net: netif_rx() must disable preemption
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *queue)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&queue->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *queue)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&queue->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043 }
1044
1045 /**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 {
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074 }
1075
1076
1077 /**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083 void netdev_features_change(struct net_device *dev)
1084 {
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 }
1087 EXPORT_SYMBOL(netdev_features_change);
1088
1089 /**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097 void netdev_state_change(struct net_device *dev)
1098 {
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103 }
1104 EXPORT_SYMBOL(netdev_state_change);
1105
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 {
1108 return call_netdevice_notifiers(event, dev);
1109 }
1110 EXPORT_SYMBOL(netdev_bonding_change);
1111
1112 /**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122 void dev_load(struct net *net, const char *name)
1123 {
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292 int dev_close(struct net_device *dev)
1293 {
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403 }
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406 /**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 {
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424 }
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427 /**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 {
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444 void net_enable_timestamp(void)
1445 {
1446 atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449
1450 void net_disable_timestamp(void)
1451 {
1452 atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455
1456 static inline void net_timestamp(struct sk_buff *skb)
1457 {
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462 }
1463
1464 /**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483 {
1484 skb_orphan(skb);
1485
1486 if (!(dev->flags & IFF_UP))
1487 return NET_RX_DROP;
1488
1489 if (skb->len > (dev->mtu + dev->hard_header_len))
1490 return NET_RX_DROP;
1491
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500 /*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 {
1507 struct packet_type *ptype;
1508
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp(skb);
1512 #else
1513 net_timestamp(skb);
1514 #endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 skb2->protocol, dev->name);
1540 skb_reset_network_header(skb2);
1541 }
1542
1543 skb2->transport_header = skb2->network_header;
1544 skb2->pkt_type = PACKET_OUTGOING;
1545 ptype->func(skb2, skb->dev, ptype, skb->dev);
1546 }
1547 }
1548 rcu_read_unlock();
1549 }
1550
1551
1552 static inline void __netif_reschedule(struct Qdisc *q)
1553 {
1554 struct softnet_data *sd;
1555 unsigned long flags;
1556
1557 local_irq_save(flags);
1558 sd = &__get_cpu_var(softnet_data);
1559 q->next_sched = sd->output_queue;
1560 sd->output_queue = q;
1561 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1562 local_irq_restore(flags);
1563 }
1564
1565 void __netif_schedule(struct Qdisc *q)
1566 {
1567 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1568 __netif_reschedule(q);
1569 }
1570 EXPORT_SYMBOL(__netif_schedule);
1571
1572 void dev_kfree_skb_irq(struct sk_buff *skb)
1573 {
1574 if (atomic_dec_and_test(&skb->users)) {
1575 struct softnet_data *sd;
1576 unsigned long flags;
1577
1578 local_irq_save(flags);
1579 sd = &__get_cpu_var(softnet_data);
1580 skb->next = sd->completion_queue;
1581 sd->completion_queue = skb;
1582 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1583 local_irq_restore(flags);
1584 }
1585 }
1586 EXPORT_SYMBOL(dev_kfree_skb_irq);
1587
1588 void dev_kfree_skb_any(struct sk_buff *skb)
1589 {
1590 if (in_irq() || irqs_disabled())
1591 dev_kfree_skb_irq(skb);
1592 else
1593 dev_kfree_skb(skb);
1594 }
1595 EXPORT_SYMBOL(dev_kfree_skb_any);
1596
1597
1598 /**
1599 * netif_device_detach - mark device as removed
1600 * @dev: network device
1601 *
1602 * Mark device as removed from system and therefore no longer available.
1603 */
1604 void netif_device_detach(struct net_device *dev)
1605 {
1606 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1607 netif_running(dev)) {
1608 netif_tx_stop_all_queues(dev);
1609 }
1610 }
1611 EXPORT_SYMBOL(netif_device_detach);
1612
1613 /**
1614 * netif_device_attach - mark device as attached
1615 * @dev: network device
1616 *
1617 * Mark device as attached from system and restart if needed.
1618 */
1619 void netif_device_attach(struct net_device *dev)
1620 {
1621 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1622 netif_running(dev)) {
1623 netif_tx_wake_all_queues(dev);
1624 __netdev_watchdog_up(dev);
1625 }
1626 }
1627 EXPORT_SYMBOL(netif_device_attach);
1628
1629 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1630 {
1631 return ((features & NETIF_F_GEN_CSUM) ||
1632 ((features & NETIF_F_IP_CSUM) &&
1633 protocol == htons(ETH_P_IP)) ||
1634 ((features & NETIF_F_IPV6_CSUM) &&
1635 protocol == htons(ETH_P_IPV6)) ||
1636 ((features & NETIF_F_FCOE_CRC) &&
1637 protocol == htons(ETH_P_FCOE)));
1638 }
1639
1640 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1641 {
1642 if (can_checksum_protocol(dev->features, skb->protocol))
1643 return true;
1644
1645 if (skb->protocol == htons(ETH_P_8021Q)) {
1646 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1647 if (can_checksum_protocol(dev->features & dev->vlan_features,
1648 veh->h_vlan_encapsulated_proto))
1649 return true;
1650 }
1651
1652 return false;
1653 }
1654
1655 /**
1656 * skb_dev_set -- assign a new device to a buffer
1657 * @skb: buffer for the new device
1658 * @dev: network device
1659 *
1660 * If an skb is owned by a device already, we have to reset
1661 * all data private to the namespace a device belongs to
1662 * before assigning it a new device.
1663 */
1664 #ifdef CONFIG_NET_NS
1665 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1666 {
1667 skb_dst_drop(skb);
1668 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1669 secpath_reset(skb);
1670 nf_reset(skb);
1671 skb_init_secmark(skb);
1672 skb->mark = 0;
1673 skb->priority = 0;
1674 skb->nf_trace = 0;
1675 skb->ipvs_property = 0;
1676 #ifdef CONFIG_NET_SCHED
1677 skb->tc_index = 0;
1678 #endif
1679 }
1680 skb->dev = dev;
1681 }
1682 EXPORT_SYMBOL(skb_set_dev);
1683 #endif /* CONFIG_NET_NS */
1684
1685 /*
1686 * Invalidate hardware checksum when packet is to be mangled, and
1687 * complete checksum manually on outgoing path.
1688 */
1689 int skb_checksum_help(struct sk_buff *skb)
1690 {
1691 __wsum csum;
1692 int ret = 0, offset;
1693
1694 if (skb->ip_summed == CHECKSUM_COMPLETE)
1695 goto out_set_summed;
1696
1697 if (unlikely(skb_shinfo(skb)->gso_size)) {
1698 /* Let GSO fix up the checksum. */
1699 goto out_set_summed;
1700 }
1701
1702 offset = skb->csum_start - skb_headroom(skb);
1703 BUG_ON(offset >= skb_headlen(skb));
1704 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1705
1706 offset += skb->csum_offset;
1707 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1708
1709 if (skb_cloned(skb) &&
1710 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1711 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1712 if (ret)
1713 goto out;
1714 }
1715
1716 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1717 out_set_summed:
1718 skb->ip_summed = CHECKSUM_NONE;
1719 out:
1720 return ret;
1721 }
1722 EXPORT_SYMBOL(skb_checksum_help);
1723
1724 /**
1725 * skb_gso_segment - Perform segmentation on skb.
1726 * @skb: buffer to segment
1727 * @features: features for the output path (see dev->features)
1728 *
1729 * This function segments the given skb and returns a list of segments.
1730 *
1731 * It may return NULL if the skb requires no segmentation. This is
1732 * only possible when GSO is used for verifying header integrity.
1733 */
1734 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1735 {
1736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1737 struct packet_type *ptype;
1738 __be16 type = skb->protocol;
1739 int err;
1740
1741 skb_reset_mac_header(skb);
1742 skb->mac_len = skb->network_header - skb->mac_header;
1743 __skb_pull(skb, skb->mac_len);
1744
1745 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1746 struct net_device *dev = skb->dev;
1747 struct ethtool_drvinfo info = {};
1748
1749 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1750 dev->ethtool_ops->get_drvinfo(dev, &info);
1751
1752 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1753 "ip_summed=%d",
1754 info.driver, dev ? dev->features : 0L,
1755 skb->sk ? skb->sk->sk_route_caps : 0L,
1756 skb->len, skb->data_len, skb->ip_summed);
1757
1758 if (skb_header_cloned(skb) &&
1759 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1760 return ERR_PTR(err);
1761 }
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype,
1765 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1766 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1767 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1768 err = ptype->gso_send_check(skb);
1769 segs = ERR_PTR(err);
1770 if (err || skb_gso_ok(skb, features))
1771 break;
1772 __skb_push(skb, (skb->data -
1773 skb_network_header(skb)));
1774 }
1775 segs = ptype->gso_segment(skb, features);
1776 break;
1777 }
1778 }
1779 rcu_read_unlock();
1780
1781 __skb_push(skb, skb->data - skb_mac_header(skb));
1782
1783 return segs;
1784 }
1785 EXPORT_SYMBOL(skb_gso_segment);
1786
1787 /* Take action when hardware reception checksum errors are detected. */
1788 #ifdef CONFIG_BUG
1789 void netdev_rx_csum_fault(struct net_device *dev)
1790 {
1791 if (net_ratelimit()) {
1792 printk(KERN_ERR "%s: hw csum failure.\n",
1793 dev ? dev->name : "<unknown>");
1794 dump_stack();
1795 }
1796 }
1797 EXPORT_SYMBOL(netdev_rx_csum_fault);
1798 #endif
1799
1800 /* Actually, we should eliminate this check as soon as we know, that:
1801 * 1. IOMMU is present and allows to map all the memory.
1802 * 2. No high memory really exists on this machine.
1803 */
1804
1805 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1806 {
1807 #ifdef CONFIG_HIGHMEM
1808 int i;
1809 if (!(dev->features & NETIF_F_HIGHDMA)) {
1810 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1811 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1812 return 1;
1813 }
1814
1815 if (PCI_DMA_BUS_IS_PHYS) {
1816 struct device *pdev = dev->dev.parent;
1817
1818 if (!pdev)
1819 return 0;
1820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1821 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1822 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1823 return 1;
1824 }
1825 }
1826 #endif
1827 return 0;
1828 }
1829
1830 struct dev_gso_cb {
1831 void (*destructor)(struct sk_buff *skb);
1832 };
1833
1834 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1835
1836 static void dev_gso_skb_destructor(struct sk_buff *skb)
1837 {
1838 struct dev_gso_cb *cb;
1839
1840 do {
1841 struct sk_buff *nskb = skb->next;
1842
1843 skb->next = nskb->next;
1844 nskb->next = NULL;
1845 kfree_skb(nskb);
1846 } while (skb->next);
1847
1848 cb = DEV_GSO_CB(skb);
1849 if (cb->destructor)
1850 cb->destructor(skb);
1851 }
1852
1853 /**
1854 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1855 * @skb: buffer to segment
1856 *
1857 * This function segments the given skb and stores the list of segments
1858 * in skb->next.
1859 */
1860 static int dev_gso_segment(struct sk_buff *skb)
1861 {
1862 struct net_device *dev = skb->dev;
1863 struct sk_buff *segs;
1864 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1865 NETIF_F_SG : 0);
1866
1867 segs = skb_gso_segment(skb, features);
1868
1869 /* Verifying header integrity only. */
1870 if (!segs)
1871 return 0;
1872
1873 if (IS_ERR(segs))
1874 return PTR_ERR(segs);
1875
1876 skb->next = segs;
1877 DEV_GSO_CB(skb)->destructor = skb->destructor;
1878 skb->destructor = dev_gso_skb_destructor;
1879
1880 return 0;
1881 }
1882
1883 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1884 struct netdev_queue *txq)
1885 {
1886 const struct net_device_ops *ops = dev->netdev_ops;
1887 int rc = NETDEV_TX_OK;
1888
1889 if (likely(!skb->next)) {
1890 if (!list_empty(&ptype_all))
1891 dev_queue_xmit_nit(skb, dev);
1892
1893 if (netif_needs_gso(dev, skb)) {
1894 if (unlikely(dev_gso_segment(skb)))
1895 goto out_kfree_skb;
1896 if (skb->next)
1897 goto gso;
1898 }
1899
1900 /*
1901 * If device doesnt need skb->dst, release it right now while
1902 * its hot in this cpu cache
1903 */
1904 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1905 skb_dst_drop(skb);
1906
1907 rc = ops->ndo_start_xmit(skb, dev);
1908 if (rc == NETDEV_TX_OK)
1909 txq_trans_update(txq);
1910 /*
1911 * TODO: if skb_orphan() was called by
1912 * dev->hard_start_xmit() (for example, the unmodified
1913 * igb driver does that; bnx2 doesn't), then
1914 * skb_tx_software_timestamp() will be unable to send
1915 * back the time stamp.
1916 *
1917 * How can this be prevented? Always create another
1918 * reference to the socket before calling
1919 * dev->hard_start_xmit()? Prevent that skb_orphan()
1920 * does anything in dev->hard_start_xmit() by clearing
1921 * the skb destructor before the call and restoring it
1922 * afterwards, then doing the skb_orphan() ourselves?
1923 */
1924 return rc;
1925 }
1926
1927 gso:
1928 do {
1929 struct sk_buff *nskb = skb->next;
1930
1931 skb->next = nskb->next;
1932 nskb->next = NULL;
1933
1934 /*
1935 * If device doesnt need nskb->dst, release it right now while
1936 * its hot in this cpu cache
1937 */
1938 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1939 skb_dst_drop(nskb);
1940
1941 rc = ops->ndo_start_xmit(nskb, dev);
1942 if (unlikely(rc != NETDEV_TX_OK)) {
1943 if (rc & ~NETDEV_TX_MASK)
1944 goto out_kfree_gso_skb;
1945 nskb->next = skb->next;
1946 skb->next = nskb;
1947 return rc;
1948 }
1949 txq_trans_update(txq);
1950 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1951 return NETDEV_TX_BUSY;
1952 } while (skb->next);
1953
1954 out_kfree_gso_skb:
1955 if (likely(skb->next == NULL))
1956 skb->destructor = DEV_GSO_CB(skb)->destructor;
1957 out_kfree_skb:
1958 kfree_skb(skb);
1959 return rc;
1960 }
1961
1962 static u32 hashrnd __read_mostly;
1963
1964 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965 {
1966 u32 hash;
1967
1968 if (skb_rx_queue_recorded(skb)) {
1969 hash = skb_get_rx_queue(skb);
1970 while (unlikely(hash >= dev->real_num_tx_queues))
1971 hash -= dev->real_num_tx_queues;
1972 return hash;
1973 }
1974
1975 if (skb->sk && skb->sk->sk_hash)
1976 hash = skb->sk->sk_hash;
1977 else
1978 hash = skb->protocol;
1979
1980 hash = jhash_1word(hash, hashrnd);
1981
1982 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983 }
1984 EXPORT_SYMBOL(skb_tx_hash);
1985
1986 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987 {
1988 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1989 if (net_ratelimit()) {
1990 pr_warning("%s selects TX queue %d, but "
1991 "real number of TX queues is %d\n",
1992 dev->name, queue_index, dev->real_num_tx_queues);
1993 }
1994 return 0;
1995 }
1996 return queue_index;
1997 }
1998
1999 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2000 struct sk_buff *skb)
2001 {
2002 u16 queue_index;
2003 struct sock *sk = skb->sk;
2004
2005 if (sk_tx_queue_recorded(sk)) {
2006 queue_index = sk_tx_queue_get(sk);
2007 } else {
2008 const struct net_device_ops *ops = dev->netdev_ops;
2009
2010 if (ops->ndo_select_queue) {
2011 queue_index = ops->ndo_select_queue(dev, skb);
2012 queue_index = dev_cap_txqueue(dev, queue_index);
2013 } else {
2014 queue_index = 0;
2015 if (dev->real_num_tx_queues > 1)
2016 queue_index = skb_tx_hash(dev, skb);
2017
2018 if (sk && rcu_dereference_check(sk->sk_dst_cache, 1))
2019 sk_tx_queue_set(sk, queue_index);
2020 }
2021 }
2022
2023 skb_set_queue_mapping(skb, queue_index);
2024 return netdev_get_tx_queue(dev, queue_index);
2025 }
2026
2027 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2028 struct net_device *dev,
2029 struct netdev_queue *txq)
2030 {
2031 spinlock_t *root_lock = qdisc_lock(q);
2032 int rc;
2033
2034 spin_lock(root_lock);
2035 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2036 kfree_skb(skb);
2037 rc = NET_XMIT_DROP;
2038 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2039 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2040 /*
2041 * This is a work-conserving queue; there are no old skbs
2042 * waiting to be sent out; and the qdisc is not running -
2043 * xmit the skb directly.
2044 */
2045 __qdisc_update_bstats(q, skb->len);
2046 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2047 __qdisc_run(q);
2048 else
2049 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2050
2051 rc = NET_XMIT_SUCCESS;
2052 } else {
2053 rc = qdisc_enqueue_root(skb, q);
2054 qdisc_run(q);
2055 }
2056 spin_unlock(root_lock);
2057
2058 return rc;
2059 }
2060
2061 /*
2062 * Returns true if either:
2063 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2064 * 2. skb is fragmented and the device does not support SG, or if
2065 * at least one of fragments is in highmem and device does not
2066 * support DMA from it.
2067 */
2068 static inline int skb_needs_linearize(struct sk_buff *skb,
2069 struct net_device *dev)
2070 {
2071 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2072 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2073 illegal_highdma(dev, skb)));
2074 }
2075
2076 /**
2077 * dev_queue_xmit - transmit a buffer
2078 * @skb: buffer to transmit
2079 *
2080 * Queue a buffer for transmission to a network device. The caller must
2081 * have set the device and priority and built the buffer before calling
2082 * this function. The function can be called from an interrupt.
2083 *
2084 * A negative errno code is returned on a failure. A success does not
2085 * guarantee the frame will be transmitted as it may be dropped due
2086 * to congestion or traffic shaping.
2087 *
2088 * -----------------------------------------------------------------------------------
2089 * I notice this method can also return errors from the queue disciplines,
2090 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2091 * be positive.
2092 *
2093 * Regardless of the return value, the skb is consumed, so it is currently
2094 * difficult to retry a send to this method. (You can bump the ref count
2095 * before sending to hold a reference for retry if you are careful.)
2096 *
2097 * When calling this method, interrupts MUST be enabled. This is because
2098 * the BH enable code must have IRQs enabled so that it will not deadlock.
2099 * --BLG
2100 */
2101 int dev_queue_xmit(struct sk_buff *skb)
2102 {
2103 struct net_device *dev = skb->dev;
2104 struct netdev_queue *txq;
2105 struct Qdisc *q;
2106 int rc = -ENOMEM;
2107
2108 /* GSO will handle the following emulations directly. */
2109 if (netif_needs_gso(dev, skb))
2110 goto gso;
2111
2112 /* Convert a paged skb to linear, if required */
2113 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2114 goto out_kfree_skb;
2115
2116 /* If packet is not checksummed and device does not support
2117 * checksumming for this protocol, complete checksumming here.
2118 */
2119 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2120 skb_set_transport_header(skb, skb->csum_start -
2121 skb_headroom(skb));
2122 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2123 goto out_kfree_skb;
2124 }
2125
2126 gso:
2127 /* Disable soft irqs for various locks below. Also
2128 * stops preemption for RCU.
2129 */
2130 rcu_read_lock_bh();
2131
2132 txq = dev_pick_tx(dev, skb);
2133 q = rcu_dereference_bh(txq->qdisc);
2134
2135 #ifdef CONFIG_NET_CLS_ACT
2136 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2137 #endif
2138 if (q->enqueue) {
2139 rc = __dev_xmit_skb(skb, q, dev, txq);
2140 goto out;
2141 }
2142
2143 /* The device has no queue. Common case for software devices:
2144 loopback, all the sorts of tunnels...
2145
2146 Really, it is unlikely that netif_tx_lock protection is necessary
2147 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2148 counters.)
2149 However, it is possible, that they rely on protection
2150 made by us here.
2151
2152 Check this and shot the lock. It is not prone from deadlocks.
2153 Either shot noqueue qdisc, it is even simpler 8)
2154 */
2155 if (dev->flags & IFF_UP) {
2156 int cpu = smp_processor_id(); /* ok because BHs are off */
2157
2158 if (txq->xmit_lock_owner != cpu) {
2159
2160 HARD_TX_LOCK(dev, txq, cpu);
2161
2162 if (!netif_tx_queue_stopped(txq)) {
2163 rc = dev_hard_start_xmit(skb, dev, txq);
2164 if (dev_xmit_complete(rc)) {
2165 HARD_TX_UNLOCK(dev, txq);
2166 goto out;
2167 }
2168 }
2169 HARD_TX_UNLOCK(dev, txq);
2170 if (net_ratelimit())
2171 printk(KERN_CRIT "Virtual device %s asks to "
2172 "queue packet!\n", dev->name);
2173 } else {
2174 /* Recursion is detected! It is possible,
2175 * unfortunately */
2176 if (net_ratelimit())
2177 printk(KERN_CRIT "Dead loop on virtual device "
2178 "%s, fix it urgently!\n", dev->name);
2179 }
2180 }
2181
2182 rc = -ENETDOWN;
2183 rcu_read_unlock_bh();
2184
2185 out_kfree_skb:
2186 kfree_skb(skb);
2187 return rc;
2188 out:
2189 rcu_read_unlock_bh();
2190 return rc;
2191 }
2192 EXPORT_SYMBOL(dev_queue_xmit);
2193
2194
2195 /*=======================================================================
2196 Receiver routines
2197 =======================================================================*/
2198
2199 int netdev_max_backlog __read_mostly = 1000;
2200 int netdev_budget __read_mostly = 300;
2201 int weight_p __read_mostly = 64; /* old backlog weight */
2202
2203 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2204
2205 #ifdef CONFIG_RPS
2206 /*
2207 * get_rps_cpu is called from netif_receive_skb and returns the target
2208 * CPU from the RPS map of the receiving queue for a given skb.
2209 * rcu_read_lock must be held on entry.
2210 */
2211 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2212 {
2213 struct ipv6hdr *ip6;
2214 struct iphdr *ip;
2215 struct netdev_rx_queue *rxqueue;
2216 struct rps_map *map;
2217 int cpu = -1;
2218 u8 ip_proto;
2219 u32 addr1, addr2, ports, ihl;
2220
2221 if (skb_rx_queue_recorded(skb)) {
2222 u16 index = skb_get_rx_queue(skb);
2223 if (unlikely(index >= dev->num_rx_queues)) {
2224 if (net_ratelimit()) {
2225 pr_warning("%s received packet on queue "
2226 "%u, but number of RX queues is %u\n",
2227 dev->name, index, dev->num_rx_queues);
2228 }
2229 goto done;
2230 }
2231 rxqueue = dev->_rx + index;
2232 } else
2233 rxqueue = dev->_rx;
2234
2235 if (!rxqueue->rps_map)
2236 goto done;
2237
2238 if (skb->rxhash)
2239 goto got_hash; /* Skip hash computation on packet header */
2240
2241 switch (skb->protocol) {
2242 case __constant_htons(ETH_P_IP):
2243 if (!pskb_may_pull(skb, sizeof(*ip)))
2244 goto done;
2245
2246 ip = (struct iphdr *) skb->data;
2247 ip_proto = ip->protocol;
2248 addr1 = ip->saddr;
2249 addr2 = ip->daddr;
2250 ihl = ip->ihl;
2251 break;
2252 case __constant_htons(ETH_P_IPV6):
2253 if (!pskb_may_pull(skb, sizeof(*ip6)))
2254 goto done;
2255
2256 ip6 = (struct ipv6hdr *) skb->data;
2257 ip_proto = ip6->nexthdr;
2258 addr1 = ip6->saddr.s6_addr32[3];
2259 addr2 = ip6->daddr.s6_addr32[3];
2260 ihl = (40 >> 2);
2261 break;
2262 default:
2263 goto done;
2264 }
2265 ports = 0;
2266 switch (ip_proto) {
2267 case IPPROTO_TCP:
2268 case IPPROTO_UDP:
2269 case IPPROTO_DCCP:
2270 case IPPROTO_ESP:
2271 case IPPROTO_AH:
2272 case IPPROTO_SCTP:
2273 case IPPROTO_UDPLITE:
2274 if (pskb_may_pull(skb, (ihl * 4) + 4))
2275 ports = *((u32 *) (skb->data + (ihl * 4)));
2276 break;
2277
2278 default:
2279 break;
2280 }
2281
2282 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2283 if (!skb->rxhash)
2284 skb->rxhash = 1;
2285
2286 got_hash:
2287 map = rcu_dereference(rxqueue->rps_map);
2288 if (map) {
2289 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2290
2291 if (cpu_online(tcpu)) {
2292 cpu = tcpu;
2293 goto done;
2294 }
2295 }
2296
2297 done:
2298 return cpu;
2299 }
2300
2301 /*
2302 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2303 * to be sent to kick remote softirq processing. There are two masks since
2304 * the sending of IPIs must be done with interrupts enabled. The select field
2305 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2306 * select is flipped before net_rps_action is called while still under lock,
2307 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2308 * it without conflicting with enqueue_backlog operation.
2309 */
2310 struct rps_remote_softirq_cpus {
2311 cpumask_t mask[2];
2312 int select;
2313 };
2314 static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2315
2316 /* Called from hardirq (IPI) context */
2317 static void trigger_softirq(void *data)
2318 {
2319 struct softnet_data *queue = data;
2320 __napi_schedule(&queue->backlog);
2321 __get_cpu_var(netdev_rx_stat).received_rps++;
2322 }
2323 #endif /* CONFIG_SMP */
2324
2325 /*
2326 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2327 * queue (may be a remote CPU queue).
2328 */
2329 static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2330 {
2331 struct softnet_data *queue;
2332 unsigned long flags;
2333
2334 queue = &per_cpu(softnet_data, cpu);
2335
2336 local_irq_save(flags);
2337 __get_cpu_var(netdev_rx_stat).total++;
2338
2339 rps_lock(queue);
2340 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2341 if (queue->input_pkt_queue.qlen) {
2342 enqueue:
2343 __skb_queue_tail(&queue->input_pkt_queue, skb);
2344 rps_unlock(queue);
2345 local_irq_restore(flags);
2346 return NET_RX_SUCCESS;
2347 }
2348
2349 /* Schedule NAPI for backlog device */
2350 if (napi_schedule_prep(&queue->backlog)) {
2351 #ifdef CONFIG_RPS
2352 if (cpu != smp_processor_id()) {
2353 struct rps_remote_softirq_cpus *rcpus =
2354 &__get_cpu_var(rps_remote_softirq_cpus);
2355
2356 cpu_set(cpu, rcpus->mask[rcpus->select]);
2357 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2358 } else
2359 __napi_schedule(&queue->backlog);
2360 #else
2361 __napi_schedule(&queue->backlog);
2362 #endif
2363 }
2364 goto enqueue;
2365 }
2366
2367 rps_unlock(queue);
2368
2369 __get_cpu_var(netdev_rx_stat).dropped++;
2370 local_irq_restore(flags);
2371
2372 kfree_skb(skb);
2373 return NET_RX_DROP;
2374 }
2375
2376 /**
2377 * netif_rx - post buffer to the network code
2378 * @skb: buffer to post
2379 *
2380 * This function receives a packet from a device driver and queues it for
2381 * the upper (protocol) levels to process. It always succeeds. The buffer
2382 * may be dropped during processing for congestion control or by the
2383 * protocol layers.
2384 *
2385 * return values:
2386 * NET_RX_SUCCESS (no congestion)
2387 * NET_RX_DROP (packet was dropped)
2388 *
2389 */
2390
2391 int netif_rx(struct sk_buff *skb)
2392 {
2393 int ret;
2394
2395 /* if netpoll wants it, pretend we never saw it */
2396 if (netpoll_rx(skb))
2397 return NET_RX_DROP;
2398
2399 if (!skb->tstamp.tv64)
2400 net_timestamp(skb);
2401
2402 #ifdef CONFIG_RPS
2403 {
2404 int cpu;
2405
2406 rcu_read_lock();
2407 cpu = get_rps_cpu(skb->dev, skb);
2408 if (cpu < 0)
2409 cpu = smp_processor_id();
2410 ret = enqueue_to_backlog(skb, cpu);
2411 rcu_read_unlock();
2412 }
2413 #else
2414 ret = enqueue_to_backlog(skb, get_cpu());
2415 put_cpu();
2416 #endif
2417 return ret;
2418 }
2419 EXPORT_SYMBOL(netif_rx);
2420
2421 int netif_rx_ni(struct sk_buff *skb)
2422 {
2423 int err;
2424
2425 preempt_disable();
2426 err = netif_rx(skb);
2427 if (local_softirq_pending())
2428 do_softirq();
2429 preempt_enable();
2430
2431 return err;
2432 }
2433 EXPORT_SYMBOL(netif_rx_ni);
2434
2435 static void net_tx_action(struct softirq_action *h)
2436 {
2437 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2438
2439 if (sd->completion_queue) {
2440 struct sk_buff *clist;
2441
2442 local_irq_disable();
2443 clist = sd->completion_queue;
2444 sd->completion_queue = NULL;
2445 local_irq_enable();
2446
2447 while (clist) {
2448 struct sk_buff *skb = clist;
2449 clist = clist->next;
2450
2451 WARN_ON(atomic_read(&skb->users));
2452 __kfree_skb(skb);
2453 }
2454 }
2455
2456 if (sd->output_queue) {
2457 struct Qdisc *head;
2458
2459 local_irq_disable();
2460 head = sd->output_queue;
2461 sd->output_queue = NULL;
2462 local_irq_enable();
2463
2464 while (head) {
2465 struct Qdisc *q = head;
2466 spinlock_t *root_lock;
2467
2468 head = head->next_sched;
2469
2470 root_lock = qdisc_lock(q);
2471 if (spin_trylock(root_lock)) {
2472 smp_mb__before_clear_bit();
2473 clear_bit(__QDISC_STATE_SCHED,
2474 &q->state);
2475 qdisc_run(q);
2476 spin_unlock(root_lock);
2477 } else {
2478 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2479 &q->state)) {
2480 __netif_reschedule(q);
2481 } else {
2482 smp_mb__before_clear_bit();
2483 clear_bit(__QDISC_STATE_SCHED,
2484 &q->state);
2485 }
2486 }
2487 }
2488 }
2489 }
2490
2491 static inline int deliver_skb(struct sk_buff *skb,
2492 struct packet_type *pt_prev,
2493 struct net_device *orig_dev)
2494 {
2495 atomic_inc(&skb->users);
2496 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2497 }
2498
2499 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2500
2501 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2502 /* This hook is defined here for ATM LANE */
2503 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2504 unsigned char *addr) __read_mostly;
2505 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2506 #endif
2507
2508 /*
2509 * If bridge module is loaded call bridging hook.
2510 * returns NULL if packet was consumed.
2511 */
2512 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2513 struct sk_buff *skb) __read_mostly;
2514 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2515
2516 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2517 struct packet_type **pt_prev, int *ret,
2518 struct net_device *orig_dev)
2519 {
2520 struct net_bridge_port *port;
2521
2522 if (skb->pkt_type == PACKET_LOOPBACK ||
2523 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2524 return skb;
2525
2526 if (*pt_prev) {
2527 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2528 *pt_prev = NULL;
2529 }
2530
2531 return br_handle_frame_hook(port, skb);
2532 }
2533 #else
2534 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2535 #endif
2536
2537 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2538 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2539 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2540
2541 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2542 struct packet_type **pt_prev,
2543 int *ret,
2544 struct net_device *orig_dev)
2545 {
2546 if (skb->dev->macvlan_port == NULL)
2547 return skb;
2548
2549 if (*pt_prev) {
2550 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2551 *pt_prev = NULL;
2552 }
2553 return macvlan_handle_frame_hook(skb);
2554 }
2555 #else
2556 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2557 #endif
2558
2559 #ifdef CONFIG_NET_CLS_ACT
2560 /* TODO: Maybe we should just force sch_ingress to be compiled in
2561 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2562 * a compare and 2 stores extra right now if we dont have it on
2563 * but have CONFIG_NET_CLS_ACT
2564 * NOTE: This doesnt stop any functionality; if you dont have
2565 * the ingress scheduler, you just cant add policies on ingress.
2566 *
2567 */
2568 static int ing_filter(struct sk_buff *skb)
2569 {
2570 struct net_device *dev = skb->dev;
2571 u32 ttl = G_TC_RTTL(skb->tc_verd);
2572 struct netdev_queue *rxq;
2573 int result = TC_ACT_OK;
2574 struct Qdisc *q;
2575
2576 if (MAX_RED_LOOP < ttl++) {
2577 printk(KERN_WARNING
2578 "Redir loop detected Dropping packet (%d->%d)\n",
2579 skb->skb_iif, dev->ifindex);
2580 return TC_ACT_SHOT;
2581 }
2582
2583 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2584 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2585
2586 rxq = &dev->rx_queue;
2587
2588 q = rxq->qdisc;
2589 if (q != &noop_qdisc) {
2590 spin_lock(qdisc_lock(q));
2591 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2592 result = qdisc_enqueue_root(skb, q);
2593 spin_unlock(qdisc_lock(q));
2594 }
2595
2596 return result;
2597 }
2598
2599 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2600 struct packet_type **pt_prev,
2601 int *ret, struct net_device *orig_dev)
2602 {
2603 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2604 goto out;
2605
2606 if (*pt_prev) {
2607 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2608 *pt_prev = NULL;
2609 } else {
2610 /* Huh? Why does turning on AF_PACKET affect this? */
2611 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2612 }
2613
2614 switch (ing_filter(skb)) {
2615 case TC_ACT_SHOT:
2616 case TC_ACT_STOLEN:
2617 kfree_skb(skb);
2618 return NULL;
2619 }
2620
2621 out:
2622 skb->tc_verd = 0;
2623 return skb;
2624 }
2625 #endif
2626
2627 /*
2628 * netif_nit_deliver - deliver received packets to network taps
2629 * @skb: buffer
2630 *
2631 * This function is used to deliver incoming packets to network
2632 * taps. It should be used when the normal netif_receive_skb path
2633 * is bypassed, for example because of VLAN acceleration.
2634 */
2635 void netif_nit_deliver(struct sk_buff *skb)
2636 {
2637 struct packet_type *ptype;
2638
2639 if (list_empty(&ptype_all))
2640 return;
2641
2642 skb_reset_network_header(skb);
2643 skb_reset_transport_header(skb);
2644 skb->mac_len = skb->network_header - skb->mac_header;
2645
2646 rcu_read_lock();
2647 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2648 if (!ptype->dev || ptype->dev == skb->dev)
2649 deliver_skb(skb, ptype, skb->dev);
2650 }
2651 rcu_read_unlock();
2652 }
2653
2654 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2655 struct net_device *master)
2656 {
2657 if (skb->pkt_type == PACKET_HOST) {
2658 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2659
2660 memcpy(dest, master->dev_addr, ETH_ALEN);
2661 }
2662 }
2663
2664 /* On bonding slaves other than the currently active slave, suppress
2665 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2666 * ARP on active-backup slaves with arp_validate enabled.
2667 */
2668 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2669 {
2670 struct net_device *dev = skb->dev;
2671
2672 if (master->priv_flags & IFF_MASTER_ARPMON)
2673 dev->last_rx = jiffies;
2674
2675 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2676 /* Do address unmangle. The local destination address
2677 * will be always the one master has. Provides the right
2678 * functionality in a bridge.
2679 */
2680 skb_bond_set_mac_by_master(skb, master);
2681 }
2682
2683 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2684 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2685 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2686 return 0;
2687
2688 if (master->priv_flags & IFF_MASTER_ALB) {
2689 if (skb->pkt_type != PACKET_BROADCAST &&
2690 skb->pkt_type != PACKET_MULTICAST)
2691 return 0;
2692 }
2693 if (master->priv_flags & IFF_MASTER_8023AD &&
2694 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2695 return 0;
2696
2697 return 1;
2698 }
2699 return 0;
2700 }
2701 EXPORT_SYMBOL(__skb_bond_should_drop);
2702
2703 static int __netif_receive_skb(struct sk_buff *skb)
2704 {
2705 struct packet_type *ptype, *pt_prev;
2706 struct net_device *orig_dev;
2707 struct net_device *master;
2708 struct net_device *null_or_orig;
2709 struct net_device *null_or_bond;
2710 int ret = NET_RX_DROP;
2711 __be16 type;
2712
2713 if (!skb->tstamp.tv64)
2714 net_timestamp(skb);
2715
2716 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2717 return NET_RX_SUCCESS;
2718
2719 /* if we've gotten here through NAPI, check netpoll */
2720 if (netpoll_receive_skb(skb))
2721 return NET_RX_DROP;
2722
2723 if (!skb->skb_iif)
2724 skb->skb_iif = skb->dev->ifindex;
2725
2726 null_or_orig = NULL;
2727 orig_dev = skb->dev;
2728 master = ACCESS_ONCE(orig_dev->master);
2729 if (master) {
2730 if (skb_bond_should_drop(skb, master))
2731 null_or_orig = orig_dev; /* deliver only exact match */
2732 else
2733 skb->dev = master;
2734 }
2735
2736 __get_cpu_var(netdev_rx_stat).total++;
2737
2738 skb_reset_network_header(skb);
2739 skb_reset_transport_header(skb);
2740 skb->mac_len = skb->network_header - skb->mac_header;
2741
2742 pt_prev = NULL;
2743
2744 rcu_read_lock();
2745
2746 #ifdef CONFIG_NET_CLS_ACT
2747 if (skb->tc_verd & TC_NCLS) {
2748 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2749 goto ncls;
2750 }
2751 #endif
2752
2753 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2754 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2755 ptype->dev == orig_dev) {
2756 if (pt_prev)
2757 ret = deliver_skb(skb, pt_prev, orig_dev);
2758 pt_prev = ptype;
2759 }
2760 }
2761
2762 #ifdef CONFIG_NET_CLS_ACT
2763 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2764 if (!skb)
2765 goto out;
2766 ncls:
2767 #endif
2768
2769 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2770 if (!skb)
2771 goto out;
2772 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2773 if (!skb)
2774 goto out;
2775
2776 /*
2777 * Make sure frames received on VLAN interfaces stacked on
2778 * bonding interfaces still make their way to any base bonding
2779 * device that may have registered for a specific ptype. The
2780 * handler may have to adjust skb->dev and orig_dev.
2781 */
2782 null_or_bond = NULL;
2783 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2784 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2785 null_or_bond = vlan_dev_real_dev(skb->dev);
2786 }
2787
2788 type = skb->protocol;
2789 list_for_each_entry_rcu(ptype,
2790 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2791 if (ptype->type == type && (ptype->dev == null_or_orig ||
2792 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2793 ptype->dev == null_or_bond)) {
2794 if (pt_prev)
2795 ret = deliver_skb(skb, pt_prev, orig_dev);
2796 pt_prev = ptype;
2797 }
2798 }
2799
2800 if (pt_prev) {
2801 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2802 } else {
2803 kfree_skb(skb);
2804 /* Jamal, now you will not able to escape explaining
2805 * me how you were going to use this. :-)
2806 */
2807 ret = NET_RX_DROP;
2808 }
2809
2810 out:
2811 rcu_read_unlock();
2812 return ret;
2813 }
2814
2815 /**
2816 * netif_receive_skb - process receive buffer from network
2817 * @skb: buffer to process
2818 *
2819 * netif_receive_skb() is the main receive data processing function.
2820 * It always succeeds. The buffer may be dropped during processing
2821 * for congestion control or by the protocol layers.
2822 *
2823 * This function may only be called from softirq context and interrupts
2824 * should be enabled.
2825 *
2826 * Return values (usually ignored):
2827 * NET_RX_SUCCESS: no congestion
2828 * NET_RX_DROP: packet was dropped
2829 */
2830 int netif_receive_skb(struct sk_buff *skb)
2831 {
2832 #ifdef CONFIG_RPS
2833 int cpu;
2834
2835 cpu = get_rps_cpu(skb->dev, skb);
2836
2837 if (cpu < 0)
2838 return __netif_receive_skb(skb);
2839 else
2840 return enqueue_to_backlog(skb, cpu);
2841 #else
2842 return __netif_receive_skb(skb);
2843 #endif
2844 }
2845 EXPORT_SYMBOL(netif_receive_skb);
2846
2847 /* Network device is going away, flush any packets still pending */
2848 static void flush_backlog(void *arg)
2849 {
2850 struct net_device *dev = arg;
2851 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2852 struct sk_buff *skb, *tmp;
2853
2854 rps_lock(queue);
2855 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2856 if (skb->dev == dev) {
2857 __skb_unlink(skb, &queue->input_pkt_queue);
2858 kfree_skb(skb);
2859 }
2860 rps_unlock(queue);
2861 }
2862
2863 static int napi_gro_complete(struct sk_buff *skb)
2864 {
2865 struct packet_type *ptype;
2866 __be16 type = skb->protocol;
2867 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2868 int err = -ENOENT;
2869
2870 if (NAPI_GRO_CB(skb)->count == 1) {
2871 skb_shinfo(skb)->gso_size = 0;
2872 goto out;
2873 }
2874
2875 rcu_read_lock();
2876 list_for_each_entry_rcu(ptype, head, list) {
2877 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2878 continue;
2879
2880 err = ptype->gro_complete(skb);
2881 break;
2882 }
2883 rcu_read_unlock();
2884
2885 if (err) {
2886 WARN_ON(&ptype->list == head);
2887 kfree_skb(skb);
2888 return NET_RX_SUCCESS;
2889 }
2890
2891 out:
2892 return netif_receive_skb(skb);
2893 }
2894
2895 static void napi_gro_flush(struct napi_struct *napi)
2896 {
2897 struct sk_buff *skb, *next;
2898
2899 for (skb = napi->gro_list; skb; skb = next) {
2900 next = skb->next;
2901 skb->next = NULL;
2902 napi_gro_complete(skb);
2903 }
2904
2905 napi->gro_count = 0;
2906 napi->gro_list = NULL;
2907 }
2908
2909 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2910 {
2911 struct sk_buff **pp = NULL;
2912 struct packet_type *ptype;
2913 __be16 type = skb->protocol;
2914 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2915 int same_flow;
2916 int mac_len;
2917 enum gro_result ret;
2918
2919 if (!(skb->dev->features & NETIF_F_GRO))
2920 goto normal;
2921
2922 if (skb_is_gso(skb) || skb_has_frags(skb))
2923 goto normal;
2924
2925 rcu_read_lock();
2926 list_for_each_entry_rcu(ptype, head, list) {
2927 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2928 continue;
2929
2930 skb_set_network_header(skb, skb_gro_offset(skb));
2931 mac_len = skb->network_header - skb->mac_header;
2932 skb->mac_len = mac_len;
2933 NAPI_GRO_CB(skb)->same_flow = 0;
2934 NAPI_GRO_CB(skb)->flush = 0;
2935 NAPI_GRO_CB(skb)->free = 0;
2936
2937 pp = ptype->gro_receive(&napi->gro_list, skb);
2938 break;
2939 }
2940 rcu_read_unlock();
2941
2942 if (&ptype->list == head)
2943 goto normal;
2944
2945 same_flow = NAPI_GRO_CB(skb)->same_flow;
2946 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2947
2948 if (pp) {
2949 struct sk_buff *nskb = *pp;
2950
2951 *pp = nskb->next;
2952 nskb->next = NULL;
2953 napi_gro_complete(nskb);
2954 napi->gro_count--;
2955 }
2956
2957 if (same_flow)
2958 goto ok;
2959
2960 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2961 goto normal;
2962
2963 napi->gro_count++;
2964 NAPI_GRO_CB(skb)->count = 1;
2965 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2966 skb->next = napi->gro_list;
2967 napi->gro_list = skb;
2968 ret = GRO_HELD;
2969
2970 pull:
2971 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2972 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2973
2974 BUG_ON(skb->end - skb->tail < grow);
2975
2976 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2977
2978 skb->tail += grow;
2979 skb->data_len -= grow;
2980
2981 skb_shinfo(skb)->frags[0].page_offset += grow;
2982 skb_shinfo(skb)->frags[0].size -= grow;
2983
2984 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2985 put_page(skb_shinfo(skb)->frags[0].page);
2986 memmove(skb_shinfo(skb)->frags,
2987 skb_shinfo(skb)->frags + 1,
2988 --skb_shinfo(skb)->nr_frags);
2989 }
2990 }
2991
2992 ok:
2993 return ret;
2994
2995 normal:
2996 ret = GRO_NORMAL;
2997 goto pull;
2998 }
2999 EXPORT_SYMBOL(dev_gro_receive);
3000
3001 static gro_result_t
3002 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3003 {
3004 struct sk_buff *p;
3005
3006 if (netpoll_rx_on(skb))
3007 return GRO_NORMAL;
3008
3009 for (p = napi->gro_list; p; p = p->next) {
3010 NAPI_GRO_CB(p)->same_flow =
3011 (p->dev == skb->dev) &&
3012 !compare_ether_header(skb_mac_header(p),
3013 skb_gro_mac_header(skb));
3014 NAPI_GRO_CB(p)->flush = 0;
3015 }
3016
3017 return dev_gro_receive(napi, skb);
3018 }
3019
3020 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3021 {
3022 switch (ret) {
3023 case GRO_NORMAL:
3024 if (netif_receive_skb(skb))
3025 ret = GRO_DROP;
3026 break;
3027
3028 case GRO_DROP:
3029 case GRO_MERGED_FREE:
3030 kfree_skb(skb);
3031 break;
3032
3033 case GRO_HELD:
3034 case GRO_MERGED:
3035 break;
3036 }
3037
3038 return ret;
3039 }
3040 EXPORT_SYMBOL(napi_skb_finish);
3041
3042 void skb_gro_reset_offset(struct sk_buff *skb)
3043 {
3044 NAPI_GRO_CB(skb)->data_offset = 0;
3045 NAPI_GRO_CB(skb)->frag0 = NULL;
3046 NAPI_GRO_CB(skb)->frag0_len = 0;
3047
3048 if (skb->mac_header == skb->tail &&
3049 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3050 NAPI_GRO_CB(skb)->frag0 =
3051 page_address(skb_shinfo(skb)->frags[0].page) +
3052 skb_shinfo(skb)->frags[0].page_offset;
3053 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3054 }
3055 }
3056 EXPORT_SYMBOL(skb_gro_reset_offset);
3057
3058 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3059 {
3060 skb_gro_reset_offset(skb);
3061
3062 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3063 }
3064 EXPORT_SYMBOL(napi_gro_receive);
3065
3066 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3067 {
3068 __skb_pull(skb, skb_headlen(skb));
3069 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3070
3071 napi->skb = skb;
3072 }
3073 EXPORT_SYMBOL(napi_reuse_skb);
3074
3075 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3076 {
3077 struct sk_buff *skb = napi->skb;
3078
3079 if (!skb) {
3080 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3081 if (skb)
3082 napi->skb = skb;
3083 }
3084 return skb;
3085 }
3086 EXPORT_SYMBOL(napi_get_frags);
3087
3088 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3089 gro_result_t ret)
3090 {
3091 switch (ret) {
3092 case GRO_NORMAL:
3093 case GRO_HELD:
3094 skb->protocol = eth_type_trans(skb, skb->dev);
3095
3096 if (ret == GRO_HELD)
3097 skb_gro_pull(skb, -ETH_HLEN);
3098 else if (netif_receive_skb(skb))
3099 ret = GRO_DROP;
3100 break;
3101
3102 case GRO_DROP:
3103 case GRO_MERGED_FREE:
3104 napi_reuse_skb(napi, skb);
3105 break;
3106
3107 case GRO_MERGED:
3108 break;
3109 }
3110
3111 return ret;
3112 }
3113 EXPORT_SYMBOL(napi_frags_finish);
3114
3115 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3116 {
3117 struct sk_buff *skb = napi->skb;
3118 struct ethhdr *eth;
3119 unsigned int hlen;
3120 unsigned int off;
3121
3122 napi->skb = NULL;
3123
3124 skb_reset_mac_header(skb);
3125 skb_gro_reset_offset(skb);
3126
3127 off = skb_gro_offset(skb);
3128 hlen = off + sizeof(*eth);
3129 eth = skb_gro_header_fast(skb, off);
3130 if (skb_gro_header_hard(skb, hlen)) {
3131 eth = skb_gro_header_slow(skb, hlen, off);
3132 if (unlikely(!eth)) {
3133 napi_reuse_skb(napi, skb);
3134 skb = NULL;
3135 goto out;
3136 }
3137 }
3138
3139 skb_gro_pull(skb, sizeof(*eth));
3140
3141 /*
3142 * This works because the only protocols we care about don't require
3143 * special handling. We'll fix it up properly at the end.
3144 */
3145 skb->protocol = eth->h_proto;
3146
3147 out:
3148 return skb;
3149 }
3150 EXPORT_SYMBOL(napi_frags_skb);
3151
3152 gro_result_t napi_gro_frags(struct napi_struct *napi)
3153 {
3154 struct sk_buff *skb = napi_frags_skb(napi);
3155
3156 if (!skb)
3157 return GRO_DROP;
3158
3159 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3160 }
3161 EXPORT_SYMBOL(napi_gro_frags);
3162
3163 static int process_backlog(struct napi_struct *napi, int quota)
3164 {
3165 int work = 0;
3166 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3167 unsigned long start_time = jiffies;
3168
3169 napi->weight = weight_p;
3170 do {
3171 struct sk_buff *skb;
3172
3173 local_irq_disable();
3174 rps_lock(queue);
3175 skb = __skb_dequeue(&queue->input_pkt_queue);
3176 if (!skb) {
3177 __napi_complete(napi);
3178 rps_unlock(queue);
3179 local_irq_enable();
3180 break;
3181 }
3182 rps_unlock(queue);
3183 local_irq_enable();
3184
3185 __netif_receive_skb(skb);
3186 } while (++work < quota && jiffies == start_time);
3187
3188 return work;
3189 }
3190
3191 /**
3192 * __napi_schedule - schedule for receive
3193 * @n: entry to schedule
3194 *
3195 * The entry's receive function will be scheduled to run
3196 */
3197 void __napi_schedule(struct napi_struct *n)
3198 {
3199 unsigned long flags;
3200
3201 local_irq_save(flags);
3202 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3203 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3204 local_irq_restore(flags);
3205 }
3206 EXPORT_SYMBOL(__napi_schedule);
3207
3208 void __napi_complete(struct napi_struct *n)
3209 {
3210 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3211 BUG_ON(n->gro_list);
3212
3213 list_del(&n->poll_list);
3214 smp_mb__before_clear_bit();
3215 clear_bit(NAPI_STATE_SCHED, &n->state);
3216 }
3217 EXPORT_SYMBOL(__napi_complete);
3218
3219 void napi_complete(struct napi_struct *n)
3220 {
3221 unsigned long flags;
3222
3223 /*
3224 * don't let napi dequeue from the cpu poll list
3225 * just in case its running on a different cpu
3226 */
3227 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3228 return;
3229
3230 napi_gro_flush(n);
3231 local_irq_save(flags);
3232 __napi_complete(n);
3233 local_irq_restore(flags);
3234 }
3235 EXPORT_SYMBOL(napi_complete);
3236
3237 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3238 int (*poll)(struct napi_struct *, int), int weight)
3239 {
3240 INIT_LIST_HEAD(&napi->poll_list);
3241 napi->gro_count = 0;
3242 napi->gro_list = NULL;
3243 napi->skb = NULL;
3244 napi->poll = poll;
3245 napi->weight = weight;
3246 list_add(&napi->dev_list, &dev->napi_list);
3247 napi->dev = dev;
3248 #ifdef CONFIG_NETPOLL
3249 spin_lock_init(&napi->poll_lock);
3250 napi->poll_owner = -1;
3251 #endif
3252 set_bit(NAPI_STATE_SCHED, &napi->state);
3253 }
3254 EXPORT_SYMBOL(netif_napi_add);
3255
3256 void netif_napi_del(struct napi_struct *napi)
3257 {
3258 struct sk_buff *skb, *next;
3259
3260 list_del_init(&napi->dev_list);
3261 napi_free_frags(napi);
3262
3263 for (skb = napi->gro_list; skb; skb = next) {
3264 next = skb->next;
3265 skb->next = NULL;
3266 kfree_skb(skb);
3267 }
3268
3269 napi->gro_list = NULL;
3270 napi->gro_count = 0;
3271 }
3272 EXPORT_SYMBOL(netif_napi_del);
3273
3274 #ifdef CONFIG_RPS
3275 /*
3276 * net_rps_action sends any pending IPI's for rps. This is only called from
3277 * softirq and interrupts must be enabled.
3278 */
3279 static void net_rps_action(cpumask_t *mask)
3280 {
3281 int cpu;
3282
3283 /* Send pending IPI's to kick RPS processing on remote cpus. */
3284 for_each_cpu_mask_nr(cpu, *mask) {
3285 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3286 if (cpu_online(cpu))
3287 __smp_call_function_single(cpu, &queue->csd, 0);
3288 }
3289 cpus_clear(*mask);
3290 }
3291 #endif
3292
3293 static void net_rx_action(struct softirq_action *h)
3294 {
3295 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3296 unsigned long time_limit = jiffies + 2;
3297 int budget = netdev_budget;
3298 void *have;
3299 #ifdef CONFIG_RPS
3300 int select;
3301 struct rps_remote_softirq_cpus *rcpus;
3302 #endif
3303
3304 local_irq_disable();
3305
3306 while (!list_empty(list)) {
3307 struct napi_struct *n;
3308 int work, weight;
3309
3310 /* If softirq window is exhuasted then punt.
3311 * Allow this to run for 2 jiffies since which will allow
3312 * an average latency of 1.5/HZ.
3313 */
3314 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3315 goto softnet_break;
3316
3317 local_irq_enable();
3318
3319 /* Even though interrupts have been re-enabled, this
3320 * access is safe because interrupts can only add new
3321 * entries to the tail of this list, and only ->poll()
3322 * calls can remove this head entry from the list.
3323 */
3324 n = list_first_entry(list, struct napi_struct, poll_list);
3325
3326 have = netpoll_poll_lock(n);
3327
3328 weight = n->weight;
3329
3330 /* This NAPI_STATE_SCHED test is for avoiding a race
3331 * with netpoll's poll_napi(). Only the entity which
3332 * obtains the lock and sees NAPI_STATE_SCHED set will
3333 * actually make the ->poll() call. Therefore we avoid
3334 * accidently calling ->poll() when NAPI is not scheduled.
3335 */
3336 work = 0;
3337 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3338 work = n->poll(n, weight);
3339 trace_napi_poll(n);
3340 }
3341
3342 WARN_ON_ONCE(work > weight);
3343
3344 budget -= work;
3345
3346 local_irq_disable();
3347
3348 /* Drivers must not modify the NAPI state if they
3349 * consume the entire weight. In such cases this code
3350 * still "owns" the NAPI instance and therefore can
3351 * move the instance around on the list at-will.
3352 */
3353 if (unlikely(work == weight)) {
3354 if (unlikely(napi_disable_pending(n))) {
3355 local_irq_enable();
3356 napi_complete(n);
3357 local_irq_disable();
3358 } else
3359 list_move_tail(&n->poll_list, list);
3360 }
3361
3362 netpoll_poll_unlock(have);
3363 }
3364 out:
3365 #ifdef CONFIG_RPS
3366 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3367 select = rcpus->select;
3368 rcpus->select ^= 1;
3369
3370 local_irq_enable();
3371
3372 net_rps_action(&rcpus->mask[select]);
3373 #else
3374 local_irq_enable();
3375 #endif
3376
3377 #ifdef CONFIG_NET_DMA
3378 /*
3379 * There may not be any more sk_buffs coming right now, so push
3380 * any pending DMA copies to hardware
3381 */
3382 dma_issue_pending_all();
3383 #endif
3384
3385 return;
3386
3387 softnet_break:
3388 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3389 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3390 goto out;
3391 }
3392
3393 static gifconf_func_t *gifconf_list[NPROTO];
3394
3395 /**
3396 * register_gifconf - register a SIOCGIF handler
3397 * @family: Address family
3398 * @gifconf: Function handler
3399 *
3400 * Register protocol dependent address dumping routines. The handler
3401 * that is passed must not be freed or reused until it has been replaced
3402 * by another handler.
3403 */
3404 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3405 {
3406 if (family >= NPROTO)
3407 return -EINVAL;
3408 gifconf_list[family] = gifconf;
3409 return 0;
3410 }
3411 EXPORT_SYMBOL(register_gifconf);
3412
3413
3414 /*
3415 * Map an interface index to its name (SIOCGIFNAME)
3416 */
3417
3418 /*
3419 * We need this ioctl for efficient implementation of the
3420 * if_indextoname() function required by the IPv6 API. Without
3421 * it, we would have to search all the interfaces to find a
3422 * match. --pb
3423 */
3424
3425 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3426 {
3427 struct net_device *dev;
3428 struct ifreq ifr;
3429
3430 /*
3431 * Fetch the caller's info block.
3432 */
3433
3434 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3435 return -EFAULT;
3436
3437 rcu_read_lock();
3438 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3439 if (!dev) {
3440 rcu_read_unlock();
3441 return -ENODEV;
3442 }
3443
3444 strcpy(ifr.ifr_name, dev->name);
3445 rcu_read_unlock();
3446
3447 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3448 return -EFAULT;
3449 return 0;
3450 }
3451
3452 /*
3453 * Perform a SIOCGIFCONF call. This structure will change
3454 * size eventually, and there is nothing I can do about it.
3455 * Thus we will need a 'compatibility mode'.
3456 */
3457
3458 static int dev_ifconf(struct net *net, char __user *arg)
3459 {
3460 struct ifconf ifc;
3461 struct net_device *dev;
3462 char __user *pos;
3463 int len;
3464 int total;
3465 int i;
3466
3467 /*
3468 * Fetch the caller's info block.
3469 */
3470
3471 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3472 return -EFAULT;
3473
3474 pos = ifc.ifc_buf;
3475 len = ifc.ifc_len;
3476
3477 /*
3478 * Loop over the interfaces, and write an info block for each.
3479 */
3480
3481 total = 0;
3482 for_each_netdev(net, dev) {
3483 for (i = 0; i < NPROTO; i++) {
3484 if (gifconf_list[i]) {
3485 int done;
3486 if (!pos)
3487 done = gifconf_list[i](dev, NULL, 0);
3488 else
3489 done = gifconf_list[i](dev, pos + total,
3490 len - total);
3491 if (done < 0)
3492 return -EFAULT;
3493 total += done;
3494 }
3495 }
3496 }
3497
3498 /*
3499 * All done. Write the updated control block back to the caller.
3500 */
3501 ifc.ifc_len = total;
3502
3503 /*
3504 * Both BSD and Solaris return 0 here, so we do too.
3505 */
3506 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3507 }
3508
3509 #ifdef CONFIG_PROC_FS
3510 /*
3511 * This is invoked by the /proc filesystem handler to display a device
3512 * in detail.
3513 */
3514 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3515 __acquires(RCU)
3516 {
3517 struct net *net = seq_file_net(seq);
3518 loff_t off;
3519 struct net_device *dev;
3520
3521 rcu_read_lock();
3522 if (!*pos)
3523 return SEQ_START_TOKEN;
3524
3525 off = 1;
3526 for_each_netdev_rcu(net, dev)
3527 if (off++ == *pos)
3528 return dev;
3529
3530 return NULL;
3531 }
3532
3533 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3534 {
3535 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3536 first_net_device(seq_file_net(seq)) :
3537 next_net_device((struct net_device *)v);
3538
3539 ++*pos;
3540 return rcu_dereference(dev);
3541 }
3542
3543 void dev_seq_stop(struct seq_file *seq, void *v)
3544 __releases(RCU)
3545 {
3546 rcu_read_unlock();
3547 }
3548
3549 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3550 {
3551 const struct net_device_stats *stats = dev_get_stats(dev);
3552
3553 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3554 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3555 dev->name, stats->rx_bytes, stats->rx_packets,
3556 stats->rx_errors,
3557 stats->rx_dropped + stats->rx_missed_errors,
3558 stats->rx_fifo_errors,
3559 stats->rx_length_errors + stats->rx_over_errors +
3560 stats->rx_crc_errors + stats->rx_frame_errors,
3561 stats->rx_compressed, stats->multicast,
3562 stats->tx_bytes, stats->tx_packets,
3563 stats->tx_errors, stats->tx_dropped,
3564 stats->tx_fifo_errors, stats->collisions,
3565 stats->tx_carrier_errors +
3566 stats->tx_aborted_errors +
3567 stats->tx_window_errors +
3568 stats->tx_heartbeat_errors,
3569 stats->tx_compressed);
3570 }
3571
3572 /*
3573 * Called from the PROCfs module. This now uses the new arbitrary sized
3574 * /proc/net interface to create /proc/net/dev
3575 */
3576 static int dev_seq_show(struct seq_file *seq, void *v)
3577 {
3578 if (v == SEQ_START_TOKEN)
3579 seq_puts(seq, "Inter-| Receive "
3580 " | Transmit\n"
3581 " face |bytes packets errs drop fifo frame "
3582 "compressed multicast|bytes packets errs "
3583 "drop fifo colls carrier compressed\n");
3584 else
3585 dev_seq_printf_stats(seq, v);
3586 return 0;
3587 }
3588
3589 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3590 {
3591 struct netif_rx_stats *rc = NULL;
3592
3593 while (*pos < nr_cpu_ids)
3594 if (cpu_online(*pos)) {
3595 rc = &per_cpu(netdev_rx_stat, *pos);
3596 break;
3597 } else
3598 ++*pos;
3599 return rc;
3600 }
3601
3602 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3603 {
3604 return softnet_get_online(pos);
3605 }
3606
3607 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3608 {
3609 ++*pos;
3610 return softnet_get_online(pos);
3611 }
3612
3613 static void softnet_seq_stop(struct seq_file *seq, void *v)
3614 {
3615 }
3616
3617 static int softnet_seq_show(struct seq_file *seq, void *v)
3618 {
3619 struct netif_rx_stats *s = v;
3620
3621 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3622 s->total, s->dropped, s->time_squeeze, 0,
3623 0, 0, 0, 0, /* was fastroute */
3624 s->cpu_collision, s->received_rps);
3625 return 0;
3626 }
3627
3628 static const struct seq_operations dev_seq_ops = {
3629 .start = dev_seq_start,
3630 .next = dev_seq_next,
3631 .stop = dev_seq_stop,
3632 .show = dev_seq_show,
3633 };
3634
3635 static int dev_seq_open(struct inode *inode, struct file *file)
3636 {
3637 return seq_open_net(inode, file, &dev_seq_ops,
3638 sizeof(struct seq_net_private));
3639 }
3640
3641 static const struct file_operations dev_seq_fops = {
3642 .owner = THIS_MODULE,
3643 .open = dev_seq_open,
3644 .read = seq_read,
3645 .llseek = seq_lseek,
3646 .release = seq_release_net,
3647 };
3648
3649 static const struct seq_operations softnet_seq_ops = {
3650 .start = softnet_seq_start,
3651 .next = softnet_seq_next,
3652 .stop = softnet_seq_stop,
3653 .show = softnet_seq_show,
3654 };
3655
3656 static int softnet_seq_open(struct inode *inode, struct file *file)
3657 {
3658 return seq_open(file, &softnet_seq_ops);
3659 }
3660
3661 static const struct file_operations softnet_seq_fops = {
3662 .owner = THIS_MODULE,
3663 .open = softnet_seq_open,
3664 .read = seq_read,
3665 .llseek = seq_lseek,
3666 .release = seq_release,
3667 };
3668
3669 static void *ptype_get_idx(loff_t pos)
3670 {
3671 struct packet_type *pt = NULL;
3672 loff_t i = 0;
3673 int t;
3674
3675 list_for_each_entry_rcu(pt, &ptype_all, list) {
3676 if (i == pos)
3677 return pt;
3678 ++i;
3679 }
3680
3681 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3682 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3683 if (i == pos)
3684 return pt;
3685 ++i;
3686 }
3687 }
3688 return NULL;
3689 }
3690
3691 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3692 __acquires(RCU)
3693 {
3694 rcu_read_lock();
3695 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3696 }
3697
3698 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3699 {
3700 struct packet_type *pt;
3701 struct list_head *nxt;
3702 int hash;
3703
3704 ++*pos;
3705 if (v == SEQ_START_TOKEN)
3706 return ptype_get_idx(0);
3707
3708 pt = v;
3709 nxt = pt->list.next;
3710 if (pt->type == htons(ETH_P_ALL)) {
3711 if (nxt != &ptype_all)
3712 goto found;
3713 hash = 0;
3714 nxt = ptype_base[0].next;
3715 } else
3716 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3717
3718 while (nxt == &ptype_base[hash]) {
3719 if (++hash >= PTYPE_HASH_SIZE)
3720 return NULL;
3721 nxt = ptype_base[hash].next;
3722 }
3723 found:
3724 return list_entry(nxt, struct packet_type, list);
3725 }
3726
3727 static void ptype_seq_stop(struct seq_file *seq, void *v)
3728 __releases(RCU)
3729 {
3730 rcu_read_unlock();
3731 }
3732
3733 static int ptype_seq_show(struct seq_file *seq, void *v)
3734 {
3735 struct packet_type *pt = v;
3736
3737 if (v == SEQ_START_TOKEN)
3738 seq_puts(seq, "Type Device Function\n");
3739 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3740 if (pt->type == htons(ETH_P_ALL))
3741 seq_puts(seq, "ALL ");
3742 else
3743 seq_printf(seq, "%04x", ntohs(pt->type));
3744
3745 seq_printf(seq, " %-8s %pF\n",
3746 pt->dev ? pt->dev->name : "", pt->func);
3747 }
3748
3749 return 0;
3750 }
3751
3752 static const struct seq_operations ptype_seq_ops = {
3753 .start = ptype_seq_start,
3754 .next = ptype_seq_next,
3755 .stop = ptype_seq_stop,
3756 .show = ptype_seq_show,
3757 };
3758
3759 static int ptype_seq_open(struct inode *inode, struct file *file)
3760 {
3761 return seq_open_net(inode, file, &ptype_seq_ops,
3762 sizeof(struct seq_net_private));
3763 }
3764
3765 static const struct file_operations ptype_seq_fops = {
3766 .owner = THIS_MODULE,
3767 .open = ptype_seq_open,
3768 .read = seq_read,
3769 .llseek = seq_lseek,
3770 .release = seq_release_net,
3771 };
3772
3773
3774 static int __net_init dev_proc_net_init(struct net *net)
3775 {
3776 int rc = -ENOMEM;
3777
3778 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3779 goto out;
3780 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3781 goto out_dev;
3782 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3783 goto out_softnet;
3784
3785 if (wext_proc_init(net))
3786 goto out_ptype;
3787 rc = 0;
3788 out:
3789 return rc;
3790 out_ptype:
3791 proc_net_remove(net, "ptype");
3792 out_softnet:
3793 proc_net_remove(net, "softnet_stat");
3794 out_dev:
3795 proc_net_remove(net, "dev");
3796 goto out;
3797 }
3798
3799 static void __net_exit dev_proc_net_exit(struct net *net)
3800 {
3801 wext_proc_exit(net);
3802
3803 proc_net_remove(net, "ptype");
3804 proc_net_remove(net, "softnet_stat");
3805 proc_net_remove(net, "dev");
3806 }
3807
3808 static struct pernet_operations __net_initdata dev_proc_ops = {
3809 .init = dev_proc_net_init,
3810 .exit = dev_proc_net_exit,
3811 };
3812
3813 static int __init dev_proc_init(void)
3814 {
3815 return register_pernet_subsys(&dev_proc_ops);
3816 }
3817 #else
3818 #define dev_proc_init() 0
3819 #endif /* CONFIG_PROC_FS */
3820
3821
3822 /**
3823 * netdev_set_master - set up master/slave pair
3824 * @slave: slave device
3825 * @master: new master device
3826 *
3827 * Changes the master device of the slave. Pass %NULL to break the
3828 * bonding. The caller must hold the RTNL semaphore. On a failure
3829 * a negative errno code is returned. On success the reference counts
3830 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3831 * function returns zero.
3832 */
3833 int netdev_set_master(struct net_device *slave, struct net_device *master)
3834 {
3835 struct net_device *old = slave->master;
3836
3837 ASSERT_RTNL();
3838
3839 if (master) {
3840 if (old)
3841 return -EBUSY;
3842 dev_hold(master);
3843 }
3844
3845 slave->master = master;
3846
3847 if (old) {
3848 synchronize_net();
3849 dev_put(old);
3850 }
3851 if (master)
3852 slave->flags |= IFF_SLAVE;
3853 else
3854 slave->flags &= ~IFF_SLAVE;
3855
3856 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3857 return 0;
3858 }
3859 EXPORT_SYMBOL(netdev_set_master);
3860
3861 static void dev_change_rx_flags(struct net_device *dev, int flags)
3862 {
3863 const struct net_device_ops *ops = dev->netdev_ops;
3864
3865 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3866 ops->ndo_change_rx_flags(dev, flags);
3867 }
3868
3869 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3870 {
3871 unsigned short old_flags = dev->flags;
3872 uid_t uid;
3873 gid_t gid;
3874
3875 ASSERT_RTNL();
3876
3877 dev->flags |= IFF_PROMISC;
3878 dev->promiscuity += inc;
3879 if (dev->promiscuity == 0) {
3880 /*
3881 * Avoid overflow.
3882 * If inc causes overflow, untouch promisc and return error.
3883 */
3884 if (inc < 0)
3885 dev->flags &= ~IFF_PROMISC;
3886 else {
3887 dev->promiscuity -= inc;
3888 printk(KERN_WARNING "%s: promiscuity touches roof, "
3889 "set promiscuity failed, promiscuity feature "
3890 "of device might be broken.\n", dev->name);
3891 return -EOVERFLOW;
3892 }
3893 }
3894 if (dev->flags != old_flags) {
3895 printk(KERN_INFO "device %s %s promiscuous mode\n",
3896 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3897 "left");
3898 if (audit_enabled) {
3899 current_uid_gid(&uid, &gid);
3900 audit_log(current->audit_context, GFP_ATOMIC,
3901 AUDIT_ANOM_PROMISCUOUS,
3902 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3903 dev->name, (dev->flags & IFF_PROMISC),
3904 (old_flags & IFF_PROMISC),
3905 audit_get_loginuid(current),
3906 uid, gid,
3907 audit_get_sessionid(current));
3908 }
3909
3910 dev_change_rx_flags(dev, IFF_PROMISC);
3911 }
3912 return 0;
3913 }
3914
3915 /**
3916 * dev_set_promiscuity - update promiscuity count on a device
3917 * @dev: device
3918 * @inc: modifier
3919 *
3920 * Add or remove promiscuity from a device. While the count in the device
3921 * remains above zero the interface remains promiscuous. Once it hits zero
3922 * the device reverts back to normal filtering operation. A negative inc
3923 * value is used to drop promiscuity on the device.
3924 * Return 0 if successful or a negative errno code on error.
3925 */
3926 int dev_set_promiscuity(struct net_device *dev, int inc)
3927 {
3928 unsigned short old_flags = dev->flags;
3929 int err;
3930
3931 err = __dev_set_promiscuity(dev, inc);
3932 if (err < 0)
3933 return err;
3934 if (dev->flags != old_flags)
3935 dev_set_rx_mode(dev);
3936 return err;
3937 }
3938 EXPORT_SYMBOL(dev_set_promiscuity);
3939
3940 /**
3941 * dev_set_allmulti - update allmulti count on a device
3942 * @dev: device
3943 * @inc: modifier
3944 *
3945 * Add or remove reception of all multicast frames to a device. While the
3946 * count in the device remains above zero the interface remains listening
3947 * to all interfaces. Once it hits zero the device reverts back to normal
3948 * filtering operation. A negative @inc value is used to drop the counter
3949 * when releasing a resource needing all multicasts.
3950 * Return 0 if successful or a negative errno code on error.
3951 */
3952
3953 int dev_set_allmulti(struct net_device *dev, int inc)
3954 {
3955 unsigned short old_flags = dev->flags;
3956
3957 ASSERT_RTNL();
3958
3959 dev->flags |= IFF_ALLMULTI;
3960 dev->allmulti += inc;
3961 if (dev->allmulti == 0) {
3962 /*
3963 * Avoid overflow.
3964 * If inc causes overflow, untouch allmulti and return error.
3965 */
3966 if (inc < 0)
3967 dev->flags &= ~IFF_ALLMULTI;
3968 else {
3969 dev->allmulti -= inc;
3970 printk(KERN_WARNING "%s: allmulti touches roof, "
3971 "set allmulti failed, allmulti feature of "
3972 "device might be broken.\n", dev->name);
3973 return -EOVERFLOW;
3974 }
3975 }
3976 if (dev->flags ^ old_flags) {
3977 dev_change_rx_flags(dev, IFF_ALLMULTI);
3978 dev_set_rx_mode(dev);
3979 }
3980 return 0;
3981 }
3982 EXPORT_SYMBOL(dev_set_allmulti);
3983
3984 /*
3985 * Upload unicast and multicast address lists to device and
3986 * configure RX filtering. When the device doesn't support unicast
3987 * filtering it is put in promiscuous mode while unicast addresses
3988 * are present.
3989 */
3990 void __dev_set_rx_mode(struct net_device *dev)
3991 {
3992 const struct net_device_ops *ops = dev->netdev_ops;
3993
3994 /* dev_open will call this function so the list will stay sane. */
3995 if (!(dev->flags&IFF_UP))
3996 return;
3997
3998 if (!netif_device_present(dev))
3999 return;
4000
4001 if (ops->ndo_set_rx_mode)
4002 ops->ndo_set_rx_mode(dev);
4003 else {
4004 /* Unicast addresses changes may only happen under the rtnl,
4005 * therefore calling __dev_set_promiscuity here is safe.
4006 */
4007 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4008 __dev_set_promiscuity(dev, 1);
4009 dev->uc_promisc = 1;
4010 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4011 __dev_set_promiscuity(dev, -1);
4012 dev->uc_promisc = 0;
4013 }
4014
4015 if (ops->ndo_set_multicast_list)
4016 ops->ndo_set_multicast_list(dev);
4017 }
4018 }
4019
4020 void dev_set_rx_mode(struct net_device *dev)
4021 {
4022 netif_addr_lock_bh(dev);
4023 __dev_set_rx_mode(dev);
4024 netif_addr_unlock_bh(dev);
4025 }
4026
4027 /**
4028 * dev_get_flags - get flags reported to userspace
4029 * @dev: device
4030 *
4031 * Get the combination of flag bits exported through APIs to userspace.
4032 */
4033 unsigned dev_get_flags(const struct net_device *dev)
4034 {
4035 unsigned flags;
4036
4037 flags = (dev->flags & ~(IFF_PROMISC |
4038 IFF_ALLMULTI |
4039 IFF_RUNNING |
4040 IFF_LOWER_UP |
4041 IFF_DORMANT)) |
4042 (dev->gflags & (IFF_PROMISC |
4043 IFF_ALLMULTI));
4044
4045 if (netif_running(dev)) {
4046 if (netif_oper_up(dev))
4047 flags |= IFF_RUNNING;
4048 if (netif_carrier_ok(dev))
4049 flags |= IFF_LOWER_UP;
4050 if (netif_dormant(dev))
4051 flags |= IFF_DORMANT;
4052 }
4053
4054 return flags;
4055 }
4056 EXPORT_SYMBOL(dev_get_flags);
4057
4058 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4059 {
4060 int old_flags = dev->flags;
4061 int ret;
4062
4063 ASSERT_RTNL();
4064
4065 /*
4066 * Set the flags on our device.
4067 */
4068
4069 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4070 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4071 IFF_AUTOMEDIA)) |
4072 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4073 IFF_ALLMULTI));
4074
4075 /*
4076 * Load in the correct multicast list now the flags have changed.
4077 */
4078
4079 if ((old_flags ^ flags) & IFF_MULTICAST)
4080 dev_change_rx_flags(dev, IFF_MULTICAST);
4081
4082 dev_set_rx_mode(dev);
4083
4084 /*
4085 * Have we downed the interface. We handle IFF_UP ourselves
4086 * according to user attempts to set it, rather than blindly
4087 * setting it.
4088 */
4089
4090 ret = 0;
4091 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4092 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4093
4094 if (!ret)
4095 dev_set_rx_mode(dev);
4096 }
4097
4098 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4099 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4100
4101 dev->gflags ^= IFF_PROMISC;
4102 dev_set_promiscuity(dev, inc);
4103 }
4104
4105 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4106 is important. Some (broken) drivers set IFF_PROMISC, when
4107 IFF_ALLMULTI is requested not asking us and not reporting.
4108 */
4109 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4110 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4111
4112 dev->gflags ^= IFF_ALLMULTI;
4113 dev_set_allmulti(dev, inc);
4114 }
4115
4116 return ret;
4117 }
4118
4119 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4120 {
4121 unsigned int changes = dev->flags ^ old_flags;
4122
4123 if (changes & IFF_UP) {
4124 if (dev->flags & IFF_UP)
4125 call_netdevice_notifiers(NETDEV_UP, dev);
4126 else
4127 call_netdevice_notifiers(NETDEV_DOWN, dev);
4128 }
4129
4130 if (dev->flags & IFF_UP &&
4131 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4132 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4133 }
4134
4135 /**
4136 * dev_change_flags - change device settings
4137 * @dev: device
4138 * @flags: device state flags
4139 *
4140 * Change settings on device based state flags. The flags are
4141 * in the userspace exported format.
4142 */
4143 int dev_change_flags(struct net_device *dev, unsigned flags)
4144 {
4145 int ret, changes;
4146 int old_flags = dev->flags;
4147
4148 ret = __dev_change_flags(dev, flags);
4149 if (ret < 0)
4150 return ret;
4151
4152 changes = old_flags ^ dev->flags;
4153 if (changes)
4154 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4155
4156 __dev_notify_flags(dev, old_flags);
4157 return ret;
4158 }
4159 EXPORT_SYMBOL(dev_change_flags);
4160
4161 /**
4162 * dev_set_mtu - Change maximum transfer unit
4163 * @dev: device
4164 * @new_mtu: new transfer unit
4165 *
4166 * Change the maximum transfer size of the network device.
4167 */
4168 int dev_set_mtu(struct net_device *dev, int new_mtu)
4169 {
4170 const struct net_device_ops *ops = dev->netdev_ops;
4171 int err;
4172
4173 if (new_mtu == dev->mtu)
4174 return 0;
4175
4176 /* MTU must be positive. */
4177 if (new_mtu < 0)
4178 return -EINVAL;
4179
4180 if (!netif_device_present(dev))
4181 return -ENODEV;
4182
4183 err = 0;
4184 if (ops->ndo_change_mtu)
4185 err = ops->ndo_change_mtu(dev, new_mtu);
4186 else
4187 dev->mtu = new_mtu;
4188
4189 if (!err && dev->flags & IFF_UP)
4190 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4191 return err;
4192 }
4193 EXPORT_SYMBOL(dev_set_mtu);
4194
4195 /**
4196 * dev_set_mac_address - Change Media Access Control Address
4197 * @dev: device
4198 * @sa: new address
4199 *
4200 * Change the hardware (MAC) address of the device
4201 */
4202 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4203 {
4204 const struct net_device_ops *ops = dev->netdev_ops;
4205 int err;
4206
4207 if (!ops->ndo_set_mac_address)
4208 return -EOPNOTSUPP;
4209 if (sa->sa_family != dev->type)
4210 return -EINVAL;
4211 if (!netif_device_present(dev))
4212 return -ENODEV;
4213 err = ops->ndo_set_mac_address(dev, sa);
4214 if (!err)
4215 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4216 return err;
4217 }
4218 EXPORT_SYMBOL(dev_set_mac_address);
4219
4220 /*
4221 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4222 */
4223 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4224 {
4225 int err;
4226 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4227
4228 if (!dev)
4229 return -ENODEV;
4230
4231 switch (cmd) {
4232 case SIOCGIFFLAGS: /* Get interface flags */
4233 ifr->ifr_flags = (short) dev_get_flags(dev);
4234 return 0;
4235
4236 case SIOCGIFMETRIC: /* Get the metric on the interface
4237 (currently unused) */
4238 ifr->ifr_metric = 0;
4239 return 0;
4240
4241 case SIOCGIFMTU: /* Get the MTU of a device */
4242 ifr->ifr_mtu = dev->mtu;
4243 return 0;
4244
4245 case SIOCGIFHWADDR:
4246 if (!dev->addr_len)
4247 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4248 else
4249 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4250 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4251 ifr->ifr_hwaddr.sa_family = dev->type;
4252 return 0;
4253
4254 case SIOCGIFSLAVE:
4255 err = -EINVAL;
4256 break;
4257
4258 case SIOCGIFMAP:
4259 ifr->ifr_map.mem_start = dev->mem_start;
4260 ifr->ifr_map.mem_end = dev->mem_end;
4261 ifr->ifr_map.base_addr = dev->base_addr;
4262 ifr->ifr_map.irq = dev->irq;
4263 ifr->ifr_map.dma = dev->dma;
4264 ifr->ifr_map.port = dev->if_port;
4265 return 0;
4266
4267 case SIOCGIFINDEX:
4268 ifr->ifr_ifindex = dev->ifindex;
4269 return 0;
4270
4271 case SIOCGIFTXQLEN:
4272 ifr->ifr_qlen = dev->tx_queue_len;
4273 return 0;
4274
4275 default:
4276 /* dev_ioctl() should ensure this case
4277 * is never reached
4278 */
4279 WARN_ON(1);
4280 err = -EINVAL;
4281 break;
4282
4283 }
4284 return err;
4285 }
4286
4287 /*
4288 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4289 */
4290 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4291 {
4292 int err;
4293 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4294 const struct net_device_ops *ops;
4295
4296 if (!dev)
4297 return -ENODEV;
4298
4299 ops = dev->netdev_ops;
4300
4301 switch (cmd) {
4302 case SIOCSIFFLAGS: /* Set interface flags */
4303 return dev_change_flags(dev, ifr->ifr_flags);
4304
4305 case SIOCSIFMETRIC: /* Set the metric on the interface
4306 (currently unused) */
4307 return -EOPNOTSUPP;
4308
4309 case SIOCSIFMTU: /* Set the MTU of a device */
4310 return dev_set_mtu(dev, ifr->ifr_mtu);
4311
4312 case SIOCSIFHWADDR:
4313 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4314
4315 case SIOCSIFHWBROADCAST:
4316 if (ifr->ifr_hwaddr.sa_family != dev->type)
4317 return -EINVAL;
4318 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4319 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4320 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4321 return 0;
4322
4323 case SIOCSIFMAP:
4324 if (ops->ndo_set_config) {
4325 if (!netif_device_present(dev))
4326 return -ENODEV;
4327 return ops->ndo_set_config(dev, &ifr->ifr_map);
4328 }
4329 return -EOPNOTSUPP;
4330
4331 case SIOCADDMULTI:
4332 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4333 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4334 return -EINVAL;
4335 if (!netif_device_present(dev))
4336 return -ENODEV;
4337 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4338
4339 case SIOCDELMULTI:
4340 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4341 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4342 return -EINVAL;
4343 if (!netif_device_present(dev))
4344 return -ENODEV;
4345 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4346
4347 case SIOCSIFTXQLEN:
4348 if (ifr->ifr_qlen < 0)
4349 return -EINVAL;
4350 dev->tx_queue_len = ifr->ifr_qlen;
4351 return 0;
4352
4353 case SIOCSIFNAME:
4354 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4355 return dev_change_name(dev, ifr->ifr_newname);
4356
4357 /*
4358 * Unknown or private ioctl
4359 */
4360 default:
4361 if ((cmd >= SIOCDEVPRIVATE &&
4362 cmd <= SIOCDEVPRIVATE + 15) ||
4363 cmd == SIOCBONDENSLAVE ||
4364 cmd == SIOCBONDRELEASE ||
4365 cmd == SIOCBONDSETHWADDR ||
4366 cmd == SIOCBONDSLAVEINFOQUERY ||
4367 cmd == SIOCBONDINFOQUERY ||
4368 cmd == SIOCBONDCHANGEACTIVE ||
4369 cmd == SIOCGMIIPHY ||
4370 cmd == SIOCGMIIREG ||
4371 cmd == SIOCSMIIREG ||
4372 cmd == SIOCBRADDIF ||
4373 cmd == SIOCBRDELIF ||
4374 cmd == SIOCSHWTSTAMP ||
4375 cmd == SIOCWANDEV) {
4376 err = -EOPNOTSUPP;
4377 if (ops->ndo_do_ioctl) {
4378 if (netif_device_present(dev))
4379 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4380 else
4381 err = -ENODEV;
4382 }
4383 } else
4384 err = -EINVAL;
4385
4386 }
4387 return err;
4388 }
4389
4390 /*
4391 * This function handles all "interface"-type I/O control requests. The actual
4392 * 'doing' part of this is dev_ifsioc above.
4393 */
4394
4395 /**
4396 * dev_ioctl - network device ioctl
4397 * @net: the applicable net namespace
4398 * @cmd: command to issue
4399 * @arg: pointer to a struct ifreq in user space
4400 *
4401 * Issue ioctl functions to devices. This is normally called by the
4402 * user space syscall interfaces but can sometimes be useful for
4403 * other purposes. The return value is the return from the syscall if
4404 * positive or a negative errno code on error.
4405 */
4406
4407 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4408 {
4409 struct ifreq ifr;
4410 int ret;
4411 char *colon;
4412
4413 /* One special case: SIOCGIFCONF takes ifconf argument
4414 and requires shared lock, because it sleeps writing
4415 to user space.
4416 */
4417
4418 if (cmd == SIOCGIFCONF) {
4419 rtnl_lock();
4420 ret = dev_ifconf(net, (char __user *) arg);
4421 rtnl_unlock();
4422 return ret;
4423 }
4424 if (cmd == SIOCGIFNAME)
4425 return dev_ifname(net, (struct ifreq __user *)arg);
4426
4427 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4428 return -EFAULT;
4429
4430 ifr.ifr_name[IFNAMSIZ-1] = 0;
4431
4432 colon = strchr(ifr.ifr_name, ':');
4433 if (colon)
4434 *colon = 0;
4435
4436 /*
4437 * See which interface the caller is talking about.
4438 */
4439
4440 switch (cmd) {
4441 /*
4442 * These ioctl calls:
4443 * - can be done by all.
4444 * - atomic and do not require locking.
4445 * - return a value
4446 */
4447 case SIOCGIFFLAGS:
4448 case SIOCGIFMETRIC:
4449 case SIOCGIFMTU:
4450 case SIOCGIFHWADDR:
4451 case SIOCGIFSLAVE:
4452 case SIOCGIFMAP:
4453 case SIOCGIFINDEX:
4454 case SIOCGIFTXQLEN:
4455 dev_load(net, ifr.ifr_name);
4456 rcu_read_lock();
4457 ret = dev_ifsioc_locked(net, &ifr, cmd);
4458 rcu_read_unlock();
4459 if (!ret) {
4460 if (colon)
4461 *colon = ':';
4462 if (copy_to_user(arg, &ifr,
4463 sizeof(struct ifreq)))
4464 ret = -EFAULT;
4465 }
4466 return ret;
4467
4468 case SIOCETHTOOL:
4469 dev_load(net, ifr.ifr_name);
4470 rtnl_lock();
4471 ret = dev_ethtool(net, &ifr);
4472 rtnl_unlock();
4473 if (!ret) {
4474 if (colon)
4475 *colon = ':';
4476 if (copy_to_user(arg, &ifr,
4477 sizeof(struct ifreq)))
4478 ret = -EFAULT;
4479 }
4480 return ret;
4481
4482 /*
4483 * These ioctl calls:
4484 * - require superuser power.
4485 * - require strict serialization.
4486 * - return a value
4487 */
4488 case SIOCGMIIPHY:
4489 case SIOCGMIIREG:
4490 case SIOCSIFNAME:
4491 if (!capable(CAP_NET_ADMIN))
4492 return -EPERM;
4493 dev_load(net, ifr.ifr_name);
4494 rtnl_lock();
4495 ret = dev_ifsioc(net, &ifr, cmd);
4496 rtnl_unlock();
4497 if (!ret) {
4498 if (colon)
4499 *colon = ':';
4500 if (copy_to_user(arg, &ifr,
4501 sizeof(struct ifreq)))
4502 ret = -EFAULT;
4503 }
4504 return ret;
4505
4506 /*
4507 * These ioctl calls:
4508 * - require superuser power.
4509 * - require strict serialization.
4510 * - do not return a value
4511 */
4512 case SIOCSIFFLAGS:
4513 case SIOCSIFMETRIC:
4514 case SIOCSIFMTU:
4515 case SIOCSIFMAP:
4516 case SIOCSIFHWADDR:
4517 case SIOCSIFSLAVE:
4518 case SIOCADDMULTI:
4519 case SIOCDELMULTI:
4520 case SIOCSIFHWBROADCAST:
4521 case SIOCSIFTXQLEN:
4522 case SIOCSMIIREG:
4523 case SIOCBONDENSLAVE:
4524 case SIOCBONDRELEASE:
4525 case SIOCBONDSETHWADDR:
4526 case SIOCBONDCHANGEACTIVE:
4527 case SIOCBRADDIF:
4528 case SIOCBRDELIF:
4529 case SIOCSHWTSTAMP:
4530 if (!capable(CAP_NET_ADMIN))
4531 return -EPERM;
4532 /* fall through */
4533 case SIOCBONDSLAVEINFOQUERY:
4534 case SIOCBONDINFOQUERY:
4535 dev_load(net, ifr.ifr_name);
4536 rtnl_lock();
4537 ret = dev_ifsioc(net, &ifr, cmd);
4538 rtnl_unlock();
4539 return ret;
4540
4541 case SIOCGIFMEM:
4542 /* Get the per device memory space. We can add this but
4543 * currently do not support it */
4544 case SIOCSIFMEM:
4545 /* Set the per device memory buffer space.
4546 * Not applicable in our case */
4547 case SIOCSIFLINK:
4548 return -EINVAL;
4549
4550 /*
4551 * Unknown or private ioctl.
4552 */
4553 default:
4554 if (cmd == SIOCWANDEV ||
4555 (cmd >= SIOCDEVPRIVATE &&
4556 cmd <= SIOCDEVPRIVATE + 15)) {
4557 dev_load(net, ifr.ifr_name);
4558 rtnl_lock();
4559 ret = dev_ifsioc(net, &ifr, cmd);
4560 rtnl_unlock();
4561 if (!ret && copy_to_user(arg, &ifr,
4562 sizeof(struct ifreq)))
4563 ret = -EFAULT;
4564 return ret;
4565 }
4566 /* Take care of Wireless Extensions */
4567 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4568 return wext_handle_ioctl(net, &ifr, cmd, arg);
4569 return -EINVAL;
4570 }
4571 }
4572
4573
4574 /**
4575 * dev_new_index - allocate an ifindex
4576 * @net: the applicable net namespace
4577 *
4578 * Returns a suitable unique value for a new device interface
4579 * number. The caller must hold the rtnl semaphore or the
4580 * dev_base_lock to be sure it remains unique.
4581 */
4582 static int dev_new_index(struct net *net)
4583 {
4584 static int ifindex;
4585 for (;;) {
4586 if (++ifindex <= 0)
4587 ifindex = 1;
4588 if (!__dev_get_by_index(net, ifindex))
4589 return ifindex;
4590 }
4591 }
4592
4593 /* Delayed registration/unregisteration */
4594 static LIST_HEAD(net_todo_list);
4595
4596 static void net_set_todo(struct net_device *dev)
4597 {
4598 list_add_tail(&dev->todo_list, &net_todo_list);
4599 }
4600
4601 static void rollback_registered_many(struct list_head *head)
4602 {
4603 struct net_device *dev, *tmp;
4604
4605 BUG_ON(dev_boot_phase);
4606 ASSERT_RTNL();
4607
4608 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4609 /* Some devices call without registering
4610 * for initialization unwind. Remove those
4611 * devices and proceed with the remaining.
4612 */
4613 if (dev->reg_state == NETREG_UNINITIALIZED) {
4614 pr_debug("unregister_netdevice: device %s/%p never "
4615 "was registered\n", dev->name, dev);
4616
4617 WARN_ON(1);
4618 list_del(&dev->unreg_list);
4619 continue;
4620 }
4621
4622 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4623
4624 /* If device is running, close it first. */
4625 dev_close(dev);
4626
4627 /* And unlink it from device chain. */
4628 unlist_netdevice(dev);
4629
4630 dev->reg_state = NETREG_UNREGISTERING;
4631 }
4632
4633 synchronize_net();
4634
4635 list_for_each_entry(dev, head, unreg_list) {
4636 /* Shutdown queueing discipline. */
4637 dev_shutdown(dev);
4638
4639
4640 /* Notify protocols, that we are about to destroy
4641 this device. They should clean all the things.
4642 */
4643 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4644
4645 if (!dev->rtnl_link_ops ||
4646 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4647 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4648
4649 /*
4650 * Flush the unicast and multicast chains
4651 */
4652 dev_uc_flush(dev);
4653 dev_mc_flush(dev);
4654
4655 if (dev->netdev_ops->ndo_uninit)
4656 dev->netdev_ops->ndo_uninit(dev);
4657
4658 /* Notifier chain MUST detach us from master device. */
4659 WARN_ON(dev->master);
4660
4661 /* Remove entries from kobject tree */
4662 netdev_unregister_kobject(dev);
4663 }
4664
4665 /* Process any work delayed until the end of the batch */
4666 dev = list_first_entry(head, struct net_device, unreg_list);
4667 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4668
4669 synchronize_net();
4670
4671 list_for_each_entry(dev, head, unreg_list)
4672 dev_put(dev);
4673 }
4674
4675 static void rollback_registered(struct net_device *dev)
4676 {
4677 LIST_HEAD(single);
4678
4679 list_add(&dev->unreg_list, &single);
4680 rollback_registered_many(&single);
4681 }
4682
4683 static void __netdev_init_queue_locks_one(struct net_device *dev,
4684 struct netdev_queue *dev_queue,
4685 void *_unused)
4686 {
4687 spin_lock_init(&dev_queue->_xmit_lock);
4688 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4689 dev_queue->xmit_lock_owner = -1;
4690 }
4691
4692 static void netdev_init_queue_locks(struct net_device *dev)
4693 {
4694 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4695 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4696 }
4697
4698 unsigned long netdev_fix_features(unsigned long features, const char *name)
4699 {
4700 /* Fix illegal SG+CSUM combinations. */
4701 if ((features & NETIF_F_SG) &&
4702 !(features & NETIF_F_ALL_CSUM)) {
4703 if (name)
4704 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4705 "checksum feature.\n", name);
4706 features &= ~NETIF_F_SG;
4707 }
4708
4709 /* TSO requires that SG is present as well. */
4710 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4711 if (name)
4712 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4713 "SG feature.\n", name);
4714 features &= ~NETIF_F_TSO;
4715 }
4716
4717 if (features & NETIF_F_UFO) {
4718 if (!(features & NETIF_F_GEN_CSUM)) {
4719 if (name)
4720 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4721 "since no NETIF_F_HW_CSUM feature.\n",
4722 name);
4723 features &= ~NETIF_F_UFO;
4724 }
4725
4726 if (!(features & NETIF_F_SG)) {
4727 if (name)
4728 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4729 "since no NETIF_F_SG feature.\n", name);
4730 features &= ~NETIF_F_UFO;
4731 }
4732 }
4733
4734 return features;
4735 }
4736 EXPORT_SYMBOL(netdev_fix_features);
4737
4738 /**
4739 * netif_stacked_transfer_operstate - transfer operstate
4740 * @rootdev: the root or lower level device to transfer state from
4741 * @dev: the device to transfer operstate to
4742 *
4743 * Transfer operational state from root to device. This is normally
4744 * called when a stacking relationship exists between the root
4745 * device and the device(a leaf device).
4746 */
4747 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4748 struct net_device *dev)
4749 {
4750 if (rootdev->operstate == IF_OPER_DORMANT)
4751 netif_dormant_on(dev);
4752 else
4753 netif_dormant_off(dev);
4754
4755 if (netif_carrier_ok(rootdev)) {
4756 if (!netif_carrier_ok(dev))
4757 netif_carrier_on(dev);
4758 } else {
4759 if (netif_carrier_ok(dev))
4760 netif_carrier_off(dev);
4761 }
4762 }
4763 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4764
4765 /**
4766 * register_netdevice - register a network device
4767 * @dev: device to register
4768 *
4769 * Take a completed network device structure and add it to the kernel
4770 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4771 * chain. 0 is returned on success. A negative errno code is returned
4772 * on a failure to set up the device, or if the name is a duplicate.
4773 *
4774 * Callers must hold the rtnl semaphore. You may want
4775 * register_netdev() instead of this.
4776 *
4777 * BUGS:
4778 * The locking appears insufficient to guarantee two parallel registers
4779 * will not get the same name.
4780 */
4781
4782 int register_netdevice(struct net_device *dev)
4783 {
4784 int ret;
4785 struct net *net = dev_net(dev);
4786
4787 BUG_ON(dev_boot_phase);
4788 ASSERT_RTNL();
4789
4790 might_sleep();
4791
4792 /* When net_device's are persistent, this will be fatal. */
4793 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4794 BUG_ON(!net);
4795
4796 spin_lock_init(&dev->addr_list_lock);
4797 netdev_set_addr_lockdep_class(dev);
4798 netdev_init_queue_locks(dev);
4799
4800 dev->iflink = -1;
4801
4802 #ifdef CONFIG_RPS
4803 if (!dev->num_rx_queues) {
4804 /*
4805 * Allocate a single RX queue if driver never called
4806 * alloc_netdev_mq
4807 */
4808
4809 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4810 if (!dev->_rx) {
4811 ret = -ENOMEM;
4812 goto out;
4813 }
4814
4815 dev->_rx->first = dev->_rx;
4816 atomic_set(&dev->_rx->count, 1);
4817 dev->num_rx_queues = 1;
4818 }
4819 #endif
4820 /* Init, if this function is available */
4821 if (dev->netdev_ops->ndo_init) {
4822 ret = dev->netdev_ops->ndo_init(dev);
4823 if (ret) {
4824 if (ret > 0)
4825 ret = -EIO;
4826 goto out;
4827 }
4828 }
4829
4830 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4831 if (ret)
4832 goto err_uninit;
4833
4834 dev->ifindex = dev_new_index(net);
4835 if (dev->iflink == -1)
4836 dev->iflink = dev->ifindex;
4837
4838 /* Fix illegal checksum combinations */
4839 if ((dev->features & NETIF_F_HW_CSUM) &&
4840 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4841 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4842 dev->name);
4843 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4844 }
4845
4846 if ((dev->features & NETIF_F_NO_CSUM) &&
4847 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4848 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4849 dev->name);
4850 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4851 }
4852
4853 dev->features = netdev_fix_features(dev->features, dev->name);
4854
4855 /* Enable software GSO if SG is supported. */
4856 if (dev->features & NETIF_F_SG)
4857 dev->features |= NETIF_F_GSO;
4858
4859 netdev_initialize_kobject(dev);
4860
4861 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4862 ret = notifier_to_errno(ret);
4863 if (ret)
4864 goto err_uninit;
4865
4866 ret = netdev_register_kobject(dev);
4867 if (ret)
4868 goto err_uninit;
4869 dev->reg_state = NETREG_REGISTERED;
4870
4871 /*
4872 * Default initial state at registry is that the
4873 * device is present.
4874 */
4875
4876 set_bit(__LINK_STATE_PRESENT, &dev->state);
4877
4878 dev_init_scheduler(dev);
4879 dev_hold(dev);
4880 list_netdevice(dev);
4881
4882 /* Notify protocols, that a new device appeared. */
4883 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4884 ret = notifier_to_errno(ret);
4885 if (ret) {
4886 rollback_registered(dev);
4887 dev->reg_state = NETREG_UNREGISTERED;
4888 }
4889 /*
4890 * Prevent userspace races by waiting until the network
4891 * device is fully setup before sending notifications.
4892 */
4893 if (!dev->rtnl_link_ops ||
4894 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4895 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4896
4897 out:
4898 return ret;
4899
4900 err_uninit:
4901 if (dev->netdev_ops->ndo_uninit)
4902 dev->netdev_ops->ndo_uninit(dev);
4903 goto out;
4904 }
4905 EXPORT_SYMBOL(register_netdevice);
4906
4907 /**
4908 * init_dummy_netdev - init a dummy network device for NAPI
4909 * @dev: device to init
4910 *
4911 * This takes a network device structure and initialize the minimum
4912 * amount of fields so it can be used to schedule NAPI polls without
4913 * registering a full blown interface. This is to be used by drivers
4914 * that need to tie several hardware interfaces to a single NAPI
4915 * poll scheduler due to HW limitations.
4916 */
4917 int init_dummy_netdev(struct net_device *dev)
4918 {
4919 /* Clear everything. Note we don't initialize spinlocks
4920 * are they aren't supposed to be taken by any of the
4921 * NAPI code and this dummy netdev is supposed to be
4922 * only ever used for NAPI polls
4923 */
4924 memset(dev, 0, sizeof(struct net_device));
4925
4926 /* make sure we BUG if trying to hit standard
4927 * register/unregister code path
4928 */
4929 dev->reg_state = NETREG_DUMMY;
4930
4931 /* initialize the ref count */
4932 atomic_set(&dev->refcnt, 1);
4933
4934 /* NAPI wants this */
4935 INIT_LIST_HEAD(&dev->napi_list);
4936
4937 /* a dummy interface is started by default */
4938 set_bit(__LINK_STATE_PRESENT, &dev->state);
4939 set_bit(__LINK_STATE_START, &dev->state);
4940
4941 return 0;
4942 }
4943 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4944
4945
4946 /**
4947 * register_netdev - register a network device
4948 * @dev: device to register
4949 *
4950 * Take a completed network device structure and add it to the kernel
4951 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4952 * chain. 0 is returned on success. A negative errno code is returned
4953 * on a failure to set up the device, or if the name is a duplicate.
4954 *
4955 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4956 * and expands the device name if you passed a format string to
4957 * alloc_netdev.
4958 */
4959 int register_netdev(struct net_device *dev)
4960 {
4961 int err;
4962
4963 rtnl_lock();
4964
4965 /*
4966 * If the name is a format string the caller wants us to do a
4967 * name allocation.
4968 */
4969 if (strchr(dev->name, '%')) {
4970 err = dev_alloc_name(dev, dev->name);
4971 if (err < 0)
4972 goto out;
4973 }
4974
4975 err = register_netdevice(dev);
4976 out:
4977 rtnl_unlock();
4978 return err;
4979 }
4980 EXPORT_SYMBOL(register_netdev);
4981
4982 /*
4983 * netdev_wait_allrefs - wait until all references are gone.
4984 *
4985 * This is called when unregistering network devices.
4986 *
4987 * Any protocol or device that holds a reference should register
4988 * for netdevice notification, and cleanup and put back the
4989 * reference if they receive an UNREGISTER event.
4990 * We can get stuck here if buggy protocols don't correctly
4991 * call dev_put.
4992 */
4993 static void netdev_wait_allrefs(struct net_device *dev)
4994 {
4995 unsigned long rebroadcast_time, warning_time;
4996
4997 linkwatch_forget_dev(dev);
4998
4999 rebroadcast_time = warning_time = jiffies;
5000 while (atomic_read(&dev->refcnt) != 0) {
5001 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5002 rtnl_lock();
5003
5004 /* Rebroadcast unregister notification */
5005 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5006 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5007 * should have already handle it the first time */
5008
5009 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5010 &dev->state)) {
5011 /* We must not have linkwatch events
5012 * pending on unregister. If this
5013 * happens, we simply run the queue
5014 * unscheduled, resulting in a noop
5015 * for this device.
5016 */
5017 linkwatch_run_queue();
5018 }
5019
5020 __rtnl_unlock();
5021
5022 rebroadcast_time = jiffies;
5023 }
5024
5025 msleep(250);
5026
5027 if (time_after(jiffies, warning_time + 10 * HZ)) {
5028 printk(KERN_EMERG "unregister_netdevice: "
5029 "waiting for %s to become free. Usage "
5030 "count = %d\n",
5031 dev->name, atomic_read(&dev->refcnt));
5032 warning_time = jiffies;
5033 }
5034 }
5035 }
5036
5037 /* The sequence is:
5038 *
5039 * rtnl_lock();
5040 * ...
5041 * register_netdevice(x1);
5042 * register_netdevice(x2);
5043 * ...
5044 * unregister_netdevice(y1);
5045 * unregister_netdevice(y2);
5046 * ...
5047 * rtnl_unlock();
5048 * free_netdev(y1);
5049 * free_netdev(y2);
5050 *
5051 * We are invoked by rtnl_unlock().
5052 * This allows us to deal with problems:
5053 * 1) We can delete sysfs objects which invoke hotplug
5054 * without deadlocking with linkwatch via keventd.
5055 * 2) Since we run with the RTNL semaphore not held, we can sleep
5056 * safely in order to wait for the netdev refcnt to drop to zero.
5057 *
5058 * We must not return until all unregister events added during
5059 * the interval the lock was held have been completed.
5060 */
5061 void netdev_run_todo(void)
5062 {
5063 struct list_head list;
5064
5065 /* Snapshot list, allow later requests */
5066 list_replace_init(&net_todo_list, &list);
5067
5068 __rtnl_unlock();
5069
5070 while (!list_empty(&list)) {
5071 struct net_device *dev
5072 = list_first_entry(&list, struct net_device, todo_list);
5073 list_del(&dev->todo_list);
5074
5075 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5076 printk(KERN_ERR "network todo '%s' but state %d\n",
5077 dev->name, dev->reg_state);
5078 dump_stack();
5079 continue;
5080 }
5081
5082 dev->reg_state = NETREG_UNREGISTERED;
5083
5084 on_each_cpu(flush_backlog, dev, 1);
5085
5086 netdev_wait_allrefs(dev);
5087
5088 /* paranoia */
5089 BUG_ON(atomic_read(&dev->refcnt));
5090 WARN_ON(dev->ip_ptr);
5091 WARN_ON(dev->ip6_ptr);
5092 WARN_ON(dev->dn_ptr);
5093
5094 if (dev->destructor)
5095 dev->destructor(dev);
5096
5097 /* Free network device */
5098 kobject_put(&dev->dev.kobj);
5099 }
5100 }
5101
5102 /**
5103 * dev_txq_stats_fold - fold tx_queues stats
5104 * @dev: device to get statistics from
5105 * @stats: struct net_device_stats to hold results
5106 */
5107 void dev_txq_stats_fold(const struct net_device *dev,
5108 struct net_device_stats *stats)
5109 {
5110 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5111 unsigned int i;
5112 struct netdev_queue *txq;
5113
5114 for (i = 0; i < dev->num_tx_queues; i++) {
5115 txq = netdev_get_tx_queue(dev, i);
5116 tx_bytes += txq->tx_bytes;
5117 tx_packets += txq->tx_packets;
5118 tx_dropped += txq->tx_dropped;
5119 }
5120 if (tx_bytes || tx_packets || tx_dropped) {
5121 stats->tx_bytes = tx_bytes;
5122 stats->tx_packets = tx_packets;
5123 stats->tx_dropped = tx_dropped;
5124 }
5125 }
5126 EXPORT_SYMBOL(dev_txq_stats_fold);
5127
5128 /**
5129 * dev_get_stats - get network device statistics
5130 * @dev: device to get statistics from
5131 *
5132 * Get network statistics from device. The device driver may provide
5133 * its own method by setting dev->netdev_ops->get_stats; otherwise
5134 * the internal statistics structure is used.
5135 */
5136 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5137 {
5138 const struct net_device_ops *ops = dev->netdev_ops;
5139
5140 if (ops->ndo_get_stats)
5141 return ops->ndo_get_stats(dev);
5142
5143 dev_txq_stats_fold(dev, &dev->stats);
5144 return &dev->stats;
5145 }
5146 EXPORT_SYMBOL(dev_get_stats);
5147
5148 static void netdev_init_one_queue(struct net_device *dev,
5149 struct netdev_queue *queue,
5150 void *_unused)
5151 {
5152 queue->dev = dev;
5153 }
5154
5155 static void netdev_init_queues(struct net_device *dev)
5156 {
5157 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5158 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5159 spin_lock_init(&dev->tx_global_lock);
5160 }
5161
5162 /**
5163 * alloc_netdev_mq - allocate network device
5164 * @sizeof_priv: size of private data to allocate space for
5165 * @name: device name format string
5166 * @setup: callback to initialize device
5167 * @queue_count: the number of subqueues to allocate
5168 *
5169 * Allocates a struct net_device with private data area for driver use
5170 * and performs basic initialization. Also allocates subquue structs
5171 * for each queue on the device at the end of the netdevice.
5172 */
5173 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5174 void (*setup)(struct net_device *), unsigned int queue_count)
5175 {
5176 struct netdev_queue *tx;
5177 struct net_device *dev;
5178 size_t alloc_size;
5179 struct net_device *p;
5180 #ifdef CONFIG_RPS
5181 struct netdev_rx_queue *rx;
5182 int i;
5183 #endif
5184
5185 BUG_ON(strlen(name) >= sizeof(dev->name));
5186
5187 alloc_size = sizeof(struct net_device);
5188 if (sizeof_priv) {
5189 /* ensure 32-byte alignment of private area */
5190 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5191 alloc_size += sizeof_priv;
5192 }
5193 /* ensure 32-byte alignment of whole construct */
5194 alloc_size += NETDEV_ALIGN - 1;
5195
5196 p = kzalloc(alloc_size, GFP_KERNEL);
5197 if (!p) {
5198 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5199 return NULL;
5200 }
5201
5202 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5203 if (!tx) {
5204 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5205 "tx qdiscs.\n");
5206 goto free_p;
5207 }
5208
5209 #ifdef CONFIG_RPS
5210 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5211 if (!rx) {
5212 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5213 "rx queues.\n");
5214 goto free_tx;
5215 }
5216
5217 atomic_set(&rx->count, queue_count);
5218
5219 /*
5220 * Set a pointer to first element in the array which holds the
5221 * reference count.
5222 */
5223 for (i = 0; i < queue_count; i++)
5224 rx[i].first = rx;
5225 #endif
5226
5227 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5228 dev->padded = (char *)dev - (char *)p;
5229
5230 if (dev_addr_init(dev))
5231 goto free_rx;
5232
5233 dev_mc_init(dev);
5234 dev_uc_init(dev);
5235
5236 dev_net_set(dev, &init_net);
5237
5238 dev->_tx = tx;
5239 dev->num_tx_queues = queue_count;
5240 dev->real_num_tx_queues = queue_count;
5241
5242 #ifdef CONFIG_RPS
5243 dev->_rx = rx;
5244 dev->num_rx_queues = queue_count;
5245 #endif
5246
5247 dev->gso_max_size = GSO_MAX_SIZE;
5248
5249 netdev_init_queues(dev);
5250
5251 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5252 dev->ethtool_ntuple_list.count = 0;
5253 INIT_LIST_HEAD(&dev->napi_list);
5254 INIT_LIST_HEAD(&dev->unreg_list);
5255 INIT_LIST_HEAD(&dev->link_watch_list);
5256 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5257 setup(dev);
5258 strcpy(dev->name, name);
5259 return dev;
5260
5261 free_rx:
5262 #ifdef CONFIG_RPS
5263 kfree(rx);
5264 free_tx:
5265 #endif
5266 kfree(tx);
5267 free_p:
5268 kfree(p);
5269 return NULL;
5270 }
5271 EXPORT_SYMBOL(alloc_netdev_mq);
5272
5273 /**
5274 * free_netdev - free network device
5275 * @dev: device
5276 *
5277 * This function does the last stage of destroying an allocated device
5278 * interface. The reference to the device object is released.
5279 * If this is the last reference then it will be freed.
5280 */
5281 void free_netdev(struct net_device *dev)
5282 {
5283 struct napi_struct *p, *n;
5284
5285 release_net(dev_net(dev));
5286
5287 kfree(dev->_tx);
5288
5289 /* Flush device addresses */
5290 dev_addr_flush(dev);
5291
5292 /* Clear ethtool n-tuple list */
5293 ethtool_ntuple_flush(dev);
5294
5295 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5296 netif_napi_del(p);
5297
5298 /* Compatibility with error handling in drivers */
5299 if (dev->reg_state == NETREG_UNINITIALIZED) {
5300 kfree((char *)dev - dev->padded);
5301 return;
5302 }
5303
5304 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5305 dev->reg_state = NETREG_RELEASED;
5306
5307 /* will free via device release */
5308 put_device(&dev->dev);
5309 }
5310 EXPORT_SYMBOL(free_netdev);
5311
5312 /**
5313 * synchronize_net - Synchronize with packet receive processing
5314 *
5315 * Wait for packets currently being received to be done.
5316 * Does not block later packets from starting.
5317 */
5318 void synchronize_net(void)
5319 {
5320 might_sleep();
5321 synchronize_rcu();
5322 }
5323 EXPORT_SYMBOL(synchronize_net);
5324
5325 /**
5326 * unregister_netdevice_queue - remove device from the kernel
5327 * @dev: device
5328 * @head: list
5329 *
5330 * This function shuts down a device interface and removes it
5331 * from the kernel tables.
5332 * If head not NULL, device is queued to be unregistered later.
5333 *
5334 * Callers must hold the rtnl semaphore. You may want
5335 * unregister_netdev() instead of this.
5336 */
5337
5338 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5339 {
5340 ASSERT_RTNL();
5341
5342 if (head) {
5343 list_move_tail(&dev->unreg_list, head);
5344 } else {
5345 rollback_registered(dev);
5346 /* Finish processing unregister after unlock */
5347 net_set_todo(dev);
5348 }
5349 }
5350 EXPORT_SYMBOL(unregister_netdevice_queue);
5351
5352 /**
5353 * unregister_netdevice_many - unregister many devices
5354 * @head: list of devices
5355 */
5356 void unregister_netdevice_many(struct list_head *head)
5357 {
5358 struct net_device *dev;
5359
5360 if (!list_empty(head)) {
5361 rollback_registered_many(head);
5362 list_for_each_entry(dev, head, unreg_list)
5363 net_set_todo(dev);
5364 }
5365 }
5366 EXPORT_SYMBOL(unregister_netdevice_many);
5367
5368 /**
5369 * unregister_netdev - remove device from the kernel
5370 * @dev: device
5371 *
5372 * This function shuts down a device interface and removes it
5373 * from the kernel tables.
5374 *
5375 * This is just a wrapper for unregister_netdevice that takes
5376 * the rtnl semaphore. In general you want to use this and not
5377 * unregister_netdevice.
5378 */
5379 void unregister_netdev(struct net_device *dev)
5380 {
5381 rtnl_lock();
5382 unregister_netdevice(dev);
5383 rtnl_unlock();
5384 }
5385 EXPORT_SYMBOL(unregister_netdev);
5386
5387 /**
5388 * dev_change_net_namespace - move device to different nethost namespace
5389 * @dev: device
5390 * @net: network namespace
5391 * @pat: If not NULL name pattern to try if the current device name
5392 * is already taken in the destination network namespace.
5393 *
5394 * This function shuts down a device interface and moves it
5395 * to a new network namespace. On success 0 is returned, on
5396 * a failure a netagive errno code is returned.
5397 *
5398 * Callers must hold the rtnl semaphore.
5399 */
5400
5401 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5402 {
5403 int err;
5404
5405 ASSERT_RTNL();
5406
5407 /* Don't allow namespace local devices to be moved. */
5408 err = -EINVAL;
5409 if (dev->features & NETIF_F_NETNS_LOCAL)
5410 goto out;
5411
5412 #ifdef CONFIG_SYSFS
5413 /* Don't allow real devices to be moved when sysfs
5414 * is enabled.
5415 */
5416 err = -EINVAL;
5417 if (dev->dev.parent)
5418 goto out;
5419 #endif
5420
5421 /* Ensure the device has been registrered */
5422 err = -EINVAL;
5423 if (dev->reg_state != NETREG_REGISTERED)
5424 goto out;
5425
5426 /* Get out if there is nothing todo */
5427 err = 0;
5428 if (net_eq(dev_net(dev), net))
5429 goto out;
5430
5431 /* Pick the destination device name, and ensure
5432 * we can use it in the destination network namespace.
5433 */
5434 err = -EEXIST;
5435 if (__dev_get_by_name(net, dev->name)) {
5436 /* We get here if we can't use the current device name */
5437 if (!pat)
5438 goto out;
5439 if (dev_get_valid_name(net, pat, dev->name, 1))
5440 goto out;
5441 }
5442
5443 /*
5444 * And now a mini version of register_netdevice unregister_netdevice.
5445 */
5446
5447 /* If device is running close it first. */
5448 dev_close(dev);
5449
5450 /* And unlink it from device chain */
5451 err = -ENODEV;
5452 unlist_netdevice(dev);
5453
5454 synchronize_net();
5455
5456 /* Shutdown queueing discipline. */
5457 dev_shutdown(dev);
5458
5459 /* Notify protocols, that we are about to destroy
5460 this device. They should clean all the things.
5461 */
5462 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5463 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5464
5465 /*
5466 * Flush the unicast and multicast chains
5467 */
5468 dev_uc_flush(dev);
5469 dev_mc_flush(dev);
5470
5471 netdev_unregister_kobject(dev);
5472
5473 /* Actually switch the network namespace */
5474 dev_net_set(dev, net);
5475
5476 /* If there is an ifindex conflict assign a new one */
5477 if (__dev_get_by_index(net, dev->ifindex)) {
5478 int iflink = (dev->iflink == dev->ifindex);
5479 dev->ifindex = dev_new_index(net);
5480 if (iflink)
5481 dev->iflink = dev->ifindex;
5482 }
5483
5484 /* Fixup kobjects */
5485 err = netdev_register_kobject(dev);
5486 WARN_ON(err);
5487
5488 /* Add the device back in the hashes */
5489 list_netdevice(dev);
5490
5491 /* Notify protocols, that a new device appeared. */
5492 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5493
5494 /*
5495 * Prevent userspace races by waiting until the network
5496 * device is fully setup before sending notifications.
5497 */
5498 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5499
5500 synchronize_net();
5501 err = 0;
5502 out:
5503 return err;
5504 }
5505 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5506
5507 static int dev_cpu_callback(struct notifier_block *nfb,
5508 unsigned long action,
5509 void *ocpu)
5510 {
5511 struct sk_buff **list_skb;
5512 struct Qdisc **list_net;
5513 struct sk_buff *skb;
5514 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5515 struct softnet_data *sd, *oldsd;
5516
5517 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5518 return NOTIFY_OK;
5519
5520 local_irq_disable();
5521 cpu = smp_processor_id();
5522 sd = &per_cpu(softnet_data, cpu);
5523 oldsd = &per_cpu(softnet_data, oldcpu);
5524
5525 /* Find end of our completion_queue. */
5526 list_skb = &sd->completion_queue;
5527 while (*list_skb)
5528 list_skb = &(*list_skb)->next;
5529 /* Append completion queue from offline CPU. */
5530 *list_skb = oldsd->completion_queue;
5531 oldsd->completion_queue = NULL;
5532
5533 /* Find end of our output_queue. */
5534 list_net = &sd->output_queue;
5535 while (*list_net)
5536 list_net = &(*list_net)->next_sched;
5537 /* Append output queue from offline CPU. */
5538 *list_net = oldsd->output_queue;
5539 oldsd->output_queue = NULL;
5540
5541 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5542 local_irq_enable();
5543
5544 /* Process offline CPU's input_pkt_queue */
5545 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5546 netif_rx(skb);
5547
5548 return NOTIFY_OK;
5549 }
5550
5551
5552 /**
5553 * netdev_increment_features - increment feature set by one
5554 * @all: current feature set
5555 * @one: new feature set
5556 * @mask: mask feature set
5557 *
5558 * Computes a new feature set after adding a device with feature set
5559 * @one to the master device with current feature set @all. Will not
5560 * enable anything that is off in @mask. Returns the new feature set.
5561 */
5562 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5563 unsigned long mask)
5564 {
5565 /* If device needs checksumming, downgrade to it. */
5566 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5567 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5568 else if (mask & NETIF_F_ALL_CSUM) {
5569 /* If one device supports v4/v6 checksumming, set for all. */
5570 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5571 !(all & NETIF_F_GEN_CSUM)) {
5572 all &= ~NETIF_F_ALL_CSUM;
5573 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5574 }
5575
5576 /* If one device supports hw checksumming, set for all. */
5577 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5578 all &= ~NETIF_F_ALL_CSUM;
5579 all |= NETIF_F_HW_CSUM;
5580 }
5581 }
5582
5583 one |= NETIF_F_ALL_CSUM;
5584
5585 one |= all & NETIF_F_ONE_FOR_ALL;
5586 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5587 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5588
5589 return all;
5590 }
5591 EXPORT_SYMBOL(netdev_increment_features);
5592
5593 static struct hlist_head *netdev_create_hash(void)
5594 {
5595 int i;
5596 struct hlist_head *hash;
5597
5598 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5599 if (hash != NULL)
5600 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5601 INIT_HLIST_HEAD(&hash[i]);
5602
5603 return hash;
5604 }
5605
5606 /* Initialize per network namespace state */
5607 static int __net_init netdev_init(struct net *net)
5608 {
5609 INIT_LIST_HEAD(&net->dev_base_head);
5610
5611 net->dev_name_head = netdev_create_hash();
5612 if (net->dev_name_head == NULL)
5613 goto err_name;
5614
5615 net->dev_index_head = netdev_create_hash();
5616 if (net->dev_index_head == NULL)
5617 goto err_idx;
5618
5619 return 0;
5620
5621 err_idx:
5622 kfree(net->dev_name_head);
5623 err_name:
5624 return -ENOMEM;
5625 }
5626
5627 /**
5628 * netdev_drivername - network driver for the device
5629 * @dev: network device
5630 * @buffer: buffer for resulting name
5631 * @len: size of buffer
5632 *
5633 * Determine network driver for device.
5634 */
5635 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5636 {
5637 const struct device_driver *driver;
5638 const struct device *parent;
5639
5640 if (len <= 0 || !buffer)
5641 return buffer;
5642 buffer[0] = 0;
5643
5644 parent = dev->dev.parent;
5645
5646 if (!parent)
5647 return buffer;
5648
5649 driver = parent->driver;
5650 if (driver && driver->name)
5651 strlcpy(buffer, driver->name, len);
5652 return buffer;
5653 }
5654
5655 static void __net_exit netdev_exit(struct net *net)
5656 {
5657 kfree(net->dev_name_head);
5658 kfree(net->dev_index_head);
5659 }
5660
5661 static struct pernet_operations __net_initdata netdev_net_ops = {
5662 .init = netdev_init,
5663 .exit = netdev_exit,
5664 };
5665
5666 static void __net_exit default_device_exit(struct net *net)
5667 {
5668 struct net_device *dev, *aux;
5669 /*
5670 * Push all migratable network devices back to the
5671 * initial network namespace
5672 */
5673 rtnl_lock();
5674 for_each_netdev_safe(net, dev, aux) {
5675 int err;
5676 char fb_name[IFNAMSIZ];
5677
5678 /* Ignore unmoveable devices (i.e. loopback) */
5679 if (dev->features & NETIF_F_NETNS_LOCAL)
5680 continue;
5681
5682 /* Leave virtual devices for the generic cleanup */
5683 if (dev->rtnl_link_ops)
5684 continue;
5685
5686 /* Push remaing network devices to init_net */
5687 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5688 err = dev_change_net_namespace(dev, &init_net, fb_name);
5689 if (err) {
5690 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5691 __func__, dev->name, err);
5692 BUG();
5693 }
5694 }
5695 rtnl_unlock();
5696 }
5697
5698 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5699 {
5700 /* At exit all network devices most be removed from a network
5701 * namespace. Do this in the reverse order of registeration.
5702 * Do this across as many network namespaces as possible to
5703 * improve batching efficiency.
5704 */
5705 struct net_device *dev;
5706 struct net *net;
5707 LIST_HEAD(dev_kill_list);
5708
5709 rtnl_lock();
5710 list_for_each_entry(net, net_list, exit_list) {
5711 for_each_netdev_reverse(net, dev) {
5712 if (dev->rtnl_link_ops)
5713 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5714 else
5715 unregister_netdevice_queue(dev, &dev_kill_list);
5716 }
5717 }
5718 unregister_netdevice_many(&dev_kill_list);
5719 rtnl_unlock();
5720 }
5721
5722 static struct pernet_operations __net_initdata default_device_ops = {
5723 .exit = default_device_exit,
5724 .exit_batch = default_device_exit_batch,
5725 };
5726
5727 /*
5728 * Initialize the DEV module. At boot time this walks the device list and
5729 * unhooks any devices that fail to initialise (normally hardware not
5730 * present) and leaves us with a valid list of present and active devices.
5731 *
5732 */
5733
5734 /*
5735 * This is called single threaded during boot, so no need
5736 * to take the rtnl semaphore.
5737 */
5738 static int __init net_dev_init(void)
5739 {
5740 int i, rc = -ENOMEM;
5741
5742 BUG_ON(!dev_boot_phase);
5743
5744 if (dev_proc_init())
5745 goto out;
5746
5747 if (netdev_kobject_init())
5748 goto out;
5749
5750 INIT_LIST_HEAD(&ptype_all);
5751 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5752 INIT_LIST_HEAD(&ptype_base[i]);
5753
5754 if (register_pernet_subsys(&netdev_net_ops))
5755 goto out;
5756
5757 /*
5758 * Initialise the packet receive queues.
5759 */
5760
5761 for_each_possible_cpu(i) {
5762 struct softnet_data *queue;
5763
5764 queue = &per_cpu(softnet_data, i);
5765 skb_queue_head_init(&queue->input_pkt_queue);
5766 queue->completion_queue = NULL;
5767 INIT_LIST_HEAD(&queue->poll_list);
5768
5769 #ifdef CONFIG_RPS
5770 queue->csd.func = trigger_softirq;
5771 queue->csd.info = queue;
5772 queue->csd.flags = 0;
5773 #endif
5774
5775 queue->backlog.poll = process_backlog;
5776 queue->backlog.weight = weight_p;
5777 queue->backlog.gro_list = NULL;
5778 queue->backlog.gro_count = 0;
5779 }
5780
5781 dev_boot_phase = 0;
5782
5783 /* The loopback device is special if any other network devices
5784 * is present in a network namespace the loopback device must
5785 * be present. Since we now dynamically allocate and free the
5786 * loopback device ensure this invariant is maintained by
5787 * keeping the loopback device as the first device on the
5788 * list of network devices. Ensuring the loopback devices
5789 * is the first device that appears and the last network device
5790 * that disappears.
5791 */
5792 if (register_pernet_device(&loopback_net_ops))
5793 goto out;
5794
5795 if (register_pernet_device(&default_device_ops))
5796 goto out;
5797
5798 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5799 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5800
5801 hotcpu_notifier(dev_cpu_callback, 0);
5802 dst_init();
5803 dev_mcast_init();
5804 rc = 0;
5805 out:
5806 return rc;
5807 }
5808
5809 subsys_initcall(net_dev_init);
5810
5811 static int __init initialize_hashrnd(void)
5812 {
5813 get_random_bytes(&hashrnd, sizeof(hashrnd));
5814 return 0;
5815 }
5816
5817 late_initcall_sync(initialize_hashrnd);
5818
This page took 0.159255 seconds and 5 git commands to generate.