lock);
1030
1031 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1032 ret = notifier_to_errno(ret);
1033
1034 if (ret) {
1035 /* err >= 0 after dev_alloc_name() or stores the first errno */
1036 if (err >= 0) {
1037 err = ret;
1038 memcpy(dev->name, oldname, IFNAMSIZ);
1039 goto rollback;
1040 } else {
1041 printk(KERN_ERR
1042 "%s: name change rollback failed: %d.\n",
1043 dev->name, ret);
1044 }
1045 }
1046
1047 return err;
1048 }
1049
1050 /**
1051 * dev_set_alias - change ifalias of a device
1052 * @dev: device
1053 * @alias: name up to IFALIASZ
1054 * @len: limit of bytes to copy from info
1055 *
1056 * Set ifalias for a device,
1057 */
1058 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1059 {
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!dev->ifalias)
1075 return -ENOMEM;
1076
1077 strlcpy(dev->ifalias, alias, len+1);
1078 return len;
1079 }
1080
1081
1082 /**
1083 * netdev_features_change - device changes features
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed features.
1087 */
1088 void netdev_features_change(struct net_device *dev)
1089 {
1090 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_features_change);
1093
1094 /**
1095 * netdev_state_change - device changes state
1096 * @dev: device to cause notification
1097 *
1098 * Called to indicate a device has changed state. This function calls
1099 * the notifier chains for netdev_chain and sends a NEWLINK message
1100 * to the routing socket.
1101 */
1102 void netdev_state_change(struct net_device *dev)
1103 {
1104 if (dev->flags & IFF_UP) {
1105 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1106 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1107 }
1108 }
1109 EXPORT_SYMBOL(netdev_state_change);
1110
1111 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1112 {
1113 return call_netdevice_notifiers(event, dev);
1114 }
1115 EXPORT_SYMBOL(netdev_bonding_change);
1116
1117 /**
1118 * dev_load - load a network module
1119 * @net: the applicable net namespace
1120 * @name: name of interface
1121 *
1122 * If a network interface is not present and the process has suitable
1123 * privileges this function loads the module. If module loading is not
1124 * available in this kernel then it becomes a nop.
1125 */
1126
1127 void dev_load(struct net *net, const char *name)
1128 {
1129 struct net_device *dev;
1130 int no_module;
1131
1132 rcu_read_lock();
1133 dev = dev_get_by_name_rcu(net, name);
1134 rcu_read_unlock();
1135
1136 no_module = !dev;
1137 if (no_module && capable(CAP_NET_ADMIN))
1138 no_module = request_module("netdev-%s", name);
1139 if (no_module && capable(CAP_SYS_MODULE)) {
1140 if (!request_module("%s", name))
1141 pr_err("Loading kernel module for a network device "
1142 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1143 "instead\n", name);
1144 }
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 const struct net_device_ops *ops = dev->netdev_ops;
1151 int ret;
1152
1153 ASSERT_RTNL();
1154
1155 if (!netif_device_present(dev))
1156 return -ENODEV;
1157
1158 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 ret = notifier_to_errno(ret);
1160 if (ret)
1161 return ret;
1162
1163 set_bit(__LINK_STATE_START, &dev->state);
1164
1165 if (ops->ndo_validate_addr)
1166 ret = ops->ndo_validate_addr(dev);
1167
1168 if (!ret && ops->ndo_open)
1169 ret = ops->ndo_open(dev);
1170
1171 if (ret)
1172 clear_bit(__LINK_STATE_START, &dev->state);
1173 else {
1174 dev->flags |= IFF_UP;
1175 net_dmaengine_get();
1176 dev_set_rx_mode(dev);
1177 dev_activate(dev);
1178 }
1179
1180 return ret;
1181 }
1182
1183 /**
1184 * dev_open - prepare an interface for use.
1185 * @dev: device to open
1186 *
1187 * Takes a device from down to up state. The device's private open
1188 * function is invoked and then the multicast lists are loaded. Finally
1189 * the device is moved into the up state and a %NETDEV_UP message is
1190 * sent to the netdev notifier chain.
1191 *
1192 * Calling this function on an active interface is a nop. On a failure
1193 * a negative errno code is returned.
1194 */
1195 int dev_open(struct net_device *dev)
1196 {
1197 int ret;
1198
1199 if (dev->flags & IFF_UP)
1200 return 0;
1201
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1205
1206 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1207 call_netdevice_notifiers(NETDEV_UP, dev);
1208
1209 return ret;
1210 }
1211 EXPORT_SYMBOL(dev_open);
1212
1213 static int __dev_close_many(struct list_head *head)
1214 {
1215 struct net_device *dev;
1216
1217 ASSERT_RTNL();
1218 might_sleep();
1219
1220 list_for_each_entry(dev, head, unreg_list) {
1221 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1222
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224
1225 /* Synchronize to scheduled poll. We cannot touch poll list, it
1226 * can be even on different cpu. So just clear netif_running().
1227 *
1228 * dev->stop() will invoke napi_disable() on all of it's
1229 * napi_struct instances on this device.
1230 */
1231 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1232 }
1233
1234 dev_deactivate_many(head);
1235
1236 list_for_each_entry(dev, head, unreg_list) {
1237 const struct net_device_ops *ops = dev->netdev_ops;
1238
1239 /*
1240 * Call the device specific close. This cannot fail.
1241 * Only if device is UP
1242 *
1243 * We allow it to be called even after a DETACH hot-plug
1244 * event.
1245 */
1246 if (ops->ndo_stop)
1247 ops->ndo_stop(dev);
1248
1249 dev->flags &= ~IFF_UP;
1250 net_dmaengine_put();
1251 }
1252
1253 return 0;
1254 }
1255
1256 static int __dev_close(struct net_device *dev)
1257 {
1258 int retval;
1259 LIST_HEAD(single);
1260
1261 list_add(&dev->unreg_list, &single);
1262 retval = __dev_close_many(&single);
1263 list_del(&single);
1264 return retval;
1265 }
1266
1267 static int dev_close_many(struct list_head *head)
1268 {
1269 struct net_device *dev, *tmp;
1270 LIST_HEAD(tmp_list);
1271
1272 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1273 if (!(dev->flags & IFF_UP))
1274 list_move(&dev->unreg_list, &tmp_list);
1275
1276 __dev_close_many(head);
1277
1278 list_for_each_entry(dev, head, unreg_list) {
1279 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1280 call_netdevice_notifiers(NETDEV_DOWN, dev);
1281 }
1282
1283 /* rollback_registered_many needs the complete original list */
1284 list_splice(&tmp_list, head);
1285 return 0;
1286 }
1287
1288 /**
1289 * dev_close - shutdown an interface.
1290 * @dev: device to shutdown
1291 *
1292 * This function moves an active device into down state. A
1293 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1294 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1295 * chain.
1296 */
1297 int dev_close(struct net_device *dev)
1298 {
1299 if (dev->flags & IFF_UP) {
1300 LIST_HEAD(single);
1301
1302 list_add(&dev->unreg_list, &single);
1303 dev_close_many(&single);
1304 list_del(&single);
1305 }
1306 return 0;
1307 }
1308 EXPORT_SYMBOL(dev_close);
1309
1310
1311 /**
1312 * dev_disable_lro - disable Large Receive Offload on a device
1313 * @dev: device
1314 *
1315 * Disable Large Receive Offload (LRO) on a net device. Must be
1316 * called under RTNL. This is needed if received packets may be
1317 * forwarded to another interface.
1318 */
1319 void dev_disable_lro(struct net_device *dev)
1320 {
1321 u32 flags;
1322
1323 /*
1324 * If we're trying to disable lro on a vlan device
1325 * use the underlying physical device instead
1326 */
1327 if (is_vlan_dev(dev))
1328 dev = vlan_dev_real_dev(dev);
1329
1330 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1331 flags = dev->ethtool_ops->get_flags(dev);
1332 else
1333 flags = ethtool_op_get_flags(dev);
1334
1335 if (!(flags & ETH_FLAG_LRO))
1336 return;
1337
1338 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1339 if (unlikely(dev->features & NETIF_F_LRO))
1340 netdev_WARN(dev, "failed to disable LRO!\n");
1341 }
1342 EXPORT_SYMBOL(dev_disable_lro);
1343
1344
1345 static int dev_boot_phase = 1;
1346
1347 /**
1348 * register_netdevice_notifier - register a network notifier block
1349 * @nb: notifier
1350 *
1351 * Register a notifier to be called when network device events occur.
1352 * The notifier passed is linked into the kernel structures and must
1353 * not be reused until it has been unregistered. A negative errno code
1354 * is returned on a failure.
1355 *
1356 * When registered all registration and up events are replayed
1357 * to the new notifier to allow device to have a race free
1358 * view of the network device list.
1359 */
1360
1361 int register_netdevice_notifier(struct notifier_block *nb)
1362 {
1363 struct net_device *dev;
1364 struct net_device *last;
1365 struct net *net;
1366 int err;
1367
1368 rtnl_lock();
1369 err = raw_notifier_chain_register(&netdev_chain, nb);
1370 if (err)
1371 goto unlock;
1372 if (dev_boot_phase)
1373 goto unlock;
1374 for_each_net(net) {
1375 for_each_netdev(net, dev) {
1376 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1377 err = notifier_to_errno(err);
1378 if (err)
1379 goto rollback;
1380
1381 if (!(dev->flags & IFF_UP))
1382 continue;
1383
1384 nb->notifier_call(nb, NETDEV_UP, dev);
1385 }
1386 }
1387
1388 unlock:
1389 rtnl_unlock();
1390 return err;
1391
1392 rollback:
1393 last = dev;
1394 for_each_net(net) {
1395 for_each_netdev(net, dev) {
1396 if (dev == last)
1397 break;
1398
1399 if (dev->flags & IFF_UP) {
1400 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1401 nb->notifier_call(nb, NETDEV_DOWN, dev);
1402 }
1403 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1404 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1405 }
1406 }
1407
1408 raw_notifier_chain_unregister(&netdev_chain, nb);
1409 goto unlock;
1410 }
1411 EXPORT_SYMBOL(register_netdevice_notifier);
1412
1413 /**
1414 * unregister_netdevice_notifier - unregister a network notifier block
1415 * @nb: notifier
1416 *
1417 * Unregister a notifier previously registered by
1418 * register_netdevice_notifier(). The notifier is unlinked into the
1419 * kernel structures and may then be reused. A negative errno code
1420 * is returned on a failure.
1421 */
1422
1423 int unregister_netdevice_notifier(struct notifier_block *nb)
1424 {
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 rtnl_unlock();
1430 return err;
1431 }
1432 EXPORT_SYMBOL(unregister_netdevice_notifier);
1433
1434 /**
1435 * call_netdevice_notifiers - call all network notifier blocks
1436 * @val: value passed unmodified to notifier function
1437 * @dev: net_device pointer passed unmodified to notifier function
1438 *
1439 * Call all network notifier blocks. Parameters and return value
1440 * are as for raw_notifier_call_chain().
1441 */
1442
1443 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1444 {
1445 ASSERT_RTNL();
1446 return raw_notifier_call_chain(&netdev_chain, val, dev);
1447 }
1448 EXPORT_SYMBOL(call_netdevice_notifiers);
1449
1450 /* When > 0 there are consumers of rx skb time stamps */
1451 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1452
1453 void net_enable_timestamp(void)
1454 {
1455 atomic_inc(&netstamp_needed);
1456 }
1457 EXPORT_SYMBOL(net_enable_timestamp);
1458
1459 void net_disable_timestamp(void)
1460 {
1461 atomic_dec(&netstamp_needed);
1462 }
1463 EXPORT_SYMBOL(net_disable_timestamp);
1464
1465 static inline void net_timestamp_set(struct sk_buff *skb)
1466 {
1467 if (atomic_read(&netstamp_needed))
1468 __net_timestamp(skb);
1469 else
1470 skb->tstamp.tv64 = 0;
1471 }
1472
1473 static inline void net_timestamp_check(struct sk_buff *skb)
1474 {
1475 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1476 __net_timestamp(skb);
1477 }
1478
1479 static inline bool is_skb_forwardable(struct net_device *dev,
1480 struct sk_buff *skb)
1481 {
1482 unsigned int len;
1483
1484 if (!(dev->flags & IFF_UP))
1485 return false;
1486
1487 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1488 if (skb->len <= len)
1489 return true;
1490
1491 /* if TSO is enabled, we don't care about the length as the packet
1492 * could be forwarded without being segmented before
1493 */
1494 if (skb_is_gso(skb))
1495 return true;
1496
1497 return false;
1498 }
1499
1500 /**
1501 * dev_forward_skb - loopback an skb to another netif
1502 *
1503 * @dev: destination network device
1504 * @skb: buffer to forward
1505 *
1506 * return values:
1507 * NET_RX_SUCCESS (no congestion)
1508 * NET_RX_DROP (packet was dropped, but freed)
1509 *
1510 * dev_forward_skb can be used for injecting an skb from the
1511 * start_xmit function of one device into the receive queue
1512 * of another device.
1513 *
1514 * The receiving device may be in another namespace, so
1515 * we have to clear all information in the skb that could
1516 * impact namespace isolation.
1517 */
1518 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1519 {
1520 skb_orphan(skb);
1521 nf_reset(skb);
1522
1523 if (unlikely(!is_skb_forwardable(dev, skb))) {
1524 atomic_long_inc(&dev->rx_dropped);
1525 kfree_skb(skb);
1526 return NET_RX_DROP;
1527 }
1528 skb_set_dev(skb, dev);
1529 skb->tstamp.tv64 = 0;
1530 skb->pkt_type = PACKET_HOST;
1531 skb->protocol = eth_type_trans(skb, dev);
1532 return netif_rx(skb);
1533 }
1534 EXPORT_SYMBOL_GPL(dev_forward_skb);
1535
1536 static inline int deliver_skb(struct sk_buff *skb,
1537 struct packet_type *pt_prev,
1538 struct net_device *orig_dev)
1539 {
1540 atomic_inc(&skb->users);
1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1542 }
1543
1544 /*
1545 * Support routine. Sends outgoing frames to any network
1546 * taps currently in use.
1547 */
1548
1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1550 {
1551 struct packet_type *ptype;
1552 struct sk_buff *skb2 = NULL;
1553 struct packet_type *pt_prev = NULL;
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1557 /* Never send packets back to the socket
1558 * they originated from - MvS (miquels@drinkel.ow.org)
1559 */
1560 if ((ptype->dev == dev || !ptype->dev) &&
1561 (ptype->af_packet_priv == NULL ||
1562 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1563 if (pt_prev) {
1564 deliver_skb(skb2, pt_prev, skb->dev);
1565 pt_prev = ptype;
1566 continue;
1567 }
1568
1569 skb2 = skb_clone(skb, GFP_ATOMIC);
1570 if (!skb2)
1571 break;
1572
1573 net_timestamp_set(skb2);
1574
1575 /* skb->nh should be correctly
1576 set by sender, so that the second statement is
1577 just protection against buggy protocols.
1578 */
1579 skb_reset_mac_header(skb2);
1580
1581 if (skb_network_header(skb2) < skb2->data ||
1582 skb2->network_header > skb2->tail) {
1583 if (net_ratelimit())
1584 printk(KERN_CRIT "protocol %04x is "
1585 "buggy, dev %s\n",
1586 ntohs(skb2->protocol),
1587 dev->name);
1588 skb_reset_network_header(skb2);
1589 }
1590
1591 skb2->transport_header = skb2->network_header;
1592 skb2->pkt_type = PACKET_OUTGOING;
1593 pt_prev = ptype;
1594 }
1595 }
1596 if (pt_prev)
1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1598 rcu_read_unlock();
1599 }
1600
1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1602 * @dev: Network device
1603 * @txq: number of queues available
1604 *
1605 * If real_num_tx_queues is changed the tc mappings may no longer be
1606 * valid. To resolve this verify the tc mapping remains valid and if
1607 * not NULL the mapping. With no priorities mapping to this
1608 * offset/count pair it will no longer be used. In the worst case TC0
1609 * is invalid nothing can be done so disable priority mappings. If is
1610 * expected that drivers will fix this mapping if they can before
1611 * calling netif_set_real_num_tx_queues.
1612 */
1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1614 {
1615 int i;
1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1617
1618 /* If TC0 is invalidated disable TC mapping */
1619 if (tc->offset + tc->count > txq) {
1620 pr_warning("Number of in use tx queues changed "
1621 "invalidating tc mappings. Priority "
1622 "traffic classification disabled!\n");
1623 dev->num_tc = 0;
1624 return;
1625 }
1626
1627 /* Invalidated prio to tc mappings set to TC0 */
1628 for (i = 1; i < TC_BITMASK + 1; i++) {
1629 int q = netdev_get_prio_tc_map(dev, i);
1630
1631 tc = &dev->tc_to_txq[q];
1632 if (tc->offset + tc->count > txq) {
1633 pr_warning("Number of in use tx queues "
1634 "changed. Priority %i to tc "
1635 "mapping %i is no longer valid "
1636 "setting map to 0\n",
1637 i, q);
1638 netdev_set_prio_tc_map(dev, i, 0);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1646 */
1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1648 {
1649 int rc;
1650
1651 if (txq < 1 || txq > dev->num_tx_queues)
1652 return -EINVAL;
1653
1654 if (dev->reg_state == NETREG_REGISTERED ||
1655 dev->reg_state == NETREG_UNREGISTERING) {
1656 ASSERT_RTNL();
1657
1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1659 txq);
1660 if (rc)
1661 return rc;
1662
1663 if (dev->num_tc)
1664 netif_setup_tc(dev, txq);
1665
1666 if (txq < dev->real_num_tx_queues)
1667 qdisc_reset_all_tx_gt(dev, txq);
1668 }
1669
1670 dev->real_num_tx_queues = txq;
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1674
1675 #ifdef CONFIG_RPS
1676 /**
1677 * netif_set_real_num_rx_queues - set actual number of RX queues used
1678 * @dev: Network device
1679 * @rxq: Actual number of RX queues
1680 *
1681 * This must be called either with the rtnl_lock held or before
1682 * registration of the net device. Returns 0 on success, or a
1683 * negative error code. If called before registration, it always
1684 * succeeds.
1685 */
1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1687 {
1688 int rc;
1689
1690 if (rxq < 1 || rxq > dev->num_rx_queues)
1691 return -EINVAL;
1692
1693 if (dev->reg_state == NETREG_REGISTERED) {
1694 ASSERT_RTNL();
1695
1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1697 rxq);
1698 if (rc)
1699 return rc;
1700 }
1701
1702 dev->real_num_rx_queues = rxq;
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1706 #endif
1707
1708 static inline void __netif_reschedule(struct Qdisc *q)
1709 {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 q->next_sched = NULL;
1716 *sd->output_queue_tailp = q;
1717 sd->output_queue_tailp = &q->next_sched;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1720 }
1721
1722 void __netif_schedule(struct Qdisc *q)
1723 {
1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1725 __netif_reschedule(q);
1726 }
1727 EXPORT_SYMBOL(__netif_schedule);
1728
1729 void dev_kfree_skb_irq(struct sk_buff *skb)
1730 {
1731 if (atomic_dec_and_test(&skb->users)) {
1732 struct softnet_data *sd;
1733 unsigned long flags;
1734
1735 local_irq_save(flags);
1736 sd = &__get_cpu_var(softnet_data);
1737 skb->next = sd->completion_queue;
1738 sd->completion_queue = skb;
1739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1740 local_irq_restore(flags);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_kfree_skb_irq);
1744
1745 void dev_kfree_skb_any(struct sk_buff *skb)
1746 {
1747 if (in_irq() || irqs_disabled())
1748 dev_kfree_skb_irq(skb);
1749 else
1750 dev_kfree_skb(skb);
1751 }
1752 EXPORT_SYMBOL(dev_kfree_skb_any);
1753
1754
1755 /**
1756 * netif_device_detach - mark device as removed
1757 * @dev: network device
1758 *
1759 * Mark device as removed from system and therefore no longer available.
1760 */
1761 void netif_device_detach(struct net_device *dev)
1762 {
1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1764 netif_running(dev)) {
1765 netif_tx_stop_all_queues(dev);
1766 }
1767 }
1768 EXPORT_SYMBOL(netif_device_detach);
1769
1770 /**
1771 * netif_device_attach - mark device as attached
1772 * @dev: network device
1773 *
1774 * Mark device as attached from system and restart if needed.
1775 */
1776 void netif_device_attach(struct net_device *dev)
1777 {
1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1779 netif_running(dev)) {
1780 netif_tx_wake_all_queues(dev);
1781 __netdev_watchdog_up(dev);
1782 }
1783 }
1784 EXPORT_SYMBOL(netif_device_attach);
1785
1786 /**
1787 * skb_dev_set -- assign a new device to a buffer
1788 * @skb: buffer for the new device
1789 * @dev: network device
1790 *
1791 * If an skb is owned by a device already, we have to reset
1792 * all data private to the namespace a device belongs to
1793 * before assigning it a new device.
1794 */
1795 #ifdef CONFIG_NET_NS
1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1797 {
1798 skb_dst_drop(skb);
1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1800 secpath_reset(skb);
1801 nf_reset(skb);
1802 skb_init_secmark(skb);
1803 skb->mark = 0;
1804 skb->priority = 0;
1805 skb->nf_trace = 0;
1806 skb->ipvs_property = 0;
1807 #ifdef CONFIG_NET_SCHED
1808 skb->tc_index = 0;
1809 #endif
1810 }
1811 skb->dev = dev;
1812 }
1813 EXPORT_SYMBOL(skb_set_dev);
1814 #endif /* CONFIG_NET_NS */
1815
1816 /*
1817 * Invalidate hardware checksum when packet is to be mangled, and
1818 * complete checksum manually on outgoing path.
1819 */
1820 int skb_checksum_help(struct sk_buff *skb)
1821 {
1822 __wsum csum;
1823 int ret = 0, offset;
1824
1825 if (skb->ip_summed == CHECKSUM_COMPLETE)
1826 goto out_set_summed;
1827
1828 if (unlikely(skb_shinfo(skb)->gso_size)) {
1829 /* Let GSO fix up the checksum. */
1830 goto out_set_summed;
1831 }
1832
1833 offset = skb_checksum_start_offset(skb);
1834 BUG_ON(offset >= skb_headlen(skb));
1835 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1836
1837 offset += skb->csum_offset;
1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1839
1840 if (skb_cloned(skb) &&
1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1843 if (ret)
1844 goto out;
1845 }
1846
1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1848 out_set_summed:
1849 skb->ip_summed = CHECKSUM_NONE;
1850 out:
1851 return ret;
1852 }
1853 EXPORT_SYMBOL(skb_checksum_help);
1854
1855 /**
1856 * skb_gso_segment - Perform segmentation on skb.
1857 * @skb: buffer to segment
1858 * @features: features for the output path (see dev->features)
1859 *
1860 * This function segments the given skb and returns a list of segments.
1861 *
1862 * It may return NULL if the skb requires no segmentation. This is
1863 * only possible when GSO is used for verifying header integrity.
1864 */
1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1866 {
1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1868 struct packet_type *ptype;
1869 __be16 type = skb->protocol;
1870 int vlan_depth = ETH_HLEN;
1871 int err;
1872
1873 while (type == htons(ETH_P_8021Q)) {
1874 struct vlan_hdr *vh;
1875
1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1877 return ERR_PTR(-EINVAL);
1878
1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1880 type = vh->h_vlan_encapsulated_proto;
1881 vlan_depth += VLAN_HLEN;
1882 }
1883
1884 skb_reset_mac_header(skb);
1885 skb->mac_len = skb->network_header - skb->mac_header;
1886 __skb_pull(skb, skb->mac_len);
1887
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 struct net_device *dev = skb->dev;
1890 struct ethtool_drvinfo info = {};
1891
1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1893 dev->ethtool_ops->get_drvinfo(dev, &info);
1894
1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1896 info.driver, dev ? dev->features : 0L,
1897 skb->sk ? skb->sk->sk_route_caps : 0L,
1898 skb->len, skb->data_len, skb->ip_summed);
1899
1900 if (skb_header_cloned(skb) &&
1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1902 return ERR_PTR(err);
1903 }
1904
1905 rcu_read_lock();
1906 list_for_each_entry_rcu(ptype,
1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1910 err = ptype->gso_send_check(skb);
1911 segs = ERR_PTR(err);
1912 if (err || skb_gso_ok(skb, features))
1913 break;
1914 __skb_push(skb, (skb->data -
1915 skb_network_header(skb)));
1916 }
1917 segs = ptype->gso_segment(skb, features);
1918 break;
1919 }
1920 }
1921 rcu_read_unlock();
1922
1923 __skb_push(skb, skb->data - skb_mac_header(skb));
1924
1925 return segs;
1926 }
1927 EXPORT_SYMBOL(skb_gso_segment);
1928
1929 /* Take action when hardware reception checksum errors are detected. */
1930 #ifdef CONFIG_BUG
1931 void netdev_rx_csum_fault(struct net_device *dev)
1932 {
1933 if (net_ratelimit()) {
1934 printk(KERN_ERR "%s: hw csum failure.\n",
1935 dev ? dev->name : "<unknown>");
1936 dump_stack();
1937 }
1938 }
1939 EXPORT_SYMBOL(netdev_rx_csum_fault);
1940 #endif
1941
1942 /* Actually, we should eliminate this check as soon as we know, that:
1943 * 1. IOMMU is present and allows to map all the memory.
1944 * 2. No high memory really exists on this machine.
1945 */
1946
1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1948 {
1949 #ifdef CONFIG_HIGHMEM
1950 int i;
1951 if (!(dev->features & NETIF_F_HIGHDMA)) {
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1953 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1954 return 1;
1955 }
1956
1957 if (PCI_DMA_BUS_IS_PHYS) {
1958 struct device *pdev = dev->dev.parent;
1959
1960 if (!pdev)
1961 return 0;
1962 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1963 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1964 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1965 return 1;
1966 }
1967 }
1968 #endif
1969 return 0;
1970 }
1971
1972 struct dev_gso_cb {
1973 void (*destructor)(struct sk_buff *skb);
1974 };
1975
1976 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1977
1978 static void dev_gso_skb_destructor(struct sk_buff *skb)
1979 {
1980 struct dev_gso_cb *cb;
1981
1982 do {
1983 struct sk_buff *nskb = skb->next;
1984
1985 skb->next = nskb->next;
1986 nskb->next = NULL;
1987 kfree_skb(nskb);
1988 } while (skb->next);
1989
1990 cb = DEV_GSO_CB(skb);
1991 if (cb->destructor)
1992 cb->destructor(skb);
1993 }
1994
1995 /**
1996 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1997 * @skb: buffer to segment
1998 * @features: device features as applicable to this skb
1999 *
2000 * This function segments the given skb and stores the list of segments
2001 * in skb->next.
2002 */
2003 static int dev_gso_segment(struct sk_buff *skb, int features)
2004 {
2005 struct sk_buff *segs;
2006
2007 segs = skb_gso_segment(skb, features);
2008
2009 /* Verifying header integrity only. */
2010 if (!segs)
2011 return 0;
2012
2013 if (IS_ERR(segs))
2014 return PTR_ERR(segs);
2015
2016 skb->next = segs;
2017 DEV_GSO_CB(skb)->destructor = skb->destructor;
2018 skb->destructor = dev_gso_skb_destructor;
2019
2020 return 0;
2021 }
2022
2023 /*
2024 * Try to orphan skb early, right before transmission by the device.
2025 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2026 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2027 */
2028 static inline void skb_orphan_try(struct sk_buff *skb)
2029 {
2030 struct sock *sk = skb->sk;
2031
2032 if (sk && !skb_shinfo(skb)->tx_flags) {
2033 /* skb_tx_hash() wont be able to get sk.
2034 * We copy sk_hash into skb->rxhash
2035 */
2036 if (!skb->rxhash)
2037 skb->rxhash = sk->sk_hash;
2038 skb_orphan(skb);
2039 }
2040 }
2041
2042 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2043 {
2044 return ((features & NETIF_F_GEN_CSUM) ||
2045 ((features & NETIF_F_V4_CSUM) &&
2046 protocol == htons(ETH_P_IP)) ||
2047 ((features & NETIF_F_V6_CSUM) &&
2048 protocol == htons(ETH_P_IPV6)) ||
2049 ((features & NETIF_F_FCOE_CRC) &&
2050 protocol == htons(ETH_P_FCOE)));
2051 }
2052
2053 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2054 {
2055 if (!can_checksum_protocol(features, protocol)) {
2056 features &= ~NETIF_F_ALL_CSUM;
2057 features &= ~NETIF_F_SG;
2058 } else if (illegal_highdma(skb->dev, skb)) {
2059 features &= ~NETIF_F_SG;
2060 }
2061
2062 return features;
2063 }
2064
2065 u32 netif_skb_features(struct sk_buff *skb)
2066 {
2067 __be16 protocol = skb->protocol;
2068 u32 features = skb->dev->features;
2069
2070 if (protocol == htons(ETH_P_8021Q)) {
2071 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2072 protocol = veh->h_vlan_encapsulated_proto;
2073 } else if (!vlan_tx_tag_present(skb)) {
2074 return harmonize_features(skb, protocol, features);
2075 }
2076
2077 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2078
2079 if (protocol != htons(ETH_P_8021Q)) {
2080 return harmonize_features(skb, protocol, features);
2081 } else {
2082 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2083 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2084 return harmonize_features(skb, protocol, features);
2085 }
2086 }
2087 EXPORT_SYMBOL(netif_skb_features);
2088
2089 /*
2090 * Returns true if either:
2091 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2092 * 2. skb is fragmented and the device does not support SG, or if
2093 * at least one of fragments is in highmem and device does not
2094 * support DMA from it.
2095 */
2096 static inline int skb_needs_linearize(struct sk_buff *skb,
2097 int features)
2098 {
2099 return skb_is_nonlinear(skb) &&
2100 ((skb_has_frag_list(skb) &&
2101 !(features & NETIF_F_FRAGLIST)) ||
2102 (skb_shinfo(skb)->nr_frags &&
2103 !(features & NETIF_F_SG)));
2104 }
2105
2106 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2107 struct netdev_queue *txq)
2108 {
2109 const struct net_device_ops *ops = dev->netdev_ops;
2110 int rc = NETDEV_TX_OK;
2111 unsigned int skb_len;
2112
2113 if (likely(!skb->next)) {
2114 u32 features;
2115
2116 /*
2117 * If device doesn't need skb->dst, release it right now while
2118 * its hot in this cpu cache
2119 */
2120 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2121 skb_dst_drop(skb);
2122
2123 if (!list_empty(&ptype_all))
2124 dev_queue_xmit_nit(skb, dev);
2125
2126 skb_orphan_try(skb);
2127
2128 features = netif_skb_features(skb);
2129
2130 if (vlan_tx_tag_present(skb) &&
2131 !(features & NETIF_F_HW_VLAN_TX)) {
2132 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2133 if (unlikely(!skb))
2134 goto out;
2135
2136 skb->vlan_tci = 0;
2137 }
2138
2139 if (netif_needs_gso(skb, features)) {
2140 if (unlikely(dev_gso_segment(skb, features)))
2141 goto out_kfree_skb;
2142 if (skb->next)
2143 goto gso;
2144 } else {
2145 if (skb_needs_linearize(skb, features) &&
2146 __skb_linearize(skb))
2147 goto out_kfree_skb;
2148
2149 /* If packet is not checksummed and device does not
2150 * support checksumming for this protocol, complete
2151 * checksumming here.
2152 */
2153 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2154 skb_set_transport_header(skb,
2155 skb_checksum_start_offset(skb));
2156 if (!(features & NETIF_F_ALL_CSUM) &&
2157 skb_checksum_help(skb))
2158 goto out_kfree_skb;
2159 }
2160 }
2161
2162 skb_len = skb->len;
2163 rc = ops->ndo_start_xmit(skb, dev);
2164 trace_net_dev_xmit(skb, rc, dev, skb_len);
2165 if (rc == NETDEV_TX_OK)
2166 txq_trans_update(txq);
2167 return rc;
2168 }
2169
2170 gso:
2171 do {
2172 struct sk_buff *nskb = skb->next;
2173
2174 skb->next = nskb->next;
2175 nskb->next = NULL;
2176
2177 /*
2178 * If device doesn't need nskb->dst, release it right now while
2179 * its hot in this cpu cache
2180 */
2181 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2182 skb_dst_drop(nskb);
2183
2184 skb_len = nskb->len;
2185 rc = ops->ndo_start_xmit(nskb, dev);
2186 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2187 if (unlikely(rc != NETDEV_TX_OK)) {
2188 if (rc & ~NETDEV_TX_MASK)
2189 goto out_kfree_gso_skb;
2190 nskb->next = skb->next;
2191 skb->next = nskb;
2192 return rc;
2193 }
2194 txq_trans_update(txq);
2195 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2196 return NETDEV_TX_BUSY;
2197 } while (skb->next);
2198
2199 out_kfree_gso_skb:
2200 if (likely(skb->next == NULL))
2201 skb->destructor = DEV_GSO_CB(skb)->destructor;
2202 out_kfree_skb:
2203 kfree_skb(skb);
2204 out:
2205 return rc;
2206 }
2207
2208 static u32 hashrnd __read_mostly;
2209
2210 /*
2211 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2212 * to be used as a distribution range.
2213 */
2214 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2215 unsigned int num_tx_queues)
2216 {
2217 u32 hash;
2218 u16 qoffset = 0;
2219 u16 qcount = num_tx_queues;
2220
2221 if (skb_rx_queue_recorded(skb)) {
2222 hash = skb_get_rx_queue(skb);
2223 while (unlikely(hash >= num_tx_queues))
2224 hash -= num_tx_queues;
2225 return hash;
2226 }
2227
2228 if (dev->num_tc) {
2229 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2230 qoffset = dev->tc_to_txq[tc].offset;
2231 qcount = dev->tc_to_txq[tc].count;
2232 }
2233
2234 if (skb->sk && skb->sk->sk_hash)
2235 hash = skb->sk->sk_hash;
2236 else
2237 hash = (__force u16) skb->protocol ^ skb->rxhash;
2238 hash = jhash_1word(hash, hashrnd);
2239
2240 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2241 }
2242 EXPORT_SYMBOL(__skb_tx_hash);
2243
2244 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2245 {
2246 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2247 if (net_ratelimit()) {
2248 pr_warning("%s selects TX queue %d, but "
2249 "real number of TX queues is %d\n",
2250 dev->name, queue_index, dev->real_num_tx_queues);
2251 }
2252 return 0;
2253 }
2254 return queue_index;
2255 }
2256
2257 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2258 {
2259 #ifdef CONFIG_XPS
2260 struct xps_dev_maps *dev_maps;
2261 struct xps_map *map;
2262 int queue_index = -1;
2263
2264 rcu_read_lock();
2265 dev_maps = rcu_dereference(dev->xps_maps);
2266 if (dev_maps) {
2267 map = rcu_dereference(
2268 dev_maps->cpu_map[raw_smp_processor_id()]);
2269 if (map) {
2270 if (map->len == 1)
2271 queue_index = map->queues[0];
2272 else {
2273 u32 hash;
2274 if (skb->sk && skb->sk->sk_hash)
2275 hash = skb->sk->sk_hash;
2276 else
2277 hash = (__force u16) skb->protocol ^
2278 skb->rxhash;
2279 hash = jhash_1word(hash, hashrnd);
2280 queue_index = map->queues[
2281 ((u64)hash * map->len) >> 32];
2282 }
2283 if (unlikely(queue_index >= dev->real_num_tx_queues))
2284 queue_index = -1;
2285 }
2286 }
2287 rcu_read_unlock();
2288
2289 return queue_index;
2290 #else
2291 return -1;
2292 #endif
2293 }
2294
2295 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2296 struct sk_buff *skb)
2297 {
2298 int queue_index;
2299 const struct net_device_ops *ops = dev->netdev_ops;
2300
2301 if (dev->real_num_tx_queues == 1)
2302 queue_index = 0;
2303 else if (ops->ndo_select_queue) {
2304 queue_index = ops->ndo_select_queue(dev, skb);
2305 queue_index = dev_cap_txqueue(dev, queue_index);
2306 } else {
2307 struct sock *sk = skb->sk;
2308 queue_index = sk_tx_queue_get(sk);
2309
2310 if (queue_index < 0 || skb->ooo_okay ||
2311 queue_index >= dev->real_num_tx_queues) {
2312 int old_index = queue_index;
2313
2314 queue_index = get_xps_queue(dev, skb);
2315 if (queue_index < 0)
2316 queue_index = skb_tx_hash(dev, skb);
2317
2318 if (queue_index != old_index && sk) {
2319 struct dst_entry *dst =
2320 rcu_dereference_check(sk->sk_dst_cache, 1);
2321
2322 if (dst && skb_dst(skb) == dst)
2323 sk_tx_queue_set(sk, queue_index);
2324 }
2325 }
2326 }
2327
2328 skb_set_queue_mapping(skb, queue_index);
2329 return netdev_get_tx_queue(dev, queue_index);
2330 }
2331
2332 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2333 struct net_device *dev,
2334 struct netdev_queue *txq)
2335 {
2336 spinlock_t *root_lock = qdisc_lock(q);
2337 bool contended;
2338 int rc;
2339
2340 qdisc_skb_cb(skb)->pkt_len = skb->len;
2341 qdisc_calculate_pkt_len(skb, q);
2342 /*
2343 * Heuristic to force contended enqueues to serialize on a
2344 * separate lock before trying to get qdisc main lock.
2345 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2346 * and dequeue packets faster.
2347 */
2348 contended = qdisc_is_running(q);
2349 if (unlikely(contended))
2350 spin_lock(&q->busylock);
2351
2352 spin_lock(root_lock);
2353 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2354 kfree_skb(skb);
2355 rc = NET_XMIT_DROP;
2356 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2357 qdisc_run_begin(q)) {
2358 /*
2359 * This is a work-conserving queue; there are no old skbs
2360 * waiting to be sent out; and the qdisc is not running -
2361 * xmit the skb directly.
2362 */
2363 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2364 skb_dst_force(skb);
2365
2366 qdisc_bstats_update(q, skb);
2367
2368 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2369 if (unlikely(contended)) {
2370 spin_unlock(&q->busylock);
2371 contended = false;
2372 }
2373 __qdisc_run(q);
2374 } else
2375 qdisc_run_end(q);
2376
2377 rc = NET_XMIT_SUCCESS;
2378 } else {
2379 skb_dst_force(skb);
2380 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2381 if (qdisc_run_begin(q)) {
2382 if (unlikely(contended)) {
2383 spin_unlock(&q->busylock);
2384 contended = false;
2385 }
2386 __qdisc_run(q);
2387 }
2388 }
2389 spin_unlock(root_lock);
2390 if (unlikely(contended))
2391 spin_unlock(&q->busylock);
2392 return rc;
2393 }
2394
2395 static DEFINE_PER_CPU(int, xmit_recursion);
2396 #define RECURSION_LIMIT 10
2397
2398 /**
2399 * dev_queue_xmit - transmit a buffer
2400 * @skb: buffer to transmit
2401 *
2402 * Queue a buffer for transmission to a network device. The caller must
2403 * have set the device and priority and built the buffer before calling
2404 * this function. The function can be called from an interrupt.
2405 *
2406 * A negative errno code is returned on a failure. A success does not
2407 * guarantee the frame will be transmitted as it may be dropped due
2408 * to congestion or traffic shaping.
2409 *
2410 * -----------------------------------------------------------------------------------
2411 * I notice this method can also return errors from the queue disciplines,
2412 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2413 * be positive.
2414 *
2415 * Regardless of the return value, the skb is consumed, so it is currently
2416 * difficult to retry a send to this method. (You can bump the ref count
2417 * before sending to hold a reference for retry if you are careful.)
2418 *
2419 * When calling this method, interrupts MUST be enabled. This is because
2420 * the BH enable code must have IRQs enabled so that it will not deadlock.
2421 * --BLG
2422 */
2423 int dev_queue_xmit(struct sk_buff *skb)
2424 {
2425 struct net_device *dev = skb->dev;
2426 struct netdev_queue *txq;
2427 struct Qdisc *q;
2428 int rc = -ENOMEM;
2429
2430 /* Disable soft irqs for various locks below. Also
2431 * stops preemption for RCU.
2432 */
2433 rcu_read_lock_bh();
2434
2435 txq = dev_pick_tx(dev, skb);
2436 q = rcu_dereference_bh(txq->qdisc);
2437
2438 #ifdef CONFIG_NET_CLS_ACT
2439 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2440 #endif
2441 trace_net_dev_queue(skb);
2442 if (q->enqueue) {
2443 rc = __dev_xmit_skb(skb, q, dev, txq);
2444 goto out;
2445 }
2446
2447 /* The device has no queue. Common case for software devices:
2448 loopback, all the sorts of tunnels...
2449
2450 Really, it is unlikely that netif_tx_lock protection is necessary
2451 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2452 counters.)
2453 However, it is possible, that they rely on protection
2454 made by us here.
2455
2456 Check this and shot the lock. It is not prone from deadlocks.
2457 Either shot noqueue qdisc, it is even simpler 8)
2458 */
2459 if (dev->flags & IFF_UP) {
2460 int cpu = smp_processor_id(); /* ok because BHs are off */
2461
2462 if (txq->xmit_lock_owner != cpu) {
2463
2464 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2465 goto recursion_alert;
2466
2467 HARD_TX_LOCK(dev, txq, cpu);
2468
2469 if (!netif_tx_queue_stopped(txq)) {
2470 __this_cpu_inc(xmit_recursion);
2471 rc = dev_hard_start_xmit(skb, dev, txq);
2472 __this_cpu_dec(xmit_recursion);
2473 if (dev_xmit_complete(rc)) {
2474 HARD_TX_UNLOCK(dev, txq);
2475 goto out;
2476 }
2477 }
2478 HARD_TX_UNLOCK(dev, txq);
2479 if (net_ratelimit())
2480 printk(KERN_CRIT "Virtual device %s asks to "
2481 "queue packet!\n", dev->name);
2482 } else {
2483 /* Recursion is detected! It is possible,
2484 * unfortunately
2485 */
2486 recursion_alert:
2487 if (net_ratelimit())
2488 printk(KERN_CRIT "Dead loop on virtual device "
2489 "%s, fix it urgently!\n", dev->name);
2490 }
2491 }
2492
2493 rc = -ENETDOWN;
2494 rcu_read_unlock_bh();
2495
2496 kfree_skb(skb);
2497 return rc;
2498 out:
2499 rcu_read_unlock_bh();
2500 return rc;
2501 }
2502 EXPORT_SYMBOL(dev_queue_xmit);
2503
2504
2505 /*=======================================================================
2506 Receiver routines
2507 =======================================================================*/
2508
2509 int netdev_max_backlog __read_mostly = 1000;
2510 int netdev_tstamp_prequeue __read_mostly = 1;
2511 int netdev_budget __read_mostly = 300;
2512 int weight_p __read_mostly = 64; /* old backlog weight */
2513
2514 /* Called with irq disabled */
2515 static inline void ____napi_schedule(struct softnet_data *sd,
2516 struct napi_struct *napi)
2517 {
2518 list_add_tail(&napi->poll_list, &sd->poll_list);
2519 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2520 }
2521
2522 /*
2523 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2524 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2525 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2526 * if hash is a canonical 4-tuple hash over transport ports.
2527 */
2528 void __skb_get_rxhash(struct sk_buff *skb)
2529 {
2530 int nhoff, hash = 0, poff;
2531 const struct ipv6hdr *ip6;
2532 const struct iphdr *ip;
2533 const struct vlan_hdr *vlan;
2534 u8 ip_proto;
2535 u32 addr1, addr2;
2536 u16 proto;
2537 union {
2538 u32 v32;
2539 u16 v16[2];
2540 } ports;
2541
2542 nhoff = skb_network_offset(skb);
2543 proto = skb->protocol;
2544
2545 again:
2546 switch (proto) {
2547 case __constant_htons(ETH_P_IP):
2548 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2549 goto done;
2550
2551 ip = (const struct iphdr *) (skb->data + nhoff);
2552 if (ip_is_fragment(ip))
2553 ip_proto = 0;
2554 else
2555 ip_proto = ip->protocol;
2556 addr1 = (__force u32) ip->saddr;
2557 addr2 = (__force u32) ip->daddr;
2558 nhoff += ip->ihl * 4;
2559 break;
2560 case __constant_htons(ETH_P_IPV6):
2561 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2562 goto done;
2563
2564 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2565 ip_proto = ip6->nexthdr;
2566 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2567 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2568 nhoff += 40;
2569 break;
2570 case __constant_htons(ETH_P_8021Q):
2571 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2572 goto done;
2573 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2574 proto = vlan->h_vlan_encapsulated_proto;
2575 nhoff += sizeof(*vlan);
2576 goto again;
2577 case __constant_htons(ETH_P_PPP_SES):
2578 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2579 goto done;
2580 proto = *((__be16 *) (skb->data + nhoff +
2581 sizeof(struct pppoe_hdr)));
2582 nhoff += PPPOE_SES_HLEN;
2583 goto again;
2584 default:
2585 goto done;
2586 }
2587
2588 switch (ip_proto) {
2589 case IPPROTO_GRE:
2590 if (pskb_may_pull(skb, nhoff + 16)) {
2591 u8 *h = skb->data + nhoff;
2592 __be16 flags = *(__be16 *)h;
2593
2594 /*
2595 * Only look inside GRE if version zero and no
2596 * routing
2597 */
2598 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2599 proto = *(__be16 *)(h + 2);
2600 nhoff += 4;
2601 if (flags & GRE_CSUM)
2602 nhoff += 4;
2603 if (flags & GRE_KEY)
2604 nhoff += 4;
2605 if (flags & GRE_SEQ)
2606 nhoff += 4;
2607 goto again;
2608 }
2609 }
2610 break;
2611 default:
2612 break;
2613 }
2614
2615 ports.v32 = 0;
2616 poff = proto_ports_offset(ip_proto);
2617 if (poff >= 0) {
2618 nhoff += poff;
2619 if (pskb_may_pull(skb, nhoff + 4)) {
2620 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2621 if (ports.v16[1] < ports.v16[0])
2622 swap(ports.v16[0], ports.v16[1]);
2623 skb->l4_rxhash = 1;
2624 }
2625 }
2626
2627 /* get a consistent hash (same value on both flow directions) */
2628 if (addr2 < addr1)
2629 swap(addr1, addr2);
2630
2631 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2632 if (!hash)
2633 hash = 1;
2634
2635 done:
2636 skb->rxhash = hash;
2637 }
2638 EXPORT_SYMBOL(__skb_get_rxhash);
2639
2640 #ifdef CONFIG_RPS
2641
2642 /* One global table that all flow-based protocols share. */
2643 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2644 EXPORT_SYMBOL(rps_sock_flow_table);
2645
2646 static struct rps_dev_flow *
2647 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2648 struct rps_dev_flow *rflow, u16 next_cpu)
2649 {
2650 u16 tcpu;
2651
2652 tcpu = rflow->cpu = next_cpu;
2653 if (tcpu != RPS_NO_CPU) {
2654 #ifdef CONFIG_RFS_ACCEL
2655 struct netdev_rx_queue *rxqueue;
2656 struct rps_dev_flow_table *flow_table;
2657 struct rps_dev_flow *old_rflow;
2658 u32 flow_id;
2659 u16 rxq_index;
2660 int rc;
2661
2662 /* Should we steer this flow to a different hardware queue? */
2663 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2664 !(dev->features & NETIF_F_NTUPLE))
2665 goto out;
2666 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2667 if (rxq_index == skb_get_rx_queue(skb))
2668 goto out;
2669
2670 rxqueue = dev->_rx + rxq_index;
2671 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2672 if (!flow_table)
2673 goto out;
2674 flow_id = skb->rxhash & flow_table->mask;
2675 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2676 rxq_index, flow_id);
2677 if (rc < 0)
2678 goto out;
2679 old_rflow = rflow;
2680 rflow = &flow_table->flows[flow_id];
2681 rflow->cpu = next_cpu;
2682 rflow->filter = rc;
2683 if (old_rflow->filter == rflow->filter)
2684 old_rflow->filter = RPS_NO_FILTER;
2685 out:
2686 #endif
2687 rflow->last_qtail =
2688 per_cpu(softnet_data, tcpu).input_queue_head;
2689 }
2690
2691 return rflow;
2692 }
2693
2694 /*
2695 * get_rps_cpu is called from netif_receive_skb and returns the target
2696 * CPU from the RPS map of the receiving queue for a given skb.
2697 * rcu_read_lock must be held on entry.
2698 */
2699 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2700 struct rps_dev_flow **rflowp)
2701 {
2702 struct netdev_rx_queue *rxqueue;
2703 struct rps_map *map;
2704 struct rps_dev_flow_table *flow_table;
2705 struct rps_sock_flow_table *sock_flow_table;
2706 int cpu = -1;
2707 u16 tcpu;
2708
2709 if (skb_rx_queue_recorded(skb)) {
2710 u16 index = skb_get_rx_queue(skb);
2711 if (unlikely(index >= dev->real_num_rx_queues)) {
2712 WARN_ONCE(dev->real_num_rx_queues > 1,
2713 "%s received packet on queue %u, but number "
2714 "of RX queues is %u\n",
2715 dev->name, index, dev->real_num_rx_queues);
2716 goto done;
2717 }
2718 rxqueue = dev->_rx + index;
2719 } else
2720 rxqueue = dev->_rx;
2721
2722 map = rcu_dereference(rxqueue->rps_map);
2723 if (map) {
2724 if (map->len == 1 &&
2725 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2726 tcpu = map->cpus[0];
2727 if (cpu_online(tcpu))
2728 cpu = tcpu;
2729 goto done;
2730 }
2731 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2732 goto done;
2733 }
2734
2735 skb_reset_network_header(skb);
2736 if (!skb_get_rxhash(skb))
2737 goto done;
2738
2739 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2740 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2741 if (flow_table && sock_flow_table) {
2742 u16 next_cpu;
2743 struct rps_dev_flow *rflow;
2744
2745 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2746 tcpu = rflow->cpu;
2747
2748 next_cpu = sock_flow_table->ents[skb->rxhash &
2749 sock_flow_table->mask];
2750
2751 /*
2752 * If the desired CPU (where last recvmsg was done) is
2753 * different from current CPU (one in the rx-queue flow
2754 * table entry), switch if one of the following holds:
2755 * - Current CPU is unset (equal to RPS_NO_CPU).
2756 * - Current CPU is offline.
2757 * - The current CPU's queue tail has advanced beyond the
2758 * last packet that was enqueued using this table entry.
2759 * This guarantees that all previous packets for the flow
2760 * have been dequeued, thus preserving in order delivery.
2761 */
2762 if (unlikely(tcpu != next_cpu) &&
2763 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2764 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2765 rflow->last_qtail)) >= 0))
2766 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2767
2768 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2769 *rflowp = rflow;
2770 cpu = tcpu;
2771 goto done;
2772 }
2773 }
2774
2775 if (map) {
2776 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2777
2778 if (cpu_online(tcpu)) {
2779 cpu = tcpu;
2780 goto done;
2781 }
2782 }
2783
2784 done:
2785 return cpu;
2786 }
2787
2788 #ifdef CONFIG_RFS_ACCEL
2789
2790 /**
2791 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2792 * @dev: Device on which the filter was set
2793 * @rxq_index: RX queue index
2794 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2795 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2796 *
2797 * Drivers that implement ndo_rx_flow_steer() should periodically call
2798 * this function for each installed filter and remove the filters for
2799 * which it returns %true.
2800 */
2801 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2802 u32 flow_id, u16 filter_id)
2803 {
2804 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2805 struct rps_dev_flow_table *flow_table;
2806 struct rps_dev_flow *rflow;
2807 bool expire = true;
2808 int cpu;
2809
2810 rcu_read_lock();
2811 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2812 if (flow_table && flow_id <= flow_table->mask) {
2813 rflow = &flow_table->flows[flow_id];
2814 cpu = ACCESS_ONCE(rflow->cpu);
2815 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2816 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2817 rflow->last_qtail) <
2818 (int)(10 * flow_table->mask)))
2819 expire = false;
2820 }
2821 rcu_read_unlock();
2822 return expire;
2823 }
2824 EXPORT_SYMBOL(rps_may_expire_flow);
2825
2826 #endif /* CONFIG_RFS_ACCEL */
2827
2828 /* Called from hardirq (IPI) context */
2829 static void rps_trigger_softirq(void *data)
2830 {
2831 struct softnet_data *sd = data;
2832
2833 ____napi_schedule(sd, &sd->backlog);
2834 sd->received_rps++;
2835 }
2836
2837 #endif /* CONFIG_RPS */
2838
2839 /*
2840 * Check if this softnet_data structure is another cpu one
2841 * If yes, queue it to our IPI list and return 1
2842 * If no, return 0
2843 */
2844 static int rps_ipi_queued(struct softnet_data *sd)
2845 {
2846 #ifdef CONFIG_RPS
2847 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2848
2849 if (sd != mysd) {
2850 sd->rps_ipi_next = mysd->rps_ipi_list;
2851 mysd->rps_ipi_list = sd;
2852
2853 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2854 return 1;
2855 }
2856 #endif /* CONFIG_RPS */
2857 return 0;
2858 }
2859
2860 /*
2861 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2862 * queue (may be a remote CPU queue).
2863 */
2864 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2865 unsigned int *qtail)
2866 {
2867 struct softnet_data *sd;
2868 unsigned long flags;
2869
2870 sd = &per_cpu(softnet_data, cpu);
2871
2872 local_irq_save(flags);
2873
2874 rps_lock(sd);
2875 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2876 if (skb_queue_len(&sd->input_pkt_queue)) {
2877 enqueue:
2878 __skb_queue_tail(&sd->input_pkt_queue, skb);
2879 input_queue_tail_incr_save(sd, qtail);
2880 rps_unlock(sd);
2881 local_irq_restore(flags);
2882 return NET_RX_SUCCESS;
2883 }
2884
2885 /* Schedule NAPI for backlog device
2886 * We can use non atomic operation since we own the queue lock
2887 */
2888 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2889 if (!rps_ipi_queued(sd))
2890 ____napi_schedule(sd, &sd->backlog);
2891 }
2892 goto enqueue;
2893 }
2894
2895 sd->dropped++;
2896 rps_unlock(sd);
2897
2898 local_irq_restore(flags);
2899
2900 atomic_long_inc(&skb->dev->rx_dropped);
2901 kfree_skb(skb);
2902 return NET_RX_DROP;
2903 }
2904
2905 /**
2906 * netif_rx - post buffer to the network code
2907 * @skb: buffer to post
2908 *
2909 * This function receives a packet from a device driver and queues it for
2910 * the upper (protocol) levels to process. It always succeeds. The buffer
2911 * may be dropped during processing for congestion control or by the
2912 * protocol layers.
2913 *
2914 * return values:
2915 * NET_RX_SUCCESS (no congestion)
2916 * NET_RX_DROP (packet was dropped)
2917 *
2918 */
2919
2920 int netif_rx(struct sk_buff *skb)
2921 {
2922 int ret;
2923
2924 /* if netpoll wants it, pretend we never saw it */
2925 if (netpoll_rx(skb))
2926 return NET_RX_DROP;
2927
2928 if (netdev_tstamp_prequeue)
2929 net_timestamp_check(skb);
2930
2931 trace_netif_rx(skb);
2932 #ifdef CONFIG_RPS
2933 {
2934 struct rps_dev_flow voidflow, *rflow = &voidflow;
2935 int cpu;
2936
2937 preempt_disable();
2938 rcu_read_lock();
2939
2940 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2941 if (cpu < 0)
2942 cpu = smp_processor_id();
2943
2944 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2945
2946 rcu_read_unlock();
2947 preempt_enable();
2948 }
2949 #else
2950 {
2951 unsigned int qtail;
2952 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2953 put_cpu();
2954 }
2955 #endif
2956 return ret;
2957 }
2958 EXPORT_SYMBOL(netif_rx);
2959
2960 int netif_rx_ni(struct sk_buff *skb)
2961 {
2962 int err;
2963
2964 preempt_disable();
2965 err = netif_rx(skb);
2966 if (local_softirq_pending())
2967 do_softirq();
2968 preempt_enable();
2969
2970 return err;
2971 }
2972 EXPORT_SYMBOL(netif_rx_ni);
2973
2974 static void net_tx_action(struct softirq_action *h)
2975 {
2976 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2977
2978 if (sd->completion_queue) {
2979 struct sk_buff *clist;
2980
2981 local_irq_disable();
2982 clist = sd->completion_queue;
2983 sd->completion_queue = NULL;
2984 local_irq_enable();
2985
2986 while (clist) {
2987 struct sk_buff *skb = clist;
2988 clist = clist->next;
2989
2990 WARN_ON(atomic_read(&skb->users));
2991 trace_kfree_skb(skb, net_tx_action);
2992 __kfree_skb(skb);
2993 }
2994 }
2995
2996 if (sd->output_queue) {
2997 struct Qdisc *head;
2998
2999 local_irq_disable();
3000 head = sd->output_queue;
3001 sd->output_queue = NULL;
3002 sd->output_queue_tailp = &sd->output_queue;
3003 local_irq_enable();
3004
3005 while (head) {
3006 struct Qdisc *q = head;
3007 spinlock_t *root_lock;
3008
3009 head = head->next_sched;
3010
3011 root_lock = qdisc_lock(q);
3012 if (spin_trylock(root_lock)) {
3013 smp_mb__before_clear_bit();
3014 clear_bit(__QDISC_STATE_SCHED,
3015 &q->state);
3016 qdisc_run(q);
3017 spin_unlock(root_lock);
3018 } else {
3019 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3020 &q->state)) {
3021 __netif_reschedule(q);
3022 } else {
3023 smp_mb__before_clear_bit();
3024 clear_bit(__QDISC_STATE_SCHED,
3025 &q->state);
3026 }
3027 }
3028 }
3029 }
3030 }
3031
3032 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3033 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3034 /* This hook is defined here for ATM LANE */
3035 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3036 unsigned char *addr) __read_mostly;
3037 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3038 #endif
3039
3040 #ifdef CONFIG_NET_CLS_ACT
3041 /* TODO: Maybe we should just force sch_ingress to be compiled in
3042 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3043 * a compare and 2 stores extra right now if we dont have it on
3044 * but have CONFIG_NET_CLS_ACT
3045 * NOTE: This doesn't stop any functionality; if you dont have
3046 * the ingress scheduler, you just can't add policies on ingress.
3047 *
3048 */
3049 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3050 {
3051 struct net_device *dev = skb->dev;
3052 u32 ttl = G_TC_RTTL(skb->tc_verd);
3053 int result = TC_ACT_OK;
3054 struct Qdisc *q;
3055
3056 if (unlikely(MAX_RED_LOOP < ttl++)) {
3057 if (net_ratelimit())
3058 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3059 skb->skb_iif, dev->ifindex);
3060 return TC_ACT_SHOT;
3061 }
3062
3063 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3064 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3065
3066 q = rxq->qdisc;
3067 if (q != &noop_qdisc) {
3068 spin_lock(qdisc_lock(q));
3069 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3070 result = qdisc_enqueue_root(skb, q);
3071 spin_unlock(qdisc_lock(q));
3072 }
3073
3074 return result;
3075 }
3076
3077 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3078 struct packet_type **pt_prev,
3079 int *ret, struct net_device *orig_dev)
3080 {
3081 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3082
3083 if (!rxq || rxq->qdisc == &noop_qdisc)
3084 goto out;
3085
3086 if (*pt_prev) {
3087 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3088 *pt_prev = NULL;
3089 }
3090
3091 switch (ing_filter(skb, rxq)) {
3092 case TC_ACT_SHOT:
3093 case TC_ACT_STOLEN:
3094 kfree_skb(skb);
3095 return NULL;
3096 }
3097
3098 out:
3099 skb->tc_verd = 0;
3100 return skb;
3101 }
3102 #endif
3103
3104 /**
3105 * netdev_rx_handler_register - register receive handler
3106 * @dev: device to register a handler for
3107 * @rx_handler: receive handler to register
3108 * @rx_handler_data: data pointer that is used by rx handler
3109 *
3110 * Register a receive hander for a device. This handler will then be
3111 * called from __netif_receive_skb. A negative errno code is returned
3112 * on a failure.
3113 *
3114 * The caller must hold the rtnl_mutex.
3115 *
3116 * For a general description of rx_handler, see enum rx_handler_result.
3117 */
3118 int netdev_rx_handler_register(struct net_device *dev,
3119 rx_handler_func_t *rx_handler,
3120 void *rx_handler_data)
3121 {
3122 ASSERT_RTNL();
3123
3124 if (dev->rx_handler)
3125 return -EBUSY;
3126
3127 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3128 rcu_assign_pointer(dev->rx_handler, rx_handler);
3129
3130 return 0;
3131 }
3132 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3133
3134 /**
3135 * netdev_rx_handler_unregister - unregister receive handler
3136 * @dev: device to unregister a handler from
3137 *
3138 * Unregister a receive hander from a device.
3139 *
3140 * The caller must hold the rtnl_mutex.
3141 */
3142 void netdev_rx_handler_unregister(struct net_device *dev)
3143 {
3144
3145 ASSERT_RTNL();
3146 RCU_INIT_POINTER(dev->rx_handler, NULL);
3147 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3148 }
3149 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3150
3151 static int __netif_receive_skb(struct sk_buff *skb)
3152 {
3153 struct packet_type *ptype, *pt_prev;
3154 rx_handler_func_t *rx_handler;
3155 struct net_device *orig_dev;
3156 struct net_device *null_or_dev;
3157 bool deliver_exact = false;
3158 int ret = NET_RX_DROP;
3159 __be16 type;
3160
3161 if (!netdev_tstamp_prequeue)
3162 net_timestamp_check(skb);
3163
3164 trace_netif_receive_skb(skb);
3165
3166 /* if we've gotten here through NAPI, check netpoll */
3167 if (netpoll_receive_skb(skb))
3168 return NET_RX_DROP;
3169
3170 if (!skb->skb_iif)
3171 skb->skb_iif = skb->dev->ifindex;
3172 orig_dev = skb->dev;
3173
3174 skb_reset_network_header(skb);
3175 skb_reset_transport_header(skb);
3176 skb_reset_mac_len(skb);
3177
3178 pt_prev = NULL;
3179
3180 rcu_read_lock();
3181
3182 another_round:
3183
3184 __this_cpu_inc(softnet_data.processed);
3185
3186 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3187 skb = vlan_untag(skb);
3188 if (unlikely(!skb))
3189 goto out;
3190 }
3191
3192 #ifdef CONFIG_NET_CLS_ACT
3193 if (skb->tc_verd & TC_NCLS) {
3194 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3195 goto ncls;
3196 }
3197 #endif
3198
3199 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3200 if (!ptype->dev || ptype->dev == skb->dev) {
3201 if (pt_prev)
3202 ret = deliver_skb(skb, pt_prev, orig_dev);
3203 pt_prev = ptype;
3204 }
3205 }
3206
3207 #ifdef CONFIG_NET_CLS_ACT
3208 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3209 if (!skb)
3210 goto out;
3211 ncls:
3212 #endif
3213
3214 rx_handler = rcu_dereference(skb->dev->rx_handler);
3215 if (rx_handler) {
3216 if (pt_prev) {
3217 ret = deliver_skb(skb, pt_prev, orig_dev);
3218 pt_prev = NULL;
3219 }
3220 switch (rx_handler(&skb)) {
3221 case RX_HANDLER_CONSUMED:
3222 goto out;
3223 case RX_HANDLER_ANOTHER:
3224 goto another_round;
3225 case RX_HANDLER_EXACT:
3226 deliver_exact = true;
3227 case RX_HANDLER_PASS:
3228 break;
3229 default:
3230 BUG();
3231 }
3232 }
3233
3234 if (vlan_tx_tag_present(skb)) {
3235 if (pt_prev) {
3236 ret = deliver_skb(skb, pt_prev, orig_dev);
3237 pt_prev = NULL;
3238 }
3239 if (vlan_do_receive(&skb)) {
3240 ret = __netif_receive_skb(skb);
3241 goto out;
3242 } else if (unlikely(!skb))
3243 goto out;
3244 }
3245
3246 /* deliver only exact match when indicated */
3247 null_or_dev = deliver_exact ? skb->dev : NULL;
3248
3249 type = skb->protocol;
3250 list_for_each_entry_rcu(ptype,
3251 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3252 if (ptype->type == type &&
3253 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3254 ptype->dev == orig_dev)) {
3255 if (pt_prev)
3256 ret = deliver_skb(skb, pt_prev, orig_dev);
3257 pt_prev = ptype;
3258 }
3259 }
3260
3261 if (pt_prev) {
3262 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3263 } else {
3264 atomic_long_inc(&skb->dev->rx_dropped);
3265 kfree_skb(skb);
3266 /* Jamal, now you will not able to escape explaining
3267 * me how you were going to use this. :-)
3268 */
3269 ret = NET_RX_DROP;
3270 }
3271
3272 out:
3273 rcu_read_unlock();
3274 return ret;
3275 }
3276
3277 /**
3278 * netif_receive_skb - process receive buffer from network
3279 * @skb: buffer to process
3280 *
3281 * netif_receive_skb() is the main receive data processing function.
3282 * It always succeeds. The buffer may be dropped during processing
3283 * for congestion control or by the protocol layers.
3284 *
3285 * This function may only be called from softirq context and interrupts
3286 * should be enabled.
3287 *
3288 * Return values (usually ignored):
3289 * NET_RX_SUCCESS: no congestion
3290 * NET_RX_DROP: packet was dropped
3291 */
3292 int netif_receive_skb(struct sk_buff *skb)
3293 {
3294 if (netdev_tstamp_prequeue)
3295 net_timestamp_check(skb);
3296
3297 if (skb_defer_rx_timestamp(skb))
3298 return NET_RX_SUCCESS;
3299
3300 #ifdef CONFIG_RPS
3301 {
3302 struct rps_dev_flow voidflow, *rflow = &voidflow;
3303 int cpu, ret;
3304
3305 rcu_read_lock();
3306
3307 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3308
3309 if (cpu >= 0) {
3310 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3311 rcu_read_unlock();
3312 } else {
3313 rcu_read_unlock();
3314 ret = __netif_receive_skb(skb);
3315 }
3316
3317 return ret;
3318 }
3319 #else
3320 return __netif_receive_skb(skb);
3321 #endif
3322 }
3323 EXPORT_SYMBOL(netif_receive_skb);
3324
3325 /* Network device is going away, flush any packets still pending
3326 * Called with irqs disabled.
3327 */
3328 static void flush_backlog(void *arg)
3329 {
3330 struct net_device *dev = arg;
3331 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3332 struct sk_buff *skb, *tmp;
3333
3334 rps_lock(sd);
3335 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3336 if (skb->dev == dev) {
3337 __skb_unlink(skb, &sd->input_pkt_queue);
3338 kfree_skb(skb);
3339 input_queue_head_incr(sd);
3340 }
3341 }
3342 rps_unlock(sd);
3343
3344 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3345 if (skb->dev == dev) {
3346 __skb_unlink(skb, &sd->process_queue);
3347 kfree_skb(skb);
3348 input_queue_head_incr(sd);
3349 }
3350 }
3351 }
3352
3353 static int napi_gro_complete(struct sk_buff *skb)
3354 {
3355 struct packet_type *ptype;
3356 __be16 type = skb->protocol;
3357 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3358 int err = -ENOENT;
3359
3360 if (NAPI_GRO_CB(skb)->count == 1) {
3361 skb_shinfo(skb)->gso_size = 0;
3362 goto out;
3363 }
3364
3365 rcu_read_lock();
3366 list_for_each_entry_rcu(ptype, head, list) {
3367 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3368 continue;
3369
3370 err = ptype->gro_complete(skb);
3371 break;
3372 }
3373 rcu_read_unlock();
3374
3375 if (err) {
3376 WARN_ON(&ptype->list == head);
3377 kfree_skb(skb);
3378 return NET_RX_SUCCESS;
3379 }
3380
3381 out:
3382 return netif_receive_skb(skb);
3383 }
3384
3385 inline void napi_gro_flush(struct napi_struct *napi)
3386 {
3387 struct sk_buff *skb, *next;
3388
3389 for (skb = napi->gro_list; skb; skb = next) {
3390 next = skb->next;
3391 skb->next = NULL;
3392 napi_gro_complete(skb);
3393 }
3394
3395 napi->gro_count = 0;
3396 napi->gro_list = NULL;
3397 }
3398 EXPORT_SYMBOL(napi_gro_flush);
3399
3400 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3401 {
3402 struct sk_buff **pp = NULL;
3403 struct packet_type *ptype;
3404 __be16 type = skb->protocol;
3405 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3406 int same_flow;
3407 int mac_len;
3408 enum gro_result ret;
3409
3410 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3411 goto normal;
3412
3413 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3414 goto normal;
3415
3416 rcu_read_lock();
3417 list_for_each_entry_rcu(ptype, head, list) {
3418 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3419 continue;
3420
3421 skb_set_network_header(skb, skb_gro_offset(skb));
3422 mac_len = skb->network_header - skb->mac_header;
3423 skb->mac_len = mac_len;
3424 NAPI_GRO_CB(skb)->same_flow = 0;
3425 NAPI_GRO_CB(skb)->flush = 0;
3426 NAPI_GRO_CB(skb)->free = 0;
3427
3428 pp = ptype->gro_receive(&napi->gro_list, skb);
3429 break;
3430 }
3431 rcu_read_unlock();
3432
3433 if (&ptype->list == head)
3434 goto normal;
3435
3436 same_flow = NAPI_GRO_CB(skb)->same_flow;
3437 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3438
3439 if (pp) {
3440 struct sk_buff *nskb = *pp;
3441
3442 *pp = nskb->next;
3443 nskb->next = NULL;
3444 napi_gro_complete(nskb);
3445 napi->gro_count--;
3446 }
3447
3448 if (same_flow)
3449 goto ok;
3450
3451 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3452 goto normal;
3453
3454 napi->gro_count++;
3455 NAPI_GRO_CB(skb)->count = 1;
3456 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3457 skb->next = napi->gro_list;
3458 napi->gro_list = skb;
3459 ret = GRO_HELD;
3460
3461 pull:
3462 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3463 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3464
3465 BUG_ON(skb->end - skb->tail < grow);
3466
3467 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3468
3469 skb->tail += grow;
3470 skb->data_len -= grow;
3471
3472 skb_shinfo(skb)->frags[0].page_offset += grow;
3473 skb_shinfo(skb)->frags[0].size -= grow;
3474
3475 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3476 put_page(skb_shinfo(skb)->frags[0].page);
3477 memmove(skb_shinfo(skb)->frags,
3478 skb_shinfo(skb)->frags + 1,
3479 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3480 }
3481 }
3482
3483 ok:
3484 return ret;
3485
3486 normal:
3487 ret = GRO_NORMAL;
3488 goto pull;
3489 }
3490 EXPORT_SYMBOL(dev_gro_receive);
3491
3492 static inline gro_result_t
3493 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3494 {
3495 struct sk_buff *p;
3496
3497 for (p = napi->gro_list; p; p = p->next) {
3498 unsigned long diffs;
3499
3500 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3501 diffs |= p->vlan_tci ^ skb->vlan_tci;
3502 diffs |= compare_ether_header(skb_mac_header(p),
3503 skb_gro_mac_header(skb));
3504 NAPI_GRO_CB(p)->same_flow = !diffs;
3505 NAPI_GRO_CB(p)->flush = 0;
3506 }
3507
3508 return dev_gro_receive(napi, skb);
3509 }
3510
3511 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3512 {
3513 switch (ret) {
3514 case GRO_NORMAL:
3515 if (netif_receive_skb(skb))
3516 ret = GRO_DROP;
3517 break;
3518
3519 case GRO_DROP:
3520 case GRO_MERGED_FREE:
3521 kfree_skb(skb);
3522 break;
3523
3524 case GRO_HELD:
3525 case GRO_MERGED:
3526 break;
3527 }
3528
3529 return ret;
3530 }
3531 EXPORT_SYMBOL(napi_skb_finish);
3532
3533 void skb_gro_reset_offset(struct sk_buff *skb)
3534 {
3535 NAPI_GRO_CB(skb)->data_offset = 0;
3536 NAPI_GRO_CB(skb)->frag0 = NULL;
3537 NAPI_GRO_CB(skb)->frag0_len = 0;
3538
3539 if (skb->mac_header == skb->tail &&
3540 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3541 NAPI_GRO_CB(skb)->frag0 =
3542 page_address(skb_shinfo(skb)->frags[0].page) +
3543 skb_shinfo(skb)->frags[0].page_offset;
3544 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3545 }
3546 }
3547 EXPORT_SYMBOL(skb_gro_reset_offset);
3548
3549 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3550 {
3551 skb_gro_reset_offset(skb);
3552
3553 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3554 }
3555 EXPORT_SYMBOL(napi_gro_receive);
3556
3557 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3558 {
3559 __skb_pull(skb, skb_headlen(skb));
3560 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3561 skb->vlan_tci = 0;
3562 skb->dev = napi->dev;
3563 skb->skb_iif = 0;
3564
3565 napi->skb = skb;
3566 }
3567
3568 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3569 {
3570 struct sk_buff *skb = napi->skb;
3571
3572 if (!skb) {
3573 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3574 if (skb)
3575 napi->skb = skb;
3576 }
3577 return skb;
3578 }
3579 EXPORT_SYMBOL(napi_get_frags);
3580
3581 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3582 gro_result_t ret)
3583 {
3584 switch (ret) {
3585 case GRO_NORMAL:
3586 case GRO_HELD:
3587 skb->protocol = eth_type_trans(skb, skb->dev);
3588
3589 if (ret == GRO_HELD)
3590 skb_gro_pull(skb, -ETH_HLEN);
3591 else if (netif_receive_skb(skb))
3592 ret = GRO_DROP;
3593 break;
3594
3595 case GRO_DROP:
3596 case GRO_MERGED_FREE:
3597 napi_reuse_skb(napi, skb);
3598 break;
3599
3600 case GRO_MERGED:
3601 break;
3602 }
3603
3604 return ret;
3605 }
3606 EXPORT_SYMBOL(napi_frags_finish);
3607
3608 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3609 {
3610 struct sk_buff *skb = napi->skb;
3611 struct ethhdr *eth;
3612 unsigned int hlen;
3613 unsigned int off;
3614
3615 napi->skb = NULL;
3616
3617 skb_reset_mac_header(skb);
3618 skb_gro_reset_offset(skb);
3619
3620 off = skb_gro_offset(skb);
3621 hlen = off + sizeof(*eth);
3622 eth = skb_gro_header_fast(skb, off);
3623 if (skb_gro_header_hard(skb, hlen)) {
3624 eth = skb_gro_header_slow(skb, hlen, off);
3625 if (unlikely(!eth)) {
3626 napi_reuse_skb(napi, skb);
3627 skb = NULL;
3628 goto out;
3629 }
3630 }
3631
3632 skb_gro_pull(skb, sizeof(*eth));
3633
3634 /*
3635 * This works because the only protocols we care about don't require
3636 * special handling. We'll fix it up properly at the end.
3637 */
3638 skb->protocol = eth->h_proto;
3639
3640 out:
3641 return skb;
3642 }
3643 EXPORT_SYMBOL(napi_frags_skb);
3644
3645 gro_result_t napi_gro_frags(struct napi_struct *napi)
3646 {
3647 struct sk_buff *skb = napi_frags_skb(napi);
3648
3649 if (!skb)
3650 return GRO_DROP;
3651
3652 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3653 }
3654 EXPORT_SYMBOL(napi_gro_frags);
3655
3656 /*
3657 * net_rps_action sends any pending IPI's for rps.
3658 * Note: called with local irq disabled, but exits with local irq enabled.
3659 */
3660 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3661 {
3662 #ifdef CONFIG_RPS
3663 struct softnet_data *remsd = sd->rps_ipi_list;
3664
3665 if (remsd) {
3666 sd->rps_ipi_list = NULL;
3667
3668 local_irq_enable();
3669
3670 /* Send pending IPI's to kick RPS processing on remote cpus. */
3671 while (remsd) {
3672 struct softnet_data *next = remsd->rps_ipi_next;
3673
3674 if (cpu_online(remsd->cpu))
3675 __smp_call_function_single(remsd->cpu,
3676 &remsd->csd, 0);
3677 remsd = next;
3678 }
3679 } else
3680 #endif
3681 local_irq_enable();
3682 }
3683
3684 static int process_backlog(struct napi_struct *napi, int quota)
3685 {
3686 int work = 0;
3687 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3688
3689 #ifdef CONFIG_RPS
3690 /* Check if we have pending ipi, its better to send them now,
3691 * not waiting net_rx_action() end.
3692 */
3693 if (sd->rps_ipi_list) {
3694 local_irq_disable();
3695 net_rps_action_and_irq_enable(sd);
3696 }
3697 #endif
3698 napi->weight = weight_p;
3699 local_irq_disable();
3700 while (work < quota) {
3701 struct sk_buff *skb;
3702 unsigned int qlen;
3703
3704 while ((skb = __skb_dequeue(&sd->process_queue))) {
3705 local_irq_enable();
3706 __netif_receive_skb(skb);
3707 local_irq_disable();
3708 input_queue_head_incr(sd);
3709 if (++work >= quota) {
3710 local_irq_enable();
3711 return work;
3712 }
3713 }
3714
3715 rps_lock(sd);
3716 qlen = skb_queue_len(&sd->input_pkt_queue);
3717 if (qlen)
3718 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3719 &sd->process_queue);
3720
3721 if (qlen < quota - work) {
3722 /*
3723 * Inline a custom version of __napi_complete().
3724 * only current cpu owns and manipulates this napi,
3725 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3726 * we can use a plain write instead of clear_bit(),
3727 * and we dont need an smp_mb() memory barrier.
3728 */
3729 list_del(&napi->poll_list);
3730 napi->state = 0;
3731
3732 quota = work + qlen;
3733 }
3734 rps_unlock(sd);
3735 }
3736 local_irq_enable();
3737
3738 return work;
3739 }
3740
3741 /**
3742 * __napi_schedule - schedule for receive
3743 * @n: entry to schedule
3744 *
3745 * The entry's receive function will be scheduled to run
3746 */
3747 void __napi_schedule(struct napi_struct *n)
3748 {
3749 unsigned long flags;
3750
3751 local_irq_save(flags);
3752 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3753 local_irq_restore(flags);
3754 }
3755 EXPORT_SYMBOL(__napi_schedule);
3756
3757 void __napi_complete(struct napi_struct *n)
3758 {
3759 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3760 BUG_ON(n->gro_list);
3761
3762 list_del(&n->poll_list);
3763 smp_mb__before_clear_bit();
3764 clear_bit(NAPI_STATE_SCHED, &n->state);
3765 }
3766 EXPORT_SYMBOL(__napi_complete);
3767
3768 void napi_complete(struct napi_struct *n)
3769 {
3770 unsigned long flags;
3771
3772 /*
3773 * don't let napi dequeue from the cpu poll list
3774 * just in case its running on a different cpu
3775 */
3776 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3777 return;
3778
3779 napi_gro_flush(n);
3780 local_irq_save(flags);
3781 __napi_complete(n);
3782 local_irq_restore(flags);
3783 }
3784 EXPORT_SYMBOL(napi_complete);
3785
3786 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3787 int (*poll)(struct napi_struct *, int), int weight)
3788 {
3789 INIT_LIST_HEAD(&napi->poll_list);
3790 napi->gro_count = 0;
3791 napi->gro_list = NULL;
3792 napi->skb = NULL;
3793 napi->poll = poll;
3794 napi->weight = weight;
3795 list_add(&napi->dev_list, &dev->napi_list);
3796 napi->dev = dev;
3797 #ifdef CONFIG_NETPOLL
3798 spin_lock_init(&napi->poll_lock);
3799 napi->poll_owner = -1;
3800 #endif
3801 set_bit(NAPI_STATE_SCHED, &napi->state);
3802 }
3803 EXPORT_SYMBOL(netif_napi_add);
3804
3805 void netif_napi_del(struct napi_struct *napi)
3806 {
3807 struct sk_buff *skb, *next;
3808
3809 list_del_init(&napi->dev_list);
3810 napi_free_frags(napi);
3811
3812 for (skb = napi->gro_list; skb; skb = next) {
3813 next = skb->next;
3814 skb->next = NULL;
3815 kfree_skb(skb);
3816 }
3817
3818 napi->gro_list = NULL;
3819 napi->gro_count = 0;
3820 }
3821 EXPORT_SYMBOL(netif_napi_del);
3822
3823 static void net_rx_action(struct softirq_action *h)
3824 {
3825 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3826 unsigned long time_limit = jiffies + 2;
3827 int budget = netdev_budget;
3828 void *have;
3829
3830 local_irq_disable();
3831
3832 while (!list_empty(&sd->poll_list)) {
3833 struct napi_struct *n;
3834 int work, weight;
3835
3836 /* If softirq window is exhuasted then punt.
3837 * Allow this to run for 2 jiffies since which will allow
3838 * an average latency of 1.5/HZ.
3839 */
3840 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3841 goto softnet_break;
3842
3843 local_irq_enable();
3844
3845 /* Even though interrupts have been re-enabled, this
3846 * access is safe because interrupts can only add new
3847 * entries to the tail of this list, and only ->poll()
3848 * calls can remove this head entry from the list.
3849 */
3850 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3851
3852 have = netpoll_poll_lock(n);
3853
3854 weight = n->weight;
3855
3856 /* This NAPI_STATE_SCHED test is for avoiding a race
3857 * with netpoll's poll_napi(). Only the entity which
3858 * obtains the lock and sees NAPI_STATE_SCHED set will
3859 * actually make the ->poll() call. Therefore we avoid
3860 * accidentally calling ->poll() when NAPI is not scheduled.
3861 */
3862 work = 0;
3863 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3864 work = n->poll(n, weight);
3865 trace_napi_poll(n);
3866 }
3867
3868 WARN_ON_ONCE(work > weight);
3869
3870 budget -= work;
3871
3872 local_irq_disable();
3873
3874 /* Drivers must not modify the NAPI state if they
3875 * consume the entire weight. In such cases this code
3876 * still "owns" the NAPI instance and therefore can
3877 * move the instance around on the list at-will.
3878 */
3879 if (unlikely(work == weight)) {
3880 if (unlikely(napi_disable_pending(n))) {
3881 local_irq_enable();
3882 napi_complete(n);
3883 local_irq_disable();
3884 } else
3885 list_move_tail(&n->poll_list, &sd->poll_list);
3886 }
3887
3888 netpoll_poll_unlock(have);
3889 }
3890 out:
3891 net_rps_action_and_irq_enable(sd);
3892
3893 #ifdef CONFIG_NET_DMA
3894 /*
3895 * There may not be any more sk_buffs coming right now, so push
3896 * any pending DMA copies to hardware
3897 */
3898 dma_issue_pending_all();
3899 #endif
3900
3901 return;
3902
3903 softnet_break:
3904 sd->time_squeeze++;
3905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3906 goto out;
3907 }
3908
3909 static gifconf_func_t *gifconf_list[NPROTO];
3910
3911 /**
3912 * register_gifconf - register a SIOCGIF handler
3913 * @family: Address family
3914 * @gifconf: Function handler
3915 *
3916 * Register protocol dependent address dumping routines. The handler
3917 * that is passed must not be freed or reused until it has been replaced
3918 * by another handler.
3919 */
3920 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3921 {
3922 if (family >= NPROTO)
3923 return -EINVAL;
3924 gifconf_list[family] = gifconf;
3925 return 0;
3926 }
3927 EXPORT_SYMBOL(register_gifconf);
3928
3929
3930 /*
3931 * Map an interface index to its name (SIOCGIFNAME)
3932 */
3933
3934 /*
3935 * We need this ioctl for efficient implementation of the
3936 * if_indextoname() function required by the IPv6 API. Without
3937 * it, we would have to search all the interfaces to find a
3938 * match. --pb
3939 */
3940
3941 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3942 {
3943 struct net_device *dev;
3944 struct ifreq ifr;
3945
3946 /*
3947 * Fetch the caller's info block.
3948 */
3949
3950 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3951 return -EFAULT;
3952
3953 rcu_read_lock();
3954 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3955 if (!dev) {
3956 rcu_read_unlock();
3957 return -ENODEV;
3958 }
3959
3960 strcpy(ifr.ifr_name, dev->name);
3961 rcu_read_unlock();
3962
3963 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3964 return -EFAULT;
3965 return 0;
3966 }
3967
3968 /*
3969 * Perform a SIOCGIFCONF call. This structure will change
3970 * size eventually, and there is nothing I can do about it.
3971 * Thus we will need a 'compatibility mode'.
3972 */
3973
3974 static int dev_ifconf(struct net *net, char __user *arg)
3975 {
3976 struct ifconf ifc;
3977 struct net_device *dev;
3978 char __user *pos;
3979 int len;
3980 int total;
3981 int i;
3982
3983 /*
3984 * Fetch the caller's info block.
3985 */
3986
3987 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3988 return -EFAULT;
3989
3990 pos = ifc.ifc_buf;
3991 len = ifc.ifc_len;
3992
3993 /*
3994 * Loop over the interfaces, and write an info block for each.
3995 */
3996
3997 total = 0;
3998 for_each_netdev(net, dev) {
3999 for (i = 0; i < NPROTO; i++) {
4000 if (gifconf_list[i]) {
4001 int done;
4002 if (!pos)
4003 done = gifconf_list[i](dev, NULL, 0);
4004 else
4005 done = gifconf_list[i](dev, pos + total,
4006 len - total);
4007 if (done < 0)
4008 return -EFAULT;
4009 total += done;
4010 }
4011 }
4012 }
4013
4014 /*
4015 * All done. Write the updated control block back to the caller.
4016 */
4017 ifc.ifc_len = total;
4018
4019 /*
4020 * Both BSD and Solaris return 0 here, so we do too.
4021 */
4022 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4023 }
4024
4025 #ifdef CONFIG_PROC_FS
4026 /*
4027 * This is invoked by the /proc filesystem handler to display a device
4028 * in detail.
4029 */
4030 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4031 __acquires(RCU)
4032 {
4033 struct net *net = seq_file_net(seq);
4034 loff_t off;
4035 struct net_device *dev;
4036
4037 rcu_read_lock();
4038 if (!*pos)
4039 return SEQ_START_TOKEN;
4040
4041 off = 1;
4042 for_each_netdev_rcu(net, dev)
4043 if (off++ == *pos)
4044 return dev;
4045
4046 return NULL;
4047 }
4048
4049 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4050 {
4051 struct net_device *dev = v;
4052
4053 if (v == SEQ_START_TOKEN)
4054 dev = first_net_device_rcu(seq_file_net(seq));
4055 else
4056 dev = next_net_device_rcu(dev);
4057
4058 ++*pos;
4059 return dev;
4060 }
4061
4062 void dev_seq_stop(struct seq_file *seq, void *v)
4063 __releases(RCU)
4064 {
4065 rcu_read_unlock();
4066 }
4067
4068 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4069 {
4070 struct rtnl_link_stats64 temp;
4071 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4072
4073 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4074 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4075 dev->name, stats->rx_bytes, stats->rx_packets,
4076 stats->rx_errors,
4077 stats->rx_dropped + stats->rx_missed_errors,
4078 stats->rx_fifo_errors,
4079 stats->rx_length_errors + stats->rx_over_errors +
4080 stats->rx_crc_errors + stats->rx_frame_errors,
4081 stats->rx_compressed, stats->multicast,
4082 stats->tx_bytes, stats->tx_packets,
4083 stats->tx_errors, stats->tx_dropped,
4084 stats->tx_fifo_errors, stats->collisions,
4085 stats->tx_carrier_errors +
4086 stats->tx_aborted_errors +
4087 stats->tx_window_errors +
4088 stats->tx_heartbeat_errors,
4089 stats->tx_compressed);
4090 }
4091
4092 /*
4093 * Called from the PROCfs module. This now uses the new arbitrary sized
4094 * /proc/net interface to create /proc/net/dev
4095 */
4096 static int dev_seq_show(struct seq_file *seq, void *v)
4097 {
4098 if (v == SEQ_START_TOKEN)
4099 seq_puts(seq, "Inter-| Receive "
4100 " | Transmit\n"
4101 " face |bytes packets errs drop fifo frame "
4102 "compressed multicast|bytes packets errs "
4103 "drop fifo colls carrier compressed\n");
4104 else
4105 dev_seq_printf_stats(seq, v);
4106 return 0;
4107 }
4108
4109 static struct softnet_data *softnet_get_online(loff_t *pos)
4110 {
4111 struct softnet_data *sd = NULL;
4112
4113 while (*pos < nr_cpu_ids)
4114 if (cpu_online(*pos)) {
4115 sd = &per_cpu(softnet_data, *pos);
4116 break;
4117 } else
4118 ++*pos;
4119 return sd;
4120 }
4121
4122 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4123 {
4124 return softnet_get_online(pos);
4125 }
4126
4127 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4128 {
4129 ++*pos;
4130 return softnet_get_online(pos);
4131 }
4132
4133 static void softnet_seq_stop(struct seq_file *seq, void *v)
4134 {
4135 }
4136
4137 static int softnet_seq_show(struct seq_file *seq, void *v)
4138 {
4139 struct softnet_data *sd = v;
4140
4141 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4142 sd->processed, sd->dropped, sd->time_squeeze, 0,
4143 0, 0, 0, 0, /* was fastroute */
4144 sd->cpu_collision, sd->received_rps);
4145 return 0;
4146 }
4147
4148 static const struct seq_operations dev_seq_ops = {
4149 .start = dev_seq_start,
4150 .next = dev_seq_next,
4151 .stop = dev_seq_stop,
4152 .show = dev_seq_show,
4153 };
4154
4155 static int dev_seq_open(struct inode *inode, struct file *file)
4156 {
4157 return seq_open_net(inode, file, &dev_seq_ops,
4158 sizeof(struct seq_net_private));
4159 }
4160
4161 static const struct file_operations dev_seq_fops = {
4162 .owner = THIS_MODULE,
4163 .open = dev_seq_open,
4164 .read = seq_read,
4165 .llseek = seq_lseek,
4166 .release = seq_release_net,
4167 };
4168
4169 static const struct seq_operations softnet_seq_ops = {
4170 .start = softnet_seq_start,
4171 .next = softnet_seq_next,
4172 .stop = softnet_seq_stop,
4173 .show = softnet_seq_show,
4174 };
4175
4176 static int softnet_seq_open(struct inode *inode, struct file *file)
4177 {
4178 return seq_open(file, &softnet_seq_ops);
4179 }
4180
4181 static const struct file_operations softnet_seq_fops = {
4182 .owner = THIS_MODULE,
4183 .open = softnet_seq_open,
4184 .read = seq_read,
4185 .llseek = seq_lseek,
4186 .release = seq_release,
4187 };
4188
4189 static void *ptype_get_idx(loff_t pos)
4190 {
4191 struct packet_type *pt = NULL;
4192 loff_t i = 0;
4193 int t;
4194
4195 list_for_each_entry_rcu(pt, &ptype_all, list) {
4196 if (i == pos)
4197 return pt;
4198 ++i;
4199 }
4200
4201 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4202 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4203 if (i == pos)
4204 return pt;
4205 ++i;
4206 }
4207 }
4208 return NULL;
4209 }
4210
4211 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4212 __acquires(RCU)
4213 {
4214 rcu_read_lock();
4215 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4216 }
4217
4218 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4219 {
4220 struct packet_type *pt;
4221 struct list_head *nxt;
4222 int hash;
4223
4224 ++*pos;
4225 if (v == SEQ_START_TOKEN)
4226 return ptype_get_idx(0);
4227
4228 pt = v;
4229 nxt = pt->list.next;
4230 if (pt->type == htons(ETH_P_ALL)) {
4231 if (nxt != &ptype_all)
4232 goto found;
4233 hash = 0;
4234 nxt = ptype_base[0].next;
4235 } else
4236 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4237
4238 while (nxt == &ptype_base[hash]) {
4239 if (++hash >= PTYPE_HASH_SIZE)
4240 return NULL;
4241 nxt = ptype_base[hash].next;
4242 }
4243 found:
4244 return list_entry(nxt, struct packet_type, list);
4245 }
4246
4247 static void ptype_seq_stop(struct seq_file *seq, void *v)
4248 __releases(RCU)
4249 {
4250 rcu_read_unlock();
4251 }
4252
4253 static int ptype_seq_show(struct seq_file *seq, void *v)
4254 {
4255 struct packet_type *pt = v;
4256
4257 if (v == SEQ_START_TOKEN)
4258 seq_puts(seq, "Type Device Function\n");
4259 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4260 if (pt->type == htons(ETH_P_ALL))
4261 seq_puts(seq, "ALL ");
4262 else
4263 seq_printf(seq, "%04x", ntohs(pt->type));
4264
4265 seq_printf(seq, " %-8s %pF\n",
4266 pt->dev ? pt->dev->name : "", pt->func);
4267 }
4268
4269 return 0;
4270 }
4271
4272 static const struct seq_operations ptype_seq_ops = {
4273 .start = ptype_seq_start,
4274 .next = ptype_seq_next,
4275 .stop = ptype_seq_stop,
4276 .show = ptype_seq_show,
4277 };
4278
4279 static int ptype_seq_open(struct inode *inode, struct file *file)
4280 {
4281 return seq_open_net(inode, file, &ptype_seq_ops,
4282 sizeof(struct seq_net_private));
4283 }
4284
4285 static const struct file_operations ptype_seq_fops = {
4286 .owner = THIS_MODULE,
4287 .open = ptype_seq_open,
4288 .read = seq_read,
4289 .llseek = seq_lseek,
4290 .release = seq_release_net,
4291 };
4292
4293
4294 static int __net_init dev_proc_net_init(struct net *net)
4295 {
4296 int rc = -ENOMEM;
4297
4298 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4299 goto out;
4300 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4301 goto out_dev;
4302 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4303 goto out_softnet;
4304
4305 if (wext_proc_init(net))
4306 goto out_ptype;
4307 rc = 0;
4308 out:
4309 return rc;
4310 out_ptype:
4311 proc_net_remove(net, "ptype");
4312 out_softnet:
4313 proc_net_remove(net, "softnet_stat");
4314 out_dev:
4315 proc_net_remove(net, "dev");
4316 goto out;
4317 }
4318
4319 static void __net_exit dev_proc_net_exit(struct net *net)
4320 {
4321 wext_proc_exit(net);
4322
4323 proc_net_remove(net, "ptype");
4324 proc_net_remove(net, "softnet_stat");
4325 proc_net_remove(net, "dev");
4326 }
4327
4328 static struct pernet_operations __net_initdata dev_proc_ops = {
4329 .init = dev_proc_net_init,
4330 .exit = dev_proc_net_exit,
4331 };
4332
4333 static int __init dev_proc_init(void)
4334 {
4335 return register_pernet_subsys(&dev_proc_ops);
4336 }
4337 #else
4338 #define dev_proc_init() 0
4339 #endif /* CONFIG_PROC_FS */
4340
4341
4342 /**
4343 * netdev_set_master - set up master pointer
4344 * @slave: slave device
4345 * @master: new master device
4346 *
4347 * Changes the master device of the slave. Pass %NULL to break the
4348 * bonding. The caller must hold the RTNL semaphore. On a failure
4349 * a negative errno code is returned. On success the reference counts
4350 * are adjusted and the function returns zero.
4351 */
4352 int netdev_set_master(struct net_device *slave, struct net_device *master)
4353 {
4354 struct net_device *old = slave->master;
4355
4356 ASSERT_RTNL();
4357
4358 if (master) {
4359 if (old)
4360 return -EBUSY;
4361 dev_hold(master);
4362 }
4363
4364 slave->master = master;
4365
4366 if (old)
4367 dev_put(old);
4368 return 0;
4369 }
4370 EXPORT_SYMBOL(netdev_set_master);
4371
4372 /**
4373 * netdev_set_bond_master - set up bonding master/slave pair
4374 * @slave: slave device
4375 * @master: new master device
4376 *
4377 * Changes the master device of the slave. Pass %NULL to break the
4378 * bonding. The caller must hold the RTNL semaphore. On a failure
4379 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4380 * to the routing socket and the function returns zero.
4381 */
4382 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4383 {
4384 int err;
4385
4386 ASSERT_RTNL();
4387
4388 err = netdev_set_master(slave, master);
4389 if (err)
4390 return err;
4391 if (master)
4392 slave->flags |= IFF_SLAVE;
4393 else
4394 slave->flags &= ~IFF_SLAVE;
4395
4396 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4397 return 0;
4398 }
4399 EXPORT_SYMBOL(netdev_set_bond_master);
4400
4401 static void dev_change_rx_flags(struct net_device *dev, int flags)
4402 {
4403 const struct net_device_ops *ops = dev->netdev_ops;
4404
4405 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4406 ops->ndo_change_rx_flags(dev, flags);
4407 }
4408
4409 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4410 {
4411 unsigned short old_flags = dev->flags;
4412 uid_t uid;
4413 gid_t gid;
4414
4415 ASSERT_RTNL();
4416
4417 dev->flags |= IFF_PROMISC;
4418 dev->promiscuity += inc;
4419 if (dev->promiscuity == 0) {
4420 /*
4421 * Avoid overflow.
4422 * If inc causes overflow, untouch promisc and return error.
4423 */
4424 if (inc < 0)
4425 dev->flags &= ~IFF_PROMISC;
4426 else {
4427 dev->promiscuity -= inc;
4428 printk(KERN_WARNING "%s: promiscuity touches roof, "
4429 "set promiscuity failed, promiscuity feature "
4430 "of device might be broken.\n", dev->name);
4431 return -EOVERFLOW;
4432 }
4433 }
4434 if (dev->flags != old_flags) {
4435 printk(KERN_INFO "device %s %s promiscuous mode\n",
4436 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4437 "left");
4438 if (audit_enabled) {
4439 current_uid_gid(&uid, &gid);
4440 audit_log(current->audit_context, GFP_ATOMIC,
4441 AUDIT_ANOM_PROMISCUOUS,
4442 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4443 dev->name, (dev->flags & IFF_PROMISC),
4444 (old_flags & IFF_PROMISC),
4445 audit_get_loginuid(current),
4446 uid, gid,
4447 audit_get_sessionid(current));
4448 }
4449
4450 dev_change_rx_flags(dev, IFF_PROMISC);
4451 }
4452 return 0;
4453 }
4454
4455 /**
4456 * dev_set_promiscuity - update promiscuity count on a device
4457 * @dev: device
4458 * @inc: modifier
4459 *
4460 * Add or remove promiscuity from a device. While the count in the device
4461 * remains above zero the interface remains promiscuous. Once it hits zero
4462 * the device reverts back to normal filtering operation. A negative inc
4463 * value is used to drop promiscuity on the device.
4464 * Return 0 if successful or a negative errno code on error.
4465 */
4466 int dev_set_promiscuity(struct net_device *dev, int inc)
4467 {
4468 unsigned short old_flags = dev->flags;
4469 int err;
4470
4471 err = __dev_set_promiscuity(dev, inc);
4472 if (err < 0)
4473 return err;
4474 if (dev->flags != old_flags)
4475 dev_set_rx_mode(dev);
4476 return err;
4477 }
4478 EXPORT_SYMBOL(dev_set_promiscuity);
4479
4480 /**
4481 * dev_set_allmulti - update allmulti count on a device
4482 * @dev: device
4483 * @inc: modifier
4484 *
4485 * Add or remove reception of all multicast frames to a device. While the
4486 * count in the device remains above zero the interface remains listening
4487 * to all interfaces. Once it hits zero the device reverts back to normal
4488 * filtering operation. A negative @inc value is used to drop the counter
4489 * when releasing a resource needing all multicasts.
4490 * Return 0 if successful or a negative errno code on error.
4491 */
4492
4493 int dev_set_allmulti(struct net_device *dev, int inc)
4494 {
4495 unsigned short old_flags = dev->flags;
4496
4497 ASSERT_RTNL();
4498
4499 dev->flags |= IFF_ALLMULTI;
4500 dev->allmulti += inc;
4501 if (dev->allmulti == 0) {
4502 /*
4503 * Avoid overflow.
4504 * If inc causes overflow, untouch allmulti and return error.
4505 */
4506 if (inc < 0)
4507 dev->flags &= ~IFF_ALLMULTI;
4508 else {
4509 dev->allmulti -= inc;
4510 printk(KERN_WARNING "%s: allmulti touches roof, "
4511 "set allmulti failed, allmulti feature of "
4512 "device might be broken.\n", dev->name);
4513 return -EOVERFLOW;
4514 }
4515 }
4516 if (dev->flags ^ old_flags) {
4517 dev_change_rx_flags(dev, IFF_ALLMULTI);
4518 dev_set_rx_mode(dev);
4519 }
4520 return 0;
4521 }
4522 EXPORT_SYMBOL(dev_set_allmulti);
4523
4524 /*
4525 * Upload unicast and multicast address lists to device and
4526 * configure RX filtering. When the device doesn't support unicast
4527 * filtering it is put in promiscuous mode while unicast addresses
4528 * are present.
4529 */
4530 void __dev_set_rx_mode(struct net_device *dev)
4531 {
4532 const struct net_device_ops *ops = dev->netdev_ops;
4533
4534 /* dev_open will call this function so the list will stay sane. */
4535 if (!(dev->flags&IFF_UP))
4536 return;
4537
4538 if (!netif_device_present(dev))
4539 return;
4540
4541 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4542 /* Unicast addresses changes may only happen under the rtnl,
4543 * therefore calling __dev_set_promiscuity here is safe.
4544 */
4545 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4546 __dev_set_promiscuity(dev, 1);
4547 dev->uc_promisc = true;
4548 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4549 __dev_set_promiscuity(dev, -1);
4550 dev->uc_promisc = false;
4551 }
4552 }
4553
4554 if (ops->ndo_set_rx_mode)
4555 ops->ndo_set_rx_mode(dev);
4556 }
4557
4558 void dev_set_rx_mode(struct net_device *dev)
4559 {
4560 netif_addr_lock_bh(dev);
4561 __dev_set_rx_mode(dev);
4562 netif_addr_unlock_bh(dev);
4563 }
4564
4565 /**
4566 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4567 * @dev: device
4568 * @cmd: memory area for ethtool_ops::get_settings() result
4569 *
4570 * The cmd arg is initialized properly (cleared and
4571 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4572 *
4573 * Return device's ethtool_ops::get_settings() result value or
4574 * -EOPNOTSUPP when device doesn't expose
4575 * ethtool_ops::get_settings() operation.
4576 */
4577 int dev_ethtool_get_settings(struct net_device *dev,
4578 struct ethtool_cmd *cmd)
4579 {
4580 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4581 return -EOPNOTSUPP;
4582
4583 memset(cmd, 0, sizeof(struct ethtool_cmd));
4584 cmd->cmd = ETHTOOL_GSET;
4585 return dev->ethtool_ops->get_settings(dev, cmd);
4586 }
4587 EXPORT_SYMBOL(dev_ethtool_get_settings);
4588
4589 /**
4590 * dev_get_flags - get flags reported to userspace
4591 * @dev: device
4592 *
4593 * Get the combination of flag bits exported through APIs to userspace.
4594 */
4595 unsigned dev_get_flags(const struct net_device *dev)
4596 {
4597 unsigned flags;
4598
4599 flags = (dev->flags & ~(IFF_PROMISC |
4600 IFF_ALLMULTI |
4601 IFF_RUNNING |
4602 IFF_LOWER_UP |
4603 IFF_DORMANT)) |
4604 (dev->gflags & (IFF_PROMISC |
4605 IFF_ALLMULTI));
4606
4607 if (netif_running(dev)) {
4608 if (netif_oper_up(dev))
4609 flags |= IFF_RUNNING;
4610 if (netif_carrier_ok(dev))
4611 flags |= IFF_LOWER_UP;
4612 if (netif_dormant(dev))
4613 flags |= IFF_DORMANT;
4614 }
4615
4616 return flags;
4617 }
4618 EXPORT_SYMBOL(dev_get_flags);
4619
4620 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4621 {
4622 int old_flags = dev->flags;
4623 int ret;
4624
4625 ASSERT_RTNL();
4626
4627 /*
4628 * Set the flags on our device.
4629 */
4630
4631 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4632 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4633 IFF_AUTOMEDIA)) |
4634 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4635 IFF_ALLMULTI));
4636
4637 /*
4638 * Load in the correct multicast list now the flags have changed.
4639 */
4640
4641 if ((old_flags ^ flags) & IFF_MULTICAST)
4642 dev_change_rx_flags(dev, IFF_MULTICAST);
4643
4644 dev_set_rx_mode(dev);
4645
4646 /*
4647 * Have we downed the interface. We handle IFF_UP ourselves
4648 * according to user attempts to set it, rather than blindly
4649 * setting it.
4650 */
4651
4652 ret = 0;
4653 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4654 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4655
4656 if (!ret)
4657 dev_set_rx_mode(dev);
4658 }
4659
4660 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4661 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4662
4663 dev->gflags ^= IFF_PROMISC;
4664 dev_set_promiscuity(dev, inc);
4665 }
4666
4667 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4668 is important. Some (broken) drivers set IFF_PROMISC, when
4669 IFF_ALLMULTI is requested not asking us and not reporting.
4670 */
4671 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4672 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4673
4674 dev->gflags ^= IFF_ALLMULTI;
4675 dev_set_allmulti(dev, inc);
4676 }
4677
4678 return ret;
4679 }
4680
4681 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4682 {
4683 unsigned int changes = dev->flags ^ old_flags;
4684
4685 if (changes & IFF_UP) {
4686 if (dev->flags & IFF_UP)
4687 call_netdevice_notifiers(NETDEV_UP, dev);
4688 else
4689 call_netdevice_notifiers(NETDEV_DOWN, dev);
4690 }
4691
4692 if (dev->flags & IFF_UP &&
4693 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4694 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4695 }
4696
4697 /**
4698 * dev_change_flags - change device settings
4699 * @dev: device
4700 * @flags: device state flags
4701 *
4702 * Change settings on device based state flags. The flags are
4703 * in the userspace exported format.
4704 */
4705 int dev_change_flags(struct net_device *dev, unsigned flags)
4706 {
4707 int ret, changes;
4708 int old_flags = dev->flags;
4709
4710 ret = __dev_change_flags(dev, flags);
4711 if (ret < 0)
4712 return ret;
4713
4714 changes = old_flags ^ dev->flags;
4715 if (changes)
4716 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4717
4718 __dev_notify_flags(dev, old_flags);
4719 return ret;
4720 }
4721 EXPORT_SYMBOL(dev_change_flags);
4722
4723 /**
4724 * dev_set_mtu - Change maximum transfer unit
4725 * @dev: device
4726 * @new_mtu: new transfer unit
4727 *
4728 * Change the maximum transfer size of the network device.
4729 */
4730 int dev_set_mtu(struct net_device *dev, int new_mtu)
4731 {
4732 const struct net_device_ops *ops = dev->netdev_ops;
4733 int err;
4734
4735 if (new_mtu == dev->mtu)
4736 return 0;
4737
4738 /* MTU must be positive. */
4739 if (new_mtu < 0)
4740 return -EINVAL;
4741
4742 if (!netif_device_present(dev))
4743 return -ENODEV;
4744
4745 err = 0;
4746 if (ops->ndo_change_mtu)
4747 err = ops->ndo_change_mtu(dev, new_mtu);
4748 else
4749 dev->mtu = new_mtu;
4750
4751 if (!err && dev->flags & IFF_UP)
4752 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4753 return err;
4754 }
4755 EXPORT_SYMBOL(dev_set_mtu);
4756
4757 /**
4758 * dev_set_group - Change group this device belongs to
4759 * @dev: device
4760 * @new_group: group this device should belong to
4761 */
4762 void dev_set_group(struct net_device *dev, int new_group)
4763 {
4764 dev->group = new_group;
4765 }
4766 EXPORT_SYMBOL(dev_set_group);
4767
4768 /**
4769 * dev_set_mac_address - Change Media Access Control Address
4770 * @dev: device
4771 * @sa: new address
4772 *
4773 * Change the hardware (MAC) address of the device
4774 */
4775 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4776 {
4777 const struct net_device_ops *ops = dev->netdev_ops;
4778 int err;
4779
4780 if (!ops->ndo_set_mac_address)
4781 return -EOPNOTSUPP;
4782 if (sa->sa_family != dev->type)
4783 return -EINVAL;
4784 if (!netif_device_present(dev))
4785 return -ENODEV;
4786 err = ops->ndo_set_mac_address(dev, sa);
4787 if (!err)
4788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4789 return err;
4790 }
4791 EXPORT_SYMBOL(dev_set_mac_address);
4792
4793 /*
4794 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4795 */
4796 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4797 {
4798 int err;
4799 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4800
4801 if (!dev)
4802 return -ENODEV;
4803
4804 switch (cmd) {
4805 case SIOCGIFFLAGS: /* Get interface flags */
4806 ifr->ifr_flags = (short) dev_get_flags(dev);
4807 return 0;
4808
4809 case SIOCGIFMETRIC: /* Get the metric on the interface
4810 (currently unused) */
4811 ifr->ifr_metric = 0;
4812 return 0;
4813
4814 case SIOCGIFMTU: /* Get the MTU of a device */
4815 ifr->ifr_mtu = dev->mtu;
4816 return 0;
4817
4818 case SIOCGIFHWADDR:
4819 if (!dev->addr_len)
4820 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4821 else
4822 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4823 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4824 ifr->ifr_hwaddr.sa_family = dev->type;
4825 return 0;
4826
4827 case SIOCGIFSLAVE:
4828 err = -EINVAL;
4829 break;
4830
4831 case SIOCGIFMAP:
4832 ifr->ifr_map.mem_start = dev->mem_start;
4833 ifr->ifr_map.mem_end = dev->mem_end;
4834 ifr->ifr_map.base_addr = dev->base_addr;
4835 ifr->ifr_map.irq = dev->irq;
4836 ifr->ifr_map.dma = dev->dma;
4837 ifr->ifr_map.port = dev->if_port;
4838 return 0;
4839
4840 case SIOCGIFINDEX:
4841 ifr->ifr_ifindex = dev->ifindex;
4842 return 0;
4843
4844 case SIOCGIFTXQLEN:
4845 ifr->ifr_qlen = dev->tx_queue_len;
4846 return 0;
4847
4848 default:
4849 /* dev_ioctl() should ensure this case
4850 * is never reached
4851 */
4852 WARN_ON(1);
4853 err = -ENOTTY;
4854 break;
4855
4856 }
4857 return err;
4858 }
4859
4860 /*
4861 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4862 */
4863 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4864 {
4865 int err;
4866 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4867 const struct net_device_ops *ops;
4868
4869 if (!dev)
4870 return -ENODEV;
4871
4872 ops = dev->netdev_ops;
4873
4874 switch (cmd) {
4875 case SIOCSIFFLAGS: /* Set interface flags */
4876 return dev_change_flags(dev, ifr->ifr_flags);
4877
4878 case SIOCSIFMETRIC: /* Set the metric on the interface
4879 (currently unused) */
4880 return -EOPNOTSUPP;
4881
4882 case SIOCSIFMTU: /* Set the MTU of a device */
4883 return dev_set_mtu(dev, ifr->ifr_mtu);
4884
4885 case SIOCSIFHWADDR:
4886 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4887
4888 case SIOCSIFHWBROADCAST:
4889 if (ifr->ifr_hwaddr.sa_family != dev->type)
4890 return -EINVAL;
4891 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4892 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4893 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4894 return 0;
4895
4896 case SIOCSIFMAP:
4897 if (ops->ndo_set_config) {
4898 if (!netif_device_present(dev))
4899 return -ENODEV;
4900 return ops->ndo_set_config(dev, &ifr->ifr_map);
4901 }
4902 return -EOPNOTSUPP;
4903
4904 case SIOCADDMULTI:
4905 if (!ops->ndo_set_rx_mode ||
4906 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4907 return -EINVAL;
4908 if (!netif_device_present(dev))
4909 return -ENODEV;
4910 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4911
4912 case SIOCDELMULTI:
4913 if (!ops->ndo_set_rx_mode ||
4914 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4915 return -EINVAL;
4916 if (!netif_device_present(dev))
4917 return -ENODEV;
4918 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4919
4920 case SIOCSIFTXQLEN:
4921 if (ifr->ifr_qlen < 0)
4922 return -EINVAL;
4923 dev->tx_queue_len = ifr->ifr_qlen;
4924 return 0;
4925
4926 case SIOCSIFNAME:
4927 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4928 return dev_change_name(dev, ifr->ifr_newname);
4929
4930 /*
4931 * Unknown or private ioctl
4932 */
4933 default:
4934 if ((cmd >= SIOCDEVPRIVATE &&
4935 cmd <= SIOCDEVPRIVATE + 15) ||
4936 cmd == SIOCBONDENSLAVE ||
4937 cmd == SIOCBONDRELEASE ||
4938 cmd == SIOCBONDSETHWADDR ||
4939 cmd == SIOCBONDSLAVEINFOQUERY ||
4940 cmd == SIOCBONDINFOQUERY ||
4941 cmd == SIOCBONDCHANGEACTIVE ||
4942 cmd == SIOCGMIIPHY ||
4943 cmd == SIOCGMIIREG ||
4944 cmd == SIOCSMIIREG ||
4945 cmd == SIOCBRADDIF ||
4946 cmd == SIOCBRDELIF ||
4947 cmd == SIOCSHWTSTAMP ||
4948 cmd == SIOCWANDEV) {
4949 err = -EOPNOTSUPP;
4950 if (ops->ndo_do_ioctl) {
4951 if (netif_device_present(dev))
4952 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4953 else
4954 err = -ENODEV;
4955 }
4956 } else
4957 err = -EINVAL;
4958
4959 }
4960 return err;
4961 }
4962
4963 /*
4964 * This function handles all "interface"-type I/O control requests. The actual
4965 * 'doing' part of this is dev_ifsioc above.
4966 */
4967
4968 /**
4969 * dev_ioctl - network device ioctl
4970 * @net: the applicable net namespace
4971 * @cmd: command to issue
4972 * @arg: pointer to a struct ifreq in user space
4973 *
4974 * Issue ioctl functions to devices. This is normally called by the
4975 * user space syscall interfaces but can sometimes be useful for
4976 * other purposes. The return value is the return from the syscall if
4977 * positive or a negative errno code on error.
4978 */
4979
4980 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4981 {
4982 struct ifreq ifr;
4983 int ret;
4984 char *colon;
4985
4986 /* One special case: SIOCGIFCONF takes ifconf argument
4987 and requires shared lock, because it sleeps writing
4988 to user space.
4989 */
4990
4991 if (cmd == SIOCGIFCONF) {
4992 rtnl_lock();
4993 ret = dev_ifconf(net, (char __user *) arg);
4994 rtnl_unlock();
4995 return ret;
4996 }
4997 if (cmd == SIOCGIFNAME)
4998 return dev_ifname(net, (struct ifreq __user *)arg);
4999
5000 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5001 return -EFAULT;
5002
5003 ifr.ifr_name[IFNAMSIZ-1] = 0;
5004
5005 colon = strchr(ifr.ifr_name, ':');
5006 if (colon)
5007 *colon = 0;
5008
5009 /*
5010 * See which interface the caller is talking about.
5011 */
5012
5013 switch (cmd) {
5014 /*
5015 * These ioctl calls:
5016 * - can be done by all.
5017 * - atomic and do not require locking.
5018 * - return a value
5019 */
5020 case SIOCGIFFLAGS:
5021 case SIOCGIFMETRIC:
5022 case SIOCGIFMTU:
5023 case SIOCGIFHWADDR:
5024 case SIOCGIFSLAVE:
5025 case SIOCGIFMAP:
5026 case SIOCGIFINDEX:
5027 case SIOCGIFTXQLEN:
5028 dev_load(net, ifr.ifr_name);
5029 rcu_read_lock();
5030 ret = dev_ifsioc_locked(net, &ifr, cmd);
5031 rcu_read_unlock();
5032 if (!ret) {
5033 if (colon)
5034 *colon = ':';
5035 if (copy_to_user(arg, &ifr,
5036 sizeof(struct ifreq)))
5037 ret = -EFAULT;
5038 }
5039 return ret;
5040
5041 case SIOCETHTOOL:
5042 dev_load(net, ifr.ifr_name);
5043 rtnl_lock();
5044 ret = dev_ethtool(net, &ifr);
5045 rtnl_unlock();
5046 if (!ret) {
5047 if (colon)
5048 *colon = ':';
5049 if (copy_to_user(arg, &ifr,
5050 sizeof(struct ifreq)))
5051 ret = -EFAULT;
5052 }
5053 return ret;
5054
5055 /*
5056 * These ioctl calls:
5057 * - require superuser power.
5058 * - require strict serialization.
5059 * - return a value
5060 */
5061 case SIOCGMIIPHY:
5062 case SIOCGMIIREG:
5063 case SIOCSIFNAME:
5064 if (!capable(CAP_NET_ADMIN))
5065 return -EPERM;
5066 dev_load(net, ifr.ifr_name);
5067 rtnl_lock();
5068 ret = dev_ifsioc(net, &ifr, cmd);
5069 rtnl_unlock();
5070 if (!ret) {
5071 if (colon)
5072 *colon = ':';
5073 if (copy_to_user(arg, &ifr,
5074 sizeof(struct ifreq)))
5075 ret = -EFAULT;
5076 }
5077 return ret;
5078
5079 /*
5080 * These ioctl calls:
5081 * - require superuser power.
5082 * - require strict serialization.
5083 * - do not return a value
5084 */
5085 case SIOCSIFFLAGS:
5086 case SIOCSIFMETRIC:
5087 case SIOCSIFMTU:
5088 case SIOCSIFMAP:
5089 case SIOCSIFHWADDR:
5090 case SIOCSIFSLAVE:
5091 case SIOCADDMULTI:
5092 case SIOCDELMULTI:
5093 case SIOCSIFHWBROADCAST:
5094 case SIOCSIFTXQLEN:
5095 case SIOCSMIIREG:
5096 case SIOCBONDENSLAVE:
5097 case SIOCBONDRELEASE:
5098 case SIOCBONDSETHWADDR:
5099 case SIOCBONDCHANGEACTIVE:
5100 case SIOCBRADDIF:
5101 case SIOCBRDELIF:
5102 case SIOCSHWTSTAMP:
5103 if (!capable(CAP_NET_ADMIN))
5104 return -EPERM;
5105 /* fall through */
5106 case SIOCBONDSLAVEINFOQUERY:
5107 case SIOCBONDINFOQUERY:
5108 dev_load(net, ifr.ifr_name);
5109 rtnl_lock();
5110 ret = dev_ifsioc(net, &ifr, cmd);
5111 rtnl_unlock();
5112 return ret;
5113
5114 case SIOCGIFMEM:
5115 /* Get the per device memory space. We can add this but
5116 * currently do not support it */
5117 case SIOCSIFMEM:
5118 /* Set the per device memory buffer space.
5119 * Not applicable in our case */
5120 case SIOCSIFLINK:
5121 return -ENOTTY;
5122
5123 /*
5124 * Unknown or private ioctl.
5125 */
5126 default:
5127 if (cmd == SIOCWANDEV ||
5128 (cmd >= SIOCDEVPRIVATE &&
5129 cmd <= SIOCDEVPRIVATE + 15)) {
5130 dev_load(net, ifr.ifr_name);
5131 rtnl_lock();
5132 ret = dev_ifsioc(net, &ifr, cmd);
5133 rtnl_unlock();
5134 if (!ret && copy_to_user(arg, &ifr,
5135 sizeof(struct ifreq)))
5136 ret = -EFAULT;
5137 return ret;
5138 }
5139 /* Take care of Wireless Extensions */
5140 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5141 return wext_handle_ioctl(net, &ifr, cmd, arg);
5142 return -ENOTTY;
5143 }
5144 }
5145
5146
5147 /**
5148 * dev_new_index - allocate an ifindex
5149 * @net: the applicable net namespace
5150 *
5151 * Returns a suitable unique value for a new device interface
5152 * number. The caller must hold the rtnl semaphore or the
5153 * dev_base_lock to be sure it remains unique.
5154 */
5155 static int dev_new_index(struct net *net)
5156 {
5157 static int ifindex;
5158 for (;;) {
5159 if (++ifindex <= 0)
5160 ifindex = 1;
5161 if (!__dev_get_by_index(net, ifindex))
5162 return ifindex;
5163 }
5164 }
5165
5166 /* Delayed registration/unregisteration */
5167 static LIST_HEAD(net_todo_list);
5168
5169 static void net_set_todo(struct net_device *dev)
5170 {
5171 list_add_tail(&dev->todo_list, &net_todo_list);
5172 }
5173
5174 static void rollback_registered_many(struct list_head *head)
5175 {
5176 struct net_device *dev, *tmp;
5177
5178 BUG_ON(dev_boot_phase);
5179 ASSERT_RTNL();
5180
5181 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5182 /* Some devices call without registering
5183 * for initialization unwind. Remove those
5184 * devices and proceed with the remaining.
5185 */
5186 if (dev->reg_state == NETREG_UNINITIALIZED) {
5187 pr_debug("unregister_netdevice: device %s/%p never "
5188 "was registered\n", dev->name, dev);
5189
5190 WARN_ON(1);
5191 list_del(&dev->unreg_list);
5192 continue;
5193 }
5194 dev->dismantle = true;
5195 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5196 }
5197
5198 /* If device is running, close it first. */
5199 dev_close_many(head);
5200
5201 list_for_each_entry(dev, head, unreg_list) {
5202 /* And unlink it from device chain. */
5203 unlist_netdevice(dev);
5204
5205 dev->reg_state = NETREG_UNREGISTERING;
5206 }
5207
5208 synchronize_net();
5209
5210 list_for_each_entry(dev, head, unreg_list) {
5211 /* Shutdown queueing discipline. */
5212 dev_shutdown(dev);
5213
5214
5215 /* Notify protocols, that we are about to destroy
5216 this device. They should clean all the things.
5217 */
5218 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5219
5220 if (!dev->rtnl_link_ops ||
5221 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5222 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5223
5224 /*
5225 * Flush the unicast and multicast chains
5226 */
5227 dev_uc_flush(dev);
5228 dev_mc_flush(dev);
5229
5230 if (dev->netdev_ops->ndo_uninit)
5231 dev->netdev_ops->ndo_uninit(dev);
5232
5233 /* Notifier chain MUST detach us from master device. */
5234 WARN_ON(dev->master);
5235
5236 /* Remove entries from kobject tree */
5237 netdev_unregister_kobject(dev);
5238 }
5239
5240 /* Process any work delayed until the end of the batch */
5241 dev = list_first_entry(head, struct net_device, unreg_list);
5242 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5243
5244 rcu_barrier();
5245
5246 list_for_each_entry(dev, head, unreg_list)
5247 dev_put(dev);
5248 }
5249
5250 static void rollback_registered(struct net_device *dev)
5251 {
5252 LIST_HEAD(single);
5253
5254 list_add(&dev->unreg_list, &single);
5255 rollback_registered_many(&single);
5256 list_del(&single);
5257 }
5258
5259 static u32 netdev_fix_features(struct net_device *dev, u32 features)
5260 {
5261 /* Fix illegal checksum combinations */
5262 if ((features & NETIF_F_HW_CSUM) &&
5263 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5264 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5265 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5266 }
5267
5268 if ((features & NETIF_F_NO_CSUM) &&
5269 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5270 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5271 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5272 }
5273
5274 /* Fix illegal SG+CSUM combinations. */
5275 if ((features & NETIF_F_SG) &&
5276 !(features & NETIF_F_ALL_CSUM)) {
5277 netdev_dbg(dev,
5278 "Dropping NETIF_F_SG since no checksum feature.\n");
5279 features &= ~NETIF_F_SG;
5280 }
5281
5282 /* TSO requires that SG is present as well. */
5283 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5284 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5285 features &= ~NETIF_F_ALL_TSO;
5286 }
5287
5288 /* TSO ECN requires that TSO is present as well. */
5289 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5290 features &= ~NETIF_F_TSO_ECN;
5291
5292 /* Software GSO depends on SG. */
5293 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5294 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5295 features &= ~NETIF_F_GSO;
5296 }
5297
5298 /* UFO needs SG and checksumming */
5299 if (features & NETIF_F_UFO) {
5300 /* maybe split UFO into V4 and V6? */
5301 if (!((features & NETIF_F_GEN_CSUM) ||
5302 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5303 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5304 netdev_dbg(dev,
5305 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5306 features &= ~NETIF_F_UFO;
5307 }
5308
5309 if (!(features & NETIF_F_SG)) {
5310 netdev_dbg(dev,
5311 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5312 features &= ~NETIF_F_UFO;
5313 }
5314 }
5315
5316 return features;
5317 }
5318
5319 int __netdev_update_features(struct net_device *dev)
5320 {
5321 u32 features;
5322 int err = 0;
5323
5324 ASSERT_RTNL();
5325
5326 features = netdev_get_wanted_features(dev);
5327
5328 if (dev->netdev_ops->ndo_fix_features)
5329 features = dev->netdev_ops->ndo_fix_features(dev, features);
5330
5331 /* driver might be less strict about feature dependencies */
5332 features = netdev_fix_features(dev, features);
5333
5334 if (dev->features == features)
5335 return 0;
5336
5337 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5338 dev->features, features);
5339
5340 if (dev->netdev_ops->ndo_set_features)
5341 err = dev->netdev_ops->ndo_set_features(dev, features);
5342
5343 if (unlikely(err < 0)) {
5344 netdev_err(dev,
5345 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5346 err, features, dev->features);
5347 return -1;
5348 }
5349
5350 if (!err)
5351 dev->features = features;
5352
5353 return 1;
5354 }
5355
5356 /**
5357 * netdev_update_features - recalculate device features
5358 * @dev: the device to check
5359 *
5360 * Recalculate dev->features set and send notifications if it
5361 * has changed. Should be called after driver or hardware dependent
5362 * conditions might have changed that influence the features.
5363 */
5364 void netdev_update_features(struct net_device *dev)
5365 {
5366 if (__netdev_update_features(dev))
5367 netdev_features_change(dev);
5368 }
5369 EXPORT_SYMBOL(netdev_update_features);
5370
5371 /**
5372 * netdev_change_features - recalculate device features
5373 * @dev: the device to check
5374 *
5375 * Recalculate dev->features set and send notifications even
5376 * if they have not changed. Should be called instead of
5377 * netdev_update_features() if also dev->vlan_features might
5378 * have changed to allow the changes to be propagated to stacked
5379 * VLAN devices.
5380 */
5381 void netdev_change_features(struct net_device *dev)
5382 {
5383 __netdev_update_features(dev);
5384 netdev_features_change(dev);
5385 }
5386 EXPORT_SYMBOL(netdev_change_features);
5387
5388 /**
5389 * netif_stacked_transfer_operstate - transfer operstate
5390 * @rootdev: the root or lower level device to transfer state from
5391 * @dev: the device to transfer operstate to
5392 *
5393 * Transfer operational state from root to device. This is normally
5394 * called when a stacking relationship exists between the root
5395 * device and the device(a leaf device).
5396 */
5397 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5398 struct net_device *dev)
5399 {
5400 if (rootdev->operstate == IF_OPER_DORMANT)
5401 netif_dormant_on(dev);
5402 else
5403 netif_dormant_off(dev);
5404
5405 if (netif_carrier_ok(rootdev)) {
5406 if (!netif_carrier_ok(dev))
5407 netif_carrier_on(dev);
5408 } else {
5409 if (netif_carrier_ok(dev))
5410 netif_carrier_off(dev);
5411 }
5412 }
5413 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5414
5415 #ifdef CONFIG_RPS
5416 static int netif_alloc_rx_queues(struct net_device *dev)
5417 {
5418 unsigned int i, count = dev->num_rx_queues;
5419 struct netdev_rx_queue *rx;
5420
5421 BUG_ON(count < 1);
5422
5423 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5424 if (!rx) {
5425 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5426 return -ENOMEM;
5427 }
5428 dev->_rx = rx;
5429
5430 for (i = 0; i < count; i++)
5431 rx[i].dev = dev;
5432 return 0;
5433 }
5434 #endif
5435
5436 static void netdev_init_one_queue(struct net_device *dev,
5437 struct netdev_queue *queue, void *_unused)
5438 {
5439 /* Initialize queue lock */
5440 spin_lock_init(&queue->_xmit_lock);
5441 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5442 queue->xmit_lock_owner = -1;
5443 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5444 queue->dev = dev;
5445 }
5446
5447 static int netif_alloc_netdev_queues(struct net_device *dev)
5448 {
5449 unsigned int count = dev->num_tx_queues;
5450 struct netdev_queue *tx;
5451
5452 BUG_ON(count < 1);
5453
5454 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5455 if (!tx) {
5456 pr_err("netdev: Unable to allocate %u tx queues.\n",
5457 count);
5458 return -ENOMEM;
5459 }
5460 dev->_tx = tx;
5461
5462 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5463 spin_lock_init(&dev->tx_global_lock);
5464
5465 return 0;
5466 }
5467
5468 /**
5469 * register_netdevice - register a network device
5470 * @dev: device to register
5471 *
5472 * Take a completed network device structure and add it to the kernel
5473 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5474 * chain. 0 is returned on success. A negative errno code is returned
5475 * on a failure to set up the device, or if the name is a duplicate.
5476 *
5477 * Callers must hold the rtnl semaphore. You may want
5478 * register_netdev() instead of this.
5479 *
5480 * BUGS:
5481 * The locking appears insufficient to guarantee two parallel registers
5482 * will not get the same name.
5483 */
5484
5485 int register_netdevice(struct net_device *dev)
5486 {
5487 int ret;
5488 struct net *net = dev_net(dev);
5489
5490 BUG_ON(dev_boot_phase);
5491 ASSERT_RTNL();
5492
5493 might_sleep();
5494
5495 /* When net_device's are persistent, this will be fatal. */
5496 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5497 BUG_ON(!net);
5498
5499 spin_lock_init(&dev->addr_list_lock);
5500 netdev_set_addr_lockdep_class(dev);
5501
5502 dev->iflink = -1;
5503
5504 ret = dev_get_valid_name(dev, dev->name);
5505 if (ret < 0)
5506 goto out;
5507
5508 /* Init, if this function is available */
5509 if (dev->netdev_ops->ndo_init) {
5510 ret = dev->netdev_ops->ndo_init(dev);
5511 if (ret) {
5512 if (ret > 0)
5513 ret = -EIO;
5514 goto out;
5515 }
5516 }
5517
5518 dev->ifindex = dev_new_index(net);
5519 if (dev->iflink == -1)
5520 dev->iflink = dev->ifindex;
5521
5522 /* Transfer changeable features to wanted_features and enable
5523 * software offloads (GSO and GRO).
5524 */
5525 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5526 dev->features |= NETIF_F_SOFT_FEATURES;
5527 dev->wanted_features = dev->features & dev->hw_features;
5528
5529 /* Turn on no cache copy if HW is doing checksum */
5530 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5531 if ((dev->features & NETIF_F_ALL_CSUM) &&
5532 !(dev->features & NETIF_F_NO_CSUM)) {
5533 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5534 dev->features |= NETIF_F_NOCACHE_COPY;
5535 }
5536
5537 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5538 */
5539 dev->vlan_features |= NETIF_F_HIGHDMA;
5540
5541 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5542 ret = notifier_to_errno(ret);
5543 if (ret)
5544 goto err_uninit;
5545
5546 ret = netdev_register_kobject(dev);
5547 if (ret)
5548 goto err_uninit;
5549 dev->reg_state = NETREG_REGISTERED;
5550
5551 __netdev_update_features(dev);
5552
5553 /*
5554 * Default initial state at registry is that the
5555 * device is present.
5556 */
5557
5558 set_bit(__LINK_STATE_PRESENT, &dev->state);
5559
5560 dev_init_scheduler(dev);
5561 dev_hold(dev);
5562 list_netdevice(dev);
5563
5564 /* Notify protocols, that a new device appeared. */
5565 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5566 ret = notifier_to_errno(ret);
5567 if (ret) {
5568 rollback_registered(dev);
5569 dev->reg_state = NETREG_UNREGISTERED;
5570 }
5571 /*
5572 * Prevent userspace races by waiting until the network
5573 * device is fully setup before sending notifications.
5574 */
5575 if (!dev->rtnl_link_ops ||
5576 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5577 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5578
5579 out:
5580 return ret;
5581
5582 err_uninit:
5583 if (dev->netdev_ops->ndo_uninit)
5584 dev->netdev_ops->ndo_uninit(dev);
5585 goto out;
5586 }
5587 EXPORT_SYMBOL(register_netdevice);
5588
5589 /**
5590 * init_dummy_netdev - init a dummy network device for NAPI
5591 * @dev: device to init
5592 *
5593 * This takes a network device structure and initialize the minimum
5594 * amount of fields so it can be used to schedule NAPI polls without
5595 * registering a full blown interface. This is to be used by drivers
5596 * that need to tie several hardware interfaces to a single NAPI
5597 * poll scheduler due to HW limitations.
5598 */
5599 int init_dummy_netdev(struct net_device *dev)
5600 {
5601 /* Clear everything. Note we don't initialize spinlocks
5602 * are they aren't supposed to be taken by any of the
5603 * NAPI code and this dummy netdev is supposed to be
5604 * only ever used for NAPI polls
5605 */
5606 memset(dev, 0, sizeof(struct net_device));
5607
5608 /* make sure we BUG if trying to hit standard
5609 * register/unregister code path
5610 */
5611 dev->reg_state = NETREG_DUMMY;
5612
5613 /* NAPI wants this */
5614 INIT_LIST_HEAD(&dev->napi_list);
5615
5616 /* a dummy interface is started by default */
5617 set_bit(__LINK_STATE_PRESENT, &dev->state);
5618 set_bit(__LINK_STATE_START, &dev->state);
5619
5620 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5621 * because users of this 'device' dont need to change
5622 * its refcount.
5623 */
5624
5625 return 0;
5626 }
5627 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5628
5629
5630 /**
5631 * register_netdev - register a network device
5632 * @dev: device to register
5633 *
5634 * Take a completed network device structure and add it to the kernel
5635 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5636 * chain. 0 is returned on success. A negative errno code is returned
5637 * on a failure to set up the device, or if the name is a duplicate.
5638 *
5639 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5640 * and expands the device name if you passed a format string to
5641 * alloc_netdev.
5642 */
5643 int register_netdev(struct net_device *dev)
5644 {
5645 int err;
5646
5647 rtnl_lock();
5648 err = register_netdevice(dev);
5649 rtnl_unlock();
5650 return err;
5651 }
5652 EXPORT_SYMBOL(register_netdev);
5653
5654 int netdev_refcnt_read(const struct net_device *dev)
5655 {
5656 int i, refcnt = 0;
5657
5658 for_each_possible_cpu(i)
5659 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5660 return refcnt;
5661 }
5662 EXPORT_SYMBOL(netdev_refcnt_read);
5663
5664 /*
5665 * netdev_wait_allrefs - wait until all references are gone.
5666 *
5667 * This is called when unregistering network devices.
5668 *
5669 * Any protocol or device that holds a reference should register
5670 * for netdevice notification, and cleanup and put back the
5671 * reference if they receive an UNREGISTER event.
5672 * We can get stuck here if buggy protocols don't correctly
5673 * call dev_put.
5674 */
5675 static void netdev_wait_allrefs(struct net_device *dev)
5676 {
5677 unsigned long rebroadcast_time, warning_time;
5678 int refcnt;
5679
5680 linkwatch_forget_dev(dev);
5681
5682 rebroadcast_time = warning_time = jiffies;
5683 refcnt = netdev_refcnt_read(dev);
5684
5685 while (refcnt != 0) {
5686 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5687 rtnl_lock();
5688
5689 /* Rebroadcast unregister notification */
5690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5691 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5692 * should have already handle it the first time */
5693
5694 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5695 &dev->state)) {
5696 /* We must not have linkwatch events
5697 * pending on unregister. If this
5698 * happens, we simply run the queue
5699 * unscheduled, resulting in a noop
5700 * for this device.
5701 */
5702 linkwatch_run_queue();
5703 }
5704
5705 __rtnl_unlock();
5706
5707 rebroadcast_time = jiffies;
5708 }
5709
5710 msleep(250);
5711
5712 refcnt = netdev_refcnt_read(dev);
5713
5714 if (time_after(jiffies, warning_time + 10 * HZ)) {
5715 printk(KERN_EMERG "unregister_netdevice: "
5716 "waiting for %s to become free. Usage "
5717 "count = %d\n",
5718 dev->name, refcnt);
5719 warning_time = jiffies;
5720 }
5721 }
5722 }
5723
5724 /* The sequence is:
5725 *
5726 * rtnl_lock();
5727 * ...
5728 * register_netdevice(x1);
5729 * register_netdevice(x2);
5730 * ...
5731 * unregister_netdevice(y1);
5732 * unregister_netdevice(y2);
5733 * ...
5734 * rtnl_unlock();
5735 * free_netdev(y1);
5736 * free_netdev(y2);
5737 *
5738 * We are invoked by rtnl_unlock().
5739 * This allows us to deal with problems:
5740 * 1) We can delete sysfs objects which invoke hotplug
5741 * without deadlocking with linkwatch via keventd.
5742 * 2) Since we run with the RTNL semaphore not held, we can sleep
5743 * safely in order to wait for the netdev refcnt to drop to zero.
5744 *
5745 * We must not return until all unregister events added during
5746 * the interval the lock was held have been completed.
5747 */
5748 void netdev_run_todo(void)
5749 {
5750 struct list_head list;
5751
5752 /* Snapshot list, allow later requests */
5753 list_replace_init(&net_todo_list, &list);
5754
5755 __rtnl_unlock();
5756
5757 while (!list_empty(&list)) {
5758 struct net_device *dev
5759 = list_first_entry(&list, struct net_device, todo_list);
5760 list_del(&dev->todo_list);
5761
5762 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5763 printk(KERN_ERR "network todo '%s' but state %d\n",
5764 dev->name, dev->reg_state);
5765 dump_stack();
5766 continue;
5767 }
5768
5769 dev->reg_state = NETREG_UNREGISTERED;
5770
5771 on_each_cpu(flush_backlog, dev, 1);
5772
5773 netdev_wait_allrefs(dev);
5774
5775 /* paranoia */
5776 BUG_ON(netdev_refcnt_read(dev));
5777 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5778 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5779 WARN_ON(dev->dn_ptr);
5780
5781 if (dev->destructor)
5782 dev->destructor(dev);
5783
5784 /* Free network device */
5785 kobject_put(&dev->dev.kobj);
5786 }
5787 }
5788
5789 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5790 * fields in the same order, with only the type differing.
5791 */
5792 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5793 const struct net_device_stats *netdev_stats)
5794 {
5795 #if BITS_PER_LONG == 64
5796 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5797 memcpy(stats64, netdev_stats, sizeof(*stats64));
5798 #else
5799 size_t i, n = sizeof(*stats64) / sizeof(u64);
5800 const unsigned long *src = (const unsigned long *)netdev_stats;
5801 u64 *dst = (u64 *)stats64;
5802
5803 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5804 sizeof(*stats64) / sizeof(u64));
5805 for (i = 0; i < n; i++)
5806 dst[i] = src[i];
5807 #endif
5808 }
5809
5810 /**
5811 * dev_get_stats - get network device statistics
5812 * @dev: device to get statistics from
5813 * @storage: place to store stats
5814 *
5815 * Get network statistics from device. Return @storage.
5816 * The device driver may provide its own method by setting
5817 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5818 * otherwise the internal statistics structure is used.
5819 */
5820 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5821 struct rtnl_link_stats64 *storage)
5822 {
5823 const struct net_device_ops *ops = dev->netdev_ops;
5824
5825 if (ops->ndo_get_stats64) {
5826 memset(storage, 0, sizeof(*storage));
5827 ops->ndo_get_stats64(dev, storage);
5828 } else if (ops->ndo_get_stats) {
5829 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5830 } else {
5831 netdev_stats_to_stats64(storage, &dev->stats);
5832 }
5833 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5834 return storage;
5835 }
5836 EXPORT_SYMBOL(dev_get_stats);
5837
5838 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5839 {
5840 struct netdev_queue *queue = dev_ingress_queue(dev);
5841
5842 #ifdef CONFIG_NET_CLS_ACT
5843 if (queue)
5844 return queue;
5845 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5846 if (!queue)
5847 return NULL;
5848 netdev_init_one_queue(dev, queue, NULL);
5849 queue->qdisc = &noop_qdisc;
5850 queue->qdisc_sleeping = &noop_qdisc;
5851 rcu_assign_pointer(dev->ingress_queue, queue);
5852 #endif
5853 return queue;
5854 }
5855
5856 /**
5857 * alloc_netdev_mqs - allocate network device
5858 * @sizeof_priv: size of private data to allocate space for
5859 * @name: device name format string
5860 * @setup: callback to initialize device
5861 * @txqs: the number of TX subqueues to allocate
5862 * @rxqs: the number of RX subqueues to allocate
5863 *
5864 * Allocates a struct net_device with private data area for driver use
5865 * and performs basic initialization. Also allocates subquue structs
5866 * for each queue on the device.
5867 */
5868 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5869 void (*setup)(struct net_device *),
5870 unsigned int txqs, unsigned int rxqs)
5871 {
5872 struct net_device *dev;
5873 size_t alloc_size;
5874 struct net_device *p;
5875
5876 BUG_ON(strlen(name) >= sizeof(dev->name));
5877
5878 if (txqs < 1) {
5879 pr_err("alloc_netdev: Unable to allocate device "
5880 "with zero queues.\n");
5881 return NULL;
5882 }
5883
5884 #ifdef CONFIG_RPS
5885 if (rxqs < 1) {
5886 pr_err("alloc_netdev: Unable to allocate device "
5887 "with zero RX queues.\n");
5888 return NULL;
5889 }
5890 #endif
5891
5892 alloc_size = sizeof(struct net_device);
5893 if (sizeof_priv) {
5894 /* ensure 32-byte alignment of private area */
5895 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5896 alloc_size += sizeof_priv;
5897 }
5898 /* ensure 32-byte alignment of whole construct */
5899 alloc_size += NETDEV_ALIGN - 1;
5900
5901 p = kzalloc(alloc_size, GFP_KERNEL);
5902 if (!p) {
5903 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5904 return NULL;
5905 }
5906
5907 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5908 dev->padded = (char *)dev - (char *)p;
5909
5910 dev->pcpu_refcnt = alloc_percpu(int);
5911 if (!dev->pcpu_refcnt)
5912 goto free_p;
5913
5914 if (dev_addr_init(dev))
5915 goto free_pcpu;
5916
5917 dev_mc_init(dev);
5918 dev_uc_init(dev);
5919
5920 dev_net_set(dev, &init_net);
5921
5922 dev->gso_max_size = GSO_MAX_SIZE;
5923
5924 INIT_LIST_HEAD(&dev->napi_list);
5925 INIT_LIST_HEAD(&dev->unreg_list);
5926 INIT_LIST_HEAD(&dev->link_watch_list);
5927 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5928 setup(dev);
5929
5930 dev->num_tx_queues = txqs;
5931 dev->real_num_tx_queues = txqs;
5932 if (netif_alloc_netdev_queues(dev))
5933 goto free_all;
5934
5935 #ifdef CONFIG_RPS
5936 dev->num_rx_queues = rxqs;
5937 dev->real_num_rx_queues = rxqs;
5938 if (netif_alloc_rx_queues(dev))
5939 goto free_all;
5940 #endif
5941
5942 strcpy(dev->name, name);
5943 dev->group = INIT_NETDEV_GROUP;
5944 return dev;
5945
5946 free_all:
5947 free_netdev(dev);
5948 return NULL;
5949
5950 free_pcpu:
5951 free_percpu(dev->pcpu_refcnt);
5952 kfree(dev->_tx);
5953 #ifdef CONFIG_RPS
5954 kfree(dev->_rx);
5955 #endif
5956
5957 free_p:
5958 kfree(p);
5959 return NULL;
5960 }
5961 EXPORT_SYMBOL(alloc_netdev_mqs);
5962
5963 /**
5964 * free_netdev - free network device
5965 * @dev: device
5966 *
5967 * This function does the last stage of destroying an allocated device
5968 * interface. The reference to the device object is released.
5969 * If this is the last reference then it will be freed.
5970 */
5971 void free_netdev(struct net_device *dev)
5972 {
5973 struct napi_struct *p, *n;
5974
5975 release_net(dev_net(dev));
5976
5977 kfree(dev->_tx);
5978 #ifdef CONFIG_RPS
5979 kfree(dev->_rx);
5980 #endif
5981
5982 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5983
5984 /* Flush device addresses */
5985 dev_addr_flush(dev);
5986
5987 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5988 netif_napi_del(p);
5989
5990 free_percpu(dev->pcpu_refcnt);
5991 dev->pcpu_refcnt = NULL;
5992
5993 /* Compatibility with error handling in drivers */
5994 if (dev->reg_state == NETREG_UNINITIALIZED) {
5995 kfree((char *)dev - dev->padded);
5996 return;
5997 }
5998
5999 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6000 dev->reg_state = NETREG_RELEASED;
6001
6002 /* will free via device release */
6003 put_device(&dev->dev);
6004 }
6005 EXPORT_SYMBOL(free_netdev);
6006
6007 /**
6008 * synchronize_net - Synchronize with packet receive processing
6009 *
6010 * Wait for packets currently being received to be done.
6011 * Does not block later packets from starting.
6012 */
6013 void synchronize_net(void)
6014 {
6015 might_sleep();
6016 if (rtnl_is_locked())
6017 synchronize_rcu_expedited();
6018 else
6019 synchronize_rcu();
6020 }
6021 EXPORT_SYMBOL(synchronize_net);
6022
6023 /**
6024 * unregister_netdevice_queue - remove device from the kernel
6025 * @dev: device
6026 * @head: list
6027 *
6028 * This function shuts down a device interface and removes it
6029 * from the kernel tables.
6030 * If head not NULL, device is queued to be unregistered later.
6031 *
6032 * Callers must hold the rtnl semaphore. You may want
6033 * unregister_netdev() instead of this.
6034 */
6035
6036 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6037 {
6038 ASSERT_RTNL();
6039
6040 if (head) {
6041 list_move_tail(&dev->unreg_list, head);
6042 } else {
6043 rollback_registered(dev);
6044 /* Finish processing unregister after unlock */
6045 net_set_todo(dev);
6046 }
6047 }
6048 EXPORT_SYMBOL(unregister_netdevice_queue);
6049
6050 /**
6051 * unregister_netdevice_many - unregister many devices
6052 * @head: list of devices
6053 */
6054 void unregister_netdevice_many(struct list_head *head)
6055 {
6056 struct net_device *dev;
6057
6058 if (!list_empty(head)) {
6059 rollback_registered_many(head);
6060 list_for_each_entry(dev, head, unreg_list)
6061 net_set_todo(dev);
6062 }
6063 }
6064 EXPORT_SYMBOL(unregister_netdevice_many);
6065
6066 /**
6067 * unregister_netdev - remove device from the kernel
6068 * @dev: device
6069 *
6070 * This function shuts down a device interface and removes it
6071 * from the kernel tables.
6072 *
6073 * This is just a wrapper for unregister_netdevice that takes
6074 * the rtnl semaphore. In general you want to use this and not
6075 * unregister_netdevice.
6076 */
6077 void unregister_netdev(struct net_device *dev)
6078 {
6079 rtnl_lock();
6080 unregister_netdevice(dev);
6081 rtnl_unlock();
6082 }
6083 EXPORT_SYMBOL(unregister_netdev);
6084
6085 /**
6086 * dev_change_net_namespace - move device to different nethost namespace
6087 * @dev: device
6088 * @net: network namespace
6089 * @pat: If not NULL name pattern to try if the current device name
6090 * is already taken in the destination network namespace.
6091 *
6092 * This function shuts down a device interface and moves it
6093 * to a new network namespace. On success 0 is returned, on
6094 * a failure a netagive errno code is returned.
6095 *
6096 * Callers must hold the rtnl semaphore.
6097 */
6098
6099 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6100 {
6101 int err;
6102
6103 ASSERT_RTNL();
6104
6105 /* Don't allow namespace local devices to be moved. */
6106 err = -EINVAL;
6107 if (dev->features & NETIF_F_NETNS_LOCAL)
6108 goto out;
6109
6110 /* Ensure the device has been registrered */
6111 err = -EINVAL;
6112 if (dev->reg_state != NETREG_REGISTERED)
6113 goto out;
6114
6115 /* Get out if there is nothing todo */
6116 err = 0;
6117 if (net_eq(dev_net(dev), net))
6118 goto out;
6119
6120 /* Pick the destination device name, and ensure
6121 * we can use it in the destination network namespace.
6122 */
6123 err = -EEXIST;
6124 if (__dev_get_by_name(net, dev->name)) {
6125 /* We get here if we can't use the current device name */
6126 if (!pat)
6127 goto out;
6128 if (dev_get_valid_name(dev, pat) < 0)
6129 goto out;
6130 }
6131
6132 /*
6133 * And now a mini version of register_netdevice unregister_netdevice.
6134 */
6135
6136 /* If device is running close it first. */
6137 dev_close(dev);
6138
6139 /* And unlink it from device chain */
6140 err = -ENODEV;
6141 unlist_netdevice(dev);
6142
6143 synchronize_net();
6144
6145 /* Shutdown queueing discipline. */
6146 dev_shutdown(dev);
6147
6148 /* Notify protocols, that we are about to destroy
6149 this device. They should clean all the things.
6150
6151 Note that dev->reg_state stays at NETREG_REGISTERED.
6152 This is wanted because this way 8021q and macvlan know
6153 the device is just moving and can keep their slaves up.
6154 */
6155 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6156 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6157
6158 /*
6159 * Flush the unicast and multicast chains
6160 */
6161 dev_uc_flush(dev);
6162 dev_mc_flush(dev);
6163
6164 /* Actually switch the network namespace */
6165 dev_net_set(dev, net);
6166
6167 /* If there is an ifindex conflict assign a new one */
6168 if (__dev_get_by_index(net, dev->ifindex)) {
6169 int iflink = (dev->iflink == dev->ifindex);
6170 dev->ifindex = dev_new_index(net);
6171 if (iflink)
6172 dev->iflink = dev->ifindex;
6173 }
6174
6175 /* Fixup kobjects */
6176 err = device_rename(&dev->dev, dev->name);
6177 WARN_ON(err);
6178
6179 /* Add the device back in the hashes */
6180 list_netdevice(dev);
6181
6182 /* Notify protocols, that a new device appeared. */
6183 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6184
6185 /*
6186 * Prevent userspace races by waiting until the network
6187 * device is fully setup before sending notifications.
6188 */
6189 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6190
6191 synchronize_net();
6192 err = 0;
6193 out:
6194 return err;
6195 }
6196 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6197
6198 static int dev_cpu_callback(struct notifier_block *nfb,
6199 unsigned long action,
6200 void *ocpu)
6201 {
6202 struct sk_buff **list_skb;
6203 struct sk_buff *skb;
6204 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6205 struct softnet_data *sd, *oldsd;
6206
6207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6208 return NOTIFY_OK;
6209
6210 local_irq_disable();
6211 cpu = smp_processor_id();
6212 sd = &per_cpu(softnet_data, cpu);
6213 oldsd = &per_cpu(softnet_data, oldcpu);
6214
6215 /* Find end of our completion_queue. */
6216 list_skb = &sd->completion_queue;
6217 while (*list_skb)
6218 list_skb = &(*list_skb)->next;
6219 /* Append completion queue from offline CPU. */
6220 *list_skb = oldsd->completion_queue;
6221 oldsd->completion_queue = NULL;
6222
6223 /* Append output queue from offline CPU. */
6224 if (oldsd->output_queue) {
6225 *sd->output_queue_tailp = oldsd->output_queue;
6226 sd->output_queue_tailp = oldsd->output_queue_tailp;
6227 oldsd->output_queue = NULL;
6228 oldsd->output_queue_tailp = &oldsd->output_queue;
6229 }
6230 /* Append NAPI poll list from offline CPU. */
6231 if (!list_empty(&oldsd->poll_list)) {
6232 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6233 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6234 }
6235
6236 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6237 local_irq_enable();
6238
6239 /* Process offline CPU's input_pkt_queue */
6240 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6241 netif_rx(skb);
6242 input_queue_head_incr(oldsd);
6243 }
6244 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6245 netif_rx(skb);
6246 input_queue_head_incr(oldsd);
6247 }
6248
6249 return NOTIFY_OK;
6250 }
6251
6252
6253 /**
6254 * netdev_increment_features - increment feature set by one
6255 * @all: current feature set
6256 * @one: new feature set
6257 * @mask: mask feature set
6258 *
6259 * Computes a new feature set after adding a device with feature set
6260 * @one to the master device with current feature set @all. Will not
6261 * enable anything that is off in @mask. Returns the new feature set.
6262 */
6263 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6264 {
6265 if (mask & NETIF_F_GEN_CSUM)
6266 mask |= NETIF_F_ALL_CSUM;
6267 mask |= NETIF_F_VLAN_CHALLENGED;
6268
6269 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6270 all &= one | ~NETIF_F_ALL_FOR_ALL;
6271
6272 /* If device needs checksumming, downgrade to it. */
6273 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6274 all &= ~NETIF_F_NO_CSUM;
6275
6276 /* If one device supports hw checksumming, set for all. */
6277 if (all & NETIF_F_GEN_CSUM)
6278 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6279
6280 return all;
6281 }
6282 EXPORT_SYMBOL(netdev_increment_features);
6283
6284 static struct hlist_head *netdev_create_hash(void)
6285 {
6286 int i;
6287 struct hlist_head *hash;
6288
6289 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6290 if (hash != NULL)
6291 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6292 INIT_HLIST_HEAD(&hash[i]);
6293
6294 return hash;
6295 }
6296
6297 /* Initialize per network namespace state */
6298 static int __net_init netdev_init(struct net *net)
6299 {
6300 INIT_LIST_HEAD(&net->dev_base_head);
6301
6302 net->dev_name_head = netdev_create_hash();
6303 if (net->dev_name_head == NULL)
6304 goto err_name;
6305
6306 net->dev_index_head = netdev_create_hash();
6307 if (net->dev_index_head == NULL)
6308 goto err_idx;
6309
6310 return 0;
6311
6312 err_idx:
6313 kfree(net->dev_name_head);
6314 err_name:
6315 return -ENOMEM;
6316 }
6317
6318 /**
6319 * netdev_drivername - network driver for the device
6320 * @dev: network device
6321 *
6322 * Determine network driver for device.
6323 */
6324 const char *netdev_drivername(const struct net_device *dev)
6325 {
6326 const struct device_driver *driver;
6327 const struct device *parent;
6328 const char *empty = "";
6329
6330 parent = dev->dev.parent;
6331 if (!parent)
6332 return empty;
6333
6334 driver = parent->driver;
6335 if (driver && driver->name)
6336 return driver->name;
6337 return empty;
6338 }
6339
6340 static int __netdev_printk(const char *level, const struct net_device *dev,
6341 struct va_format *vaf)
6342 {
6343 int r;
6344
6345 if (dev && dev->dev.parent)
6346 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6347 netdev_name(dev), vaf);
6348 else if (dev)
6349 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6350 else
6351 r = printk("%s(NULL net_device): %pV", level, vaf);
6352
6353 return r;
6354 }
6355
6356 int netdev_printk(const char *level, const struct net_device *dev,
6357 const char *format, ...)
6358 {
6359 struct va_format vaf;
6360 va_list args;
6361 int r;
6362
6363 va_start(args, format);
6364
6365 vaf.fmt = format;
6366 vaf.va = &args;
6367
6368 r = __netdev_printk(level, dev, &vaf);
6369 va_end(args);
6370
6371 return r;
6372 }
6373 EXPORT_SYMBOL(netdev_printk);
6374
6375 #define define_netdev_printk_level(func, level) \
6376 int func(const struct net_device *dev, const char *fmt, ...) \
6377 { \
6378 int r; \
6379 struct va_format vaf; \
6380 va_list args; \
6381 \
6382 va_start(args, fmt); \
6383 \
6384 vaf.fmt = fmt; \
6385 vaf.va = &args; \
6386 \
6387 r = __netdev_printk(level, dev, &vaf); \
6388 va_end(args); \
6389 \
6390 return r; \
6391 } \
6392 EXPORT_SYMBOL(func);
6393
6394 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6395 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6396 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6397 define_netdev_printk_level(netdev_err, KERN_ERR);
6398 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6399 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6400 define_netdev_printk_level(netdev_info, KERN_INFO);
6401
6402 static void __net_exit netdev_exit(struct net *net)
6403 {
6404 kfree(net->dev_name_head);
6405 kfree(net->dev_index_head);
6406 }
6407
6408 static struct pernet_operations __net_initdata netdev_net_ops = {
6409 .init = netdev_init,
6410 .exit = netdev_exit,
6411 };
6412
6413 static void __net_exit default_device_exit(struct net *net)
6414 {
6415 struct net_device *dev, *aux;
6416 /*
6417 * Push all migratable network devices back to the
6418 * initial network namespace
6419 */
6420 rtnl_lock();
6421 for_each_netdev_safe(net, dev, aux) {
6422 int err;
6423 char fb_name[IFNAMSIZ];
6424
6425 /* Ignore unmoveable devices (i.e. loopback) */
6426 if (dev->features & NETIF_F_NETNS_LOCAL)
6427 continue;
6428
6429 /* Leave virtual devices for the generic cleanup */
6430 if (dev->rtnl_link_ops)
6431 continue;
6432
6433 /* Push remaining network devices to init_net */
6434 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6435 err = dev_change_net_namespace(dev, &init_net, fb_name);
6436 if (err) {
6437 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6438 __func__, dev->name, err);
6439 BUG();
6440 }
6441 }
6442 rtnl_unlock();
6443 }
6444
6445 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6446 {
6447 /* At exit all network devices most be removed from a network
6448 * namespace. Do this in the reverse order of registration.
6449 * Do this across as many network namespaces as possible to
6450 * improve batching efficiency.
6451 */
6452 struct net_device *dev;
6453 struct net *net;
6454 LIST_HEAD(dev_kill_list);
6455
6456 rtnl_lock();
6457 list_for_each_entry(net, net_list, exit_list) {
6458 for_each_netdev_reverse(net, dev) {
6459 if (dev->rtnl_link_ops)
6460 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6461 else
6462 unregister_netdevice_queue(dev, &dev_kill_list);
6463 }
6464 }
6465 unregister_netdevice_many(&dev_kill_list);
6466 list_del(&dev_kill_list);
6467 rtnl_unlock();
6468 }
6469
6470 static struct pernet_operations __net_initdata default_device_ops = {
6471 .exit = default_device_exit,
6472 .exit_batch = default_device_exit_batch,
6473 };
6474
6475 /*
6476 * Initialize the DEV module. At boot time this walks the device list and
6477 * unhooks any devices that fail to initialise (normally hardware not
6478 * present) and leaves us with a valid list of present and active devices.
6479 *
6480 */
6481
6482 /*
6483 * This is called single threaded during boot, so no need
6484 * to take the rtnl semaphore.
6485 */
6486 static int __init net_dev_init(void)
6487 {
6488 int i, rc = -ENOMEM;
6489
6490 BUG_ON(!dev_boot_phase);
6491
6492 if (dev_proc_init())
6493 goto out;
6494
6495 if (netdev_kobject_init())
6496 goto out;
6497
6498 INIT_LIST_HEAD(&ptype_all);
6499 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6500 INIT_LIST_HEAD(&ptype_base[i]);
6501
6502 if (register_pernet_subsys(&netdev_net_ops))
6503 goto out;
6504
6505 /*
6506 * Initialise the packet receive queues.
6507 */
6508
6509 for_each_possible_cpu(i) {
6510 struct softnet_data *sd = &per_cpu(softnet_data, i);
6511
6512 memset(sd, 0, sizeof(*sd));
6513 skb_queue_head_init(&sd->input_pkt_queue);
6514 skb_queue_head_init(&sd->process_queue);
6515 sd->completion_queue = NULL;
6516 INIT_LIST_HEAD(&sd->poll_list);
6517 sd->output_queue = NULL;
6518 sd->output_queue_tailp = &sd->output_queue;
6519 #ifdef CONFIG_RPS
6520 sd->csd.func = rps_trigger_softirq;
6521 sd->csd.info = sd;
6522 sd->csd.flags = 0;
6523 sd->cpu = i;
6524 #endif
6525
6526 sd->backlog.poll = process_backlog;
6527 sd->backlog.weight = weight_p;
6528 sd->backlog.gro_list = NULL;
6529 sd->backlog.gro_count = 0;
6530 }
6531
6532 dev_boot_phase = 0;
6533
6534 /* The loopback device is special if any other network devices
6535 * is present in a network namespace the loopback device must
6536 * be present. Since we now dynamically allocate and free the
6537 * loopback device ensure this invariant is maintained by
6538 * keeping the loopback device as the first device on the
6539 * list of network devices. Ensuring the loopback devices
6540 * is the first device that appears and the last network device
6541 * that disappears.
6542 */
6543 if (register_pernet_device(&loopback_net_ops))
6544 goto out;
6545
6546 if (register_pernet_device(&default_device_ops))
6547 goto out;
6548
6549 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6550 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6551
6552 hotcpu_notifier(dev_cpu_callback, 0);
6553 dst_init();
6554 dev_mcast_init();
6555 rc = 0;
6556 out:
6557 return rc;
6558 }
6559
6560 subsys_initcall(net_dev_init);
6561
6562 static int __init initialize_hashrnd(void)
6563 {
6564 get_random_bytes(&hashrnd, sizeof(hashrnd));
6565 return 0;
6566 }
6567
6568 late_initcall_sync(initialize_hashrnd);
6569
This page took 0.18085 seconds and 4 git commands to generate.