gro: small napi_get_frags() optim
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 /*
151 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
152 * semaphore.
153 *
154 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
155 *
156 * Writers must hold the rtnl semaphore while they loop through the
157 * dev_base_head list, and hold dev_base_lock for writing when they do the
158 * actual updates. This allows pure readers to access the list even
159 * while a writer is preparing to update it.
160 *
161 * To put it another way, dev_base_lock is held for writing only to
162 * protect against pure readers; the rtnl semaphore provides the
163 * protection against other writers.
164 *
165 * See, for example usages, register_netdevice() and
166 * unregister_netdevice(), which must be called with the rtnl
167 * semaphore held.
168 */
169 DEFINE_RWLOCK(dev_base_lock);
170 EXPORT_SYMBOL(dev_base_lock);
171
172 /* protects napi_hash addition/deletion and napi_gen_id */
173 static DEFINE_SPINLOCK(napi_hash_lock);
174
175 static unsigned int napi_gen_id;
176 static DEFINE_HASHTABLE(napi_hash, 8);
177
178 static seqcount_t devnet_rename_seq;
179
180 static inline void dev_base_seq_inc(struct net *net)
181 {
182 while (++net->dev_base_seq == 0);
183 }
184
185 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
186 {
187 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
188
189 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
190 }
191
192 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
193 {
194 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
195 }
196
197 static inline void rps_lock(struct softnet_data *sd)
198 {
199 #ifdef CONFIG_RPS
200 spin_lock(&sd->input_pkt_queue.lock);
201 #endif
202 }
203
204 static inline void rps_unlock(struct softnet_data *sd)
205 {
206 #ifdef CONFIG_RPS
207 spin_unlock(&sd->input_pkt_queue.lock);
208 #endif
209 }
210
211 /* Device list insertion */
212 static void list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head_rcu(&dev->index_hlist,
222 dev_index_hash(net, dev->ifindex));
223 write_unlock_bh(&dev_base_lock);
224
225 dev_base_seq_inc(net);
226 }
227
228 /* Device list removal
229 * caller must respect a RCU grace period before freeing/reusing dev
230 */
231 static void unlist_netdevice(struct net_device *dev)
232 {
233 ASSERT_RTNL();
234
235 /* Unlink dev from the device chain */
236 write_lock_bh(&dev_base_lock);
237 list_del_rcu(&dev->dev_list);
238 hlist_del_rcu(&dev->name_hlist);
239 hlist_del_rcu(&dev->index_hlist);
240 write_unlock_bh(&dev_base_lock);
241
242 dev_base_seq_inc(dev_net(dev));
243 }
244
245 /*
246 * Our notifier list
247 */
248
249 static RAW_NOTIFIER_HEAD(netdev_chain);
250
251 /*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
257 EXPORT_PER_CPU_SYMBOL(softnet_data);
258
259 #ifdef CONFIG_LOCKDEP
260 /*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
278 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
279 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
280
281 static const char *const netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
295 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
296 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
300
301 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
302 {
303 int i;
304
305 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
306 if (netdev_lock_type[i] == dev_type)
307 return i;
308 /* the last key is used by default */
309 return ARRAY_SIZE(netdev_lock_type) - 1;
310 }
311
312 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
313 unsigned short dev_type)
314 {
315 int i;
316
317 i = netdev_lock_pos(dev_type);
318 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
319 netdev_lock_name[i]);
320 }
321
322 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev->type);
327 lockdep_set_class_and_name(&dev->addr_list_lock,
328 &netdev_addr_lock_key[i],
329 netdev_lock_name[i]);
330 }
331 #else
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 unsigned short dev_type)
334 {
335 }
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 }
339 #endif
340
341 /*******************************************************************************
342
343 Protocol management and registration routines
344
345 *******************************************************************************/
346
347 /*
348 * Add a protocol ID to the list. Now that the input handler is
349 * smarter we can dispense with all the messy stuff that used to be
350 * here.
351 *
352 * BEWARE!!! Protocol handlers, mangling input packets,
353 * MUST BE last in hash buckets and checking protocol handlers
354 * MUST start from promiscuous ptype_all chain in net_bh.
355 * It is true now, do not change it.
356 * Explanation follows: if protocol handler, mangling packet, will
357 * be the first on list, it is not able to sense, that packet
358 * is cloned and should be copied-on-write, so that it will
359 * change it and subsequent readers will get broken packet.
360 * --ANK (980803)
361 */
362
363 static inline struct list_head *ptype_head(const struct packet_type *pt)
364 {
365 if (pt->type == htons(ETH_P_ALL))
366 return &ptype_all;
367 else
368 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
369 }
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 struct list_head *head = ptype_head(pt);
387
388 spin_lock(&ptype_lock);
389 list_add_rcu(&pt->list, head);
390 spin_unlock(&ptype_lock);
391 }
392 EXPORT_SYMBOL(dev_add_pack);
393
394 /**
395 * __dev_remove_pack - remove packet handler
396 * @pt: packet type declaration
397 *
398 * Remove a protocol handler that was previously added to the kernel
399 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
400 * from the kernel lists and can be freed or reused once this function
401 * returns.
402 *
403 * The packet type might still be in use by receivers
404 * and must not be freed until after all the CPU's have gone
405 * through a quiescent state.
406 */
407 void __dev_remove_pack(struct packet_type *pt)
408 {
409 struct list_head *head = ptype_head(pt);
410 struct packet_type *pt1;
411
412 spin_lock(&ptype_lock);
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 pr_warn("dev_remove_pack: %p not found\n", pt);
422 out:
423 spin_unlock(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426
427 /**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 __dev_remove_pack(pt);
442
443 synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446
447
448 /**
449 * dev_add_offload - register offload handlers
450 * @po: protocol offload declaration
451 *
452 * Add protocol offload handlers to the networking stack. The passed
453 * &proto_offload is linked into kernel lists and may not be freed until
454 * it has been removed from the kernel lists.
455 *
456 * This call does not sleep therefore it can not
457 * guarantee all CPU's that are in middle of receiving packets
458 * will see the new offload handlers (until the next received packet).
459 */
460 void dev_add_offload(struct packet_offload *po)
461 {
462 struct list_head *head = &offload_base;
463
464 spin_lock(&offload_lock);
465 list_add_rcu(&po->list, head);
466 spin_unlock(&offload_lock);
467 }
468 EXPORT_SYMBOL(dev_add_offload);
469
470 /**
471 * __dev_remove_offload - remove offload handler
472 * @po: packet offload declaration
473 *
474 * Remove a protocol offload handler that was previously added to the
475 * kernel offload handlers by dev_add_offload(). The passed &offload_type
476 * is removed from the kernel lists and can be freed or reused once this
477 * function returns.
478 *
479 * The packet type might still be in use by receivers
480 * and must not be freed until after all the CPU's have gone
481 * through a quiescent state.
482 */
483 void __dev_remove_offload(struct packet_offload *po)
484 {
485 struct list_head *head = &offload_base;
486 struct packet_offload *po1;
487
488 spin_lock(&offload_lock);
489
490 list_for_each_entry(po1, head, list) {
491 if (po == po1) {
492 list_del_rcu(&po->list);
493 goto out;
494 }
495 }
496
497 pr_warn("dev_remove_offload: %p not found\n", po);
498 out:
499 spin_unlock(&offload_lock);
500 }
501 EXPORT_SYMBOL(__dev_remove_offload);
502
503 /**
504 * dev_remove_offload - remove packet offload handler
505 * @po: packet offload declaration
506 *
507 * Remove a packet offload handler that was previously added to the kernel
508 * offload handlers by dev_add_offload(). The passed &offload_type is
509 * removed from the kernel lists and can be freed or reused once this
510 * function returns.
511 *
512 * This call sleeps to guarantee that no CPU is looking at the packet
513 * type after return.
514 */
515 void dev_remove_offload(struct packet_offload *po)
516 {
517 __dev_remove_offload(po);
518
519 synchronize_net();
520 }
521 EXPORT_SYMBOL(dev_remove_offload);
522
523 /******************************************************************************
524
525 Device Boot-time Settings Routines
526
527 *******************************************************************************/
528
529 /* Boot time configuration table */
530 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
531
532 /**
533 * netdev_boot_setup_add - add new setup entry
534 * @name: name of the device
535 * @map: configured settings for the device
536 *
537 * Adds new setup entry to the dev_boot_setup list. The function
538 * returns 0 on error and 1 on success. This is a generic routine to
539 * all netdevices.
540 */
541 static int netdev_boot_setup_add(char *name, struct ifmap *map)
542 {
543 struct netdev_boot_setup *s;
544 int i;
545
546 s = dev_boot_setup;
547 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
548 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
549 memset(s[i].name, 0, sizeof(s[i].name));
550 strlcpy(s[i].name, name, IFNAMSIZ);
551 memcpy(&s[i].map, map, sizeof(s[i].map));
552 break;
553 }
554 }
555
556 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
557 }
558
559 /**
560 * netdev_boot_setup_check - check boot time settings
561 * @dev: the netdevice
562 *
563 * Check boot time settings for the device.
564 * The found settings are set for the device to be used
565 * later in the device probing.
566 * Returns 0 if no settings found, 1 if they are.
567 */
568 int netdev_boot_setup_check(struct net_device *dev)
569 {
570 struct netdev_boot_setup *s = dev_boot_setup;
571 int i;
572
573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
575 !strcmp(dev->name, s[i].name)) {
576 dev->irq = s[i].map.irq;
577 dev->base_addr = s[i].map.base_addr;
578 dev->mem_start = s[i].map.mem_start;
579 dev->mem_end = s[i].map.mem_end;
580 return 1;
581 }
582 }
583 return 0;
584 }
585 EXPORT_SYMBOL(netdev_boot_setup_check);
586
587
588 /**
589 * netdev_boot_base - get address from boot time settings
590 * @prefix: prefix for network device
591 * @unit: id for network device
592 *
593 * Check boot time settings for the base address of device.
594 * The found settings are set for the device to be used
595 * later in the device probing.
596 * Returns 0 if no settings found.
597 */
598 unsigned long netdev_boot_base(const char *prefix, int unit)
599 {
600 const struct netdev_boot_setup *s = dev_boot_setup;
601 char name[IFNAMSIZ];
602 int i;
603
604 sprintf(name, "%s%d", prefix, unit);
605
606 /*
607 * If device already registered then return base of 1
608 * to indicate not to probe for this interface
609 */
610 if (__dev_get_by_name(&init_net, name))
611 return 1;
612
613 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
614 if (!strcmp(name, s[i].name))
615 return s[i].map.base_addr;
616 return 0;
617 }
618
619 /*
620 * Saves at boot time configured settings for any netdevice.
621 */
622 int __init netdev_boot_setup(char *str)
623 {
624 int ints[5];
625 struct ifmap map;
626
627 str = get_options(str, ARRAY_SIZE(ints), ints);
628 if (!str || !*str)
629 return 0;
630
631 /* Save settings */
632 memset(&map, 0, sizeof(map));
633 if (ints[0] > 0)
634 map.irq = ints[1];
635 if (ints[0] > 1)
636 map.base_addr = ints[2];
637 if (ints[0] > 2)
638 map.mem_start = ints[3];
639 if (ints[0] > 3)
640 map.mem_end = ints[4];
641
642 /* Add new entry to the list */
643 return netdev_boot_setup_add(str, &map);
644 }
645
646 __setup("netdev=", netdev_boot_setup);
647
648 /*******************************************************************************
649
650 Device Interface Subroutines
651
652 *******************************************************************************/
653
654 /**
655 * __dev_get_by_name - find a device by its name
656 * @net: the applicable net namespace
657 * @name: name to find
658 *
659 * Find an interface by name. Must be called under RTNL semaphore
660 * or @dev_base_lock. If the name is found a pointer to the device
661 * is returned. If the name is not found then %NULL is returned. The
662 * reference counters are not incremented so the caller must be
663 * careful with locks.
664 */
665
666 struct net_device *__dev_get_by_name(struct net *net, const char *name)
667 {
668 struct net_device *dev;
669 struct hlist_head *head = dev_name_hash(net, name);
670
671 hlist_for_each_entry(dev, head, name_hlist)
672 if (!strncmp(dev->name, name, IFNAMSIZ))
673 return dev;
674
675 return NULL;
676 }
677 EXPORT_SYMBOL(__dev_get_by_name);
678
679 /**
680 * dev_get_by_name_rcu - find a device by its name
681 * @net: the applicable net namespace
682 * @name: name to find
683 *
684 * Find an interface by name.
685 * If the name is found a pointer to the device is returned.
686 * If the name is not found then %NULL is returned.
687 * The reference counters are not incremented so the caller must be
688 * careful with locks. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
692 {
693 struct net_device *dev;
694 struct hlist_head *head = dev_name_hash(net, name);
695
696 hlist_for_each_entry_rcu(dev, head, name_hlist)
697 if (!strncmp(dev->name, name, IFNAMSIZ))
698 return dev;
699
700 return NULL;
701 }
702 EXPORT_SYMBOL(dev_get_by_name_rcu);
703
704 /**
705 * dev_get_by_name - find a device by its name
706 * @net: the applicable net namespace
707 * @name: name to find
708 *
709 * Find an interface by name. This can be called from any
710 * context and does its own locking. The returned handle has
711 * the usage count incremented and the caller must use dev_put() to
712 * release it when it is no longer needed. %NULL is returned if no
713 * matching device is found.
714 */
715
716 struct net_device *dev_get_by_name(struct net *net, const char *name)
717 {
718 struct net_device *dev;
719
720 rcu_read_lock();
721 dev = dev_get_by_name_rcu(net, name);
722 if (dev)
723 dev_hold(dev);
724 rcu_read_unlock();
725 return dev;
726 }
727 EXPORT_SYMBOL(dev_get_by_name);
728
729 /**
730 * __dev_get_by_index - find a device by its ifindex
731 * @net: the applicable net namespace
732 * @ifindex: index of device
733 *
734 * Search for an interface by index. Returns %NULL if the device
735 * is not found or a pointer to the device. The device has not
736 * had its reference counter increased so the caller must be careful
737 * about locking. The caller must hold either the RTNL semaphore
738 * or @dev_base_lock.
739 */
740
741 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
742 {
743 struct net_device *dev;
744 struct hlist_head *head = dev_index_hash(net, ifindex);
745
746 hlist_for_each_entry(dev, head, index_hlist)
747 if (dev->ifindex == ifindex)
748 return dev;
749
750 return NULL;
751 }
752 EXPORT_SYMBOL(__dev_get_by_index);
753
754 /**
755 * dev_get_by_index_rcu - find a device by its ifindex
756 * @net: the applicable net namespace
757 * @ifindex: index of device
758 *
759 * Search for an interface by index. Returns %NULL if the device
760 * is not found or a pointer to the device. The device has not
761 * had its reference counter increased so the caller must be careful
762 * about locking. The caller must hold RCU lock.
763 */
764
765 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
766 {
767 struct net_device *dev;
768 struct hlist_head *head = dev_index_hash(net, ifindex);
769
770 hlist_for_each_entry_rcu(dev, head, index_hlist)
771 if (dev->ifindex == ifindex)
772 return dev;
773
774 return NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_index_rcu);
777
778
779 /**
780 * dev_get_by_index - find a device by its ifindex
781 * @net: the applicable net namespace
782 * @ifindex: index of device
783 *
784 * Search for an interface by index. Returns NULL if the device
785 * is not found or a pointer to the device. The device returned has
786 * had a reference added and the pointer is safe until the user calls
787 * dev_put to indicate they have finished with it.
788 */
789
790 struct net_device *dev_get_by_index(struct net *net, int ifindex)
791 {
792 struct net_device *dev;
793
794 rcu_read_lock();
795 dev = dev_get_by_index_rcu(net, ifindex);
796 if (dev)
797 dev_hold(dev);
798 rcu_read_unlock();
799 return dev;
800 }
801 EXPORT_SYMBOL(dev_get_by_index);
802
803 /**
804 * netdev_get_name - get a netdevice name, knowing its ifindex.
805 * @net: network namespace
806 * @name: a pointer to the buffer where the name will be stored.
807 * @ifindex: the ifindex of the interface to get the name from.
808 *
809 * The use of raw_seqcount_begin() and cond_resched() before
810 * retrying is required as we want to give the writers a chance
811 * to complete when CONFIG_PREEMPT is not set.
812 */
813 int netdev_get_name(struct net *net, char *name, int ifindex)
814 {
815 struct net_device *dev;
816 unsigned int seq;
817
818 retry:
819 seq = raw_seqcount_begin(&devnet_rename_seq);
820 rcu_read_lock();
821 dev = dev_get_by_index_rcu(net, ifindex);
822 if (!dev) {
823 rcu_read_unlock();
824 return -ENODEV;
825 }
826
827 strcpy(name, dev->name);
828 rcu_read_unlock();
829 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
830 cond_resched();
831 goto retry;
832 }
833
834 return 0;
835 }
836
837 /**
838 * dev_getbyhwaddr_rcu - find a device by its hardware address
839 * @net: the applicable net namespace
840 * @type: media type of device
841 * @ha: hardware address
842 *
843 * Search for an interface by MAC address. Returns NULL if the device
844 * is not found or a pointer to the device.
845 * The caller must hold RCU or RTNL.
846 * The returned device has not had its ref count increased
847 * and the caller must therefore be careful about locking
848 *
849 */
850
851 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
852 const char *ha)
853 {
854 struct net_device *dev;
855
856 for_each_netdev_rcu(net, dev)
857 if (dev->type == type &&
858 !memcmp(dev->dev_addr, ha, dev->addr_len))
859 return dev;
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
864
865 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
866 {
867 struct net_device *dev;
868
869 ASSERT_RTNL();
870 for_each_netdev(net, dev)
871 if (dev->type == type)
872 return dev;
873
874 return NULL;
875 }
876 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
877
878 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
879 {
880 struct net_device *dev, *ret = NULL;
881
882 rcu_read_lock();
883 for_each_netdev_rcu(net, dev)
884 if (dev->type == type) {
885 dev_hold(dev);
886 ret = dev;
887 break;
888 }
889 rcu_read_unlock();
890 return ret;
891 }
892 EXPORT_SYMBOL(dev_getfirstbyhwtype);
893
894 /**
895 * dev_get_by_flags_rcu - find any device with given flags
896 * @net: the applicable net namespace
897 * @if_flags: IFF_* values
898 * @mask: bitmask of bits in if_flags to check
899 *
900 * Search for any interface with the given flags. Returns NULL if a device
901 * is not found or a pointer to the device. Must be called inside
902 * rcu_read_lock(), and result refcount is unchanged.
903 */
904
905 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
906 unsigned short mask)
907 {
908 struct net_device *dev, *ret;
909
910 ret = NULL;
911 for_each_netdev_rcu(net, dev) {
912 if (((dev->flags ^ if_flags) & mask) == 0) {
913 ret = dev;
914 break;
915 }
916 }
917 return ret;
918 }
919 EXPORT_SYMBOL(dev_get_by_flags_rcu);
920
921 /**
922 * dev_valid_name - check if name is okay for network device
923 * @name: name string
924 *
925 * Network device names need to be valid file names to
926 * to allow sysfs to work. We also disallow any kind of
927 * whitespace.
928 */
929 bool dev_valid_name(const char *name)
930 {
931 if (*name == '\0')
932 return false;
933 if (strlen(name) >= IFNAMSIZ)
934 return false;
935 if (!strcmp(name, ".") || !strcmp(name, ".."))
936 return false;
937
938 while (*name) {
939 if (*name == '/' || isspace(*name))
940 return false;
941 name++;
942 }
943 return true;
944 }
945 EXPORT_SYMBOL(dev_valid_name);
946
947 /**
948 * __dev_alloc_name - allocate a name for a device
949 * @net: network namespace to allocate the device name in
950 * @name: name format string
951 * @buf: scratch buffer and result name string
952 *
953 * Passed a format string - eg "lt%d" it will try and find a suitable
954 * id. It scans list of devices to build up a free map, then chooses
955 * the first empty slot. The caller must hold the dev_base or rtnl lock
956 * while allocating the name and adding the device in order to avoid
957 * duplicates.
958 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
959 * Returns the number of the unit assigned or a negative errno code.
960 */
961
962 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
963 {
964 int i = 0;
965 const char *p;
966 const int max_netdevices = 8*PAGE_SIZE;
967 unsigned long *inuse;
968 struct net_device *d;
969
970 p = strnchr(name, IFNAMSIZ-1, '%');
971 if (p) {
972 /*
973 * Verify the string as this thing may have come from
974 * the user. There must be either one "%d" and no other "%"
975 * characters.
976 */
977 if (p[1] != 'd' || strchr(p + 2, '%'))
978 return -EINVAL;
979
980 /* Use one page as a bit array of possible slots */
981 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
982 if (!inuse)
983 return -ENOMEM;
984
985 for_each_netdev(net, d) {
986 if (!sscanf(d->name, name, &i))
987 continue;
988 if (i < 0 || i >= max_netdevices)
989 continue;
990
991 /* avoid cases where sscanf is not exact inverse of printf */
992 snprintf(buf, IFNAMSIZ, name, i);
993 if (!strncmp(buf, d->name, IFNAMSIZ))
994 set_bit(i, inuse);
995 }
996
997 i = find_first_zero_bit(inuse, max_netdevices);
998 free_page((unsigned long) inuse);
999 }
1000
1001 if (buf != name)
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!__dev_get_by_name(net, buf))
1004 return i;
1005
1006 /* It is possible to run out of possible slots
1007 * when the name is long and there isn't enough space left
1008 * for the digits, or if all bits are used.
1009 */
1010 return -ENFILE;
1011 }
1012
1013 /**
1014 * dev_alloc_name - allocate a name for a device
1015 * @dev: device
1016 * @name: name format string
1017 *
1018 * Passed a format string - eg "lt%d" it will try and find a suitable
1019 * id. It scans list of devices to build up a free map, then chooses
1020 * the first empty slot. The caller must hold the dev_base or rtnl lock
1021 * while allocating the name and adding the device in order to avoid
1022 * duplicates.
1023 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1024 * Returns the number of the unit assigned or a negative errno code.
1025 */
1026
1027 int dev_alloc_name(struct net_device *dev, const char *name)
1028 {
1029 char buf[IFNAMSIZ];
1030 struct net *net;
1031 int ret;
1032
1033 BUG_ON(!dev_net(dev));
1034 net = dev_net(dev);
1035 ret = __dev_alloc_name(net, name, buf);
1036 if (ret >= 0)
1037 strlcpy(dev->name, buf, IFNAMSIZ);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(dev_alloc_name);
1041
1042 static int dev_alloc_name_ns(struct net *net,
1043 struct net_device *dev,
1044 const char *name)
1045 {
1046 char buf[IFNAMSIZ];
1047 int ret;
1048
1049 ret = __dev_alloc_name(net, name, buf);
1050 if (ret >= 0)
1051 strlcpy(dev->name, buf, IFNAMSIZ);
1052 return ret;
1053 }
1054
1055 static int dev_get_valid_name(struct net *net,
1056 struct net_device *dev,
1057 const char *name)
1058 {
1059 BUG_ON(!net);
1060
1061 if (!dev_valid_name(name))
1062 return -EINVAL;
1063
1064 if (strchr(name, '%'))
1065 return dev_alloc_name_ns(net, dev, name);
1066 else if (__dev_get_by_name(net, name))
1067 return -EEXIST;
1068 else if (dev->name != name)
1069 strlcpy(dev->name, name, IFNAMSIZ);
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * dev_change_name - change name of a device
1076 * @dev: device
1077 * @newname: name (or format string) must be at least IFNAMSIZ
1078 *
1079 * Change name of a device, can pass format strings "eth%d".
1080 * for wildcarding.
1081 */
1082 int dev_change_name(struct net_device *dev, const char *newname)
1083 {
1084 char oldname[IFNAMSIZ];
1085 int err = 0;
1086 int ret;
1087 struct net *net;
1088
1089 ASSERT_RTNL();
1090 BUG_ON(!dev_net(dev));
1091
1092 net = dev_net(dev);
1093 if (dev->flags & IFF_UP)
1094 return -EBUSY;
1095
1096 write_seqcount_begin(&devnet_rename_seq);
1097
1098 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1099 write_seqcount_end(&devnet_rename_seq);
1100 return 0;
1101 }
1102
1103 memcpy(oldname, dev->name, IFNAMSIZ);
1104
1105 err = dev_get_valid_name(net, dev, newname);
1106 if (err < 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return err;
1109 }
1110
1111 rollback:
1112 ret = device_rename(&dev->dev, dev->name);
1113 if (ret) {
1114 memcpy(dev->name, oldname, IFNAMSIZ);
1115 write_seqcount_end(&devnet_rename_seq);
1116 return ret;
1117 }
1118
1119 write_seqcount_end(&devnet_rename_seq);
1120
1121 write_lock_bh(&dev_base_lock);
1122 hlist_del_rcu(&dev->name_hlist);
1123 write_unlock_bh(&dev_base_lock);
1124
1125 synchronize_rcu();
1126
1127 write_lock_bh(&dev_base_lock);
1128 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1129 write_unlock_bh(&dev_base_lock);
1130
1131 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1132 ret = notifier_to_errno(ret);
1133
1134 if (ret) {
1135 /* err >= 0 after dev_alloc_name() or stores the first errno */
1136 if (err >= 0) {
1137 err = ret;
1138 write_seqcount_begin(&devnet_rename_seq);
1139 memcpy(dev->name, oldname, IFNAMSIZ);
1140 goto rollback;
1141 } else {
1142 pr_err("%s: name change rollback failed: %d\n",
1143 dev->name, ret);
1144 }
1145 }
1146
1147 return err;
1148 }
1149
1150 /**
1151 * dev_set_alias - change ifalias of a device
1152 * @dev: device
1153 * @alias: name up to IFALIASZ
1154 * @len: limit of bytes to copy from info
1155 *
1156 * Set ifalias for a device,
1157 */
1158 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1159 {
1160 char *new_ifalias;
1161
1162 ASSERT_RTNL();
1163
1164 if (len >= IFALIASZ)
1165 return -EINVAL;
1166
1167 if (!len) {
1168 kfree(dev->ifalias);
1169 dev->ifalias = NULL;
1170 return 0;
1171 }
1172
1173 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1174 if (!new_ifalias)
1175 return -ENOMEM;
1176 dev->ifalias = new_ifalias;
1177
1178 strlcpy(dev->ifalias, alias, len+1);
1179 return len;
1180 }
1181
1182
1183 /**
1184 * netdev_features_change - device changes features
1185 * @dev: device to cause notification
1186 *
1187 * Called to indicate a device has changed features.
1188 */
1189 void netdev_features_change(struct net_device *dev)
1190 {
1191 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1192 }
1193 EXPORT_SYMBOL(netdev_features_change);
1194
1195 /**
1196 * netdev_state_change - device changes state
1197 * @dev: device to cause notification
1198 *
1199 * Called to indicate a device has changed state. This function calls
1200 * the notifier chains for netdev_chain and sends a NEWLINK message
1201 * to the routing socket.
1202 */
1203 void netdev_state_change(struct net_device *dev)
1204 {
1205 if (dev->flags & IFF_UP) {
1206 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1207 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1208 }
1209 }
1210 EXPORT_SYMBOL(netdev_state_change);
1211
1212 /**
1213 * netdev_notify_peers - notify network peers about existence of @dev
1214 * @dev: network device
1215 *
1216 * Generate traffic such that interested network peers are aware of
1217 * @dev, such as by generating a gratuitous ARP. This may be used when
1218 * a device wants to inform the rest of the network about some sort of
1219 * reconfiguration such as a failover event or virtual machine
1220 * migration.
1221 */
1222 void netdev_notify_peers(struct net_device *dev)
1223 {
1224 rtnl_lock();
1225 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1226 rtnl_unlock();
1227 }
1228 EXPORT_SYMBOL(netdev_notify_peers);
1229
1230 static int __dev_open(struct net_device *dev)
1231 {
1232 const struct net_device_ops *ops = dev->netdev_ops;
1233 int ret;
1234
1235 ASSERT_RTNL();
1236
1237 if (!netif_device_present(dev))
1238 return -ENODEV;
1239
1240 /* Block netpoll from trying to do any rx path servicing.
1241 * If we don't do this there is a chance ndo_poll_controller
1242 * or ndo_poll may be running while we open the device
1243 */
1244 netpoll_rx_disable(dev);
1245
1246 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1247 ret = notifier_to_errno(ret);
1248 if (ret)
1249 return ret;
1250
1251 set_bit(__LINK_STATE_START, &dev->state);
1252
1253 if (ops->ndo_validate_addr)
1254 ret = ops->ndo_validate_addr(dev);
1255
1256 if (!ret && ops->ndo_open)
1257 ret = ops->ndo_open(dev);
1258
1259 netpoll_rx_enable(dev);
1260
1261 if (ret)
1262 clear_bit(__LINK_STATE_START, &dev->state);
1263 else {
1264 dev->flags |= IFF_UP;
1265 net_dmaengine_get();
1266 dev_set_rx_mode(dev);
1267 dev_activate(dev);
1268 add_device_randomness(dev->dev_addr, dev->addr_len);
1269 }
1270
1271 return ret;
1272 }
1273
1274 /**
1275 * dev_open - prepare an interface for use.
1276 * @dev: device to open
1277 *
1278 * Takes a device from down to up state. The device's private open
1279 * function is invoked and then the multicast lists are loaded. Finally
1280 * the device is moved into the up state and a %NETDEV_UP message is
1281 * sent to the netdev notifier chain.
1282 *
1283 * Calling this function on an active interface is a nop. On a failure
1284 * a negative errno code is returned.
1285 */
1286 int dev_open(struct net_device *dev)
1287 {
1288 int ret;
1289
1290 if (dev->flags & IFF_UP)
1291 return 0;
1292
1293 ret = __dev_open(dev);
1294 if (ret < 0)
1295 return ret;
1296
1297 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1298 call_netdevice_notifiers(NETDEV_UP, dev);
1299
1300 return ret;
1301 }
1302 EXPORT_SYMBOL(dev_open);
1303
1304 static int __dev_close_many(struct list_head *head)
1305 {
1306 struct net_device *dev;
1307
1308 ASSERT_RTNL();
1309 might_sleep();
1310
1311 list_for_each_entry(dev, head, close_list) {
1312 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1313
1314 clear_bit(__LINK_STATE_START, &dev->state);
1315
1316 /* Synchronize to scheduled poll. We cannot touch poll list, it
1317 * can be even on different cpu. So just clear netif_running().
1318 *
1319 * dev->stop() will invoke napi_disable() on all of it's
1320 * napi_struct instances on this device.
1321 */
1322 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1323 }
1324
1325 dev_deactivate_many(head);
1326
1327 list_for_each_entry(dev, head, close_list) {
1328 const struct net_device_ops *ops = dev->netdev_ops;
1329
1330 /*
1331 * Call the device specific close. This cannot fail.
1332 * Only if device is UP
1333 *
1334 * We allow it to be called even after a DETACH hot-plug
1335 * event.
1336 */
1337 if (ops->ndo_stop)
1338 ops->ndo_stop(dev);
1339
1340 dev->flags &= ~IFF_UP;
1341 net_dmaengine_put();
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int __dev_close(struct net_device *dev)
1348 {
1349 int retval;
1350 LIST_HEAD(single);
1351
1352 /* Temporarily disable netpoll until the interface is down */
1353 netpoll_rx_disable(dev);
1354
1355 list_add(&dev->close_list, &single);
1356 retval = __dev_close_many(&single);
1357 list_del(&single);
1358
1359 netpoll_rx_enable(dev);
1360 return retval;
1361 }
1362
1363 static int dev_close_many(struct list_head *head)
1364 {
1365 struct net_device *dev, *tmp;
1366
1367 /* Remove the devices that don't need to be closed */
1368 list_for_each_entry_safe(dev, tmp, head, close_list)
1369 if (!(dev->flags & IFF_UP))
1370 list_del_init(&dev->close_list);
1371
1372 __dev_close_many(head);
1373
1374 list_for_each_entry_safe(dev, tmp, head, close_list) {
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_DOWN, dev);
1377 list_del_init(&dev->close_list);
1378 }
1379
1380 return 0;
1381 }
1382
1383 /**
1384 * dev_close - shutdown an interface.
1385 * @dev: device to shutdown
1386 *
1387 * This function moves an active device into down state. A
1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390 * chain.
1391 */
1392 int dev_close(struct net_device *dev)
1393 {
1394 if (dev->flags & IFF_UP) {
1395 LIST_HEAD(single);
1396
1397 /* Block netpoll rx while the interface is going down */
1398 netpoll_rx_disable(dev);
1399
1400 list_add(&dev->close_list, &single);
1401 dev_close_many(&single);
1402 list_del(&single);
1403
1404 netpoll_rx_enable(dev);
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409
1410
1411 /**
1412 * dev_disable_lro - disable Large Receive Offload on a device
1413 * @dev: device
1414 *
1415 * Disable Large Receive Offload (LRO) on a net device. Must be
1416 * called under RTNL. This is needed if received packets may be
1417 * forwarded to another interface.
1418 */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 /*
1422 * If we're trying to disable lro on a vlan device
1423 * use the underlying physical device instead
1424 */
1425 if (is_vlan_dev(dev))
1426 dev = vlan_dev_real_dev(dev);
1427
1428 /* the same for macvlan devices */
1429 if (netif_is_macvlan(dev))
1430 dev = macvlan_dev_real_dev(dev);
1431
1432 dev->wanted_features &= ~NETIF_F_LRO;
1433 netdev_update_features(dev);
1434
1435 if (unlikely(dev->features & NETIF_F_LRO))
1436 netdev_WARN(dev, "failed to disable LRO!\n");
1437 }
1438 EXPORT_SYMBOL(dev_disable_lro);
1439
1440 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1441 struct net_device *dev)
1442 {
1443 struct netdev_notifier_info info;
1444
1445 netdev_notifier_info_init(&info, dev);
1446 return nb->notifier_call(nb, val, &info);
1447 }
1448
1449 static int dev_boot_phase = 1;
1450
1451 /**
1452 * register_netdevice_notifier - register a network notifier block
1453 * @nb: notifier
1454 *
1455 * Register a notifier to be called when network device events occur.
1456 * The notifier passed is linked into the kernel structures and must
1457 * not be reused until it has been unregistered. A negative errno code
1458 * is returned on a failure.
1459 *
1460 * When registered all registration and up events are replayed
1461 * to the new notifier to allow device to have a race free
1462 * view of the network device list.
1463 */
1464
1465 int register_netdevice_notifier(struct notifier_block *nb)
1466 {
1467 struct net_device *dev;
1468 struct net_device *last;
1469 struct net *net;
1470 int err;
1471
1472 rtnl_lock();
1473 err = raw_notifier_chain_register(&netdev_chain, nb);
1474 if (err)
1475 goto unlock;
1476 if (dev_boot_phase)
1477 goto unlock;
1478 for_each_net(net) {
1479 for_each_netdev(net, dev) {
1480 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1481 err = notifier_to_errno(err);
1482 if (err)
1483 goto rollback;
1484
1485 if (!(dev->flags & IFF_UP))
1486 continue;
1487
1488 call_netdevice_notifier(nb, NETDEV_UP, dev);
1489 }
1490 }
1491
1492 unlock:
1493 rtnl_unlock();
1494 return err;
1495
1496 rollback:
1497 last = dev;
1498 for_each_net(net) {
1499 for_each_netdev(net, dev) {
1500 if (dev == last)
1501 goto outroll;
1502
1503 if (dev->flags & IFF_UP) {
1504 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1505 dev);
1506 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1507 }
1508 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1509 }
1510 }
1511
1512 outroll:
1513 raw_notifier_chain_unregister(&netdev_chain, nb);
1514 goto unlock;
1515 }
1516 EXPORT_SYMBOL(register_netdevice_notifier);
1517
1518 /**
1519 * unregister_netdevice_notifier - unregister a network notifier block
1520 * @nb: notifier
1521 *
1522 * Unregister a notifier previously registered by
1523 * register_netdevice_notifier(). The notifier is unlinked into the
1524 * kernel structures and may then be reused. A negative errno code
1525 * is returned on a failure.
1526 *
1527 * After unregistering unregister and down device events are synthesized
1528 * for all devices on the device list to the removed notifier to remove
1529 * the need for special case cleanup code.
1530 */
1531
1532 int unregister_netdevice_notifier(struct notifier_block *nb)
1533 {
1534 struct net_device *dev;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542
1543 for_each_net(net) {
1544 for_each_netdev(net, dev) {
1545 if (dev->flags & IFF_UP) {
1546 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1547 dev);
1548 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1549 }
1550 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1551 }
1552 }
1553 unlock:
1554 rtnl_unlock();
1555 return err;
1556 }
1557 EXPORT_SYMBOL(unregister_netdevice_notifier);
1558
1559 /**
1560 * call_netdevice_notifiers_info - call all network notifier blocks
1561 * @val: value passed unmodified to notifier function
1562 * @dev: net_device pointer passed unmodified to notifier function
1563 * @info: notifier information data
1564 *
1565 * Call all network notifier blocks. Parameters and return value
1566 * are as for raw_notifier_call_chain().
1567 */
1568
1569 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1577
1578 /**
1579 * call_netdevice_notifiers - call all network notifier blocks
1580 * @val: value passed unmodified to notifier function
1581 * @dev: net_device pointer passed unmodified to notifier function
1582 *
1583 * Call all network notifier blocks. Parameters and return value
1584 * are as for raw_notifier_call_chain().
1585 */
1586
1587 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1588 {
1589 struct netdev_notifier_info info;
1590
1591 return call_netdevice_notifiers_info(val, dev, &info);
1592 }
1593 EXPORT_SYMBOL(call_netdevice_notifiers);
1594
1595 static struct static_key netstamp_needed __read_mostly;
1596 #ifdef HAVE_JUMP_LABEL
1597 /* We are not allowed to call static_key_slow_dec() from irq context
1598 * If net_disable_timestamp() is called from irq context, defer the
1599 * static_key_slow_dec() calls.
1600 */
1601 static atomic_t netstamp_needed_deferred;
1602 #endif
1603
1604 void net_enable_timestamp(void)
1605 {
1606 #ifdef HAVE_JUMP_LABEL
1607 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1608
1609 if (deferred) {
1610 while (--deferred)
1611 static_key_slow_dec(&netstamp_needed);
1612 return;
1613 }
1614 #endif
1615 static_key_slow_inc(&netstamp_needed);
1616 }
1617 EXPORT_SYMBOL(net_enable_timestamp);
1618
1619 void net_disable_timestamp(void)
1620 {
1621 #ifdef HAVE_JUMP_LABEL
1622 if (in_interrupt()) {
1623 atomic_inc(&netstamp_needed_deferred);
1624 return;
1625 }
1626 #endif
1627 static_key_slow_dec(&netstamp_needed);
1628 }
1629 EXPORT_SYMBOL(net_disable_timestamp);
1630
1631 static inline void net_timestamp_set(struct sk_buff *skb)
1632 {
1633 skb->tstamp.tv64 = 0;
1634 if (static_key_false(&netstamp_needed))
1635 __net_timestamp(skb);
1636 }
1637
1638 #define net_timestamp_check(COND, SKB) \
1639 if (static_key_false(&netstamp_needed)) { \
1640 if ((COND) && !(SKB)->tstamp.tv64) \
1641 __net_timestamp(SKB); \
1642 } \
1643
1644 static inline bool is_skb_forwardable(struct net_device *dev,
1645 struct sk_buff *skb)
1646 {
1647 unsigned int len;
1648
1649 if (!(dev->flags & IFF_UP))
1650 return false;
1651
1652 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1653 if (skb->len <= len)
1654 return true;
1655
1656 /* if TSO is enabled, we don't care about the length as the packet
1657 * could be forwarded without being segmented before
1658 */
1659 if (skb_is_gso(skb))
1660 return true;
1661
1662 return false;
1663 }
1664
1665 /**
1666 * dev_forward_skb - loopback an skb to another netif
1667 *
1668 * @dev: destination network device
1669 * @skb: buffer to forward
1670 *
1671 * return values:
1672 * NET_RX_SUCCESS (no congestion)
1673 * NET_RX_DROP (packet was dropped, but freed)
1674 *
1675 * dev_forward_skb can be used for injecting an skb from the
1676 * start_xmit function of one device into the receive queue
1677 * of another device.
1678 *
1679 * The receiving device may be in another namespace, so
1680 * we have to clear all information in the skb that could
1681 * impact namespace isolation.
1682 */
1683 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1684 {
1685 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1686 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1687 atomic_long_inc(&dev->rx_dropped);
1688 kfree_skb(skb);
1689 return NET_RX_DROP;
1690 }
1691 }
1692
1693 if (unlikely(!is_skb_forwardable(dev, skb))) {
1694 atomic_long_inc(&dev->rx_dropped);
1695 kfree_skb(skb);
1696 return NET_RX_DROP;
1697 }
1698
1699 skb_scrub_packet(skb, true);
1700 skb->protocol = eth_type_trans(skb, dev);
1701
1702 return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 struct packet_type *pt_prev,
1708 struct net_device *orig_dev)
1709 {
1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 return -ENOMEM;
1712 atomic_inc(&skb->users);
1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 if (!ptype->af_packet_priv || !skb->sk)
1719 return false;
1720
1721 if (ptype->id_match)
1722 return ptype->id_match(ptype, skb->sk);
1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 return true;
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Support routine. Sends outgoing frames to any network
1731 * taps currently in use.
1732 */
1733
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 struct packet_type *ptype;
1737 struct sk_buff *skb2 = NULL;
1738 struct packet_type *pt_prev = NULL;
1739
1740 rcu_read_lock();
1741 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 /* Never send packets back to the socket
1743 * they originated from - MvS (miquels@drinkel.ow.org)
1744 */
1745 if ((ptype->dev == dev || !ptype->dev) &&
1746 (!skb_loop_sk(ptype, skb))) {
1747 if (pt_prev) {
1748 deliver_skb(skb2, pt_prev, skb->dev);
1749 pt_prev = ptype;
1750 continue;
1751 }
1752
1753 skb2 = skb_clone(skb, GFP_ATOMIC);
1754 if (!skb2)
1755 break;
1756
1757 net_timestamp_set(skb2);
1758
1759 /* skb->nh should be correctly
1760 set by sender, so that the second statement is
1761 just protection against buggy protocols.
1762 */
1763 skb_reset_mac_header(skb2);
1764
1765 if (skb_network_header(skb2) < skb2->data ||
1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 ntohs(skb2->protocol),
1769 dev->name);
1770 skb_reset_network_header(skb2);
1771 }
1772
1773 skb2->transport_header = skb2->network_header;
1774 skb2->pkt_type = PACKET_OUTGOING;
1775 pt_prev = ptype;
1776 }
1777 }
1778 if (pt_prev)
1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 rcu_read_unlock();
1781 }
1782
1783 /**
1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785 * @dev: Network device
1786 * @txq: number of queues available
1787 *
1788 * If real_num_tx_queues is changed the tc mappings may no longer be
1789 * valid. To resolve this verify the tc mapping remains valid and if
1790 * not NULL the mapping. With no priorities mapping to this
1791 * offset/count pair it will no longer be used. In the worst case TC0
1792 * is invalid nothing can be done so disable priority mappings. If is
1793 * expected that drivers will fix this mapping if they can before
1794 * calling netif_set_real_num_tx_queues.
1795 */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 int i;
1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800
1801 /* If TC0 is invalidated disable TC mapping */
1802 if (tc->offset + tc->count > txq) {
1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 dev->num_tc = 0;
1805 return;
1806 }
1807
1808 /* Invalidated prio to tc mappings set to TC0 */
1809 for (i = 1; i < TC_BITMASK + 1; i++) {
1810 int q = netdev_get_prio_tc_map(dev, i);
1811
1812 tc = &dev->tc_to_txq[q];
1813 if (tc->offset + tc->count > txq) {
1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 i, q);
1816 netdev_set_prio_tc_map(dev, i, 0);
1817 }
1818 }
1819 }
1820
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P) \
1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *map = NULL;
1830 int pos;
1831
1832 if (dev_maps)
1833 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834
1835 for (pos = 0; map && pos < map->len; pos++) {
1836 if (map->queues[pos] == index) {
1837 if (map->len > 1) {
1838 map->queues[pos] = map->queues[--map->len];
1839 } else {
1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 kfree_rcu(map, rcu);
1842 map = NULL;
1843 }
1844 break;
1845 }
1846 }
1847
1848 return map;
1849 }
1850
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 struct xps_dev_maps *dev_maps;
1854 int cpu, i;
1855 bool active = false;
1856
1857 mutex_lock(&xps_map_mutex);
1858 dev_maps = xmap_dereference(dev->xps_maps);
1859
1860 if (!dev_maps)
1861 goto out_no_maps;
1862
1863 for_each_possible_cpu(cpu) {
1864 for (i = index; i < dev->num_tx_queues; i++) {
1865 if (!remove_xps_queue(dev_maps, cpu, i))
1866 break;
1867 }
1868 if (i == dev->num_tx_queues)
1869 active = true;
1870 }
1871
1872 if (!active) {
1873 RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 kfree_rcu(dev_maps, rcu);
1875 }
1876
1877 for (i = index; i < dev->num_tx_queues; i++)
1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 NUMA_NO_NODE);
1880
1881 out_no_maps:
1882 mutex_unlock(&xps_map_mutex);
1883 }
1884
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 int cpu, u16 index)
1887 {
1888 struct xps_map *new_map;
1889 int alloc_len = XPS_MIN_MAP_ALLOC;
1890 int i, pos;
1891
1892 for (pos = 0; map && pos < map->len; pos++) {
1893 if (map->queues[pos] != index)
1894 continue;
1895 return map;
1896 }
1897
1898 /* Need to add queue to this CPU's existing map */
1899 if (map) {
1900 if (pos < map->alloc_len)
1901 return map;
1902
1903 alloc_len = map->alloc_len * 2;
1904 }
1905
1906 /* Need to allocate new map to store queue on this CPU's map */
1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 cpu_to_node(cpu));
1909 if (!new_map)
1910 return NULL;
1911
1912 for (i = 0; i < pos; i++)
1913 new_map->queues[i] = map->queues[i];
1914 new_map->alloc_len = alloc_len;
1915 new_map->len = pos;
1916
1917 return new_map;
1918 }
1919
1920 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1921 u16 index)
1922 {
1923 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1924 struct xps_map *map, *new_map;
1925 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1926 int cpu, numa_node_id = -2;
1927 bool active = false;
1928
1929 mutex_lock(&xps_map_mutex);
1930
1931 dev_maps = xmap_dereference(dev->xps_maps);
1932
1933 /* allocate memory for queue storage */
1934 for_each_online_cpu(cpu) {
1935 if (!cpumask_test_cpu(cpu, mask))
1936 continue;
1937
1938 if (!new_dev_maps)
1939 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1940 if (!new_dev_maps) {
1941 mutex_unlock(&xps_map_mutex);
1942 return -ENOMEM;
1943 }
1944
1945 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1946 NULL;
1947
1948 map = expand_xps_map(map, cpu, index);
1949 if (!map)
1950 goto error;
1951
1952 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1953 }
1954
1955 if (!new_dev_maps)
1956 goto out_no_new_maps;
1957
1958 for_each_possible_cpu(cpu) {
1959 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1960 /* add queue to CPU maps */
1961 int pos = 0;
1962
1963 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1964 while ((pos < map->len) && (map->queues[pos] != index))
1965 pos++;
1966
1967 if (pos == map->len)
1968 map->queues[map->len++] = index;
1969 #ifdef CONFIG_NUMA
1970 if (numa_node_id == -2)
1971 numa_node_id = cpu_to_node(cpu);
1972 else if (numa_node_id != cpu_to_node(cpu))
1973 numa_node_id = -1;
1974 #endif
1975 } else if (dev_maps) {
1976 /* fill in the new device map from the old device map */
1977 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1978 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1979 }
1980
1981 }
1982
1983 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984
1985 /* Cleanup old maps */
1986 if (dev_maps) {
1987 for_each_possible_cpu(cpu) {
1988 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1989 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1990 if (map && map != new_map)
1991 kfree_rcu(map, rcu);
1992 }
1993
1994 kfree_rcu(dev_maps, rcu);
1995 }
1996
1997 dev_maps = new_dev_maps;
1998 active = true;
1999
2000 out_no_new_maps:
2001 /* update Tx queue numa node */
2002 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2003 (numa_node_id >= 0) ? numa_node_id :
2004 NUMA_NO_NODE);
2005
2006 if (!dev_maps)
2007 goto out_no_maps;
2008
2009 /* removes queue from unused CPUs */
2010 for_each_possible_cpu(cpu) {
2011 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2012 continue;
2013
2014 if (remove_xps_queue(dev_maps, cpu, index))
2015 active = true;
2016 }
2017
2018 /* free map if not active */
2019 if (!active) {
2020 RCU_INIT_POINTER(dev->xps_maps, NULL);
2021 kfree_rcu(dev_maps, rcu);
2022 }
2023
2024 out_no_maps:
2025 mutex_unlock(&xps_map_mutex);
2026
2027 return 0;
2028 error:
2029 /* remove any maps that we added */
2030 for_each_possible_cpu(cpu) {
2031 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2032 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2033 NULL;
2034 if (new_map && new_map != map)
2035 kfree(new_map);
2036 }
2037
2038 mutex_unlock(&xps_map_mutex);
2039
2040 kfree(new_dev_maps);
2041 return -ENOMEM;
2042 }
2043 EXPORT_SYMBOL(netif_set_xps_queue);
2044
2045 #endif
2046 /*
2047 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2048 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 */
2050 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051 {
2052 int rc;
2053
2054 if (txq < 1 || txq > dev->num_tx_queues)
2055 return -EINVAL;
2056
2057 if (dev->reg_state == NETREG_REGISTERED ||
2058 dev->reg_state == NETREG_UNREGISTERING) {
2059 ASSERT_RTNL();
2060
2061 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2062 txq);
2063 if (rc)
2064 return rc;
2065
2066 if (dev->num_tc)
2067 netif_setup_tc(dev, txq);
2068
2069 if (txq < dev->real_num_tx_queues) {
2070 qdisc_reset_all_tx_gt(dev, txq);
2071 #ifdef CONFIG_XPS
2072 netif_reset_xps_queues_gt(dev, txq);
2073 #endif
2074 }
2075 }
2076
2077 dev->real_num_tx_queues = txq;
2078 return 0;
2079 }
2080 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081
2082 #ifdef CONFIG_RPS
2083 /**
2084 * netif_set_real_num_rx_queues - set actual number of RX queues used
2085 * @dev: Network device
2086 * @rxq: Actual number of RX queues
2087 *
2088 * This must be called either with the rtnl_lock held or before
2089 * registration of the net device. Returns 0 on success, or a
2090 * negative error code. If called before registration, it always
2091 * succeeds.
2092 */
2093 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094 {
2095 int rc;
2096
2097 if (rxq < 1 || rxq > dev->num_rx_queues)
2098 return -EINVAL;
2099
2100 if (dev->reg_state == NETREG_REGISTERED) {
2101 ASSERT_RTNL();
2102
2103 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2104 rxq);
2105 if (rc)
2106 return rc;
2107 }
2108
2109 dev->real_num_rx_queues = rxq;
2110 return 0;
2111 }
2112 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2113 #endif
2114
2115 /**
2116 * netif_get_num_default_rss_queues - default number of RSS queues
2117 *
2118 * This routine should set an upper limit on the number of RSS queues
2119 * used by default by multiqueue devices.
2120 */
2121 int netif_get_num_default_rss_queues(void)
2122 {
2123 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 }
2125 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126
2127 static inline void __netif_reschedule(struct Qdisc *q)
2128 {
2129 struct softnet_data *sd;
2130 unsigned long flags;
2131
2132 local_irq_save(flags);
2133 sd = &__get_cpu_var(softnet_data);
2134 q->next_sched = NULL;
2135 *sd->output_queue_tailp = q;
2136 sd->output_queue_tailp = &q->next_sched;
2137 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2138 local_irq_restore(flags);
2139 }
2140
2141 void __netif_schedule(struct Qdisc *q)
2142 {
2143 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2144 __netif_reschedule(q);
2145 }
2146 EXPORT_SYMBOL(__netif_schedule);
2147
2148 void dev_kfree_skb_irq(struct sk_buff *skb)
2149 {
2150 if (atomic_dec_and_test(&skb->users)) {
2151 struct softnet_data *sd;
2152 unsigned long flags;
2153
2154 local_irq_save(flags);
2155 sd = &__get_cpu_var(softnet_data);
2156 skb->next = sd->completion_queue;
2157 sd->completion_queue = skb;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160 }
2161 }
2162 EXPORT_SYMBOL(dev_kfree_skb_irq);
2163
2164 void dev_kfree_skb_any(struct sk_buff *skb)
2165 {
2166 if (in_irq() || irqs_disabled())
2167 dev_kfree_skb_irq(skb);
2168 else
2169 dev_kfree_skb(skb);
2170 }
2171 EXPORT_SYMBOL(dev_kfree_skb_any);
2172
2173
2174 /**
2175 * netif_device_detach - mark device as removed
2176 * @dev: network device
2177 *
2178 * Mark device as removed from system and therefore no longer available.
2179 */
2180 void netif_device_detach(struct net_device *dev)
2181 {
2182 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2183 netif_running(dev)) {
2184 netif_tx_stop_all_queues(dev);
2185 }
2186 }
2187 EXPORT_SYMBOL(netif_device_detach);
2188
2189 /**
2190 * netif_device_attach - mark device as attached
2191 * @dev: network device
2192 *
2193 * Mark device as attached from system and restart if needed.
2194 */
2195 void netif_device_attach(struct net_device *dev)
2196 {
2197 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2198 netif_running(dev)) {
2199 netif_tx_wake_all_queues(dev);
2200 __netdev_watchdog_up(dev);
2201 }
2202 }
2203 EXPORT_SYMBOL(netif_device_attach);
2204
2205 static void skb_warn_bad_offload(const struct sk_buff *skb)
2206 {
2207 static const netdev_features_t null_features = 0;
2208 struct net_device *dev = skb->dev;
2209 const char *driver = "";
2210
2211 if (!net_ratelimit())
2212 return;
2213
2214 if (dev && dev->dev.parent)
2215 driver = dev_driver_string(dev->dev.parent);
2216
2217 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2218 "gso_type=%d ip_summed=%d\n",
2219 driver, dev ? &dev->features : &null_features,
2220 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2221 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2222 skb_shinfo(skb)->gso_type, skb->ip_summed);
2223 }
2224
2225 /*
2226 * Invalidate hardware checksum when packet is to be mangled, and
2227 * complete checksum manually on outgoing path.
2228 */
2229 int skb_checksum_help(struct sk_buff *skb)
2230 {
2231 __wsum csum;
2232 int ret = 0, offset;
2233
2234 if (skb->ip_summed == CHECKSUM_COMPLETE)
2235 goto out_set_summed;
2236
2237 if (unlikely(skb_shinfo(skb)->gso_size)) {
2238 skb_warn_bad_offload(skb);
2239 return -EINVAL;
2240 }
2241
2242 /* Before computing a checksum, we should make sure no frag could
2243 * be modified by an external entity : checksum could be wrong.
2244 */
2245 if (skb_has_shared_frag(skb)) {
2246 ret = __skb_linearize(skb);
2247 if (ret)
2248 goto out;
2249 }
2250
2251 offset = skb_checksum_start_offset(skb);
2252 BUG_ON(offset >= skb_headlen(skb));
2253 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2254
2255 offset += skb->csum_offset;
2256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2257
2258 if (skb_cloned(skb) &&
2259 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2260 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2261 if (ret)
2262 goto out;
2263 }
2264
2265 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2266 out_set_summed:
2267 skb->ip_summed = CHECKSUM_NONE;
2268 out:
2269 return ret;
2270 }
2271 EXPORT_SYMBOL(skb_checksum_help);
2272
2273 __be16 skb_network_protocol(struct sk_buff *skb)
2274 {
2275 __be16 type = skb->protocol;
2276 int vlan_depth = ETH_HLEN;
2277
2278 /* Tunnel gso handlers can set protocol to ethernet. */
2279 if (type == htons(ETH_P_TEB)) {
2280 struct ethhdr *eth;
2281
2282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2283 return 0;
2284
2285 eth = (struct ethhdr *)skb_mac_header(skb);
2286 type = eth->h_proto;
2287 }
2288
2289 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2290 struct vlan_hdr *vh;
2291
2292 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2293 return 0;
2294
2295 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2296 type = vh->h_vlan_encapsulated_proto;
2297 vlan_depth += VLAN_HLEN;
2298 }
2299
2300 return type;
2301 }
2302
2303 /**
2304 * skb_mac_gso_segment - mac layer segmentation handler.
2305 * @skb: buffer to segment
2306 * @features: features for the output path (see dev->features)
2307 */
2308 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2309 netdev_features_t features)
2310 {
2311 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2312 struct packet_offload *ptype;
2313 __be16 type = skb_network_protocol(skb);
2314
2315 if (unlikely(!type))
2316 return ERR_PTR(-EINVAL);
2317
2318 __skb_pull(skb, skb->mac_len);
2319
2320 rcu_read_lock();
2321 list_for_each_entry_rcu(ptype, &offload_base, list) {
2322 if (ptype->type == type && ptype->callbacks.gso_segment) {
2323 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2324 int err;
2325
2326 err = ptype->callbacks.gso_send_check(skb);
2327 segs = ERR_PTR(err);
2328 if (err || skb_gso_ok(skb, features))
2329 break;
2330 __skb_push(skb, (skb->data -
2331 skb_network_header(skb)));
2332 }
2333 segs = ptype->callbacks.gso_segment(skb, features);
2334 break;
2335 }
2336 }
2337 rcu_read_unlock();
2338
2339 __skb_push(skb, skb->data - skb_mac_header(skb));
2340
2341 return segs;
2342 }
2343 EXPORT_SYMBOL(skb_mac_gso_segment);
2344
2345
2346 /* openvswitch calls this on rx path, so we need a different check.
2347 */
2348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2349 {
2350 if (tx_path)
2351 return skb->ip_summed != CHECKSUM_PARTIAL;
2352 else
2353 return skb->ip_summed == CHECKSUM_NONE;
2354 }
2355
2356 /**
2357 * __skb_gso_segment - Perform segmentation on skb.
2358 * @skb: buffer to segment
2359 * @features: features for the output path (see dev->features)
2360 * @tx_path: whether it is called in TX path
2361 *
2362 * This function segments the given skb and returns a list of segments.
2363 *
2364 * It may return NULL if the skb requires no segmentation. This is
2365 * only possible when GSO is used for verifying header integrity.
2366 */
2367 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2368 netdev_features_t features, bool tx_path)
2369 {
2370 if (unlikely(skb_needs_check(skb, tx_path))) {
2371 int err;
2372
2373 skb_warn_bad_offload(skb);
2374
2375 if (skb_header_cloned(skb) &&
2376 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2377 return ERR_PTR(err);
2378 }
2379
2380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2381 SKB_GSO_CB(skb)->encap_level = 0;
2382
2383 skb_reset_mac_header(skb);
2384 skb_reset_mac_len(skb);
2385
2386 return skb_mac_gso_segment(skb, features);
2387 }
2388 EXPORT_SYMBOL(__skb_gso_segment);
2389
2390 /* Take action when hardware reception checksum errors are detected. */
2391 #ifdef CONFIG_BUG
2392 void netdev_rx_csum_fault(struct net_device *dev)
2393 {
2394 if (net_ratelimit()) {
2395 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2396 dump_stack();
2397 }
2398 }
2399 EXPORT_SYMBOL(netdev_rx_csum_fault);
2400 #endif
2401
2402 /* Actually, we should eliminate this check as soon as we know, that:
2403 * 1. IOMMU is present and allows to map all the memory.
2404 * 2. No high memory really exists on this machine.
2405 */
2406
2407 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2408 {
2409 #ifdef CONFIG_HIGHMEM
2410 int i;
2411 if (!(dev->features & NETIF_F_HIGHDMA)) {
2412 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2413 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2414 if (PageHighMem(skb_frag_page(frag)))
2415 return 1;
2416 }
2417 }
2418
2419 if (PCI_DMA_BUS_IS_PHYS) {
2420 struct device *pdev = dev->dev.parent;
2421
2422 if (!pdev)
2423 return 0;
2424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2426 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2427 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2428 return 1;
2429 }
2430 }
2431 #endif
2432 return 0;
2433 }
2434
2435 struct dev_gso_cb {
2436 void (*destructor)(struct sk_buff *skb);
2437 };
2438
2439 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2440
2441 static void dev_gso_skb_destructor(struct sk_buff *skb)
2442 {
2443 struct dev_gso_cb *cb;
2444
2445 do {
2446 struct sk_buff *nskb = skb->next;
2447
2448 skb->next = nskb->next;
2449 nskb->next = NULL;
2450 kfree_skb(nskb);
2451 } while (skb->next);
2452
2453 cb = DEV_GSO_CB(skb);
2454 if (cb->destructor)
2455 cb->destructor(skb);
2456 }
2457
2458 /**
2459 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2460 * @skb: buffer to segment
2461 * @features: device features as applicable to this skb
2462 *
2463 * This function segments the given skb and stores the list of segments
2464 * in skb->next.
2465 */
2466 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2467 {
2468 struct sk_buff *segs;
2469
2470 segs = skb_gso_segment(skb, features);
2471
2472 /* Verifying header integrity only. */
2473 if (!segs)
2474 return 0;
2475
2476 if (IS_ERR(segs))
2477 return PTR_ERR(segs);
2478
2479 skb->next = segs;
2480 DEV_GSO_CB(skb)->destructor = skb->destructor;
2481 skb->destructor = dev_gso_skb_destructor;
2482
2483 return 0;
2484 }
2485
2486 static netdev_features_t harmonize_features(struct sk_buff *skb,
2487 netdev_features_t features)
2488 {
2489 if (skb->ip_summed != CHECKSUM_NONE &&
2490 !can_checksum_protocol(features, skb_network_protocol(skb))) {
2491 features &= ~NETIF_F_ALL_CSUM;
2492 } else if (illegal_highdma(skb->dev, skb)) {
2493 features &= ~NETIF_F_SG;
2494 }
2495
2496 return features;
2497 }
2498
2499 netdev_features_t netif_skb_features(struct sk_buff *skb)
2500 {
2501 __be16 protocol = skb->protocol;
2502 netdev_features_t features = skb->dev->features;
2503
2504 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2505 features &= ~NETIF_F_GSO_MASK;
2506
2507 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2508 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2509 protocol = veh->h_vlan_encapsulated_proto;
2510 } else if (!vlan_tx_tag_present(skb)) {
2511 return harmonize_features(skb, features);
2512 }
2513
2514 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2515 NETIF_F_HW_VLAN_STAG_TX);
2516
2517 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2518 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2519 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2520 NETIF_F_HW_VLAN_STAG_TX;
2521
2522 return harmonize_features(skb, features);
2523 }
2524 EXPORT_SYMBOL(netif_skb_features);
2525
2526 /*
2527 * Returns true if either:
2528 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2529 * 2. skb is fragmented and the device does not support SG.
2530 */
2531 static inline int skb_needs_linearize(struct sk_buff *skb,
2532 netdev_features_t features)
2533 {
2534 return skb_is_nonlinear(skb) &&
2535 ((skb_has_frag_list(skb) &&
2536 !(features & NETIF_F_FRAGLIST)) ||
2537 (skb_shinfo(skb)->nr_frags &&
2538 !(features & NETIF_F_SG)));
2539 }
2540
2541 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2542 struct netdev_queue *txq, void *accel_priv)
2543 {
2544 const struct net_device_ops *ops = dev->netdev_ops;
2545 int rc = NETDEV_TX_OK;
2546 unsigned int skb_len;
2547
2548 if (likely(!skb->next)) {
2549 netdev_features_t features;
2550
2551 /*
2552 * If device doesn't need skb->dst, release it right now while
2553 * its hot in this cpu cache
2554 */
2555 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2556 skb_dst_drop(skb);
2557
2558 features = netif_skb_features(skb);
2559
2560 if (vlan_tx_tag_present(skb) &&
2561 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2562 skb = __vlan_put_tag(skb, skb->vlan_proto,
2563 vlan_tx_tag_get(skb));
2564 if (unlikely(!skb))
2565 goto out;
2566
2567 skb->vlan_tci = 0;
2568 }
2569
2570 /* If encapsulation offload request, verify we are testing
2571 * hardware encapsulation features instead of standard
2572 * features for the netdev
2573 */
2574 if (skb->encapsulation)
2575 features &= dev->hw_enc_features;
2576
2577 if (netif_needs_gso(skb, features)) {
2578 if (unlikely(dev_gso_segment(skb, features)))
2579 goto out_kfree_skb;
2580 if (skb->next)
2581 goto gso;
2582 } else {
2583 if (skb_needs_linearize(skb, features) &&
2584 __skb_linearize(skb))
2585 goto out_kfree_skb;
2586
2587 /* If packet is not checksummed and device does not
2588 * support checksumming for this protocol, complete
2589 * checksumming here.
2590 */
2591 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2592 if (skb->encapsulation)
2593 skb_set_inner_transport_header(skb,
2594 skb_checksum_start_offset(skb));
2595 else
2596 skb_set_transport_header(skb,
2597 skb_checksum_start_offset(skb));
2598 if (!(features & NETIF_F_ALL_CSUM) &&
2599 skb_checksum_help(skb))
2600 goto out_kfree_skb;
2601 }
2602 }
2603
2604 if (!list_empty(&ptype_all))
2605 dev_queue_xmit_nit(skb, dev);
2606
2607 skb_len = skb->len;
2608 if (accel_priv)
2609 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2610 else
2611 rc = ops->ndo_start_xmit(skb, dev);
2612
2613 trace_net_dev_xmit(skb, rc, dev, skb_len);
2614 if (rc == NETDEV_TX_OK && txq)
2615 txq_trans_update(txq);
2616 return rc;
2617 }
2618
2619 gso:
2620 do {
2621 struct sk_buff *nskb = skb->next;
2622
2623 skb->next = nskb->next;
2624 nskb->next = NULL;
2625
2626 if (!list_empty(&ptype_all))
2627 dev_queue_xmit_nit(nskb, dev);
2628
2629 skb_len = nskb->len;
2630 if (accel_priv)
2631 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2632 else
2633 rc = ops->ndo_start_xmit(nskb, dev);
2634 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2635 if (unlikely(rc != NETDEV_TX_OK)) {
2636 if (rc & ~NETDEV_TX_MASK)
2637 goto out_kfree_gso_skb;
2638 nskb->next = skb->next;
2639 skb->next = nskb;
2640 return rc;
2641 }
2642 txq_trans_update(txq);
2643 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2644 return NETDEV_TX_BUSY;
2645 } while (skb->next);
2646
2647 out_kfree_gso_skb:
2648 if (likely(skb->next == NULL)) {
2649 skb->destructor = DEV_GSO_CB(skb)->destructor;
2650 consume_skb(skb);
2651 return rc;
2652 }
2653 out_kfree_skb:
2654 kfree_skb(skb);
2655 out:
2656 return rc;
2657 }
2658 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2659
2660 static void qdisc_pkt_len_init(struct sk_buff *skb)
2661 {
2662 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2663
2664 qdisc_skb_cb(skb)->pkt_len = skb->len;
2665
2666 /* To get more precise estimation of bytes sent on wire,
2667 * we add to pkt_len the headers size of all segments
2668 */
2669 if (shinfo->gso_size) {
2670 unsigned int hdr_len;
2671 u16 gso_segs = shinfo->gso_segs;
2672
2673 /* mac layer + network layer */
2674 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2675
2676 /* + transport layer */
2677 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2678 hdr_len += tcp_hdrlen(skb);
2679 else
2680 hdr_len += sizeof(struct udphdr);
2681
2682 if (shinfo->gso_type & SKB_GSO_DODGY)
2683 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2684 shinfo->gso_size);
2685
2686 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2687 }
2688 }
2689
2690 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2691 struct net_device *dev,
2692 struct netdev_queue *txq)
2693 {
2694 spinlock_t *root_lock = qdisc_lock(q);
2695 bool contended;
2696 int rc;
2697
2698 qdisc_pkt_len_init(skb);
2699 qdisc_calculate_pkt_len(skb, q);
2700 /*
2701 * Heuristic to force contended enqueues to serialize on a
2702 * separate lock before trying to get qdisc main lock.
2703 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2704 * and dequeue packets faster.
2705 */
2706 contended = qdisc_is_running(q);
2707 if (unlikely(contended))
2708 spin_lock(&q->busylock);
2709
2710 spin_lock(root_lock);
2711 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2712 kfree_skb(skb);
2713 rc = NET_XMIT_DROP;
2714 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2715 qdisc_run_begin(q)) {
2716 /*
2717 * This is a work-conserving queue; there are no old skbs
2718 * waiting to be sent out; and the qdisc is not running -
2719 * xmit the skb directly.
2720 */
2721 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2722 skb_dst_force(skb);
2723
2724 qdisc_bstats_update(q, skb);
2725
2726 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2727 if (unlikely(contended)) {
2728 spin_unlock(&q->busylock);
2729 contended = false;
2730 }
2731 __qdisc_run(q);
2732 } else
2733 qdisc_run_end(q);
2734
2735 rc = NET_XMIT_SUCCESS;
2736 } else {
2737 skb_dst_force(skb);
2738 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2739 if (qdisc_run_begin(q)) {
2740 if (unlikely(contended)) {
2741 spin_unlock(&q->busylock);
2742 contended = false;
2743 }
2744 __qdisc_run(q);
2745 }
2746 }
2747 spin_unlock(root_lock);
2748 if (unlikely(contended))
2749 spin_unlock(&q->busylock);
2750 return rc;
2751 }
2752
2753 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2754 static void skb_update_prio(struct sk_buff *skb)
2755 {
2756 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2757
2758 if (!skb->priority && skb->sk && map) {
2759 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2760
2761 if (prioidx < map->priomap_len)
2762 skb->priority = map->priomap[prioidx];
2763 }
2764 }
2765 #else
2766 #define skb_update_prio(skb)
2767 #endif
2768
2769 static DEFINE_PER_CPU(int, xmit_recursion);
2770 #define RECURSION_LIMIT 10
2771
2772 /**
2773 * dev_loopback_xmit - loop back @skb
2774 * @skb: buffer to transmit
2775 */
2776 int dev_loopback_xmit(struct sk_buff *skb)
2777 {
2778 skb_reset_mac_header(skb);
2779 __skb_pull(skb, skb_network_offset(skb));
2780 skb->pkt_type = PACKET_LOOPBACK;
2781 skb->ip_summed = CHECKSUM_UNNECESSARY;
2782 WARN_ON(!skb_dst(skb));
2783 skb_dst_force(skb);
2784 netif_rx_ni(skb);
2785 return 0;
2786 }
2787 EXPORT_SYMBOL(dev_loopback_xmit);
2788
2789 /**
2790 * dev_queue_xmit - transmit a buffer
2791 * @skb: buffer to transmit
2792 *
2793 * Queue a buffer for transmission to a network device. The caller must
2794 * have set the device and priority and built the buffer before calling
2795 * this function. The function can be called from an interrupt.
2796 *
2797 * A negative errno code is returned on a failure. A success does not
2798 * guarantee the frame will be transmitted as it may be dropped due
2799 * to congestion or traffic shaping.
2800 *
2801 * -----------------------------------------------------------------------------------
2802 * I notice this method can also return errors from the queue disciplines,
2803 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2804 * be positive.
2805 *
2806 * Regardless of the return value, the skb is consumed, so it is currently
2807 * difficult to retry a send to this method. (You can bump the ref count
2808 * before sending to hold a reference for retry if you are careful.)
2809 *
2810 * When calling this method, interrupts MUST be enabled. This is because
2811 * the BH enable code must have IRQs enabled so that it will not deadlock.
2812 * --BLG
2813 */
2814 int dev_queue_xmit(struct sk_buff *skb)
2815 {
2816 struct net_device *dev = skb->dev;
2817 struct netdev_queue *txq;
2818 struct Qdisc *q;
2819 int rc = -ENOMEM;
2820
2821 skb_reset_mac_header(skb);
2822
2823 /* Disable soft irqs for various locks below. Also
2824 * stops preemption for RCU.
2825 */
2826 rcu_read_lock_bh();
2827
2828 skb_update_prio(skb);
2829
2830 txq = netdev_pick_tx(dev, skb);
2831 q = rcu_dereference_bh(txq->qdisc);
2832
2833 #ifdef CONFIG_NET_CLS_ACT
2834 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2835 #endif
2836 trace_net_dev_queue(skb);
2837 if (q->enqueue) {
2838 rc = __dev_xmit_skb(skb, q, dev, txq);
2839 goto out;
2840 }
2841
2842 /* The device has no queue. Common case for software devices:
2843 loopback, all the sorts of tunnels...
2844
2845 Really, it is unlikely that netif_tx_lock protection is necessary
2846 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2847 counters.)
2848 However, it is possible, that they rely on protection
2849 made by us here.
2850
2851 Check this and shot the lock. It is not prone from deadlocks.
2852 Either shot noqueue qdisc, it is even simpler 8)
2853 */
2854 if (dev->flags & IFF_UP) {
2855 int cpu = smp_processor_id(); /* ok because BHs are off */
2856
2857 if (txq->xmit_lock_owner != cpu) {
2858
2859 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2860 goto recursion_alert;
2861
2862 HARD_TX_LOCK(dev, txq, cpu);
2863
2864 if (!netif_xmit_stopped(txq)) {
2865 __this_cpu_inc(xmit_recursion);
2866 rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2867 __this_cpu_dec(xmit_recursion);
2868 if (dev_xmit_complete(rc)) {
2869 HARD_TX_UNLOCK(dev, txq);
2870 goto out;
2871 }
2872 }
2873 HARD_TX_UNLOCK(dev, txq);
2874 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2875 dev->name);
2876 } else {
2877 /* Recursion is detected! It is possible,
2878 * unfortunately
2879 */
2880 recursion_alert:
2881 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2882 dev->name);
2883 }
2884 }
2885
2886 rc = -ENETDOWN;
2887 rcu_read_unlock_bh();
2888
2889 kfree_skb(skb);
2890 return rc;
2891 out:
2892 rcu_read_unlock_bh();
2893 return rc;
2894 }
2895 EXPORT_SYMBOL(dev_queue_xmit);
2896
2897
2898 /*=======================================================================
2899 Receiver routines
2900 =======================================================================*/
2901
2902 int netdev_max_backlog __read_mostly = 1000;
2903 EXPORT_SYMBOL(netdev_max_backlog);
2904
2905 int netdev_tstamp_prequeue __read_mostly = 1;
2906 int netdev_budget __read_mostly = 300;
2907 int weight_p __read_mostly = 64; /* old backlog weight */
2908
2909 /* Called with irq disabled */
2910 static inline void ____napi_schedule(struct softnet_data *sd,
2911 struct napi_struct *napi)
2912 {
2913 list_add_tail(&napi->poll_list, &sd->poll_list);
2914 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2915 }
2916
2917 #ifdef CONFIG_RPS
2918
2919 /* One global table that all flow-based protocols share. */
2920 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2921 EXPORT_SYMBOL(rps_sock_flow_table);
2922
2923 struct static_key rps_needed __read_mostly;
2924
2925 static struct rps_dev_flow *
2926 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2927 struct rps_dev_flow *rflow, u16 next_cpu)
2928 {
2929 if (next_cpu != RPS_NO_CPU) {
2930 #ifdef CONFIG_RFS_ACCEL
2931 struct netdev_rx_queue *rxqueue;
2932 struct rps_dev_flow_table *flow_table;
2933 struct rps_dev_flow *old_rflow;
2934 u32 flow_id;
2935 u16 rxq_index;
2936 int rc;
2937
2938 /* Should we steer this flow to a different hardware queue? */
2939 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2940 !(dev->features & NETIF_F_NTUPLE))
2941 goto out;
2942 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2943 if (rxq_index == skb_get_rx_queue(skb))
2944 goto out;
2945
2946 rxqueue = dev->_rx + rxq_index;
2947 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2948 if (!flow_table)
2949 goto out;
2950 flow_id = skb->rxhash & flow_table->mask;
2951 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2952 rxq_index, flow_id);
2953 if (rc < 0)
2954 goto out;
2955 old_rflow = rflow;
2956 rflow = &flow_table->flows[flow_id];
2957 rflow->filter = rc;
2958 if (old_rflow->filter == rflow->filter)
2959 old_rflow->filter = RPS_NO_FILTER;
2960 out:
2961 #endif
2962 rflow->last_qtail =
2963 per_cpu(softnet_data, next_cpu).input_queue_head;
2964 }
2965
2966 rflow->cpu = next_cpu;
2967 return rflow;
2968 }
2969
2970 /*
2971 * get_rps_cpu is called from netif_receive_skb and returns the target
2972 * CPU from the RPS map of the receiving queue for a given skb.
2973 * rcu_read_lock must be held on entry.
2974 */
2975 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2976 struct rps_dev_flow **rflowp)
2977 {
2978 struct netdev_rx_queue *rxqueue;
2979 struct rps_map *map;
2980 struct rps_dev_flow_table *flow_table;
2981 struct rps_sock_flow_table *sock_flow_table;
2982 int cpu = -1;
2983 u16 tcpu;
2984
2985 if (skb_rx_queue_recorded(skb)) {
2986 u16 index = skb_get_rx_queue(skb);
2987 if (unlikely(index >= dev->real_num_rx_queues)) {
2988 WARN_ONCE(dev->real_num_rx_queues > 1,
2989 "%s received packet on queue %u, but number "
2990 "of RX queues is %u\n",
2991 dev->name, index, dev->real_num_rx_queues);
2992 goto done;
2993 }
2994 rxqueue = dev->_rx + index;
2995 } else
2996 rxqueue = dev->_rx;
2997
2998 map = rcu_dereference(rxqueue->rps_map);
2999 if (map) {
3000 if (map->len == 1 &&
3001 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3002 tcpu = map->cpus[0];
3003 if (cpu_online(tcpu))
3004 cpu = tcpu;
3005 goto done;
3006 }
3007 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3008 goto done;
3009 }
3010
3011 skb_reset_network_header(skb);
3012 if (!skb_get_rxhash(skb))
3013 goto done;
3014
3015 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3016 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3017 if (flow_table && sock_flow_table) {
3018 u16 next_cpu;
3019 struct rps_dev_flow *rflow;
3020
3021 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3022 tcpu = rflow->cpu;
3023
3024 next_cpu = sock_flow_table->ents[skb->rxhash &
3025 sock_flow_table->mask];
3026
3027 /*
3028 * If the desired CPU (where last recvmsg was done) is
3029 * different from current CPU (one in the rx-queue flow
3030 * table entry), switch if one of the following holds:
3031 * - Current CPU is unset (equal to RPS_NO_CPU).
3032 * - Current CPU is offline.
3033 * - The current CPU's queue tail has advanced beyond the
3034 * last packet that was enqueued using this table entry.
3035 * This guarantees that all previous packets for the flow
3036 * have been dequeued, thus preserving in order delivery.
3037 */
3038 if (unlikely(tcpu != next_cpu) &&
3039 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3040 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3041 rflow->last_qtail)) >= 0)) {
3042 tcpu = next_cpu;
3043 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3044 }
3045
3046 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3047 *rflowp = rflow;
3048 cpu = tcpu;
3049 goto done;
3050 }
3051 }
3052
3053 if (map) {
3054 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3055
3056 if (cpu_online(tcpu)) {
3057 cpu = tcpu;
3058 goto done;
3059 }
3060 }
3061
3062 done:
3063 return cpu;
3064 }
3065
3066 #ifdef CONFIG_RFS_ACCEL
3067
3068 /**
3069 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3070 * @dev: Device on which the filter was set
3071 * @rxq_index: RX queue index
3072 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3073 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3074 *
3075 * Drivers that implement ndo_rx_flow_steer() should periodically call
3076 * this function for each installed filter and remove the filters for
3077 * which it returns %true.
3078 */
3079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3080 u32 flow_id, u16 filter_id)
3081 {
3082 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3083 struct rps_dev_flow_table *flow_table;
3084 struct rps_dev_flow *rflow;
3085 bool expire = true;
3086 int cpu;
3087
3088 rcu_read_lock();
3089 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3090 if (flow_table && flow_id <= flow_table->mask) {
3091 rflow = &flow_table->flows[flow_id];
3092 cpu = ACCESS_ONCE(rflow->cpu);
3093 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3094 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3095 rflow->last_qtail) <
3096 (int)(10 * flow_table->mask)))
3097 expire = false;
3098 }
3099 rcu_read_unlock();
3100 return expire;
3101 }
3102 EXPORT_SYMBOL(rps_may_expire_flow);
3103
3104 #endif /* CONFIG_RFS_ACCEL */
3105
3106 /* Called from hardirq (IPI) context */
3107 static void rps_trigger_softirq(void *data)
3108 {
3109 struct softnet_data *sd = data;
3110
3111 ____napi_schedule(sd, &sd->backlog);
3112 sd->received_rps++;
3113 }
3114
3115 #endif /* CONFIG_RPS */
3116
3117 /*
3118 * Check if this softnet_data structure is another cpu one
3119 * If yes, queue it to our IPI list and return 1
3120 * If no, return 0
3121 */
3122 static int rps_ipi_queued(struct softnet_data *sd)
3123 {
3124 #ifdef CONFIG_RPS
3125 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3126
3127 if (sd != mysd) {
3128 sd->rps_ipi_next = mysd->rps_ipi_list;
3129 mysd->rps_ipi_list = sd;
3130
3131 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3132 return 1;
3133 }
3134 #endif /* CONFIG_RPS */
3135 return 0;
3136 }
3137
3138 #ifdef CONFIG_NET_FLOW_LIMIT
3139 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3140 #endif
3141
3142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3143 {
3144 #ifdef CONFIG_NET_FLOW_LIMIT
3145 struct sd_flow_limit *fl;
3146 struct softnet_data *sd;
3147 unsigned int old_flow, new_flow;
3148
3149 if (qlen < (netdev_max_backlog >> 1))
3150 return false;
3151
3152 sd = &__get_cpu_var(softnet_data);
3153
3154 rcu_read_lock();
3155 fl = rcu_dereference(sd->flow_limit);
3156 if (fl) {
3157 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3158 old_flow = fl->history[fl->history_head];
3159 fl->history[fl->history_head] = new_flow;
3160
3161 fl->history_head++;
3162 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3163
3164 if (likely(fl->buckets[old_flow]))
3165 fl->buckets[old_flow]--;
3166
3167 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3168 fl->count++;
3169 rcu_read_unlock();
3170 return true;
3171 }
3172 }
3173 rcu_read_unlock();
3174 #endif
3175 return false;
3176 }
3177
3178 /*
3179 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3180 * queue (may be a remote CPU queue).
3181 */
3182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3183 unsigned int *qtail)
3184 {
3185 struct softnet_data *sd;
3186 unsigned long flags;
3187 unsigned int qlen;
3188
3189 sd = &per_cpu(softnet_data, cpu);
3190
3191 local_irq_save(flags);
3192
3193 rps_lock(sd);
3194 qlen = skb_queue_len(&sd->input_pkt_queue);
3195 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3196 if (skb_queue_len(&sd->input_pkt_queue)) {
3197 enqueue:
3198 __skb_queue_tail(&sd->input_pkt_queue, skb);
3199 input_queue_tail_incr_save(sd, qtail);
3200 rps_unlock(sd);
3201 local_irq_restore(flags);
3202 return NET_RX_SUCCESS;
3203 }
3204
3205 /* Schedule NAPI for backlog device
3206 * We can use non atomic operation since we own the queue lock
3207 */
3208 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3209 if (!rps_ipi_queued(sd))
3210 ____napi_schedule(sd, &sd->backlog);
3211 }
3212 goto enqueue;
3213 }
3214
3215 sd->dropped++;
3216 rps_unlock(sd);
3217
3218 local_irq_restore(flags);
3219
3220 atomic_long_inc(&skb->dev->rx_dropped);
3221 kfree_skb(skb);
3222 return NET_RX_DROP;
3223 }
3224
3225 /**
3226 * netif_rx - post buffer to the network code
3227 * @skb: buffer to post
3228 *
3229 * This function receives a packet from a device driver and queues it for
3230 * the upper (protocol) levels to process. It always succeeds. The buffer
3231 * may be dropped during processing for congestion control or by the
3232 * protocol layers.
3233 *
3234 * return values:
3235 * NET_RX_SUCCESS (no congestion)
3236 * NET_RX_DROP (packet was dropped)
3237 *
3238 */
3239
3240 int netif_rx(struct sk_buff *skb)
3241 {
3242 int ret;
3243
3244 /* if netpoll wants it, pretend we never saw it */
3245 if (netpoll_rx(skb))
3246 return NET_RX_DROP;
3247
3248 net_timestamp_check(netdev_tstamp_prequeue, skb);
3249
3250 trace_netif_rx(skb);
3251 #ifdef CONFIG_RPS
3252 if (static_key_false(&rps_needed)) {
3253 struct rps_dev_flow voidflow, *rflow = &voidflow;
3254 int cpu;
3255
3256 preempt_disable();
3257 rcu_read_lock();
3258
3259 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3260 if (cpu < 0)
3261 cpu = smp_processor_id();
3262
3263 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3264
3265 rcu_read_unlock();
3266 preempt_enable();
3267 } else
3268 #endif
3269 {
3270 unsigned int qtail;
3271 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3272 put_cpu();
3273 }
3274 return ret;
3275 }
3276 EXPORT_SYMBOL(netif_rx);
3277
3278 int netif_rx_ni(struct sk_buff *skb)
3279 {
3280 int err;
3281
3282 preempt_disable();
3283 err = netif_rx(skb);
3284 if (local_softirq_pending())
3285 do_softirq();
3286 preempt_enable();
3287
3288 return err;
3289 }
3290 EXPORT_SYMBOL(netif_rx_ni);
3291
3292 static void net_tx_action(struct softirq_action *h)
3293 {
3294 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3295
3296 if (sd->completion_queue) {
3297 struct sk_buff *clist;
3298
3299 local_irq_disable();
3300 clist = sd->completion_queue;
3301 sd->completion_queue = NULL;
3302 local_irq_enable();
3303
3304 while (clist) {
3305 struct sk_buff *skb = clist;
3306 clist = clist->next;
3307
3308 WARN_ON(atomic_read(&skb->users));
3309 trace_kfree_skb(skb, net_tx_action);
3310 __kfree_skb(skb);
3311 }
3312 }
3313
3314 if (sd->output_queue) {
3315 struct Qdisc *head;
3316
3317 local_irq_disable();
3318 head = sd->output_queue;
3319 sd->output_queue = NULL;
3320 sd->output_queue_tailp = &sd->output_queue;
3321 local_irq_enable();
3322
3323 while (head) {
3324 struct Qdisc *q = head;
3325 spinlock_t *root_lock;
3326
3327 head = head->next_sched;
3328
3329 root_lock = qdisc_lock(q);
3330 if (spin_trylock(root_lock)) {
3331 smp_mb__before_clear_bit();
3332 clear_bit(__QDISC_STATE_SCHED,
3333 &q->state);
3334 qdisc_run(q);
3335 spin_unlock(root_lock);
3336 } else {
3337 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3338 &q->state)) {
3339 __netif_reschedule(q);
3340 } else {
3341 smp_mb__before_clear_bit();
3342 clear_bit(__QDISC_STATE_SCHED,
3343 &q->state);
3344 }
3345 }
3346 }
3347 }
3348 }
3349
3350 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3351 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3352 /* This hook is defined here for ATM LANE */
3353 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3354 unsigned char *addr) __read_mostly;
3355 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3356 #endif
3357
3358 #ifdef CONFIG_NET_CLS_ACT
3359 /* TODO: Maybe we should just force sch_ingress to be compiled in
3360 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3361 * a compare and 2 stores extra right now if we dont have it on
3362 * but have CONFIG_NET_CLS_ACT
3363 * NOTE: This doesn't stop any functionality; if you dont have
3364 * the ingress scheduler, you just can't add policies on ingress.
3365 *
3366 */
3367 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3368 {
3369 struct net_device *dev = skb->dev;
3370 u32 ttl = G_TC_RTTL(skb->tc_verd);
3371 int result = TC_ACT_OK;
3372 struct Qdisc *q;
3373
3374 if (unlikely(MAX_RED_LOOP < ttl++)) {
3375 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3376 skb->skb_iif, dev->ifindex);
3377 return TC_ACT_SHOT;
3378 }
3379
3380 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3381 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3382
3383 q = rxq->qdisc;
3384 if (q != &noop_qdisc) {
3385 spin_lock(qdisc_lock(q));
3386 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3387 result = qdisc_enqueue_root(skb, q);
3388 spin_unlock(qdisc_lock(q));
3389 }
3390
3391 return result;
3392 }
3393
3394 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3395 struct packet_type **pt_prev,
3396 int *ret, struct net_device *orig_dev)
3397 {
3398 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3399
3400 if (!rxq || rxq->qdisc == &noop_qdisc)
3401 goto out;
3402
3403 if (*pt_prev) {
3404 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3405 *pt_prev = NULL;
3406 }
3407
3408 switch (ing_filter(skb, rxq)) {
3409 case TC_ACT_SHOT:
3410 case TC_ACT_STOLEN:
3411 kfree_skb(skb);
3412 return NULL;
3413 }
3414
3415 out:
3416 skb->tc_verd = 0;
3417 return skb;
3418 }
3419 #endif
3420
3421 /**
3422 * netdev_rx_handler_register - register receive handler
3423 * @dev: device to register a handler for
3424 * @rx_handler: receive handler to register
3425 * @rx_handler_data: data pointer that is used by rx handler
3426 *
3427 * Register a receive hander for a device. This handler will then be
3428 * called from __netif_receive_skb. A negative errno code is returned
3429 * on a failure.
3430 *
3431 * The caller must hold the rtnl_mutex.
3432 *
3433 * For a general description of rx_handler, see enum rx_handler_result.
3434 */
3435 int netdev_rx_handler_register(struct net_device *dev,
3436 rx_handler_func_t *rx_handler,
3437 void *rx_handler_data)
3438 {
3439 ASSERT_RTNL();
3440
3441 if (dev->rx_handler)
3442 return -EBUSY;
3443
3444 /* Note: rx_handler_data must be set before rx_handler */
3445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3446 rcu_assign_pointer(dev->rx_handler, rx_handler);
3447
3448 return 0;
3449 }
3450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3451
3452 /**
3453 * netdev_rx_handler_unregister - unregister receive handler
3454 * @dev: device to unregister a handler from
3455 *
3456 * Unregister a receive handler from a device.
3457 *
3458 * The caller must hold the rtnl_mutex.
3459 */
3460 void netdev_rx_handler_unregister(struct net_device *dev)
3461 {
3462
3463 ASSERT_RTNL();
3464 RCU_INIT_POINTER(dev->rx_handler, NULL);
3465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3466 * section has a guarantee to see a non NULL rx_handler_data
3467 * as well.
3468 */
3469 synchronize_net();
3470 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3471 }
3472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3473
3474 /*
3475 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3476 * the special handling of PFMEMALLOC skbs.
3477 */
3478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3479 {
3480 switch (skb->protocol) {
3481 case __constant_htons(ETH_P_ARP):
3482 case __constant_htons(ETH_P_IP):
3483 case __constant_htons(ETH_P_IPV6):
3484 case __constant_htons(ETH_P_8021Q):
3485 case __constant_htons(ETH_P_8021AD):
3486 return true;
3487 default:
3488 return false;
3489 }
3490 }
3491
3492 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3493 {
3494 struct packet_type *ptype, *pt_prev;
3495 rx_handler_func_t *rx_handler;
3496 struct net_device *orig_dev;
3497 struct net_device *null_or_dev;
3498 bool deliver_exact = false;
3499 int ret = NET_RX_DROP;
3500 __be16 type;
3501
3502 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3503
3504 trace_netif_receive_skb(skb);
3505
3506 /* if we've gotten here through NAPI, check netpoll */
3507 if (netpoll_receive_skb(skb))
3508 goto out;
3509
3510 orig_dev = skb->dev;
3511
3512 skb_reset_network_header(skb);
3513 if (!skb_transport_header_was_set(skb))
3514 skb_reset_transport_header(skb);
3515 skb_reset_mac_len(skb);
3516
3517 pt_prev = NULL;
3518
3519 rcu_read_lock();
3520
3521 another_round:
3522 skb->skb_iif = skb->dev->ifindex;
3523
3524 __this_cpu_inc(softnet_data.processed);
3525
3526 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3527 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3528 skb = vlan_untag(skb);
3529 if (unlikely(!skb))
3530 goto unlock;
3531 }
3532
3533 #ifdef CONFIG_NET_CLS_ACT
3534 if (skb->tc_verd & TC_NCLS) {
3535 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3536 goto ncls;
3537 }
3538 #endif
3539
3540 if (pfmemalloc)
3541 goto skip_taps;
3542
3543 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3544 if (!ptype->dev || ptype->dev == skb->dev) {
3545 if (pt_prev)
3546 ret = deliver_skb(skb, pt_prev, orig_dev);
3547 pt_prev = ptype;
3548 }
3549 }
3550
3551 skip_taps:
3552 #ifdef CONFIG_NET_CLS_ACT
3553 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3554 if (!skb)
3555 goto unlock;
3556 ncls:
3557 #endif
3558
3559 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3560 goto drop;
3561
3562 if (vlan_tx_tag_present(skb)) {
3563 if (pt_prev) {
3564 ret = deliver_skb(skb, pt_prev, orig_dev);
3565 pt_prev = NULL;
3566 }
3567 if (vlan_do_receive(&skb))
3568 goto another_round;
3569 else if (unlikely(!skb))
3570 goto unlock;
3571 }
3572
3573 rx_handler = rcu_dereference(skb->dev->rx_handler);
3574 if (rx_handler) {
3575 if (pt_prev) {
3576 ret = deliver_skb(skb, pt_prev, orig_dev);
3577 pt_prev = NULL;
3578 }
3579 switch (rx_handler(&skb)) {
3580 case RX_HANDLER_CONSUMED:
3581 ret = NET_RX_SUCCESS;
3582 goto unlock;
3583 case RX_HANDLER_ANOTHER:
3584 goto another_round;
3585 case RX_HANDLER_EXACT:
3586 deliver_exact = true;
3587 case RX_HANDLER_PASS:
3588 break;
3589 default:
3590 BUG();
3591 }
3592 }
3593
3594 if (unlikely(vlan_tx_tag_present(skb))) {
3595 if (vlan_tx_tag_get_id(skb))
3596 skb->pkt_type = PACKET_OTHERHOST;
3597 /* Note: we might in the future use prio bits
3598 * and set skb->priority like in vlan_do_receive()
3599 * For the time being, just ignore Priority Code Point
3600 */
3601 skb->vlan_tci = 0;
3602 }
3603
3604 /* deliver only exact match when indicated */
3605 null_or_dev = deliver_exact ? skb->dev : NULL;
3606
3607 type = skb->protocol;
3608 list_for_each_entry_rcu(ptype,
3609 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3610 if (ptype->type == type &&
3611 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3612 ptype->dev == orig_dev)) {
3613 if (pt_prev)
3614 ret = deliver_skb(skb, pt_prev, orig_dev);
3615 pt_prev = ptype;
3616 }
3617 }
3618
3619 if (pt_prev) {
3620 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3621 goto drop;
3622 else
3623 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3624 } else {
3625 drop:
3626 atomic_long_inc(&skb->dev->rx_dropped);
3627 kfree_skb(skb);
3628 /* Jamal, now you will not able to escape explaining
3629 * me how you were going to use this. :-)
3630 */
3631 ret = NET_RX_DROP;
3632 }
3633
3634 unlock:
3635 rcu_read_unlock();
3636 out:
3637 return ret;
3638 }
3639
3640 static int __netif_receive_skb(struct sk_buff *skb)
3641 {
3642 int ret;
3643
3644 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3645 unsigned long pflags = current->flags;
3646
3647 /*
3648 * PFMEMALLOC skbs are special, they should
3649 * - be delivered to SOCK_MEMALLOC sockets only
3650 * - stay away from userspace
3651 * - have bounded memory usage
3652 *
3653 * Use PF_MEMALLOC as this saves us from propagating the allocation
3654 * context down to all allocation sites.
3655 */
3656 current->flags |= PF_MEMALLOC;
3657 ret = __netif_receive_skb_core(skb, true);
3658 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3659 } else
3660 ret = __netif_receive_skb_core(skb, false);
3661
3662 return ret;
3663 }
3664
3665 /**
3666 * netif_receive_skb - process receive buffer from network
3667 * @skb: buffer to process
3668 *
3669 * netif_receive_skb() is the main receive data processing function.
3670 * It always succeeds. The buffer may be dropped during processing
3671 * for congestion control or by the protocol layers.
3672 *
3673 * This function may only be called from softirq context and interrupts
3674 * should be enabled.
3675 *
3676 * Return values (usually ignored):
3677 * NET_RX_SUCCESS: no congestion
3678 * NET_RX_DROP: packet was dropped
3679 */
3680 int netif_receive_skb(struct sk_buff *skb)
3681 {
3682 net_timestamp_check(netdev_tstamp_prequeue, skb);
3683
3684 if (skb_defer_rx_timestamp(skb))
3685 return NET_RX_SUCCESS;
3686
3687 #ifdef CONFIG_RPS
3688 if (static_key_false(&rps_needed)) {
3689 struct rps_dev_flow voidflow, *rflow = &voidflow;
3690 int cpu, ret;
3691
3692 rcu_read_lock();
3693
3694 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3695
3696 if (cpu >= 0) {
3697 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3698 rcu_read_unlock();
3699 return ret;
3700 }
3701 rcu_read_unlock();
3702 }
3703 #endif
3704 return __netif_receive_skb(skb);
3705 }
3706 EXPORT_SYMBOL(netif_receive_skb);
3707
3708 /* Network device is going away, flush any packets still pending
3709 * Called with irqs disabled.
3710 */
3711 static void flush_backlog(void *arg)
3712 {
3713 struct net_device *dev = arg;
3714 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3715 struct sk_buff *skb, *tmp;
3716
3717 rps_lock(sd);
3718 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3719 if (skb->dev == dev) {
3720 __skb_unlink(skb, &sd->input_pkt_queue);
3721 kfree_skb(skb);
3722 input_queue_head_incr(sd);
3723 }
3724 }
3725 rps_unlock(sd);
3726
3727 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3728 if (skb->dev == dev) {
3729 __skb_unlink(skb, &sd->process_queue);
3730 kfree_skb(skb);
3731 input_queue_head_incr(sd);
3732 }
3733 }
3734 }
3735
3736 static int napi_gro_complete(struct sk_buff *skb)
3737 {
3738 struct packet_offload *ptype;
3739 __be16 type = skb->protocol;
3740 struct list_head *head = &offload_base;
3741 int err = -ENOENT;
3742
3743 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3744
3745 if (NAPI_GRO_CB(skb)->count == 1) {
3746 skb_shinfo(skb)->gso_size = 0;
3747 goto out;
3748 }
3749
3750 rcu_read_lock();
3751 list_for_each_entry_rcu(ptype, head, list) {
3752 if (ptype->type != type || !ptype->callbacks.gro_complete)
3753 continue;
3754
3755 err = ptype->callbacks.gro_complete(skb);
3756 break;
3757 }
3758 rcu_read_unlock();
3759
3760 if (err) {
3761 WARN_ON(&ptype->list == head);
3762 kfree_skb(skb);
3763 return NET_RX_SUCCESS;
3764 }
3765
3766 out:
3767 return netif_receive_skb(skb);
3768 }
3769
3770 /* napi->gro_list contains packets ordered by age.
3771 * youngest packets at the head of it.
3772 * Complete skbs in reverse order to reduce latencies.
3773 */
3774 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3775 {
3776 struct sk_buff *skb, *prev = NULL;
3777
3778 /* scan list and build reverse chain */
3779 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3780 skb->prev = prev;
3781 prev = skb;
3782 }
3783
3784 for (skb = prev; skb; skb = prev) {
3785 skb->next = NULL;
3786
3787 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3788 return;
3789
3790 prev = skb->prev;
3791 napi_gro_complete(skb);
3792 napi->gro_count--;
3793 }
3794
3795 napi->gro_list = NULL;
3796 }
3797 EXPORT_SYMBOL(napi_gro_flush);
3798
3799 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3800 {
3801 struct sk_buff *p;
3802 unsigned int maclen = skb->dev->hard_header_len;
3803
3804 for (p = napi->gro_list; p; p = p->next) {
3805 unsigned long diffs;
3806
3807 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3808 diffs |= p->vlan_tci ^ skb->vlan_tci;
3809 if (maclen == ETH_HLEN)
3810 diffs |= compare_ether_header(skb_mac_header(p),
3811 skb_gro_mac_header(skb));
3812 else if (!diffs)
3813 diffs = memcmp(skb_mac_header(p),
3814 skb_gro_mac_header(skb),
3815 maclen);
3816 NAPI_GRO_CB(p)->same_flow = !diffs;
3817 NAPI_GRO_CB(p)->flush = 0;
3818 }
3819 }
3820
3821 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3822 {
3823 struct sk_buff **pp = NULL;
3824 struct packet_offload *ptype;
3825 __be16 type = skb->protocol;
3826 struct list_head *head = &offload_base;
3827 int same_flow;
3828 enum gro_result ret;
3829
3830 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3831 goto normal;
3832
3833 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3834 goto normal;
3835
3836 gro_list_prepare(napi, skb);
3837
3838 rcu_read_lock();
3839 list_for_each_entry_rcu(ptype, head, list) {
3840 if (ptype->type != type || !ptype->callbacks.gro_receive)
3841 continue;
3842
3843 skb_set_network_header(skb, skb_gro_offset(skb));
3844 skb_reset_mac_len(skb);
3845 NAPI_GRO_CB(skb)->same_flow = 0;
3846 NAPI_GRO_CB(skb)->flush = 0;
3847 NAPI_GRO_CB(skb)->free = 0;
3848
3849 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3850 break;
3851 }
3852 rcu_read_unlock();
3853
3854 if (&ptype->list == head)
3855 goto normal;
3856
3857 same_flow = NAPI_GRO_CB(skb)->same_flow;
3858 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3859
3860 if (pp) {
3861 struct sk_buff *nskb = *pp;
3862
3863 *pp = nskb->next;
3864 nskb->next = NULL;
3865 napi_gro_complete(nskb);
3866 napi->gro_count--;
3867 }
3868
3869 if (same_flow)
3870 goto ok;
3871
3872 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3873 goto normal;
3874
3875 napi->gro_count++;
3876 NAPI_GRO_CB(skb)->count = 1;
3877 NAPI_GRO_CB(skb)->age = jiffies;
3878 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3879 skb->next = napi->gro_list;
3880 napi->gro_list = skb;
3881 ret = GRO_HELD;
3882
3883 pull:
3884 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3885 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3886
3887 BUG_ON(skb->end - skb->tail < grow);
3888
3889 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3890
3891 skb->tail += grow;
3892 skb->data_len -= grow;
3893
3894 skb_shinfo(skb)->frags[0].page_offset += grow;
3895 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3896
3897 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3898 skb_frag_unref(skb, 0);
3899 memmove(skb_shinfo(skb)->frags,
3900 skb_shinfo(skb)->frags + 1,
3901 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3902 }
3903 }
3904
3905 ok:
3906 return ret;
3907
3908 normal:
3909 ret = GRO_NORMAL;
3910 goto pull;
3911 }
3912
3913
3914 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3915 {
3916 switch (ret) {
3917 case GRO_NORMAL:
3918 if (netif_receive_skb(skb))
3919 ret = GRO_DROP;
3920 break;
3921
3922 case GRO_DROP:
3923 kfree_skb(skb);
3924 break;
3925
3926 case GRO_MERGED_FREE:
3927 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3928 kmem_cache_free(skbuff_head_cache, skb);
3929 else
3930 __kfree_skb(skb);
3931 break;
3932
3933 case GRO_HELD:
3934 case GRO_MERGED:
3935 break;
3936 }
3937
3938 return ret;
3939 }
3940
3941 static void skb_gro_reset_offset(struct sk_buff *skb)
3942 {
3943 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3944 const skb_frag_t *frag0 = &pinfo->frags[0];
3945
3946 NAPI_GRO_CB(skb)->data_offset = 0;
3947 NAPI_GRO_CB(skb)->frag0 = NULL;
3948 NAPI_GRO_CB(skb)->frag0_len = 0;
3949
3950 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3951 pinfo->nr_frags &&
3952 !PageHighMem(skb_frag_page(frag0))) {
3953 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3954 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3955 }
3956 }
3957
3958 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3959 {
3960 skb_gro_reset_offset(skb);
3961
3962 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3963 }
3964 EXPORT_SYMBOL(napi_gro_receive);
3965
3966 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3967 {
3968 __skb_pull(skb, skb_headlen(skb));
3969 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3970 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3971 skb->vlan_tci = 0;
3972 skb->dev = napi->dev;
3973 skb->skb_iif = 0;
3974
3975 napi->skb = skb;
3976 }
3977
3978 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3979 {
3980 struct sk_buff *skb = napi->skb;
3981
3982 if (!skb) {
3983 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3984 napi->skb = skb;
3985 }
3986 return skb;
3987 }
3988 EXPORT_SYMBOL(napi_get_frags);
3989
3990 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3991 gro_result_t ret)
3992 {
3993 switch (ret) {
3994 case GRO_NORMAL:
3995 case GRO_HELD:
3996 skb->protocol = eth_type_trans(skb, skb->dev);
3997
3998 if (ret == GRO_HELD)
3999 skb_gro_pull(skb, -ETH_HLEN);
4000 else if (netif_receive_skb(skb))
4001 ret = GRO_DROP;
4002 break;
4003
4004 case GRO_DROP:
4005 case GRO_MERGED_FREE:
4006 napi_reuse_skb(napi, skb);
4007 break;
4008
4009 case GRO_MERGED:
4010 break;
4011 }
4012
4013 return ret;
4014 }
4015
4016 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4017 {
4018 struct sk_buff *skb = napi->skb;
4019 struct ethhdr *eth;
4020 unsigned int hlen;
4021 unsigned int off;
4022
4023 napi->skb = NULL;
4024
4025 skb_reset_mac_header(skb);
4026 skb_gro_reset_offset(skb);
4027
4028 off = skb_gro_offset(skb);
4029 hlen = off + sizeof(*eth);
4030 eth = skb_gro_header_fast(skb, off);
4031 if (skb_gro_header_hard(skb, hlen)) {
4032 eth = skb_gro_header_slow(skb, hlen, off);
4033 if (unlikely(!eth)) {
4034 napi_reuse_skb(napi, skb);
4035 skb = NULL;
4036 goto out;
4037 }
4038 }
4039
4040 skb_gro_pull(skb, sizeof(*eth));
4041
4042 /*
4043 * This works because the only protocols we care about don't require
4044 * special handling. We'll fix it up properly at the end.
4045 */
4046 skb->protocol = eth->h_proto;
4047
4048 out:
4049 return skb;
4050 }
4051
4052 gro_result_t napi_gro_frags(struct napi_struct *napi)
4053 {
4054 struct sk_buff *skb = napi_frags_skb(napi);
4055
4056 if (!skb)
4057 return GRO_DROP;
4058
4059 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4060 }
4061 EXPORT_SYMBOL(napi_gro_frags);
4062
4063 /*
4064 * net_rps_action sends any pending IPI's for rps.
4065 * Note: called with local irq disabled, but exits with local irq enabled.
4066 */
4067 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4068 {
4069 #ifdef CONFIG_RPS
4070 struct softnet_data *remsd = sd->rps_ipi_list;
4071
4072 if (remsd) {
4073 sd->rps_ipi_list = NULL;
4074
4075 local_irq_enable();
4076
4077 /* Send pending IPI's to kick RPS processing on remote cpus. */
4078 while (remsd) {
4079 struct softnet_data *next = remsd->rps_ipi_next;
4080
4081 if (cpu_online(remsd->cpu))
4082 __smp_call_function_single(remsd->cpu,
4083 &remsd->csd, 0);
4084 remsd = next;
4085 }
4086 } else
4087 #endif
4088 local_irq_enable();
4089 }
4090
4091 static int process_backlog(struct napi_struct *napi, int quota)
4092 {
4093 int work = 0;
4094 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4095
4096 #ifdef CONFIG_RPS
4097 /* Check if we have pending ipi, its better to send them now,
4098 * not waiting net_rx_action() end.
4099 */
4100 if (sd->rps_ipi_list) {
4101 local_irq_disable();
4102 net_rps_action_and_irq_enable(sd);
4103 }
4104 #endif
4105 napi->weight = weight_p;
4106 local_irq_disable();
4107 while (work < quota) {
4108 struct sk_buff *skb;
4109 unsigned int qlen;
4110
4111 while ((skb = __skb_dequeue(&sd->process_queue))) {
4112 local_irq_enable();
4113 __netif_receive_skb(skb);
4114 local_irq_disable();
4115 input_queue_head_incr(sd);
4116 if (++work >= quota) {
4117 local_irq_enable();
4118 return work;
4119 }
4120 }
4121
4122 rps_lock(sd);
4123 qlen = skb_queue_len(&sd->input_pkt_queue);
4124 if (qlen)
4125 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4126 &sd->process_queue);
4127
4128 if (qlen < quota - work) {
4129 /*
4130 * Inline a custom version of __napi_complete().
4131 * only current cpu owns and manipulates this napi,
4132 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4133 * we can use a plain write instead of clear_bit(),
4134 * and we dont need an smp_mb() memory barrier.
4135 */
4136 list_del(&napi->poll_list);
4137 napi->state = 0;
4138
4139 quota = work + qlen;
4140 }
4141 rps_unlock(sd);
4142 }
4143 local_irq_enable();
4144
4145 return work;
4146 }
4147
4148 /**
4149 * __napi_schedule - schedule for receive
4150 * @n: entry to schedule
4151 *
4152 * The entry's receive function will be scheduled to run
4153 */
4154 void __napi_schedule(struct napi_struct *n)
4155 {
4156 unsigned long flags;
4157
4158 local_irq_save(flags);
4159 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4160 local_irq_restore(flags);
4161 }
4162 EXPORT_SYMBOL(__napi_schedule);
4163
4164 void __napi_complete(struct napi_struct *n)
4165 {
4166 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4167 BUG_ON(n->gro_list);
4168
4169 list_del(&n->poll_list);
4170 smp_mb__before_clear_bit();
4171 clear_bit(NAPI_STATE_SCHED, &n->state);
4172 }
4173 EXPORT_SYMBOL(__napi_complete);
4174
4175 void napi_complete(struct napi_struct *n)
4176 {
4177 unsigned long flags;
4178
4179 /*
4180 * don't let napi dequeue from the cpu poll list
4181 * just in case its running on a different cpu
4182 */
4183 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4184 return;
4185
4186 napi_gro_flush(n, false);
4187 local_irq_save(flags);
4188 __napi_complete(n);
4189 local_irq_restore(flags);
4190 }
4191 EXPORT_SYMBOL(napi_complete);
4192
4193 /* must be called under rcu_read_lock(), as we dont take a reference */
4194 struct napi_struct *napi_by_id(unsigned int napi_id)
4195 {
4196 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4197 struct napi_struct *napi;
4198
4199 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4200 if (napi->napi_id == napi_id)
4201 return napi;
4202
4203 return NULL;
4204 }
4205 EXPORT_SYMBOL_GPL(napi_by_id);
4206
4207 void napi_hash_add(struct napi_struct *napi)
4208 {
4209 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4210
4211 spin_lock(&napi_hash_lock);
4212
4213 /* 0 is not a valid id, we also skip an id that is taken
4214 * we expect both events to be extremely rare
4215 */
4216 napi->napi_id = 0;
4217 while (!napi->napi_id) {
4218 napi->napi_id = ++napi_gen_id;
4219 if (napi_by_id(napi->napi_id))
4220 napi->napi_id = 0;
4221 }
4222
4223 hlist_add_head_rcu(&napi->napi_hash_node,
4224 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4225
4226 spin_unlock(&napi_hash_lock);
4227 }
4228 }
4229 EXPORT_SYMBOL_GPL(napi_hash_add);
4230
4231 /* Warning : caller is responsible to make sure rcu grace period
4232 * is respected before freeing memory containing @napi
4233 */
4234 void napi_hash_del(struct napi_struct *napi)
4235 {
4236 spin_lock(&napi_hash_lock);
4237
4238 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4239 hlist_del_rcu(&napi->napi_hash_node);
4240
4241 spin_unlock(&napi_hash_lock);
4242 }
4243 EXPORT_SYMBOL_GPL(napi_hash_del);
4244
4245 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4246 int (*poll)(struct napi_struct *, int), int weight)
4247 {
4248 INIT_LIST_HEAD(&napi->poll_list);
4249 napi->gro_count = 0;
4250 napi->gro_list = NULL;
4251 napi->skb = NULL;
4252 napi->poll = poll;
4253 if (weight > NAPI_POLL_WEIGHT)
4254 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4255 weight, dev->name);
4256 napi->weight = weight;
4257 list_add(&napi->dev_list, &dev->napi_list);
4258 napi->dev = dev;
4259 #ifdef CONFIG_NETPOLL
4260 spin_lock_init(&napi->poll_lock);
4261 napi->poll_owner = -1;
4262 #endif
4263 set_bit(NAPI_STATE_SCHED, &napi->state);
4264 }
4265 EXPORT_SYMBOL(netif_napi_add);
4266
4267 void netif_napi_del(struct napi_struct *napi)
4268 {
4269 struct sk_buff *skb, *next;
4270
4271 list_del_init(&napi->dev_list);
4272 napi_free_frags(napi);
4273
4274 for (skb = napi->gro_list; skb; skb = next) {
4275 next = skb->next;
4276 skb->next = NULL;
4277 kfree_skb(skb);
4278 }
4279
4280 napi->gro_list = NULL;
4281 napi->gro_count = 0;
4282 }
4283 EXPORT_SYMBOL(netif_napi_del);
4284
4285 static void net_rx_action(struct softirq_action *h)
4286 {
4287 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4288 unsigned long time_limit = jiffies + 2;
4289 int budget = netdev_budget;
4290 void *have;
4291
4292 local_irq_disable();
4293
4294 while (!list_empty(&sd->poll_list)) {
4295 struct napi_struct *n;
4296 int work, weight;
4297
4298 /* If softirq window is exhuasted then punt.
4299 * Allow this to run for 2 jiffies since which will allow
4300 * an average latency of 1.5/HZ.
4301 */
4302 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4303 goto softnet_break;
4304
4305 local_irq_enable();
4306
4307 /* Even though interrupts have been re-enabled, this
4308 * access is safe because interrupts can only add new
4309 * entries to the tail of this list, and only ->poll()
4310 * calls can remove this head entry from the list.
4311 */
4312 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4313
4314 have = netpoll_poll_lock(n);
4315
4316 weight = n->weight;
4317
4318 /* This NAPI_STATE_SCHED test is for avoiding a race
4319 * with netpoll's poll_napi(). Only the entity which
4320 * obtains the lock and sees NAPI_STATE_SCHED set will
4321 * actually make the ->poll() call. Therefore we avoid
4322 * accidentally calling ->poll() when NAPI is not scheduled.
4323 */
4324 work = 0;
4325 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4326 work = n->poll(n, weight);
4327 trace_napi_poll(n);
4328 }
4329
4330 WARN_ON_ONCE(work > weight);
4331
4332 budget -= work;
4333
4334 local_irq_disable();
4335
4336 /* Drivers must not modify the NAPI state if they
4337 * consume the entire weight. In such cases this code
4338 * still "owns" the NAPI instance and therefore can
4339 * move the instance around on the list at-will.
4340 */
4341 if (unlikely(work == weight)) {
4342 if (unlikely(napi_disable_pending(n))) {
4343 local_irq_enable();
4344 napi_complete(n);
4345 local_irq_disable();
4346 } else {
4347 if (n->gro_list) {
4348 /* flush too old packets
4349 * If HZ < 1000, flush all packets.
4350 */
4351 local_irq_enable();
4352 napi_gro_flush(n, HZ >= 1000);
4353 local_irq_disable();
4354 }
4355 list_move_tail(&n->poll_list, &sd->poll_list);
4356 }
4357 }
4358
4359 netpoll_poll_unlock(have);
4360 }
4361 out:
4362 net_rps_action_and_irq_enable(sd);
4363
4364 #ifdef CONFIG_NET_DMA
4365 /*
4366 * There may not be any more sk_buffs coming right now, so push
4367 * any pending DMA copies to hardware
4368 */
4369 dma_issue_pending_all();
4370 #endif
4371
4372 return;
4373
4374 softnet_break:
4375 sd->time_squeeze++;
4376 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4377 goto out;
4378 }
4379
4380 struct netdev_adjacent {
4381 struct net_device *dev;
4382
4383 /* upper master flag, there can only be one master device per list */
4384 bool master;
4385
4386 /* counter for the number of times this device was added to us */
4387 u16 ref_nr;
4388
4389 /* private field for the users */
4390 void *private;
4391
4392 struct list_head list;
4393 struct rcu_head rcu;
4394 };
4395
4396 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4397 struct net_device *adj_dev,
4398 struct list_head *adj_list)
4399 {
4400 struct netdev_adjacent *adj;
4401
4402 list_for_each_entry_rcu(adj, adj_list, list) {
4403 if (adj->dev == adj_dev)
4404 return adj;
4405 }
4406 return NULL;
4407 }
4408
4409 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4410 struct net_device *adj_dev,
4411 struct list_head *adj_list)
4412 {
4413 struct netdev_adjacent *adj;
4414
4415 list_for_each_entry(adj, adj_list, list) {
4416 if (adj->dev == adj_dev)
4417 return adj;
4418 }
4419 return NULL;
4420 }
4421
4422 /**
4423 * netdev_has_upper_dev - Check if device is linked to an upper device
4424 * @dev: device
4425 * @upper_dev: upper device to check
4426 *
4427 * Find out if a device is linked to specified upper device and return true
4428 * in case it is. Note that this checks only immediate upper device,
4429 * not through a complete stack of devices. The caller must hold the RTNL lock.
4430 */
4431 bool netdev_has_upper_dev(struct net_device *dev,
4432 struct net_device *upper_dev)
4433 {
4434 ASSERT_RTNL();
4435
4436 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4437 }
4438 EXPORT_SYMBOL(netdev_has_upper_dev);
4439
4440 /**
4441 * netdev_has_any_upper_dev - Check if device is linked to some device
4442 * @dev: device
4443 *
4444 * Find out if a device is linked to an upper device and return true in case
4445 * it is. The caller must hold the RTNL lock.
4446 */
4447 bool netdev_has_any_upper_dev(struct net_device *dev)
4448 {
4449 ASSERT_RTNL();
4450
4451 return !list_empty(&dev->all_adj_list.upper);
4452 }
4453 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4454
4455 /**
4456 * netdev_master_upper_dev_get - Get master upper device
4457 * @dev: device
4458 *
4459 * Find a master upper device and return pointer to it or NULL in case
4460 * it's not there. The caller must hold the RTNL lock.
4461 */
4462 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4463 {
4464 struct netdev_adjacent *upper;
4465
4466 ASSERT_RTNL();
4467
4468 if (list_empty(&dev->adj_list.upper))
4469 return NULL;
4470
4471 upper = list_first_entry(&dev->adj_list.upper,
4472 struct netdev_adjacent, list);
4473 if (likely(upper->master))
4474 return upper->dev;
4475 return NULL;
4476 }
4477 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4478
4479 void *netdev_adjacent_get_private(struct list_head *adj_list)
4480 {
4481 struct netdev_adjacent *adj;
4482
4483 adj = list_entry(adj_list, struct netdev_adjacent, list);
4484
4485 return adj->private;
4486 }
4487 EXPORT_SYMBOL(netdev_adjacent_get_private);
4488
4489 /**
4490 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4491 * @dev: device
4492 * @iter: list_head ** of the current position
4493 *
4494 * Gets the next device from the dev's upper list, starting from iter
4495 * position. The caller must hold RCU read lock.
4496 */
4497 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4498 struct list_head **iter)
4499 {
4500 struct netdev_adjacent *upper;
4501
4502 WARN_ON_ONCE(!rcu_read_lock_held());
4503
4504 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4505
4506 if (&upper->list == &dev->all_adj_list.upper)
4507 return NULL;
4508
4509 *iter = &upper->list;
4510
4511 return upper->dev;
4512 }
4513 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4514
4515 /**
4516 * netdev_lower_get_next_private - Get the next ->private from the
4517 * lower neighbour list
4518 * @dev: device
4519 * @iter: list_head ** of the current position
4520 *
4521 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4522 * list, starting from iter position. The caller must hold either hold the
4523 * RTNL lock or its own locking that guarantees that the neighbour lower
4524 * list will remain unchainged.
4525 */
4526 void *netdev_lower_get_next_private(struct net_device *dev,
4527 struct list_head **iter)
4528 {
4529 struct netdev_adjacent *lower;
4530
4531 lower = list_entry(*iter, struct netdev_adjacent, list);
4532
4533 if (&lower->list == &dev->adj_list.lower)
4534 return NULL;
4535
4536 if (iter)
4537 *iter = lower->list.next;
4538
4539 return lower->private;
4540 }
4541 EXPORT_SYMBOL(netdev_lower_get_next_private);
4542
4543 /**
4544 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4545 * lower neighbour list, RCU
4546 * variant
4547 * @dev: device
4548 * @iter: list_head ** of the current position
4549 *
4550 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4551 * list, starting from iter position. The caller must hold RCU read lock.
4552 */
4553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4554 struct list_head **iter)
4555 {
4556 struct netdev_adjacent *lower;
4557
4558 WARN_ON_ONCE(!rcu_read_lock_held());
4559
4560 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4561
4562 if (&lower->list == &dev->adj_list.lower)
4563 return NULL;
4564
4565 if (iter)
4566 *iter = &lower->list;
4567
4568 return lower->private;
4569 }
4570 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4571
4572 /**
4573 * netdev_master_upper_dev_get_rcu - Get master upper device
4574 * @dev: device
4575 *
4576 * Find a master upper device and return pointer to it or NULL in case
4577 * it's not there. The caller must hold the RCU read lock.
4578 */
4579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4580 {
4581 struct netdev_adjacent *upper;
4582
4583 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4584 struct netdev_adjacent, list);
4585 if (upper && likely(upper->master))
4586 return upper->dev;
4587 return NULL;
4588 }
4589 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4590
4591 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4592 struct net_device *adj_dev,
4593 struct list_head *dev_list,
4594 void *private, bool master)
4595 {
4596 struct netdev_adjacent *adj;
4597 char linkname[IFNAMSIZ+7];
4598 int ret;
4599
4600 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4601
4602 if (adj) {
4603 adj->ref_nr++;
4604 return 0;
4605 }
4606
4607 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4608 if (!adj)
4609 return -ENOMEM;
4610
4611 adj->dev = adj_dev;
4612 adj->master = master;
4613 adj->ref_nr = 1;
4614 adj->private = private;
4615 dev_hold(adj_dev);
4616
4617 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4618 adj_dev->name, dev->name, adj_dev->name);
4619
4620 if (dev_list == &dev->adj_list.lower) {
4621 sprintf(linkname, "lower_%s", adj_dev->name);
4622 ret = sysfs_create_link(&(dev->dev.kobj),
4623 &(adj_dev->dev.kobj), linkname);
4624 if (ret)
4625 goto free_adj;
4626 } else if (dev_list == &dev->adj_list.upper) {
4627 sprintf(linkname, "upper_%s", adj_dev->name);
4628 ret = sysfs_create_link(&(dev->dev.kobj),
4629 &(adj_dev->dev.kobj), linkname);
4630 if (ret)
4631 goto free_adj;
4632 }
4633
4634 /* Ensure that master link is always the first item in list. */
4635 if (master) {
4636 ret = sysfs_create_link(&(dev->dev.kobj),
4637 &(adj_dev->dev.kobj), "master");
4638 if (ret)
4639 goto remove_symlinks;
4640
4641 list_add_rcu(&adj->list, dev_list);
4642 } else {
4643 list_add_tail_rcu(&adj->list, dev_list);
4644 }
4645
4646 return 0;
4647
4648 remove_symlinks:
4649 if (dev_list == &dev->adj_list.lower) {
4650 sprintf(linkname, "lower_%s", adj_dev->name);
4651 sysfs_remove_link(&(dev->dev.kobj), linkname);
4652 } else if (dev_list == &dev->adj_list.upper) {
4653 sprintf(linkname, "upper_%s", adj_dev->name);
4654 sysfs_remove_link(&(dev->dev.kobj), linkname);
4655 }
4656
4657 free_adj:
4658 kfree(adj);
4659 dev_put(adj_dev);
4660
4661 return ret;
4662 }
4663
4664 void __netdev_adjacent_dev_remove(struct net_device *dev,
4665 struct net_device *adj_dev,
4666 struct list_head *dev_list)
4667 {
4668 struct netdev_adjacent *adj;
4669 char linkname[IFNAMSIZ+7];
4670
4671 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4672
4673 if (!adj) {
4674 pr_err("tried to remove device %s from %s\n",
4675 dev->name, adj_dev->name);
4676 BUG();
4677 }
4678
4679 if (adj->ref_nr > 1) {
4680 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4681 adj->ref_nr-1);
4682 adj->ref_nr--;
4683 return;
4684 }
4685
4686 if (adj->master)
4687 sysfs_remove_link(&(dev->dev.kobj), "master");
4688
4689 if (dev_list == &dev->adj_list.lower) {
4690 sprintf(linkname, "lower_%s", adj_dev->name);
4691 sysfs_remove_link(&(dev->dev.kobj), linkname);
4692 } else if (dev_list == &dev->adj_list.upper) {
4693 sprintf(linkname, "upper_%s", adj_dev->name);
4694 sysfs_remove_link(&(dev->dev.kobj), linkname);
4695 }
4696
4697 list_del_rcu(&adj->list);
4698 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4699 adj_dev->name, dev->name, adj_dev->name);
4700 dev_put(adj_dev);
4701 kfree_rcu(adj, rcu);
4702 }
4703
4704 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4705 struct net_device *upper_dev,
4706 struct list_head *up_list,
4707 struct list_head *down_list,
4708 void *private, bool master)
4709 {
4710 int ret;
4711
4712 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4713 master);
4714 if (ret)
4715 return ret;
4716
4717 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4718 false);
4719 if (ret) {
4720 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4721 return ret;
4722 }
4723
4724 return 0;
4725 }
4726
4727 int __netdev_adjacent_dev_link(struct net_device *dev,
4728 struct net_device *upper_dev)
4729 {
4730 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4731 &dev->all_adj_list.upper,
4732 &upper_dev->all_adj_list.lower,
4733 NULL, false);
4734 }
4735
4736 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4737 struct net_device *upper_dev,
4738 struct list_head *up_list,
4739 struct list_head *down_list)
4740 {
4741 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4742 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4743 }
4744
4745 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4746 struct net_device *upper_dev)
4747 {
4748 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4749 &dev->all_adj_list.upper,
4750 &upper_dev->all_adj_list.lower);
4751 }
4752
4753 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4754 struct net_device *upper_dev,
4755 void *private, bool master)
4756 {
4757 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4758
4759 if (ret)
4760 return ret;
4761
4762 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4763 &dev->adj_list.upper,
4764 &upper_dev->adj_list.lower,
4765 private, master);
4766 if (ret) {
4767 __netdev_adjacent_dev_unlink(dev, upper_dev);
4768 return ret;
4769 }
4770
4771 return 0;
4772 }
4773
4774 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4775 struct net_device *upper_dev)
4776 {
4777 __netdev_adjacent_dev_unlink(dev, upper_dev);
4778 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4779 &dev->adj_list.upper,
4780 &upper_dev->adj_list.lower);
4781 }
4782
4783 static int __netdev_upper_dev_link(struct net_device *dev,
4784 struct net_device *upper_dev, bool master,
4785 void *private)
4786 {
4787 struct netdev_adjacent *i, *j, *to_i, *to_j;
4788 int ret = 0;
4789
4790 ASSERT_RTNL();
4791
4792 if (dev == upper_dev)
4793 return -EBUSY;
4794
4795 /* To prevent loops, check if dev is not upper device to upper_dev. */
4796 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4797 return -EBUSY;
4798
4799 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4800 return -EEXIST;
4801
4802 if (master && netdev_master_upper_dev_get(dev))
4803 return -EBUSY;
4804
4805 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4806 master);
4807 if (ret)
4808 return ret;
4809
4810 /* Now that we linked these devs, make all the upper_dev's
4811 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4812 * versa, and don't forget the devices itself. All of these
4813 * links are non-neighbours.
4814 */
4815 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4817 pr_debug("Interlinking %s with %s, non-neighbour\n",
4818 i->dev->name, j->dev->name);
4819 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4820 if (ret)
4821 goto rollback_mesh;
4822 }
4823 }
4824
4825 /* add dev to every upper_dev's upper device */
4826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4827 pr_debug("linking %s's upper device %s with %s\n",
4828 upper_dev->name, i->dev->name, dev->name);
4829 ret = __netdev_adjacent_dev_link(dev, i->dev);
4830 if (ret)
4831 goto rollback_upper_mesh;
4832 }
4833
4834 /* add upper_dev to every dev's lower device */
4835 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4836 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4837 i->dev->name, upper_dev->name);
4838 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4839 if (ret)
4840 goto rollback_lower_mesh;
4841 }
4842
4843 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4844 return 0;
4845
4846 rollback_lower_mesh:
4847 to_i = i;
4848 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4849 if (i == to_i)
4850 break;
4851 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4852 }
4853
4854 i = NULL;
4855
4856 rollback_upper_mesh:
4857 to_i = i;
4858 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4859 if (i == to_i)
4860 break;
4861 __netdev_adjacent_dev_unlink(dev, i->dev);
4862 }
4863
4864 i = j = NULL;
4865
4866 rollback_mesh:
4867 to_i = i;
4868 to_j = j;
4869 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4870 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4871 if (i == to_i && j == to_j)
4872 break;
4873 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4874 }
4875 if (i == to_i)
4876 break;
4877 }
4878
4879 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4880
4881 return ret;
4882 }
4883
4884 /**
4885 * netdev_upper_dev_link - Add a link to the upper device
4886 * @dev: device
4887 * @upper_dev: new upper device
4888 *
4889 * Adds a link to device which is upper to this one. The caller must hold
4890 * the RTNL lock. On a failure a negative errno code is returned.
4891 * On success the reference counts are adjusted and the function
4892 * returns zero.
4893 */
4894 int netdev_upper_dev_link(struct net_device *dev,
4895 struct net_device *upper_dev)
4896 {
4897 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4898 }
4899 EXPORT_SYMBOL(netdev_upper_dev_link);
4900
4901 /**
4902 * netdev_master_upper_dev_link - Add a master link to the upper device
4903 * @dev: device
4904 * @upper_dev: new upper device
4905 *
4906 * Adds a link to device which is upper to this one. In this case, only
4907 * one master upper device can be linked, although other non-master devices
4908 * might be linked as well. The caller must hold the RTNL lock.
4909 * On a failure a negative errno code is returned. On success the reference
4910 * counts are adjusted and the function returns zero.
4911 */
4912 int netdev_master_upper_dev_link(struct net_device *dev,
4913 struct net_device *upper_dev)
4914 {
4915 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4916 }
4917 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4918
4919 int netdev_master_upper_dev_link_private(struct net_device *dev,
4920 struct net_device *upper_dev,
4921 void *private)
4922 {
4923 return __netdev_upper_dev_link(dev, upper_dev, true, private);
4924 }
4925 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4926
4927 /**
4928 * netdev_upper_dev_unlink - Removes a link to upper device
4929 * @dev: device
4930 * @upper_dev: new upper device
4931 *
4932 * Removes a link to device which is upper to this one. The caller must hold
4933 * the RTNL lock.
4934 */
4935 void netdev_upper_dev_unlink(struct net_device *dev,
4936 struct net_device *upper_dev)
4937 {
4938 struct netdev_adjacent *i, *j;
4939 ASSERT_RTNL();
4940
4941 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4942
4943 /* Here is the tricky part. We must remove all dev's lower
4944 * devices from all upper_dev's upper devices and vice
4945 * versa, to maintain the graph relationship.
4946 */
4947 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4948 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4949 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4950
4951 /* remove also the devices itself from lower/upper device
4952 * list
4953 */
4954 list_for_each_entry(i, &dev->all_adj_list.lower, list)
4955 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4956
4957 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4958 __netdev_adjacent_dev_unlink(dev, i->dev);
4959
4960 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4961 }
4962 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4963
4964 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4965 struct net_device *lower_dev)
4966 {
4967 struct netdev_adjacent *lower;
4968
4969 if (!lower_dev)
4970 return NULL;
4971 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4972 if (!lower)
4973 return NULL;
4974
4975 return lower->private;
4976 }
4977 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4978
4979 void *netdev_lower_dev_get_private(struct net_device *dev,
4980 struct net_device *lower_dev)
4981 {
4982 struct netdev_adjacent *lower;
4983
4984 if (!lower_dev)
4985 return NULL;
4986 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4987 if (!lower)
4988 return NULL;
4989
4990 return lower->private;
4991 }
4992 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4993
4994 static void dev_change_rx_flags(struct net_device *dev, int flags)
4995 {
4996 const struct net_device_ops *ops = dev->netdev_ops;
4997
4998 if (ops->ndo_change_rx_flags)
4999 ops->ndo_change_rx_flags(dev, flags);
5000 }
5001
5002 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5003 {
5004 unsigned int old_flags = dev->flags;
5005 kuid_t uid;
5006 kgid_t gid;
5007
5008 ASSERT_RTNL();
5009
5010 dev->flags |= IFF_PROMISC;
5011 dev->promiscuity += inc;
5012 if (dev->promiscuity == 0) {
5013 /*
5014 * Avoid overflow.
5015 * If inc causes overflow, untouch promisc and return error.
5016 */
5017 if (inc < 0)
5018 dev->flags &= ~IFF_PROMISC;
5019 else {
5020 dev->promiscuity -= inc;
5021 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5022 dev->name);
5023 return -EOVERFLOW;
5024 }
5025 }
5026 if (dev->flags != old_flags) {
5027 pr_info("device %s %s promiscuous mode\n",
5028 dev->name,
5029 dev->flags & IFF_PROMISC ? "entered" : "left");
5030 if (audit_enabled) {
5031 current_uid_gid(&uid, &gid);
5032 audit_log(current->audit_context, GFP_ATOMIC,
5033 AUDIT_ANOM_PROMISCUOUS,
5034 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5035 dev->name, (dev->flags & IFF_PROMISC),
5036 (old_flags & IFF_PROMISC),
5037 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5038 from_kuid(&init_user_ns, uid),
5039 from_kgid(&init_user_ns, gid),
5040 audit_get_sessionid(current));
5041 }
5042
5043 dev_change_rx_flags(dev, IFF_PROMISC);
5044 }
5045 if (notify)
5046 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5047 return 0;
5048 }
5049
5050 /**
5051 * dev_set_promiscuity - update promiscuity count on a device
5052 * @dev: device
5053 * @inc: modifier
5054 *
5055 * Add or remove promiscuity from a device. While the count in the device
5056 * remains above zero the interface remains promiscuous. Once it hits zero
5057 * the device reverts back to normal filtering operation. A negative inc
5058 * value is used to drop promiscuity on the device.
5059 * Return 0 if successful or a negative errno code on error.
5060 */
5061 int dev_set_promiscuity(struct net_device *dev, int inc)
5062 {
5063 unsigned int old_flags = dev->flags;
5064 int err;
5065
5066 err = __dev_set_promiscuity(dev, inc, true);
5067 if (err < 0)
5068 return err;
5069 if (dev->flags != old_flags)
5070 dev_set_rx_mode(dev);
5071 return err;
5072 }
5073 EXPORT_SYMBOL(dev_set_promiscuity);
5074
5075 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5076 {
5077 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5078
5079 ASSERT_RTNL();
5080
5081 dev->flags |= IFF_ALLMULTI;
5082 dev->allmulti += inc;
5083 if (dev->allmulti == 0) {
5084 /*
5085 * Avoid overflow.
5086 * If inc causes overflow, untouch allmulti and return error.
5087 */
5088 if (inc < 0)
5089 dev->flags &= ~IFF_ALLMULTI;
5090 else {
5091 dev->allmulti -= inc;
5092 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5093 dev->name);
5094 return -EOVERFLOW;
5095 }
5096 }
5097 if (dev->flags ^ old_flags) {
5098 dev_change_rx_flags(dev, IFF_ALLMULTI);
5099 dev_set_rx_mode(dev);
5100 if (notify)
5101 __dev_notify_flags(dev, old_flags,
5102 dev->gflags ^ old_gflags);
5103 }
5104 return 0;
5105 }
5106
5107 /**
5108 * dev_set_allmulti - update allmulti count on a device
5109 * @dev: device
5110 * @inc: modifier
5111 *
5112 * Add or remove reception of all multicast frames to a device. While the
5113 * count in the device remains above zero the interface remains listening
5114 * to all interfaces. Once it hits zero the device reverts back to normal
5115 * filtering operation. A negative @inc value is used to drop the counter
5116 * when releasing a resource needing all multicasts.
5117 * Return 0 if successful or a negative errno code on error.
5118 */
5119
5120 int dev_set_allmulti(struct net_device *dev, int inc)
5121 {
5122 return __dev_set_allmulti(dev, inc, true);
5123 }
5124 EXPORT_SYMBOL(dev_set_allmulti);
5125
5126 /*
5127 * Upload unicast and multicast address lists to device and
5128 * configure RX filtering. When the device doesn't support unicast
5129 * filtering it is put in promiscuous mode while unicast addresses
5130 * are present.
5131 */
5132 void __dev_set_rx_mode(struct net_device *dev)
5133 {
5134 const struct net_device_ops *ops = dev->netdev_ops;
5135
5136 /* dev_open will call this function so the list will stay sane. */
5137 if (!(dev->flags&IFF_UP))
5138 return;
5139
5140 if (!netif_device_present(dev))
5141 return;
5142
5143 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5144 /* Unicast addresses changes may only happen under the rtnl,
5145 * therefore calling __dev_set_promiscuity here is safe.
5146 */
5147 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5148 __dev_set_promiscuity(dev, 1, false);
5149 dev->uc_promisc = true;
5150 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5151 __dev_set_promiscuity(dev, -1, false);
5152 dev->uc_promisc = false;
5153 }
5154 }
5155
5156 if (ops->ndo_set_rx_mode)
5157 ops->ndo_set_rx_mode(dev);
5158 }
5159
5160 void dev_set_rx_mode(struct net_device *dev)
5161 {
5162 netif_addr_lock_bh(dev);
5163 __dev_set_rx_mode(dev);
5164 netif_addr_unlock_bh(dev);
5165 }
5166
5167 /**
5168 * dev_get_flags - get flags reported to userspace
5169 * @dev: device
5170 *
5171 * Get the combination of flag bits exported through APIs to userspace.
5172 */
5173 unsigned int dev_get_flags(const struct net_device *dev)
5174 {
5175 unsigned int flags;
5176
5177 flags = (dev->flags & ~(IFF_PROMISC |
5178 IFF_ALLMULTI |
5179 IFF_RUNNING |
5180 IFF_LOWER_UP |
5181 IFF_DORMANT)) |
5182 (dev->gflags & (IFF_PROMISC |
5183 IFF_ALLMULTI));
5184
5185 if (netif_running(dev)) {
5186 if (netif_oper_up(dev))
5187 flags |= IFF_RUNNING;
5188 if (netif_carrier_ok(dev))
5189 flags |= IFF_LOWER_UP;
5190 if (netif_dormant(dev))
5191 flags |= IFF_DORMANT;
5192 }
5193
5194 return flags;
5195 }
5196 EXPORT_SYMBOL(dev_get_flags);
5197
5198 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5199 {
5200 unsigned int old_flags = dev->flags;
5201 int ret;
5202
5203 ASSERT_RTNL();
5204
5205 /*
5206 * Set the flags on our device.
5207 */
5208
5209 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5210 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5211 IFF_AUTOMEDIA)) |
5212 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5213 IFF_ALLMULTI));
5214
5215 /*
5216 * Load in the correct multicast list now the flags have changed.
5217 */
5218
5219 if ((old_flags ^ flags) & IFF_MULTICAST)
5220 dev_change_rx_flags(dev, IFF_MULTICAST);
5221
5222 dev_set_rx_mode(dev);
5223
5224 /*
5225 * Have we downed the interface. We handle IFF_UP ourselves
5226 * according to user attempts to set it, rather than blindly
5227 * setting it.
5228 */
5229
5230 ret = 0;
5231 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5232 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5233
5234 if (!ret)
5235 dev_set_rx_mode(dev);
5236 }
5237
5238 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5239 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5240 unsigned int old_flags = dev->flags;
5241
5242 dev->gflags ^= IFF_PROMISC;
5243
5244 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5245 if (dev->flags != old_flags)
5246 dev_set_rx_mode(dev);
5247 }
5248
5249 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5250 is important. Some (broken) drivers set IFF_PROMISC, when
5251 IFF_ALLMULTI is requested not asking us and not reporting.
5252 */
5253 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5254 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5255
5256 dev->gflags ^= IFF_ALLMULTI;
5257 __dev_set_allmulti(dev, inc, false);
5258 }
5259
5260 return ret;
5261 }
5262
5263 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5264 unsigned int gchanges)
5265 {
5266 unsigned int changes = dev->flags ^ old_flags;
5267
5268 if (gchanges)
5269 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5270
5271 if (changes & IFF_UP) {
5272 if (dev->flags & IFF_UP)
5273 call_netdevice_notifiers(NETDEV_UP, dev);
5274 else
5275 call_netdevice_notifiers(NETDEV_DOWN, dev);
5276 }
5277
5278 if (dev->flags & IFF_UP &&
5279 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5280 struct netdev_notifier_change_info change_info;
5281
5282 change_info.flags_changed = changes;
5283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5284 &change_info.info);
5285 }
5286 }
5287
5288 /**
5289 * dev_change_flags - change device settings
5290 * @dev: device
5291 * @flags: device state flags
5292 *
5293 * Change settings on device based state flags. The flags are
5294 * in the userspace exported format.
5295 */
5296 int dev_change_flags(struct net_device *dev, unsigned int flags)
5297 {
5298 int ret;
5299 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5300
5301 ret = __dev_change_flags(dev, flags);
5302 if (ret < 0)
5303 return ret;
5304
5305 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5306 __dev_notify_flags(dev, old_flags, changes);
5307 return ret;
5308 }
5309 EXPORT_SYMBOL(dev_change_flags);
5310
5311 /**
5312 * dev_set_mtu - Change maximum transfer unit
5313 * @dev: device
5314 * @new_mtu: new transfer unit
5315 *
5316 * Change the maximum transfer size of the network device.
5317 */
5318 int dev_set_mtu(struct net_device *dev, int new_mtu)
5319 {
5320 const struct net_device_ops *ops = dev->netdev_ops;
5321 int err;
5322
5323 if (new_mtu == dev->mtu)
5324 return 0;
5325
5326 /* MTU must be positive. */
5327 if (new_mtu < 0)
5328 return -EINVAL;
5329
5330 if (!netif_device_present(dev))
5331 return -ENODEV;
5332
5333 err = 0;
5334 if (ops->ndo_change_mtu)
5335 err = ops->ndo_change_mtu(dev, new_mtu);
5336 else
5337 dev->mtu = new_mtu;
5338
5339 if (!err)
5340 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5341 return err;
5342 }
5343 EXPORT_SYMBOL(dev_set_mtu);
5344
5345 /**
5346 * dev_set_group - Change group this device belongs to
5347 * @dev: device
5348 * @new_group: group this device should belong to
5349 */
5350 void dev_set_group(struct net_device *dev, int new_group)
5351 {
5352 dev->group = new_group;
5353 }
5354 EXPORT_SYMBOL(dev_set_group);
5355
5356 /**
5357 * dev_set_mac_address - Change Media Access Control Address
5358 * @dev: device
5359 * @sa: new address
5360 *
5361 * Change the hardware (MAC) address of the device
5362 */
5363 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5364 {
5365 const struct net_device_ops *ops = dev->netdev_ops;
5366 int err;
5367
5368 if (!ops->ndo_set_mac_address)
5369 return -EOPNOTSUPP;
5370 if (sa->sa_family != dev->type)
5371 return -EINVAL;
5372 if (!netif_device_present(dev))
5373 return -ENODEV;
5374 err = ops->ndo_set_mac_address(dev, sa);
5375 if (err)
5376 return err;
5377 dev->addr_assign_type = NET_ADDR_SET;
5378 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5379 add_device_randomness(dev->dev_addr, dev->addr_len);
5380 return 0;
5381 }
5382 EXPORT_SYMBOL(dev_set_mac_address);
5383
5384 /**
5385 * dev_change_carrier - Change device carrier
5386 * @dev: device
5387 * @new_carrier: new value
5388 *
5389 * Change device carrier
5390 */
5391 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5392 {
5393 const struct net_device_ops *ops = dev->netdev_ops;
5394
5395 if (!ops->ndo_change_carrier)
5396 return -EOPNOTSUPP;
5397 if (!netif_device_present(dev))
5398 return -ENODEV;
5399 return ops->ndo_change_carrier(dev, new_carrier);
5400 }
5401 EXPORT_SYMBOL(dev_change_carrier);
5402
5403 /**
5404 * dev_get_phys_port_id - Get device physical port ID
5405 * @dev: device
5406 * @ppid: port ID
5407 *
5408 * Get device physical port ID
5409 */
5410 int dev_get_phys_port_id(struct net_device *dev,
5411 struct netdev_phys_port_id *ppid)
5412 {
5413 const struct net_device_ops *ops = dev->netdev_ops;
5414
5415 if (!ops->ndo_get_phys_port_id)
5416 return -EOPNOTSUPP;
5417 return ops->ndo_get_phys_port_id(dev, ppid);
5418 }
5419 EXPORT_SYMBOL(dev_get_phys_port_id);
5420
5421 /**
5422 * dev_new_index - allocate an ifindex
5423 * @net: the applicable net namespace
5424 *
5425 * Returns a suitable unique value for a new device interface
5426 * number. The caller must hold the rtnl semaphore or the
5427 * dev_base_lock to be sure it remains unique.
5428 */
5429 static int dev_new_index(struct net *net)
5430 {
5431 int ifindex = net->ifindex;
5432 for (;;) {
5433 if (++ifindex <= 0)
5434 ifindex = 1;
5435 if (!__dev_get_by_index(net, ifindex))
5436 return net->ifindex = ifindex;
5437 }
5438 }
5439
5440 /* Delayed registration/unregisteration */
5441 static LIST_HEAD(net_todo_list);
5442 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5443
5444 static void net_set_todo(struct net_device *dev)
5445 {
5446 list_add_tail(&dev->todo_list, &net_todo_list);
5447 dev_net(dev)->dev_unreg_count++;
5448 }
5449
5450 static void rollback_registered_many(struct list_head *head)
5451 {
5452 struct net_device *dev, *tmp;
5453 LIST_HEAD(close_head);
5454
5455 BUG_ON(dev_boot_phase);
5456 ASSERT_RTNL();
5457
5458 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5459 /* Some devices call without registering
5460 * for initialization unwind. Remove those
5461 * devices and proceed with the remaining.
5462 */
5463 if (dev->reg_state == NETREG_UNINITIALIZED) {
5464 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5465 dev->name, dev);
5466
5467 WARN_ON(1);
5468 list_del(&dev->unreg_list);
5469 continue;
5470 }
5471 dev->dismantle = true;
5472 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5473 }
5474
5475 /* If device is running, close it first. */
5476 list_for_each_entry(dev, head, unreg_list)
5477 list_add_tail(&dev->close_list, &close_head);
5478 dev_close_many(&close_head);
5479
5480 list_for_each_entry(dev, head, unreg_list) {
5481 /* And unlink it from device chain. */
5482 unlist_netdevice(dev);
5483
5484 dev->reg_state = NETREG_UNREGISTERING;
5485 }
5486
5487 synchronize_net();
5488
5489 list_for_each_entry(dev, head, unreg_list) {
5490 /* Shutdown queueing discipline. */
5491 dev_shutdown(dev);
5492
5493
5494 /* Notify protocols, that we are about to destroy
5495 this device. They should clean all the things.
5496 */
5497 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5498
5499 if (!dev->rtnl_link_ops ||
5500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5501 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5502
5503 /*
5504 * Flush the unicast and multicast chains
5505 */
5506 dev_uc_flush(dev);
5507 dev_mc_flush(dev);
5508
5509 if (dev->netdev_ops->ndo_uninit)
5510 dev->netdev_ops->ndo_uninit(dev);
5511
5512 /* Notifier chain MUST detach us all upper devices. */
5513 WARN_ON(netdev_has_any_upper_dev(dev));
5514
5515 /* Remove entries from kobject tree */
5516 netdev_unregister_kobject(dev);
5517 #ifdef CONFIG_XPS
5518 /* Remove XPS queueing entries */
5519 netif_reset_xps_queues_gt(dev, 0);
5520 #endif
5521 }
5522
5523 synchronize_net();
5524
5525 list_for_each_entry(dev, head, unreg_list)
5526 dev_put(dev);
5527 }
5528
5529 static void rollback_registered(struct net_device *dev)
5530 {
5531 LIST_HEAD(single);
5532
5533 list_add(&dev->unreg_list, &single);
5534 rollback_registered_many(&single);
5535 list_del(&single);
5536 }
5537
5538 static netdev_features_t netdev_fix_features(struct net_device *dev,
5539 netdev_features_t features)
5540 {
5541 /* Fix illegal checksum combinations */
5542 if ((features & NETIF_F_HW_CSUM) &&
5543 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5544 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5545 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5546 }
5547
5548 /* TSO requires that SG is present as well. */
5549 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5550 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5551 features &= ~NETIF_F_ALL_TSO;
5552 }
5553
5554 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5555 !(features & NETIF_F_IP_CSUM)) {
5556 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5557 features &= ~NETIF_F_TSO;
5558 features &= ~NETIF_F_TSO_ECN;
5559 }
5560
5561 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5562 !(features & NETIF_F_IPV6_CSUM)) {
5563 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5564 features &= ~NETIF_F_TSO6;
5565 }
5566
5567 /* TSO ECN requires that TSO is present as well. */
5568 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5569 features &= ~NETIF_F_TSO_ECN;
5570
5571 /* Software GSO depends on SG. */
5572 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5573 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5574 features &= ~NETIF_F_GSO;
5575 }
5576
5577 /* UFO needs SG and checksumming */
5578 if (features & NETIF_F_UFO) {
5579 /* maybe split UFO into V4 and V6? */
5580 if (!((features & NETIF_F_GEN_CSUM) ||
5581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5582 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5583 netdev_dbg(dev,
5584 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5585 features &= ~NETIF_F_UFO;
5586 }
5587
5588 if (!(features & NETIF_F_SG)) {
5589 netdev_dbg(dev,
5590 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5591 features &= ~NETIF_F_UFO;
5592 }
5593 }
5594
5595 return features;
5596 }
5597
5598 int __netdev_update_features(struct net_device *dev)
5599 {
5600 netdev_features_t features;
5601 int err = 0;
5602
5603 ASSERT_RTNL();
5604
5605 features = netdev_get_wanted_features(dev);
5606
5607 if (dev->netdev_ops->ndo_fix_features)
5608 features = dev->netdev_ops->ndo_fix_features(dev, features);
5609
5610 /* driver might be less strict about feature dependencies */
5611 features = netdev_fix_features(dev, features);
5612
5613 if (dev->features == features)
5614 return 0;
5615
5616 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5617 &dev->features, &features);
5618
5619 if (dev->netdev_ops->ndo_set_features)
5620 err = dev->netdev_ops->ndo_set_features(dev, features);
5621
5622 if (unlikely(err < 0)) {
5623 netdev_err(dev,
5624 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5625 err, &features, &dev->features);
5626 return -1;
5627 }
5628
5629 if (!err)
5630 dev->features = features;
5631
5632 return 1;
5633 }
5634
5635 /**
5636 * netdev_update_features - recalculate device features
5637 * @dev: the device to check
5638 *
5639 * Recalculate dev->features set and send notifications if it
5640 * has changed. Should be called after driver or hardware dependent
5641 * conditions might have changed that influence the features.
5642 */
5643 void netdev_update_features(struct net_device *dev)
5644 {
5645 if (__netdev_update_features(dev))
5646 netdev_features_change(dev);
5647 }
5648 EXPORT_SYMBOL(netdev_update_features);
5649
5650 /**
5651 * netdev_change_features - recalculate device features
5652 * @dev: the device to check
5653 *
5654 * Recalculate dev->features set and send notifications even
5655 * if they have not changed. Should be called instead of
5656 * netdev_update_features() if also dev->vlan_features might
5657 * have changed to allow the changes to be propagated to stacked
5658 * VLAN devices.
5659 */
5660 void netdev_change_features(struct net_device *dev)
5661 {
5662 __netdev_update_features(dev);
5663 netdev_features_change(dev);
5664 }
5665 EXPORT_SYMBOL(netdev_change_features);
5666
5667 /**
5668 * netif_stacked_transfer_operstate - transfer operstate
5669 * @rootdev: the root or lower level device to transfer state from
5670 * @dev: the device to transfer operstate to
5671 *
5672 * Transfer operational state from root to device. This is normally
5673 * called when a stacking relationship exists between the root
5674 * device and the device(a leaf device).
5675 */
5676 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5677 struct net_device *dev)
5678 {
5679 if (rootdev->operstate == IF_OPER_DORMANT)
5680 netif_dormant_on(dev);
5681 else
5682 netif_dormant_off(dev);
5683
5684 if (netif_carrier_ok(rootdev)) {
5685 if (!netif_carrier_ok(dev))
5686 netif_carrier_on(dev);
5687 } else {
5688 if (netif_carrier_ok(dev))
5689 netif_carrier_off(dev);
5690 }
5691 }
5692 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5693
5694 #ifdef CONFIG_RPS
5695 static int netif_alloc_rx_queues(struct net_device *dev)
5696 {
5697 unsigned int i, count = dev->num_rx_queues;
5698 struct netdev_rx_queue *rx;
5699
5700 BUG_ON(count < 1);
5701
5702 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5703 if (!rx)
5704 return -ENOMEM;
5705
5706 dev->_rx = rx;
5707
5708 for (i = 0; i < count; i++)
5709 rx[i].dev = dev;
5710 return 0;
5711 }
5712 #endif
5713
5714 static void netdev_init_one_queue(struct net_device *dev,
5715 struct netdev_queue *queue, void *_unused)
5716 {
5717 /* Initialize queue lock */
5718 spin_lock_init(&queue->_xmit_lock);
5719 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5720 queue->xmit_lock_owner = -1;
5721 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5722 queue->dev = dev;
5723 #ifdef CONFIG_BQL
5724 dql_init(&queue->dql, HZ);
5725 #endif
5726 }
5727
5728 static void netif_free_tx_queues(struct net_device *dev)
5729 {
5730 if (is_vmalloc_addr(dev->_tx))
5731 vfree(dev->_tx);
5732 else
5733 kfree(dev->_tx);
5734 }
5735
5736 static int netif_alloc_netdev_queues(struct net_device *dev)
5737 {
5738 unsigned int count = dev->num_tx_queues;
5739 struct netdev_queue *tx;
5740 size_t sz = count * sizeof(*tx);
5741
5742 BUG_ON(count < 1 || count > 0xffff);
5743
5744 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5745 if (!tx) {
5746 tx = vzalloc(sz);
5747 if (!tx)
5748 return -ENOMEM;
5749 }
5750 dev->_tx = tx;
5751
5752 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5753 spin_lock_init(&dev->tx_global_lock);
5754
5755 return 0;
5756 }
5757
5758 /**
5759 * register_netdevice - register a network device
5760 * @dev: device to register
5761 *
5762 * Take a completed network device structure and add it to the kernel
5763 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5764 * chain. 0 is returned on success. A negative errno code is returned
5765 * on a failure to set up the device, or if the name is a duplicate.
5766 *
5767 * Callers must hold the rtnl semaphore. You may want
5768 * register_netdev() instead of this.
5769 *
5770 * BUGS:
5771 * The locking appears insufficient to guarantee two parallel registers
5772 * will not get the same name.
5773 */
5774
5775 int register_netdevice(struct net_device *dev)
5776 {
5777 int ret;
5778 struct net *net = dev_net(dev);
5779
5780 BUG_ON(dev_boot_phase);
5781 ASSERT_RTNL();
5782
5783 might_sleep();
5784
5785 /* When net_device's are persistent, this will be fatal. */
5786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5787 BUG_ON(!net);
5788
5789 spin_lock_init(&dev->addr_list_lock);
5790 netdev_set_addr_lockdep_class(dev);
5791
5792 dev->iflink = -1;
5793
5794 ret = dev_get_valid_name(net, dev, dev->name);
5795 if (ret < 0)
5796 goto out;
5797
5798 /* Init, if this function is available */
5799 if (dev->netdev_ops->ndo_init) {
5800 ret = dev->netdev_ops->ndo_init(dev);
5801 if (ret) {
5802 if (ret > 0)
5803 ret = -EIO;
5804 goto out;
5805 }
5806 }
5807
5808 if (((dev->hw_features | dev->features) &
5809 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5810 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5811 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5812 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5813 ret = -EINVAL;
5814 goto err_uninit;
5815 }
5816
5817 ret = -EBUSY;
5818 if (!dev->ifindex)
5819 dev->ifindex = dev_new_index(net);
5820 else if (__dev_get_by_index(net, dev->ifindex))
5821 goto err_uninit;
5822
5823 if (dev->iflink == -1)
5824 dev->iflink = dev->ifindex;
5825
5826 /* Transfer changeable features to wanted_features and enable
5827 * software offloads (GSO and GRO).
5828 */
5829 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5830 dev->features |= NETIF_F_SOFT_FEATURES;
5831 dev->wanted_features = dev->features & dev->hw_features;
5832
5833 /* Turn on no cache copy if HW is doing checksum */
5834 if (!(dev->flags & IFF_LOOPBACK)) {
5835 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5836 if (dev->features & NETIF_F_ALL_CSUM) {
5837 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5838 dev->features |= NETIF_F_NOCACHE_COPY;
5839 }
5840 }
5841
5842 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5843 */
5844 dev->vlan_features |= NETIF_F_HIGHDMA;
5845
5846 /* Make NETIF_F_SG inheritable to tunnel devices.
5847 */
5848 dev->hw_enc_features |= NETIF_F_SG;
5849
5850 /* Make NETIF_F_SG inheritable to MPLS.
5851 */
5852 dev->mpls_features |= NETIF_F_SG;
5853
5854 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5855 ret = notifier_to_errno(ret);
5856 if (ret)
5857 goto err_uninit;
5858
5859 ret = netdev_register_kobject(dev);
5860 if (ret)
5861 goto err_uninit;
5862 dev->reg_state = NETREG_REGISTERED;
5863
5864 __netdev_update_features(dev);
5865
5866 /*
5867 * Default initial state at registry is that the
5868 * device is present.
5869 */
5870
5871 set_bit(__LINK_STATE_PRESENT, &dev->state);
5872
5873 linkwatch_init_dev(dev);
5874
5875 dev_init_scheduler(dev);
5876 dev_hold(dev);
5877 list_netdevice(dev);
5878 add_device_randomness(dev->dev_addr, dev->addr_len);
5879
5880 /* If the device has permanent device address, driver should
5881 * set dev_addr and also addr_assign_type should be set to
5882 * NET_ADDR_PERM (default value).
5883 */
5884 if (dev->addr_assign_type == NET_ADDR_PERM)
5885 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5886
5887 /* Notify protocols, that a new device appeared. */
5888 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5889 ret = notifier_to_errno(ret);
5890 if (ret) {
5891 rollback_registered(dev);
5892 dev->reg_state = NETREG_UNREGISTERED;
5893 }
5894 /*
5895 * Prevent userspace races by waiting until the network
5896 * device is fully setup before sending notifications.
5897 */
5898 if (!dev->rtnl_link_ops ||
5899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5900 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5901
5902 out:
5903 return ret;
5904
5905 err_uninit:
5906 if (dev->netdev_ops->ndo_uninit)
5907 dev->netdev_ops->ndo_uninit(dev);
5908 goto out;
5909 }
5910 EXPORT_SYMBOL(register_netdevice);
5911
5912 /**
5913 * init_dummy_netdev - init a dummy network device for NAPI
5914 * @dev: device to init
5915 *
5916 * This takes a network device structure and initialize the minimum
5917 * amount of fields so it can be used to schedule NAPI polls without
5918 * registering a full blown interface. This is to be used by drivers
5919 * that need to tie several hardware interfaces to a single NAPI
5920 * poll scheduler due to HW limitations.
5921 */
5922 int init_dummy_netdev(struct net_device *dev)
5923 {
5924 /* Clear everything. Note we don't initialize spinlocks
5925 * are they aren't supposed to be taken by any of the
5926 * NAPI code and this dummy netdev is supposed to be
5927 * only ever used for NAPI polls
5928 */
5929 memset(dev, 0, sizeof(struct net_device));
5930
5931 /* make sure we BUG if trying to hit standard
5932 * register/unregister code path
5933 */
5934 dev->reg_state = NETREG_DUMMY;
5935
5936 /* NAPI wants this */
5937 INIT_LIST_HEAD(&dev->napi_list);
5938
5939 /* a dummy interface is started by default */
5940 set_bit(__LINK_STATE_PRESENT, &dev->state);
5941 set_bit(__LINK_STATE_START, &dev->state);
5942
5943 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5944 * because users of this 'device' dont need to change
5945 * its refcount.
5946 */
5947
5948 return 0;
5949 }
5950 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5951
5952
5953 /**
5954 * register_netdev - register a network device
5955 * @dev: device to register
5956 *
5957 * Take a completed network device structure and add it to the kernel
5958 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5959 * chain. 0 is returned on success. A negative errno code is returned
5960 * on a failure to set up the device, or if the name is a duplicate.
5961 *
5962 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5963 * and expands the device name if you passed a format string to
5964 * alloc_netdev.
5965 */
5966 int register_netdev(struct net_device *dev)
5967 {
5968 int err;
5969
5970 rtnl_lock();
5971 err = register_netdevice(dev);
5972 rtnl_unlock();
5973 return err;
5974 }
5975 EXPORT_SYMBOL(register_netdev);
5976
5977 int netdev_refcnt_read(const struct net_device *dev)
5978 {
5979 int i, refcnt = 0;
5980
5981 for_each_possible_cpu(i)
5982 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5983 return refcnt;
5984 }
5985 EXPORT_SYMBOL(netdev_refcnt_read);
5986
5987 /**
5988 * netdev_wait_allrefs - wait until all references are gone.
5989 * @dev: target net_device
5990 *
5991 * This is called when unregistering network devices.
5992 *
5993 * Any protocol or device that holds a reference should register
5994 * for netdevice notification, and cleanup and put back the
5995 * reference if they receive an UNREGISTER event.
5996 * We can get stuck here if buggy protocols don't correctly
5997 * call dev_put.
5998 */
5999 static void netdev_wait_allrefs(struct net_device *dev)
6000 {
6001 unsigned long rebroadcast_time, warning_time;
6002 int refcnt;
6003
6004 linkwatch_forget_dev(dev);
6005
6006 rebroadcast_time = warning_time = jiffies;
6007 refcnt = netdev_refcnt_read(dev);
6008
6009 while (refcnt != 0) {
6010 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6011 rtnl_lock();
6012
6013 /* Rebroadcast unregister notification */
6014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6015
6016 __rtnl_unlock();
6017 rcu_barrier();
6018 rtnl_lock();
6019
6020 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6021 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6022 &dev->state)) {
6023 /* We must not have linkwatch events
6024 * pending on unregister. If this
6025 * happens, we simply run the queue
6026 * unscheduled, resulting in a noop
6027 * for this device.
6028 */
6029 linkwatch_run_queue();
6030 }
6031
6032 __rtnl_unlock();
6033
6034 rebroadcast_time = jiffies;
6035 }
6036
6037 msleep(250);
6038
6039 refcnt = netdev_refcnt_read(dev);
6040
6041 if (time_after(jiffies, warning_time + 10 * HZ)) {
6042 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6043 dev->name, refcnt);
6044 warning_time = jiffies;
6045 }
6046 }
6047 }
6048
6049 /* The sequence is:
6050 *
6051 * rtnl_lock();
6052 * ...
6053 * register_netdevice(x1);
6054 * register_netdevice(x2);
6055 * ...
6056 * unregister_netdevice(y1);
6057 * unregister_netdevice(y2);
6058 * ...
6059 * rtnl_unlock();
6060 * free_netdev(y1);
6061 * free_netdev(y2);
6062 *
6063 * We are invoked by rtnl_unlock().
6064 * This allows us to deal with problems:
6065 * 1) We can delete sysfs objects which invoke hotplug
6066 * without deadlocking with linkwatch via keventd.
6067 * 2) Since we run with the RTNL semaphore not held, we can sleep
6068 * safely in order to wait for the netdev refcnt to drop to zero.
6069 *
6070 * We must not return until all unregister events added during
6071 * the interval the lock was held have been completed.
6072 */
6073 void netdev_run_todo(void)
6074 {
6075 struct list_head list;
6076
6077 /* Snapshot list, allow later requests */
6078 list_replace_init(&net_todo_list, &list);
6079
6080 __rtnl_unlock();
6081
6082
6083 /* Wait for rcu callbacks to finish before next phase */
6084 if (!list_empty(&list))
6085 rcu_barrier();
6086
6087 while (!list_empty(&list)) {
6088 struct net_device *dev
6089 = list_first_entry(&list, struct net_device, todo_list);
6090 list_del(&dev->todo_list);
6091
6092 rtnl_lock();
6093 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6094 __rtnl_unlock();
6095
6096 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6097 pr_err("network todo '%s' but state %d\n",
6098 dev->name, dev->reg_state);
6099 dump_stack();
6100 continue;
6101 }
6102
6103 dev->reg_state = NETREG_UNREGISTERED;
6104
6105 on_each_cpu(flush_backlog, dev, 1);
6106
6107 netdev_wait_allrefs(dev);
6108
6109 /* paranoia */
6110 BUG_ON(netdev_refcnt_read(dev));
6111 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6112 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6113 WARN_ON(dev->dn_ptr);
6114
6115 if (dev->destructor)
6116 dev->destructor(dev);
6117
6118 /* Report a network device has been unregistered */
6119 rtnl_lock();
6120 dev_net(dev)->dev_unreg_count--;
6121 __rtnl_unlock();
6122 wake_up(&netdev_unregistering_wq);
6123
6124 /* Free network device */
6125 kobject_put(&dev->dev.kobj);
6126 }
6127 }
6128
6129 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6130 * fields in the same order, with only the type differing.
6131 */
6132 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6133 const struct net_device_stats *netdev_stats)
6134 {
6135 #if BITS_PER_LONG == 64
6136 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6137 memcpy(stats64, netdev_stats, sizeof(*stats64));
6138 #else
6139 size_t i, n = sizeof(*stats64) / sizeof(u64);
6140 const unsigned long *src = (const unsigned long *)netdev_stats;
6141 u64 *dst = (u64 *)stats64;
6142
6143 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6144 sizeof(*stats64) / sizeof(u64));
6145 for (i = 0; i < n; i++)
6146 dst[i] = src[i];
6147 #endif
6148 }
6149 EXPORT_SYMBOL(netdev_stats_to_stats64);
6150
6151 /**
6152 * dev_get_stats - get network device statistics
6153 * @dev: device to get statistics from
6154 * @storage: place to store stats
6155 *
6156 * Get network statistics from device. Return @storage.
6157 * The device driver may provide its own method by setting
6158 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6159 * otherwise the internal statistics structure is used.
6160 */
6161 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6162 struct rtnl_link_stats64 *storage)
6163 {
6164 const struct net_device_ops *ops = dev->netdev_ops;
6165
6166 if (ops->ndo_get_stats64) {
6167 memset(storage, 0, sizeof(*storage));
6168 ops->ndo_get_stats64(dev, storage);
6169 } else if (ops->ndo_get_stats) {
6170 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6171 } else {
6172 netdev_stats_to_stats64(storage, &dev->stats);
6173 }
6174 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6175 return storage;
6176 }
6177 EXPORT_SYMBOL(dev_get_stats);
6178
6179 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6180 {
6181 struct netdev_queue *queue = dev_ingress_queue(dev);
6182
6183 #ifdef CONFIG_NET_CLS_ACT
6184 if (queue)
6185 return queue;
6186 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6187 if (!queue)
6188 return NULL;
6189 netdev_init_one_queue(dev, queue, NULL);
6190 queue->qdisc = &noop_qdisc;
6191 queue->qdisc_sleeping = &noop_qdisc;
6192 rcu_assign_pointer(dev->ingress_queue, queue);
6193 #endif
6194 return queue;
6195 }
6196
6197 static const struct ethtool_ops default_ethtool_ops;
6198
6199 void netdev_set_default_ethtool_ops(struct net_device *dev,
6200 const struct ethtool_ops *ops)
6201 {
6202 if (dev->ethtool_ops == &default_ethtool_ops)
6203 dev->ethtool_ops = ops;
6204 }
6205 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6206
6207 void netdev_freemem(struct net_device *dev)
6208 {
6209 char *addr = (char *)dev - dev->padded;
6210
6211 if (is_vmalloc_addr(addr))
6212 vfree(addr);
6213 else
6214 kfree(addr);
6215 }
6216
6217 /**
6218 * alloc_netdev_mqs - allocate network device
6219 * @sizeof_priv: size of private data to allocate space for
6220 * @name: device name format string
6221 * @setup: callback to initialize device
6222 * @txqs: the number of TX subqueues to allocate
6223 * @rxqs: the number of RX subqueues to allocate
6224 *
6225 * Allocates a struct net_device with private data area for driver use
6226 * and performs basic initialization. Also allocates subquue structs
6227 * for each queue on the device.
6228 */
6229 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6230 void (*setup)(struct net_device *),
6231 unsigned int txqs, unsigned int rxqs)
6232 {
6233 struct net_device *dev;
6234 size_t alloc_size;
6235 struct net_device *p;
6236
6237 BUG_ON(strlen(name) >= sizeof(dev->name));
6238
6239 if (txqs < 1) {
6240 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6241 return NULL;
6242 }
6243
6244 #ifdef CONFIG_RPS
6245 if (rxqs < 1) {
6246 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6247 return NULL;
6248 }
6249 #endif
6250
6251 alloc_size = sizeof(struct net_device);
6252 if (sizeof_priv) {
6253 /* ensure 32-byte alignment of private area */
6254 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6255 alloc_size += sizeof_priv;
6256 }
6257 /* ensure 32-byte alignment of whole construct */
6258 alloc_size += NETDEV_ALIGN - 1;
6259
6260 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6261 if (!p)
6262 p = vzalloc(alloc_size);
6263 if (!p)
6264 return NULL;
6265
6266 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6267 dev->padded = (char *)dev - (char *)p;
6268
6269 dev->pcpu_refcnt = alloc_percpu(int);
6270 if (!dev->pcpu_refcnt)
6271 goto free_dev;
6272
6273 if (dev_addr_init(dev))
6274 goto free_pcpu;
6275
6276 dev_mc_init(dev);
6277 dev_uc_init(dev);
6278
6279 dev_net_set(dev, &init_net);
6280
6281 dev->gso_max_size = GSO_MAX_SIZE;
6282 dev->gso_max_segs = GSO_MAX_SEGS;
6283
6284 INIT_LIST_HEAD(&dev->napi_list);
6285 INIT_LIST_HEAD(&dev->unreg_list);
6286 INIT_LIST_HEAD(&dev->close_list);
6287 INIT_LIST_HEAD(&dev->link_watch_list);
6288 INIT_LIST_HEAD(&dev->adj_list.upper);
6289 INIT_LIST_HEAD(&dev->adj_list.lower);
6290 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6291 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6292 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6293 setup(dev);
6294
6295 dev->num_tx_queues = txqs;
6296 dev->real_num_tx_queues = txqs;
6297 if (netif_alloc_netdev_queues(dev))
6298 goto free_all;
6299
6300 #ifdef CONFIG_RPS
6301 dev->num_rx_queues = rxqs;
6302 dev->real_num_rx_queues = rxqs;
6303 if (netif_alloc_rx_queues(dev))
6304 goto free_all;
6305 #endif
6306
6307 strcpy(dev->name, name);
6308 dev->group = INIT_NETDEV_GROUP;
6309 if (!dev->ethtool_ops)
6310 dev->ethtool_ops = &default_ethtool_ops;
6311 return dev;
6312
6313 free_all:
6314 free_netdev(dev);
6315 return NULL;
6316
6317 free_pcpu:
6318 free_percpu(dev->pcpu_refcnt);
6319 netif_free_tx_queues(dev);
6320 #ifdef CONFIG_RPS
6321 kfree(dev->_rx);
6322 #endif
6323
6324 free_dev:
6325 netdev_freemem(dev);
6326 return NULL;
6327 }
6328 EXPORT_SYMBOL(alloc_netdev_mqs);
6329
6330 /**
6331 * free_netdev - free network device
6332 * @dev: device
6333 *
6334 * This function does the last stage of destroying an allocated device
6335 * interface. The reference to the device object is released.
6336 * If this is the last reference then it will be freed.
6337 */
6338 void free_netdev(struct net_device *dev)
6339 {
6340 struct napi_struct *p, *n;
6341
6342 release_net(dev_net(dev));
6343
6344 netif_free_tx_queues(dev);
6345 #ifdef CONFIG_RPS
6346 kfree(dev->_rx);
6347 #endif
6348
6349 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6350
6351 /* Flush device addresses */
6352 dev_addr_flush(dev);
6353
6354 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6355 netif_napi_del(p);
6356
6357 free_percpu(dev->pcpu_refcnt);
6358 dev->pcpu_refcnt = NULL;
6359
6360 /* Compatibility with error handling in drivers */
6361 if (dev->reg_state == NETREG_UNINITIALIZED) {
6362 netdev_freemem(dev);
6363 return;
6364 }
6365
6366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6367 dev->reg_state = NETREG_RELEASED;
6368
6369 /* will free via device release */
6370 put_device(&dev->dev);
6371 }
6372 EXPORT_SYMBOL(free_netdev);
6373
6374 /**
6375 * synchronize_net - Synchronize with packet receive processing
6376 *
6377 * Wait for packets currently being received to be done.
6378 * Does not block later packets from starting.
6379 */
6380 void synchronize_net(void)
6381 {
6382 might_sleep();
6383 if (rtnl_is_locked())
6384 synchronize_rcu_expedited();
6385 else
6386 synchronize_rcu();
6387 }
6388 EXPORT_SYMBOL(synchronize_net);
6389
6390 /**
6391 * unregister_netdevice_queue - remove device from the kernel
6392 * @dev: device
6393 * @head: list
6394 *
6395 * This function shuts down a device interface and removes it
6396 * from the kernel tables.
6397 * If head not NULL, device is queued to be unregistered later.
6398 *
6399 * Callers must hold the rtnl semaphore. You may want
6400 * unregister_netdev() instead of this.
6401 */
6402
6403 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6404 {
6405 ASSERT_RTNL();
6406
6407 if (head) {
6408 list_move_tail(&dev->unreg_list, head);
6409 } else {
6410 rollback_registered(dev);
6411 /* Finish processing unregister after unlock */
6412 net_set_todo(dev);
6413 }
6414 }
6415 EXPORT_SYMBOL(unregister_netdevice_queue);
6416
6417 /**
6418 * unregister_netdevice_many - unregister many devices
6419 * @head: list of devices
6420 */
6421 void unregister_netdevice_many(struct list_head *head)
6422 {
6423 struct net_device *dev;
6424
6425 if (!list_empty(head)) {
6426 rollback_registered_many(head);
6427 list_for_each_entry(dev, head, unreg_list)
6428 net_set_todo(dev);
6429 }
6430 }
6431 EXPORT_SYMBOL(unregister_netdevice_many);
6432
6433 /**
6434 * unregister_netdev - remove device from the kernel
6435 * @dev: device
6436 *
6437 * This function shuts down a device interface and removes it
6438 * from the kernel tables.
6439 *
6440 * This is just a wrapper for unregister_netdevice that takes
6441 * the rtnl semaphore. In general you want to use this and not
6442 * unregister_netdevice.
6443 */
6444 void unregister_netdev(struct net_device *dev)
6445 {
6446 rtnl_lock();
6447 unregister_netdevice(dev);
6448 rtnl_unlock();
6449 }
6450 EXPORT_SYMBOL(unregister_netdev);
6451
6452 /**
6453 * dev_change_net_namespace - move device to different nethost namespace
6454 * @dev: device
6455 * @net: network namespace
6456 * @pat: If not NULL name pattern to try if the current device name
6457 * is already taken in the destination network namespace.
6458 *
6459 * This function shuts down a device interface and moves it
6460 * to a new network namespace. On success 0 is returned, on
6461 * a failure a netagive errno code is returned.
6462 *
6463 * Callers must hold the rtnl semaphore.
6464 */
6465
6466 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6467 {
6468 int err;
6469
6470 ASSERT_RTNL();
6471
6472 /* Don't allow namespace local devices to be moved. */
6473 err = -EINVAL;
6474 if (dev->features & NETIF_F_NETNS_LOCAL)
6475 goto out;
6476
6477 /* Ensure the device has been registrered */
6478 if (dev->reg_state != NETREG_REGISTERED)
6479 goto out;
6480
6481 /* Get out if there is nothing todo */
6482 err = 0;
6483 if (net_eq(dev_net(dev), net))
6484 goto out;
6485
6486 /* Pick the destination device name, and ensure
6487 * we can use it in the destination network namespace.
6488 */
6489 err = -EEXIST;
6490 if (__dev_get_by_name(net, dev->name)) {
6491 /* We get here if we can't use the current device name */
6492 if (!pat)
6493 goto out;
6494 if (dev_get_valid_name(net, dev, pat) < 0)
6495 goto out;
6496 }
6497
6498 /*
6499 * And now a mini version of register_netdevice unregister_netdevice.
6500 */
6501
6502 /* If device is running close it first. */
6503 dev_close(dev);
6504
6505 /* And unlink it from device chain */
6506 err = -ENODEV;
6507 unlist_netdevice(dev);
6508
6509 synchronize_net();
6510
6511 /* Shutdown queueing discipline. */
6512 dev_shutdown(dev);
6513
6514 /* Notify protocols, that we are about to destroy
6515 this device. They should clean all the things.
6516
6517 Note that dev->reg_state stays at NETREG_REGISTERED.
6518 This is wanted because this way 8021q and macvlan know
6519 the device is just moving and can keep their slaves up.
6520 */
6521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6522 rcu_barrier();
6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6525
6526 /*
6527 * Flush the unicast and multicast chains
6528 */
6529 dev_uc_flush(dev);
6530 dev_mc_flush(dev);
6531
6532 /* Send a netdev-removed uevent to the old namespace */
6533 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6534
6535 /* Actually switch the network namespace */
6536 dev_net_set(dev, net);
6537
6538 /* If there is an ifindex conflict assign a new one */
6539 if (__dev_get_by_index(net, dev->ifindex)) {
6540 int iflink = (dev->iflink == dev->ifindex);
6541 dev->ifindex = dev_new_index(net);
6542 if (iflink)
6543 dev->iflink = dev->ifindex;
6544 }
6545
6546 /* Send a netdev-add uevent to the new namespace */
6547 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6548
6549 /* Fixup kobjects */
6550 err = device_rename(&dev->dev, dev->name);
6551 WARN_ON(err);
6552
6553 /* Add the device back in the hashes */
6554 list_netdevice(dev);
6555
6556 /* Notify protocols, that a new device appeared. */
6557 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6558
6559 /*
6560 * Prevent userspace races by waiting until the network
6561 * device is fully setup before sending notifications.
6562 */
6563 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6564
6565 synchronize_net();
6566 err = 0;
6567 out:
6568 return err;
6569 }
6570 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6571
6572 static int dev_cpu_callback(struct notifier_block *nfb,
6573 unsigned long action,
6574 void *ocpu)
6575 {
6576 struct sk_buff **list_skb;
6577 struct sk_buff *skb;
6578 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6579 struct softnet_data *sd, *oldsd;
6580
6581 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6582 return NOTIFY_OK;
6583
6584 local_irq_disable();
6585 cpu = smp_processor_id();
6586 sd = &per_cpu(softnet_data, cpu);
6587 oldsd = &per_cpu(softnet_data, oldcpu);
6588
6589 /* Find end of our completion_queue. */
6590 list_skb = &sd->completion_queue;
6591 while (*list_skb)
6592 list_skb = &(*list_skb)->next;
6593 /* Append completion queue from offline CPU. */
6594 *list_skb = oldsd->completion_queue;
6595 oldsd->completion_queue = NULL;
6596
6597 /* Append output queue from offline CPU. */
6598 if (oldsd->output_queue) {
6599 *sd->output_queue_tailp = oldsd->output_queue;
6600 sd->output_queue_tailp = oldsd->output_queue_tailp;
6601 oldsd->output_queue = NULL;
6602 oldsd->output_queue_tailp = &oldsd->output_queue;
6603 }
6604 /* Append NAPI poll list from offline CPU. */
6605 if (!list_empty(&oldsd->poll_list)) {
6606 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6607 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6608 }
6609
6610 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6611 local_irq_enable();
6612
6613 /* Process offline CPU's input_pkt_queue */
6614 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6615 netif_rx(skb);
6616 input_queue_head_incr(oldsd);
6617 }
6618 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6619 netif_rx(skb);
6620 input_queue_head_incr(oldsd);
6621 }
6622
6623 return NOTIFY_OK;
6624 }
6625
6626
6627 /**
6628 * netdev_increment_features - increment feature set by one
6629 * @all: current feature set
6630 * @one: new feature set
6631 * @mask: mask feature set
6632 *
6633 * Computes a new feature set after adding a device with feature set
6634 * @one to the master device with current feature set @all. Will not
6635 * enable anything that is off in @mask. Returns the new feature set.
6636 */
6637 netdev_features_t netdev_increment_features(netdev_features_t all,
6638 netdev_features_t one, netdev_features_t mask)
6639 {
6640 if (mask & NETIF_F_GEN_CSUM)
6641 mask |= NETIF_F_ALL_CSUM;
6642 mask |= NETIF_F_VLAN_CHALLENGED;
6643
6644 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6645 all &= one | ~NETIF_F_ALL_FOR_ALL;
6646
6647 /* If one device supports hw checksumming, set for all. */
6648 if (all & NETIF_F_GEN_CSUM)
6649 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6650
6651 return all;
6652 }
6653 EXPORT_SYMBOL(netdev_increment_features);
6654
6655 static struct hlist_head * __net_init netdev_create_hash(void)
6656 {
6657 int i;
6658 struct hlist_head *hash;
6659
6660 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6661 if (hash != NULL)
6662 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6663 INIT_HLIST_HEAD(&hash[i]);
6664
6665 return hash;
6666 }
6667
6668 /* Initialize per network namespace state */
6669 static int __net_init netdev_init(struct net *net)
6670 {
6671 if (net != &init_net)
6672 INIT_LIST_HEAD(&net->dev_base_head);
6673
6674 net->dev_name_head = netdev_create_hash();
6675 if (net->dev_name_head == NULL)
6676 goto err_name;
6677
6678 net->dev_index_head = netdev_create_hash();
6679 if (net->dev_index_head == NULL)
6680 goto err_idx;
6681
6682 return 0;
6683
6684 err_idx:
6685 kfree(net->dev_name_head);
6686 err_name:
6687 return -ENOMEM;
6688 }
6689
6690 /**
6691 * netdev_drivername - network driver for the device
6692 * @dev: network device
6693 *
6694 * Determine network driver for device.
6695 */
6696 const char *netdev_drivername(const struct net_device *dev)
6697 {
6698 const struct device_driver *driver;
6699 const struct device *parent;
6700 const char *empty = "";
6701
6702 parent = dev->dev.parent;
6703 if (!parent)
6704 return empty;
6705
6706 driver = parent->driver;
6707 if (driver && driver->name)
6708 return driver->name;
6709 return empty;
6710 }
6711
6712 static int __netdev_printk(const char *level, const struct net_device *dev,
6713 struct va_format *vaf)
6714 {
6715 int r;
6716
6717 if (dev && dev->dev.parent) {
6718 r = dev_printk_emit(level[1] - '0',
6719 dev->dev.parent,
6720 "%s %s %s: %pV",
6721 dev_driver_string(dev->dev.parent),
6722 dev_name(dev->dev.parent),
6723 netdev_name(dev), vaf);
6724 } else if (dev) {
6725 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6726 } else {
6727 r = printk("%s(NULL net_device): %pV", level, vaf);
6728 }
6729
6730 return r;
6731 }
6732
6733 int netdev_printk(const char *level, const struct net_device *dev,
6734 const char *format, ...)
6735 {
6736 struct va_format vaf;
6737 va_list args;
6738 int r;
6739
6740 va_start(args, format);
6741
6742 vaf.fmt = format;
6743 vaf.va = &args;
6744
6745 r = __netdev_printk(level, dev, &vaf);
6746
6747 va_end(args);
6748
6749 return r;
6750 }
6751 EXPORT_SYMBOL(netdev_printk);
6752
6753 #define define_netdev_printk_level(func, level) \
6754 int func(const struct net_device *dev, const char *fmt, ...) \
6755 { \
6756 int r; \
6757 struct va_format vaf; \
6758 va_list args; \
6759 \
6760 va_start(args, fmt); \
6761 \
6762 vaf.fmt = fmt; \
6763 vaf.va = &args; \
6764 \
6765 r = __netdev_printk(level, dev, &vaf); \
6766 \
6767 va_end(args); \
6768 \
6769 return r; \
6770 } \
6771 EXPORT_SYMBOL(func);
6772
6773 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6774 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6775 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6776 define_netdev_printk_level(netdev_err, KERN_ERR);
6777 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6778 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6779 define_netdev_printk_level(netdev_info, KERN_INFO);
6780
6781 static void __net_exit netdev_exit(struct net *net)
6782 {
6783 kfree(net->dev_name_head);
6784 kfree(net->dev_index_head);
6785 }
6786
6787 static struct pernet_operations __net_initdata netdev_net_ops = {
6788 .init = netdev_init,
6789 .exit = netdev_exit,
6790 };
6791
6792 static void __net_exit default_device_exit(struct net *net)
6793 {
6794 struct net_device *dev, *aux;
6795 /*
6796 * Push all migratable network devices back to the
6797 * initial network namespace
6798 */
6799 rtnl_lock();
6800 for_each_netdev_safe(net, dev, aux) {
6801 int err;
6802 char fb_name[IFNAMSIZ];
6803
6804 /* Ignore unmoveable devices (i.e. loopback) */
6805 if (dev->features & NETIF_F_NETNS_LOCAL)
6806 continue;
6807
6808 /* Leave virtual devices for the generic cleanup */
6809 if (dev->rtnl_link_ops)
6810 continue;
6811
6812 /* Push remaining network devices to init_net */
6813 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6814 err = dev_change_net_namespace(dev, &init_net, fb_name);
6815 if (err) {
6816 pr_emerg("%s: failed to move %s to init_net: %d\n",
6817 __func__, dev->name, err);
6818 BUG();
6819 }
6820 }
6821 rtnl_unlock();
6822 }
6823
6824 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6825 {
6826 /* Return with the rtnl_lock held when there are no network
6827 * devices unregistering in any network namespace in net_list.
6828 */
6829 struct net *net;
6830 bool unregistering;
6831 DEFINE_WAIT(wait);
6832
6833 for (;;) {
6834 prepare_to_wait(&netdev_unregistering_wq, &wait,
6835 TASK_UNINTERRUPTIBLE);
6836 unregistering = false;
6837 rtnl_lock();
6838 list_for_each_entry(net, net_list, exit_list) {
6839 if (net->dev_unreg_count > 0) {
6840 unregistering = true;
6841 break;
6842 }
6843 }
6844 if (!unregistering)
6845 break;
6846 __rtnl_unlock();
6847 schedule();
6848 }
6849 finish_wait(&netdev_unregistering_wq, &wait);
6850 }
6851
6852 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6853 {
6854 /* At exit all network devices most be removed from a network
6855 * namespace. Do this in the reverse order of registration.
6856 * Do this across as many network namespaces as possible to
6857 * improve batching efficiency.
6858 */
6859 struct net_device *dev;
6860 struct net *net;
6861 LIST_HEAD(dev_kill_list);
6862
6863 /* To prevent network device cleanup code from dereferencing
6864 * loopback devices or network devices that have been freed
6865 * wait here for all pending unregistrations to complete,
6866 * before unregistring the loopback device and allowing the
6867 * network namespace be freed.
6868 *
6869 * The netdev todo list containing all network devices
6870 * unregistrations that happen in default_device_exit_batch
6871 * will run in the rtnl_unlock() at the end of
6872 * default_device_exit_batch.
6873 */
6874 rtnl_lock_unregistering(net_list);
6875 list_for_each_entry(net, net_list, exit_list) {
6876 for_each_netdev_reverse(net, dev) {
6877 if (dev->rtnl_link_ops)
6878 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6879 else
6880 unregister_netdevice_queue(dev, &dev_kill_list);
6881 }
6882 }
6883 unregister_netdevice_many(&dev_kill_list);
6884 list_del(&dev_kill_list);
6885 rtnl_unlock();
6886 }
6887
6888 static struct pernet_operations __net_initdata default_device_ops = {
6889 .exit = default_device_exit,
6890 .exit_batch = default_device_exit_batch,
6891 };
6892
6893 /*
6894 * Initialize the DEV module. At boot time this walks the device list and
6895 * unhooks any devices that fail to initialise (normally hardware not
6896 * present) and leaves us with a valid list of present and active devices.
6897 *
6898 */
6899
6900 /*
6901 * This is called single threaded during boot, so no need
6902 * to take the rtnl semaphore.
6903 */
6904 static int __init net_dev_init(void)
6905 {
6906 int i, rc = -ENOMEM;
6907
6908 BUG_ON(!dev_boot_phase);
6909
6910 if (dev_proc_init())
6911 goto out;
6912
6913 if (netdev_kobject_init())
6914 goto out;
6915
6916 INIT_LIST_HEAD(&ptype_all);
6917 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6918 INIT_LIST_HEAD(&ptype_base[i]);
6919
6920 INIT_LIST_HEAD(&offload_base);
6921
6922 if (register_pernet_subsys(&netdev_net_ops))
6923 goto out;
6924
6925 /*
6926 * Initialise the packet receive queues.
6927 */
6928
6929 for_each_possible_cpu(i) {
6930 struct softnet_data *sd = &per_cpu(softnet_data, i);
6931
6932 memset(sd, 0, sizeof(*sd));
6933 skb_queue_head_init(&sd->input_pkt_queue);
6934 skb_queue_head_init(&sd->process_queue);
6935 sd->completion_queue = NULL;
6936 INIT_LIST_HEAD(&sd->poll_list);
6937 sd->output_queue = NULL;
6938 sd->output_queue_tailp = &sd->output_queue;
6939 #ifdef CONFIG_RPS
6940 sd->csd.func = rps_trigger_softirq;
6941 sd->csd.info = sd;
6942 sd->csd.flags = 0;
6943 sd->cpu = i;
6944 #endif
6945
6946 sd->backlog.poll = process_backlog;
6947 sd->backlog.weight = weight_p;
6948 sd->backlog.gro_list = NULL;
6949 sd->backlog.gro_count = 0;
6950
6951 #ifdef CONFIG_NET_FLOW_LIMIT
6952 sd->flow_limit = NULL;
6953 #endif
6954 }
6955
6956 dev_boot_phase = 0;
6957
6958 /* The loopback device is special if any other network devices
6959 * is present in a network namespace the loopback device must
6960 * be present. Since we now dynamically allocate and free the
6961 * loopback device ensure this invariant is maintained by
6962 * keeping the loopback device as the first device on the
6963 * list of network devices. Ensuring the loopback devices
6964 * is the first device that appears and the last network device
6965 * that disappears.
6966 */
6967 if (register_pernet_device(&loopback_net_ops))
6968 goto out;
6969
6970 if (register_pernet_device(&default_device_ops))
6971 goto out;
6972
6973 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6974 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6975
6976 hotcpu_notifier(dev_cpu_callback, 0);
6977 dst_init();
6978 rc = 0;
6979 out:
6980 return rc;
6981 }
6982
6983 subsys_initcall(net_dev_init);
This page took 0.183581 seconds and 5 git commands to generate.