Merge branch 'for_3.8-rc1' into v4l_for_linus
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_alloc_name_ns(struct net *net,
963 struct net_device *dev,
964 const char *name)
965 {
966 char buf[IFNAMSIZ];
967 int ret;
968
969 ret = __dev_alloc_name(net, name, buf);
970 if (ret >= 0)
971 strlcpy(dev->name, buf, IFNAMSIZ);
972 return ret;
973 }
974
975 static int dev_get_valid_name(struct net *net,
976 struct net_device *dev,
977 const char *name)
978 {
979 BUG_ON(!net);
980
981 if (!dev_valid_name(name))
982 return -EINVAL;
983
984 if (strchr(name, '%'))
985 return dev_alloc_name_ns(net, dev, name);
986 else if (__dev_get_by_name(net, name))
987 return -EEXIST;
988 else if (dev->name != name)
989 strlcpy(dev->name, name, IFNAMSIZ);
990
991 return 0;
992 }
993
994 /**
995 * dev_change_name - change name of a device
996 * @dev: device
997 * @newname: name (or format string) must be at least IFNAMSIZ
998 *
999 * Change name of a device, can pass format strings "eth%d".
1000 * for wildcarding.
1001 */
1002 int dev_change_name(struct net_device *dev, const char *newname)
1003 {
1004 char oldname[IFNAMSIZ];
1005 int err = 0;
1006 int ret;
1007 struct net *net;
1008
1009 ASSERT_RTNL();
1010 BUG_ON(!dev_net(dev));
1011
1012 net = dev_net(dev);
1013 if (dev->flags & IFF_UP)
1014 return -EBUSY;
1015
1016 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1017 return 0;
1018
1019 memcpy(oldname, dev->name, IFNAMSIZ);
1020
1021 err = dev_get_valid_name(net, dev, newname);
1022 if (err < 0)
1023 return err;
1024
1025 rollback:
1026 ret = device_rename(&dev->dev, dev->name);
1027 if (ret) {
1028 memcpy(dev->name, oldname, IFNAMSIZ);
1029 return ret;
1030 }
1031
1032 write_lock_bh(&dev_base_lock);
1033 hlist_del_rcu(&dev->name_hlist);
1034 write_unlock_bh(&dev_base_lock);
1035
1036 synchronize_rcu();
1037
1038 write_lock_bh(&dev_base_lock);
1039 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1040 write_unlock_bh(&dev_base_lock);
1041
1042 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1043 ret = notifier_to_errno(ret);
1044
1045 if (ret) {
1046 /* err >= 0 after dev_alloc_name() or stores the first errno */
1047 if (err >= 0) {
1048 err = ret;
1049 memcpy(dev->name, oldname, IFNAMSIZ);
1050 goto rollback;
1051 } else {
1052 pr_err("%s: name change rollback failed: %d\n",
1053 dev->name, ret);
1054 }
1055 }
1056
1057 return err;
1058 }
1059
1060 /**
1061 * dev_set_alias - change ifalias of a device
1062 * @dev: device
1063 * @alias: name up to IFALIASZ
1064 * @len: limit of bytes to copy from info
1065 *
1066 * Set ifalias for a device,
1067 */
1068 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1069 {
1070 char *new_ifalias;
1071
1072 ASSERT_RTNL();
1073
1074 if (len >= IFALIASZ)
1075 return -EINVAL;
1076
1077 if (!len) {
1078 if (dev->ifalias) {
1079 kfree(dev->ifalias);
1080 dev->ifalias = NULL;
1081 }
1082 return 0;
1083 }
1084
1085 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1086 if (!new_ifalias)
1087 return -ENOMEM;
1088 dev->ifalias = new_ifalias;
1089
1090 strlcpy(dev->ifalias, alias, len+1);
1091 return len;
1092 }
1093
1094
1095 /**
1096 * netdev_features_change - device changes features
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed features.
1100 */
1101 void netdev_features_change(struct net_device *dev)
1102 {
1103 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1104 }
1105 EXPORT_SYMBOL(netdev_features_change);
1106
1107 /**
1108 * netdev_state_change - device changes state
1109 * @dev: device to cause notification
1110 *
1111 * Called to indicate a device has changed state. This function calls
1112 * the notifier chains for netdev_chain and sends a NEWLINK message
1113 * to the routing socket.
1114 */
1115 void netdev_state_change(struct net_device *dev)
1116 {
1117 if (dev->flags & IFF_UP) {
1118 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1119 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1120 }
1121 }
1122 EXPORT_SYMBOL(netdev_state_change);
1123
1124 /**
1125 * netdev_notify_peers - notify network peers about existence of @dev
1126 * @dev: network device
1127 *
1128 * Generate traffic such that interested network peers are aware of
1129 * @dev, such as by generating a gratuitous ARP. This may be used when
1130 * a device wants to inform the rest of the network about some sort of
1131 * reconfiguration such as a failover event or virtual machine
1132 * migration.
1133 */
1134 void netdev_notify_peers(struct net_device *dev)
1135 {
1136 rtnl_lock();
1137 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1138 rtnl_unlock();
1139 }
1140 EXPORT_SYMBOL(netdev_notify_peers);
1141
1142 /**
1143 * dev_load - load a network module
1144 * @net: the applicable net namespace
1145 * @name: name of interface
1146 *
1147 * If a network interface is not present and the process has suitable
1148 * privileges this function loads the module. If module loading is not
1149 * available in this kernel then it becomes a nop.
1150 */
1151
1152 void dev_load(struct net *net, const char *name)
1153 {
1154 struct net_device *dev;
1155 int no_module;
1156
1157 rcu_read_lock();
1158 dev = dev_get_by_name_rcu(net, name);
1159 rcu_read_unlock();
1160
1161 no_module = !dev;
1162 if (no_module && capable(CAP_NET_ADMIN))
1163 no_module = request_module("netdev-%s", name);
1164 if (no_module && capable(CAP_SYS_MODULE)) {
1165 if (!request_module("%s", name))
1166 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1167 name);
1168 }
1169 }
1170 EXPORT_SYMBOL(dev_load);
1171
1172 static int __dev_open(struct net_device *dev)
1173 {
1174 const struct net_device_ops *ops = dev->netdev_ops;
1175 int ret;
1176
1177 ASSERT_RTNL();
1178
1179 if (!netif_device_present(dev))
1180 return -ENODEV;
1181
1182 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1183 ret = notifier_to_errno(ret);
1184 if (ret)
1185 return ret;
1186
1187 set_bit(__LINK_STATE_START, &dev->state);
1188
1189 if (ops->ndo_validate_addr)
1190 ret = ops->ndo_validate_addr(dev);
1191
1192 if (!ret && ops->ndo_open)
1193 ret = ops->ndo_open(dev);
1194
1195 if (ret)
1196 clear_bit(__LINK_STATE_START, &dev->state);
1197 else {
1198 dev->flags |= IFF_UP;
1199 net_dmaengine_get();
1200 dev_set_rx_mode(dev);
1201 dev_activate(dev);
1202 add_device_randomness(dev->dev_addr, dev->addr_len);
1203 }
1204
1205 return ret;
1206 }
1207
1208 /**
1209 * dev_open - prepare an interface for use.
1210 * @dev: device to open
1211 *
1212 * Takes a device from down to up state. The device's private open
1213 * function is invoked and then the multicast lists are loaded. Finally
1214 * the device is moved into the up state and a %NETDEV_UP message is
1215 * sent to the netdev notifier chain.
1216 *
1217 * Calling this function on an active interface is a nop. On a failure
1218 * a negative errno code is returned.
1219 */
1220 int dev_open(struct net_device *dev)
1221 {
1222 int ret;
1223
1224 if (dev->flags & IFF_UP)
1225 return 0;
1226
1227 ret = __dev_open(dev);
1228 if (ret < 0)
1229 return ret;
1230
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1232 call_netdevice_notifiers(NETDEV_UP, dev);
1233
1234 return ret;
1235 }
1236 EXPORT_SYMBOL(dev_open);
1237
1238 static int __dev_close_many(struct list_head *head)
1239 {
1240 struct net_device *dev;
1241
1242 ASSERT_RTNL();
1243 might_sleep();
1244
1245 list_for_each_entry(dev, head, unreg_list) {
1246 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1247
1248 clear_bit(__LINK_STATE_START, &dev->state);
1249
1250 /* Synchronize to scheduled poll. We cannot touch poll list, it
1251 * can be even on different cpu. So just clear netif_running().
1252 *
1253 * dev->stop() will invoke napi_disable() on all of it's
1254 * napi_struct instances on this device.
1255 */
1256 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1257 }
1258
1259 dev_deactivate_many(head);
1260
1261 list_for_each_entry(dev, head, unreg_list) {
1262 const struct net_device_ops *ops = dev->netdev_ops;
1263
1264 /*
1265 * Call the device specific close. This cannot fail.
1266 * Only if device is UP
1267 *
1268 * We allow it to be called even after a DETACH hot-plug
1269 * event.
1270 */
1271 if (ops->ndo_stop)
1272 ops->ndo_stop(dev);
1273
1274 dev->flags &= ~IFF_UP;
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 int retval;
1284 LIST_HEAD(single);
1285
1286 list_add(&dev->unreg_list, &single);
1287 retval = __dev_close_many(&single);
1288 list_del(&single);
1289 return retval;
1290 }
1291
1292 static int dev_close_many(struct list_head *head)
1293 {
1294 struct net_device *dev, *tmp;
1295 LIST_HEAD(tmp_list);
1296
1297 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1298 if (!(dev->flags & IFF_UP))
1299 list_move(&dev->unreg_list, &tmp_list);
1300
1301 __dev_close_many(head);
1302
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 if (dev->flags & IFF_UP) {
1325 LIST_HEAD(single);
1326
1327 list_add(&dev->unreg_list, &single);
1328 dev_close_many(&single);
1329 list_del(&single);
1330 }
1331 return 0;
1332 }
1333 EXPORT_SYMBOL(dev_close);
1334
1335
1336 /**
1337 * dev_disable_lro - disable Large Receive Offload on a device
1338 * @dev: device
1339 *
1340 * Disable Large Receive Offload (LRO) on a net device. Must be
1341 * called under RTNL. This is needed if received packets may be
1342 * forwarded to another interface.
1343 */
1344 void dev_disable_lro(struct net_device *dev)
1345 {
1346 /*
1347 * If we're trying to disable lro on a vlan device
1348 * use the underlying physical device instead
1349 */
1350 if (is_vlan_dev(dev))
1351 dev = vlan_dev_real_dev(dev);
1352
1353 dev->wanted_features &= ~NETIF_F_LRO;
1354 netdev_update_features(dev);
1355
1356 if (unlikely(dev->features & NETIF_F_LRO))
1357 netdev_WARN(dev, "failed to disable LRO!\n");
1358 }
1359 EXPORT_SYMBOL(dev_disable_lro);
1360
1361
1362 static int dev_boot_phase = 1;
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 goto outroll;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 }
1422 }
1423
1424 outroll:
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 *
1439 * After unregistering unregister and down device events are synthesized
1440 * for all devices on the device list to the removed notifier to remove
1441 * the need for special case cleanup code.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 struct net_device *dev;
1447 struct net *net;
1448 int err;
1449
1450 rtnl_lock();
1451 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1452 if (err)
1453 goto unlock;
1454
1455 for_each_net(net) {
1456 for_each_netdev(net, dev) {
1457 if (dev->flags & IFF_UP) {
1458 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1459 nb->notifier_call(nb, NETDEV_DOWN, dev);
1460 }
1461 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1462 }
1463 }
1464 unlock:
1465 rtnl_unlock();
1466 return err;
1467 }
1468 EXPORT_SYMBOL(unregister_netdevice_notifier);
1469
1470 /**
1471 * call_netdevice_notifiers - call all network notifier blocks
1472 * @val: value passed unmodified to notifier function
1473 * @dev: net_device pointer passed unmodified to notifier function
1474 *
1475 * Call all network notifier blocks. Parameters and return value
1476 * are as for raw_notifier_call_chain().
1477 */
1478
1479 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1480 {
1481 ASSERT_RTNL();
1482 return raw_notifier_call_chain(&netdev_chain, val, dev);
1483 }
1484 EXPORT_SYMBOL(call_netdevice_notifiers);
1485
1486 static struct static_key netstamp_needed __read_mostly;
1487 #ifdef HAVE_JUMP_LABEL
1488 /* We are not allowed to call static_key_slow_dec() from irq context
1489 * If net_disable_timestamp() is called from irq context, defer the
1490 * static_key_slow_dec() calls.
1491 */
1492 static atomic_t netstamp_needed_deferred;
1493 #endif
1494
1495 void net_enable_timestamp(void)
1496 {
1497 #ifdef HAVE_JUMP_LABEL
1498 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1499
1500 if (deferred) {
1501 while (--deferred)
1502 static_key_slow_dec(&netstamp_needed);
1503 return;
1504 }
1505 #endif
1506 WARN_ON(in_interrupt());
1507 static_key_slow_inc(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_enable_timestamp);
1510
1511 void net_disable_timestamp(void)
1512 {
1513 #ifdef HAVE_JUMP_LABEL
1514 if (in_interrupt()) {
1515 atomic_inc(&netstamp_needed_deferred);
1516 return;
1517 }
1518 #endif
1519 static_key_slow_dec(&netstamp_needed);
1520 }
1521 EXPORT_SYMBOL(net_disable_timestamp);
1522
1523 static inline void net_timestamp_set(struct sk_buff *skb)
1524 {
1525 skb->tstamp.tv64 = 0;
1526 if (static_key_false(&netstamp_needed))
1527 __net_timestamp(skb);
1528 }
1529
1530 #define net_timestamp_check(COND, SKB) \
1531 if (static_key_false(&netstamp_needed)) { \
1532 if ((COND) && !(SKB)->tstamp.tv64) \
1533 __net_timestamp(SKB); \
1534 } \
1535
1536 static int net_hwtstamp_validate(struct ifreq *ifr)
1537 {
1538 struct hwtstamp_config cfg;
1539 enum hwtstamp_tx_types tx_type;
1540 enum hwtstamp_rx_filters rx_filter;
1541 int tx_type_valid = 0;
1542 int rx_filter_valid = 0;
1543
1544 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1545 return -EFAULT;
1546
1547 if (cfg.flags) /* reserved for future extensions */
1548 return -EINVAL;
1549
1550 tx_type = cfg.tx_type;
1551 rx_filter = cfg.rx_filter;
1552
1553 switch (tx_type) {
1554 case HWTSTAMP_TX_OFF:
1555 case HWTSTAMP_TX_ON:
1556 case HWTSTAMP_TX_ONESTEP_SYNC:
1557 tx_type_valid = 1;
1558 break;
1559 }
1560
1561 switch (rx_filter) {
1562 case HWTSTAMP_FILTER_NONE:
1563 case HWTSTAMP_FILTER_ALL:
1564 case HWTSTAMP_FILTER_SOME:
1565 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1566 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1567 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1569 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1570 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1571 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1572 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1573 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1574 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1575 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1576 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1577 rx_filter_valid = 1;
1578 break;
1579 }
1580
1581 if (!tx_type_valid || !rx_filter_valid)
1582 return -ERANGE;
1583
1584 return 0;
1585 }
1586
1587 static inline bool is_skb_forwardable(struct net_device *dev,
1588 struct sk_buff *skb)
1589 {
1590 unsigned int len;
1591
1592 if (!(dev->flags & IFF_UP))
1593 return false;
1594
1595 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1596 if (skb->len <= len)
1597 return true;
1598
1599 /* if TSO is enabled, we don't care about the length as the packet
1600 * could be forwarded without being segmented before
1601 */
1602 if (skb_is_gso(skb))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /**
1609 * dev_forward_skb - loopback an skb to another netif
1610 *
1611 * @dev: destination network device
1612 * @skb: buffer to forward
1613 *
1614 * return values:
1615 * NET_RX_SUCCESS (no congestion)
1616 * NET_RX_DROP (packet was dropped, but freed)
1617 *
1618 * dev_forward_skb can be used for injecting an skb from the
1619 * start_xmit function of one device into the receive queue
1620 * of another device.
1621 *
1622 * The receiving device may be in another namespace, so
1623 * we have to clear all information in the skb that could
1624 * impact namespace isolation.
1625 */
1626 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1627 {
1628 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1629 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1630 atomic_long_inc(&dev->rx_dropped);
1631 kfree_skb(skb);
1632 return NET_RX_DROP;
1633 }
1634 }
1635
1636 skb_orphan(skb);
1637 nf_reset(skb);
1638
1639 if (unlikely(!is_skb_forwardable(dev, skb))) {
1640 atomic_long_inc(&dev->rx_dropped);
1641 kfree_skb(skb);
1642 return NET_RX_DROP;
1643 }
1644 skb->skb_iif = 0;
1645 skb->dev = dev;
1646 skb_dst_drop(skb);
1647 skb->tstamp.tv64 = 0;
1648 skb->pkt_type = PACKET_HOST;
1649 skb->protocol = eth_type_trans(skb, dev);
1650 skb->mark = 0;
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 return netif_rx(skb);
1654 }
1655 EXPORT_SYMBOL_GPL(dev_forward_skb);
1656
1657 static inline int deliver_skb(struct sk_buff *skb,
1658 struct packet_type *pt_prev,
1659 struct net_device *orig_dev)
1660 {
1661 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1662 return -ENOMEM;
1663 atomic_inc(&skb->users);
1664 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1665 }
1666
1667 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1668 {
1669 if (!ptype->af_packet_priv || !skb->sk)
1670 return false;
1671
1672 if (ptype->id_match)
1673 return ptype->id_match(ptype, skb->sk);
1674 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1675 return true;
1676
1677 return false;
1678 }
1679
1680 /*
1681 * Support routine. Sends outgoing frames to any network
1682 * taps currently in use.
1683 */
1684
1685 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1686 {
1687 struct packet_type *ptype;
1688 struct sk_buff *skb2 = NULL;
1689 struct packet_type *pt_prev = NULL;
1690
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1693 /* Never send packets back to the socket
1694 * they originated from - MvS (miquels@drinkel.ow.org)
1695 */
1696 if ((ptype->dev == dev || !ptype->dev) &&
1697 (!skb_loop_sk(ptype, skb))) {
1698 if (pt_prev) {
1699 deliver_skb(skb2, pt_prev, skb->dev);
1700 pt_prev = ptype;
1701 continue;
1702 }
1703
1704 skb2 = skb_clone(skb, GFP_ATOMIC);
1705 if (!skb2)
1706 break;
1707
1708 net_timestamp_set(skb2);
1709
1710 /* skb->nh should be correctly
1711 set by sender, so that the second statement is
1712 just protection against buggy protocols.
1713 */
1714 skb_reset_mac_header(skb2);
1715
1716 if (skb_network_header(skb2) < skb2->data ||
1717 skb2->network_header > skb2->tail) {
1718 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1719 ntohs(skb2->protocol),
1720 dev->name);
1721 skb_reset_network_header(skb2);
1722 }
1723
1724 skb2->transport_header = skb2->network_header;
1725 skb2->pkt_type = PACKET_OUTGOING;
1726 pt_prev = ptype;
1727 }
1728 }
1729 if (pt_prev)
1730 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1731 rcu_read_unlock();
1732 }
1733
1734 /**
1735 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1736 * @dev: Network device
1737 * @txq: number of queues available
1738 *
1739 * If real_num_tx_queues is changed the tc mappings may no longer be
1740 * valid. To resolve this verify the tc mapping remains valid and if
1741 * not NULL the mapping. With no priorities mapping to this
1742 * offset/count pair it will no longer be used. In the worst case TC0
1743 * is invalid nothing can be done so disable priority mappings. If is
1744 * expected that drivers will fix this mapping if they can before
1745 * calling netif_set_real_num_tx_queues.
1746 */
1747 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1748 {
1749 int i;
1750 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1751
1752 /* If TC0 is invalidated disable TC mapping */
1753 if (tc->offset + tc->count > txq) {
1754 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1755 dev->num_tc = 0;
1756 return;
1757 }
1758
1759 /* Invalidated prio to tc mappings set to TC0 */
1760 for (i = 1; i < TC_BITMASK + 1; i++) {
1761 int q = netdev_get_prio_tc_map(dev, i);
1762
1763 tc = &dev->tc_to_txq[q];
1764 if (tc->offset + tc->count > txq) {
1765 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1766 i, q);
1767 netdev_set_prio_tc_map(dev, i, 0);
1768 }
1769 }
1770 }
1771
1772 /*
1773 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1774 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1775 */
1776 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1777 {
1778 int rc;
1779
1780 if (txq < 1 || txq > dev->num_tx_queues)
1781 return -EINVAL;
1782
1783 if (dev->reg_state == NETREG_REGISTERED ||
1784 dev->reg_state == NETREG_UNREGISTERING) {
1785 ASSERT_RTNL();
1786
1787 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1788 txq);
1789 if (rc)
1790 return rc;
1791
1792 if (dev->num_tc)
1793 netif_setup_tc(dev, txq);
1794
1795 if (txq < dev->real_num_tx_queues)
1796 qdisc_reset_all_tx_gt(dev, txq);
1797 }
1798
1799 dev->real_num_tx_queues = txq;
1800 return 0;
1801 }
1802 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1803
1804 #ifdef CONFIG_RPS
1805 /**
1806 * netif_set_real_num_rx_queues - set actual number of RX queues used
1807 * @dev: Network device
1808 * @rxq: Actual number of RX queues
1809 *
1810 * This must be called either with the rtnl_lock held or before
1811 * registration of the net device. Returns 0 on success, or a
1812 * negative error code. If called before registration, it always
1813 * succeeds.
1814 */
1815 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1816 {
1817 int rc;
1818
1819 if (rxq < 1 || rxq > dev->num_rx_queues)
1820 return -EINVAL;
1821
1822 if (dev->reg_state == NETREG_REGISTERED) {
1823 ASSERT_RTNL();
1824
1825 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1826 rxq);
1827 if (rc)
1828 return rc;
1829 }
1830
1831 dev->real_num_rx_queues = rxq;
1832 return 0;
1833 }
1834 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1835 #endif
1836
1837 /**
1838 * netif_get_num_default_rss_queues - default number of RSS queues
1839 *
1840 * This routine should set an upper limit on the number of RSS queues
1841 * used by default by multiqueue devices.
1842 */
1843 int netif_get_num_default_rss_queues(void)
1844 {
1845 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1846 }
1847 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1848
1849 static inline void __netif_reschedule(struct Qdisc *q)
1850 {
1851 struct softnet_data *sd;
1852 unsigned long flags;
1853
1854 local_irq_save(flags);
1855 sd = &__get_cpu_var(softnet_data);
1856 q->next_sched = NULL;
1857 *sd->output_queue_tailp = q;
1858 sd->output_queue_tailp = &q->next_sched;
1859 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1860 local_irq_restore(flags);
1861 }
1862
1863 void __netif_schedule(struct Qdisc *q)
1864 {
1865 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1866 __netif_reschedule(q);
1867 }
1868 EXPORT_SYMBOL(__netif_schedule);
1869
1870 void dev_kfree_skb_irq(struct sk_buff *skb)
1871 {
1872 if (atomic_dec_and_test(&skb->users)) {
1873 struct softnet_data *sd;
1874 unsigned long flags;
1875
1876 local_irq_save(flags);
1877 sd = &__get_cpu_var(softnet_data);
1878 skb->next = sd->completion_queue;
1879 sd->completion_queue = skb;
1880 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1881 local_irq_restore(flags);
1882 }
1883 }
1884 EXPORT_SYMBOL(dev_kfree_skb_irq);
1885
1886 void dev_kfree_skb_any(struct sk_buff *skb)
1887 {
1888 if (in_irq() || irqs_disabled())
1889 dev_kfree_skb_irq(skb);
1890 else
1891 dev_kfree_skb(skb);
1892 }
1893 EXPORT_SYMBOL(dev_kfree_skb_any);
1894
1895
1896 /**
1897 * netif_device_detach - mark device as removed
1898 * @dev: network device
1899 *
1900 * Mark device as removed from system and therefore no longer available.
1901 */
1902 void netif_device_detach(struct net_device *dev)
1903 {
1904 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1905 netif_running(dev)) {
1906 netif_tx_stop_all_queues(dev);
1907 }
1908 }
1909 EXPORT_SYMBOL(netif_device_detach);
1910
1911 /**
1912 * netif_device_attach - mark device as attached
1913 * @dev: network device
1914 *
1915 * Mark device as attached from system and restart if needed.
1916 */
1917 void netif_device_attach(struct net_device *dev)
1918 {
1919 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1920 netif_running(dev)) {
1921 netif_tx_wake_all_queues(dev);
1922 __netdev_watchdog_up(dev);
1923 }
1924 }
1925 EXPORT_SYMBOL(netif_device_attach);
1926
1927 static void skb_warn_bad_offload(const struct sk_buff *skb)
1928 {
1929 static const netdev_features_t null_features = 0;
1930 struct net_device *dev = skb->dev;
1931 const char *driver = "";
1932
1933 if (dev && dev->dev.parent)
1934 driver = dev_driver_string(dev->dev.parent);
1935
1936 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1937 "gso_type=%d ip_summed=%d\n",
1938 driver, dev ? &dev->features : &null_features,
1939 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1940 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1941 skb_shinfo(skb)->gso_type, skb->ip_summed);
1942 }
1943
1944 /*
1945 * Invalidate hardware checksum when packet is to be mangled, and
1946 * complete checksum manually on outgoing path.
1947 */
1948 int skb_checksum_help(struct sk_buff *skb)
1949 {
1950 __wsum csum;
1951 int ret = 0, offset;
1952
1953 if (skb->ip_summed == CHECKSUM_COMPLETE)
1954 goto out_set_summed;
1955
1956 if (unlikely(skb_shinfo(skb)->gso_size)) {
1957 skb_warn_bad_offload(skb);
1958 return -EINVAL;
1959 }
1960
1961 offset = skb_checksum_start_offset(skb);
1962 BUG_ON(offset >= skb_headlen(skb));
1963 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1964
1965 offset += skb->csum_offset;
1966 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1967
1968 if (skb_cloned(skb) &&
1969 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1970 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1971 if (ret)
1972 goto out;
1973 }
1974
1975 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1976 out_set_summed:
1977 skb->ip_summed = CHECKSUM_NONE;
1978 out:
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(skb_checksum_help);
1982
1983 /**
1984 * skb_gso_segment - Perform segmentation on skb.
1985 * @skb: buffer to segment
1986 * @features: features for the output path (see dev->features)
1987 *
1988 * This function segments the given skb and returns a list of segments.
1989 *
1990 * It may return NULL if the skb requires no segmentation. This is
1991 * only possible when GSO is used for verifying header integrity.
1992 */
1993 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1994 netdev_features_t features)
1995 {
1996 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1997 struct packet_type *ptype;
1998 __be16 type = skb->protocol;
1999 int vlan_depth = ETH_HLEN;
2000 int err;
2001
2002 while (type == htons(ETH_P_8021Q)) {
2003 struct vlan_hdr *vh;
2004
2005 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2006 return ERR_PTR(-EINVAL);
2007
2008 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2009 type = vh->h_vlan_encapsulated_proto;
2010 vlan_depth += VLAN_HLEN;
2011 }
2012
2013 skb_reset_mac_header(skb);
2014 skb->mac_len = skb->network_header - skb->mac_header;
2015 __skb_pull(skb, skb->mac_len);
2016
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 skb_warn_bad_offload(skb);
2019
2020 if (skb_header_cloned(skb) &&
2021 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2022 return ERR_PTR(err);
2023 }
2024
2025 rcu_read_lock();
2026 list_for_each_entry_rcu(ptype,
2027 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2028 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2029 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2030 err = ptype->gso_send_check(skb);
2031 segs = ERR_PTR(err);
2032 if (err || skb_gso_ok(skb, features))
2033 break;
2034 __skb_push(skb, (skb->data -
2035 skb_network_header(skb)));
2036 }
2037 segs = ptype->gso_segment(skb, features);
2038 break;
2039 }
2040 }
2041 rcu_read_unlock();
2042
2043 __skb_push(skb, skb->data - skb_mac_header(skb));
2044
2045 return segs;
2046 }
2047 EXPORT_SYMBOL(skb_gso_segment);
2048
2049 /* Take action when hardware reception checksum errors are detected. */
2050 #ifdef CONFIG_BUG
2051 void netdev_rx_csum_fault(struct net_device *dev)
2052 {
2053 if (net_ratelimit()) {
2054 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2055 dump_stack();
2056 }
2057 }
2058 EXPORT_SYMBOL(netdev_rx_csum_fault);
2059 #endif
2060
2061 /* Actually, we should eliminate this check as soon as we know, that:
2062 * 1. IOMMU is present and allows to map all the memory.
2063 * 2. No high memory really exists on this machine.
2064 */
2065
2066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2067 {
2068 #ifdef CONFIG_HIGHMEM
2069 int i;
2070 if (!(dev->features & NETIF_F_HIGHDMA)) {
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 if (PageHighMem(skb_frag_page(frag)))
2074 return 1;
2075 }
2076 }
2077
2078 if (PCI_DMA_BUS_IS_PHYS) {
2079 struct device *pdev = dev->dev.parent;
2080
2081 if (!pdev)
2082 return 0;
2083 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2084 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2085 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2086 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2087 return 1;
2088 }
2089 }
2090 #endif
2091 return 0;
2092 }
2093
2094 struct dev_gso_cb {
2095 void (*destructor)(struct sk_buff *skb);
2096 };
2097
2098 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2099
2100 static void dev_gso_skb_destructor(struct sk_buff *skb)
2101 {
2102 struct dev_gso_cb *cb;
2103
2104 do {
2105 struct sk_buff *nskb = skb->next;
2106
2107 skb->next = nskb->next;
2108 nskb->next = NULL;
2109 kfree_skb(nskb);
2110 } while (skb->next);
2111
2112 cb = DEV_GSO_CB(skb);
2113 if (cb->destructor)
2114 cb->destructor(skb);
2115 }
2116
2117 /**
2118 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2119 * @skb: buffer to segment
2120 * @features: device features as applicable to this skb
2121 *
2122 * This function segments the given skb and stores the list of segments
2123 * in skb->next.
2124 */
2125 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2126 {
2127 struct sk_buff *segs;
2128
2129 segs = skb_gso_segment(skb, features);
2130
2131 /* Verifying header integrity only. */
2132 if (!segs)
2133 return 0;
2134
2135 if (IS_ERR(segs))
2136 return PTR_ERR(segs);
2137
2138 skb->next = segs;
2139 DEV_GSO_CB(skb)->destructor = skb->destructor;
2140 skb->destructor = dev_gso_skb_destructor;
2141
2142 return 0;
2143 }
2144
2145 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2146 {
2147 return ((features & NETIF_F_GEN_CSUM) ||
2148 ((features & NETIF_F_V4_CSUM) &&
2149 protocol == htons(ETH_P_IP)) ||
2150 ((features & NETIF_F_V6_CSUM) &&
2151 protocol == htons(ETH_P_IPV6)) ||
2152 ((features & NETIF_F_FCOE_CRC) &&
2153 protocol == htons(ETH_P_FCOE)));
2154 }
2155
2156 static netdev_features_t harmonize_features(struct sk_buff *skb,
2157 __be16 protocol, netdev_features_t features)
2158 {
2159 if (skb->ip_summed != CHECKSUM_NONE &&
2160 !can_checksum_protocol(features, protocol)) {
2161 features &= ~NETIF_F_ALL_CSUM;
2162 features &= ~NETIF_F_SG;
2163 } else if (illegal_highdma(skb->dev, skb)) {
2164 features &= ~NETIF_F_SG;
2165 }
2166
2167 return features;
2168 }
2169
2170 netdev_features_t netif_skb_features(struct sk_buff *skb)
2171 {
2172 __be16 protocol = skb->protocol;
2173 netdev_features_t features = skb->dev->features;
2174
2175 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2176 features &= ~NETIF_F_GSO_MASK;
2177
2178 if (protocol == htons(ETH_P_8021Q)) {
2179 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2180 protocol = veh->h_vlan_encapsulated_proto;
2181 } else if (!vlan_tx_tag_present(skb)) {
2182 return harmonize_features(skb, protocol, features);
2183 }
2184
2185 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2186
2187 if (protocol != htons(ETH_P_8021Q)) {
2188 return harmonize_features(skb, protocol, features);
2189 } else {
2190 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2191 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2192 return harmonize_features(skb, protocol, features);
2193 }
2194 }
2195 EXPORT_SYMBOL(netif_skb_features);
2196
2197 /*
2198 * Returns true if either:
2199 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2200 * 2. skb is fragmented and the device does not support SG.
2201 */
2202 static inline int skb_needs_linearize(struct sk_buff *skb,
2203 int features)
2204 {
2205 return skb_is_nonlinear(skb) &&
2206 ((skb_has_frag_list(skb) &&
2207 !(features & NETIF_F_FRAGLIST)) ||
2208 (skb_shinfo(skb)->nr_frags &&
2209 !(features & NETIF_F_SG)));
2210 }
2211
2212 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2213 struct netdev_queue *txq)
2214 {
2215 const struct net_device_ops *ops = dev->netdev_ops;
2216 int rc = NETDEV_TX_OK;
2217 unsigned int skb_len;
2218
2219 if (likely(!skb->next)) {
2220 netdev_features_t features;
2221
2222 /*
2223 * If device doesn't need skb->dst, release it right now while
2224 * its hot in this cpu cache
2225 */
2226 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2227 skb_dst_drop(skb);
2228
2229 features = netif_skb_features(skb);
2230
2231 if (vlan_tx_tag_present(skb) &&
2232 !(features & NETIF_F_HW_VLAN_TX)) {
2233 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2234 if (unlikely(!skb))
2235 goto out;
2236
2237 skb->vlan_tci = 0;
2238 }
2239
2240 if (netif_needs_gso(skb, features)) {
2241 if (unlikely(dev_gso_segment(skb, features)))
2242 goto out_kfree_skb;
2243 if (skb->next)
2244 goto gso;
2245 } else {
2246 if (skb_needs_linearize(skb, features) &&
2247 __skb_linearize(skb))
2248 goto out_kfree_skb;
2249
2250 /* If packet is not checksummed and device does not
2251 * support checksumming for this protocol, complete
2252 * checksumming here.
2253 */
2254 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2255 skb_set_transport_header(skb,
2256 skb_checksum_start_offset(skb));
2257 if (!(features & NETIF_F_ALL_CSUM) &&
2258 skb_checksum_help(skb))
2259 goto out_kfree_skb;
2260 }
2261 }
2262
2263 if (!list_empty(&ptype_all))
2264 dev_queue_xmit_nit(skb, dev);
2265
2266 skb_len = skb->len;
2267 rc = ops->ndo_start_xmit(skb, dev);
2268 trace_net_dev_xmit(skb, rc, dev, skb_len);
2269 if (rc == NETDEV_TX_OK)
2270 txq_trans_update(txq);
2271 return rc;
2272 }
2273
2274 gso:
2275 do {
2276 struct sk_buff *nskb = skb->next;
2277
2278 skb->next = nskb->next;
2279 nskb->next = NULL;
2280
2281 /*
2282 * If device doesn't need nskb->dst, release it right now while
2283 * its hot in this cpu cache
2284 */
2285 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2286 skb_dst_drop(nskb);
2287
2288 if (!list_empty(&ptype_all))
2289 dev_queue_xmit_nit(nskb, dev);
2290
2291 skb_len = nskb->len;
2292 rc = ops->ndo_start_xmit(nskb, dev);
2293 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2294 if (unlikely(rc != NETDEV_TX_OK)) {
2295 if (rc & ~NETDEV_TX_MASK)
2296 goto out_kfree_gso_skb;
2297 nskb->next = skb->next;
2298 skb->next = nskb;
2299 return rc;
2300 }
2301 txq_trans_update(txq);
2302 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2303 return NETDEV_TX_BUSY;
2304 } while (skb->next);
2305
2306 out_kfree_gso_skb:
2307 if (likely(skb->next == NULL))
2308 skb->destructor = DEV_GSO_CB(skb)->destructor;
2309 out_kfree_skb:
2310 kfree_skb(skb);
2311 out:
2312 return rc;
2313 }
2314
2315 static u32 hashrnd __read_mostly;
2316
2317 /*
2318 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2319 * to be used as a distribution range.
2320 */
2321 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2322 unsigned int num_tx_queues)
2323 {
2324 u32 hash;
2325 u16 qoffset = 0;
2326 u16 qcount = num_tx_queues;
2327
2328 if (skb_rx_queue_recorded(skb)) {
2329 hash = skb_get_rx_queue(skb);
2330 while (unlikely(hash >= num_tx_queues))
2331 hash -= num_tx_queues;
2332 return hash;
2333 }
2334
2335 if (dev->num_tc) {
2336 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2337 qoffset = dev->tc_to_txq[tc].offset;
2338 qcount = dev->tc_to_txq[tc].count;
2339 }
2340
2341 if (skb->sk && skb->sk->sk_hash)
2342 hash = skb->sk->sk_hash;
2343 else
2344 hash = (__force u16) skb->protocol;
2345 hash = jhash_1word(hash, hashrnd);
2346
2347 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2348 }
2349 EXPORT_SYMBOL(__skb_tx_hash);
2350
2351 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2352 {
2353 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2354 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2355 dev->name, queue_index,
2356 dev->real_num_tx_queues);
2357 return 0;
2358 }
2359 return queue_index;
2360 }
2361
2362 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 #ifdef CONFIG_XPS
2365 struct xps_dev_maps *dev_maps;
2366 struct xps_map *map;
2367 int queue_index = -1;
2368
2369 rcu_read_lock();
2370 dev_maps = rcu_dereference(dev->xps_maps);
2371 if (dev_maps) {
2372 map = rcu_dereference(
2373 dev_maps->cpu_map[raw_smp_processor_id()]);
2374 if (map) {
2375 if (map->len == 1)
2376 queue_index = map->queues[0];
2377 else {
2378 u32 hash;
2379 if (skb->sk && skb->sk->sk_hash)
2380 hash = skb->sk->sk_hash;
2381 else
2382 hash = (__force u16) skb->protocol ^
2383 skb->rxhash;
2384 hash = jhash_1word(hash, hashrnd);
2385 queue_index = map->queues[
2386 ((u64)hash * map->len) >> 32];
2387 }
2388 if (unlikely(queue_index >= dev->real_num_tx_queues))
2389 queue_index = -1;
2390 }
2391 }
2392 rcu_read_unlock();
2393
2394 return queue_index;
2395 #else
2396 return -1;
2397 #endif
2398 }
2399
2400 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2401 struct sk_buff *skb)
2402 {
2403 int queue_index;
2404 const struct net_device_ops *ops = dev->netdev_ops;
2405
2406 if (dev->real_num_tx_queues == 1)
2407 queue_index = 0;
2408 else if (ops->ndo_select_queue) {
2409 queue_index = ops->ndo_select_queue(dev, skb);
2410 queue_index = dev_cap_txqueue(dev, queue_index);
2411 } else {
2412 struct sock *sk = skb->sk;
2413 queue_index = sk_tx_queue_get(sk);
2414
2415 if (queue_index < 0 || skb->ooo_okay ||
2416 queue_index >= dev->real_num_tx_queues) {
2417 int old_index = queue_index;
2418
2419 queue_index = get_xps_queue(dev, skb);
2420 if (queue_index < 0)
2421 queue_index = skb_tx_hash(dev, skb);
2422
2423 if (queue_index != old_index && sk) {
2424 struct dst_entry *dst =
2425 rcu_dereference_check(sk->sk_dst_cache, 1);
2426
2427 if (dst && skb_dst(skb) == dst)
2428 sk_tx_queue_set(sk, queue_index);
2429 }
2430 }
2431 }
2432
2433 skb_set_queue_mapping(skb, queue_index);
2434 return netdev_get_tx_queue(dev, queue_index);
2435 }
2436
2437 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2438 struct net_device *dev,
2439 struct netdev_queue *txq)
2440 {
2441 spinlock_t *root_lock = qdisc_lock(q);
2442 bool contended;
2443 int rc;
2444
2445 qdisc_skb_cb(skb)->pkt_len = skb->len;
2446 qdisc_calculate_pkt_len(skb, q);
2447 /*
2448 * Heuristic to force contended enqueues to serialize on a
2449 * separate lock before trying to get qdisc main lock.
2450 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2451 * and dequeue packets faster.
2452 */
2453 contended = qdisc_is_running(q);
2454 if (unlikely(contended))
2455 spin_lock(&q->busylock);
2456
2457 spin_lock(root_lock);
2458 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2459 kfree_skb(skb);
2460 rc = NET_XMIT_DROP;
2461 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2462 qdisc_run_begin(q)) {
2463 /*
2464 * This is a work-conserving queue; there are no old skbs
2465 * waiting to be sent out; and the qdisc is not running -
2466 * xmit the skb directly.
2467 */
2468 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2469 skb_dst_force(skb);
2470
2471 qdisc_bstats_update(q, skb);
2472
2473 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2474 if (unlikely(contended)) {
2475 spin_unlock(&q->busylock);
2476 contended = false;
2477 }
2478 __qdisc_run(q);
2479 } else
2480 qdisc_run_end(q);
2481
2482 rc = NET_XMIT_SUCCESS;
2483 } else {
2484 skb_dst_force(skb);
2485 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2486 if (qdisc_run_begin(q)) {
2487 if (unlikely(contended)) {
2488 spin_unlock(&q->busylock);
2489 contended = false;
2490 }
2491 __qdisc_run(q);
2492 }
2493 }
2494 spin_unlock(root_lock);
2495 if (unlikely(contended))
2496 spin_unlock(&q->busylock);
2497 return rc;
2498 }
2499
2500 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2501 static void skb_update_prio(struct sk_buff *skb)
2502 {
2503 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2504
2505 if (!skb->priority && skb->sk && map) {
2506 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2507
2508 if (prioidx < map->priomap_len)
2509 skb->priority = map->priomap[prioidx];
2510 }
2511 }
2512 #else
2513 #define skb_update_prio(skb)
2514 #endif
2515
2516 static DEFINE_PER_CPU(int, xmit_recursion);
2517 #define RECURSION_LIMIT 10
2518
2519 /**
2520 * dev_loopback_xmit - loop back @skb
2521 * @skb: buffer to transmit
2522 */
2523 int dev_loopback_xmit(struct sk_buff *skb)
2524 {
2525 skb_reset_mac_header(skb);
2526 __skb_pull(skb, skb_network_offset(skb));
2527 skb->pkt_type = PACKET_LOOPBACK;
2528 skb->ip_summed = CHECKSUM_UNNECESSARY;
2529 WARN_ON(!skb_dst(skb));
2530 skb_dst_force(skb);
2531 netif_rx_ni(skb);
2532 return 0;
2533 }
2534 EXPORT_SYMBOL(dev_loopback_xmit);
2535
2536 /**
2537 * dev_queue_xmit - transmit a buffer
2538 * @skb: buffer to transmit
2539 *
2540 * Queue a buffer for transmission to a network device. The caller must
2541 * have set the device and priority and built the buffer before calling
2542 * this function. The function can be called from an interrupt.
2543 *
2544 * A negative errno code is returned on a failure. A success does not
2545 * guarantee the frame will be transmitted as it may be dropped due
2546 * to congestion or traffic shaping.
2547 *
2548 * -----------------------------------------------------------------------------------
2549 * I notice this method can also return errors from the queue disciplines,
2550 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2551 * be positive.
2552 *
2553 * Regardless of the return value, the skb is consumed, so it is currently
2554 * difficult to retry a send to this method. (You can bump the ref count
2555 * before sending to hold a reference for retry if you are careful.)
2556 *
2557 * When calling this method, interrupts MUST be enabled. This is because
2558 * the BH enable code must have IRQs enabled so that it will not deadlock.
2559 * --BLG
2560 */
2561 int dev_queue_xmit(struct sk_buff *skb)
2562 {
2563 struct net_device *dev = skb->dev;
2564 struct netdev_queue *txq;
2565 struct Qdisc *q;
2566 int rc = -ENOMEM;
2567
2568 /* Disable soft irqs for various locks below. Also
2569 * stops preemption for RCU.
2570 */
2571 rcu_read_lock_bh();
2572
2573 skb_update_prio(skb);
2574
2575 txq = netdev_pick_tx(dev, skb);
2576 q = rcu_dereference_bh(txq->qdisc);
2577
2578 #ifdef CONFIG_NET_CLS_ACT
2579 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2580 #endif
2581 trace_net_dev_queue(skb);
2582 if (q->enqueue) {
2583 rc = __dev_xmit_skb(skb, q, dev, txq);
2584 goto out;
2585 }
2586
2587 /* The device has no queue. Common case for software devices:
2588 loopback, all the sorts of tunnels...
2589
2590 Really, it is unlikely that netif_tx_lock protection is necessary
2591 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2592 counters.)
2593 However, it is possible, that they rely on protection
2594 made by us here.
2595
2596 Check this and shot the lock. It is not prone from deadlocks.
2597 Either shot noqueue qdisc, it is even simpler 8)
2598 */
2599 if (dev->flags & IFF_UP) {
2600 int cpu = smp_processor_id(); /* ok because BHs are off */
2601
2602 if (txq->xmit_lock_owner != cpu) {
2603
2604 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2605 goto recursion_alert;
2606
2607 HARD_TX_LOCK(dev, txq, cpu);
2608
2609 if (!netif_xmit_stopped(txq)) {
2610 __this_cpu_inc(xmit_recursion);
2611 rc = dev_hard_start_xmit(skb, dev, txq);
2612 __this_cpu_dec(xmit_recursion);
2613 if (dev_xmit_complete(rc)) {
2614 HARD_TX_UNLOCK(dev, txq);
2615 goto out;
2616 }
2617 }
2618 HARD_TX_UNLOCK(dev, txq);
2619 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2620 dev->name);
2621 } else {
2622 /* Recursion is detected! It is possible,
2623 * unfortunately
2624 */
2625 recursion_alert:
2626 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2627 dev->name);
2628 }
2629 }
2630
2631 rc = -ENETDOWN;
2632 rcu_read_unlock_bh();
2633
2634 kfree_skb(skb);
2635 return rc;
2636 out:
2637 rcu_read_unlock_bh();
2638 return rc;
2639 }
2640 EXPORT_SYMBOL(dev_queue_xmit);
2641
2642
2643 /*=======================================================================
2644 Receiver routines
2645 =======================================================================*/
2646
2647 int netdev_max_backlog __read_mostly = 1000;
2648 EXPORT_SYMBOL(netdev_max_backlog);
2649
2650 int netdev_tstamp_prequeue __read_mostly = 1;
2651 int netdev_budget __read_mostly = 300;
2652 int weight_p __read_mostly = 64; /* old backlog weight */
2653
2654 /* Called with irq disabled */
2655 static inline void ____napi_schedule(struct softnet_data *sd,
2656 struct napi_struct *napi)
2657 {
2658 list_add_tail(&napi->poll_list, &sd->poll_list);
2659 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2660 }
2661
2662 /*
2663 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2664 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2665 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2666 * if hash is a canonical 4-tuple hash over transport ports.
2667 */
2668 void __skb_get_rxhash(struct sk_buff *skb)
2669 {
2670 struct flow_keys keys;
2671 u32 hash;
2672
2673 if (!skb_flow_dissect(skb, &keys))
2674 return;
2675
2676 if (keys.ports)
2677 skb->l4_rxhash = 1;
2678
2679 /* get a consistent hash (same value on both flow directions) */
2680 if (((__force u32)keys.dst < (__force u32)keys.src) ||
2681 (((__force u32)keys.dst == (__force u32)keys.src) &&
2682 ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]))) {
2683 swap(keys.dst, keys.src);
2684 swap(keys.port16[0], keys.port16[1]);
2685 }
2686
2687 hash = jhash_3words((__force u32)keys.dst,
2688 (__force u32)keys.src,
2689 (__force u32)keys.ports, hashrnd);
2690 if (!hash)
2691 hash = 1;
2692
2693 skb->rxhash = hash;
2694 }
2695 EXPORT_SYMBOL(__skb_get_rxhash);
2696
2697 #ifdef CONFIG_RPS
2698
2699 /* One global table that all flow-based protocols share. */
2700 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2701 EXPORT_SYMBOL(rps_sock_flow_table);
2702
2703 struct static_key rps_needed __read_mostly;
2704
2705 static struct rps_dev_flow *
2706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 struct rps_dev_flow *rflow, u16 next_cpu)
2708 {
2709 if (next_cpu != RPS_NO_CPU) {
2710 #ifdef CONFIG_RFS_ACCEL
2711 struct netdev_rx_queue *rxqueue;
2712 struct rps_dev_flow_table *flow_table;
2713 struct rps_dev_flow *old_rflow;
2714 u32 flow_id;
2715 u16 rxq_index;
2716 int rc;
2717
2718 /* Should we steer this flow to a different hardware queue? */
2719 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2720 !(dev->features & NETIF_F_NTUPLE))
2721 goto out;
2722 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2723 if (rxq_index == skb_get_rx_queue(skb))
2724 goto out;
2725
2726 rxqueue = dev->_rx + rxq_index;
2727 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2728 if (!flow_table)
2729 goto out;
2730 flow_id = skb->rxhash & flow_table->mask;
2731 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2732 rxq_index, flow_id);
2733 if (rc < 0)
2734 goto out;
2735 old_rflow = rflow;
2736 rflow = &flow_table->flows[flow_id];
2737 rflow->filter = rc;
2738 if (old_rflow->filter == rflow->filter)
2739 old_rflow->filter = RPS_NO_FILTER;
2740 out:
2741 #endif
2742 rflow->last_qtail =
2743 per_cpu(softnet_data, next_cpu).input_queue_head;
2744 }
2745
2746 rflow->cpu = next_cpu;
2747 return rflow;
2748 }
2749
2750 /*
2751 * get_rps_cpu is called from netif_receive_skb and returns the target
2752 * CPU from the RPS map of the receiving queue for a given skb.
2753 * rcu_read_lock must be held on entry.
2754 */
2755 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2756 struct rps_dev_flow **rflowp)
2757 {
2758 struct netdev_rx_queue *rxqueue;
2759 struct rps_map *map;
2760 struct rps_dev_flow_table *flow_table;
2761 struct rps_sock_flow_table *sock_flow_table;
2762 int cpu = -1;
2763 u16 tcpu;
2764
2765 if (skb_rx_queue_recorded(skb)) {
2766 u16 index = skb_get_rx_queue(skb);
2767 if (unlikely(index >= dev->real_num_rx_queues)) {
2768 WARN_ONCE(dev->real_num_rx_queues > 1,
2769 "%s received packet on queue %u, but number "
2770 "of RX queues is %u\n",
2771 dev->name, index, dev->real_num_rx_queues);
2772 goto done;
2773 }
2774 rxqueue = dev->_rx + index;
2775 } else
2776 rxqueue = dev->_rx;
2777
2778 map = rcu_dereference(rxqueue->rps_map);
2779 if (map) {
2780 if (map->len == 1 &&
2781 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2782 tcpu = map->cpus[0];
2783 if (cpu_online(tcpu))
2784 cpu = tcpu;
2785 goto done;
2786 }
2787 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2788 goto done;
2789 }
2790
2791 skb_reset_network_header(skb);
2792 if (!skb_get_rxhash(skb))
2793 goto done;
2794
2795 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2796 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2797 if (flow_table && sock_flow_table) {
2798 u16 next_cpu;
2799 struct rps_dev_flow *rflow;
2800
2801 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2802 tcpu = rflow->cpu;
2803
2804 next_cpu = sock_flow_table->ents[skb->rxhash &
2805 sock_flow_table->mask];
2806
2807 /*
2808 * If the desired CPU (where last recvmsg was done) is
2809 * different from current CPU (one in the rx-queue flow
2810 * table entry), switch if one of the following holds:
2811 * - Current CPU is unset (equal to RPS_NO_CPU).
2812 * - Current CPU is offline.
2813 * - The current CPU's queue tail has advanced beyond the
2814 * last packet that was enqueued using this table entry.
2815 * This guarantees that all previous packets for the flow
2816 * have been dequeued, thus preserving in order delivery.
2817 */
2818 if (unlikely(tcpu != next_cpu) &&
2819 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2820 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2821 rflow->last_qtail)) >= 0)) {
2822 tcpu = next_cpu;
2823 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2824 }
2825
2826 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2827 *rflowp = rflow;
2828 cpu = tcpu;
2829 goto done;
2830 }
2831 }
2832
2833 if (map) {
2834 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2835
2836 if (cpu_online(tcpu)) {
2837 cpu = tcpu;
2838 goto done;
2839 }
2840 }
2841
2842 done:
2843 return cpu;
2844 }
2845
2846 #ifdef CONFIG_RFS_ACCEL
2847
2848 /**
2849 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2850 * @dev: Device on which the filter was set
2851 * @rxq_index: RX queue index
2852 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2853 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2854 *
2855 * Drivers that implement ndo_rx_flow_steer() should periodically call
2856 * this function for each installed filter and remove the filters for
2857 * which it returns %true.
2858 */
2859 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2860 u32 flow_id, u16 filter_id)
2861 {
2862 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2863 struct rps_dev_flow_table *flow_table;
2864 struct rps_dev_flow *rflow;
2865 bool expire = true;
2866 int cpu;
2867
2868 rcu_read_lock();
2869 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2870 if (flow_table && flow_id <= flow_table->mask) {
2871 rflow = &flow_table->flows[flow_id];
2872 cpu = ACCESS_ONCE(rflow->cpu);
2873 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2874 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2875 rflow->last_qtail) <
2876 (int)(10 * flow_table->mask)))
2877 expire = false;
2878 }
2879 rcu_read_unlock();
2880 return expire;
2881 }
2882 EXPORT_SYMBOL(rps_may_expire_flow);
2883
2884 #endif /* CONFIG_RFS_ACCEL */
2885
2886 /* Called from hardirq (IPI) context */
2887 static void rps_trigger_softirq(void *data)
2888 {
2889 struct softnet_data *sd = data;
2890
2891 ____napi_schedule(sd, &sd->backlog);
2892 sd->received_rps++;
2893 }
2894
2895 #endif /* CONFIG_RPS */
2896
2897 /*
2898 * Check if this softnet_data structure is another cpu one
2899 * If yes, queue it to our IPI list and return 1
2900 * If no, return 0
2901 */
2902 static int rps_ipi_queued(struct softnet_data *sd)
2903 {
2904 #ifdef CONFIG_RPS
2905 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2906
2907 if (sd != mysd) {
2908 sd->rps_ipi_next = mysd->rps_ipi_list;
2909 mysd->rps_ipi_list = sd;
2910
2911 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2912 return 1;
2913 }
2914 #endif /* CONFIG_RPS */
2915 return 0;
2916 }
2917
2918 /*
2919 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2920 * queue (may be a remote CPU queue).
2921 */
2922 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2923 unsigned int *qtail)
2924 {
2925 struct softnet_data *sd;
2926 unsigned long flags;
2927
2928 sd = &per_cpu(softnet_data, cpu);
2929
2930 local_irq_save(flags);
2931
2932 rps_lock(sd);
2933 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2934 if (skb_queue_len(&sd->input_pkt_queue)) {
2935 enqueue:
2936 __skb_queue_tail(&sd->input_pkt_queue, skb);
2937 input_queue_tail_incr_save(sd, qtail);
2938 rps_unlock(sd);
2939 local_irq_restore(flags);
2940 return NET_RX_SUCCESS;
2941 }
2942
2943 /* Schedule NAPI for backlog device
2944 * We can use non atomic operation since we own the queue lock
2945 */
2946 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2947 if (!rps_ipi_queued(sd))
2948 ____napi_schedule(sd, &sd->backlog);
2949 }
2950 goto enqueue;
2951 }
2952
2953 sd->dropped++;
2954 rps_unlock(sd);
2955
2956 local_irq_restore(flags);
2957
2958 atomic_long_inc(&skb->dev->rx_dropped);
2959 kfree_skb(skb);
2960 return NET_RX_DROP;
2961 }
2962
2963 /**
2964 * netif_rx - post buffer to the network code
2965 * @skb: buffer to post
2966 *
2967 * This function receives a packet from a device driver and queues it for
2968 * the upper (protocol) levels to process. It always succeeds. The buffer
2969 * may be dropped during processing for congestion control or by the
2970 * protocol layers.
2971 *
2972 * return values:
2973 * NET_RX_SUCCESS (no congestion)
2974 * NET_RX_DROP (packet was dropped)
2975 *
2976 */
2977
2978 int netif_rx(struct sk_buff *skb)
2979 {
2980 int ret;
2981
2982 /* if netpoll wants it, pretend we never saw it */
2983 if (netpoll_rx(skb))
2984 return NET_RX_DROP;
2985
2986 net_timestamp_check(netdev_tstamp_prequeue, skb);
2987
2988 trace_netif_rx(skb);
2989 #ifdef CONFIG_RPS
2990 if (static_key_false(&rps_needed)) {
2991 struct rps_dev_flow voidflow, *rflow = &voidflow;
2992 int cpu;
2993
2994 preempt_disable();
2995 rcu_read_lock();
2996
2997 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2998 if (cpu < 0)
2999 cpu = smp_processor_id();
3000
3001 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3002
3003 rcu_read_unlock();
3004 preempt_enable();
3005 } else
3006 #endif
3007 {
3008 unsigned int qtail;
3009 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3010 put_cpu();
3011 }
3012 return ret;
3013 }
3014 EXPORT_SYMBOL(netif_rx);
3015
3016 int netif_rx_ni(struct sk_buff *skb)
3017 {
3018 int err;
3019
3020 preempt_disable();
3021 err = netif_rx(skb);
3022 if (local_softirq_pending())
3023 do_softirq();
3024 preempt_enable();
3025
3026 return err;
3027 }
3028 EXPORT_SYMBOL(netif_rx_ni);
3029
3030 static void net_tx_action(struct softirq_action *h)
3031 {
3032 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3033
3034 if (sd->completion_queue) {
3035 struct sk_buff *clist;
3036
3037 local_irq_disable();
3038 clist = sd->completion_queue;
3039 sd->completion_queue = NULL;
3040 local_irq_enable();
3041
3042 while (clist) {
3043 struct sk_buff *skb = clist;
3044 clist = clist->next;
3045
3046 WARN_ON(atomic_read(&skb->users));
3047 trace_kfree_skb(skb, net_tx_action);
3048 __kfree_skb(skb);
3049 }
3050 }
3051
3052 if (sd->output_queue) {
3053 struct Qdisc *head;
3054
3055 local_irq_disable();
3056 head = sd->output_queue;
3057 sd->output_queue = NULL;
3058 sd->output_queue_tailp = &sd->output_queue;
3059 local_irq_enable();
3060
3061 while (head) {
3062 struct Qdisc *q = head;
3063 spinlock_t *root_lock;
3064
3065 head = head->next_sched;
3066
3067 root_lock = qdisc_lock(q);
3068 if (spin_trylock(root_lock)) {
3069 smp_mb__before_clear_bit();
3070 clear_bit(__QDISC_STATE_SCHED,
3071 &q->state);
3072 qdisc_run(q);
3073 spin_unlock(root_lock);
3074 } else {
3075 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3076 &q->state)) {
3077 __netif_reschedule(q);
3078 } else {
3079 smp_mb__before_clear_bit();
3080 clear_bit(__QDISC_STATE_SCHED,
3081 &q->state);
3082 }
3083 }
3084 }
3085 }
3086 }
3087
3088 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3089 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3090 /* This hook is defined here for ATM LANE */
3091 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3092 unsigned char *addr) __read_mostly;
3093 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3094 #endif
3095
3096 #ifdef CONFIG_NET_CLS_ACT
3097 /* TODO: Maybe we should just force sch_ingress to be compiled in
3098 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3099 * a compare and 2 stores extra right now if we dont have it on
3100 * but have CONFIG_NET_CLS_ACT
3101 * NOTE: This doesn't stop any functionality; if you dont have
3102 * the ingress scheduler, you just can't add policies on ingress.
3103 *
3104 */
3105 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3106 {
3107 struct net_device *dev = skb->dev;
3108 u32 ttl = G_TC_RTTL(skb->tc_verd);
3109 int result = TC_ACT_OK;
3110 struct Qdisc *q;
3111
3112 if (unlikely(MAX_RED_LOOP < ttl++)) {
3113 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3114 skb->skb_iif, dev->ifindex);
3115 return TC_ACT_SHOT;
3116 }
3117
3118 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3119 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3120
3121 q = rxq->qdisc;
3122 if (q != &noop_qdisc) {
3123 spin_lock(qdisc_lock(q));
3124 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3125 result = qdisc_enqueue_root(skb, q);
3126 spin_unlock(qdisc_lock(q));
3127 }
3128
3129 return result;
3130 }
3131
3132 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3133 struct packet_type **pt_prev,
3134 int *ret, struct net_device *orig_dev)
3135 {
3136 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3137
3138 if (!rxq || rxq->qdisc == &noop_qdisc)
3139 goto out;
3140
3141 if (*pt_prev) {
3142 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3143 *pt_prev = NULL;
3144 }
3145
3146 switch (ing_filter(skb, rxq)) {
3147 case TC_ACT_SHOT:
3148 case TC_ACT_STOLEN:
3149 kfree_skb(skb);
3150 return NULL;
3151 }
3152
3153 out:
3154 skb->tc_verd = 0;
3155 return skb;
3156 }
3157 #endif
3158
3159 /**
3160 * netdev_rx_handler_register - register receive handler
3161 * @dev: device to register a handler for
3162 * @rx_handler: receive handler to register
3163 * @rx_handler_data: data pointer that is used by rx handler
3164 *
3165 * Register a receive hander for a device. This handler will then be
3166 * called from __netif_receive_skb. A negative errno code is returned
3167 * on a failure.
3168 *
3169 * The caller must hold the rtnl_mutex.
3170 *
3171 * For a general description of rx_handler, see enum rx_handler_result.
3172 */
3173 int netdev_rx_handler_register(struct net_device *dev,
3174 rx_handler_func_t *rx_handler,
3175 void *rx_handler_data)
3176 {
3177 ASSERT_RTNL();
3178
3179 if (dev->rx_handler)
3180 return -EBUSY;
3181
3182 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3183 rcu_assign_pointer(dev->rx_handler, rx_handler);
3184
3185 return 0;
3186 }
3187 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3188
3189 /**
3190 * netdev_rx_handler_unregister - unregister receive handler
3191 * @dev: device to unregister a handler from
3192 *
3193 * Unregister a receive hander from a device.
3194 *
3195 * The caller must hold the rtnl_mutex.
3196 */
3197 void netdev_rx_handler_unregister(struct net_device *dev)
3198 {
3199
3200 ASSERT_RTNL();
3201 RCU_INIT_POINTER(dev->rx_handler, NULL);
3202 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3203 }
3204 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3205
3206 /*
3207 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3208 * the special handling of PFMEMALLOC skbs.
3209 */
3210 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3211 {
3212 switch (skb->protocol) {
3213 case __constant_htons(ETH_P_ARP):
3214 case __constant_htons(ETH_P_IP):
3215 case __constant_htons(ETH_P_IPV6):
3216 case __constant_htons(ETH_P_8021Q):
3217 return true;
3218 default:
3219 return false;
3220 }
3221 }
3222
3223 static int __netif_receive_skb(struct sk_buff *skb)
3224 {
3225 struct packet_type *ptype, *pt_prev;
3226 rx_handler_func_t *rx_handler;
3227 struct net_device *orig_dev;
3228 struct net_device *null_or_dev;
3229 bool deliver_exact = false;
3230 int ret = NET_RX_DROP;
3231 __be16 type;
3232 unsigned long pflags = current->flags;
3233
3234 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3235
3236 trace_netif_receive_skb(skb);
3237
3238 /*
3239 * PFMEMALLOC skbs are special, they should
3240 * - be delivered to SOCK_MEMALLOC sockets only
3241 * - stay away from userspace
3242 * - have bounded memory usage
3243 *
3244 * Use PF_MEMALLOC as this saves us from propagating the allocation
3245 * context down to all allocation sites.
3246 */
3247 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3248 current->flags |= PF_MEMALLOC;
3249
3250 /* if we've gotten here through NAPI, check netpoll */
3251 if (netpoll_receive_skb(skb))
3252 goto out;
3253
3254 orig_dev = skb->dev;
3255
3256 skb_reset_network_header(skb);
3257 skb_reset_transport_header(skb);
3258 skb_reset_mac_len(skb);
3259
3260 pt_prev = NULL;
3261
3262 rcu_read_lock();
3263
3264 another_round:
3265 skb->skb_iif = skb->dev->ifindex;
3266
3267 __this_cpu_inc(softnet_data.processed);
3268
3269 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3270 skb = vlan_untag(skb);
3271 if (unlikely(!skb))
3272 goto unlock;
3273 }
3274
3275 #ifdef CONFIG_NET_CLS_ACT
3276 if (skb->tc_verd & TC_NCLS) {
3277 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3278 goto ncls;
3279 }
3280 #endif
3281
3282 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3283 goto skip_taps;
3284
3285 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3286 if (!ptype->dev || ptype->dev == skb->dev) {
3287 if (pt_prev)
3288 ret = deliver_skb(skb, pt_prev, orig_dev);
3289 pt_prev = ptype;
3290 }
3291 }
3292
3293 skip_taps:
3294 #ifdef CONFIG_NET_CLS_ACT
3295 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3296 if (!skb)
3297 goto unlock;
3298 ncls:
3299 #endif
3300
3301 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3302 && !skb_pfmemalloc_protocol(skb))
3303 goto drop;
3304
3305 if (vlan_tx_tag_present(skb)) {
3306 if (pt_prev) {
3307 ret = deliver_skb(skb, pt_prev, orig_dev);
3308 pt_prev = NULL;
3309 }
3310 if (vlan_do_receive(&skb))
3311 goto another_round;
3312 else if (unlikely(!skb))
3313 goto unlock;
3314 }
3315
3316 rx_handler = rcu_dereference(skb->dev->rx_handler);
3317 if (rx_handler) {
3318 if (pt_prev) {
3319 ret = deliver_skb(skb, pt_prev, orig_dev);
3320 pt_prev = NULL;
3321 }
3322 switch (rx_handler(&skb)) {
3323 case RX_HANDLER_CONSUMED:
3324 goto unlock;
3325 case RX_HANDLER_ANOTHER:
3326 goto another_round;
3327 case RX_HANDLER_EXACT:
3328 deliver_exact = true;
3329 case RX_HANDLER_PASS:
3330 break;
3331 default:
3332 BUG();
3333 }
3334 }
3335
3336 if (vlan_tx_nonzero_tag_present(skb))
3337 skb->pkt_type = PACKET_OTHERHOST;
3338
3339 /* deliver only exact match when indicated */
3340 null_or_dev = deliver_exact ? skb->dev : NULL;
3341
3342 type = skb->protocol;
3343 list_for_each_entry_rcu(ptype,
3344 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3345 if (ptype->type == type &&
3346 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3347 ptype->dev == orig_dev)) {
3348 if (pt_prev)
3349 ret = deliver_skb(skb, pt_prev, orig_dev);
3350 pt_prev = ptype;
3351 }
3352 }
3353
3354 if (pt_prev) {
3355 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3356 goto drop;
3357 else
3358 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3359 } else {
3360 drop:
3361 atomic_long_inc(&skb->dev->rx_dropped);
3362 kfree_skb(skb);
3363 /* Jamal, now you will not able to escape explaining
3364 * me how you were going to use this. :-)
3365 */
3366 ret = NET_RX_DROP;
3367 }
3368
3369 unlock:
3370 rcu_read_unlock();
3371 out:
3372 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3373 return ret;
3374 }
3375
3376 /**
3377 * netif_receive_skb - process receive buffer from network
3378 * @skb: buffer to process
3379 *
3380 * netif_receive_skb() is the main receive data processing function.
3381 * It always succeeds. The buffer may be dropped during processing
3382 * for congestion control or by the protocol layers.
3383 *
3384 * This function may only be called from softirq context and interrupts
3385 * should be enabled.
3386 *
3387 * Return values (usually ignored):
3388 * NET_RX_SUCCESS: no congestion
3389 * NET_RX_DROP: packet was dropped
3390 */
3391 int netif_receive_skb(struct sk_buff *skb)
3392 {
3393 net_timestamp_check(netdev_tstamp_prequeue, skb);
3394
3395 if (skb_defer_rx_timestamp(skb))
3396 return NET_RX_SUCCESS;
3397
3398 #ifdef CONFIG_RPS
3399 if (static_key_false(&rps_needed)) {
3400 struct rps_dev_flow voidflow, *rflow = &voidflow;
3401 int cpu, ret;
3402
3403 rcu_read_lock();
3404
3405 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3406
3407 if (cpu >= 0) {
3408 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3409 rcu_read_unlock();
3410 return ret;
3411 }
3412 rcu_read_unlock();
3413 }
3414 #endif
3415 return __netif_receive_skb(skb);
3416 }
3417 EXPORT_SYMBOL(netif_receive_skb);
3418
3419 /* Network device is going away, flush any packets still pending
3420 * Called with irqs disabled.
3421 */
3422 static void flush_backlog(void *arg)
3423 {
3424 struct net_device *dev = arg;
3425 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3426 struct sk_buff *skb, *tmp;
3427
3428 rps_lock(sd);
3429 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3430 if (skb->dev == dev) {
3431 __skb_unlink(skb, &sd->input_pkt_queue);
3432 kfree_skb(skb);
3433 input_queue_head_incr(sd);
3434 }
3435 }
3436 rps_unlock(sd);
3437
3438 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3439 if (skb->dev == dev) {
3440 __skb_unlink(skb, &sd->process_queue);
3441 kfree_skb(skb);
3442 input_queue_head_incr(sd);
3443 }
3444 }
3445 }
3446
3447 static int napi_gro_complete(struct sk_buff *skb)
3448 {
3449 struct packet_type *ptype;
3450 __be16 type = skb->protocol;
3451 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3452 int err = -ENOENT;
3453
3454 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3455
3456 if (NAPI_GRO_CB(skb)->count == 1) {
3457 skb_shinfo(skb)->gso_size = 0;
3458 goto out;
3459 }
3460
3461 rcu_read_lock();
3462 list_for_each_entry_rcu(ptype, head, list) {
3463 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3464 continue;
3465
3466 err = ptype->gro_complete(skb);
3467 break;
3468 }
3469 rcu_read_unlock();
3470
3471 if (err) {
3472 WARN_ON(&ptype->list == head);
3473 kfree_skb(skb);
3474 return NET_RX_SUCCESS;
3475 }
3476
3477 out:
3478 return netif_receive_skb(skb);
3479 }
3480
3481 /* napi->gro_list contains packets ordered by age.
3482 * youngest packets at the head of it.
3483 * Complete skbs in reverse order to reduce latencies.
3484 */
3485 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3486 {
3487 struct sk_buff *skb, *prev = NULL;
3488
3489 /* scan list and build reverse chain */
3490 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3491 skb->prev = prev;
3492 prev = skb;
3493 }
3494
3495 for (skb = prev; skb; skb = prev) {
3496 skb->next = NULL;
3497
3498 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3499 return;
3500
3501 prev = skb->prev;
3502 napi_gro_complete(skb);
3503 napi->gro_count--;
3504 }
3505
3506 napi->gro_list = NULL;
3507 }
3508 EXPORT_SYMBOL(napi_gro_flush);
3509
3510 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3511 {
3512 struct sk_buff **pp = NULL;
3513 struct packet_type *ptype;
3514 __be16 type = skb->protocol;
3515 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3516 int same_flow;
3517 int mac_len;
3518 enum gro_result ret;
3519
3520 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3521 goto normal;
3522
3523 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3524 goto normal;
3525
3526 rcu_read_lock();
3527 list_for_each_entry_rcu(ptype, head, list) {
3528 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3529 continue;
3530
3531 skb_set_network_header(skb, skb_gro_offset(skb));
3532 mac_len = skb->network_header - skb->mac_header;
3533 skb->mac_len = mac_len;
3534 NAPI_GRO_CB(skb)->same_flow = 0;
3535 NAPI_GRO_CB(skb)->flush = 0;
3536 NAPI_GRO_CB(skb)->free = 0;
3537
3538 pp = ptype->gro_receive(&napi->gro_list, skb);
3539 break;
3540 }
3541 rcu_read_unlock();
3542
3543 if (&ptype->list == head)
3544 goto normal;
3545
3546 same_flow = NAPI_GRO_CB(skb)->same_flow;
3547 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3548
3549 if (pp) {
3550 struct sk_buff *nskb = *pp;
3551
3552 *pp = nskb->next;
3553 nskb->next = NULL;
3554 napi_gro_complete(nskb);
3555 napi->gro_count--;
3556 }
3557
3558 if (same_flow)
3559 goto ok;
3560
3561 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3562 goto normal;
3563
3564 napi->gro_count++;
3565 NAPI_GRO_CB(skb)->count = 1;
3566 NAPI_GRO_CB(skb)->age = jiffies;
3567 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3568 skb->next = napi->gro_list;
3569 napi->gro_list = skb;
3570 ret = GRO_HELD;
3571
3572 pull:
3573 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3574 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3575
3576 BUG_ON(skb->end - skb->tail < grow);
3577
3578 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3579
3580 skb->tail += grow;
3581 skb->data_len -= grow;
3582
3583 skb_shinfo(skb)->frags[0].page_offset += grow;
3584 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3585
3586 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3587 skb_frag_unref(skb, 0);
3588 memmove(skb_shinfo(skb)->frags,
3589 skb_shinfo(skb)->frags + 1,
3590 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3591 }
3592 }
3593
3594 ok:
3595 return ret;
3596
3597 normal:
3598 ret = GRO_NORMAL;
3599 goto pull;
3600 }
3601 EXPORT_SYMBOL(dev_gro_receive);
3602
3603 static inline gro_result_t
3604 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3605 {
3606 struct sk_buff *p;
3607 unsigned int maclen = skb->dev->hard_header_len;
3608
3609 for (p = napi->gro_list; p; p = p->next) {
3610 unsigned long diffs;
3611
3612 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3613 diffs |= p->vlan_tci ^ skb->vlan_tci;
3614 if (maclen == ETH_HLEN)
3615 diffs |= compare_ether_header(skb_mac_header(p),
3616 skb_gro_mac_header(skb));
3617 else if (!diffs)
3618 diffs = memcmp(skb_mac_header(p),
3619 skb_gro_mac_header(skb),
3620 maclen);
3621 NAPI_GRO_CB(p)->same_flow = !diffs;
3622 NAPI_GRO_CB(p)->flush = 0;
3623 }
3624
3625 return dev_gro_receive(napi, skb);
3626 }
3627
3628 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3629 {
3630 switch (ret) {
3631 case GRO_NORMAL:
3632 if (netif_receive_skb(skb))
3633 ret = GRO_DROP;
3634 break;
3635
3636 case GRO_DROP:
3637 kfree_skb(skb);
3638 break;
3639
3640 case GRO_MERGED_FREE:
3641 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3642 kmem_cache_free(skbuff_head_cache, skb);
3643 else
3644 __kfree_skb(skb);
3645 break;
3646
3647 case GRO_HELD:
3648 case GRO_MERGED:
3649 break;
3650 }
3651
3652 return ret;
3653 }
3654 EXPORT_SYMBOL(napi_skb_finish);
3655
3656 static void skb_gro_reset_offset(struct sk_buff *skb)
3657 {
3658 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3659 const skb_frag_t *frag0 = &pinfo->frags[0];
3660
3661 NAPI_GRO_CB(skb)->data_offset = 0;
3662 NAPI_GRO_CB(skb)->frag0 = NULL;
3663 NAPI_GRO_CB(skb)->frag0_len = 0;
3664
3665 if (skb->mac_header == skb->tail &&
3666 pinfo->nr_frags &&
3667 !PageHighMem(skb_frag_page(frag0))) {
3668 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3669 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3670 }
3671 }
3672
3673 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3674 {
3675 skb_gro_reset_offset(skb);
3676
3677 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3678 }
3679 EXPORT_SYMBOL(napi_gro_receive);
3680
3681 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3682 {
3683 __skb_pull(skb, skb_headlen(skb));
3684 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3685 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3686 skb->vlan_tci = 0;
3687 skb->dev = napi->dev;
3688 skb->skb_iif = 0;
3689
3690 napi->skb = skb;
3691 }
3692
3693 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3694 {
3695 struct sk_buff *skb = napi->skb;
3696
3697 if (!skb) {
3698 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3699 if (skb)
3700 napi->skb = skb;
3701 }
3702 return skb;
3703 }
3704 EXPORT_SYMBOL(napi_get_frags);
3705
3706 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3707 gro_result_t ret)
3708 {
3709 switch (ret) {
3710 case GRO_NORMAL:
3711 case GRO_HELD:
3712 skb->protocol = eth_type_trans(skb, skb->dev);
3713
3714 if (ret == GRO_HELD)
3715 skb_gro_pull(skb, -ETH_HLEN);
3716 else if (netif_receive_skb(skb))
3717 ret = GRO_DROP;
3718 break;
3719
3720 case GRO_DROP:
3721 case GRO_MERGED_FREE:
3722 napi_reuse_skb(napi, skb);
3723 break;
3724
3725 case GRO_MERGED:
3726 break;
3727 }
3728
3729 return ret;
3730 }
3731 EXPORT_SYMBOL(napi_frags_finish);
3732
3733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3734 {
3735 struct sk_buff *skb = napi->skb;
3736 struct ethhdr *eth;
3737 unsigned int hlen;
3738 unsigned int off;
3739
3740 napi->skb = NULL;
3741
3742 skb_reset_mac_header(skb);
3743 skb_gro_reset_offset(skb);
3744
3745 off = skb_gro_offset(skb);
3746 hlen = off + sizeof(*eth);
3747 eth = skb_gro_header_fast(skb, off);
3748 if (skb_gro_header_hard(skb, hlen)) {
3749 eth = skb_gro_header_slow(skb, hlen, off);
3750 if (unlikely(!eth)) {
3751 napi_reuse_skb(napi, skb);
3752 skb = NULL;
3753 goto out;
3754 }
3755 }
3756
3757 skb_gro_pull(skb, sizeof(*eth));
3758
3759 /*
3760 * This works because the only protocols we care about don't require
3761 * special handling. We'll fix it up properly at the end.
3762 */
3763 skb->protocol = eth->h_proto;
3764
3765 out:
3766 return skb;
3767 }
3768
3769 gro_result_t napi_gro_frags(struct napi_struct *napi)
3770 {
3771 struct sk_buff *skb = napi_frags_skb(napi);
3772
3773 if (!skb)
3774 return GRO_DROP;
3775
3776 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3777 }
3778 EXPORT_SYMBOL(napi_gro_frags);
3779
3780 /*
3781 * net_rps_action sends any pending IPI's for rps.
3782 * Note: called with local irq disabled, but exits with local irq enabled.
3783 */
3784 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3785 {
3786 #ifdef CONFIG_RPS
3787 struct softnet_data *remsd = sd->rps_ipi_list;
3788
3789 if (remsd) {
3790 sd->rps_ipi_list = NULL;
3791
3792 local_irq_enable();
3793
3794 /* Send pending IPI's to kick RPS processing on remote cpus. */
3795 while (remsd) {
3796 struct softnet_data *next = remsd->rps_ipi_next;
3797
3798 if (cpu_online(remsd->cpu))
3799 __smp_call_function_single(remsd->cpu,
3800 &remsd->csd, 0);
3801 remsd = next;
3802 }
3803 } else
3804 #endif
3805 local_irq_enable();
3806 }
3807
3808 static int process_backlog(struct napi_struct *napi, int quota)
3809 {
3810 int work = 0;
3811 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3812
3813 #ifdef CONFIG_RPS
3814 /* Check if we have pending ipi, its better to send them now,
3815 * not waiting net_rx_action() end.
3816 */
3817 if (sd->rps_ipi_list) {
3818 local_irq_disable();
3819 net_rps_action_and_irq_enable(sd);
3820 }
3821 #endif
3822 napi->weight = weight_p;
3823 local_irq_disable();
3824 while (work < quota) {
3825 struct sk_buff *skb;
3826 unsigned int qlen;
3827
3828 while ((skb = __skb_dequeue(&sd->process_queue))) {
3829 local_irq_enable();
3830 __netif_receive_skb(skb);
3831 local_irq_disable();
3832 input_queue_head_incr(sd);
3833 if (++work >= quota) {
3834 local_irq_enable();
3835 return work;
3836 }
3837 }
3838
3839 rps_lock(sd);
3840 qlen = skb_queue_len(&sd->input_pkt_queue);
3841 if (qlen)
3842 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3843 &sd->process_queue);
3844
3845 if (qlen < quota - work) {
3846 /*
3847 * Inline a custom version of __napi_complete().
3848 * only current cpu owns and manipulates this napi,
3849 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3850 * we can use a plain write instead of clear_bit(),
3851 * and we dont need an smp_mb() memory barrier.
3852 */
3853 list_del(&napi->poll_list);
3854 napi->state = 0;
3855
3856 quota = work + qlen;
3857 }
3858 rps_unlock(sd);
3859 }
3860 local_irq_enable();
3861
3862 return work;
3863 }
3864
3865 /**
3866 * __napi_schedule - schedule for receive
3867 * @n: entry to schedule
3868 *
3869 * The entry's receive function will be scheduled to run
3870 */
3871 void __napi_schedule(struct napi_struct *n)
3872 {
3873 unsigned long flags;
3874
3875 local_irq_save(flags);
3876 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3877 local_irq_restore(flags);
3878 }
3879 EXPORT_SYMBOL(__napi_schedule);
3880
3881 void __napi_complete(struct napi_struct *n)
3882 {
3883 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3884 BUG_ON(n->gro_list);
3885
3886 list_del(&n->poll_list);
3887 smp_mb__before_clear_bit();
3888 clear_bit(NAPI_STATE_SCHED, &n->state);
3889 }
3890 EXPORT_SYMBOL(__napi_complete);
3891
3892 void napi_complete(struct napi_struct *n)
3893 {
3894 unsigned long flags;
3895
3896 /*
3897 * don't let napi dequeue from the cpu poll list
3898 * just in case its running on a different cpu
3899 */
3900 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3901 return;
3902
3903 napi_gro_flush(n, false);
3904 local_irq_save(flags);
3905 __napi_complete(n);
3906 local_irq_restore(flags);
3907 }
3908 EXPORT_SYMBOL(napi_complete);
3909
3910 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3911 int (*poll)(struct napi_struct *, int), int weight)
3912 {
3913 INIT_LIST_HEAD(&napi->poll_list);
3914 napi->gro_count = 0;
3915 napi->gro_list = NULL;
3916 napi->skb = NULL;
3917 napi->poll = poll;
3918 napi->weight = weight;
3919 list_add(&napi->dev_list, &dev->napi_list);
3920 napi->dev = dev;
3921 #ifdef CONFIG_NETPOLL
3922 spin_lock_init(&napi->poll_lock);
3923 napi->poll_owner = -1;
3924 #endif
3925 set_bit(NAPI_STATE_SCHED, &napi->state);
3926 }
3927 EXPORT_SYMBOL(netif_napi_add);
3928
3929 void netif_napi_del(struct napi_struct *napi)
3930 {
3931 struct sk_buff *skb, *next;
3932
3933 list_del_init(&napi->dev_list);
3934 napi_free_frags(napi);
3935
3936 for (skb = napi->gro_list; skb; skb = next) {
3937 next = skb->next;
3938 skb->next = NULL;
3939 kfree_skb(skb);
3940 }
3941
3942 napi->gro_list = NULL;
3943 napi->gro_count = 0;
3944 }
3945 EXPORT_SYMBOL(netif_napi_del);
3946
3947 static void net_rx_action(struct softirq_action *h)
3948 {
3949 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3950 unsigned long time_limit = jiffies + 2;
3951 int budget = netdev_budget;
3952 void *have;
3953
3954 local_irq_disable();
3955
3956 while (!list_empty(&sd->poll_list)) {
3957 struct napi_struct *n;
3958 int work, weight;
3959
3960 /* If softirq window is exhuasted then punt.
3961 * Allow this to run for 2 jiffies since which will allow
3962 * an average latency of 1.5/HZ.
3963 */
3964 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3965 goto softnet_break;
3966
3967 local_irq_enable();
3968
3969 /* Even though interrupts have been re-enabled, this
3970 * access is safe because interrupts can only add new
3971 * entries to the tail of this list, and only ->poll()
3972 * calls can remove this head entry from the list.
3973 */
3974 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3975
3976 have = netpoll_poll_lock(n);
3977
3978 weight = n->weight;
3979
3980 /* This NAPI_STATE_SCHED test is for avoiding a race
3981 * with netpoll's poll_napi(). Only the entity which
3982 * obtains the lock and sees NAPI_STATE_SCHED set will
3983 * actually make the ->poll() call. Therefore we avoid
3984 * accidentally calling ->poll() when NAPI is not scheduled.
3985 */
3986 work = 0;
3987 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3988 work = n->poll(n, weight);
3989 trace_napi_poll(n);
3990 }
3991
3992 WARN_ON_ONCE(work > weight);
3993
3994 budget -= work;
3995
3996 local_irq_disable();
3997
3998 /* Drivers must not modify the NAPI state if they
3999 * consume the entire weight. In such cases this code
4000 * still "owns" the NAPI instance and therefore can
4001 * move the instance around on the list at-will.
4002 */
4003 if (unlikely(work == weight)) {
4004 if (unlikely(napi_disable_pending(n))) {
4005 local_irq_enable();
4006 napi_complete(n);
4007 local_irq_disable();
4008 } else {
4009 if (n->gro_list) {
4010 /* flush too old packets
4011 * If HZ < 1000, flush all packets.
4012 */
4013 local_irq_enable();
4014 napi_gro_flush(n, HZ >= 1000);
4015 local_irq_disable();
4016 }
4017 list_move_tail(&n->poll_list, &sd->poll_list);
4018 }
4019 }
4020
4021 netpoll_poll_unlock(have);
4022 }
4023 out:
4024 net_rps_action_and_irq_enable(sd);
4025
4026 #ifdef CONFIG_NET_DMA
4027 /*
4028 * There may not be any more sk_buffs coming right now, so push
4029 * any pending DMA copies to hardware
4030 */
4031 dma_issue_pending_all();
4032 #endif
4033
4034 return;
4035
4036 softnet_break:
4037 sd->time_squeeze++;
4038 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4039 goto out;
4040 }
4041
4042 static gifconf_func_t *gifconf_list[NPROTO];
4043
4044 /**
4045 * register_gifconf - register a SIOCGIF handler
4046 * @family: Address family
4047 * @gifconf: Function handler
4048 *
4049 * Register protocol dependent address dumping routines. The handler
4050 * that is passed must not be freed or reused until it has been replaced
4051 * by another handler.
4052 */
4053 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4054 {
4055 if (family >= NPROTO)
4056 return -EINVAL;
4057 gifconf_list[family] = gifconf;
4058 return 0;
4059 }
4060 EXPORT_SYMBOL(register_gifconf);
4061
4062
4063 /*
4064 * Map an interface index to its name (SIOCGIFNAME)
4065 */
4066
4067 /*
4068 * We need this ioctl for efficient implementation of the
4069 * if_indextoname() function required by the IPv6 API. Without
4070 * it, we would have to search all the interfaces to find a
4071 * match. --pb
4072 */
4073
4074 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4075 {
4076 struct net_device *dev;
4077 struct ifreq ifr;
4078
4079 /*
4080 * Fetch the caller's info block.
4081 */
4082
4083 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4084 return -EFAULT;
4085
4086 rcu_read_lock();
4087 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4088 if (!dev) {
4089 rcu_read_unlock();
4090 return -ENODEV;
4091 }
4092
4093 strcpy(ifr.ifr_name, dev->name);
4094 rcu_read_unlock();
4095
4096 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4097 return -EFAULT;
4098 return 0;
4099 }
4100
4101 /*
4102 * Perform a SIOCGIFCONF call. This structure will change
4103 * size eventually, and there is nothing I can do about it.
4104 * Thus we will need a 'compatibility mode'.
4105 */
4106
4107 static int dev_ifconf(struct net *net, char __user *arg)
4108 {
4109 struct ifconf ifc;
4110 struct net_device *dev;
4111 char __user *pos;
4112 int len;
4113 int total;
4114 int i;
4115
4116 /*
4117 * Fetch the caller's info block.
4118 */
4119
4120 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4121 return -EFAULT;
4122
4123 pos = ifc.ifc_buf;
4124 len = ifc.ifc_len;
4125
4126 /*
4127 * Loop over the interfaces, and write an info block for each.
4128 */
4129
4130 total = 0;
4131 for_each_netdev(net, dev) {
4132 for (i = 0; i < NPROTO; i++) {
4133 if (gifconf_list[i]) {
4134 int done;
4135 if (!pos)
4136 done = gifconf_list[i](dev, NULL, 0);
4137 else
4138 done = gifconf_list[i](dev, pos + total,
4139 len - total);
4140 if (done < 0)
4141 return -EFAULT;
4142 total += done;
4143 }
4144 }
4145 }
4146
4147 /*
4148 * All done. Write the updated control block back to the caller.
4149 */
4150 ifc.ifc_len = total;
4151
4152 /*
4153 * Both BSD and Solaris return 0 here, so we do too.
4154 */
4155 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4156 }
4157
4158 #ifdef CONFIG_PROC_FS
4159
4160 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4161
4162 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4163 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4164 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4165
4166 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4167 {
4168 struct net *net = seq_file_net(seq);
4169 struct net_device *dev;
4170 struct hlist_node *p;
4171 struct hlist_head *h;
4172 unsigned int count = 0, offset = get_offset(*pos);
4173
4174 h = &net->dev_name_head[get_bucket(*pos)];
4175 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4176 if (++count == offset)
4177 return dev;
4178 }
4179
4180 return NULL;
4181 }
4182
4183 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4184 {
4185 struct net_device *dev;
4186 unsigned int bucket;
4187
4188 do {
4189 dev = dev_from_same_bucket(seq, pos);
4190 if (dev)
4191 return dev;
4192
4193 bucket = get_bucket(*pos) + 1;
4194 *pos = set_bucket_offset(bucket, 1);
4195 } while (bucket < NETDEV_HASHENTRIES);
4196
4197 return NULL;
4198 }
4199
4200 /*
4201 * This is invoked by the /proc filesystem handler to display a device
4202 * in detail.
4203 */
4204 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4205 __acquires(RCU)
4206 {
4207 rcu_read_lock();
4208 if (!*pos)
4209 return SEQ_START_TOKEN;
4210
4211 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4212 return NULL;
4213
4214 return dev_from_bucket(seq, pos);
4215 }
4216
4217 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4218 {
4219 ++*pos;
4220 return dev_from_bucket(seq, pos);
4221 }
4222
4223 void dev_seq_stop(struct seq_file *seq, void *v)
4224 __releases(RCU)
4225 {
4226 rcu_read_unlock();
4227 }
4228
4229 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4230 {
4231 struct rtnl_link_stats64 temp;
4232 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4233
4234 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4235 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4236 dev->name, stats->rx_bytes, stats->rx_packets,
4237 stats->rx_errors,
4238 stats->rx_dropped + stats->rx_missed_errors,
4239 stats->rx_fifo_errors,
4240 stats->rx_length_errors + stats->rx_over_errors +
4241 stats->rx_crc_errors + stats->rx_frame_errors,
4242 stats->rx_compressed, stats->multicast,
4243 stats->tx_bytes, stats->tx_packets,
4244 stats->tx_errors, stats->tx_dropped,
4245 stats->tx_fifo_errors, stats->collisions,
4246 stats->tx_carrier_errors +
4247 stats->tx_aborted_errors +
4248 stats->tx_window_errors +
4249 stats->tx_heartbeat_errors,
4250 stats->tx_compressed);
4251 }
4252
4253 /*
4254 * Called from the PROCfs module. This now uses the new arbitrary sized
4255 * /proc/net interface to create /proc/net/dev
4256 */
4257 static int dev_seq_show(struct seq_file *seq, void *v)
4258 {
4259 if (v == SEQ_START_TOKEN)
4260 seq_puts(seq, "Inter-| Receive "
4261 " | Transmit\n"
4262 " face |bytes packets errs drop fifo frame "
4263 "compressed multicast|bytes packets errs "
4264 "drop fifo colls carrier compressed\n");
4265 else
4266 dev_seq_printf_stats(seq, v);
4267 return 0;
4268 }
4269
4270 static struct softnet_data *softnet_get_online(loff_t *pos)
4271 {
4272 struct softnet_data *sd = NULL;
4273
4274 while (*pos < nr_cpu_ids)
4275 if (cpu_online(*pos)) {
4276 sd = &per_cpu(softnet_data, *pos);
4277 break;
4278 } else
4279 ++*pos;
4280 return sd;
4281 }
4282
4283 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4284 {
4285 return softnet_get_online(pos);
4286 }
4287
4288 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4289 {
4290 ++*pos;
4291 return softnet_get_online(pos);
4292 }
4293
4294 static void softnet_seq_stop(struct seq_file *seq, void *v)
4295 {
4296 }
4297
4298 static int softnet_seq_show(struct seq_file *seq, void *v)
4299 {
4300 struct softnet_data *sd = v;
4301
4302 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4303 sd->processed, sd->dropped, sd->time_squeeze, 0,
4304 0, 0, 0, 0, /* was fastroute */
4305 sd->cpu_collision, sd->received_rps);
4306 return 0;
4307 }
4308
4309 static const struct seq_operations dev_seq_ops = {
4310 .start = dev_seq_start,
4311 .next = dev_seq_next,
4312 .stop = dev_seq_stop,
4313 .show = dev_seq_show,
4314 };
4315
4316 static int dev_seq_open(struct inode *inode, struct file *file)
4317 {
4318 return seq_open_net(inode, file, &dev_seq_ops,
4319 sizeof(struct seq_net_private));
4320 }
4321
4322 static const struct file_operations dev_seq_fops = {
4323 .owner = THIS_MODULE,
4324 .open = dev_seq_open,
4325 .read = seq_read,
4326 .llseek = seq_lseek,
4327 .release = seq_release_net,
4328 };
4329
4330 static const struct seq_operations softnet_seq_ops = {
4331 .start = softnet_seq_start,
4332 .next = softnet_seq_next,
4333 .stop = softnet_seq_stop,
4334 .show = softnet_seq_show,
4335 };
4336
4337 static int softnet_seq_open(struct inode *inode, struct file *file)
4338 {
4339 return seq_open(file, &softnet_seq_ops);
4340 }
4341
4342 static const struct file_operations softnet_seq_fops = {
4343 .owner = THIS_MODULE,
4344 .open = softnet_seq_open,
4345 .read = seq_read,
4346 .llseek = seq_lseek,
4347 .release = seq_release,
4348 };
4349
4350 static void *ptype_get_idx(loff_t pos)
4351 {
4352 struct packet_type *pt = NULL;
4353 loff_t i = 0;
4354 int t;
4355
4356 list_for_each_entry_rcu(pt, &ptype_all, list) {
4357 if (i == pos)
4358 return pt;
4359 ++i;
4360 }
4361
4362 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4363 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4364 if (i == pos)
4365 return pt;
4366 ++i;
4367 }
4368 }
4369 return NULL;
4370 }
4371
4372 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4373 __acquires(RCU)
4374 {
4375 rcu_read_lock();
4376 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4377 }
4378
4379 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4380 {
4381 struct packet_type *pt;
4382 struct list_head *nxt;
4383 int hash;
4384
4385 ++*pos;
4386 if (v == SEQ_START_TOKEN)
4387 return ptype_get_idx(0);
4388
4389 pt = v;
4390 nxt = pt->list.next;
4391 if (pt->type == htons(ETH_P_ALL)) {
4392 if (nxt != &ptype_all)
4393 goto found;
4394 hash = 0;
4395 nxt = ptype_base[0].next;
4396 } else
4397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4398
4399 while (nxt == &ptype_base[hash]) {
4400 if (++hash >= PTYPE_HASH_SIZE)
4401 return NULL;
4402 nxt = ptype_base[hash].next;
4403 }
4404 found:
4405 return list_entry(nxt, struct packet_type, list);
4406 }
4407
4408 static void ptype_seq_stop(struct seq_file *seq, void *v)
4409 __releases(RCU)
4410 {
4411 rcu_read_unlock();
4412 }
4413
4414 static int ptype_seq_show(struct seq_file *seq, void *v)
4415 {
4416 struct packet_type *pt = v;
4417
4418 if (v == SEQ_START_TOKEN)
4419 seq_puts(seq, "Type Device Function\n");
4420 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4421 if (pt->type == htons(ETH_P_ALL))
4422 seq_puts(seq, "ALL ");
4423 else
4424 seq_printf(seq, "%04x", ntohs(pt->type));
4425
4426 seq_printf(seq, " %-8s %pF\n",
4427 pt->dev ? pt->dev->name : "", pt->func);
4428 }
4429
4430 return 0;
4431 }
4432
4433 static const struct seq_operations ptype_seq_ops = {
4434 .start = ptype_seq_start,
4435 .next = ptype_seq_next,
4436 .stop = ptype_seq_stop,
4437 .show = ptype_seq_show,
4438 };
4439
4440 static int ptype_seq_open(struct inode *inode, struct file *file)
4441 {
4442 return seq_open_net(inode, file, &ptype_seq_ops,
4443 sizeof(struct seq_net_private));
4444 }
4445
4446 static const struct file_operations ptype_seq_fops = {
4447 .owner = THIS_MODULE,
4448 .open = ptype_seq_open,
4449 .read = seq_read,
4450 .llseek = seq_lseek,
4451 .release = seq_release_net,
4452 };
4453
4454
4455 static int __net_init dev_proc_net_init(struct net *net)
4456 {
4457 int rc = -ENOMEM;
4458
4459 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4460 goto out;
4461 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4462 goto out_dev;
4463 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4464 goto out_softnet;
4465
4466 if (wext_proc_init(net))
4467 goto out_ptype;
4468 rc = 0;
4469 out:
4470 return rc;
4471 out_ptype:
4472 proc_net_remove(net, "ptype");
4473 out_softnet:
4474 proc_net_remove(net, "softnet_stat");
4475 out_dev:
4476 proc_net_remove(net, "dev");
4477 goto out;
4478 }
4479
4480 static void __net_exit dev_proc_net_exit(struct net *net)
4481 {
4482 wext_proc_exit(net);
4483
4484 proc_net_remove(net, "ptype");
4485 proc_net_remove(net, "softnet_stat");
4486 proc_net_remove(net, "dev");
4487 }
4488
4489 static struct pernet_operations __net_initdata dev_proc_ops = {
4490 .init = dev_proc_net_init,
4491 .exit = dev_proc_net_exit,
4492 };
4493
4494 static int __init dev_proc_init(void)
4495 {
4496 return register_pernet_subsys(&dev_proc_ops);
4497 }
4498 #else
4499 #define dev_proc_init() 0
4500 #endif /* CONFIG_PROC_FS */
4501
4502
4503 /**
4504 * netdev_set_master - set up master pointer
4505 * @slave: slave device
4506 * @master: new master device
4507 *
4508 * Changes the master device of the slave. Pass %NULL to break the
4509 * bonding. The caller must hold the RTNL semaphore. On a failure
4510 * a negative errno code is returned. On success the reference counts
4511 * are adjusted and the function returns zero.
4512 */
4513 int netdev_set_master(struct net_device *slave, struct net_device *master)
4514 {
4515 struct net_device *old = slave->master;
4516
4517 ASSERT_RTNL();
4518
4519 if (master) {
4520 if (old)
4521 return -EBUSY;
4522 dev_hold(master);
4523 }
4524
4525 slave->master = master;
4526
4527 if (old)
4528 dev_put(old);
4529 return 0;
4530 }
4531 EXPORT_SYMBOL(netdev_set_master);
4532
4533 /**
4534 * netdev_set_bond_master - set up bonding master/slave pair
4535 * @slave: slave device
4536 * @master: new master device
4537 *
4538 * Changes the master device of the slave. Pass %NULL to break the
4539 * bonding. The caller must hold the RTNL semaphore. On a failure
4540 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4541 * to the routing socket and the function returns zero.
4542 */
4543 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4544 {
4545 int err;
4546
4547 ASSERT_RTNL();
4548
4549 err = netdev_set_master(slave, master);
4550 if (err)
4551 return err;
4552 if (master)
4553 slave->flags |= IFF_SLAVE;
4554 else
4555 slave->flags &= ~IFF_SLAVE;
4556
4557 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4558 return 0;
4559 }
4560 EXPORT_SYMBOL(netdev_set_bond_master);
4561
4562 static void dev_change_rx_flags(struct net_device *dev, int flags)
4563 {
4564 const struct net_device_ops *ops = dev->netdev_ops;
4565
4566 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4567 ops->ndo_change_rx_flags(dev, flags);
4568 }
4569
4570 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4571 {
4572 unsigned int old_flags = dev->flags;
4573 kuid_t uid;
4574 kgid_t gid;
4575
4576 ASSERT_RTNL();
4577
4578 dev->flags |= IFF_PROMISC;
4579 dev->promiscuity += inc;
4580 if (dev->promiscuity == 0) {
4581 /*
4582 * Avoid overflow.
4583 * If inc causes overflow, untouch promisc and return error.
4584 */
4585 if (inc < 0)
4586 dev->flags &= ~IFF_PROMISC;
4587 else {
4588 dev->promiscuity -= inc;
4589 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4590 dev->name);
4591 return -EOVERFLOW;
4592 }
4593 }
4594 if (dev->flags != old_flags) {
4595 pr_info("device %s %s promiscuous mode\n",
4596 dev->name,
4597 dev->flags & IFF_PROMISC ? "entered" : "left");
4598 if (audit_enabled) {
4599 current_uid_gid(&uid, &gid);
4600 audit_log(current->audit_context, GFP_ATOMIC,
4601 AUDIT_ANOM_PROMISCUOUS,
4602 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4603 dev->name, (dev->flags & IFF_PROMISC),
4604 (old_flags & IFF_PROMISC),
4605 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4606 from_kuid(&init_user_ns, uid),
4607 from_kgid(&init_user_ns, gid),
4608 audit_get_sessionid(current));
4609 }
4610
4611 dev_change_rx_flags(dev, IFF_PROMISC);
4612 }
4613 return 0;
4614 }
4615
4616 /**
4617 * dev_set_promiscuity - update promiscuity count on a device
4618 * @dev: device
4619 * @inc: modifier
4620 *
4621 * Add or remove promiscuity from a device. While the count in the device
4622 * remains above zero the interface remains promiscuous. Once it hits zero
4623 * the device reverts back to normal filtering operation. A negative inc
4624 * value is used to drop promiscuity on the device.
4625 * Return 0 if successful or a negative errno code on error.
4626 */
4627 int dev_set_promiscuity(struct net_device *dev, int inc)
4628 {
4629 unsigned int old_flags = dev->flags;
4630 int err;
4631
4632 err = __dev_set_promiscuity(dev, inc);
4633 if (err < 0)
4634 return err;
4635 if (dev->flags != old_flags)
4636 dev_set_rx_mode(dev);
4637 return err;
4638 }
4639 EXPORT_SYMBOL(dev_set_promiscuity);
4640
4641 /**
4642 * dev_set_allmulti - update allmulti count on a device
4643 * @dev: device
4644 * @inc: modifier
4645 *
4646 * Add or remove reception of all multicast frames to a device. While the
4647 * count in the device remains above zero the interface remains listening
4648 * to all interfaces. Once it hits zero the device reverts back to normal
4649 * filtering operation. A negative @inc value is used to drop the counter
4650 * when releasing a resource needing all multicasts.
4651 * Return 0 if successful or a negative errno code on error.
4652 */
4653
4654 int dev_set_allmulti(struct net_device *dev, int inc)
4655 {
4656 unsigned int old_flags = dev->flags;
4657
4658 ASSERT_RTNL();
4659
4660 dev->flags |= IFF_ALLMULTI;
4661 dev->allmulti += inc;
4662 if (dev->allmulti == 0) {
4663 /*
4664 * Avoid overflow.
4665 * If inc causes overflow, untouch allmulti and return error.
4666 */
4667 if (inc < 0)
4668 dev->flags &= ~IFF_ALLMULTI;
4669 else {
4670 dev->allmulti -= inc;
4671 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4672 dev->name);
4673 return -EOVERFLOW;
4674 }
4675 }
4676 if (dev->flags ^ old_flags) {
4677 dev_change_rx_flags(dev, IFF_ALLMULTI);
4678 dev_set_rx_mode(dev);
4679 }
4680 return 0;
4681 }
4682 EXPORT_SYMBOL(dev_set_allmulti);
4683
4684 /*
4685 * Upload unicast and multicast address lists to device and
4686 * configure RX filtering. When the device doesn't support unicast
4687 * filtering it is put in promiscuous mode while unicast addresses
4688 * are present.
4689 */
4690 void __dev_set_rx_mode(struct net_device *dev)
4691 {
4692 const struct net_device_ops *ops = dev->netdev_ops;
4693
4694 /* dev_open will call this function so the list will stay sane. */
4695 if (!(dev->flags&IFF_UP))
4696 return;
4697
4698 if (!netif_device_present(dev))
4699 return;
4700
4701 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4702 /* Unicast addresses changes may only happen under the rtnl,
4703 * therefore calling __dev_set_promiscuity here is safe.
4704 */
4705 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4706 __dev_set_promiscuity(dev, 1);
4707 dev->uc_promisc = true;
4708 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4709 __dev_set_promiscuity(dev, -1);
4710 dev->uc_promisc = false;
4711 }
4712 }
4713
4714 if (ops->ndo_set_rx_mode)
4715 ops->ndo_set_rx_mode(dev);
4716 }
4717
4718 void dev_set_rx_mode(struct net_device *dev)
4719 {
4720 netif_addr_lock_bh(dev);
4721 __dev_set_rx_mode(dev);
4722 netif_addr_unlock_bh(dev);
4723 }
4724
4725 /**
4726 * dev_get_flags - get flags reported to userspace
4727 * @dev: device
4728 *
4729 * Get the combination of flag bits exported through APIs to userspace.
4730 */
4731 unsigned int dev_get_flags(const struct net_device *dev)
4732 {
4733 unsigned int flags;
4734
4735 flags = (dev->flags & ~(IFF_PROMISC |
4736 IFF_ALLMULTI |
4737 IFF_RUNNING |
4738 IFF_LOWER_UP |
4739 IFF_DORMANT)) |
4740 (dev->gflags & (IFF_PROMISC |
4741 IFF_ALLMULTI));
4742
4743 if (netif_running(dev)) {
4744 if (netif_oper_up(dev))
4745 flags |= IFF_RUNNING;
4746 if (netif_carrier_ok(dev))
4747 flags |= IFF_LOWER_UP;
4748 if (netif_dormant(dev))
4749 flags |= IFF_DORMANT;
4750 }
4751
4752 return flags;
4753 }
4754 EXPORT_SYMBOL(dev_get_flags);
4755
4756 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4757 {
4758 unsigned int old_flags = dev->flags;
4759 int ret;
4760
4761 ASSERT_RTNL();
4762
4763 /*
4764 * Set the flags on our device.
4765 */
4766
4767 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4768 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4769 IFF_AUTOMEDIA)) |
4770 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4771 IFF_ALLMULTI));
4772
4773 /*
4774 * Load in the correct multicast list now the flags have changed.
4775 */
4776
4777 if ((old_flags ^ flags) & IFF_MULTICAST)
4778 dev_change_rx_flags(dev, IFF_MULTICAST);
4779
4780 dev_set_rx_mode(dev);
4781
4782 /*
4783 * Have we downed the interface. We handle IFF_UP ourselves
4784 * according to user attempts to set it, rather than blindly
4785 * setting it.
4786 */
4787
4788 ret = 0;
4789 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4790 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4791
4792 if (!ret)
4793 dev_set_rx_mode(dev);
4794 }
4795
4796 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4797 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4798
4799 dev->gflags ^= IFF_PROMISC;
4800 dev_set_promiscuity(dev, inc);
4801 }
4802
4803 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4804 is important. Some (broken) drivers set IFF_PROMISC, when
4805 IFF_ALLMULTI is requested not asking us and not reporting.
4806 */
4807 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4808 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4809
4810 dev->gflags ^= IFF_ALLMULTI;
4811 dev_set_allmulti(dev, inc);
4812 }
4813
4814 return ret;
4815 }
4816
4817 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4818 {
4819 unsigned int changes = dev->flags ^ old_flags;
4820
4821 if (changes & IFF_UP) {
4822 if (dev->flags & IFF_UP)
4823 call_netdevice_notifiers(NETDEV_UP, dev);
4824 else
4825 call_netdevice_notifiers(NETDEV_DOWN, dev);
4826 }
4827
4828 if (dev->flags & IFF_UP &&
4829 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4830 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4831 }
4832
4833 /**
4834 * dev_change_flags - change device settings
4835 * @dev: device
4836 * @flags: device state flags
4837 *
4838 * Change settings on device based state flags. The flags are
4839 * in the userspace exported format.
4840 */
4841 int dev_change_flags(struct net_device *dev, unsigned int flags)
4842 {
4843 int ret;
4844 unsigned int changes, old_flags = dev->flags;
4845
4846 ret = __dev_change_flags(dev, flags);
4847 if (ret < 0)
4848 return ret;
4849
4850 changes = old_flags ^ dev->flags;
4851 if (changes)
4852 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4853
4854 __dev_notify_flags(dev, old_flags);
4855 return ret;
4856 }
4857 EXPORT_SYMBOL(dev_change_flags);
4858
4859 /**
4860 * dev_set_mtu - Change maximum transfer unit
4861 * @dev: device
4862 * @new_mtu: new transfer unit
4863 *
4864 * Change the maximum transfer size of the network device.
4865 */
4866 int dev_set_mtu(struct net_device *dev, int new_mtu)
4867 {
4868 const struct net_device_ops *ops = dev->netdev_ops;
4869 int err;
4870
4871 if (new_mtu == dev->mtu)
4872 return 0;
4873
4874 /* MTU must be positive. */
4875 if (new_mtu < 0)
4876 return -EINVAL;
4877
4878 if (!netif_device_present(dev))
4879 return -ENODEV;
4880
4881 err = 0;
4882 if (ops->ndo_change_mtu)
4883 err = ops->ndo_change_mtu(dev, new_mtu);
4884 else
4885 dev->mtu = new_mtu;
4886
4887 if (!err && dev->flags & IFF_UP)
4888 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4889 return err;
4890 }
4891 EXPORT_SYMBOL(dev_set_mtu);
4892
4893 /**
4894 * dev_set_group - Change group this device belongs to
4895 * @dev: device
4896 * @new_group: group this device should belong to
4897 */
4898 void dev_set_group(struct net_device *dev, int new_group)
4899 {
4900 dev->group = new_group;
4901 }
4902 EXPORT_SYMBOL(dev_set_group);
4903
4904 /**
4905 * dev_set_mac_address - Change Media Access Control Address
4906 * @dev: device
4907 * @sa: new address
4908 *
4909 * Change the hardware (MAC) address of the device
4910 */
4911 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4912 {
4913 const struct net_device_ops *ops = dev->netdev_ops;
4914 int err;
4915
4916 if (!ops->ndo_set_mac_address)
4917 return -EOPNOTSUPP;
4918 if (sa->sa_family != dev->type)
4919 return -EINVAL;
4920 if (!netif_device_present(dev))
4921 return -ENODEV;
4922 err = ops->ndo_set_mac_address(dev, sa);
4923 if (!err)
4924 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4925 add_device_randomness(dev->dev_addr, dev->addr_len);
4926 return err;
4927 }
4928 EXPORT_SYMBOL(dev_set_mac_address);
4929
4930 /*
4931 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4932 */
4933 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4934 {
4935 int err;
4936 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4937
4938 if (!dev)
4939 return -ENODEV;
4940
4941 switch (cmd) {
4942 case SIOCGIFFLAGS: /* Get interface flags */
4943 ifr->ifr_flags = (short) dev_get_flags(dev);
4944 return 0;
4945
4946 case SIOCGIFMETRIC: /* Get the metric on the interface
4947 (currently unused) */
4948 ifr->ifr_metric = 0;
4949 return 0;
4950
4951 case SIOCGIFMTU: /* Get the MTU of a device */
4952 ifr->ifr_mtu = dev->mtu;
4953 return 0;
4954
4955 case SIOCGIFHWADDR:
4956 if (!dev->addr_len)
4957 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4958 else
4959 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4960 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4961 ifr->ifr_hwaddr.sa_family = dev->type;
4962 return 0;
4963
4964 case SIOCGIFSLAVE:
4965 err = -EINVAL;
4966 break;
4967
4968 case SIOCGIFMAP:
4969 ifr->ifr_map.mem_start = dev->mem_start;
4970 ifr->ifr_map.mem_end = dev->mem_end;
4971 ifr->ifr_map.base_addr = dev->base_addr;
4972 ifr->ifr_map.irq = dev->irq;
4973 ifr->ifr_map.dma = dev->dma;
4974 ifr->ifr_map.port = dev->if_port;
4975 return 0;
4976
4977 case SIOCGIFINDEX:
4978 ifr->ifr_ifindex = dev->ifindex;
4979 return 0;
4980
4981 case SIOCGIFTXQLEN:
4982 ifr->ifr_qlen = dev->tx_queue_len;
4983 return 0;
4984
4985 default:
4986 /* dev_ioctl() should ensure this case
4987 * is never reached
4988 */
4989 WARN_ON(1);
4990 err = -ENOTTY;
4991 break;
4992
4993 }
4994 return err;
4995 }
4996
4997 /*
4998 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4999 */
5000 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
5001 {
5002 int err;
5003 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5004 const struct net_device_ops *ops;
5005
5006 if (!dev)
5007 return -ENODEV;
5008
5009 ops = dev->netdev_ops;
5010
5011 switch (cmd) {
5012 case SIOCSIFFLAGS: /* Set interface flags */
5013 return dev_change_flags(dev, ifr->ifr_flags);
5014
5015 case SIOCSIFMETRIC: /* Set the metric on the interface
5016 (currently unused) */
5017 return -EOPNOTSUPP;
5018
5019 case SIOCSIFMTU: /* Set the MTU of a device */
5020 return dev_set_mtu(dev, ifr->ifr_mtu);
5021
5022 case SIOCSIFHWADDR:
5023 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
5024
5025 case SIOCSIFHWBROADCAST:
5026 if (ifr->ifr_hwaddr.sa_family != dev->type)
5027 return -EINVAL;
5028 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
5029 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
5030 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5031 return 0;
5032
5033 case SIOCSIFMAP:
5034 if (ops->ndo_set_config) {
5035 if (!netif_device_present(dev))
5036 return -ENODEV;
5037 return ops->ndo_set_config(dev, &ifr->ifr_map);
5038 }
5039 return -EOPNOTSUPP;
5040
5041 case SIOCADDMULTI:
5042 if (!ops->ndo_set_rx_mode ||
5043 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5044 return -EINVAL;
5045 if (!netif_device_present(dev))
5046 return -ENODEV;
5047 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5048
5049 case SIOCDELMULTI:
5050 if (!ops->ndo_set_rx_mode ||
5051 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5052 return -EINVAL;
5053 if (!netif_device_present(dev))
5054 return -ENODEV;
5055 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5056
5057 case SIOCSIFTXQLEN:
5058 if (ifr->ifr_qlen < 0)
5059 return -EINVAL;
5060 dev->tx_queue_len = ifr->ifr_qlen;
5061 return 0;
5062
5063 case SIOCSIFNAME:
5064 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5065 return dev_change_name(dev, ifr->ifr_newname);
5066
5067 case SIOCSHWTSTAMP:
5068 err = net_hwtstamp_validate(ifr);
5069 if (err)
5070 return err;
5071 /* fall through */
5072
5073 /*
5074 * Unknown or private ioctl
5075 */
5076 default:
5077 if ((cmd >= SIOCDEVPRIVATE &&
5078 cmd <= SIOCDEVPRIVATE + 15) ||
5079 cmd == SIOCBONDENSLAVE ||
5080 cmd == SIOCBONDRELEASE ||
5081 cmd == SIOCBONDSETHWADDR ||
5082 cmd == SIOCBONDSLAVEINFOQUERY ||
5083 cmd == SIOCBONDINFOQUERY ||
5084 cmd == SIOCBONDCHANGEACTIVE ||
5085 cmd == SIOCGMIIPHY ||
5086 cmd == SIOCGMIIREG ||
5087 cmd == SIOCSMIIREG ||
5088 cmd == SIOCBRADDIF ||
5089 cmd == SIOCBRDELIF ||
5090 cmd == SIOCSHWTSTAMP ||
5091 cmd == SIOCWANDEV) {
5092 err = -EOPNOTSUPP;
5093 if (ops->ndo_do_ioctl) {
5094 if (netif_device_present(dev))
5095 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5096 else
5097 err = -ENODEV;
5098 }
5099 } else
5100 err = -EINVAL;
5101
5102 }
5103 return err;
5104 }
5105
5106 /*
5107 * This function handles all "interface"-type I/O control requests. The actual
5108 * 'doing' part of this is dev_ifsioc above.
5109 */
5110
5111 /**
5112 * dev_ioctl - network device ioctl
5113 * @net: the applicable net namespace
5114 * @cmd: command to issue
5115 * @arg: pointer to a struct ifreq in user space
5116 *
5117 * Issue ioctl functions to devices. This is normally called by the
5118 * user space syscall interfaces but can sometimes be useful for
5119 * other purposes. The return value is the return from the syscall if
5120 * positive or a negative errno code on error.
5121 */
5122
5123 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5124 {
5125 struct ifreq ifr;
5126 int ret;
5127 char *colon;
5128
5129 /* One special case: SIOCGIFCONF takes ifconf argument
5130 and requires shared lock, because it sleeps writing
5131 to user space.
5132 */
5133
5134 if (cmd == SIOCGIFCONF) {
5135 rtnl_lock();
5136 ret = dev_ifconf(net, (char __user *) arg);
5137 rtnl_unlock();
5138 return ret;
5139 }
5140 if (cmd == SIOCGIFNAME)
5141 return dev_ifname(net, (struct ifreq __user *)arg);
5142
5143 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5144 return -EFAULT;
5145
5146 ifr.ifr_name[IFNAMSIZ-1] = 0;
5147
5148 colon = strchr(ifr.ifr_name, ':');
5149 if (colon)
5150 *colon = 0;
5151
5152 /*
5153 * See which interface the caller is talking about.
5154 */
5155
5156 switch (cmd) {
5157 /*
5158 * These ioctl calls:
5159 * - can be done by all.
5160 * - atomic and do not require locking.
5161 * - return a value
5162 */
5163 case SIOCGIFFLAGS:
5164 case SIOCGIFMETRIC:
5165 case SIOCGIFMTU:
5166 case SIOCGIFHWADDR:
5167 case SIOCGIFSLAVE:
5168 case SIOCGIFMAP:
5169 case SIOCGIFINDEX:
5170 case SIOCGIFTXQLEN:
5171 dev_load(net, ifr.ifr_name);
5172 rcu_read_lock();
5173 ret = dev_ifsioc_locked(net, &ifr, cmd);
5174 rcu_read_unlock();
5175 if (!ret) {
5176 if (colon)
5177 *colon = ':';
5178 if (copy_to_user(arg, &ifr,
5179 sizeof(struct ifreq)))
5180 ret = -EFAULT;
5181 }
5182 return ret;
5183
5184 case SIOCETHTOOL:
5185 dev_load(net, ifr.ifr_name);
5186 rtnl_lock();
5187 ret = dev_ethtool(net, &ifr);
5188 rtnl_unlock();
5189 if (!ret) {
5190 if (colon)
5191 *colon = ':';
5192 if (copy_to_user(arg, &ifr,
5193 sizeof(struct ifreq)))
5194 ret = -EFAULT;
5195 }
5196 return ret;
5197
5198 /*
5199 * These ioctl calls:
5200 * - require superuser power.
5201 * - require strict serialization.
5202 * - return a value
5203 */
5204 case SIOCGMIIPHY:
5205 case SIOCGMIIREG:
5206 case SIOCSIFNAME:
5207 if (!capable(CAP_NET_ADMIN))
5208 return -EPERM;
5209 dev_load(net, ifr.ifr_name);
5210 rtnl_lock();
5211 ret = dev_ifsioc(net, &ifr, cmd);
5212 rtnl_unlock();
5213 if (!ret) {
5214 if (colon)
5215 *colon = ':';
5216 if (copy_to_user(arg, &ifr,
5217 sizeof(struct ifreq)))
5218 ret = -EFAULT;
5219 }
5220 return ret;
5221
5222 /*
5223 * These ioctl calls:
5224 * - require superuser power.
5225 * - require strict serialization.
5226 * - do not return a value
5227 */
5228 case SIOCSIFFLAGS:
5229 case SIOCSIFMETRIC:
5230 case SIOCSIFMTU:
5231 case SIOCSIFMAP:
5232 case SIOCSIFHWADDR:
5233 case SIOCSIFSLAVE:
5234 case SIOCADDMULTI:
5235 case SIOCDELMULTI:
5236 case SIOCSIFHWBROADCAST:
5237 case SIOCSIFTXQLEN:
5238 case SIOCSMIIREG:
5239 case SIOCBONDENSLAVE:
5240 case SIOCBONDRELEASE:
5241 case SIOCBONDSETHWADDR:
5242 case SIOCBONDCHANGEACTIVE:
5243 case SIOCBRADDIF:
5244 case SIOCBRDELIF:
5245 case SIOCSHWTSTAMP:
5246 if (!capable(CAP_NET_ADMIN))
5247 return -EPERM;
5248 /* fall through */
5249 case SIOCBONDSLAVEINFOQUERY:
5250 case SIOCBONDINFOQUERY:
5251 dev_load(net, ifr.ifr_name);
5252 rtnl_lock();
5253 ret = dev_ifsioc(net, &ifr, cmd);
5254 rtnl_unlock();
5255 return ret;
5256
5257 case SIOCGIFMEM:
5258 /* Get the per device memory space. We can add this but
5259 * currently do not support it */
5260 case SIOCSIFMEM:
5261 /* Set the per device memory buffer space.
5262 * Not applicable in our case */
5263 case SIOCSIFLINK:
5264 return -ENOTTY;
5265
5266 /*
5267 * Unknown or private ioctl.
5268 */
5269 default:
5270 if (cmd == SIOCWANDEV ||
5271 (cmd >= SIOCDEVPRIVATE &&
5272 cmd <= SIOCDEVPRIVATE + 15)) {
5273 dev_load(net, ifr.ifr_name);
5274 rtnl_lock();
5275 ret = dev_ifsioc(net, &ifr, cmd);
5276 rtnl_unlock();
5277 if (!ret && copy_to_user(arg, &ifr,
5278 sizeof(struct ifreq)))
5279 ret = -EFAULT;
5280 return ret;
5281 }
5282 /* Take care of Wireless Extensions */
5283 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5284 return wext_handle_ioctl(net, &ifr, cmd, arg);
5285 return -ENOTTY;
5286 }
5287 }
5288
5289
5290 /**
5291 * dev_new_index - allocate an ifindex
5292 * @net: the applicable net namespace
5293 *
5294 * Returns a suitable unique value for a new device interface
5295 * number. The caller must hold the rtnl semaphore or the
5296 * dev_base_lock to be sure it remains unique.
5297 */
5298 static int dev_new_index(struct net *net)
5299 {
5300 int ifindex = net->ifindex;
5301 for (;;) {
5302 if (++ifindex <= 0)
5303 ifindex = 1;
5304 if (!__dev_get_by_index(net, ifindex))
5305 return net->ifindex = ifindex;
5306 }
5307 }
5308
5309 /* Delayed registration/unregisteration */
5310 static LIST_HEAD(net_todo_list);
5311
5312 static void net_set_todo(struct net_device *dev)
5313 {
5314 list_add_tail(&dev->todo_list, &net_todo_list);
5315 }
5316
5317 static void rollback_registered_many(struct list_head *head)
5318 {
5319 struct net_device *dev, *tmp;
5320
5321 BUG_ON(dev_boot_phase);
5322 ASSERT_RTNL();
5323
5324 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5325 /* Some devices call without registering
5326 * for initialization unwind. Remove those
5327 * devices and proceed with the remaining.
5328 */
5329 if (dev->reg_state == NETREG_UNINITIALIZED) {
5330 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5331 dev->name, dev);
5332
5333 WARN_ON(1);
5334 list_del(&dev->unreg_list);
5335 continue;
5336 }
5337 dev->dismantle = true;
5338 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5339 }
5340
5341 /* If device is running, close it first. */
5342 dev_close_many(head);
5343
5344 list_for_each_entry(dev, head, unreg_list) {
5345 /* And unlink it from device chain. */
5346 unlist_netdevice(dev);
5347
5348 dev->reg_state = NETREG_UNREGISTERING;
5349 }
5350
5351 synchronize_net();
5352
5353 list_for_each_entry(dev, head, unreg_list) {
5354 /* Shutdown queueing discipline. */
5355 dev_shutdown(dev);
5356
5357
5358 /* Notify protocols, that we are about to destroy
5359 this device. They should clean all the things.
5360 */
5361 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5362
5363 if (!dev->rtnl_link_ops ||
5364 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5365 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5366
5367 /*
5368 * Flush the unicast and multicast chains
5369 */
5370 dev_uc_flush(dev);
5371 dev_mc_flush(dev);
5372
5373 if (dev->netdev_ops->ndo_uninit)
5374 dev->netdev_ops->ndo_uninit(dev);
5375
5376 /* Notifier chain MUST detach us from master device. */
5377 WARN_ON(dev->master);
5378
5379 /* Remove entries from kobject tree */
5380 netdev_unregister_kobject(dev);
5381 }
5382
5383 synchronize_net();
5384
5385 list_for_each_entry(dev, head, unreg_list)
5386 dev_put(dev);
5387 }
5388
5389 static void rollback_registered(struct net_device *dev)
5390 {
5391 LIST_HEAD(single);
5392
5393 list_add(&dev->unreg_list, &single);
5394 rollback_registered_many(&single);
5395 list_del(&single);
5396 }
5397
5398 static netdev_features_t netdev_fix_features(struct net_device *dev,
5399 netdev_features_t features)
5400 {
5401 /* Fix illegal checksum combinations */
5402 if ((features & NETIF_F_HW_CSUM) &&
5403 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5404 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5405 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5406 }
5407
5408 /* Fix illegal SG+CSUM combinations. */
5409 if ((features & NETIF_F_SG) &&
5410 !(features & NETIF_F_ALL_CSUM)) {
5411 netdev_dbg(dev,
5412 "Dropping NETIF_F_SG since no checksum feature.\n");
5413 features &= ~NETIF_F_SG;
5414 }
5415
5416 /* TSO requires that SG is present as well. */
5417 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5418 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5419 features &= ~NETIF_F_ALL_TSO;
5420 }
5421
5422 /* TSO ECN requires that TSO is present as well. */
5423 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5424 features &= ~NETIF_F_TSO_ECN;
5425
5426 /* Software GSO depends on SG. */
5427 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5428 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5429 features &= ~NETIF_F_GSO;
5430 }
5431
5432 /* UFO needs SG and checksumming */
5433 if (features & NETIF_F_UFO) {
5434 /* maybe split UFO into V4 and V6? */
5435 if (!((features & NETIF_F_GEN_CSUM) ||
5436 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5437 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5438 netdev_dbg(dev,
5439 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5440 features &= ~NETIF_F_UFO;
5441 }
5442
5443 if (!(features & NETIF_F_SG)) {
5444 netdev_dbg(dev,
5445 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5446 features &= ~NETIF_F_UFO;
5447 }
5448 }
5449
5450 return features;
5451 }
5452
5453 int __netdev_update_features(struct net_device *dev)
5454 {
5455 netdev_features_t features;
5456 int err = 0;
5457
5458 ASSERT_RTNL();
5459
5460 features = netdev_get_wanted_features(dev);
5461
5462 if (dev->netdev_ops->ndo_fix_features)
5463 features = dev->netdev_ops->ndo_fix_features(dev, features);
5464
5465 /* driver might be less strict about feature dependencies */
5466 features = netdev_fix_features(dev, features);
5467
5468 if (dev->features == features)
5469 return 0;
5470
5471 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5472 &dev->features, &features);
5473
5474 if (dev->netdev_ops->ndo_set_features)
5475 err = dev->netdev_ops->ndo_set_features(dev, features);
5476
5477 if (unlikely(err < 0)) {
5478 netdev_err(dev,
5479 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5480 err, &features, &dev->features);
5481 return -1;
5482 }
5483
5484 if (!err)
5485 dev->features = features;
5486
5487 return 1;
5488 }
5489
5490 /**
5491 * netdev_update_features - recalculate device features
5492 * @dev: the device to check
5493 *
5494 * Recalculate dev->features set and send notifications if it
5495 * has changed. Should be called after driver or hardware dependent
5496 * conditions might have changed that influence the features.
5497 */
5498 void netdev_update_features(struct net_device *dev)
5499 {
5500 if (__netdev_update_features(dev))
5501 netdev_features_change(dev);
5502 }
5503 EXPORT_SYMBOL(netdev_update_features);
5504
5505 /**
5506 * netdev_change_features - recalculate device features
5507 * @dev: the device to check
5508 *
5509 * Recalculate dev->features set and send notifications even
5510 * if they have not changed. Should be called instead of
5511 * netdev_update_features() if also dev->vlan_features might
5512 * have changed to allow the changes to be propagated to stacked
5513 * VLAN devices.
5514 */
5515 void netdev_change_features(struct net_device *dev)
5516 {
5517 __netdev_update_features(dev);
5518 netdev_features_change(dev);
5519 }
5520 EXPORT_SYMBOL(netdev_change_features);
5521
5522 /**
5523 * netif_stacked_transfer_operstate - transfer operstate
5524 * @rootdev: the root or lower level device to transfer state from
5525 * @dev: the device to transfer operstate to
5526 *
5527 * Transfer operational state from root to device. This is normally
5528 * called when a stacking relationship exists between the root
5529 * device and the device(a leaf device).
5530 */
5531 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5532 struct net_device *dev)
5533 {
5534 if (rootdev->operstate == IF_OPER_DORMANT)
5535 netif_dormant_on(dev);
5536 else
5537 netif_dormant_off(dev);
5538
5539 if (netif_carrier_ok(rootdev)) {
5540 if (!netif_carrier_ok(dev))
5541 netif_carrier_on(dev);
5542 } else {
5543 if (netif_carrier_ok(dev))
5544 netif_carrier_off(dev);
5545 }
5546 }
5547 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5548
5549 #ifdef CONFIG_RPS
5550 static int netif_alloc_rx_queues(struct net_device *dev)
5551 {
5552 unsigned int i, count = dev->num_rx_queues;
5553 struct netdev_rx_queue *rx;
5554
5555 BUG_ON(count < 1);
5556
5557 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5558 if (!rx) {
5559 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5560 return -ENOMEM;
5561 }
5562 dev->_rx = rx;
5563
5564 for (i = 0; i < count; i++)
5565 rx[i].dev = dev;
5566 return 0;
5567 }
5568 #endif
5569
5570 static void netdev_init_one_queue(struct net_device *dev,
5571 struct netdev_queue *queue, void *_unused)
5572 {
5573 /* Initialize queue lock */
5574 spin_lock_init(&queue->_xmit_lock);
5575 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5576 queue->xmit_lock_owner = -1;
5577 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5578 queue->dev = dev;
5579 #ifdef CONFIG_BQL
5580 dql_init(&queue->dql, HZ);
5581 #endif
5582 }
5583
5584 static int netif_alloc_netdev_queues(struct net_device *dev)
5585 {
5586 unsigned int count = dev->num_tx_queues;
5587 struct netdev_queue *tx;
5588
5589 BUG_ON(count < 1);
5590
5591 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5592 if (!tx) {
5593 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5594 return -ENOMEM;
5595 }
5596 dev->_tx = tx;
5597
5598 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5599 spin_lock_init(&dev->tx_global_lock);
5600
5601 return 0;
5602 }
5603
5604 /**
5605 * register_netdevice - register a network device
5606 * @dev: device to register
5607 *
5608 * Take a completed network device structure and add it to the kernel
5609 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5610 * chain. 0 is returned on success. A negative errno code is returned
5611 * on a failure to set up the device, or if the name is a duplicate.
5612 *
5613 * Callers must hold the rtnl semaphore. You may want
5614 * register_netdev() instead of this.
5615 *
5616 * BUGS:
5617 * The locking appears insufficient to guarantee two parallel registers
5618 * will not get the same name.
5619 */
5620
5621 int register_netdevice(struct net_device *dev)
5622 {
5623 int ret;
5624 struct net *net = dev_net(dev);
5625
5626 BUG_ON(dev_boot_phase);
5627 ASSERT_RTNL();
5628
5629 might_sleep();
5630
5631 /* When net_device's are persistent, this will be fatal. */
5632 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5633 BUG_ON(!net);
5634
5635 spin_lock_init(&dev->addr_list_lock);
5636 netdev_set_addr_lockdep_class(dev);
5637
5638 dev->iflink = -1;
5639
5640 ret = dev_get_valid_name(net, dev, dev->name);
5641 if (ret < 0)
5642 goto out;
5643
5644 /* Init, if this function is available */
5645 if (dev->netdev_ops->ndo_init) {
5646 ret = dev->netdev_ops->ndo_init(dev);
5647 if (ret) {
5648 if (ret > 0)
5649 ret = -EIO;
5650 goto out;
5651 }
5652 }
5653
5654 ret = -EBUSY;
5655 if (!dev->ifindex)
5656 dev->ifindex = dev_new_index(net);
5657 else if (__dev_get_by_index(net, dev->ifindex))
5658 goto err_uninit;
5659
5660 if (dev->iflink == -1)
5661 dev->iflink = dev->ifindex;
5662
5663 /* Transfer changeable features to wanted_features and enable
5664 * software offloads (GSO and GRO).
5665 */
5666 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5667 dev->features |= NETIF_F_SOFT_FEATURES;
5668 dev->wanted_features = dev->features & dev->hw_features;
5669
5670 /* Turn on no cache copy if HW is doing checksum */
5671 if (!(dev->flags & IFF_LOOPBACK)) {
5672 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5673 if (dev->features & NETIF_F_ALL_CSUM) {
5674 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5675 dev->features |= NETIF_F_NOCACHE_COPY;
5676 }
5677 }
5678
5679 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5680 */
5681 dev->vlan_features |= NETIF_F_HIGHDMA;
5682
5683 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5684 ret = notifier_to_errno(ret);
5685 if (ret)
5686 goto err_uninit;
5687
5688 ret = netdev_register_kobject(dev);
5689 if (ret)
5690 goto err_uninit;
5691 dev->reg_state = NETREG_REGISTERED;
5692
5693 __netdev_update_features(dev);
5694
5695 /*
5696 * Default initial state at registry is that the
5697 * device is present.
5698 */
5699
5700 set_bit(__LINK_STATE_PRESENT, &dev->state);
5701
5702 linkwatch_init_dev(dev);
5703
5704 dev_init_scheduler(dev);
5705 dev_hold(dev);
5706 list_netdevice(dev);
5707 add_device_randomness(dev->dev_addr, dev->addr_len);
5708
5709 /* Notify protocols, that a new device appeared. */
5710 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5711 ret = notifier_to_errno(ret);
5712 if (ret) {
5713 rollback_registered(dev);
5714 dev->reg_state = NETREG_UNREGISTERED;
5715 }
5716 /*
5717 * Prevent userspace races by waiting until the network
5718 * device is fully setup before sending notifications.
5719 */
5720 if (!dev->rtnl_link_ops ||
5721 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5722 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5723
5724 out:
5725 return ret;
5726
5727 err_uninit:
5728 if (dev->netdev_ops->ndo_uninit)
5729 dev->netdev_ops->ndo_uninit(dev);
5730 goto out;
5731 }
5732 EXPORT_SYMBOL(register_netdevice);
5733
5734 /**
5735 * init_dummy_netdev - init a dummy network device for NAPI
5736 * @dev: device to init
5737 *
5738 * This takes a network device structure and initialize the minimum
5739 * amount of fields so it can be used to schedule NAPI polls without
5740 * registering a full blown interface. This is to be used by drivers
5741 * that need to tie several hardware interfaces to a single NAPI
5742 * poll scheduler due to HW limitations.
5743 */
5744 int init_dummy_netdev(struct net_device *dev)
5745 {
5746 /* Clear everything. Note we don't initialize spinlocks
5747 * are they aren't supposed to be taken by any of the
5748 * NAPI code and this dummy netdev is supposed to be
5749 * only ever used for NAPI polls
5750 */
5751 memset(dev, 0, sizeof(struct net_device));
5752
5753 /* make sure we BUG if trying to hit standard
5754 * register/unregister code path
5755 */
5756 dev->reg_state = NETREG_DUMMY;
5757
5758 /* NAPI wants this */
5759 INIT_LIST_HEAD(&dev->napi_list);
5760
5761 /* a dummy interface is started by default */
5762 set_bit(__LINK_STATE_PRESENT, &dev->state);
5763 set_bit(__LINK_STATE_START, &dev->state);
5764
5765 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5766 * because users of this 'device' dont need to change
5767 * its refcount.
5768 */
5769
5770 return 0;
5771 }
5772 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5773
5774
5775 /**
5776 * register_netdev - register a network device
5777 * @dev: device to register
5778 *
5779 * Take a completed network device structure and add it to the kernel
5780 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5781 * chain. 0 is returned on success. A negative errno code is returned
5782 * on a failure to set up the device, or if the name is a duplicate.
5783 *
5784 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5785 * and expands the device name if you passed a format string to
5786 * alloc_netdev.
5787 */
5788 int register_netdev(struct net_device *dev)
5789 {
5790 int err;
5791
5792 rtnl_lock();
5793 err = register_netdevice(dev);
5794 rtnl_unlock();
5795 return err;
5796 }
5797 EXPORT_SYMBOL(register_netdev);
5798
5799 int netdev_refcnt_read(const struct net_device *dev)
5800 {
5801 int i, refcnt = 0;
5802
5803 for_each_possible_cpu(i)
5804 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5805 return refcnt;
5806 }
5807 EXPORT_SYMBOL(netdev_refcnt_read);
5808
5809 /**
5810 * netdev_wait_allrefs - wait until all references are gone.
5811 * @dev: target net_device
5812 *
5813 * This is called when unregistering network devices.
5814 *
5815 * Any protocol or device that holds a reference should register
5816 * for netdevice notification, and cleanup and put back the
5817 * reference if they receive an UNREGISTER event.
5818 * We can get stuck here if buggy protocols don't correctly
5819 * call dev_put.
5820 */
5821 static void netdev_wait_allrefs(struct net_device *dev)
5822 {
5823 unsigned long rebroadcast_time, warning_time;
5824 int refcnt;
5825
5826 linkwatch_forget_dev(dev);
5827
5828 rebroadcast_time = warning_time = jiffies;
5829 refcnt = netdev_refcnt_read(dev);
5830
5831 while (refcnt != 0) {
5832 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5833 rtnl_lock();
5834
5835 /* Rebroadcast unregister notification */
5836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5837
5838 __rtnl_unlock();
5839 rcu_barrier();
5840 rtnl_lock();
5841
5842 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5843 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5844 &dev->state)) {
5845 /* We must not have linkwatch events
5846 * pending on unregister. If this
5847 * happens, we simply run the queue
5848 * unscheduled, resulting in a noop
5849 * for this device.
5850 */
5851 linkwatch_run_queue();
5852 }
5853
5854 __rtnl_unlock();
5855
5856 rebroadcast_time = jiffies;
5857 }
5858
5859 msleep(250);
5860
5861 refcnt = netdev_refcnt_read(dev);
5862
5863 if (time_after(jiffies, warning_time + 10 * HZ)) {
5864 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5865 dev->name, refcnt);
5866 warning_time = jiffies;
5867 }
5868 }
5869 }
5870
5871 /* The sequence is:
5872 *
5873 * rtnl_lock();
5874 * ...
5875 * register_netdevice(x1);
5876 * register_netdevice(x2);
5877 * ...
5878 * unregister_netdevice(y1);
5879 * unregister_netdevice(y2);
5880 * ...
5881 * rtnl_unlock();
5882 * free_netdev(y1);
5883 * free_netdev(y2);
5884 *
5885 * We are invoked by rtnl_unlock().
5886 * This allows us to deal with problems:
5887 * 1) We can delete sysfs objects which invoke hotplug
5888 * without deadlocking with linkwatch via keventd.
5889 * 2) Since we run with the RTNL semaphore not held, we can sleep
5890 * safely in order to wait for the netdev refcnt to drop to zero.
5891 *
5892 * We must not return until all unregister events added during
5893 * the interval the lock was held have been completed.
5894 */
5895 void netdev_run_todo(void)
5896 {
5897 struct list_head list;
5898
5899 /* Snapshot list, allow later requests */
5900 list_replace_init(&net_todo_list, &list);
5901
5902 __rtnl_unlock();
5903
5904
5905 /* Wait for rcu callbacks to finish before next phase */
5906 if (!list_empty(&list))
5907 rcu_barrier();
5908
5909 while (!list_empty(&list)) {
5910 struct net_device *dev
5911 = list_first_entry(&list, struct net_device, todo_list);
5912 list_del(&dev->todo_list);
5913
5914 rtnl_lock();
5915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5916 __rtnl_unlock();
5917
5918 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5919 pr_err("network todo '%s' but state %d\n",
5920 dev->name, dev->reg_state);
5921 dump_stack();
5922 continue;
5923 }
5924
5925 dev->reg_state = NETREG_UNREGISTERED;
5926
5927 on_each_cpu(flush_backlog, dev, 1);
5928
5929 netdev_wait_allrefs(dev);
5930
5931 /* paranoia */
5932 BUG_ON(netdev_refcnt_read(dev));
5933 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5934 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5935 WARN_ON(dev->dn_ptr);
5936
5937 if (dev->destructor)
5938 dev->destructor(dev);
5939
5940 /* Free network device */
5941 kobject_put(&dev->dev.kobj);
5942 }
5943 }
5944
5945 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5946 * fields in the same order, with only the type differing.
5947 */
5948 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5949 const struct net_device_stats *netdev_stats)
5950 {
5951 #if BITS_PER_LONG == 64
5952 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5953 memcpy(stats64, netdev_stats, sizeof(*stats64));
5954 #else
5955 size_t i, n = sizeof(*stats64) / sizeof(u64);
5956 const unsigned long *src = (const unsigned long *)netdev_stats;
5957 u64 *dst = (u64 *)stats64;
5958
5959 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5960 sizeof(*stats64) / sizeof(u64));
5961 for (i = 0; i < n; i++)
5962 dst[i] = src[i];
5963 #endif
5964 }
5965 EXPORT_SYMBOL(netdev_stats_to_stats64);
5966
5967 /**
5968 * dev_get_stats - get network device statistics
5969 * @dev: device to get statistics from
5970 * @storage: place to store stats
5971 *
5972 * Get network statistics from device. Return @storage.
5973 * The device driver may provide its own method by setting
5974 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5975 * otherwise the internal statistics structure is used.
5976 */
5977 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5978 struct rtnl_link_stats64 *storage)
5979 {
5980 const struct net_device_ops *ops = dev->netdev_ops;
5981
5982 if (ops->ndo_get_stats64) {
5983 memset(storage, 0, sizeof(*storage));
5984 ops->ndo_get_stats64(dev, storage);
5985 } else if (ops->ndo_get_stats) {
5986 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5987 } else {
5988 netdev_stats_to_stats64(storage, &dev->stats);
5989 }
5990 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5991 return storage;
5992 }
5993 EXPORT_SYMBOL(dev_get_stats);
5994
5995 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5996 {
5997 struct netdev_queue *queue = dev_ingress_queue(dev);
5998
5999 #ifdef CONFIG_NET_CLS_ACT
6000 if (queue)
6001 return queue;
6002 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6003 if (!queue)
6004 return NULL;
6005 netdev_init_one_queue(dev, queue, NULL);
6006 queue->qdisc = &noop_qdisc;
6007 queue->qdisc_sleeping = &noop_qdisc;
6008 rcu_assign_pointer(dev->ingress_queue, queue);
6009 #endif
6010 return queue;
6011 }
6012
6013 static const struct ethtool_ops default_ethtool_ops;
6014
6015 /**
6016 * alloc_netdev_mqs - allocate network device
6017 * @sizeof_priv: size of private data to allocate space for
6018 * @name: device name format string
6019 * @setup: callback to initialize device
6020 * @txqs: the number of TX subqueues to allocate
6021 * @rxqs: the number of RX subqueues to allocate
6022 *
6023 * Allocates a struct net_device with private data area for driver use
6024 * and performs basic initialization. Also allocates subquue structs
6025 * for each queue on the device.
6026 */
6027 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6028 void (*setup)(struct net_device *),
6029 unsigned int txqs, unsigned int rxqs)
6030 {
6031 struct net_device *dev;
6032 size_t alloc_size;
6033 struct net_device *p;
6034
6035 BUG_ON(strlen(name) >= sizeof(dev->name));
6036
6037 if (txqs < 1) {
6038 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6039 return NULL;
6040 }
6041
6042 #ifdef CONFIG_RPS
6043 if (rxqs < 1) {
6044 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6045 return NULL;
6046 }
6047 #endif
6048
6049 alloc_size = sizeof(struct net_device);
6050 if (sizeof_priv) {
6051 /* ensure 32-byte alignment of private area */
6052 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6053 alloc_size += sizeof_priv;
6054 }
6055 /* ensure 32-byte alignment of whole construct */
6056 alloc_size += NETDEV_ALIGN - 1;
6057
6058 p = kzalloc(alloc_size, GFP_KERNEL);
6059 if (!p) {
6060 pr_err("alloc_netdev: Unable to allocate device\n");
6061 return NULL;
6062 }
6063
6064 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6065 dev->padded = (char *)dev - (char *)p;
6066
6067 dev->pcpu_refcnt = alloc_percpu(int);
6068 if (!dev->pcpu_refcnt)
6069 goto free_p;
6070
6071 if (dev_addr_init(dev))
6072 goto free_pcpu;
6073
6074 dev_mc_init(dev);
6075 dev_uc_init(dev);
6076
6077 dev_net_set(dev, &init_net);
6078
6079 dev->gso_max_size = GSO_MAX_SIZE;
6080 dev->gso_max_segs = GSO_MAX_SEGS;
6081
6082 INIT_LIST_HEAD(&dev->napi_list);
6083 INIT_LIST_HEAD(&dev->unreg_list);
6084 INIT_LIST_HEAD(&dev->link_watch_list);
6085 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6086 setup(dev);
6087
6088 dev->num_tx_queues = txqs;
6089 dev->real_num_tx_queues = txqs;
6090 if (netif_alloc_netdev_queues(dev))
6091 goto free_all;
6092
6093 #ifdef CONFIG_RPS
6094 dev->num_rx_queues = rxqs;
6095 dev->real_num_rx_queues = rxqs;
6096 if (netif_alloc_rx_queues(dev))
6097 goto free_all;
6098 #endif
6099
6100 strcpy(dev->name, name);
6101 dev->group = INIT_NETDEV_GROUP;
6102 if (!dev->ethtool_ops)
6103 dev->ethtool_ops = &default_ethtool_ops;
6104 return dev;
6105
6106 free_all:
6107 free_netdev(dev);
6108 return NULL;
6109
6110 free_pcpu:
6111 free_percpu(dev->pcpu_refcnt);
6112 kfree(dev->_tx);
6113 #ifdef CONFIG_RPS
6114 kfree(dev->_rx);
6115 #endif
6116
6117 free_p:
6118 kfree(p);
6119 return NULL;
6120 }
6121 EXPORT_SYMBOL(alloc_netdev_mqs);
6122
6123 /**
6124 * free_netdev - free network device
6125 * @dev: device
6126 *
6127 * This function does the last stage of destroying an allocated device
6128 * interface. The reference to the device object is released.
6129 * If this is the last reference then it will be freed.
6130 */
6131 void free_netdev(struct net_device *dev)
6132 {
6133 struct napi_struct *p, *n;
6134
6135 release_net(dev_net(dev));
6136
6137 kfree(dev->_tx);
6138 #ifdef CONFIG_RPS
6139 kfree(dev->_rx);
6140 #endif
6141
6142 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6143
6144 /* Flush device addresses */
6145 dev_addr_flush(dev);
6146
6147 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6148 netif_napi_del(p);
6149
6150 free_percpu(dev->pcpu_refcnt);
6151 dev->pcpu_refcnt = NULL;
6152
6153 /* Compatibility with error handling in drivers */
6154 if (dev->reg_state == NETREG_UNINITIALIZED) {
6155 kfree((char *)dev - dev->padded);
6156 return;
6157 }
6158
6159 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6160 dev->reg_state = NETREG_RELEASED;
6161
6162 /* will free via device release */
6163 put_device(&dev->dev);
6164 }
6165 EXPORT_SYMBOL(free_netdev);
6166
6167 /**
6168 * synchronize_net - Synchronize with packet receive processing
6169 *
6170 * Wait for packets currently being received to be done.
6171 * Does not block later packets from starting.
6172 */
6173 void synchronize_net(void)
6174 {
6175 might_sleep();
6176 if (rtnl_is_locked())
6177 synchronize_rcu_expedited();
6178 else
6179 synchronize_rcu();
6180 }
6181 EXPORT_SYMBOL(synchronize_net);
6182
6183 /**
6184 * unregister_netdevice_queue - remove device from the kernel
6185 * @dev: device
6186 * @head: list
6187 *
6188 * This function shuts down a device interface and removes it
6189 * from the kernel tables.
6190 * If head not NULL, device is queued to be unregistered later.
6191 *
6192 * Callers must hold the rtnl semaphore. You may want
6193 * unregister_netdev() instead of this.
6194 */
6195
6196 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6197 {
6198 ASSERT_RTNL();
6199
6200 if (head) {
6201 list_move_tail(&dev->unreg_list, head);
6202 } else {
6203 rollback_registered(dev);
6204 /* Finish processing unregister after unlock */
6205 net_set_todo(dev);
6206 }
6207 }
6208 EXPORT_SYMBOL(unregister_netdevice_queue);
6209
6210 /**
6211 * unregister_netdevice_many - unregister many devices
6212 * @head: list of devices
6213 */
6214 void unregister_netdevice_many(struct list_head *head)
6215 {
6216 struct net_device *dev;
6217
6218 if (!list_empty(head)) {
6219 rollback_registered_many(head);
6220 list_for_each_entry(dev, head, unreg_list)
6221 net_set_todo(dev);
6222 }
6223 }
6224 EXPORT_SYMBOL(unregister_netdevice_many);
6225
6226 /**
6227 * unregister_netdev - remove device from the kernel
6228 * @dev: device
6229 *
6230 * This function shuts down a device interface and removes it
6231 * from the kernel tables.
6232 *
6233 * This is just a wrapper for unregister_netdevice that takes
6234 * the rtnl semaphore. In general you want to use this and not
6235 * unregister_netdevice.
6236 */
6237 void unregister_netdev(struct net_device *dev)
6238 {
6239 rtnl_lock();
6240 unregister_netdevice(dev);
6241 rtnl_unlock();
6242 }
6243 EXPORT_SYMBOL(unregister_netdev);
6244
6245 /**
6246 * dev_change_net_namespace - move device to different nethost namespace
6247 * @dev: device
6248 * @net: network namespace
6249 * @pat: If not NULL name pattern to try if the current device name
6250 * is already taken in the destination network namespace.
6251 *
6252 * This function shuts down a device interface and moves it
6253 * to a new network namespace. On success 0 is returned, on
6254 * a failure a netagive errno code is returned.
6255 *
6256 * Callers must hold the rtnl semaphore.
6257 */
6258
6259 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6260 {
6261 int err;
6262
6263 ASSERT_RTNL();
6264
6265 /* Don't allow namespace local devices to be moved. */
6266 err = -EINVAL;
6267 if (dev->features & NETIF_F_NETNS_LOCAL)
6268 goto out;
6269
6270 /* Ensure the device has been registrered */
6271 err = -EINVAL;
6272 if (dev->reg_state != NETREG_REGISTERED)
6273 goto out;
6274
6275 /* Get out if there is nothing todo */
6276 err = 0;
6277 if (net_eq(dev_net(dev), net))
6278 goto out;
6279
6280 /* Pick the destination device name, and ensure
6281 * we can use it in the destination network namespace.
6282 */
6283 err = -EEXIST;
6284 if (__dev_get_by_name(net, dev->name)) {
6285 /* We get here if we can't use the current device name */
6286 if (!pat)
6287 goto out;
6288 if (dev_get_valid_name(net, dev, pat) < 0)
6289 goto out;
6290 }
6291
6292 /*
6293 * And now a mini version of register_netdevice unregister_netdevice.
6294 */
6295
6296 /* If device is running close it first. */
6297 dev_close(dev);
6298
6299 /* And unlink it from device chain */
6300 err = -ENODEV;
6301 unlist_netdevice(dev);
6302
6303 synchronize_net();
6304
6305 /* Shutdown queueing discipline. */
6306 dev_shutdown(dev);
6307
6308 /* Notify protocols, that we are about to destroy
6309 this device. They should clean all the things.
6310
6311 Note that dev->reg_state stays at NETREG_REGISTERED.
6312 This is wanted because this way 8021q and macvlan know
6313 the device is just moving and can keep their slaves up.
6314 */
6315 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6316 rcu_barrier();
6317 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6318 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6319
6320 /*
6321 * Flush the unicast and multicast chains
6322 */
6323 dev_uc_flush(dev);
6324 dev_mc_flush(dev);
6325
6326 /* Actually switch the network namespace */
6327 dev_net_set(dev, net);
6328
6329 /* If there is an ifindex conflict assign a new one */
6330 if (__dev_get_by_index(net, dev->ifindex)) {
6331 int iflink = (dev->iflink == dev->ifindex);
6332 dev->ifindex = dev_new_index(net);
6333 if (iflink)
6334 dev->iflink = dev->ifindex;
6335 }
6336
6337 /* Fixup kobjects */
6338 err = device_rename(&dev->dev, dev->name);
6339 WARN_ON(err);
6340
6341 /* Add the device back in the hashes */
6342 list_netdevice(dev);
6343
6344 /* Notify protocols, that a new device appeared. */
6345 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6346
6347 /*
6348 * Prevent userspace races by waiting until the network
6349 * device is fully setup before sending notifications.
6350 */
6351 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6352
6353 synchronize_net();
6354 err = 0;
6355 out:
6356 return err;
6357 }
6358 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6359
6360 static int dev_cpu_callback(struct notifier_block *nfb,
6361 unsigned long action,
6362 void *ocpu)
6363 {
6364 struct sk_buff **list_skb;
6365 struct sk_buff *skb;
6366 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6367 struct softnet_data *sd, *oldsd;
6368
6369 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6370 return NOTIFY_OK;
6371
6372 local_irq_disable();
6373 cpu = smp_processor_id();
6374 sd = &per_cpu(softnet_data, cpu);
6375 oldsd = &per_cpu(softnet_data, oldcpu);
6376
6377 /* Find end of our completion_queue. */
6378 list_skb = &sd->completion_queue;
6379 while (*list_skb)
6380 list_skb = &(*list_skb)->next;
6381 /* Append completion queue from offline CPU. */
6382 *list_skb = oldsd->completion_queue;
6383 oldsd->completion_queue = NULL;
6384
6385 /* Append output queue from offline CPU. */
6386 if (oldsd->output_queue) {
6387 *sd->output_queue_tailp = oldsd->output_queue;
6388 sd->output_queue_tailp = oldsd->output_queue_tailp;
6389 oldsd->output_queue = NULL;
6390 oldsd->output_queue_tailp = &oldsd->output_queue;
6391 }
6392 /* Append NAPI poll list from offline CPU. */
6393 if (!list_empty(&oldsd->poll_list)) {
6394 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6395 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6396 }
6397
6398 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6399 local_irq_enable();
6400
6401 /* Process offline CPU's input_pkt_queue */
6402 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6403 netif_rx(skb);
6404 input_queue_head_incr(oldsd);
6405 }
6406 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6407 netif_rx(skb);
6408 input_queue_head_incr(oldsd);
6409 }
6410
6411 return NOTIFY_OK;
6412 }
6413
6414
6415 /**
6416 * netdev_increment_features - increment feature set by one
6417 * @all: current feature set
6418 * @one: new feature set
6419 * @mask: mask feature set
6420 *
6421 * Computes a new feature set after adding a device with feature set
6422 * @one to the master device with current feature set @all. Will not
6423 * enable anything that is off in @mask. Returns the new feature set.
6424 */
6425 netdev_features_t netdev_increment_features(netdev_features_t all,
6426 netdev_features_t one, netdev_features_t mask)
6427 {
6428 if (mask & NETIF_F_GEN_CSUM)
6429 mask |= NETIF_F_ALL_CSUM;
6430 mask |= NETIF_F_VLAN_CHALLENGED;
6431
6432 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6433 all &= one | ~NETIF_F_ALL_FOR_ALL;
6434
6435 /* If one device supports hw checksumming, set for all. */
6436 if (all & NETIF_F_GEN_CSUM)
6437 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6438
6439 return all;
6440 }
6441 EXPORT_SYMBOL(netdev_increment_features);
6442
6443 static struct hlist_head *netdev_create_hash(void)
6444 {
6445 int i;
6446 struct hlist_head *hash;
6447
6448 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6449 if (hash != NULL)
6450 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6451 INIT_HLIST_HEAD(&hash[i]);
6452
6453 return hash;
6454 }
6455
6456 /* Initialize per network namespace state */
6457 static int __net_init netdev_init(struct net *net)
6458 {
6459 if (net != &init_net)
6460 INIT_LIST_HEAD(&net->dev_base_head);
6461
6462 net->dev_name_head = netdev_create_hash();
6463 if (net->dev_name_head == NULL)
6464 goto err_name;
6465
6466 net->dev_index_head = netdev_create_hash();
6467 if (net->dev_index_head == NULL)
6468 goto err_idx;
6469
6470 return 0;
6471
6472 err_idx:
6473 kfree(net->dev_name_head);
6474 err_name:
6475 return -ENOMEM;
6476 }
6477
6478 /**
6479 * netdev_drivername - network driver for the device
6480 * @dev: network device
6481 *
6482 * Determine network driver for device.
6483 */
6484 const char *netdev_drivername(const struct net_device *dev)
6485 {
6486 const struct device_driver *driver;
6487 const struct device *parent;
6488 const char *empty = "";
6489
6490 parent = dev->dev.parent;
6491 if (!parent)
6492 return empty;
6493
6494 driver = parent->driver;
6495 if (driver && driver->name)
6496 return driver->name;
6497 return empty;
6498 }
6499
6500 static int __netdev_printk(const char *level, const struct net_device *dev,
6501 struct va_format *vaf)
6502 {
6503 int r;
6504
6505 if (dev && dev->dev.parent) {
6506 r = dev_printk_emit(level[1] - '0',
6507 dev->dev.parent,
6508 "%s %s %s: %pV",
6509 dev_driver_string(dev->dev.parent),
6510 dev_name(dev->dev.parent),
6511 netdev_name(dev), vaf);
6512 } else if (dev) {
6513 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6514 } else {
6515 r = printk("%s(NULL net_device): %pV", level, vaf);
6516 }
6517
6518 return r;
6519 }
6520
6521 int netdev_printk(const char *level, const struct net_device *dev,
6522 const char *format, ...)
6523 {
6524 struct va_format vaf;
6525 va_list args;
6526 int r;
6527
6528 va_start(args, format);
6529
6530 vaf.fmt = format;
6531 vaf.va = &args;
6532
6533 r = __netdev_printk(level, dev, &vaf);
6534
6535 va_end(args);
6536
6537 return r;
6538 }
6539 EXPORT_SYMBOL(netdev_printk);
6540
6541 #define define_netdev_printk_level(func, level) \
6542 int func(const struct net_device *dev, const char *fmt, ...) \
6543 { \
6544 int r; \
6545 struct va_format vaf; \
6546 va_list args; \
6547 \
6548 va_start(args, fmt); \
6549 \
6550 vaf.fmt = fmt; \
6551 vaf.va = &args; \
6552 \
6553 r = __netdev_printk(level, dev, &vaf); \
6554 \
6555 va_end(args); \
6556 \
6557 return r; \
6558 } \
6559 EXPORT_SYMBOL(func);
6560
6561 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6562 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6563 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6564 define_netdev_printk_level(netdev_err, KERN_ERR);
6565 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6566 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6567 define_netdev_printk_level(netdev_info, KERN_INFO);
6568
6569 static void __net_exit netdev_exit(struct net *net)
6570 {
6571 kfree(net->dev_name_head);
6572 kfree(net->dev_index_head);
6573 }
6574
6575 static struct pernet_operations __net_initdata netdev_net_ops = {
6576 .init = netdev_init,
6577 .exit = netdev_exit,
6578 };
6579
6580 static void __net_exit default_device_exit(struct net *net)
6581 {
6582 struct net_device *dev, *aux;
6583 /*
6584 * Push all migratable network devices back to the
6585 * initial network namespace
6586 */
6587 rtnl_lock();
6588 for_each_netdev_safe(net, dev, aux) {
6589 int err;
6590 char fb_name[IFNAMSIZ];
6591
6592 /* Ignore unmoveable devices (i.e. loopback) */
6593 if (dev->features & NETIF_F_NETNS_LOCAL)
6594 continue;
6595
6596 /* Leave virtual devices for the generic cleanup */
6597 if (dev->rtnl_link_ops)
6598 continue;
6599
6600 /* Push remaining network devices to init_net */
6601 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6602 err = dev_change_net_namespace(dev, &init_net, fb_name);
6603 if (err) {
6604 pr_emerg("%s: failed to move %s to init_net: %d\n",
6605 __func__, dev->name, err);
6606 BUG();
6607 }
6608 }
6609 rtnl_unlock();
6610 }
6611
6612 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6613 {
6614 /* At exit all network devices most be removed from a network
6615 * namespace. Do this in the reverse order of registration.
6616 * Do this across as many network namespaces as possible to
6617 * improve batching efficiency.
6618 */
6619 struct net_device *dev;
6620 struct net *net;
6621 LIST_HEAD(dev_kill_list);
6622
6623 rtnl_lock();
6624 list_for_each_entry(net, net_list, exit_list) {
6625 for_each_netdev_reverse(net, dev) {
6626 if (dev->rtnl_link_ops)
6627 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6628 else
6629 unregister_netdevice_queue(dev, &dev_kill_list);
6630 }
6631 }
6632 unregister_netdevice_many(&dev_kill_list);
6633 list_del(&dev_kill_list);
6634 rtnl_unlock();
6635 }
6636
6637 static struct pernet_operations __net_initdata default_device_ops = {
6638 .exit = default_device_exit,
6639 .exit_batch = default_device_exit_batch,
6640 };
6641
6642 /*
6643 * Initialize the DEV module. At boot time this walks the device list and
6644 * unhooks any devices that fail to initialise (normally hardware not
6645 * present) and leaves us with a valid list of present and active devices.
6646 *
6647 */
6648
6649 /*
6650 * This is called single threaded during boot, so no need
6651 * to take the rtnl semaphore.
6652 */
6653 static int __init net_dev_init(void)
6654 {
6655 int i, rc = -ENOMEM;
6656
6657 BUG_ON(!dev_boot_phase);
6658
6659 if (dev_proc_init())
6660 goto out;
6661
6662 if (netdev_kobject_init())
6663 goto out;
6664
6665 INIT_LIST_HEAD(&ptype_all);
6666 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6667 INIT_LIST_HEAD(&ptype_base[i]);
6668
6669 if (register_pernet_subsys(&netdev_net_ops))
6670 goto out;
6671
6672 /*
6673 * Initialise the packet receive queues.
6674 */
6675
6676 for_each_possible_cpu(i) {
6677 struct softnet_data *sd = &per_cpu(softnet_data, i);
6678
6679 memset(sd, 0, sizeof(*sd));
6680 skb_queue_head_init(&sd->input_pkt_queue);
6681 skb_queue_head_init(&sd->process_queue);
6682 sd->completion_queue = NULL;
6683 INIT_LIST_HEAD(&sd->poll_list);
6684 sd->output_queue = NULL;
6685 sd->output_queue_tailp = &sd->output_queue;
6686 #ifdef CONFIG_RPS
6687 sd->csd.func = rps_trigger_softirq;
6688 sd->csd.info = sd;
6689 sd->csd.flags = 0;
6690 sd->cpu = i;
6691 #endif
6692
6693 sd->backlog.poll = process_backlog;
6694 sd->backlog.weight = weight_p;
6695 sd->backlog.gro_list = NULL;
6696 sd->backlog.gro_count = 0;
6697 }
6698
6699 dev_boot_phase = 0;
6700
6701 /* The loopback device is special if any other network devices
6702 * is present in a network namespace the loopback device must
6703 * be present. Since we now dynamically allocate and free the
6704 * loopback device ensure this invariant is maintained by
6705 * keeping the loopback device as the first device on the
6706 * list of network devices. Ensuring the loopback devices
6707 * is the first device that appears and the last network device
6708 * that disappears.
6709 */
6710 if (register_pernet_device(&loopback_net_ops))
6711 goto out;
6712
6713 if (register_pernet_device(&default_device_ops))
6714 goto out;
6715
6716 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6717 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6718
6719 hotcpu_notifier(dev_cpu_callback, 0);
6720 dst_init();
6721 dev_mcast_init();
6722 rc = 0;
6723 out:
6724 return rc;
6725 }
6726
6727 subsys_initcall(net_dev_init);
6728
6729 static int __init initialize_hashrnd(void)
6730 {
6731 get_random_bytes(&hashrnd, sizeof(hashrnd));
6732 return 0;
6733 }
6734
6735 late_initcall_sync(initialize_hashrnd);
6736
This page took 0.325303 seconds and 5 git commands to generate.