de930b75171267004892382438d6e8c122f4720f
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1558 return;
1559 }
1560 #endif
1561 static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1570 }
1571
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1576 } \
1577
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1580 {
1581 unsigned int len;
1582
1583 if (!(dev->flags & IFF_UP))
1584 return false;
1585
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1588 return true;
1589
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1592 */
1593 if (skb_is_gso(skb))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /**
1600 * dev_forward_skb - loopback an skb to another netif
1601 *
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1604 *
1605 * return values:
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1608 *
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1612 *
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1616 */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1622 kfree_skb(skb);
1623 return NET_RX_DROP;
1624 }
1625 }
1626
1627 skb_orphan(skb);
1628 nf_reset(skb);
1629
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1632 kfree_skb(skb);
1633 return NET_RX_DROP;
1634 }
1635 skb->skb_iif = 0;
1636 skb->dev = dev;
1637 skb_dst_drop(skb);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1641 skb->mark = 0;
1642 secpath_reset(skb);
1643 nf_reset(skb);
1644 return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1651 {
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 return -ENOMEM;
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 if (!ptype->af_packet_priv || !skb->sk)
1661 return false;
1662
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /*
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1674 */
1675
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1686 */
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1689 if (pt_prev) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1691 pt_prev = ptype;
1692 continue;
1693 }
1694
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (!skb2)
1697 break;
1698
1699 net_timestamp_set(skb2);
1700
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1704 */
1705 skb_reset_mac_header(skb2);
1706
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1711 dev->name);
1712 skb_reset_network_header(skb2);
1713 }
1714
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1717 pt_prev = ptype;
1718 }
1719 }
1720 if (pt_prev)
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 rcu_read_unlock();
1723 }
1724
1725 /**
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1729 *
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1737 */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 int i;
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 dev->num_tc = 0;
1747 return;
1748 }
1749
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1753
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 i, q);
1758 netdev_set_prio_tc_map(dev, i, 0);
1759 }
1760 }
1761 }
1762
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 int cpu, u16 index)
1770 {
1771 struct xps_map *map = NULL;
1772 int pos;
1773
1774 if (dev_maps)
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1779 if (map->len > 1) {
1780 map->queues[pos] = map->queues[--map->len];
1781 } else {
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1784 map = NULL;
1785 }
1786 break;
1787 }
1788 }
1789
1790 return map;
1791 }
1792
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 struct xps_dev_maps *dev_maps;
1796 int cpu, i;
1797 bool active = false;
1798
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1801
1802 if (!dev_maps)
1803 goto out_no_maps;
1804
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1808 break;
1809 }
1810 if (i == dev->num_tx_queues)
1811 active = true;
1812 }
1813
1814 if (!active) {
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1817 }
1818
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 NUMA_NO_NODE);
1822
1823 out_no_maps:
1824 mutex_unlock(&xps_map_mutex);
1825 }
1826
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 int cpu, u16 index)
1829 {
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1832 int i, pos;
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1836 continue;
1837 return map;
1838 }
1839
1840 /* Need to add queue to this CPU's existing map */
1841 if (map) {
1842 if (pos < map->alloc_len)
1843 return map;
1844
1845 alloc_len = map->alloc_len * 2;
1846 }
1847
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 cpu_to_node(cpu));
1851 if (!new_map)
1852 return NULL;
1853
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1857 new_map->len = pos;
1858
1859 return new_map;
1860 }
1861
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1869
1870 mutex_lock(&xps_map_mutex);
1871
1872 dev_maps = xmap_dereference(dev->xps_maps);
1873
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1877 continue;
1878
1879 if (!new_dev_maps)
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1883 return -ENOMEM;
1884 }
1885
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 NULL;
1888
1889 map = expand_xps_map(map, cpu, index);
1890 if (!map)
1891 goto error;
1892
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 }
1895
1896 if (!new_dev_maps)
1897 goto out_no_new_maps;
1898
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1902 int pos = 0;
1903
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1906 pos++;
1907
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1914 numa_node_id = -1;
1915 #endif
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 }
1921
1922 }
1923
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925
1926 /* Cleanup old maps */
1927 if (dev_maps) {
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1933 }
1934
1935 kfree_rcu(dev_maps, rcu);
1936 }
1937
1938 dev_maps = new_dev_maps;
1939 active = true;
1940
1941 out_no_new_maps:
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1945 NUMA_NO_NODE);
1946
1947 if (!dev_maps)
1948 goto out_no_maps;
1949
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 continue;
1954
1955 if (remove_xps_queue(dev_maps, cpu, index))
1956 active = true;
1957 }
1958
1959 /* free map if not active */
1960 if (!active) {
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1963 }
1964
1965 out_no_maps:
1966 mutex_unlock(&xps_map_mutex);
1967
1968 return 0;
1969 error:
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 NULL;
1975 if (new_map && new_map != map)
1976 kfree(new_map);
1977 }
1978
1979 mutex_unlock(&xps_map_mutex);
1980
1981 kfree(new_dev_maps);
1982 return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985
1986 #endif
1987 /*
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 int rc;
1994
1995 if (txq < 1 || txq > dev->num_tx_queues)
1996 return -EINVAL;
1997
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2000 ASSERT_RTNL();
2001
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 txq);
2004 if (rc)
2005 return rc;
2006
2007 if (dev->num_tc)
2008 netif_setup_tc(dev, txq);
2009
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 }
2016 }
2017
2018 dev->real_num_tx_queues = txq;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022
2023 #ifdef CONFIG_RPS
2024 /**
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2028 *
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2032 * succeeds.
2033 */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 int rc;
2037
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2039 return -EINVAL;
2040
2041 if (dev->reg_state == NETREG_REGISTERED) {
2042 ASSERT_RTNL();
2043
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 rxq);
2046 if (rc)
2047 return rc;
2048 }
2049
2050 dev->real_num_rx_queues = rxq;
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055
2056 /**
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2058 *
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2061 */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 struct softnet_data *sd;
2071 unsigned long flags;
2072
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2080 }
2081
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2094
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2101 }
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2109 else
2110 dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113
2114
2115 /**
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2118 *
2119 * Mark device as removed from system and therefore no longer available.
2120 */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2126 }
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129
2130 /**
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2133 *
2134 * Mark device as attached from system and restart if needed.
2135 */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 __be16 skb_network_protocol(struct sk_buff *skb)
2212 {
2213 __be16 type = skb->protocol;
2214 int vlan_depth = ETH_HLEN;
2215
2216 while (type == htons(ETH_P_8021Q)) {
2217 struct vlan_hdr *vh;
2218
2219 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2220 return 0;
2221
2222 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2223 type = vh->h_vlan_encapsulated_proto;
2224 vlan_depth += VLAN_HLEN;
2225 }
2226
2227 return type;
2228 }
2229
2230 /**
2231 * skb_mac_gso_segment - mac layer segmentation handler.
2232 * @skb: buffer to segment
2233 * @features: features for the output path (see dev->features)
2234 */
2235 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2236 netdev_features_t features)
2237 {
2238 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2239 struct packet_offload *ptype;
2240 __be16 type = skb_network_protocol(skb);
2241
2242 if (unlikely(!type))
2243 return ERR_PTR(-EINVAL);
2244
2245 __skb_pull(skb, skb->mac_len);
2246
2247 rcu_read_lock();
2248 list_for_each_entry_rcu(ptype, &offload_base, list) {
2249 if (ptype->type == type && ptype->callbacks.gso_segment) {
2250 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2251 int err;
2252
2253 err = ptype->callbacks.gso_send_check(skb);
2254 segs = ERR_PTR(err);
2255 if (err || skb_gso_ok(skb, features))
2256 break;
2257 __skb_push(skb, (skb->data -
2258 skb_network_header(skb)));
2259 }
2260 segs = ptype->callbacks.gso_segment(skb, features);
2261 break;
2262 }
2263 }
2264 rcu_read_unlock();
2265
2266 __skb_push(skb, skb->data - skb_mac_header(skb));
2267
2268 return segs;
2269 }
2270 EXPORT_SYMBOL(skb_mac_gso_segment);
2271
2272
2273 /* openvswitch calls this on rx path, so we need a different check.
2274 */
2275 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2276 {
2277 if (tx_path)
2278 return skb->ip_summed != CHECKSUM_PARTIAL;
2279 else
2280 return skb->ip_summed == CHECKSUM_NONE;
2281 }
2282
2283 /**
2284 * __skb_gso_segment - Perform segmentation on skb.
2285 * @skb: buffer to segment
2286 * @features: features for the output path (see dev->features)
2287 * @tx_path: whether it is called in TX path
2288 *
2289 * This function segments the given skb and returns a list of segments.
2290 *
2291 * It may return NULL if the skb requires no segmentation. This is
2292 * only possible when GSO is used for verifying header integrity.
2293 */
2294 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2295 netdev_features_t features, bool tx_path)
2296 {
2297 if (unlikely(skb_needs_check(skb, tx_path))) {
2298 int err;
2299
2300 skb_warn_bad_offload(skb);
2301
2302 if (skb_header_cloned(skb) &&
2303 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2304 return ERR_PTR(err);
2305 }
2306
2307 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2308 skb_reset_mac_header(skb);
2309 skb_reset_mac_len(skb);
2310
2311 return skb_mac_gso_segment(skb, features);
2312 }
2313 EXPORT_SYMBOL(__skb_gso_segment);
2314
2315 /* Take action when hardware reception checksum errors are detected. */
2316 #ifdef CONFIG_BUG
2317 void netdev_rx_csum_fault(struct net_device *dev)
2318 {
2319 if (net_ratelimit()) {
2320 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2321 dump_stack();
2322 }
2323 }
2324 EXPORT_SYMBOL(netdev_rx_csum_fault);
2325 #endif
2326
2327 /* Actually, we should eliminate this check as soon as we know, that:
2328 * 1. IOMMU is present and allows to map all the memory.
2329 * 2. No high memory really exists on this machine.
2330 */
2331
2332 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2333 {
2334 #ifdef CONFIG_HIGHMEM
2335 int i;
2336 if (!(dev->features & NETIF_F_HIGHDMA)) {
2337 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2338 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2339 if (PageHighMem(skb_frag_page(frag)))
2340 return 1;
2341 }
2342 }
2343
2344 if (PCI_DMA_BUS_IS_PHYS) {
2345 struct device *pdev = dev->dev.parent;
2346
2347 if (!pdev)
2348 return 0;
2349 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2350 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2351 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2352 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2353 return 1;
2354 }
2355 }
2356 #endif
2357 return 0;
2358 }
2359
2360 struct dev_gso_cb {
2361 void (*destructor)(struct sk_buff *skb);
2362 };
2363
2364 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2365
2366 static void dev_gso_skb_destructor(struct sk_buff *skb)
2367 {
2368 struct dev_gso_cb *cb;
2369
2370 do {
2371 struct sk_buff *nskb = skb->next;
2372
2373 skb->next = nskb->next;
2374 nskb->next = NULL;
2375 kfree_skb(nskb);
2376 } while (skb->next);
2377
2378 cb = DEV_GSO_CB(skb);
2379 if (cb->destructor)
2380 cb->destructor(skb);
2381 }
2382
2383 /**
2384 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2385 * @skb: buffer to segment
2386 * @features: device features as applicable to this skb
2387 *
2388 * This function segments the given skb and stores the list of segments
2389 * in skb->next.
2390 */
2391 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2392 {
2393 struct sk_buff *segs;
2394
2395 segs = skb_gso_segment(skb, features);
2396
2397 /* Verifying header integrity only. */
2398 if (!segs)
2399 return 0;
2400
2401 if (IS_ERR(segs))
2402 return PTR_ERR(segs);
2403
2404 skb->next = segs;
2405 DEV_GSO_CB(skb)->destructor = skb->destructor;
2406 skb->destructor = dev_gso_skb_destructor;
2407
2408 return 0;
2409 }
2410
2411 static netdev_features_t harmonize_features(struct sk_buff *skb,
2412 __be16 protocol, netdev_features_t features)
2413 {
2414 if (skb->ip_summed != CHECKSUM_NONE &&
2415 !can_checksum_protocol(features, protocol)) {
2416 features &= ~NETIF_F_ALL_CSUM;
2417 } else if (illegal_highdma(skb->dev, skb)) {
2418 features &= ~NETIF_F_SG;
2419 }
2420
2421 return features;
2422 }
2423
2424 netdev_features_t netif_skb_features(struct sk_buff *skb)
2425 {
2426 __be16 protocol = skb->protocol;
2427 netdev_features_t features = skb->dev->features;
2428
2429 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2430 features &= ~NETIF_F_GSO_MASK;
2431
2432 if (protocol == htons(ETH_P_8021Q)) {
2433 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2434 protocol = veh->h_vlan_encapsulated_proto;
2435 } else if (!vlan_tx_tag_present(skb)) {
2436 return harmonize_features(skb, protocol, features);
2437 }
2438
2439 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2440
2441 if (protocol != htons(ETH_P_8021Q)) {
2442 return harmonize_features(skb, protocol, features);
2443 } else {
2444 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2445 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2446 return harmonize_features(skb, protocol, features);
2447 }
2448 }
2449 EXPORT_SYMBOL(netif_skb_features);
2450
2451 /*
2452 * Returns true if either:
2453 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2454 * 2. skb is fragmented and the device does not support SG.
2455 */
2456 static inline int skb_needs_linearize(struct sk_buff *skb,
2457 int features)
2458 {
2459 return skb_is_nonlinear(skb) &&
2460 ((skb_has_frag_list(skb) &&
2461 !(features & NETIF_F_FRAGLIST)) ||
2462 (skb_shinfo(skb)->nr_frags &&
2463 !(features & NETIF_F_SG)));
2464 }
2465
2466 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2467 struct netdev_queue *txq)
2468 {
2469 const struct net_device_ops *ops = dev->netdev_ops;
2470 int rc = NETDEV_TX_OK;
2471 unsigned int skb_len;
2472
2473 if (likely(!skb->next)) {
2474 netdev_features_t features;
2475
2476 /*
2477 * If device doesn't need skb->dst, release it right now while
2478 * its hot in this cpu cache
2479 */
2480 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2481 skb_dst_drop(skb);
2482
2483 features = netif_skb_features(skb);
2484
2485 if (vlan_tx_tag_present(skb) &&
2486 !(features & NETIF_F_HW_VLAN_TX)) {
2487 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2488 if (unlikely(!skb))
2489 goto out;
2490
2491 skb->vlan_tci = 0;
2492 }
2493
2494 /* If encapsulation offload request, verify we are testing
2495 * hardware encapsulation features instead of standard
2496 * features for the netdev
2497 */
2498 if (skb->encapsulation)
2499 features &= dev->hw_enc_features;
2500
2501 if (netif_needs_gso(skb, features)) {
2502 if (unlikely(dev_gso_segment(skb, features)))
2503 goto out_kfree_skb;
2504 if (skb->next)
2505 goto gso;
2506 } else {
2507 if (skb_needs_linearize(skb, features) &&
2508 __skb_linearize(skb))
2509 goto out_kfree_skb;
2510
2511 /* If packet is not checksummed and device does not
2512 * support checksumming for this protocol, complete
2513 * checksumming here.
2514 */
2515 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2516 if (skb->encapsulation)
2517 skb_set_inner_transport_header(skb,
2518 skb_checksum_start_offset(skb));
2519 else
2520 skb_set_transport_header(skb,
2521 skb_checksum_start_offset(skb));
2522 if (!(features & NETIF_F_ALL_CSUM) &&
2523 skb_checksum_help(skb))
2524 goto out_kfree_skb;
2525 }
2526 }
2527
2528 if (!list_empty(&ptype_all))
2529 dev_queue_xmit_nit(skb, dev);
2530
2531 skb_len = skb->len;
2532 rc = ops->ndo_start_xmit(skb, dev);
2533 trace_net_dev_xmit(skb, rc, dev, skb_len);
2534 if (rc == NETDEV_TX_OK)
2535 txq_trans_update(txq);
2536 return rc;
2537 }
2538
2539 gso:
2540 do {
2541 struct sk_buff *nskb = skb->next;
2542
2543 skb->next = nskb->next;
2544 nskb->next = NULL;
2545
2546 /*
2547 * If device doesn't need nskb->dst, release it right now while
2548 * its hot in this cpu cache
2549 */
2550 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2551 skb_dst_drop(nskb);
2552
2553 if (!list_empty(&ptype_all))
2554 dev_queue_xmit_nit(nskb, dev);
2555
2556 skb_len = nskb->len;
2557 rc = ops->ndo_start_xmit(nskb, dev);
2558 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2559 if (unlikely(rc != NETDEV_TX_OK)) {
2560 if (rc & ~NETDEV_TX_MASK)
2561 goto out_kfree_gso_skb;
2562 nskb->next = skb->next;
2563 skb->next = nskb;
2564 return rc;
2565 }
2566 txq_trans_update(txq);
2567 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2568 return NETDEV_TX_BUSY;
2569 } while (skb->next);
2570
2571 out_kfree_gso_skb:
2572 if (likely(skb->next == NULL))
2573 skb->destructor = DEV_GSO_CB(skb)->destructor;
2574 out_kfree_skb:
2575 kfree_skb(skb);
2576 out:
2577 return rc;
2578 }
2579
2580 static void qdisc_pkt_len_init(struct sk_buff *skb)
2581 {
2582 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2583
2584 qdisc_skb_cb(skb)->pkt_len = skb->len;
2585
2586 /* To get more precise estimation of bytes sent on wire,
2587 * we add to pkt_len the headers size of all segments
2588 */
2589 if (shinfo->gso_size) {
2590 unsigned int hdr_len;
2591
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2594
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2598 else
2599 hdr_len += sizeof(struct udphdr);
2600 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2601 }
2602 }
2603
2604 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2605 struct net_device *dev,
2606 struct netdev_queue *txq)
2607 {
2608 spinlock_t *root_lock = qdisc_lock(q);
2609 bool contended;
2610 int rc;
2611
2612 qdisc_pkt_len_init(skb);
2613 qdisc_calculate_pkt_len(skb, q);
2614 /*
2615 * Heuristic to force contended enqueues to serialize on a
2616 * separate lock before trying to get qdisc main lock.
2617 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2618 * and dequeue packets faster.
2619 */
2620 contended = qdisc_is_running(q);
2621 if (unlikely(contended))
2622 spin_lock(&q->busylock);
2623
2624 spin_lock(root_lock);
2625 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2626 kfree_skb(skb);
2627 rc = NET_XMIT_DROP;
2628 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2629 qdisc_run_begin(q)) {
2630 /*
2631 * This is a work-conserving queue; there are no old skbs
2632 * waiting to be sent out; and the qdisc is not running -
2633 * xmit the skb directly.
2634 */
2635 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2636 skb_dst_force(skb);
2637
2638 qdisc_bstats_update(q, skb);
2639
2640 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2641 if (unlikely(contended)) {
2642 spin_unlock(&q->busylock);
2643 contended = false;
2644 }
2645 __qdisc_run(q);
2646 } else
2647 qdisc_run_end(q);
2648
2649 rc = NET_XMIT_SUCCESS;
2650 } else {
2651 skb_dst_force(skb);
2652 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2653 if (qdisc_run_begin(q)) {
2654 if (unlikely(contended)) {
2655 spin_unlock(&q->busylock);
2656 contended = false;
2657 }
2658 __qdisc_run(q);
2659 }
2660 }
2661 spin_unlock(root_lock);
2662 if (unlikely(contended))
2663 spin_unlock(&q->busylock);
2664 return rc;
2665 }
2666
2667 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2668 static void skb_update_prio(struct sk_buff *skb)
2669 {
2670 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2671
2672 if (!skb->priority && skb->sk && map) {
2673 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2674
2675 if (prioidx < map->priomap_len)
2676 skb->priority = map->priomap[prioidx];
2677 }
2678 }
2679 #else
2680 #define skb_update_prio(skb)
2681 #endif
2682
2683 static DEFINE_PER_CPU(int, xmit_recursion);
2684 #define RECURSION_LIMIT 10
2685
2686 /**
2687 * dev_loopback_xmit - loop back @skb
2688 * @skb: buffer to transmit
2689 */
2690 int dev_loopback_xmit(struct sk_buff *skb)
2691 {
2692 skb_reset_mac_header(skb);
2693 __skb_pull(skb, skb_network_offset(skb));
2694 skb->pkt_type = PACKET_LOOPBACK;
2695 skb->ip_summed = CHECKSUM_UNNECESSARY;
2696 WARN_ON(!skb_dst(skb));
2697 skb_dst_force(skb);
2698 netif_rx_ni(skb);
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(dev_loopback_xmit);
2702
2703 /**
2704 * dev_queue_xmit - transmit a buffer
2705 * @skb: buffer to transmit
2706 *
2707 * Queue a buffer for transmission to a network device. The caller must
2708 * have set the device and priority and built the buffer before calling
2709 * this function. The function can be called from an interrupt.
2710 *
2711 * A negative errno code is returned on a failure. A success does not
2712 * guarantee the frame will be transmitted as it may be dropped due
2713 * to congestion or traffic shaping.
2714 *
2715 * -----------------------------------------------------------------------------------
2716 * I notice this method can also return errors from the queue disciplines,
2717 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2718 * be positive.
2719 *
2720 * Regardless of the return value, the skb is consumed, so it is currently
2721 * difficult to retry a send to this method. (You can bump the ref count
2722 * before sending to hold a reference for retry if you are careful.)
2723 *
2724 * When calling this method, interrupts MUST be enabled. This is because
2725 * the BH enable code must have IRQs enabled so that it will not deadlock.
2726 * --BLG
2727 */
2728 int dev_queue_xmit(struct sk_buff *skb)
2729 {
2730 struct net_device *dev = skb->dev;
2731 struct netdev_queue *txq;
2732 struct Qdisc *q;
2733 int rc = -ENOMEM;
2734
2735 skb_reset_mac_header(skb);
2736
2737 /* Disable soft irqs for various locks below. Also
2738 * stops preemption for RCU.
2739 */
2740 rcu_read_lock_bh();
2741
2742 skb_update_prio(skb);
2743
2744 txq = netdev_pick_tx(dev, skb);
2745 q = rcu_dereference_bh(txq->qdisc);
2746
2747 #ifdef CONFIG_NET_CLS_ACT
2748 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2749 #endif
2750 trace_net_dev_queue(skb);
2751 if (q->enqueue) {
2752 rc = __dev_xmit_skb(skb, q, dev, txq);
2753 goto out;
2754 }
2755
2756 /* The device has no queue. Common case for software devices:
2757 loopback, all the sorts of tunnels...
2758
2759 Really, it is unlikely that netif_tx_lock protection is necessary
2760 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2761 counters.)
2762 However, it is possible, that they rely on protection
2763 made by us here.
2764
2765 Check this and shot the lock. It is not prone from deadlocks.
2766 Either shot noqueue qdisc, it is even simpler 8)
2767 */
2768 if (dev->flags & IFF_UP) {
2769 int cpu = smp_processor_id(); /* ok because BHs are off */
2770
2771 if (txq->xmit_lock_owner != cpu) {
2772
2773 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2774 goto recursion_alert;
2775
2776 HARD_TX_LOCK(dev, txq, cpu);
2777
2778 if (!netif_xmit_stopped(txq)) {
2779 __this_cpu_inc(xmit_recursion);
2780 rc = dev_hard_start_xmit(skb, dev, txq);
2781 __this_cpu_dec(xmit_recursion);
2782 if (dev_xmit_complete(rc)) {
2783 HARD_TX_UNLOCK(dev, txq);
2784 goto out;
2785 }
2786 }
2787 HARD_TX_UNLOCK(dev, txq);
2788 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2789 dev->name);
2790 } else {
2791 /* Recursion is detected! It is possible,
2792 * unfortunately
2793 */
2794 recursion_alert:
2795 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2796 dev->name);
2797 }
2798 }
2799
2800 rc = -ENETDOWN;
2801 rcu_read_unlock_bh();
2802
2803 kfree_skb(skb);
2804 return rc;
2805 out:
2806 rcu_read_unlock_bh();
2807 return rc;
2808 }
2809 EXPORT_SYMBOL(dev_queue_xmit);
2810
2811
2812 /*=======================================================================
2813 Receiver routines
2814 =======================================================================*/
2815
2816 int netdev_max_backlog __read_mostly = 1000;
2817 EXPORT_SYMBOL(netdev_max_backlog);
2818
2819 int netdev_tstamp_prequeue __read_mostly = 1;
2820 int netdev_budget __read_mostly = 300;
2821 int weight_p __read_mostly = 64; /* old backlog weight */
2822
2823 /* Called with irq disabled */
2824 static inline void ____napi_schedule(struct softnet_data *sd,
2825 struct napi_struct *napi)
2826 {
2827 list_add_tail(&napi->poll_list, &sd->poll_list);
2828 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2829 }
2830
2831 #ifdef CONFIG_RPS
2832
2833 /* One global table that all flow-based protocols share. */
2834 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2835 EXPORT_SYMBOL(rps_sock_flow_table);
2836
2837 struct static_key rps_needed __read_mostly;
2838
2839 static struct rps_dev_flow *
2840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2841 struct rps_dev_flow *rflow, u16 next_cpu)
2842 {
2843 if (next_cpu != RPS_NO_CPU) {
2844 #ifdef CONFIG_RFS_ACCEL
2845 struct netdev_rx_queue *rxqueue;
2846 struct rps_dev_flow_table *flow_table;
2847 struct rps_dev_flow *old_rflow;
2848 u32 flow_id;
2849 u16 rxq_index;
2850 int rc;
2851
2852 /* Should we steer this flow to a different hardware queue? */
2853 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2854 !(dev->features & NETIF_F_NTUPLE))
2855 goto out;
2856 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2857 if (rxq_index == skb_get_rx_queue(skb))
2858 goto out;
2859
2860 rxqueue = dev->_rx + rxq_index;
2861 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2862 if (!flow_table)
2863 goto out;
2864 flow_id = skb->rxhash & flow_table->mask;
2865 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2866 rxq_index, flow_id);
2867 if (rc < 0)
2868 goto out;
2869 old_rflow = rflow;
2870 rflow = &flow_table->flows[flow_id];
2871 rflow->filter = rc;
2872 if (old_rflow->filter == rflow->filter)
2873 old_rflow->filter = RPS_NO_FILTER;
2874 out:
2875 #endif
2876 rflow->last_qtail =
2877 per_cpu(softnet_data, next_cpu).input_queue_head;
2878 }
2879
2880 rflow->cpu = next_cpu;
2881 return rflow;
2882 }
2883
2884 /*
2885 * get_rps_cpu is called from netif_receive_skb and returns the target
2886 * CPU from the RPS map of the receiving queue for a given skb.
2887 * rcu_read_lock must be held on entry.
2888 */
2889 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2890 struct rps_dev_flow **rflowp)
2891 {
2892 struct netdev_rx_queue *rxqueue;
2893 struct rps_map *map;
2894 struct rps_dev_flow_table *flow_table;
2895 struct rps_sock_flow_table *sock_flow_table;
2896 int cpu = -1;
2897 u16 tcpu;
2898
2899 if (skb_rx_queue_recorded(skb)) {
2900 u16 index = skb_get_rx_queue(skb);
2901 if (unlikely(index >= dev->real_num_rx_queues)) {
2902 WARN_ONCE(dev->real_num_rx_queues > 1,
2903 "%s received packet on queue %u, but number "
2904 "of RX queues is %u\n",
2905 dev->name, index, dev->real_num_rx_queues);
2906 goto done;
2907 }
2908 rxqueue = dev->_rx + index;
2909 } else
2910 rxqueue = dev->_rx;
2911
2912 map = rcu_dereference(rxqueue->rps_map);
2913 if (map) {
2914 if (map->len == 1 &&
2915 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2916 tcpu = map->cpus[0];
2917 if (cpu_online(tcpu))
2918 cpu = tcpu;
2919 goto done;
2920 }
2921 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2922 goto done;
2923 }
2924
2925 skb_reset_network_header(skb);
2926 if (!skb_get_rxhash(skb))
2927 goto done;
2928
2929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2930 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2931 if (flow_table && sock_flow_table) {
2932 u16 next_cpu;
2933 struct rps_dev_flow *rflow;
2934
2935 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2936 tcpu = rflow->cpu;
2937
2938 next_cpu = sock_flow_table->ents[skb->rxhash &
2939 sock_flow_table->mask];
2940
2941 /*
2942 * If the desired CPU (where last recvmsg was done) is
2943 * different from current CPU (one in the rx-queue flow
2944 * table entry), switch if one of the following holds:
2945 * - Current CPU is unset (equal to RPS_NO_CPU).
2946 * - Current CPU is offline.
2947 * - The current CPU's queue tail has advanced beyond the
2948 * last packet that was enqueued using this table entry.
2949 * This guarantees that all previous packets for the flow
2950 * have been dequeued, thus preserving in order delivery.
2951 */
2952 if (unlikely(tcpu != next_cpu) &&
2953 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2954 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2955 rflow->last_qtail)) >= 0)) {
2956 tcpu = next_cpu;
2957 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2958 }
2959
2960 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2961 *rflowp = rflow;
2962 cpu = tcpu;
2963 goto done;
2964 }
2965 }
2966
2967 if (map) {
2968 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2969
2970 if (cpu_online(tcpu)) {
2971 cpu = tcpu;
2972 goto done;
2973 }
2974 }
2975
2976 done:
2977 return cpu;
2978 }
2979
2980 #ifdef CONFIG_RFS_ACCEL
2981
2982 /**
2983 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2984 * @dev: Device on which the filter was set
2985 * @rxq_index: RX queue index
2986 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2987 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2988 *
2989 * Drivers that implement ndo_rx_flow_steer() should periodically call
2990 * this function for each installed filter and remove the filters for
2991 * which it returns %true.
2992 */
2993 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2994 u32 flow_id, u16 filter_id)
2995 {
2996 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2997 struct rps_dev_flow_table *flow_table;
2998 struct rps_dev_flow *rflow;
2999 bool expire = true;
3000 int cpu;
3001
3002 rcu_read_lock();
3003 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3004 if (flow_table && flow_id <= flow_table->mask) {
3005 rflow = &flow_table->flows[flow_id];
3006 cpu = ACCESS_ONCE(rflow->cpu);
3007 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3008 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3009 rflow->last_qtail) <
3010 (int)(10 * flow_table->mask)))
3011 expire = false;
3012 }
3013 rcu_read_unlock();
3014 return expire;
3015 }
3016 EXPORT_SYMBOL(rps_may_expire_flow);
3017
3018 #endif /* CONFIG_RFS_ACCEL */
3019
3020 /* Called from hardirq (IPI) context */
3021 static void rps_trigger_softirq(void *data)
3022 {
3023 struct softnet_data *sd = data;
3024
3025 ____napi_schedule(sd, &sd->backlog);
3026 sd->received_rps++;
3027 }
3028
3029 #endif /* CONFIG_RPS */
3030
3031 /*
3032 * Check if this softnet_data structure is another cpu one
3033 * If yes, queue it to our IPI list and return 1
3034 * If no, return 0
3035 */
3036 static int rps_ipi_queued(struct softnet_data *sd)
3037 {
3038 #ifdef CONFIG_RPS
3039 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3040
3041 if (sd != mysd) {
3042 sd->rps_ipi_next = mysd->rps_ipi_list;
3043 mysd->rps_ipi_list = sd;
3044
3045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3046 return 1;
3047 }
3048 #endif /* CONFIG_RPS */
3049 return 0;
3050 }
3051
3052 /*
3053 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3054 * queue (may be a remote CPU queue).
3055 */
3056 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3057 unsigned int *qtail)
3058 {
3059 struct softnet_data *sd;
3060 unsigned long flags;
3061
3062 sd = &per_cpu(softnet_data, cpu);
3063
3064 local_irq_save(flags);
3065
3066 rps_lock(sd);
3067 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3068 if (skb_queue_len(&sd->input_pkt_queue)) {
3069 enqueue:
3070 __skb_queue_tail(&sd->input_pkt_queue, skb);
3071 input_queue_tail_incr_save(sd, qtail);
3072 rps_unlock(sd);
3073 local_irq_restore(flags);
3074 return NET_RX_SUCCESS;
3075 }
3076
3077 /* Schedule NAPI for backlog device
3078 * We can use non atomic operation since we own the queue lock
3079 */
3080 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3081 if (!rps_ipi_queued(sd))
3082 ____napi_schedule(sd, &sd->backlog);
3083 }
3084 goto enqueue;
3085 }
3086
3087 sd->dropped++;
3088 rps_unlock(sd);
3089
3090 local_irq_restore(flags);
3091
3092 atomic_long_inc(&skb->dev->rx_dropped);
3093 kfree_skb(skb);
3094 return NET_RX_DROP;
3095 }
3096
3097 /**
3098 * netif_rx - post buffer to the network code
3099 * @skb: buffer to post
3100 *
3101 * This function receives a packet from a device driver and queues it for
3102 * the upper (protocol) levels to process. It always succeeds. The buffer
3103 * may be dropped during processing for congestion control or by the
3104 * protocol layers.
3105 *
3106 * return values:
3107 * NET_RX_SUCCESS (no congestion)
3108 * NET_RX_DROP (packet was dropped)
3109 *
3110 */
3111
3112 int netif_rx(struct sk_buff *skb)
3113 {
3114 int ret;
3115
3116 /* if netpoll wants it, pretend we never saw it */
3117 if (netpoll_rx(skb))
3118 return NET_RX_DROP;
3119
3120 net_timestamp_check(netdev_tstamp_prequeue, skb);
3121
3122 trace_netif_rx(skb);
3123 #ifdef CONFIG_RPS
3124 if (static_key_false(&rps_needed)) {
3125 struct rps_dev_flow voidflow, *rflow = &voidflow;
3126 int cpu;
3127
3128 preempt_disable();
3129 rcu_read_lock();
3130
3131 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3132 if (cpu < 0)
3133 cpu = smp_processor_id();
3134
3135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3136
3137 rcu_read_unlock();
3138 preempt_enable();
3139 } else
3140 #endif
3141 {
3142 unsigned int qtail;
3143 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3144 put_cpu();
3145 }
3146 return ret;
3147 }
3148 EXPORT_SYMBOL(netif_rx);
3149
3150 int netif_rx_ni(struct sk_buff *skb)
3151 {
3152 int err;
3153
3154 preempt_disable();
3155 err = netif_rx(skb);
3156 if (local_softirq_pending())
3157 do_softirq();
3158 preempt_enable();
3159
3160 return err;
3161 }
3162 EXPORT_SYMBOL(netif_rx_ni);
3163
3164 static void net_tx_action(struct softirq_action *h)
3165 {
3166 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3167
3168 if (sd->completion_queue) {
3169 struct sk_buff *clist;
3170
3171 local_irq_disable();
3172 clist = sd->completion_queue;
3173 sd->completion_queue = NULL;
3174 local_irq_enable();
3175
3176 while (clist) {
3177 struct sk_buff *skb = clist;
3178 clist = clist->next;
3179
3180 WARN_ON(atomic_read(&skb->users));
3181 trace_kfree_skb(skb, net_tx_action);
3182 __kfree_skb(skb);
3183 }
3184 }
3185
3186 if (sd->output_queue) {
3187 struct Qdisc *head;
3188
3189 local_irq_disable();
3190 head = sd->output_queue;
3191 sd->output_queue = NULL;
3192 sd->output_queue_tailp = &sd->output_queue;
3193 local_irq_enable();
3194
3195 while (head) {
3196 struct Qdisc *q = head;
3197 spinlock_t *root_lock;
3198
3199 head = head->next_sched;
3200
3201 root_lock = qdisc_lock(q);
3202 if (spin_trylock(root_lock)) {
3203 smp_mb__before_clear_bit();
3204 clear_bit(__QDISC_STATE_SCHED,
3205 &q->state);
3206 qdisc_run(q);
3207 spin_unlock(root_lock);
3208 } else {
3209 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3210 &q->state)) {
3211 __netif_reschedule(q);
3212 } else {
3213 smp_mb__before_clear_bit();
3214 clear_bit(__QDISC_STATE_SCHED,
3215 &q->state);
3216 }
3217 }
3218 }
3219 }
3220 }
3221
3222 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3223 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3224 /* This hook is defined here for ATM LANE */
3225 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3226 unsigned char *addr) __read_mostly;
3227 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3228 #endif
3229
3230 #ifdef CONFIG_NET_CLS_ACT
3231 /* TODO: Maybe we should just force sch_ingress to be compiled in
3232 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3233 * a compare and 2 stores extra right now if we dont have it on
3234 * but have CONFIG_NET_CLS_ACT
3235 * NOTE: This doesn't stop any functionality; if you dont have
3236 * the ingress scheduler, you just can't add policies on ingress.
3237 *
3238 */
3239 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3240 {
3241 struct net_device *dev = skb->dev;
3242 u32 ttl = G_TC_RTTL(skb->tc_verd);
3243 int result = TC_ACT_OK;
3244 struct Qdisc *q;
3245
3246 if (unlikely(MAX_RED_LOOP < ttl++)) {
3247 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3248 skb->skb_iif, dev->ifindex);
3249 return TC_ACT_SHOT;
3250 }
3251
3252 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3253 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3254
3255 q = rxq->qdisc;
3256 if (q != &noop_qdisc) {
3257 spin_lock(qdisc_lock(q));
3258 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3259 result = qdisc_enqueue_root(skb, q);
3260 spin_unlock(qdisc_lock(q));
3261 }
3262
3263 return result;
3264 }
3265
3266 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3267 struct packet_type **pt_prev,
3268 int *ret, struct net_device *orig_dev)
3269 {
3270 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3271
3272 if (!rxq || rxq->qdisc == &noop_qdisc)
3273 goto out;
3274
3275 if (*pt_prev) {
3276 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3277 *pt_prev = NULL;
3278 }
3279
3280 switch (ing_filter(skb, rxq)) {
3281 case TC_ACT_SHOT:
3282 case TC_ACT_STOLEN:
3283 kfree_skb(skb);
3284 return NULL;
3285 }
3286
3287 out:
3288 skb->tc_verd = 0;
3289 return skb;
3290 }
3291 #endif
3292
3293 /**
3294 * netdev_rx_handler_register - register receive handler
3295 * @dev: device to register a handler for
3296 * @rx_handler: receive handler to register
3297 * @rx_handler_data: data pointer that is used by rx handler
3298 *
3299 * Register a receive hander for a device. This handler will then be
3300 * called from __netif_receive_skb. A negative errno code is returned
3301 * on a failure.
3302 *
3303 * The caller must hold the rtnl_mutex.
3304 *
3305 * For a general description of rx_handler, see enum rx_handler_result.
3306 */
3307 int netdev_rx_handler_register(struct net_device *dev,
3308 rx_handler_func_t *rx_handler,
3309 void *rx_handler_data)
3310 {
3311 ASSERT_RTNL();
3312
3313 if (dev->rx_handler)
3314 return -EBUSY;
3315
3316 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3317 rcu_assign_pointer(dev->rx_handler, rx_handler);
3318
3319 return 0;
3320 }
3321 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3322
3323 /**
3324 * netdev_rx_handler_unregister - unregister receive handler
3325 * @dev: device to unregister a handler from
3326 *
3327 * Unregister a receive handler from a device.
3328 *
3329 * The caller must hold the rtnl_mutex.
3330 */
3331 void netdev_rx_handler_unregister(struct net_device *dev)
3332 {
3333
3334 ASSERT_RTNL();
3335 RCU_INIT_POINTER(dev->rx_handler, NULL);
3336 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3337 }
3338 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3339
3340 /*
3341 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3342 * the special handling of PFMEMALLOC skbs.
3343 */
3344 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3345 {
3346 switch (skb->protocol) {
3347 case __constant_htons(ETH_P_ARP):
3348 case __constant_htons(ETH_P_IP):
3349 case __constant_htons(ETH_P_IPV6):
3350 case __constant_htons(ETH_P_8021Q):
3351 return true;
3352 default:
3353 return false;
3354 }
3355 }
3356
3357 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3358 {
3359 struct packet_type *ptype, *pt_prev;
3360 rx_handler_func_t *rx_handler;
3361 struct net_device *orig_dev;
3362 struct net_device *null_or_dev;
3363 bool deliver_exact = false;
3364 int ret = NET_RX_DROP;
3365 __be16 type;
3366
3367 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3368
3369 trace_netif_receive_skb(skb);
3370
3371 /* if we've gotten here through NAPI, check netpoll */
3372 if (netpoll_receive_skb(skb))
3373 goto out;
3374
3375 orig_dev = skb->dev;
3376
3377 skb_reset_network_header(skb);
3378 if (!skb_transport_header_was_set(skb))
3379 skb_reset_transport_header(skb);
3380 skb_reset_mac_len(skb);
3381
3382 pt_prev = NULL;
3383
3384 rcu_read_lock();
3385
3386 another_round:
3387 skb->skb_iif = skb->dev->ifindex;
3388
3389 __this_cpu_inc(softnet_data.processed);
3390
3391 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3392 skb = vlan_untag(skb);
3393 if (unlikely(!skb))
3394 goto unlock;
3395 }
3396
3397 #ifdef CONFIG_NET_CLS_ACT
3398 if (skb->tc_verd & TC_NCLS) {
3399 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3400 goto ncls;
3401 }
3402 #endif
3403
3404 if (pfmemalloc)
3405 goto skip_taps;
3406
3407 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3408 if (!ptype->dev || ptype->dev == skb->dev) {
3409 if (pt_prev)
3410 ret = deliver_skb(skb, pt_prev, orig_dev);
3411 pt_prev = ptype;
3412 }
3413 }
3414
3415 skip_taps:
3416 #ifdef CONFIG_NET_CLS_ACT
3417 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3418 if (!skb)
3419 goto unlock;
3420 ncls:
3421 #endif
3422
3423 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3424 goto drop;
3425
3426 if (vlan_tx_tag_present(skb)) {
3427 if (pt_prev) {
3428 ret = deliver_skb(skb, pt_prev, orig_dev);
3429 pt_prev = NULL;
3430 }
3431 if (vlan_do_receive(&skb))
3432 goto another_round;
3433 else if (unlikely(!skb))
3434 goto unlock;
3435 }
3436
3437 rx_handler = rcu_dereference(skb->dev->rx_handler);
3438 if (rx_handler) {
3439 if (pt_prev) {
3440 ret = deliver_skb(skb, pt_prev, orig_dev);
3441 pt_prev = NULL;
3442 }
3443 switch (rx_handler(&skb)) {
3444 case RX_HANDLER_CONSUMED:
3445 ret = NET_RX_SUCCESS;
3446 goto unlock;
3447 case RX_HANDLER_ANOTHER:
3448 goto another_round;
3449 case RX_HANDLER_EXACT:
3450 deliver_exact = true;
3451 case RX_HANDLER_PASS:
3452 break;
3453 default:
3454 BUG();
3455 }
3456 }
3457
3458 if (vlan_tx_nonzero_tag_present(skb))
3459 skb->pkt_type = PACKET_OTHERHOST;
3460
3461 /* deliver only exact match when indicated */
3462 null_or_dev = deliver_exact ? skb->dev : NULL;
3463
3464 type = skb->protocol;
3465 list_for_each_entry_rcu(ptype,
3466 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3467 if (ptype->type == type &&
3468 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3469 ptype->dev == orig_dev)) {
3470 if (pt_prev)
3471 ret = deliver_skb(skb, pt_prev, orig_dev);
3472 pt_prev = ptype;
3473 }
3474 }
3475
3476 if (pt_prev) {
3477 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3478 goto drop;
3479 else
3480 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3481 } else {
3482 drop:
3483 atomic_long_inc(&skb->dev->rx_dropped);
3484 kfree_skb(skb);
3485 /* Jamal, now you will not able to escape explaining
3486 * me how you were going to use this. :-)
3487 */
3488 ret = NET_RX_DROP;
3489 }
3490
3491 unlock:
3492 rcu_read_unlock();
3493 out:
3494 return ret;
3495 }
3496
3497 static int __netif_receive_skb(struct sk_buff *skb)
3498 {
3499 int ret;
3500
3501 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3502 unsigned long pflags = current->flags;
3503
3504 /*
3505 * PFMEMALLOC skbs are special, they should
3506 * - be delivered to SOCK_MEMALLOC sockets only
3507 * - stay away from userspace
3508 * - have bounded memory usage
3509 *
3510 * Use PF_MEMALLOC as this saves us from propagating the allocation
3511 * context down to all allocation sites.
3512 */
3513 current->flags |= PF_MEMALLOC;
3514 ret = __netif_receive_skb_core(skb, true);
3515 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3516 } else
3517 ret = __netif_receive_skb_core(skb, false);
3518
3519 return ret;
3520 }
3521
3522 /**
3523 * netif_receive_skb - process receive buffer from network
3524 * @skb: buffer to process
3525 *
3526 * netif_receive_skb() is the main receive data processing function.
3527 * It always succeeds. The buffer may be dropped during processing
3528 * for congestion control or by the protocol layers.
3529 *
3530 * This function may only be called from softirq context and interrupts
3531 * should be enabled.
3532 *
3533 * Return values (usually ignored):
3534 * NET_RX_SUCCESS: no congestion
3535 * NET_RX_DROP: packet was dropped
3536 */
3537 int netif_receive_skb(struct sk_buff *skb)
3538 {
3539 net_timestamp_check(netdev_tstamp_prequeue, skb);
3540
3541 if (skb_defer_rx_timestamp(skb))
3542 return NET_RX_SUCCESS;
3543
3544 #ifdef CONFIG_RPS
3545 if (static_key_false(&rps_needed)) {
3546 struct rps_dev_flow voidflow, *rflow = &voidflow;
3547 int cpu, ret;
3548
3549 rcu_read_lock();
3550
3551 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3552
3553 if (cpu >= 0) {
3554 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3555 rcu_read_unlock();
3556 return ret;
3557 }
3558 rcu_read_unlock();
3559 }
3560 #endif
3561 return __netif_receive_skb(skb);
3562 }
3563 EXPORT_SYMBOL(netif_receive_skb);
3564
3565 /* Network device is going away, flush any packets still pending
3566 * Called with irqs disabled.
3567 */
3568 static void flush_backlog(void *arg)
3569 {
3570 struct net_device *dev = arg;
3571 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3572 struct sk_buff *skb, *tmp;
3573
3574 rps_lock(sd);
3575 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3576 if (skb->dev == dev) {
3577 __skb_unlink(skb, &sd->input_pkt_queue);
3578 kfree_skb(skb);
3579 input_queue_head_incr(sd);
3580 }
3581 }
3582 rps_unlock(sd);
3583
3584 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3585 if (skb->dev == dev) {
3586 __skb_unlink(skb, &sd->process_queue);
3587 kfree_skb(skb);
3588 input_queue_head_incr(sd);
3589 }
3590 }
3591 }
3592
3593 static int napi_gro_complete(struct sk_buff *skb)
3594 {
3595 struct packet_offload *ptype;
3596 __be16 type = skb->protocol;
3597 struct list_head *head = &offload_base;
3598 int err = -ENOENT;
3599
3600 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3601
3602 if (NAPI_GRO_CB(skb)->count == 1) {
3603 skb_shinfo(skb)->gso_size = 0;
3604 goto out;
3605 }
3606
3607 rcu_read_lock();
3608 list_for_each_entry_rcu(ptype, head, list) {
3609 if (ptype->type != type || !ptype->callbacks.gro_complete)
3610 continue;
3611
3612 err = ptype->callbacks.gro_complete(skb);
3613 break;
3614 }
3615 rcu_read_unlock();
3616
3617 if (err) {
3618 WARN_ON(&ptype->list == head);
3619 kfree_skb(skb);
3620 return NET_RX_SUCCESS;
3621 }
3622
3623 out:
3624 return netif_receive_skb(skb);
3625 }
3626
3627 /* napi->gro_list contains packets ordered by age.
3628 * youngest packets at the head of it.
3629 * Complete skbs in reverse order to reduce latencies.
3630 */
3631 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3632 {
3633 struct sk_buff *skb, *prev = NULL;
3634
3635 /* scan list and build reverse chain */
3636 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3637 skb->prev = prev;
3638 prev = skb;
3639 }
3640
3641 for (skb = prev; skb; skb = prev) {
3642 skb->next = NULL;
3643
3644 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3645 return;
3646
3647 prev = skb->prev;
3648 napi_gro_complete(skb);
3649 napi->gro_count--;
3650 }
3651
3652 napi->gro_list = NULL;
3653 }
3654 EXPORT_SYMBOL(napi_gro_flush);
3655
3656 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3657 {
3658 struct sk_buff *p;
3659 unsigned int maclen = skb->dev->hard_header_len;
3660
3661 for (p = napi->gro_list; p; p = p->next) {
3662 unsigned long diffs;
3663
3664 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3665 diffs |= p->vlan_tci ^ skb->vlan_tci;
3666 if (maclen == ETH_HLEN)
3667 diffs |= compare_ether_header(skb_mac_header(p),
3668 skb_gro_mac_header(skb));
3669 else if (!diffs)
3670 diffs = memcmp(skb_mac_header(p),
3671 skb_gro_mac_header(skb),
3672 maclen);
3673 NAPI_GRO_CB(p)->same_flow = !diffs;
3674 NAPI_GRO_CB(p)->flush = 0;
3675 }
3676 }
3677
3678 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3679 {
3680 struct sk_buff **pp = NULL;
3681 struct packet_offload *ptype;
3682 __be16 type = skb->protocol;
3683 struct list_head *head = &offload_base;
3684 int same_flow;
3685 enum gro_result ret;
3686
3687 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3688 goto normal;
3689
3690 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3691 goto normal;
3692
3693 gro_list_prepare(napi, skb);
3694
3695 rcu_read_lock();
3696 list_for_each_entry_rcu(ptype, head, list) {
3697 if (ptype->type != type || !ptype->callbacks.gro_receive)
3698 continue;
3699
3700 skb_set_network_header(skb, skb_gro_offset(skb));
3701 skb_reset_mac_len(skb);
3702 NAPI_GRO_CB(skb)->same_flow = 0;
3703 NAPI_GRO_CB(skb)->flush = 0;
3704 NAPI_GRO_CB(skb)->free = 0;
3705
3706 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3707 break;
3708 }
3709 rcu_read_unlock();
3710
3711 if (&ptype->list == head)
3712 goto normal;
3713
3714 same_flow = NAPI_GRO_CB(skb)->same_flow;
3715 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3716
3717 if (pp) {
3718 struct sk_buff *nskb = *pp;
3719
3720 *pp = nskb->next;
3721 nskb->next = NULL;
3722 napi_gro_complete(nskb);
3723 napi->gro_count--;
3724 }
3725
3726 if (same_flow)
3727 goto ok;
3728
3729 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3730 goto normal;
3731
3732 napi->gro_count++;
3733 NAPI_GRO_CB(skb)->count = 1;
3734 NAPI_GRO_CB(skb)->age = jiffies;
3735 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3736 skb->next = napi->gro_list;
3737 napi->gro_list = skb;
3738 ret = GRO_HELD;
3739
3740 pull:
3741 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3742 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3743
3744 BUG_ON(skb->end - skb->tail < grow);
3745
3746 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3747
3748 skb->tail += grow;
3749 skb->data_len -= grow;
3750
3751 skb_shinfo(skb)->frags[0].page_offset += grow;
3752 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3753
3754 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3755 skb_frag_unref(skb, 0);
3756 memmove(skb_shinfo(skb)->frags,
3757 skb_shinfo(skb)->frags + 1,
3758 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3759 }
3760 }
3761
3762 ok:
3763 return ret;
3764
3765 normal:
3766 ret = GRO_NORMAL;
3767 goto pull;
3768 }
3769
3770
3771 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3772 {
3773 switch (ret) {
3774 case GRO_NORMAL:
3775 if (netif_receive_skb(skb))
3776 ret = GRO_DROP;
3777 break;
3778
3779 case GRO_DROP:
3780 kfree_skb(skb);
3781 break;
3782
3783 case GRO_MERGED_FREE:
3784 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3785 kmem_cache_free(skbuff_head_cache, skb);
3786 else
3787 __kfree_skb(skb);
3788 break;
3789
3790 case GRO_HELD:
3791 case GRO_MERGED:
3792 break;
3793 }
3794
3795 return ret;
3796 }
3797
3798 static void skb_gro_reset_offset(struct sk_buff *skb)
3799 {
3800 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3801 const skb_frag_t *frag0 = &pinfo->frags[0];
3802
3803 NAPI_GRO_CB(skb)->data_offset = 0;
3804 NAPI_GRO_CB(skb)->frag0 = NULL;
3805 NAPI_GRO_CB(skb)->frag0_len = 0;
3806
3807 if (skb->mac_header == skb->tail &&
3808 pinfo->nr_frags &&
3809 !PageHighMem(skb_frag_page(frag0))) {
3810 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3811 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3812 }
3813 }
3814
3815 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3816 {
3817 skb_gro_reset_offset(skb);
3818
3819 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3820 }
3821 EXPORT_SYMBOL(napi_gro_receive);
3822
3823 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3824 {
3825 __skb_pull(skb, skb_headlen(skb));
3826 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3827 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3828 skb->vlan_tci = 0;
3829 skb->dev = napi->dev;
3830 skb->skb_iif = 0;
3831
3832 napi->skb = skb;
3833 }
3834
3835 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3836 {
3837 struct sk_buff *skb = napi->skb;
3838
3839 if (!skb) {
3840 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3841 if (skb)
3842 napi->skb = skb;
3843 }
3844 return skb;
3845 }
3846 EXPORT_SYMBOL(napi_get_frags);
3847
3848 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3849 gro_result_t ret)
3850 {
3851 switch (ret) {
3852 case GRO_NORMAL:
3853 case GRO_HELD:
3854 skb->protocol = eth_type_trans(skb, skb->dev);
3855
3856 if (ret == GRO_HELD)
3857 skb_gro_pull(skb, -ETH_HLEN);
3858 else if (netif_receive_skb(skb))
3859 ret = GRO_DROP;
3860 break;
3861
3862 case GRO_DROP:
3863 case GRO_MERGED_FREE:
3864 napi_reuse_skb(napi, skb);
3865 break;
3866
3867 case GRO_MERGED:
3868 break;
3869 }
3870
3871 return ret;
3872 }
3873
3874 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3875 {
3876 struct sk_buff *skb = napi->skb;
3877 struct ethhdr *eth;
3878 unsigned int hlen;
3879 unsigned int off;
3880
3881 napi->skb = NULL;
3882
3883 skb_reset_mac_header(skb);
3884 skb_gro_reset_offset(skb);
3885
3886 off = skb_gro_offset(skb);
3887 hlen = off + sizeof(*eth);
3888 eth = skb_gro_header_fast(skb, off);
3889 if (skb_gro_header_hard(skb, hlen)) {
3890 eth = skb_gro_header_slow(skb, hlen, off);
3891 if (unlikely(!eth)) {
3892 napi_reuse_skb(napi, skb);
3893 skb = NULL;
3894 goto out;
3895 }
3896 }
3897
3898 skb_gro_pull(skb, sizeof(*eth));
3899
3900 /*
3901 * This works because the only protocols we care about don't require
3902 * special handling. We'll fix it up properly at the end.
3903 */
3904 skb->protocol = eth->h_proto;
3905
3906 out:
3907 return skb;
3908 }
3909
3910 gro_result_t napi_gro_frags(struct napi_struct *napi)
3911 {
3912 struct sk_buff *skb = napi_frags_skb(napi);
3913
3914 if (!skb)
3915 return GRO_DROP;
3916
3917 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3918 }
3919 EXPORT_SYMBOL(napi_gro_frags);
3920
3921 /*
3922 * net_rps_action sends any pending IPI's for rps.
3923 * Note: called with local irq disabled, but exits with local irq enabled.
3924 */
3925 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3926 {
3927 #ifdef CONFIG_RPS
3928 struct softnet_data *remsd = sd->rps_ipi_list;
3929
3930 if (remsd) {
3931 sd->rps_ipi_list = NULL;
3932
3933 local_irq_enable();
3934
3935 /* Send pending IPI's to kick RPS processing on remote cpus. */
3936 while (remsd) {
3937 struct softnet_data *next = remsd->rps_ipi_next;
3938
3939 if (cpu_online(remsd->cpu))
3940 __smp_call_function_single(remsd->cpu,
3941 &remsd->csd, 0);
3942 remsd = next;
3943 }
3944 } else
3945 #endif
3946 local_irq_enable();
3947 }
3948
3949 static int process_backlog(struct napi_struct *napi, int quota)
3950 {
3951 int work = 0;
3952 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3953
3954 #ifdef CONFIG_RPS
3955 /* Check if we have pending ipi, its better to send them now,
3956 * not waiting net_rx_action() end.
3957 */
3958 if (sd->rps_ipi_list) {
3959 local_irq_disable();
3960 net_rps_action_and_irq_enable(sd);
3961 }
3962 #endif
3963 napi->weight = weight_p;
3964 local_irq_disable();
3965 while (work < quota) {
3966 struct sk_buff *skb;
3967 unsigned int qlen;
3968
3969 while ((skb = __skb_dequeue(&sd->process_queue))) {
3970 local_irq_enable();
3971 __netif_receive_skb(skb);
3972 local_irq_disable();
3973 input_queue_head_incr(sd);
3974 if (++work >= quota) {
3975 local_irq_enable();
3976 return work;
3977 }
3978 }
3979
3980 rps_lock(sd);
3981 qlen = skb_queue_len(&sd->input_pkt_queue);
3982 if (qlen)
3983 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3984 &sd->process_queue);
3985
3986 if (qlen < quota - work) {
3987 /*
3988 * Inline a custom version of __napi_complete().
3989 * only current cpu owns and manipulates this napi,
3990 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3991 * we can use a plain write instead of clear_bit(),
3992 * and we dont need an smp_mb() memory barrier.
3993 */
3994 list_del(&napi->poll_list);
3995 napi->state = 0;
3996
3997 quota = work + qlen;
3998 }
3999 rps_unlock(sd);
4000 }
4001 local_irq_enable();
4002
4003 return work;
4004 }
4005
4006 /**
4007 * __napi_schedule - schedule for receive
4008 * @n: entry to schedule
4009 *
4010 * The entry's receive function will be scheduled to run
4011 */
4012 void __napi_schedule(struct napi_struct *n)
4013 {
4014 unsigned long flags;
4015
4016 local_irq_save(flags);
4017 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4018 local_irq_restore(flags);
4019 }
4020 EXPORT_SYMBOL(__napi_schedule);
4021
4022 void __napi_complete(struct napi_struct *n)
4023 {
4024 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4025 BUG_ON(n->gro_list);
4026
4027 list_del(&n->poll_list);
4028 smp_mb__before_clear_bit();
4029 clear_bit(NAPI_STATE_SCHED, &n->state);
4030 }
4031 EXPORT_SYMBOL(__napi_complete);
4032
4033 void napi_complete(struct napi_struct *n)
4034 {
4035 unsigned long flags;
4036
4037 /*
4038 * don't let napi dequeue from the cpu poll list
4039 * just in case its running on a different cpu
4040 */
4041 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4042 return;
4043
4044 napi_gro_flush(n, false);
4045 local_irq_save(flags);
4046 __napi_complete(n);
4047 local_irq_restore(flags);
4048 }
4049 EXPORT_SYMBOL(napi_complete);
4050
4051 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4052 int (*poll)(struct napi_struct *, int), int weight)
4053 {
4054 INIT_LIST_HEAD(&napi->poll_list);
4055 napi->gro_count = 0;
4056 napi->gro_list = NULL;
4057 napi->skb = NULL;
4058 napi->poll = poll;
4059 if (weight > NAPI_POLL_WEIGHT)
4060 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4061 weight, dev->name);
4062 napi->weight = weight;
4063 list_add(&napi->dev_list, &dev->napi_list);
4064 napi->dev = dev;
4065 #ifdef CONFIG_NETPOLL
4066 spin_lock_init(&napi->poll_lock);
4067 napi->poll_owner = -1;
4068 #endif
4069 set_bit(NAPI_STATE_SCHED, &napi->state);
4070 }
4071 EXPORT_SYMBOL(netif_napi_add);
4072
4073 void netif_napi_del(struct napi_struct *napi)
4074 {
4075 struct sk_buff *skb, *next;
4076
4077 list_del_init(&napi->dev_list);
4078 napi_free_frags(napi);
4079
4080 for (skb = napi->gro_list; skb; skb = next) {
4081 next = skb->next;
4082 skb->next = NULL;
4083 kfree_skb(skb);
4084 }
4085
4086 napi->gro_list = NULL;
4087 napi->gro_count = 0;
4088 }
4089 EXPORT_SYMBOL(netif_napi_del);
4090
4091 static void net_rx_action(struct softirq_action *h)
4092 {
4093 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4094 unsigned long time_limit = jiffies + 2;
4095 int budget = netdev_budget;
4096 void *have;
4097
4098 local_irq_disable();
4099
4100 while (!list_empty(&sd->poll_list)) {
4101 struct napi_struct *n;
4102 int work, weight;
4103
4104 /* If softirq window is exhuasted then punt.
4105 * Allow this to run for 2 jiffies since which will allow
4106 * an average latency of 1.5/HZ.
4107 */
4108 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4109 goto softnet_break;
4110
4111 local_irq_enable();
4112
4113 /* Even though interrupts have been re-enabled, this
4114 * access is safe because interrupts can only add new
4115 * entries to the tail of this list, and only ->poll()
4116 * calls can remove this head entry from the list.
4117 */
4118 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4119
4120 have = netpoll_poll_lock(n);
4121
4122 weight = n->weight;
4123
4124 /* This NAPI_STATE_SCHED test is for avoiding a race
4125 * with netpoll's poll_napi(). Only the entity which
4126 * obtains the lock and sees NAPI_STATE_SCHED set will
4127 * actually make the ->poll() call. Therefore we avoid
4128 * accidentally calling ->poll() when NAPI is not scheduled.
4129 */
4130 work = 0;
4131 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4132 work = n->poll(n, weight);
4133 trace_napi_poll(n);
4134 }
4135
4136 WARN_ON_ONCE(work > weight);
4137
4138 budget -= work;
4139
4140 local_irq_disable();
4141
4142 /* Drivers must not modify the NAPI state if they
4143 * consume the entire weight. In such cases this code
4144 * still "owns" the NAPI instance and therefore can
4145 * move the instance around on the list at-will.
4146 */
4147 if (unlikely(work == weight)) {
4148 if (unlikely(napi_disable_pending(n))) {
4149 local_irq_enable();
4150 napi_complete(n);
4151 local_irq_disable();
4152 } else {
4153 if (n->gro_list) {
4154 /* flush too old packets
4155 * If HZ < 1000, flush all packets.
4156 */
4157 local_irq_enable();
4158 napi_gro_flush(n, HZ >= 1000);
4159 local_irq_disable();
4160 }
4161 list_move_tail(&n->poll_list, &sd->poll_list);
4162 }
4163 }
4164
4165 netpoll_poll_unlock(have);
4166 }
4167 out:
4168 net_rps_action_and_irq_enable(sd);
4169
4170 #ifdef CONFIG_NET_DMA
4171 /*
4172 * There may not be any more sk_buffs coming right now, so push
4173 * any pending DMA copies to hardware
4174 */
4175 dma_issue_pending_all();
4176 #endif
4177
4178 return;
4179
4180 softnet_break:
4181 sd->time_squeeze++;
4182 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4183 goto out;
4184 }
4185
4186 struct netdev_upper {
4187 struct net_device *dev;
4188 bool master;
4189 struct list_head list;
4190 struct rcu_head rcu;
4191 struct list_head search_list;
4192 };
4193
4194 static void __append_search_uppers(struct list_head *search_list,
4195 struct net_device *dev)
4196 {
4197 struct netdev_upper *upper;
4198
4199 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4200 /* check if this upper is not already in search list */
4201 if (list_empty(&upper->search_list))
4202 list_add_tail(&upper->search_list, search_list);
4203 }
4204 }
4205
4206 static bool __netdev_search_upper_dev(struct net_device *dev,
4207 struct net_device *upper_dev)
4208 {
4209 LIST_HEAD(search_list);
4210 struct netdev_upper *upper;
4211 struct netdev_upper *tmp;
4212 bool ret = false;
4213
4214 __append_search_uppers(&search_list, dev);
4215 list_for_each_entry(upper, &search_list, search_list) {
4216 if (upper->dev == upper_dev) {
4217 ret = true;
4218 break;
4219 }
4220 __append_search_uppers(&search_list, upper->dev);
4221 }
4222 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4223 INIT_LIST_HEAD(&upper->search_list);
4224 return ret;
4225 }
4226
4227 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4228 struct net_device *upper_dev)
4229 {
4230 struct netdev_upper *upper;
4231
4232 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4233 if (upper->dev == upper_dev)
4234 return upper;
4235 }
4236 return NULL;
4237 }
4238
4239 /**
4240 * netdev_has_upper_dev - Check if device is linked to an upper device
4241 * @dev: device
4242 * @upper_dev: upper device to check
4243 *
4244 * Find out if a device is linked to specified upper device and return true
4245 * in case it is. Note that this checks only immediate upper device,
4246 * not through a complete stack of devices. The caller must hold the RTNL lock.
4247 */
4248 bool netdev_has_upper_dev(struct net_device *dev,
4249 struct net_device *upper_dev)
4250 {
4251 ASSERT_RTNL();
4252
4253 return __netdev_find_upper(dev, upper_dev);
4254 }
4255 EXPORT_SYMBOL(netdev_has_upper_dev);
4256
4257 /**
4258 * netdev_has_any_upper_dev - Check if device is linked to some device
4259 * @dev: device
4260 *
4261 * Find out if a device is linked to an upper device and return true in case
4262 * it is. The caller must hold the RTNL lock.
4263 */
4264 bool netdev_has_any_upper_dev(struct net_device *dev)
4265 {
4266 ASSERT_RTNL();
4267
4268 return !list_empty(&dev->upper_dev_list);
4269 }
4270 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4271
4272 /**
4273 * netdev_master_upper_dev_get - Get master upper device
4274 * @dev: device
4275 *
4276 * Find a master upper device and return pointer to it or NULL in case
4277 * it's not there. The caller must hold the RTNL lock.
4278 */
4279 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4280 {
4281 struct netdev_upper *upper;
4282
4283 ASSERT_RTNL();
4284
4285 if (list_empty(&dev->upper_dev_list))
4286 return NULL;
4287
4288 upper = list_first_entry(&dev->upper_dev_list,
4289 struct netdev_upper, list);
4290 if (likely(upper->master))
4291 return upper->dev;
4292 return NULL;
4293 }
4294 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4295
4296 /**
4297 * netdev_master_upper_dev_get_rcu - Get master upper device
4298 * @dev: device
4299 *
4300 * Find a master upper device and return pointer to it or NULL in case
4301 * it's not there. The caller must hold the RCU read lock.
4302 */
4303 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4304 {
4305 struct netdev_upper *upper;
4306
4307 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4308 struct netdev_upper, list);
4309 if (upper && likely(upper->master))
4310 return upper->dev;
4311 return NULL;
4312 }
4313 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4314
4315 static int __netdev_upper_dev_link(struct net_device *dev,
4316 struct net_device *upper_dev, bool master)
4317 {
4318 struct netdev_upper *upper;
4319
4320 ASSERT_RTNL();
4321
4322 if (dev == upper_dev)
4323 return -EBUSY;
4324
4325 /* To prevent loops, check if dev is not upper device to upper_dev. */
4326 if (__netdev_search_upper_dev(upper_dev, dev))
4327 return -EBUSY;
4328
4329 if (__netdev_find_upper(dev, upper_dev))
4330 return -EEXIST;
4331
4332 if (master && netdev_master_upper_dev_get(dev))
4333 return -EBUSY;
4334
4335 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4336 if (!upper)
4337 return -ENOMEM;
4338
4339 upper->dev = upper_dev;
4340 upper->master = master;
4341 INIT_LIST_HEAD(&upper->search_list);
4342
4343 /* Ensure that master upper link is always the first item in list. */
4344 if (master)
4345 list_add_rcu(&upper->list, &dev->upper_dev_list);
4346 else
4347 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4348 dev_hold(upper_dev);
4349
4350 return 0;
4351 }
4352
4353 /**
4354 * netdev_upper_dev_link - Add a link to the upper device
4355 * @dev: device
4356 * @upper_dev: new upper device
4357 *
4358 * Adds a link to device which is upper to this one. The caller must hold
4359 * the RTNL lock. On a failure a negative errno code is returned.
4360 * On success the reference counts are adjusted and the function
4361 * returns zero.
4362 */
4363 int netdev_upper_dev_link(struct net_device *dev,
4364 struct net_device *upper_dev)
4365 {
4366 return __netdev_upper_dev_link(dev, upper_dev, false);
4367 }
4368 EXPORT_SYMBOL(netdev_upper_dev_link);
4369
4370 /**
4371 * netdev_master_upper_dev_link - Add a master link to the upper device
4372 * @dev: device
4373 * @upper_dev: new upper device
4374 *
4375 * Adds a link to device which is upper to this one. In this case, only
4376 * one master upper device can be linked, although other non-master devices
4377 * might be linked as well. The caller must hold the RTNL lock.
4378 * On a failure a negative errno code is returned. On success the reference
4379 * counts are adjusted and the function returns zero.
4380 */
4381 int netdev_master_upper_dev_link(struct net_device *dev,
4382 struct net_device *upper_dev)
4383 {
4384 return __netdev_upper_dev_link(dev, upper_dev, true);
4385 }
4386 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4387
4388 /**
4389 * netdev_upper_dev_unlink - Removes a link to upper device
4390 * @dev: device
4391 * @upper_dev: new upper device
4392 *
4393 * Removes a link to device which is upper to this one. The caller must hold
4394 * the RTNL lock.
4395 */
4396 void netdev_upper_dev_unlink(struct net_device *dev,
4397 struct net_device *upper_dev)
4398 {
4399 struct netdev_upper *upper;
4400
4401 ASSERT_RTNL();
4402
4403 upper = __netdev_find_upper(dev, upper_dev);
4404 if (!upper)
4405 return;
4406 list_del_rcu(&upper->list);
4407 dev_put(upper_dev);
4408 kfree_rcu(upper, rcu);
4409 }
4410 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4411
4412 static void dev_change_rx_flags(struct net_device *dev, int flags)
4413 {
4414 const struct net_device_ops *ops = dev->netdev_ops;
4415
4416 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4417 ops->ndo_change_rx_flags(dev, flags);
4418 }
4419
4420 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4421 {
4422 unsigned int old_flags = dev->flags;
4423 kuid_t uid;
4424 kgid_t gid;
4425
4426 ASSERT_RTNL();
4427
4428 dev->flags |= IFF_PROMISC;
4429 dev->promiscuity += inc;
4430 if (dev->promiscuity == 0) {
4431 /*
4432 * Avoid overflow.
4433 * If inc causes overflow, untouch promisc and return error.
4434 */
4435 if (inc < 0)
4436 dev->flags &= ~IFF_PROMISC;
4437 else {
4438 dev->promiscuity -= inc;
4439 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4440 dev->name);
4441 return -EOVERFLOW;
4442 }
4443 }
4444 if (dev->flags != old_flags) {
4445 pr_info("device %s %s promiscuous mode\n",
4446 dev->name,
4447 dev->flags & IFF_PROMISC ? "entered" : "left");
4448 if (audit_enabled) {
4449 current_uid_gid(&uid, &gid);
4450 audit_log(current->audit_context, GFP_ATOMIC,
4451 AUDIT_ANOM_PROMISCUOUS,
4452 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4453 dev->name, (dev->flags & IFF_PROMISC),
4454 (old_flags & IFF_PROMISC),
4455 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4456 from_kuid(&init_user_ns, uid),
4457 from_kgid(&init_user_ns, gid),
4458 audit_get_sessionid(current));
4459 }
4460
4461 dev_change_rx_flags(dev, IFF_PROMISC);
4462 }
4463 return 0;
4464 }
4465
4466 /**
4467 * dev_set_promiscuity - update promiscuity count on a device
4468 * @dev: device
4469 * @inc: modifier
4470 *
4471 * Add or remove promiscuity from a device. While the count in the device
4472 * remains above zero the interface remains promiscuous. Once it hits zero
4473 * the device reverts back to normal filtering operation. A negative inc
4474 * value is used to drop promiscuity on the device.
4475 * Return 0 if successful or a negative errno code on error.
4476 */
4477 int dev_set_promiscuity(struct net_device *dev, int inc)
4478 {
4479 unsigned int old_flags = dev->flags;
4480 int err;
4481
4482 err = __dev_set_promiscuity(dev, inc);
4483 if (err < 0)
4484 return err;
4485 if (dev->flags != old_flags)
4486 dev_set_rx_mode(dev);
4487 return err;
4488 }
4489 EXPORT_SYMBOL(dev_set_promiscuity);
4490
4491 /**
4492 * dev_set_allmulti - update allmulti count on a device
4493 * @dev: device
4494 * @inc: modifier
4495 *
4496 * Add or remove reception of all multicast frames to a device. While the
4497 * count in the device remains above zero the interface remains listening
4498 * to all interfaces. Once it hits zero the device reverts back to normal
4499 * filtering operation. A negative @inc value is used to drop the counter
4500 * when releasing a resource needing all multicasts.
4501 * Return 0 if successful or a negative errno code on error.
4502 */
4503
4504 int dev_set_allmulti(struct net_device *dev, int inc)
4505 {
4506 unsigned int old_flags = dev->flags;
4507
4508 ASSERT_RTNL();
4509
4510 dev->flags |= IFF_ALLMULTI;
4511 dev->allmulti += inc;
4512 if (dev->allmulti == 0) {
4513 /*
4514 * Avoid overflow.
4515 * If inc causes overflow, untouch allmulti and return error.
4516 */
4517 if (inc < 0)
4518 dev->flags &= ~IFF_ALLMULTI;
4519 else {
4520 dev->allmulti -= inc;
4521 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4522 dev->name);
4523 return -EOVERFLOW;
4524 }
4525 }
4526 if (dev->flags ^ old_flags) {
4527 dev_change_rx_flags(dev, IFF_ALLMULTI);
4528 dev_set_rx_mode(dev);
4529 }
4530 return 0;
4531 }
4532 EXPORT_SYMBOL(dev_set_allmulti);
4533
4534 /*
4535 * Upload unicast and multicast address lists to device and
4536 * configure RX filtering. When the device doesn't support unicast
4537 * filtering it is put in promiscuous mode while unicast addresses
4538 * are present.
4539 */
4540 void __dev_set_rx_mode(struct net_device *dev)
4541 {
4542 const struct net_device_ops *ops = dev->netdev_ops;
4543
4544 /* dev_open will call this function so the list will stay sane. */
4545 if (!(dev->flags&IFF_UP))
4546 return;
4547
4548 if (!netif_device_present(dev))
4549 return;
4550
4551 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4552 /* Unicast addresses changes may only happen under the rtnl,
4553 * therefore calling __dev_set_promiscuity here is safe.
4554 */
4555 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4556 __dev_set_promiscuity(dev, 1);
4557 dev->uc_promisc = true;
4558 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4559 __dev_set_promiscuity(dev, -1);
4560 dev->uc_promisc = false;
4561 }
4562 }
4563
4564 if (ops->ndo_set_rx_mode)
4565 ops->ndo_set_rx_mode(dev);
4566 }
4567
4568 void dev_set_rx_mode(struct net_device *dev)
4569 {
4570 netif_addr_lock_bh(dev);
4571 __dev_set_rx_mode(dev);
4572 netif_addr_unlock_bh(dev);
4573 }
4574
4575 /**
4576 * dev_get_flags - get flags reported to userspace
4577 * @dev: device
4578 *
4579 * Get the combination of flag bits exported through APIs to userspace.
4580 */
4581 unsigned int dev_get_flags(const struct net_device *dev)
4582 {
4583 unsigned int flags;
4584
4585 flags = (dev->flags & ~(IFF_PROMISC |
4586 IFF_ALLMULTI |
4587 IFF_RUNNING |
4588 IFF_LOWER_UP |
4589 IFF_DORMANT)) |
4590 (dev->gflags & (IFF_PROMISC |
4591 IFF_ALLMULTI));
4592
4593 if (netif_running(dev)) {
4594 if (netif_oper_up(dev))
4595 flags |= IFF_RUNNING;
4596 if (netif_carrier_ok(dev))
4597 flags |= IFF_LOWER_UP;
4598 if (netif_dormant(dev))
4599 flags |= IFF_DORMANT;
4600 }
4601
4602 return flags;
4603 }
4604 EXPORT_SYMBOL(dev_get_flags);
4605
4606 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4607 {
4608 unsigned int old_flags = dev->flags;
4609 int ret;
4610
4611 ASSERT_RTNL();
4612
4613 /*
4614 * Set the flags on our device.
4615 */
4616
4617 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4618 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4619 IFF_AUTOMEDIA)) |
4620 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4621 IFF_ALLMULTI));
4622
4623 /*
4624 * Load in the correct multicast list now the flags have changed.
4625 */
4626
4627 if ((old_flags ^ flags) & IFF_MULTICAST)
4628 dev_change_rx_flags(dev, IFF_MULTICAST);
4629
4630 dev_set_rx_mode(dev);
4631
4632 /*
4633 * Have we downed the interface. We handle IFF_UP ourselves
4634 * according to user attempts to set it, rather than blindly
4635 * setting it.
4636 */
4637
4638 ret = 0;
4639 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4640 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4641
4642 if (!ret)
4643 dev_set_rx_mode(dev);
4644 }
4645
4646 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4647 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4648
4649 dev->gflags ^= IFF_PROMISC;
4650 dev_set_promiscuity(dev, inc);
4651 }
4652
4653 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4654 is important. Some (broken) drivers set IFF_PROMISC, when
4655 IFF_ALLMULTI is requested not asking us and not reporting.
4656 */
4657 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4658 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4659
4660 dev->gflags ^= IFF_ALLMULTI;
4661 dev_set_allmulti(dev, inc);
4662 }
4663
4664 return ret;
4665 }
4666
4667 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4668 {
4669 unsigned int changes = dev->flags ^ old_flags;
4670
4671 if (changes & IFF_UP) {
4672 if (dev->flags & IFF_UP)
4673 call_netdevice_notifiers(NETDEV_UP, dev);
4674 else
4675 call_netdevice_notifiers(NETDEV_DOWN, dev);
4676 }
4677
4678 if (dev->flags & IFF_UP &&
4679 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4680 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4681 }
4682
4683 /**
4684 * dev_change_flags - change device settings
4685 * @dev: device
4686 * @flags: device state flags
4687 *
4688 * Change settings on device based state flags. The flags are
4689 * in the userspace exported format.
4690 */
4691 int dev_change_flags(struct net_device *dev, unsigned int flags)
4692 {
4693 int ret;
4694 unsigned int changes, old_flags = dev->flags;
4695
4696 ret = __dev_change_flags(dev, flags);
4697 if (ret < 0)
4698 return ret;
4699
4700 changes = old_flags ^ dev->flags;
4701 if (changes)
4702 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4703
4704 __dev_notify_flags(dev, old_flags);
4705 return ret;
4706 }
4707 EXPORT_SYMBOL(dev_change_flags);
4708
4709 /**
4710 * dev_set_mtu - Change maximum transfer unit
4711 * @dev: device
4712 * @new_mtu: new transfer unit
4713 *
4714 * Change the maximum transfer size of the network device.
4715 */
4716 int dev_set_mtu(struct net_device *dev, int new_mtu)
4717 {
4718 const struct net_device_ops *ops = dev->netdev_ops;
4719 int err;
4720
4721 if (new_mtu == dev->mtu)
4722 return 0;
4723
4724 /* MTU must be positive. */
4725 if (new_mtu < 0)
4726 return -EINVAL;
4727
4728 if (!netif_device_present(dev))
4729 return -ENODEV;
4730
4731 err = 0;
4732 if (ops->ndo_change_mtu)
4733 err = ops->ndo_change_mtu(dev, new_mtu);
4734 else
4735 dev->mtu = new_mtu;
4736
4737 if (!err)
4738 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4739 return err;
4740 }
4741 EXPORT_SYMBOL(dev_set_mtu);
4742
4743 /**
4744 * dev_set_group - Change group this device belongs to
4745 * @dev: device
4746 * @new_group: group this device should belong to
4747 */
4748 void dev_set_group(struct net_device *dev, int new_group)
4749 {
4750 dev->group = new_group;
4751 }
4752 EXPORT_SYMBOL(dev_set_group);
4753
4754 /**
4755 * dev_set_mac_address - Change Media Access Control Address
4756 * @dev: device
4757 * @sa: new address
4758 *
4759 * Change the hardware (MAC) address of the device
4760 */
4761 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4762 {
4763 const struct net_device_ops *ops = dev->netdev_ops;
4764 int err;
4765
4766 if (!ops->ndo_set_mac_address)
4767 return -EOPNOTSUPP;
4768 if (sa->sa_family != dev->type)
4769 return -EINVAL;
4770 if (!netif_device_present(dev))
4771 return -ENODEV;
4772 err = ops->ndo_set_mac_address(dev, sa);
4773 if (err)
4774 return err;
4775 dev->addr_assign_type = NET_ADDR_SET;
4776 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4777 add_device_randomness(dev->dev_addr, dev->addr_len);
4778 return 0;
4779 }
4780 EXPORT_SYMBOL(dev_set_mac_address);
4781
4782 /**
4783 * dev_change_carrier - Change device carrier
4784 * @dev: device
4785 * @new_carrier: new value
4786 *
4787 * Change device carrier
4788 */
4789 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4790 {
4791 const struct net_device_ops *ops = dev->netdev_ops;
4792
4793 if (!ops->ndo_change_carrier)
4794 return -EOPNOTSUPP;
4795 if (!netif_device_present(dev))
4796 return -ENODEV;
4797 return ops->ndo_change_carrier(dev, new_carrier);
4798 }
4799 EXPORT_SYMBOL(dev_change_carrier);
4800
4801 /**
4802 * dev_new_index - allocate an ifindex
4803 * @net: the applicable net namespace
4804 *
4805 * Returns a suitable unique value for a new device interface
4806 * number. The caller must hold the rtnl semaphore or the
4807 * dev_base_lock to be sure it remains unique.
4808 */
4809 static int dev_new_index(struct net *net)
4810 {
4811 int ifindex = net->ifindex;
4812 for (;;) {
4813 if (++ifindex <= 0)
4814 ifindex = 1;
4815 if (!__dev_get_by_index(net, ifindex))
4816 return net->ifindex = ifindex;
4817 }
4818 }
4819
4820 /* Delayed registration/unregisteration */
4821 static LIST_HEAD(net_todo_list);
4822
4823 static void net_set_todo(struct net_device *dev)
4824 {
4825 list_add_tail(&dev->todo_list, &net_todo_list);
4826 }
4827
4828 static void rollback_registered_many(struct list_head *head)
4829 {
4830 struct net_device *dev, *tmp;
4831
4832 BUG_ON(dev_boot_phase);
4833 ASSERT_RTNL();
4834
4835 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4836 /* Some devices call without registering
4837 * for initialization unwind. Remove those
4838 * devices and proceed with the remaining.
4839 */
4840 if (dev->reg_state == NETREG_UNINITIALIZED) {
4841 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4842 dev->name, dev);
4843
4844 WARN_ON(1);
4845 list_del(&dev->unreg_list);
4846 continue;
4847 }
4848 dev->dismantle = true;
4849 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4850 }
4851
4852 /* If device is running, close it first. */
4853 dev_close_many(head);
4854
4855 list_for_each_entry(dev, head, unreg_list) {
4856 /* And unlink it from device chain. */
4857 unlist_netdevice(dev);
4858
4859 dev->reg_state = NETREG_UNREGISTERING;
4860 }
4861
4862 synchronize_net();
4863
4864 list_for_each_entry(dev, head, unreg_list) {
4865 /* Shutdown queueing discipline. */
4866 dev_shutdown(dev);
4867
4868
4869 /* Notify protocols, that we are about to destroy
4870 this device. They should clean all the things.
4871 */
4872 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4873
4874 if (!dev->rtnl_link_ops ||
4875 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4876 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4877
4878 /*
4879 * Flush the unicast and multicast chains
4880 */
4881 dev_uc_flush(dev);
4882 dev_mc_flush(dev);
4883
4884 if (dev->netdev_ops->ndo_uninit)
4885 dev->netdev_ops->ndo_uninit(dev);
4886
4887 /* Notifier chain MUST detach us all upper devices. */
4888 WARN_ON(netdev_has_any_upper_dev(dev));
4889
4890 /* Remove entries from kobject tree */
4891 netdev_unregister_kobject(dev);
4892 #ifdef CONFIG_XPS
4893 /* Remove XPS queueing entries */
4894 netif_reset_xps_queues_gt(dev, 0);
4895 #endif
4896 }
4897
4898 synchronize_net();
4899
4900 list_for_each_entry(dev, head, unreg_list)
4901 dev_put(dev);
4902 }
4903
4904 static void rollback_registered(struct net_device *dev)
4905 {
4906 LIST_HEAD(single);
4907
4908 list_add(&dev->unreg_list, &single);
4909 rollback_registered_many(&single);
4910 list_del(&single);
4911 }
4912
4913 static netdev_features_t netdev_fix_features(struct net_device *dev,
4914 netdev_features_t features)
4915 {
4916 /* Fix illegal checksum combinations */
4917 if ((features & NETIF_F_HW_CSUM) &&
4918 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4919 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4920 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4921 }
4922
4923 /* TSO requires that SG is present as well. */
4924 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4925 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4926 features &= ~NETIF_F_ALL_TSO;
4927 }
4928
4929 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4930 !(features & NETIF_F_IP_CSUM)) {
4931 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4932 features &= ~NETIF_F_TSO;
4933 features &= ~NETIF_F_TSO_ECN;
4934 }
4935
4936 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4937 !(features & NETIF_F_IPV6_CSUM)) {
4938 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4939 features &= ~NETIF_F_TSO6;
4940 }
4941
4942 /* TSO ECN requires that TSO is present as well. */
4943 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4944 features &= ~NETIF_F_TSO_ECN;
4945
4946 /* Software GSO depends on SG. */
4947 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4948 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4949 features &= ~NETIF_F_GSO;
4950 }
4951
4952 /* UFO needs SG and checksumming */
4953 if (features & NETIF_F_UFO) {
4954 /* maybe split UFO into V4 and V6? */
4955 if (!((features & NETIF_F_GEN_CSUM) ||
4956 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4957 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4958 netdev_dbg(dev,
4959 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4960 features &= ~NETIF_F_UFO;
4961 }
4962
4963 if (!(features & NETIF_F_SG)) {
4964 netdev_dbg(dev,
4965 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4966 features &= ~NETIF_F_UFO;
4967 }
4968 }
4969
4970 return features;
4971 }
4972
4973 int __netdev_update_features(struct net_device *dev)
4974 {
4975 netdev_features_t features;
4976 int err = 0;
4977
4978 ASSERT_RTNL();
4979
4980 features = netdev_get_wanted_features(dev);
4981
4982 if (dev->netdev_ops->ndo_fix_features)
4983 features = dev->netdev_ops->ndo_fix_features(dev, features);
4984
4985 /* driver might be less strict about feature dependencies */
4986 features = netdev_fix_features(dev, features);
4987
4988 if (dev->features == features)
4989 return 0;
4990
4991 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4992 &dev->features, &features);
4993
4994 if (dev->netdev_ops->ndo_set_features)
4995 err = dev->netdev_ops->ndo_set_features(dev, features);
4996
4997 if (unlikely(err < 0)) {
4998 netdev_err(dev,
4999 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5000 err, &features, &dev->features);
5001 return -1;
5002 }
5003
5004 if (!err)
5005 dev->features = features;
5006
5007 return 1;
5008 }
5009
5010 /**
5011 * netdev_update_features - recalculate device features
5012 * @dev: the device to check
5013 *
5014 * Recalculate dev->features set and send notifications if it
5015 * has changed. Should be called after driver or hardware dependent
5016 * conditions might have changed that influence the features.
5017 */
5018 void netdev_update_features(struct net_device *dev)
5019 {
5020 if (__netdev_update_features(dev))
5021 netdev_features_change(dev);
5022 }
5023 EXPORT_SYMBOL(netdev_update_features);
5024
5025 /**
5026 * netdev_change_features - recalculate device features
5027 * @dev: the device to check
5028 *
5029 * Recalculate dev->features set and send notifications even
5030 * if they have not changed. Should be called instead of
5031 * netdev_update_features() if also dev->vlan_features might
5032 * have changed to allow the changes to be propagated to stacked
5033 * VLAN devices.
5034 */
5035 void netdev_change_features(struct net_device *dev)
5036 {
5037 __netdev_update_features(dev);
5038 netdev_features_change(dev);
5039 }
5040 EXPORT_SYMBOL(netdev_change_features);
5041
5042 /**
5043 * netif_stacked_transfer_operstate - transfer operstate
5044 * @rootdev: the root or lower level device to transfer state from
5045 * @dev: the device to transfer operstate to
5046 *
5047 * Transfer operational state from root to device. This is normally
5048 * called when a stacking relationship exists between the root
5049 * device and the device(a leaf device).
5050 */
5051 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5052 struct net_device *dev)
5053 {
5054 if (rootdev->operstate == IF_OPER_DORMANT)
5055 netif_dormant_on(dev);
5056 else
5057 netif_dormant_off(dev);
5058
5059 if (netif_carrier_ok(rootdev)) {
5060 if (!netif_carrier_ok(dev))
5061 netif_carrier_on(dev);
5062 } else {
5063 if (netif_carrier_ok(dev))
5064 netif_carrier_off(dev);
5065 }
5066 }
5067 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5068
5069 #ifdef CONFIG_RPS
5070 static int netif_alloc_rx_queues(struct net_device *dev)
5071 {
5072 unsigned int i, count = dev->num_rx_queues;
5073 struct netdev_rx_queue *rx;
5074
5075 BUG_ON(count < 1);
5076
5077 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5078 if (!rx)
5079 return -ENOMEM;
5080
5081 dev->_rx = rx;
5082
5083 for (i = 0; i < count; i++)
5084 rx[i].dev = dev;
5085 return 0;
5086 }
5087 #endif
5088
5089 static void netdev_init_one_queue(struct net_device *dev,
5090 struct netdev_queue *queue, void *_unused)
5091 {
5092 /* Initialize queue lock */
5093 spin_lock_init(&queue->_xmit_lock);
5094 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5095 queue->xmit_lock_owner = -1;
5096 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5097 queue->dev = dev;
5098 #ifdef CONFIG_BQL
5099 dql_init(&queue->dql, HZ);
5100 #endif
5101 }
5102
5103 static int netif_alloc_netdev_queues(struct net_device *dev)
5104 {
5105 unsigned int count = dev->num_tx_queues;
5106 struct netdev_queue *tx;
5107
5108 BUG_ON(count < 1);
5109
5110 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5111 if (!tx)
5112 return -ENOMEM;
5113
5114 dev->_tx = tx;
5115
5116 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5117 spin_lock_init(&dev->tx_global_lock);
5118
5119 return 0;
5120 }
5121
5122 /**
5123 * register_netdevice - register a network device
5124 * @dev: device to register
5125 *
5126 * Take a completed network device structure and add it to the kernel
5127 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5128 * chain. 0 is returned on success. A negative errno code is returned
5129 * on a failure to set up the device, or if the name is a duplicate.
5130 *
5131 * Callers must hold the rtnl semaphore. You may want
5132 * register_netdev() instead of this.
5133 *
5134 * BUGS:
5135 * The locking appears insufficient to guarantee two parallel registers
5136 * will not get the same name.
5137 */
5138
5139 int register_netdevice(struct net_device *dev)
5140 {
5141 int ret;
5142 struct net *net = dev_net(dev);
5143
5144 BUG_ON(dev_boot_phase);
5145 ASSERT_RTNL();
5146
5147 might_sleep();
5148
5149 /* When net_device's are persistent, this will be fatal. */
5150 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5151 BUG_ON(!net);
5152
5153 spin_lock_init(&dev->addr_list_lock);
5154 netdev_set_addr_lockdep_class(dev);
5155
5156 dev->iflink = -1;
5157
5158 ret = dev_get_valid_name(net, dev, dev->name);
5159 if (ret < 0)
5160 goto out;
5161
5162 /* Init, if this function is available */
5163 if (dev->netdev_ops->ndo_init) {
5164 ret = dev->netdev_ops->ndo_init(dev);
5165 if (ret) {
5166 if (ret > 0)
5167 ret = -EIO;
5168 goto out;
5169 }
5170 }
5171
5172 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5173 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5174 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5175 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5176 ret = -EINVAL;
5177 goto err_uninit;
5178 }
5179
5180 ret = -EBUSY;
5181 if (!dev->ifindex)
5182 dev->ifindex = dev_new_index(net);
5183 else if (__dev_get_by_index(net, dev->ifindex))
5184 goto err_uninit;
5185
5186 if (dev->iflink == -1)
5187 dev->iflink = dev->ifindex;
5188
5189 /* Transfer changeable features to wanted_features and enable
5190 * software offloads (GSO and GRO).
5191 */
5192 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5193 dev->features |= NETIF_F_SOFT_FEATURES;
5194 dev->wanted_features = dev->features & dev->hw_features;
5195
5196 /* Turn on no cache copy if HW is doing checksum */
5197 if (!(dev->flags & IFF_LOOPBACK)) {
5198 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5199 if (dev->features & NETIF_F_ALL_CSUM) {
5200 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5201 dev->features |= NETIF_F_NOCACHE_COPY;
5202 }
5203 }
5204
5205 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5206 */
5207 dev->vlan_features |= NETIF_F_HIGHDMA;
5208
5209 /* Make NETIF_F_SG inheritable to tunnel devices.
5210 */
5211 dev->hw_enc_features |= NETIF_F_SG;
5212
5213 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5214 ret = notifier_to_errno(ret);
5215 if (ret)
5216 goto err_uninit;
5217
5218 ret = netdev_register_kobject(dev);
5219 if (ret)
5220 goto err_uninit;
5221 dev->reg_state = NETREG_REGISTERED;
5222
5223 __netdev_update_features(dev);
5224
5225 /*
5226 * Default initial state at registry is that the
5227 * device is present.
5228 */
5229
5230 set_bit(__LINK_STATE_PRESENT, &dev->state);
5231
5232 linkwatch_init_dev(dev);
5233
5234 dev_init_scheduler(dev);
5235 dev_hold(dev);
5236 list_netdevice(dev);
5237 add_device_randomness(dev->dev_addr, dev->addr_len);
5238
5239 /* If the device has permanent device address, driver should
5240 * set dev_addr and also addr_assign_type should be set to
5241 * NET_ADDR_PERM (default value).
5242 */
5243 if (dev->addr_assign_type == NET_ADDR_PERM)
5244 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5245
5246 /* Notify protocols, that a new device appeared. */
5247 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5248 ret = notifier_to_errno(ret);
5249 if (ret) {
5250 rollback_registered(dev);
5251 dev->reg_state = NETREG_UNREGISTERED;
5252 }
5253 /*
5254 * Prevent userspace races by waiting until the network
5255 * device is fully setup before sending notifications.
5256 */
5257 if (!dev->rtnl_link_ops ||
5258 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5259 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5260
5261 out:
5262 return ret;
5263
5264 err_uninit:
5265 if (dev->netdev_ops->ndo_uninit)
5266 dev->netdev_ops->ndo_uninit(dev);
5267 goto out;
5268 }
5269 EXPORT_SYMBOL(register_netdevice);
5270
5271 /**
5272 * init_dummy_netdev - init a dummy network device for NAPI
5273 * @dev: device to init
5274 *
5275 * This takes a network device structure and initialize the minimum
5276 * amount of fields so it can be used to schedule NAPI polls without
5277 * registering a full blown interface. This is to be used by drivers
5278 * that need to tie several hardware interfaces to a single NAPI
5279 * poll scheduler due to HW limitations.
5280 */
5281 int init_dummy_netdev(struct net_device *dev)
5282 {
5283 /* Clear everything. Note we don't initialize spinlocks
5284 * are they aren't supposed to be taken by any of the
5285 * NAPI code and this dummy netdev is supposed to be
5286 * only ever used for NAPI polls
5287 */
5288 memset(dev, 0, sizeof(struct net_device));
5289
5290 /* make sure we BUG if trying to hit standard
5291 * register/unregister code path
5292 */
5293 dev->reg_state = NETREG_DUMMY;
5294
5295 /* NAPI wants this */
5296 INIT_LIST_HEAD(&dev->napi_list);
5297
5298 /* a dummy interface is started by default */
5299 set_bit(__LINK_STATE_PRESENT, &dev->state);
5300 set_bit(__LINK_STATE_START, &dev->state);
5301
5302 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5303 * because users of this 'device' dont need to change
5304 * its refcount.
5305 */
5306
5307 return 0;
5308 }
5309 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5310
5311
5312 /**
5313 * register_netdev - register a network device
5314 * @dev: device to register
5315 *
5316 * Take a completed network device structure and add it to the kernel
5317 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5318 * chain. 0 is returned on success. A negative errno code is returned
5319 * on a failure to set up the device, or if the name is a duplicate.
5320 *
5321 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5322 * and expands the device name if you passed a format string to
5323 * alloc_netdev.
5324 */
5325 int register_netdev(struct net_device *dev)
5326 {
5327 int err;
5328
5329 rtnl_lock();
5330 err = register_netdevice(dev);
5331 rtnl_unlock();
5332 return err;
5333 }
5334 EXPORT_SYMBOL(register_netdev);
5335
5336 int netdev_refcnt_read(const struct net_device *dev)
5337 {
5338 int i, refcnt = 0;
5339
5340 for_each_possible_cpu(i)
5341 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5342 return refcnt;
5343 }
5344 EXPORT_SYMBOL(netdev_refcnt_read);
5345
5346 /**
5347 * netdev_wait_allrefs - wait until all references are gone.
5348 * @dev: target net_device
5349 *
5350 * This is called when unregistering network devices.
5351 *
5352 * Any protocol or device that holds a reference should register
5353 * for netdevice notification, and cleanup and put back the
5354 * reference if they receive an UNREGISTER event.
5355 * We can get stuck here if buggy protocols don't correctly
5356 * call dev_put.
5357 */
5358 static void netdev_wait_allrefs(struct net_device *dev)
5359 {
5360 unsigned long rebroadcast_time, warning_time;
5361 int refcnt;
5362
5363 linkwatch_forget_dev(dev);
5364
5365 rebroadcast_time = warning_time = jiffies;
5366 refcnt = netdev_refcnt_read(dev);
5367
5368 while (refcnt != 0) {
5369 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5370 rtnl_lock();
5371
5372 /* Rebroadcast unregister notification */
5373 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5374
5375 __rtnl_unlock();
5376 rcu_barrier();
5377 rtnl_lock();
5378
5379 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5380 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5381 &dev->state)) {
5382 /* We must not have linkwatch events
5383 * pending on unregister. If this
5384 * happens, we simply run the queue
5385 * unscheduled, resulting in a noop
5386 * for this device.
5387 */
5388 linkwatch_run_queue();
5389 }
5390
5391 __rtnl_unlock();
5392
5393 rebroadcast_time = jiffies;
5394 }
5395
5396 msleep(250);
5397
5398 refcnt = netdev_refcnt_read(dev);
5399
5400 if (time_after(jiffies, warning_time + 10 * HZ)) {
5401 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5402 dev->name, refcnt);
5403 warning_time = jiffies;
5404 }
5405 }
5406 }
5407
5408 /* The sequence is:
5409 *
5410 * rtnl_lock();
5411 * ...
5412 * register_netdevice(x1);
5413 * register_netdevice(x2);
5414 * ...
5415 * unregister_netdevice(y1);
5416 * unregister_netdevice(y2);
5417 * ...
5418 * rtnl_unlock();
5419 * free_netdev(y1);
5420 * free_netdev(y2);
5421 *
5422 * We are invoked by rtnl_unlock().
5423 * This allows us to deal with problems:
5424 * 1) We can delete sysfs objects which invoke hotplug
5425 * without deadlocking with linkwatch via keventd.
5426 * 2) Since we run with the RTNL semaphore not held, we can sleep
5427 * safely in order to wait for the netdev refcnt to drop to zero.
5428 *
5429 * We must not return until all unregister events added during
5430 * the interval the lock was held have been completed.
5431 */
5432 void netdev_run_todo(void)
5433 {
5434 struct list_head list;
5435
5436 /* Snapshot list, allow later requests */
5437 list_replace_init(&net_todo_list, &list);
5438
5439 __rtnl_unlock();
5440
5441
5442 /* Wait for rcu callbacks to finish before next phase */
5443 if (!list_empty(&list))
5444 rcu_barrier();
5445
5446 while (!list_empty(&list)) {
5447 struct net_device *dev
5448 = list_first_entry(&list, struct net_device, todo_list);
5449 list_del(&dev->todo_list);
5450
5451 rtnl_lock();
5452 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5453 __rtnl_unlock();
5454
5455 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5456 pr_err("network todo '%s' but state %d\n",
5457 dev->name, dev->reg_state);
5458 dump_stack();
5459 continue;
5460 }
5461
5462 dev->reg_state = NETREG_UNREGISTERED;
5463
5464 on_each_cpu(flush_backlog, dev, 1);
5465
5466 netdev_wait_allrefs(dev);
5467
5468 /* paranoia */
5469 BUG_ON(netdev_refcnt_read(dev));
5470 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5471 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5472 WARN_ON(dev->dn_ptr);
5473
5474 if (dev->destructor)
5475 dev->destructor(dev);
5476
5477 /* Free network device */
5478 kobject_put(&dev->dev.kobj);
5479 }
5480 }
5481
5482 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5483 * fields in the same order, with only the type differing.
5484 */
5485 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5486 const struct net_device_stats *netdev_stats)
5487 {
5488 #if BITS_PER_LONG == 64
5489 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5490 memcpy(stats64, netdev_stats, sizeof(*stats64));
5491 #else
5492 size_t i, n = sizeof(*stats64) / sizeof(u64);
5493 const unsigned long *src = (const unsigned long *)netdev_stats;
5494 u64 *dst = (u64 *)stats64;
5495
5496 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5497 sizeof(*stats64) / sizeof(u64));
5498 for (i = 0; i < n; i++)
5499 dst[i] = src[i];
5500 #endif
5501 }
5502 EXPORT_SYMBOL(netdev_stats_to_stats64);
5503
5504 /**
5505 * dev_get_stats - get network device statistics
5506 * @dev: device to get statistics from
5507 * @storage: place to store stats
5508 *
5509 * Get network statistics from device. Return @storage.
5510 * The device driver may provide its own method by setting
5511 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5512 * otherwise the internal statistics structure is used.
5513 */
5514 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5515 struct rtnl_link_stats64 *storage)
5516 {
5517 const struct net_device_ops *ops = dev->netdev_ops;
5518
5519 if (ops->ndo_get_stats64) {
5520 memset(storage, 0, sizeof(*storage));
5521 ops->ndo_get_stats64(dev, storage);
5522 } else if (ops->ndo_get_stats) {
5523 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5524 } else {
5525 netdev_stats_to_stats64(storage, &dev->stats);
5526 }
5527 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5528 return storage;
5529 }
5530 EXPORT_SYMBOL(dev_get_stats);
5531
5532 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5533 {
5534 struct netdev_queue *queue = dev_ingress_queue(dev);
5535
5536 #ifdef CONFIG_NET_CLS_ACT
5537 if (queue)
5538 return queue;
5539 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5540 if (!queue)
5541 return NULL;
5542 netdev_init_one_queue(dev, queue, NULL);
5543 queue->qdisc = &noop_qdisc;
5544 queue->qdisc_sleeping = &noop_qdisc;
5545 rcu_assign_pointer(dev->ingress_queue, queue);
5546 #endif
5547 return queue;
5548 }
5549
5550 static const struct ethtool_ops default_ethtool_ops;
5551
5552 void netdev_set_default_ethtool_ops(struct net_device *dev,
5553 const struct ethtool_ops *ops)
5554 {
5555 if (dev->ethtool_ops == &default_ethtool_ops)
5556 dev->ethtool_ops = ops;
5557 }
5558 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5559
5560 /**
5561 * alloc_netdev_mqs - allocate network device
5562 * @sizeof_priv: size of private data to allocate space for
5563 * @name: device name format string
5564 * @setup: callback to initialize device
5565 * @txqs: the number of TX subqueues to allocate
5566 * @rxqs: the number of RX subqueues to allocate
5567 *
5568 * Allocates a struct net_device with private data area for driver use
5569 * and performs basic initialization. Also allocates subquue structs
5570 * for each queue on the device.
5571 */
5572 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5573 void (*setup)(struct net_device *),
5574 unsigned int txqs, unsigned int rxqs)
5575 {
5576 struct net_device *dev;
5577 size_t alloc_size;
5578 struct net_device *p;
5579
5580 BUG_ON(strlen(name) >= sizeof(dev->name));
5581
5582 if (txqs < 1) {
5583 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5584 return NULL;
5585 }
5586
5587 #ifdef CONFIG_RPS
5588 if (rxqs < 1) {
5589 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5590 return NULL;
5591 }
5592 #endif
5593
5594 alloc_size = sizeof(struct net_device);
5595 if (sizeof_priv) {
5596 /* ensure 32-byte alignment of private area */
5597 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5598 alloc_size += sizeof_priv;
5599 }
5600 /* ensure 32-byte alignment of whole construct */
5601 alloc_size += NETDEV_ALIGN - 1;
5602
5603 p = kzalloc(alloc_size, GFP_KERNEL);
5604 if (!p)
5605 return NULL;
5606
5607 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5608 dev->padded = (char *)dev - (char *)p;
5609
5610 dev->pcpu_refcnt = alloc_percpu(int);
5611 if (!dev->pcpu_refcnt)
5612 goto free_p;
5613
5614 if (dev_addr_init(dev))
5615 goto free_pcpu;
5616
5617 dev_mc_init(dev);
5618 dev_uc_init(dev);
5619
5620 dev_net_set(dev, &init_net);
5621
5622 dev->gso_max_size = GSO_MAX_SIZE;
5623 dev->gso_max_segs = GSO_MAX_SEGS;
5624
5625 INIT_LIST_HEAD(&dev->napi_list);
5626 INIT_LIST_HEAD(&dev->unreg_list);
5627 INIT_LIST_HEAD(&dev->link_watch_list);
5628 INIT_LIST_HEAD(&dev->upper_dev_list);
5629 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5630 setup(dev);
5631
5632 dev->num_tx_queues = txqs;
5633 dev->real_num_tx_queues = txqs;
5634 if (netif_alloc_netdev_queues(dev))
5635 goto free_all;
5636
5637 #ifdef CONFIG_RPS
5638 dev->num_rx_queues = rxqs;
5639 dev->real_num_rx_queues = rxqs;
5640 if (netif_alloc_rx_queues(dev))
5641 goto free_all;
5642 #endif
5643
5644 strcpy(dev->name, name);
5645 dev->group = INIT_NETDEV_GROUP;
5646 if (!dev->ethtool_ops)
5647 dev->ethtool_ops = &default_ethtool_ops;
5648 return dev;
5649
5650 free_all:
5651 free_netdev(dev);
5652 return NULL;
5653
5654 free_pcpu:
5655 free_percpu(dev->pcpu_refcnt);
5656 kfree(dev->_tx);
5657 #ifdef CONFIG_RPS
5658 kfree(dev->_rx);
5659 #endif
5660
5661 free_p:
5662 kfree(p);
5663 return NULL;
5664 }
5665 EXPORT_SYMBOL(alloc_netdev_mqs);
5666
5667 /**
5668 * free_netdev - free network device
5669 * @dev: device
5670 *
5671 * This function does the last stage of destroying an allocated device
5672 * interface. The reference to the device object is released.
5673 * If this is the last reference then it will be freed.
5674 */
5675 void free_netdev(struct net_device *dev)
5676 {
5677 struct napi_struct *p, *n;
5678
5679 release_net(dev_net(dev));
5680
5681 kfree(dev->_tx);
5682 #ifdef CONFIG_RPS
5683 kfree(dev->_rx);
5684 #endif
5685
5686 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5687
5688 /* Flush device addresses */
5689 dev_addr_flush(dev);
5690
5691 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5692 netif_napi_del(p);
5693
5694 free_percpu(dev->pcpu_refcnt);
5695 dev->pcpu_refcnt = NULL;
5696
5697 /* Compatibility with error handling in drivers */
5698 if (dev->reg_state == NETREG_UNINITIALIZED) {
5699 kfree((char *)dev - dev->padded);
5700 return;
5701 }
5702
5703 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5704 dev->reg_state = NETREG_RELEASED;
5705
5706 /* will free via device release */
5707 put_device(&dev->dev);
5708 }
5709 EXPORT_SYMBOL(free_netdev);
5710
5711 /**
5712 * synchronize_net - Synchronize with packet receive processing
5713 *
5714 * Wait for packets currently being received to be done.
5715 * Does not block later packets from starting.
5716 */
5717 void synchronize_net(void)
5718 {
5719 might_sleep();
5720 if (rtnl_is_locked())
5721 synchronize_rcu_expedited();
5722 else
5723 synchronize_rcu();
5724 }
5725 EXPORT_SYMBOL(synchronize_net);
5726
5727 /**
5728 * unregister_netdevice_queue - remove device from the kernel
5729 * @dev: device
5730 * @head: list
5731 *
5732 * This function shuts down a device interface and removes it
5733 * from the kernel tables.
5734 * If head not NULL, device is queued to be unregistered later.
5735 *
5736 * Callers must hold the rtnl semaphore. You may want
5737 * unregister_netdev() instead of this.
5738 */
5739
5740 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5741 {
5742 ASSERT_RTNL();
5743
5744 if (head) {
5745 list_move_tail(&dev->unreg_list, head);
5746 } else {
5747 rollback_registered(dev);
5748 /* Finish processing unregister after unlock */
5749 net_set_todo(dev);
5750 }
5751 }
5752 EXPORT_SYMBOL(unregister_netdevice_queue);
5753
5754 /**
5755 * unregister_netdevice_many - unregister many devices
5756 * @head: list of devices
5757 */
5758 void unregister_netdevice_many(struct list_head *head)
5759 {
5760 struct net_device *dev;
5761
5762 if (!list_empty(head)) {
5763 rollback_registered_many(head);
5764 list_for_each_entry(dev, head, unreg_list)
5765 net_set_todo(dev);
5766 }
5767 }
5768 EXPORT_SYMBOL(unregister_netdevice_many);
5769
5770 /**
5771 * unregister_netdev - remove device from the kernel
5772 * @dev: device
5773 *
5774 * This function shuts down a device interface and removes it
5775 * from the kernel tables.
5776 *
5777 * This is just a wrapper for unregister_netdevice that takes
5778 * the rtnl semaphore. In general you want to use this and not
5779 * unregister_netdevice.
5780 */
5781 void unregister_netdev(struct net_device *dev)
5782 {
5783 rtnl_lock();
5784 unregister_netdevice(dev);
5785 rtnl_unlock();
5786 }
5787 EXPORT_SYMBOL(unregister_netdev);
5788
5789 /**
5790 * dev_change_net_namespace - move device to different nethost namespace
5791 * @dev: device
5792 * @net: network namespace
5793 * @pat: If not NULL name pattern to try if the current device name
5794 * is already taken in the destination network namespace.
5795 *
5796 * This function shuts down a device interface and moves it
5797 * to a new network namespace. On success 0 is returned, on
5798 * a failure a netagive errno code is returned.
5799 *
5800 * Callers must hold the rtnl semaphore.
5801 */
5802
5803 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5804 {
5805 int err;
5806
5807 ASSERT_RTNL();
5808
5809 /* Don't allow namespace local devices to be moved. */
5810 err = -EINVAL;
5811 if (dev->features & NETIF_F_NETNS_LOCAL)
5812 goto out;
5813
5814 /* Ensure the device has been registrered */
5815 if (dev->reg_state != NETREG_REGISTERED)
5816 goto out;
5817
5818 /* Get out if there is nothing todo */
5819 err = 0;
5820 if (net_eq(dev_net(dev), net))
5821 goto out;
5822
5823 /* Pick the destination device name, and ensure
5824 * we can use it in the destination network namespace.
5825 */
5826 err = -EEXIST;
5827 if (__dev_get_by_name(net, dev->name)) {
5828 /* We get here if we can't use the current device name */
5829 if (!pat)
5830 goto out;
5831 if (dev_get_valid_name(net, dev, pat) < 0)
5832 goto out;
5833 }
5834
5835 /*
5836 * And now a mini version of register_netdevice unregister_netdevice.
5837 */
5838
5839 /* If device is running close it first. */
5840 dev_close(dev);
5841
5842 /* And unlink it from device chain */
5843 err = -ENODEV;
5844 unlist_netdevice(dev);
5845
5846 synchronize_net();
5847
5848 /* Shutdown queueing discipline. */
5849 dev_shutdown(dev);
5850
5851 /* Notify protocols, that we are about to destroy
5852 this device. They should clean all the things.
5853
5854 Note that dev->reg_state stays at NETREG_REGISTERED.
5855 This is wanted because this way 8021q and macvlan know
5856 the device is just moving and can keep their slaves up.
5857 */
5858 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5859 rcu_barrier();
5860 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5861 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5862
5863 /*
5864 * Flush the unicast and multicast chains
5865 */
5866 dev_uc_flush(dev);
5867 dev_mc_flush(dev);
5868
5869 /* Send a netdev-removed uevent to the old namespace */
5870 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5871
5872 /* Actually switch the network namespace */
5873 dev_net_set(dev, net);
5874
5875 /* If there is an ifindex conflict assign a new one */
5876 if (__dev_get_by_index(net, dev->ifindex)) {
5877 int iflink = (dev->iflink == dev->ifindex);
5878 dev->ifindex = dev_new_index(net);
5879 if (iflink)
5880 dev->iflink = dev->ifindex;
5881 }
5882
5883 /* Send a netdev-add uevent to the new namespace */
5884 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5885
5886 /* Fixup kobjects */
5887 err = device_rename(&dev->dev, dev->name);
5888 WARN_ON(err);
5889
5890 /* Add the device back in the hashes */
5891 list_netdevice(dev);
5892
5893 /* Notify protocols, that a new device appeared. */
5894 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5895
5896 /*
5897 * Prevent userspace races by waiting until the network
5898 * device is fully setup before sending notifications.
5899 */
5900 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5901
5902 synchronize_net();
5903 err = 0;
5904 out:
5905 return err;
5906 }
5907 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5908
5909 static int dev_cpu_callback(struct notifier_block *nfb,
5910 unsigned long action,
5911 void *ocpu)
5912 {
5913 struct sk_buff **list_skb;
5914 struct sk_buff *skb;
5915 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5916 struct softnet_data *sd, *oldsd;
5917
5918 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5919 return NOTIFY_OK;
5920
5921 local_irq_disable();
5922 cpu = smp_processor_id();
5923 sd = &per_cpu(softnet_data, cpu);
5924 oldsd = &per_cpu(softnet_data, oldcpu);
5925
5926 /* Find end of our completion_queue. */
5927 list_skb = &sd->completion_queue;
5928 while (*list_skb)
5929 list_skb = &(*list_skb)->next;
5930 /* Append completion queue from offline CPU. */
5931 *list_skb = oldsd->completion_queue;
5932 oldsd->completion_queue = NULL;
5933
5934 /* Append output queue from offline CPU. */
5935 if (oldsd->output_queue) {
5936 *sd->output_queue_tailp = oldsd->output_queue;
5937 sd->output_queue_tailp = oldsd->output_queue_tailp;
5938 oldsd->output_queue = NULL;
5939 oldsd->output_queue_tailp = &oldsd->output_queue;
5940 }
5941 /* Append NAPI poll list from offline CPU. */
5942 if (!list_empty(&oldsd->poll_list)) {
5943 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5944 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5945 }
5946
5947 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5948 local_irq_enable();
5949
5950 /* Process offline CPU's input_pkt_queue */
5951 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5952 netif_rx(skb);
5953 input_queue_head_incr(oldsd);
5954 }
5955 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5956 netif_rx(skb);
5957 input_queue_head_incr(oldsd);
5958 }
5959
5960 return NOTIFY_OK;
5961 }
5962
5963
5964 /**
5965 * netdev_increment_features - increment feature set by one
5966 * @all: current feature set
5967 * @one: new feature set
5968 * @mask: mask feature set
5969 *
5970 * Computes a new feature set after adding a device with feature set
5971 * @one to the master device with current feature set @all. Will not
5972 * enable anything that is off in @mask. Returns the new feature set.
5973 */
5974 netdev_features_t netdev_increment_features(netdev_features_t all,
5975 netdev_features_t one, netdev_features_t mask)
5976 {
5977 if (mask & NETIF_F_GEN_CSUM)
5978 mask |= NETIF_F_ALL_CSUM;
5979 mask |= NETIF_F_VLAN_CHALLENGED;
5980
5981 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5982 all &= one | ~NETIF_F_ALL_FOR_ALL;
5983
5984 /* If one device supports hw checksumming, set for all. */
5985 if (all & NETIF_F_GEN_CSUM)
5986 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5987
5988 return all;
5989 }
5990 EXPORT_SYMBOL(netdev_increment_features);
5991
5992 static struct hlist_head *netdev_create_hash(void)
5993 {
5994 int i;
5995 struct hlist_head *hash;
5996
5997 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5998 if (hash != NULL)
5999 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6000 INIT_HLIST_HEAD(&hash[i]);
6001
6002 return hash;
6003 }
6004
6005 /* Initialize per network namespace state */
6006 static int __net_init netdev_init(struct net *net)
6007 {
6008 if (net != &init_net)
6009 INIT_LIST_HEAD(&net->dev_base_head);
6010
6011 net->dev_name_head = netdev_create_hash();
6012 if (net->dev_name_head == NULL)
6013 goto err_name;
6014
6015 net->dev_index_head = netdev_create_hash();
6016 if (net->dev_index_head == NULL)
6017 goto err_idx;
6018
6019 return 0;
6020
6021 err_idx:
6022 kfree(net->dev_name_head);
6023 err_name:
6024 return -ENOMEM;
6025 }
6026
6027 /**
6028 * netdev_drivername - network driver for the device
6029 * @dev: network device
6030 *
6031 * Determine network driver for device.
6032 */
6033 const char *netdev_drivername(const struct net_device *dev)
6034 {
6035 const struct device_driver *driver;
6036 const struct device *parent;
6037 const char *empty = "";
6038
6039 parent = dev->dev.parent;
6040 if (!parent)
6041 return empty;
6042
6043 driver = parent->driver;
6044 if (driver && driver->name)
6045 return driver->name;
6046 return empty;
6047 }
6048
6049 static int __netdev_printk(const char *level, const struct net_device *dev,
6050 struct va_format *vaf)
6051 {
6052 int r;
6053
6054 if (dev && dev->dev.parent) {
6055 r = dev_printk_emit(level[1] - '0',
6056 dev->dev.parent,
6057 "%s %s %s: %pV",
6058 dev_driver_string(dev->dev.parent),
6059 dev_name(dev->dev.parent),
6060 netdev_name(dev), vaf);
6061 } else if (dev) {
6062 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6063 } else {
6064 r = printk("%s(NULL net_device): %pV", level, vaf);
6065 }
6066
6067 return r;
6068 }
6069
6070 int netdev_printk(const char *level, const struct net_device *dev,
6071 const char *format, ...)
6072 {
6073 struct va_format vaf;
6074 va_list args;
6075 int r;
6076
6077 va_start(args, format);
6078
6079 vaf.fmt = format;
6080 vaf.va = &args;
6081
6082 r = __netdev_printk(level, dev, &vaf);
6083
6084 va_end(args);
6085
6086 return r;
6087 }
6088 EXPORT_SYMBOL(netdev_printk);
6089
6090 #define define_netdev_printk_level(func, level) \
6091 int func(const struct net_device *dev, const char *fmt, ...) \
6092 { \
6093 int r; \
6094 struct va_format vaf; \
6095 va_list args; \
6096 \
6097 va_start(args, fmt); \
6098 \
6099 vaf.fmt = fmt; \
6100 vaf.va = &args; \
6101 \
6102 r = __netdev_printk(level, dev, &vaf); \
6103 \
6104 va_end(args); \
6105 \
6106 return r; \
6107 } \
6108 EXPORT_SYMBOL(func);
6109
6110 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6111 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6112 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6113 define_netdev_printk_level(netdev_err, KERN_ERR);
6114 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6115 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6116 define_netdev_printk_level(netdev_info, KERN_INFO);
6117
6118 static void __net_exit netdev_exit(struct net *net)
6119 {
6120 kfree(net->dev_name_head);
6121 kfree(net->dev_index_head);
6122 }
6123
6124 static struct pernet_operations __net_initdata netdev_net_ops = {
6125 .init = netdev_init,
6126 .exit = netdev_exit,
6127 };
6128
6129 static void __net_exit default_device_exit(struct net *net)
6130 {
6131 struct net_device *dev, *aux;
6132 /*
6133 * Push all migratable network devices back to the
6134 * initial network namespace
6135 */
6136 rtnl_lock();
6137 for_each_netdev_safe(net, dev, aux) {
6138 int err;
6139 char fb_name[IFNAMSIZ];
6140
6141 /* Ignore unmoveable devices (i.e. loopback) */
6142 if (dev->features & NETIF_F_NETNS_LOCAL)
6143 continue;
6144
6145 /* Leave virtual devices for the generic cleanup */
6146 if (dev->rtnl_link_ops)
6147 continue;
6148
6149 /* Push remaining network devices to init_net */
6150 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6151 err = dev_change_net_namespace(dev, &init_net, fb_name);
6152 if (err) {
6153 pr_emerg("%s: failed to move %s to init_net: %d\n",
6154 __func__, dev->name, err);
6155 BUG();
6156 }
6157 }
6158 rtnl_unlock();
6159 }
6160
6161 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6162 {
6163 /* At exit all network devices most be removed from a network
6164 * namespace. Do this in the reverse order of registration.
6165 * Do this across as many network namespaces as possible to
6166 * improve batching efficiency.
6167 */
6168 struct net_device *dev;
6169 struct net *net;
6170 LIST_HEAD(dev_kill_list);
6171
6172 rtnl_lock();
6173 list_for_each_entry(net, net_list, exit_list) {
6174 for_each_netdev_reverse(net, dev) {
6175 if (dev->rtnl_link_ops)
6176 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6177 else
6178 unregister_netdevice_queue(dev, &dev_kill_list);
6179 }
6180 }
6181 unregister_netdevice_many(&dev_kill_list);
6182 list_del(&dev_kill_list);
6183 rtnl_unlock();
6184 }
6185
6186 static struct pernet_operations __net_initdata default_device_ops = {
6187 .exit = default_device_exit,
6188 .exit_batch = default_device_exit_batch,
6189 };
6190
6191 /*
6192 * Initialize the DEV module. At boot time this walks the device list and
6193 * unhooks any devices that fail to initialise (normally hardware not
6194 * present) and leaves us with a valid list of present and active devices.
6195 *
6196 */
6197
6198 /*
6199 * This is called single threaded during boot, so no need
6200 * to take the rtnl semaphore.
6201 */
6202 static int __init net_dev_init(void)
6203 {
6204 int i, rc = -ENOMEM;
6205
6206 BUG_ON(!dev_boot_phase);
6207
6208 if (dev_proc_init())
6209 goto out;
6210
6211 if (netdev_kobject_init())
6212 goto out;
6213
6214 INIT_LIST_HEAD(&ptype_all);
6215 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6216 INIT_LIST_HEAD(&ptype_base[i]);
6217
6218 INIT_LIST_HEAD(&offload_base);
6219
6220 if (register_pernet_subsys(&netdev_net_ops))
6221 goto out;
6222
6223 /*
6224 * Initialise the packet receive queues.
6225 */
6226
6227 for_each_possible_cpu(i) {
6228 struct softnet_data *sd = &per_cpu(softnet_data, i);
6229
6230 memset(sd, 0, sizeof(*sd));
6231 skb_queue_head_init(&sd->input_pkt_queue);
6232 skb_queue_head_init(&sd->process_queue);
6233 sd->completion_queue = NULL;
6234 INIT_LIST_HEAD(&sd->poll_list);
6235 sd->output_queue = NULL;
6236 sd->output_queue_tailp = &sd->output_queue;
6237 #ifdef CONFIG_RPS
6238 sd->csd.func = rps_trigger_softirq;
6239 sd->csd.info = sd;
6240 sd->csd.flags = 0;
6241 sd->cpu = i;
6242 #endif
6243
6244 sd->backlog.poll = process_backlog;
6245 sd->backlog.weight = weight_p;
6246 sd->backlog.gro_list = NULL;
6247 sd->backlog.gro_count = 0;
6248 }
6249
6250 dev_boot_phase = 0;
6251
6252 /* The loopback device is special if any other network devices
6253 * is present in a network namespace the loopback device must
6254 * be present. Since we now dynamically allocate and free the
6255 * loopback device ensure this invariant is maintained by
6256 * keeping the loopback device as the first device on the
6257 * list of network devices. Ensuring the loopback devices
6258 * is the first device that appears and the last network device
6259 * that disappears.
6260 */
6261 if (register_pernet_device(&loopback_net_ops))
6262 goto out;
6263
6264 if (register_pernet_device(&default_device_ops))
6265 goto out;
6266
6267 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6268 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6269
6270 hotcpu_notifier(dev_cpu_callback, 0);
6271 dst_init();
6272 rc = 0;
6273 out:
6274 return rc;
6275 }
6276
6277 subsys_initcall(net_dev_init);
This page took 0.31016 seconds and 5 git commands to generate.