e904c476b1122738d4b72ae2ddab1988ee36ba2a
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
958 bool fmt)
959 {
960 if (!dev_valid_name(name))
961 return -EINVAL;
962
963 if (fmt && strchr(name, '%'))
964 return __dev_alloc_name(net, name, buf);
965 else if (__dev_get_by_name(net, name))
966 return -EEXIST;
967 else if (buf != name)
968 strlcpy(buf, name, IFNAMSIZ);
969
970 return 0;
971 }
972
973 /**
974 * dev_change_name - change name of a device
975 * @dev: device
976 * @newname: name (or format string) must be at least IFNAMSIZ
977 *
978 * Change name of a device, can pass format strings "eth%d".
979 * for wildcarding.
980 */
981 int dev_change_name(struct net_device *dev, const char *newname)
982 {
983 char oldname[IFNAMSIZ];
984 int err = 0;
985 int ret;
986 struct net *net;
987
988 ASSERT_RTNL();
989 BUG_ON(!dev_net(dev));
990
991 net = dev_net(dev);
992 if (dev->flags & IFF_UP)
993 return -EBUSY;
994
995 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
996 return 0;
997
998 memcpy(oldname, dev->name, IFNAMSIZ);
999
1000 err = dev_get_valid_name(net, newname, dev->name, 1);
1001 if (err < 0)
1002 return err;
1003
1004 rollback:
1005 /* For now only devices in the initial network namespace
1006 * are in sysfs.
1007 */
1008 if (net_eq(net, &init_net)) {
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014 }
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_del(&dev->name_hlist);
1018 write_unlock_bh(&dev_base_lock);
1019
1020 synchronize_rcu();
1021
1022 write_lock_bh(&dev_base_lock);
1023 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1024 write_unlock_bh(&dev_base_lock);
1025
1026 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1027 ret = notifier_to_errno(ret);
1028
1029 if (ret) {
1030 /* err >= 0 after dev_alloc_name() or stores the first errno */
1031 if (err >= 0) {
1032 err = ret;
1033 memcpy(dev->name, oldname, IFNAMSIZ);
1034 goto rollback;
1035 } else {
1036 printk(KERN_ERR
1037 "%s: name change rollback failed: %d.\n",
1038 dev->name, ret);
1039 }
1040 }
1041
1042 return err;
1043 }
1044
1045 /**
1046 * dev_set_alias - change ifalias of a device
1047 * @dev: device
1048 * @alias: name up to IFALIASZ
1049 * @len: limit of bytes to copy from info
1050 *
1051 * Set ifalias for a device,
1052 */
1053 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1054 {
1055 ASSERT_RTNL();
1056
1057 if (len >= IFALIASZ)
1058 return -EINVAL;
1059
1060 if (!len) {
1061 if (dev->ifalias) {
1062 kfree(dev->ifalias);
1063 dev->ifalias = NULL;
1064 }
1065 return 0;
1066 }
1067
1068 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1069 if (!dev->ifalias)
1070 return -ENOMEM;
1071
1072 strlcpy(dev->ifalias, alias, len+1);
1073 return len;
1074 }
1075
1076
1077 /**
1078 * netdev_features_change - device changes features
1079 * @dev: device to cause notification
1080 *
1081 * Called to indicate a device has changed features.
1082 */
1083 void netdev_features_change(struct net_device *dev)
1084 {
1085 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1086 }
1087 EXPORT_SYMBOL(netdev_features_change);
1088
1089 /**
1090 * netdev_state_change - device changes state
1091 * @dev: device to cause notification
1092 *
1093 * Called to indicate a device has changed state. This function calls
1094 * the notifier chains for netdev_chain and sends a NEWLINK message
1095 * to the routing socket.
1096 */
1097 void netdev_state_change(struct net_device *dev)
1098 {
1099 if (dev->flags & IFF_UP) {
1100 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1101 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1102 }
1103 }
1104 EXPORT_SYMBOL(netdev_state_change);
1105
1106 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1107 {
1108 return call_netdevice_notifiers(event, dev);
1109 }
1110 EXPORT_SYMBOL(netdev_bonding_change);
1111
1112 /**
1113 * dev_load - load a network module
1114 * @net: the applicable net namespace
1115 * @name: name of interface
1116 *
1117 * If a network interface is not present and the process has suitable
1118 * privileges this function loads the module. If module loading is not
1119 * available in this kernel then it becomes a nop.
1120 */
1121
1122 void dev_load(struct net *net, const char *name)
1123 {
1124 struct net_device *dev;
1125
1126 rcu_read_lock();
1127 dev = dev_get_by_name_rcu(net, name);
1128 rcu_read_unlock();
1129
1130 if (!dev && capable(CAP_NET_ADMIN))
1131 request_module("%s", name);
1132 }
1133 EXPORT_SYMBOL(dev_load);
1134
1135 static int __dev_open(struct net_device *dev)
1136 {
1137 const struct net_device_ops *ops = dev->netdev_ops;
1138 int ret;
1139
1140 ASSERT_RTNL();
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * dev_open - prepare an interface for use.
1197 * @dev: device to open
1198 *
1199 * Takes a device from down to up state. The device's private open
1200 * function is invoked and then the multicast lists are loaded. Finally
1201 * the device is moved into the up state and a %NETDEV_UP message is
1202 * sent to the netdev notifier chain.
1203 *
1204 * Calling this function on an active interface is a nop. On a failure
1205 * a negative errno code is returned.
1206 */
1207 int dev_open(struct net_device *dev)
1208 {
1209 int ret;
1210
1211 /*
1212 * Is it already up?
1213 */
1214 if (dev->flags & IFF_UP)
1215 return 0;
1216
1217 /*
1218 * Open device
1219 */
1220 ret = __dev_open(dev);
1221 if (ret < 0)
1222 return ret;
1223
1224 /*
1225 * ... and announce new interface.
1226 */
1227 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1228 call_netdevice_notifiers(NETDEV_UP, dev);
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(dev_open);
1233
1234 static int __dev_close(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237
1238 ASSERT_RTNL();
1239 might_sleep();
1240
1241 /*
1242 * Tell people we are going down, so that they can
1243 * prepare to death, when device is still operating.
1244 */
1245 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1246
1247 clear_bit(__LINK_STATE_START, &dev->state);
1248
1249 /* Synchronize to scheduled poll. We cannot touch poll list,
1250 * it can be even on different cpu. So just clear netif_running().
1251 *
1252 * dev->stop() will invoke napi_disable() on all of it's
1253 * napi_struct instances on this device.
1254 */
1255 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1256
1257 dev_deactivate(dev);
1258
1259 /*
1260 * Call the device specific close. This cannot fail.
1261 * Only if device is UP
1262 *
1263 * We allow it to be called even after a DETACH hot-plug
1264 * event.
1265 */
1266 if (ops->ndo_stop)
1267 ops->ndo_stop(dev);
1268
1269 /*
1270 * Device is now down.
1271 */
1272
1273 dev->flags &= ~IFF_UP;
1274
1275 /*
1276 * Shutdown NET_DMA
1277 */
1278 net_dmaengine_put();
1279
1280 return 0;
1281 }
1282
1283 /**
1284 * dev_close - shutdown an interface.
1285 * @dev: device to shutdown
1286 *
1287 * This function moves an active device into down state. A
1288 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1289 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1290 * chain.
1291 */
1292 int dev_close(struct net_device *dev)
1293 {
1294 if (!(dev->flags & IFF_UP))
1295 return 0;
1296
1297 __dev_close(dev);
1298
1299 /*
1300 * Tell people we are down
1301 */
1302 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1303 call_netdevice_notifiers(NETDEV_DOWN, dev);
1304
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308
1309
1310 /**
1311 * dev_disable_lro - disable Large Receive Offload on a device
1312 * @dev: device
1313 *
1314 * Disable Large Receive Offload (LRO) on a net device. Must be
1315 * called under RTNL. This is needed if received packets may be
1316 * forwarded to another interface.
1317 */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1321 dev->ethtool_ops->set_flags) {
1322 u32 flags = dev->ethtool_ops->get_flags(dev);
1323 if (flags & ETH_FLAG_LRO) {
1324 flags &= ~ETH_FLAG_LRO;
1325 dev->ethtool_ops->set_flags(dev, flags);
1326 }
1327 }
1328 WARN_ON(dev->features & NETIF_F_LRO);
1329 }
1330 EXPORT_SYMBOL(dev_disable_lro);
1331
1332
1333 static int dev_boot_phase = 1;
1334
1335 /*
1336 * Device change register/unregister. These are not inline or static
1337 * as we export them to the world.
1338 */
1339
1340 /**
1341 * register_netdevice_notifier - register a network notifier block
1342 * @nb: notifier
1343 *
1344 * Register a notifier to be called when network device events occur.
1345 * The notifier passed is linked into the kernel structures and must
1346 * not be reused until it has been unregistered. A negative errno code
1347 * is returned on a failure.
1348 *
1349 * When registered all registration and up events are replayed
1350 * to the new notifier to allow device to have a race free
1351 * view of the network device list.
1352 */
1353
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 struct net_device *dev;
1357 struct net_device *last;
1358 struct net *net;
1359 int err;
1360
1361 rtnl_lock();
1362 err = raw_notifier_chain_register(&netdev_chain, nb);
1363 if (err)
1364 goto unlock;
1365 if (dev_boot_phase)
1366 goto unlock;
1367 for_each_net(net) {
1368 for_each_netdev(net, dev) {
1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 err = notifier_to_errno(err);
1371 if (err)
1372 goto rollback;
1373
1374 if (!(dev->flags & IFF_UP))
1375 continue;
1376
1377 nb->notifier_call(nb, NETDEV_UP, dev);
1378 }
1379 }
1380
1381 unlock:
1382 rtnl_unlock();
1383 return err;
1384
1385 rollback:
1386 last = dev;
1387 for_each_net(net) {
1388 for_each_netdev(net, dev) {
1389 if (dev == last)
1390 break;
1391
1392 if (dev->flags & IFF_UP) {
1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 }
1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 }
1399 }
1400
1401 raw_notifier_chain_unregister(&netdev_chain, nb);
1402 goto unlock;
1403 }
1404 EXPORT_SYMBOL(register_netdevice_notifier);
1405
1406 /**
1407 * unregister_netdevice_notifier - unregister a network notifier block
1408 * @nb: notifier
1409 *
1410 * Unregister a notifier previously registered by
1411 * register_netdevice_notifier(). The notifier is unlinked into the
1412 * kernel structures and may then be reused. A negative errno code
1413 * is returned on a failure.
1414 */
1415
1416 int unregister_netdevice_notifier(struct notifier_block *nb)
1417 {
1418 int err;
1419
1420 rtnl_lock();
1421 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1422 rtnl_unlock();
1423 return err;
1424 }
1425 EXPORT_SYMBOL(unregister_netdevice_notifier);
1426
1427 /**
1428 * call_netdevice_notifiers - call all network notifier blocks
1429 * @val: value passed unmodified to notifier function
1430 * @dev: net_device pointer passed unmodified to notifier function
1431 *
1432 * Call all network notifier blocks. Parameters and return value
1433 * are as for raw_notifier_call_chain().
1434 */
1435
1436 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1437 {
1438 ASSERT_RTNL();
1439 return raw_notifier_call_chain(&netdev_chain, val, dev);
1440 }
1441
1442 /* When > 0 there are consumers of rx skb time stamps */
1443 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1444
1445 void net_enable_timestamp(void)
1446 {
1447 atomic_inc(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_enable_timestamp);
1450
1451 void net_disable_timestamp(void)
1452 {
1453 atomic_dec(&netstamp_needed);
1454 }
1455 EXPORT_SYMBOL(net_disable_timestamp);
1456
1457 static inline void net_timestamp(struct sk_buff *skb)
1458 {
1459 if (atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 else
1462 skb->tstamp.tv64 = 0;
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486
1487 if (!(dev->flags & IFF_UP))
1488 return NET_RX_DROP;
1489
1490 if (skb->len > (dev->mtu + dev->hard_header_len))
1491 return NET_RX_DROP;
1492
1493 skb_set_dev(skb, dev);
1494 skb->tstamp.tv64 = 0;
1495 skb->pkt_type = PACKET_HOST;
1496 skb->protocol = eth_type_trans(skb, dev);
1497 return netif_rx(skb);
1498 }
1499 EXPORT_SYMBOL_GPL(dev_forward_skb);
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509
1510 #ifdef CONFIG_NET_CLS_ACT
1511 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1512 net_timestamp(skb);
1513 #else
1514 net_timestamp(skb);
1515 #endif
1516
1517 rcu_read_lock();
1518 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1519 /* Never send packets back to the socket
1520 * they originated from - MvS (miquels@drinkel.ow.org)
1521 */
1522 if ((ptype->dev == dev || !ptype->dev) &&
1523 (ptype->af_packet_priv == NULL ||
1524 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1525 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1526 if (!skb2)
1527 break;
1528
1529 /* skb->nh should be correctly
1530 set by sender, so that the second statement is
1531 just protection against buggy protocols.
1532 */
1533 skb_reset_mac_header(skb2);
1534
1535 if (skb_network_header(skb2) < skb2->data ||
1536 skb2->network_header > skb2->tail) {
1537 if (net_ratelimit())
1538 printk(KERN_CRIT "protocol %04x is "
1539 "buggy, dev %s\n",
1540 skb2->protocol, dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552
1553 static inline void __netif_reschedule(struct Qdisc *q)
1554 {
1555 struct softnet_data *sd;
1556 unsigned long flags;
1557
1558 local_irq_save(flags);
1559 sd = &__get_cpu_var(softnet_data);
1560 q->next_sched = sd->output_queue;
1561 sd->output_queue = q;
1562 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1563 local_irq_restore(flags);
1564 }
1565
1566 void __netif_schedule(struct Qdisc *q)
1567 {
1568 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1569 __netif_reschedule(q);
1570 }
1571 EXPORT_SYMBOL(__netif_schedule);
1572
1573 void dev_kfree_skb_irq(struct sk_buff *skb)
1574 {
1575 if (atomic_dec_and_test(&skb->users)) {
1576 struct softnet_data *sd;
1577 unsigned long flags;
1578
1579 local_irq_save(flags);
1580 sd = &__get_cpu_var(softnet_data);
1581 skb->next = sd->completion_queue;
1582 sd->completion_queue = skb;
1583 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1584 local_irq_restore(flags);
1585 }
1586 }
1587 EXPORT_SYMBOL(dev_kfree_skb_irq);
1588
1589 void dev_kfree_skb_any(struct sk_buff *skb)
1590 {
1591 if (in_irq() || irqs_disabled())
1592 dev_kfree_skb_irq(skb);
1593 else
1594 dev_kfree_skb(skb);
1595 }
1596 EXPORT_SYMBOL(dev_kfree_skb_any);
1597
1598
1599 /**
1600 * netif_device_detach - mark device as removed
1601 * @dev: network device
1602 *
1603 * Mark device as removed from system and therefore no longer available.
1604 */
1605 void netif_device_detach(struct net_device *dev)
1606 {
1607 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1608 netif_running(dev)) {
1609 netif_tx_stop_all_queues(dev);
1610 }
1611 }
1612 EXPORT_SYMBOL(netif_device_detach);
1613
1614 /**
1615 * netif_device_attach - mark device as attached
1616 * @dev: network device
1617 *
1618 * Mark device as attached from system and restart if needed.
1619 */
1620 void netif_device_attach(struct net_device *dev)
1621 {
1622 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1623 netif_running(dev)) {
1624 netif_tx_wake_all_queues(dev);
1625 __netdev_watchdog_up(dev);
1626 }
1627 }
1628 EXPORT_SYMBOL(netif_device_attach);
1629
1630 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1631 {
1632 return ((features & NETIF_F_GEN_CSUM) ||
1633 ((features & NETIF_F_IP_CSUM) &&
1634 protocol == htons(ETH_P_IP)) ||
1635 ((features & NETIF_F_IPV6_CSUM) &&
1636 protocol == htons(ETH_P_IPV6)) ||
1637 ((features & NETIF_F_FCOE_CRC) &&
1638 protocol == htons(ETH_P_FCOE)));
1639 }
1640
1641 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1642 {
1643 if (can_checksum_protocol(dev->features, skb->protocol))
1644 return true;
1645
1646 if (skb->protocol == htons(ETH_P_8021Q)) {
1647 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1648 if (can_checksum_protocol(dev->features & dev->vlan_features,
1649 veh->h_vlan_encapsulated_proto))
1650 return true;
1651 }
1652
1653 return false;
1654 }
1655
1656 /**
1657 * skb_dev_set -- assign a new device to a buffer
1658 * @skb: buffer for the new device
1659 * @dev: network device
1660 *
1661 * If an skb is owned by a device already, we have to reset
1662 * all data private to the namespace a device belongs to
1663 * before assigning it a new device.
1664 */
1665 #ifdef CONFIG_NET_NS
1666 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1667 {
1668 skb_dst_drop(skb);
1669 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1670 secpath_reset(skb);
1671 nf_reset(skb);
1672 skb_init_secmark(skb);
1673 skb->mark = 0;
1674 skb->priority = 0;
1675 skb->nf_trace = 0;
1676 skb->ipvs_property = 0;
1677 #ifdef CONFIG_NET_SCHED
1678 skb->tc_index = 0;
1679 #endif
1680 }
1681 skb->dev = dev;
1682 }
1683 EXPORT_SYMBOL(skb_set_dev);
1684 #endif /* CONFIG_NET_NS */
1685
1686 /*
1687 * Invalidate hardware checksum when packet is to be mangled, and
1688 * complete checksum manually on outgoing path.
1689 */
1690 int skb_checksum_help(struct sk_buff *skb)
1691 {
1692 __wsum csum;
1693 int ret = 0, offset;
1694
1695 if (skb->ip_summed == CHECKSUM_COMPLETE)
1696 goto out_set_summed;
1697
1698 if (unlikely(skb_shinfo(skb)->gso_size)) {
1699 /* Let GSO fix up the checksum. */
1700 goto out_set_summed;
1701 }
1702
1703 offset = skb->csum_start - skb_headroom(skb);
1704 BUG_ON(offset >= skb_headlen(skb));
1705 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1706
1707 offset += skb->csum_offset;
1708 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1709
1710 if (skb_cloned(skb) &&
1711 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1712 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1713 if (ret)
1714 goto out;
1715 }
1716
1717 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1718 out_set_summed:
1719 skb->ip_summed = CHECKSUM_NONE;
1720 out:
1721 return ret;
1722 }
1723 EXPORT_SYMBOL(skb_checksum_help);
1724
1725 /**
1726 * skb_gso_segment - Perform segmentation on skb.
1727 * @skb: buffer to segment
1728 * @features: features for the output path (see dev->features)
1729 *
1730 * This function segments the given skb and returns a list of segments.
1731 *
1732 * It may return NULL if the skb requires no segmentation. This is
1733 * only possible when GSO is used for verifying header integrity.
1734 */
1735 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1736 {
1737 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1738 struct packet_type *ptype;
1739 __be16 type = skb->protocol;
1740 int err;
1741
1742 skb_reset_mac_header(skb);
1743 skb->mac_len = skb->network_header - skb->mac_header;
1744 __skb_pull(skb, skb->mac_len);
1745
1746 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1747 struct net_device *dev = skb->dev;
1748 struct ethtool_drvinfo info = {};
1749
1750 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1751 dev->ethtool_ops->get_drvinfo(dev, &info);
1752
1753 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1754 "ip_summed=%d",
1755 info.driver, dev ? dev->features : 0L,
1756 skb->sk ? skb->sk->sk_route_caps : 0L,
1757 skb->len, skb->data_len, skb->ip_summed);
1758
1759 if (skb_header_cloned(skb) &&
1760 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1761 return ERR_PTR(err);
1762 }
1763
1764 rcu_read_lock();
1765 list_for_each_entry_rcu(ptype,
1766 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1767 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1768 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1769 err = ptype->gso_send_check(skb);
1770 segs = ERR_PTR(err);
1771 if (err || skb_gso_ok(skb, features))
1772 break;
1773 __skb_push(skb, (skb->data -
1774 skb_network_header(skb)));
1775 }
1776 segs = ptype->gso_segment(skb, features);
1777 break;
1778 }
1779 }
1780 rcu_read_unlock();
1781
1782 __skb_push(skb, skb->data - skb_mac_header(skb));
1783
1784 return segs;
1785 }
1786 EXPORT_SYMBOL(skb_gso_segment);
1787
1788 /* Take action when hardware reception checksum errors are detected. */
1789 #ifdef CONFIG_BUG
1790 void netdev_rx_csum_fault(struct net_device *dev)
1791 {
1792 if (net_ratelimit()) {
1793 printk(KERN_ERR "%s: hw csum failure.\n",
1794 dev ? dev->name : "<unknown>");
1795 dump_stack();
1796 }
1797 }
1798 EXPORT_SYMBOL(netdev_rx_csum_fault);
1799 #endif
1800
1801 /* Actually, we should eliminate this check as soon as we know, that:
1802 * 1. IOMMU is present and allows to map all the memory.
1803 * 2. No high memory really exists on this machine.
1804 */
1805
1806 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1807 {
1808 #ifdef CONFIG_HIGHMEM
1809 int i;
1810 if (!(dev->features & NETIF_F_HIGHDMA)) {
1811 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1812 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1813 return 1;
1814 }
1815
1816 if (PCI_DMA_BUS_IS_PHYS) {
1817 struct device *pdev = dev->dev.parent;
1818
1819 if (!pdev)
1820 return 0;
1821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1822 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1823 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1824 return 1;
1825 }
1826 }
1827 #endif
1828 return 0;
1829 }
1830
1831 struct dev_gso_cb {
1832 void (*destructor)(struct sk_buff *skb);
1833 };
1834
1835 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1836
1837 static void dev_gso_skb_destructor(struct sk_buff *skb)
1838 {
1839 struct dev_gso_cb *cb;
1840
1841 do {
1842 struct sk_buff *nskb = skb->next;
1843
1844 skb->next = nskb->next;
1845 nskb->next = NULL;
1846 kfree_skb(nskb);
1847 } while (skb->next);
1848
1849 cb = DEV_GSO_CB(skb);
1850 if (cb->destructor)
1851 cb->destructor(skb);
1852 }
1853
1854 /**
1855 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1856 * @skb: buffer to segment
1857 *
1858 * This function segments the given skb and stores the list of segments
1859 * in skb->next.
1860 */
1861 static int dev_gso_segment(struct sk_buff *skb)
1862 {
1863 struct net_device *dev = skb->dev;
1864 struct sk_buff *segs;
1865 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1866 NETIF_F_SG : 0);
1867
1868 segs = skb_gso_segment(skb, features);
1869
1870 /* Verifying header integrity only. */
1871 if (!segs)
1872 return 0;
1873
1874 if (IS_ERR(segs))
1875 return PTR_ERR(segs);
1876
1877 skb->next = segs;
1878 DEV_GSO_CB(skb)->destructor = skb->destructor;
1879 skb->destructor = dev_gso_skb_destructor;
1880
1881 return 0;
1882 }
1883
1884 /*
1885 * Try to orphan skb early, right before transmission by the device.
1886 * We cannot orphan skb if tx timestamp is requested, since
1887 * drivers need to call skb_tstamp_tx() to send the timestamp.
1888 */
1889 static inline void skb_orphan_try(struct sk_buff *skb)
1890 {
1891 if (!skb_tx(skb)->flags)
1892 skb_orphan(skb);
1893 }
1894
1895 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1896 struct netdev_queue *txq)
1897 {
1898 const struct net_device_ops *ops = dev->netdev_ops;
1899 int rc = NETDEV_TX_OK;
1900
1901 if (likely(!skb->next)) {
1902 if (!list_empty(&ptype_all))
1903 dev_queue_xmit_nit(skb, dev);
1904
1905 if (netif_needs_gso(dev, skb)) {
1906 if (unlikely(dev_gso_segment(skb)))
1907 goto out_kfree_skb;
1908 if (skb->next)
1909 goto gso;
1910 }
1911
1912 /*
1913 * If device doesnt need skb->dst, release it right now while
1914 * its hot in this cpu cache
1915 */
1916 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1917 skb_dst_drop(skb);
1918
1919 skb_orphan_try(skb);
1920 rc = ops->ndo_start_xmit(skb, dev);
1921 if (rc == NETDEV_TX_OK)
1922 txq_trans_update(txq);
1923 return rc;
1924 }
1925
1926 gso:
1927 do {
1928 struct sk_buff *nskb = skb->next;
1929
1930 skb->next = nskb->next;
1931 nskb->next = NULL;
1932
1933 /*
1934 * If device doesnt need nskb->dst, release it right now while
1935 * its hot in this cpu cache
1936 */
1937 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1938 skb_dst_drop(nskb);
1939
1940 skb_orphan_try(nskb);
1941 rc = ops->ndo_start_xmit(nskb, dev);
1942 if (unlikely(rc != NETDEV_TX_OK)) {
1943 if (rc & ~NETDEV_TX_MASK)
1944 goto out_kfree_gso_skb;
1945 nskb->next = skb->next;
1946 skb->next = nskb;
1947 return rc;
1948 }
1949 txq_trans_update(txq);
1950 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1951 return NETDEV_TX_BUSY;
1952 } while (skb->next);
1953
1954 out_kfree_gso_skb:
1955 if (likely(skb->next == NULL))
1956 skb->destructor = DEV_GSO_CB(skb)->destructor;
1957 out_kfree_skb:
1958 kfree_skb(skb);
1959 return rc;
1960 }
1961
1962 static u32 hashrnd __read_mostly;
1963
1964 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1965 {
1966 u32 hash;
1967
1968 if (skb_rx_queue_recorded(skb)) {
1969 hash = skb_get_rx_queue(skb);
1970 while (unlikely(hash >= dev->real_num_tx_queues))
1971 hash -= dev->real_num_tx_queues;
1972 return hash;
1973 }
1974
1975 if (skb->sk && skb->sk->sk_hash)
1976 hash = skb->sk->sk_hash;
1977 else
1978 hash = (__force u16) skb->protocol;
1979
1980 hash = jhash_1word(hash, hashrnd);
1981
1982 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1983 }
1984 EXPORT_SYMBOL(skb_tx_hash);
1985
1986 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1987 {
1988 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1989 if (net_ratelimit()) {
1990 pr_warning("%s selects TX queue %d, but "
1991 "real number of TX queues is %d\n",
1992 dev->name, queue_index, dev->real_num_tx_queues);
1993 }
1994 return 0;
1995 }
1996 return queue_index;
1997 }
1998
1999 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2000 struct sk_buff *skb)
2001 {
2002 u16 queue_index;
2003 struct sock *sk = skb->sk;
2004
2005 if (sk_tx_queue_recorded(sk)) {
2006 queue_index = sk_tx_queue_get(sk);
2007 } else {
2008 const struct net_device_ops *ops = dev->netdev_ops;
2009
2010 if (ops->ndo_select_queue) {
2011 queue_index = ops->ndo_select_queue(dev, skb);
2012 queue_index = dev_cap_txqueue(dev, queue_index);
2013 } else {
2014 queue_index = 0;
2015 if (dev->real_num_tx_queues > 1)
2016 queue_index = skb_tx_hash(dev, skb);
2017
2018 if (sk) {
2019 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2020
2021 if (dst && skb_dst(skb) == dst)
2022 sk_tx_queue_set(sk, queue_index);
2023 }
2024 }
2025 }
2026
2027 skb_set_queue_mapping(skb, queue_index);
2028 return netdev_get_tx_queue(dev, queue_index);
2029 }
2030
2031 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2032 struct net_device *dev,
2033 struct netdev_queue *txq)
2034 {
2035 spinlock_t *root_lock = qdisc_lock(q);
2036 int rc;
2037
2038 spin_lock(root_lock);
2039 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2040 kfree_skb(skb);
2041 rc = NET_XMIT_DROP;
2042 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2043 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2044 /*
2045 * This is a work-conserving queue; there are no old skbs
2046 * waiting to be sent out; and the qdisc is not running -
2047 * xmit the skb directly.
2048 */
2049 __qdisc_update_bstats(q, skb->len);
2050 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2051 __qdisc_run(q);
2052 else
2053 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2054
2055 rc = NET_XMIT_SUCCESS;
2056 } else {
2057 rc = qdisc_enqueue_root(skb, q);
2058 qdisc_run(q);
2059 }
2060 spin_unlock(root_lock);
2061
2062 return rc;
2063 }
2064
2065 /*
2066 * Returns true if either:
2067 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2068 * 2. skb is fragmented and the device does not support SG, or if
2069 * at least one of fragments is in highmem and device does not
2070 * support DMA from it.
2071 */
2072 static inline int skb_needs_linearize(struct sk_buff *skb,
2073 struct net_device *dev)
2074 {
2075 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2076 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2077 illegal_highdma(dev, skb)));
2078 }
2079
2080 /**
2081 * dev_queue_xmit - transmit a buffer
2082 * @skb: buffer to transmit
2083 *
2084 * Queue a buffer for transmission to a network device. The caller must
2085 * have set the device and priority and built the buffer before calling
2086 * this function. The function can be called from an interrupt.
2087 *
2088 * A negative errno code is returned on a failure. A success does not
2089 * guarantee the frame will be transmitted as it may be dropped due
2090 * to congestion or traffic shaping.
2091 *
2092 * -----------------------------------------------------------------------------------
2093 * I notice this method can also return errors from the queue disciplines,
2094 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2095 * be positive.
2096 *
2097 * Regardless of the return value, the skb is consumed, so it is currently
2098 * difficult to retry a send to this method. (You can bump the ref count
2099 * before sending to hold a reference for retry if you are careful.)
2100 *
2101 * When calling this method, interrupts MUST be enabled. This is because
2102 * the BH enable code must have IRQs enabled so that it will not deadlock.
2103 * --BLG
2104 */
2105 int dev_queue_xmit(struct sk_buff *skb)
2106 {
2107 struct net_device *dev = skb->dev;
2108 struct netdev_queue *txq;
2109 struct Qdisc *q;
2110 int rc = -ENOMEM;
2111
2112 /* GSO will handle the following emulations directly. */
2113 if (netif_needs_gso(dev, skb))
2114 goto gso;
2115
2116 /* Convert a paged skb to linear, if required */
2117 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2118 goto out_kfree_skb;
2119
2120 /* If packet is not checksummed and device does not support
2121 * checksumming for this protocol, complete checksumming here.
2122 */
2123 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2124 skb_set_transport_header(skb, skb->csum_start -
2125 skb_headroom(skb));
2126 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2127 goto out_kfree_skb;
2128 }
2129
2130 gso:
2131 /* Disable soft irqs for various locks below. Also
2132 * stops preemption for RCU.
2133 */
2134 rcu_read_lock_bh();
2135
2136 txq = dev_pick_tx(dev, skb);
2137 q = rcu_dereference_bh(txq->qdisc);
2138
2139 #ifdef CONFIG_NET_CLS_ACT
2140 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2141 #endif
2142 if (q->enqueue) {
2143 rc = __dev_xmit_skb(skb, q, dev, txq);
2144 goto out;
2145 }
2146
2147 /* The device has no queue. Common case for software devices:
2148 loopback, all the sorts of tunnels...
2149
2150 Really, it is unlikely that netif_tx_lock protection is necessary
2151 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2152 counters.)
2153 However, it is possible, that they rely on protection
2154 made by us here.
2155
2156 Check this and shot the lock. It is not prone from deadlocks.
2157 Either shot noqueue qdisc, it is even simpler 8)
2158 */
2159 if (dev->flags & IFF_UP) {
2160 int cpu = smp_processor_id(); /* ok because BHs are off */
2161
2162 if (txq->xmit_lock_owner != cpu) {
2163
2164 HARD_TX_LOCK(dev, txq, cpu);
2165
2166 if (!netif_tx_queue_stopped(txq)) {
2167 rc = dev_hard_start_xmit(skb, dev, txq);
2168 if (dev_xmit_complete(rc)) {
2169 HARD_TX_UNLOCK(dev, txq);
2170 goto out;
2171 }
2172 }
2173 HARD_TX_UNLOCK(dev, txq);
2174 if (net_ratelimit())
2175 printk(KERN_CRIT "Virtual device %s asks to "
2176 "queue packet!\n", dev->name);
2177 } else {
2178 /* Recursion is detected! It is possible,
2179 * unfortunately */
2180 if (net_ratelimit())
2181 printk(KERN_CRIT "Dead loop on virtual device "
2182 "%s, fix it urgently!\n", dev->name);
2183 }
2184 }
2185
2186 rc = -ENETDOWN;
2187 rcu_read_unlock_bh();
2188
2189 out_kfree_skb:
2190 kfree_skb(skb);
2191 return rc;
2192 out:
2193 rcu_read_unlock_bh();
2194 return rc;
2195 }
2196 EXPORT_SYMBOL(dev_queue_xmit);
2197
2198
2199 /*=======================================================================
2200 Receiver routines
2201 =======================================================================*/
2202
2203 int netdev_max_backlog __read_mostly = 1000;
2204 int netdev_budget __read_mostly = 300;
2205 int weight_p __read_mostly = 64; /* old backlog weight */
2206
2207 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2208
2209 #ifdef CONFIG_RPS
2210
2211 /* One global table that all flow-based protocols share. */
2212 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2213 EXPORT_SYMBOL(rps_sock_flow_table);
2214
2215 /*
2216 * get_rps_cpu is called from netif_receive_skb and returns the target
2217 * CPU from the RPS map of the receiving queue for a given skb.
2218 * rcu_read_lock must be held on entry.
2219 */
2220 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2221 struct rps_dev_flow **rflowp)
2222 {
2223 struct ipv6hdr *ip6;
2224 struct iphdr *ip;
2225 struct netdev_rx_queue *rxqueue;
2226 struct rps_map *map;
2227 struct rps_dev_flow_table *flow_table;
2228 struct rps_sock_flow_table *sock_flow_table;
2229 int cpu = -1;
2230 u8 ip_proto;
2231 u16 tcpu;
2232 u32 addr1, addr2, ports, ihl;
2233
2234 if (skb_rx_queue_recorded(skb)) {
2235 u16 index = skb_get_rx_queue(skb);
2236 if (unlikely(index >= dev->num_rx_queues)) {
2237 if (net_ratelimit()) {
2238 pr_warning("%s received packet on queue "
2239 "%u, but number of RX queues is %u\n",
2240 dev->name, index, dev->num_rx_queues);
2241 }
2242 goto done;
2243 }
2244 rxqueue = dev->_rx + index;
2245 } else
2246 rxqueue = dev->_rx;
2247
2248 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2249 goto done;
2250
2251 if (skb->rxhash)
2252 goto got_hash; /* Skip hash computation on packet header */
2253
2254 switch (skb->protocol) {
2255 case __constant_htons(ETH_P_IP):
2256 if (!pskb_may_pull(skb, sizeof(*ip)))
2257 goto done;
2258
2259 ip = (struct iphdr *) skb->data;
2260 ip_proto = ip->protocol;
2261 addr1 = (__force u32) ip->saddr;
2262 addr2 = (__force u32) ip->daddr;
2263 ihl = ip->ihl;
2264 break;
2265 case __constant_htons(ETH_P_IPV6):
2266 if (!pskb_may_pull(skb, sizeof(*ip6)))
2267 goto done;
2268
2269 ip6 = (struct ipv6hdr *) skb->data;
2270 ip_proto = ip6->nexthdr;
2271 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2272 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2273 ihl = (40 >> 2);
2274 break;
2275 default:
2276 goto done;
2277 }
2278 ports = 0;
2279 switch (ip_proto) {
2280 case IPPROTO_TCP:
2281 case IPPROTO_UDP:
2282 case IPPROTO_DCCP:
2283 case IPPROTO_ESP:
2284 case IPPROTO_AH:
2285 case IPPROTO_SCTP:
2286 case IPPROTO_UDPLITE:
2287 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2288 __be16 *hports = (__be16 *) (skb->data + (ihl * 4));
2289 u32 sport, dport;
2290
2291 sport = (__force u16) hports[0];
2292 dport = (__force u16) hports[1];
2293 if (dport < sport)
2294 swap(sport, dport);
2295 ports = (sport << 16) + dport;
2296 }
2297 break;
2298
2299 default:
2300 break;
2301 }
2302
2303 /* get a consistent hash (same value on both flow directions) */
2304 if (addr2 < addr1)
2305 swap(addr1, addr2);
2306 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2307 if (!skb->rxhash)
2308 skb->rxhash = 1;
2309
2310 got_hash:
2311 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2312 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2313 if (flow_table && sock_flow_table) {
2314 u16 next_cpu;
2315 struct rps_dev_flow *rflow;
2316
2317 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2318 tcpu = rflow->cpu;
2319
2320 next_cpu = sock_flow_table->ents[skb->rxhash &
2321 sock_flow_table->mask];
2322
2323 /*
2324 * If the desired CPU (where last recvmsg was done) is
2325 * different from current CPU (one in the rx-queue flow
2326 * table entry), switch if one of the following holds:
2327 * - Current CPU is unset (equal to RPS_NO_CPU).
2328 * - Current CPU is offline.
2329 * - The current CPU's queue tail has advanced beyond the
2330 * last packet that was enqueued using this table entry.
2331 * This guarantees that all previous packets for the flow
2332 * have been dequeued, thus preserving in order delivery.
2333 */
2334 if (unlikely(tcpu != next_cpu) &&
2335 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2336 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2337 rflow->last_qtail)) >= 0)) {
2338 tcpu = rflow->cpu = next_cpu;
2339 if (tcpu != RPS_NO_CPU)
2340 rflow->last_qtail = per_cpu(softnet_data,
2341 tcpu).input_queue_head;
2342 }
2343 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2344 *rflowp = rflow;
2345 cpu = tcpu;
2346 goto done;
2347 }
2348 }
2349
2350 map = rcu_dereference(rxqueue->rps_map);
2351 if (map) {
2352 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2353
2354 if (cpu_online(tcpu)) {
2355 cpu = tcpu;
2356 goto done;
2357 }
2358 }
2359
2360 done:
2361 return cpu;
2362 }
2363
2364 /* Called from hardirq (IPI) context */
2365 static void rps_trigger_softirq(void *data)
2366 {
2367 struct softnet_data *sd = data;
2368
2369 __napi_schedule(&sd->backlog);
2370 __get_cpu_var(netdev_rx_stat).received_rps++;
2371 }
2372
2373 #endif /* CONFIG_RPS */
2374
2375 /*
2376 * Check if this softnet_data structure is another cpu one
2377 * If yes, queue it to our IPI list and return 1
2378 * If no, return 0
2379 */
2380 static int rps_ipi_queued(struct softnet_data *sd)
2381 {
2382 #ifdef CONFIG_RPS
2383 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2384
2385 if (sd != mysd) {
2386 sd->rps_ipi_next = mysd->rps_ipi_list;
2387 mysd->rps_ipi_list = sd;
2388
2389 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2390 return 1;
2391 }
2392 #endif /* CONFIG_RPS */
2393 return 0;
2394 }
2395
2396 /*
2397 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2398 * queue (may be a remote CPU queue).
2399 */
2400 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2401 unsigned int *qtail)
2402 {
2403 struct softnet_data *sd;
2404 unsigned long flags;
2405
2406 sd = &per_cpu(softnet_data, cpu);
2407
2408 local_irq_save(flags);
2409 __get_cpu_var(netdev_rx_stat).total++;
2410
2411 rps_lock(sd);
2412 if (sd->input_pkt_queue.qlen <= netdev_max_backlog) {
2413 if (sd->input_pkt_queue.qlen) {
2414 enqueue:
2415 __skb_queue_tail(&sd->input_pkt_queue, skb);
2416 #ifdef CONFIG_RPS
2417 *qtail = sd->input_queue_head + sd->input_pkt_queue.qlen;
2418 #endif
2419 rps_unlock(sd);
2420 local_irq_restore(flags);
2421 return NET_RX_SUCCESS;
2422 }
2423
2424 /* Schedule NAPI for backlog device */
2425 if (napi_schedule_prep(&sd->backlog)) {
2426 if (!rps_ipi_queued(sd))
2427 __napi_schedule(&sd->backlog);
2428 }
2429 goto enqueue;
2430 }
2431
2432 rps_unlock(sd);
2433
2434 __get_cpu_var(netdev_rx_stat).dropped++;
2435 local_irq_restore(flags);
2436
2437 kfree_skb(skb);
2438 return NET_RX_DROP;
2439 }
2440
2441 /**
2442 * netif_rx - post buffer to the network code
2443 * @skb: buffer to post
2444 *
2445 * This function receives a packet from a device driver and queues it for
2446 * the upper (protocol) levels to process. It always succeeds. The buffer
2447 * may be dropped during processing for congestion control or by the
2448 * protocol layers.
2449 *
2450 * return values:
2451 * NET_RX_SUCCESS (no congestion)
2452 * NET_RX_DROP (packet was dropped)
2453 *
2454 */
2455
2456 int netif_rx(struct sk_buff *skb)
2457 {
2458 int ret;
2459
2460 /* if netpoll wants it, pretend we never saw it */
2461 if (netpoll_rx(skb))
2462 return NET_RX_DROP;
2463
2464 if (!skb->tstamp.tv64)
2465 net_timestamp(skb);
2466
2467 #ifdef CONFIG_RPS
2468 {
2469 struct rps_dev_flow voidflow, *rflow = &voidflow;
2470 int cpu;
2471
2472 rcu_read_lock();
2473
2474 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2475 if (cpu < 0)
2476 cpu = smp_processor_id();
2477
2478 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2479
2480 rcu_read_unlock();
2481 }
2482 #else
2483 {
2484 unsigned int qtail;
2485 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2486 put_cpu();
2487 }
2488 #endif
2489 return ret;
2490 }
2491 EXPORT_SYMBOL(netif_rx);
2492
2493 int netif_rx_ni(struct sk_buff *skb)
2494 {
2495 int err;
2496
2497 preempt_disable();
2498 err = netif_rx(skb);
2499 if (local_softirq_pending())
2500 do_softirq();
2501 preempt_enable();
2502
2503 return err;
2504 }
2505 EXPORT_SYMBOL(netif_rx_ni);
2506
2507 static void net_tx_action(struct softirq_action *h)
2508 {
2509 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2510
2511 if (sd->completion_queue) {
2512 struct sk_buff *clist;
2513
2514 local_irq_disable();
2515 clist = sd->completion_queue;
2516 sd->completion_queue = NULL;
2517 local_irq_enable();
2518
2519 while (clist) {
2520 struct sk_buff *skb = clist;
2521 clist = clist->next;
2522
2523 WARN_ON(atomic_read(&skb->users));
2524 __kfree_skb(skb);
2525 }
2526 }
2527
2528 if (sd->output_queue) {
2529 struct Qdisc *head;
2530
2531 local_irq_disable();
2532 head = sd->output_queue;
2533 sd->output_queue = NULL;
2534 local_irq_enable();
2535
2536 while (head) {
2537 struct Qdisc *q = head;
2538 spinlock_t *root_lock;
2539
2540 head = head->next_sched;
2541
2542 root_lock = qdisc_lock(q);
2543 if (spin_trylock(root_lock)) {
2544 smp_mb__before_clear_bit();
2545 clear_bit(__QDISC_STATE_SCHED,
2546 &q->state);
2547 qdisc_run(q);
2548 spin_unlock(root_lock);
2549 } else {
2550 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2551 &q->state)) {
2552 __netif_reschedule(q);
2553 } else {
2554 smp_mb__before_clear_bit();
2555 clear_bit(__QDISC_STATE_SCHED,
2556 &q->state);
2557 }
2558 }
2559 }
2560 }
2561 }
2562
2563 static inline int deliver_skb(struct sk_buff *skb,
2564 struct packet_type *pt_prev,
2565 struct net_device *orig_dev)
2566 {
2567 atomic_inc(&skb->users);
2568 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2569 }
2570
2571 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2572
2573 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2574 /* This hook is defined here for ATM LANE */
2575 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2576 unsigned char *addr) __read_mostly;
2577 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2578 #endif
2579
2580 /*
2581 * If bridge module is loaded call bridging hook.
2582 * returns NULL if packet was consumed.
2583 */
2584 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2585 struct sk_buff *skb) __read_mostly;
2586 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2587
2588 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2589 struct packet_type **pt_prev, int *ret,
2590 struct net_device *orig_dev)
2591 {
2592 struct net_bridge_port *port;
2593
2594 if (skb->pkt_type == PACKET_LOOPBACK ||
2595 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2596 return skb;
2597
2598 if (*pt_prev) {
2599 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2600 *pt_prev = NULL;
2601 }
2602
2603 return br_handle_frame_hook(port, skb);
2604 }
2605 #else
2606 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2607 #endif
2608
2609 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2610 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2611 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2612
2613 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2614 struct packet_type **pt_prev,
2615 int *ret,
2616 struct net_device *orig_dev)
2617 {
2618 if (skb->dev->macvlan_port == NULL)
2619 return skb;
2620
2621 if (*pt_prev) {
2622 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2623 *pt_prev = NULL;
2624 }
2625 return macvlan_handle_frame_hook(skb);
2626 }
2627 #else
2628 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2629 #endif
2630
2631 #ifdef CONFIG_NET_CLS_ACT
2632 /* TODO: Maybe we should just force sch_ingress to be compiled in
2633 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2634 * a compare and 2 stores extra right now if we dont have it on
2635 * but have CONFIG_NET_CLS_ACT
2636 * NOTE: This doesnt stop any functionality; if you dont have
2637 * the ingress scheduler, you just cant add policies on ingress.
2638 *
2639 */
2640 static int ing_filter(struct sk_buff *skb)
2641 {
2642 struct net_device *dev = skb->dev;
2643 u32 ttl = G_TC_RTTL(skb->tc_verd);
2644 struct netdev_queue *rxq;
2645 int result = TC_ACT_OK;
2646 struct Qdisc *q;
2647
2648 if (MAX_RED_LOOP < ttl++) {
2649 printk(KERN_WARNING
2650 "Redir loop detected Dropping packet (%d->%d)\n",
2651 skb->skb_iif, dev->ifindex);
2652 return TC_ACT_SHOT;
2653 }
2654
2655 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2656 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2657
2658 rxq = &dev->rx_queue;
2659
2660 q = rxq->qdisc;
2661 if (q != &noop_qdisc) {
2662 spin_lock(qdisc_lock(q));
2663 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2664 result = qdisc_enqueue_root(skb, q);
2665 spin_unlock(qdisc_lock(q));
2666 }
2667
2668 return result;
2669 }
2670
2671 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2672 struct packet_type **pt_prev,
2673 int *ret, struct net_device *orig_dev)
2674 {
2675 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2676 goto out;
2677
2678 if (*pt_prev) {
2679 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2680 *pt_prev = NULL;
2681 } else {
2682 /* Huh? Why does turning on AF_PACKET affect this? */
2683 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2684 }
2685
2686 switch (ing_filter(skb)) {
2687 case TC_ACT_SHOT:
2688 case TC_ACT_STOLEN:
2689 kfree_skb(skb);
2690 return NULL;
2691 }
2692
2693 out:
2694 skb->tc_verd = 0;
2695 return skb;
2696 }
2697 #endif
2698
2699 /*
2700 * netif_nit_deliver - deliver received packets to network taps
2701 * @skb: buffer
2702 *
2703 * This function is used to deliver incoming packets to network
2704 * taps. It should be used when the normal netif_receive_skb path
2705 * is bypassed, for example because of VLAN acceleration.
2706 */
2707 void netif_nit_deliver(struct sk_buff *skb)
2708 {
2709 struct packet_type *ptype;
2710
2711 if (list_empty(&ptype_all))
2712 return;
2713
2714 skb_reset_network_header(skb);
2715 skb_reset_transport_header(skb);
2716 skb->mac_len = skb->network_header - skb->mac_header;
2717
2718 rcu_read_lock();
2719 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2720 if (!ptype->dev || ptype->dev == skb->dev)
2721 deliver_skb(skb, ptype, skb->dev);
2722 }
2723 rcu_read_unlock();
2724 }
2725
2726 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2727 struct net_device *master)
2728 {
2729 if (skb->pkt_type == PACKET_HOST) {
2730 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2731
2732 memcpy(dest, master->dev_addr, ETH_ALEN);
2733 }
2734 }
2735
2736 /* On bonding slaves other than the currently active slave, suppress
2737 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2738 * ARP on active-backup slaves with arp_validate enabled.
2739 */
2740 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2741 {
2742 struct net_device *dev = skb->dev;
2743
2744 if (master->priv_flags & IFF_MASTER_ARPMON)
2745 dev->last_rx = jiffies;
2746
2747 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2748 /* Do address unmangle. The local destination address
2749 * will be always the one master has. Provides the right
2750 * functionality in a bridge.
2751 */
2752 skb_bond_set_mac_by_master(skb, master);
2753 }
2754
2755 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2756 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2757 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2758 return 0;
2759
2760 if (master->priv_flags & IFF_MASTER_ALB) {
2761 if (skb->pkt_type != PACKET_BROADCAST &&
2762 skb->pkt_type != PACKET_MULTICAST)
2763 return 0;
2764 }
2765 if (master->priv_flags & IFF_MASTER_8023AD &&
2766 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2767 return 0;
2768
2769 return 1;
2770 }
2771 return 0;
2772 }
2773 EXPORT_SYMBOL(__skb_bond_should_drop);
2774
2775 static int __netif_receive_skb(struct sk_buff *skb)
2776 {
2777 struct packet_type *ptype, *pt_prev;
2778 struct net_device *orig_dev;
2779 struct net_device *master;
2780 struct net_device *null_or_orig;
2781 struct net_device *null_or_bond;
2782 int ret = NET_RX_DROP;
2783 __be16 type;
2784
2785 if (!skb->tstamp.tv64)
2786 net_timestamp(skb);
2787
2788 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2789 return NET_RX_SUCCESS;
2790
2791 /* if we've gotten here through NAPI, check netpoll */
2792 if (netpoll_receive_skb(skb))
2793 return NET_RX_DROP;
2794
2795 if (!skb->skb_iif)
2796 skb->skb_iif = skb->dev->ifindex;
2797
2798 null_or_orig = NULL;
2799 orig_dev = skb->dev;
2800 master = ACCESS_ONCE(orig_dev->master);
2801 if (master) {
2802 if (skb_bond_should_drop(skb, master))
2803 null_or_orig = orig_dev; /* deliver only exact match */
2804 else
2805 skb->dev = master;
2806 }
2807
2808 __get_cpu_var(netdev_rx_stat).total++;
2809
2810 skb_reset_network_header(skb);
2811 skb_reset_transport_header(skb);
2812 skb->mac_len = skb->network_header - skb->mac_header;
2813
2814 pt_prev = NULL;
2815
2816 rcu_read_lock();
2817
2818 #ifdef CONFIG_NET_CLS_ACT
2819 if (skb->tc_verd & TC_NCLS) {
2820 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2821 goto ncls;
2822 }
2823 #endif
2824
2825 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2826 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2827 ptype->dev == orig_dev) {
2828 if (pt_prev)
2829 ret = deliver_skb(skb, pt_prev, orig_dev);
2830 pt_prev = ptype;
2831 }
2832 }
2833
2834 #ifdef CONFIG_NET_CLS_ACT
2835 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2836 if (!skb)
2837 goto out;
2838 ncls:
2839 #endif
2840
2841 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2842 if (!skb)
2843 goto out;
2844 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2845 if (!skb)
2846 goto out;
2847
2848 /*
2849 * Make sure frames received on VLAN interfaces stacked on
2850 * bonding interfaces still make their way to any base bonding
2851 * device that may have registered for a specific ptype. The
2852 * handler may have to adjust skb->dev and orig_dev.
2853 */
2854 null_or_bond = NULL;
2855 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2856 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2857 null_or_bond = vlan_dev_real_dev(skb->dev);
2858 }
2859
2860 type = skb->protocol;
2861 list_for_each_entry_rcu(ptype,
2862 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2863 if (ptype->type == type && (ptype->dev == null_or_orig ||
2864 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2865 ptype->dev == null_or_bond)) {
2866 if (pt_prev)
2867 ret = deliver_skb(skb, pt_prev, orig_dev);
2868 pt_prev = ptype;
2869 }
2870 }
2871
2872 if (pt_prev) {
2873 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2874 } else {
2875 kfree_skb(skb);
2876 /* Jamal, now you will not able to escape explaining
2877 * me how you were going to use this. :-)
2878 */
2879 ret = NET_RX_DROP;
2880 }
2881
2882 out:
2883 rcu_read_unlock();
2884 return ret;
2885 }
2886
2887 /**
2888 * netif_receive_skb - process receive buffer from network
2889 * @skb: buffer to process
2890 *
2891 * netif_receive_skb() is the main receive data processing function.
2892 * It always succeeds. The buffer may be dropped during processing
2893 * for congestion control or by the protocol layers.
2894 *
2895 * This function may only be called from softirq context and interrupts
2896 * should be enabled.
2897 *
2898 * Return values (usually ignored):
2899 * NET_RX_SUCCESS: no congestion
2900 * NET_RX_DROP: packet was dropped
2901 */
2902 int netif_receive_skb(struct sk_buff *skb)
2903 {
2904 #ifdef CONFIG_RPS
2905 struct rps_dev_flow voidflow, *rflow = &voidflow;
2906 int cpu, ret;
2907
2908 rcu_read_lock();
2909
2910 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2911
2912 if (cpu >= 0) {
2913 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2914 rcu_read_unlock();
2915 } else {
2916 rcu_read_unlock();
2917 ret = __netif_receive_skb(skb);
2918 }
2919
2920 return ret;
2921 #else
2922 return __netif_receive_skb(skb);
2923 #endif
2924 }
2925 EXPORT_SYMBOL(netif_receive_skb);
2926
2927 /* Network device is going away, flush any packets still pending
2928 * Called with irqs disabled.
2929 */
2930 static void flush_backlog(void *arg)
2931 {
2932 struct net_device *dev = arg;
2933 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2934 struct sk_buff *skb, *tmp;
2935
2936 rps_lock(sd);
2937 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp)
2938 if (skb->dev == dev) {
2939 __skb_unlink(skb, &sd->input_pkt_queue);
2940 kfree_skb(skb);
2941 input_queue_head_incr(sd);
2942 }
2943 rps_unlock(sd);
2944 }
2945
2946 static int napi_gro_complete(struct sk_buff *skb)
2947 {
2948 struct packet_type *ptype;
2949 __be16 type = skb->protocol;
2950 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2951 int err = -ENOENT;
2952
2953 if (NAPI_GRO_CB(skb)->count == 1) {
2954 skb_shinfo(skb)->gso_size = 0;
2955 goto out;
2956 }
2957
2958 rcu_read_lock();
2959 list_for_each_entry_rcu(ptype, head, list) {
2960 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2961 continue;
2962
2963 err = ptype->gro_complete(skb);
2964 break;
2965 }
2966 rcu_read_unlock();
2967
2968 if (err) {
2969 WARN_ON(&ptype->list == head);
2970 kfree_skb(skb);
2971 return NET_RX_SUCCESS;
2972 }
2973
2974 out:
2975 return netif_receive_skb(skb);
2976 }
2977
2978 static void napi_gro_flush(struct napi_struct *napi)
2979 {
2980 struct sk_buff *skb, *next;
2981
2982 for (skb = napi->gro_list; skb; skb = next) {
2983 next = skb->next;
2984 skb->next = NULL;
2985 napi_gro_complete(skb);
2986 }
2987
2988 napi->gro_count = 0;
2989 napi->gro_list = NULL;
2990 }
2991
2992 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2993 {
2994 struct sk_buff **pp = NULL;
2995 struct packet_type *ptype;
2996 __be16 type = skb->protocol;
2997 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2998 int same_flow;
2999 int mac_len;
3000 enum gro_result ret;
3001
3002 if (!(skb->dev->features & NETIF_F_GRO))
3003 goto normal;
3004
3005 if (skb_is_gso(skb) || skb_has_frags(skb))
3006 goto normal;
3007
3008 rcu_read_lock();
3009 list_for_each_entry_rcu(ptype, head, list) {
3010 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3011 continue;
3012
3013 skb_set_network_header(skb, skb_gro_offset(skb));
3014 mac_len = skb->network_header - skb->mac_header;
3015 skb->mac_len = mac_len;
3016 NAPI_GRO_CB(skb)->same_flow = 0;
3017 NAPI_GRO_CB(skb)->flush = 0;
3018 NAPI_GRO_CB(skb)->free = 0;
3019
3020 pp = ptype->gro_receive(&napi->gro_list, skb);
3021 break;
3022 }
3023 rcu_read_unlock();
3024
3025 if (&ptype->list == head)
3026 goto normal;
3027
3028 same_flow = NAPI_GRO_CB(skb)->same_flow;
3029 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3030
3031 if (pp) {
3032 struct sk_buff *nskb = *pp;
3033
3034 *pp = nskb->next;
3035 nskb->next = NULL;
3036 napi_gro_complete(nskb);
3037 napi->gro_count--;
3038 }
3039
3040 if (same_flow)
3041 goto ok;
3042
3043 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3044 goto normal;
3045
3046 napi->gro_count++;
3047 NAPI_GRO_CB(skb)->count = 1;
3048 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3049 skb->next = napi->gro_list;
3050 napi->gro_list = skb;
3051 ret = GRO_HELD;
3052
3053 pull:
3054 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3055 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3056
3057 BUG_ON(skb->end - skb->tail < grow);
3058
3059 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3060
3061 skb->tail += grow;
3062 skb->data_len -= grow;
3063
3064 skb_shinfo(skb)->frags[0].page_offset += grow;
3065 skb_shinfo(skb)->frags[0].size -= grow;
3066
3067 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3068 put_page(skb_shinfo(skb)->frags[0].page);
3069 memmove(skb_shinfo(skb)->frags,
3070 skb_shinfo(skb)->frags + 1,
3071 --skb_shinfo(skb)->nr_frags);
3072 }
3073 }
3074
3075 ok:
3076 return ret;
3077
3078 normal:
3079 ret = GRO_NORMAL;
3080 goto pull;
3081 }
3082 EXPORT_SYMBOL(dev_gro_receive);
3083
3084 static gro_result_t
3085 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3086 {
3087 struct sk_buff *p;
3088
3089 if (netpoll_rx_on(skb))
3090 return GRO_NORMAL;
3091
3092 for (p = napi->gro_list; p; p = p->next) {
3093 NAPI_GRO_CB(p)->same_flow =
3094 (p->dev == skb->dev) &&
3095 !compare_ether_header(skb_mac_header(p),
3096 skb_gro_mac_header(skb));
3097 NAPI_GRO_CB(p)->flush = 0;
3098 }
3099
3100 return dev_gro_receive(napi, skb);
3101 }
3102
3103 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3104 {
3105 switch (ret) {
3106 case GRO_NORMAL:
3107 if (netif_receive_skb(skb))
3108 ret = GRO_DROP;
3109 break;
3110
3111 case GRO_DROP:
3112 case GRO_MERGED_FREE:
3113 kfree_skb(skb);
3114 break;
3115
3116 case GRO_HELD:
3117 case GRO_MERGED:
3118 break;
3119 }
3120
3121 return ret;
3122 }
3123 EXPORT_SYMBOL(napi_skb_finish);
3124
3125 void skb_gro_reset_offset(struct sk_buff *skb)
3126 {
3127 NAPI_GRO_CB(skb)->data_offset = 0;
3128 NAPI_GRO_CB(skb)->frag0 = NULL;
3129 NAPI_GRO_CB(skb)->frag0_len = 0;
3130
3131 if (skb->mac_header == skb->tail &&
3132 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3133 NAPI_GRO_CB(skb)->frag0 =
3134 page_address(skb_shinfo(skb)->frags[0].page) +
3135 skb_shinfo(skb)->frags[0].page_offset;
3136 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3137 }
3138 }
3139 EXPORT_SYMBOL(skb_gro_reset_offset);
3140
3141 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3142 {
3143 skb_gro_reset_offset(skb);
3144
3145 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3146 }
3147 EXPORT_SYMBOL(napi_gro_receive);
3148
3149 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3150 {
3151 __skb_pull(skb, skb_headlen(skb));
3152 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3153
3154 napi->skb = skb;
3155 }
3156 EXPORT_SYMBOL(napi_reuse_skb);
3157
3158 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3159 {
3160 struct sk_buff *skb = napi->skb;
3161
3162 if (!skb) {
3163 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3164 if (skb)
3165 napi->skb = skb;
3166 }
3167 return skb;
3168 }
3169 EXPORT_SYMBOL(napi_get_frags);
3170
3171 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3172 gro_result_t ret)
3173 {
3174 switch (ret) {
3175 case GRO_NORMAL:
3176 case GRO_HELD:
3177 skb->protocol = eth_type_trans(skb, skb->dev);
3178
3179 if (ret == GRO_HELD)
3180 skb_gro_pull(skb, -ETH_HLEN);
3181 else if (netif_receive_skb(skb))
3182 ret = GRO_DROP;
3183 break;
3184
3185 case GRO_DROP:
3186 case GRO_MERGED_FREE:
3187 napi_reuse_skb(napi, skb);
3188 break;
3189
3190 case GRO_MERGED:
3191 break;
3192 }
3193
3194 return ret;
3195 }
3196 EXPORT_SYMBOL(napi_frags_finish);
3197
3198 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3199 {
3200 struct sk_buff *skb = napi->skb;
3201 struct ethhdr *eth;
3202 unsigned int hlen;
3203 unsigned int off;
3204
3205 napi->skb = NULL;
3206
3207 skb_reset_mac_header(skb);
3208 skb_gro_reset_offset(skb);
3209
3210 off = skb_gro_offset(skb);
3211 hlen = off + sizeof(*eth);
3212 eth = skb_gro_header_fast(skb, off);
3213 if (skb_gro_header_hard(skb, hlen)) {
3214 eth = skb_gro_header_slow(skb, hlen, off);
3215 if (unlikely(!eth)) {
3216 napi_reuse_skb(napi, skb);
3217 skb = NULL;
3218 goto out;
3219 }
3220 }
3221
3222 skb_gro_pull(skb, sizeof(*eth));
3223
3224 /*
3225 * This works because the only protocols we care about don't require
3226 * special handling. We'll fix it up properly at the end.
3227 */
3228 skb->protocol = eth->h_proto;
3229
3230 out:
3231 return skb;
3232 }
3233 EXPORT_SYMBOL(napi_frags_skb);
3234
3235 gro_result_t napi_gro_frags(struct napi_struct *napi)
3236 {
3237 struct sk_buff *skb = napi_frags_skb(napi);
3238
3239 if (!skb)
3240 return GRO_DROP;
3241
3242 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3243 }
3244 EXPORT_SYMBOL(napi_gro_frags);
3245
3246 static int process_backlog(struct napi_struct *napi, int quota)
3247 {
3248 int work = 0;
3249 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3250
3251 napi->weight = weight_p;
3252 do {
3253 struct sk_buff *skb;
3254
3255 local_irq_disable();
3256 rps_lock(sd);
3257 skb = __skb_dequeue(&sd->input_pkt_queue);
3258 if (!skb) {
3259 __napi_complete(napi);
3260 rps_unlock(sd);
3261 local_irq_enable();
3262 break;
3263 }
3264 input_queue_head_incr(sd);
3265 rps_unlock(sd);
3266 local_irq_enable();
3267
3268 __netif_receive_skb(skb);
3269 } while (++work < quota);
3270
3271 return work;
3272 }
3273
3274 /**
3275 * __napi_schedule - schedule for receive
3276 * @n: entry to schedule
3277 *
3278 * The entry's receive function will be scheduled to run
3279 */
3280 void __napi_schedule(struct napi_struct *n)
3281 {
3282 unsigned long flags;
3283
3284 local_irq_save(flags);
3285 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3286 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3287 local_irq_restore(flags);
3288 }
3289 EXPORT_SYMBOL(__napi_schedule);
3290
3291 void __napi_complete(struct napi_struct *n)
3292 {
3293 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3294 BUG_ON(n->gro_list);
3295
3296 list_del(&n->poll_list);
3297 smp_mb__before_clear_bit();
3298 clear_bit(NAPI_STATE_SCHED, &n->state);
3299 }
3300 EXPORT_SYMBOL(__napi_complete);
3301
3302 void napi_complete(struct napi_struct *n)
3303 {
3304 unsigned long flags;
3305
3306 /*
3307 * don't let napi dequeue from the cpu poll list
3308 * just in case its running on a different cpu
3309 */
3310 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3311 return;
3312
3313 napi_gro_flush(n);
3314 local_irq_save(flags);
3315 __napi_complete(n);
3316 local_irq_restore(flags);
3317 }
3318 EXPORT_SYMBOL(napi_complete);
3319
3320 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3321 int (*poll)(struct napi_struct *, int), int weight)
3322 {
3323 INIT_LIST_HEAD(&napi->poll_list);
3324 napi->gro_count = 0;
3325 napi->gro_list = NULL;
3326 napi->skb = NULL;
3327 napi->poll = poll;
3328 napi->weight = weight;
3329 list_add(&napi->dev_list, &dev->napi_list);
3330 napi->dev = dev;
3331 #ifdef CONFIG_NETPOLL
3332 spin_lock_init(&napi->poll_lock);
3333 napi->poll_owner = -1;
3334 #endif
3335 set_bit(NAPI_STATE_SCHED, &napi->state);
3336 }
3337 EXPORT_SYMBOL(netif_napi_add);
3338
3339 void netif_napi_del(struct napi_struct *napi)
3340 {
3341 struct sk_buff *skb, *next;
3342
3343 list_del_init(&napi->dev_list);
3344 napi_free_frags(napi);
3345
3346 for (skb = napi->gro_list; skb; skb = next) {
3347 next = skb->next;
3348 skb->next = NULL;
3349 kfree_skb(skb);
3350 }
3351
3352 napi->gro_list = NULL;
3353 napi->gro_count = 0;
3354 }
3355 EXPORT_SYMBOL(netif_napi_del);
3356
3357 /*
3358 * net_rps_action sends any pending IPI's for rps.
3359 * Note: called with local irq disabled, but exits with local irq enabled.
3360 */
3361 static void net_rps_action_and_irq_disable(void)
3362 {
3363 #ifdef CONFIG_RPS
3364 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3365 struct softnet_data *remsd = sd->rps_ipi_list;
3366
3367 if (remsd) {
3368 sd->rps_ipi_list = NULL;
3369
3370 local_irq_enable();
3371
3372 /* Send pending IPI's to kick RPS processing on remote cpus. */
3373 while (remsd) {
3374 struct softnet_data *next = remsd->rps_ipi_next;
3375
3376 if (cpu_online(remsd->cpu))
3377 __smp_call_function_single(remsd->cpu,
3378 &remsd->csd, 0);
3379 remsd = next;
3380 }
3381 } else
3382 #endif
3383 local_irq_enable();
3384 }
3385
3386 static void net_rx_action(struct softirq_action *h)
3387 {
3388 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3389 unsigned long time_limit = jiffies + 2;
3390 int budget = netdev_budget;
3391 void *have;
3392
3393 local_irq_disable();
3394
3395 while (!list_empty(list)) {
3396 struct napi_struct *n;
3397 int work, weight;
3398
3399 /* If softirq window is exhuasted then punt.
3400 * Allow this to run for 2 jiffies since which will allow
3401 * an average latency of 1.5/HZ.
3402 */
3403 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3404 goto softnet_break;
3405
3406 local_irq_enable();
3407
3408 /* Even though interrupts have been re-enabled, this
3409 * access is safe because interrupts can only add new
3410 * entries to the tail of this list, and only ->poll()
3411 * calls can remove this head entry from the list.
3412 */
3413 n = list_first_entry(list, struct napi_struct, poll_list);
3414
3415 have = netpoll_poll_lock(n);
3416
3417 weight = n->weight;
3418
3419 /* This NAPI_STATE_SCHED test is for avoiding a race
3420 * with netpoll's poll_napi(). Only the entity which
3421 * obtains the lock and sees NAPI_STATE_SCHED set will
3422 * actually make the ->poll() call. Therefore we avoid
3423 * accidently calling ->poll() when NAPI is not scheduled.
3424 */
3425 work = 0;
3426 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3427 work = n->poll(n, weight);
3428 trace_napi_poll(n);
3429 }
3430
3431 WARN_ON_ONCE(work > weight);
3432
3433 budget -= work;
3434
3435 local_irq_disable();
3436
3437 /* Drivers must not modify the NAPI state if they
3438 * consume the entire weight. In such cases this code
3439 * still "owns" the NAPI instance and therefore can
3440 * move the instance around on the list at-will.
3441 */
3442 if (unlikely(work == weight)) {
3443 if (unlikely(napi_disable_pending(n))) {
3444 local_irq_enable();
3445 napi_complete(n);
3446 local_irq_disable();
3447 } else
3448 list_move_tail(&n->poll_list, list);
3449 }
3450
3451 netpoll_poll_unlock(have);
3452 }
3453 out:
3454 net_rps_action_and_irq_disable();
3455
3456 #ifdef CONFIG_NET_DMA
3457 /*
3458 * There may not be any more sk_buffs coming right now, so push
3459 * any pending DMA copies to hardware
3460 */
3461 dma_issue_pending_all();
3462 #endif
3463
3464 return;
3465
3466 softnet_break:
3467 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3468 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3469 goto out;
3470 }
3471
3472 static gifconf_func_t *gifconf_list[NPROTO];
3473
3474 /**
3475 * register_gifconf - register a SIOCGIF handler
3476 * @family: Address family
3477 * @gifconf: Function handler
3478 *
3479 * Register protocol dependent address dumping routines. The handler
3480 * that is passed must not be freed or reused until it has been replaced
3481 * by another handler.
3482 */
3483 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3484 {
3485 if (family >= NPROTO)
3486 return -EINVAL;
3487 gifconf_list[family] = gifconf;
3488 return 0;
3489 }
3490 EXPORT_SYMBOL(register_gifconf);
3491
3492
3493 /*
3494 * Map an interface index to its name (SIOCGIFNAME)
3495 */
3496
3497 /*
3498 * We need this ioctl for efficient implementation of the
3499 * if_indextoname() function required by the IPv6 API. Without
3500 * it, we would have to search all the interfaces to find a
3501 * match. --pb
3502 */
3503
3504 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3505 {
3506 struct net_device *dev;
3507 struct ifreq ifr;
3508
3509 /*
3510 * Fetch the caller's info block.
3511 */
3512
3513 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3514 return -EFAULT;
3515
3516 rcu_read_lock();
3517 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3518 if (!dev) {
3519 rcu_read_unlock();
3520 return -ENODEV;
3521 }
3522
3523 strcpy(ifr.ifr_name, dev->name);
3524 rcu_read_unlock();
3525
3526 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3527 return -EFAULT;
3528 return 0;
3529 }
3530
3531 /*
3532 * Perform a SIOCGIFCONF call. This structure will change
3533 * size eventually, and there is nothing I can do about it.
3534 * Thus we will need a 'compatibility mode'.
3535 */
3536
3537 static int dev_ifconf(struct net *net, char __user *arg)
3538 {
3539 struct ifconf ifc;
3540 struct net_device *dev;
3541 char __user *pos;
3542 int len;
3543 int total;
3544 int i;
3545
3546 /*
3547 * Fetch the caller's info block.
3548 */
3549
3550 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3551 return -EFAULT;
3552
3553 pos = ifc.ifc_buf;
3554 len = ifc.ifc_len;
3555
3556 /*
3557 * Loop over the interfaces, and write an info block for each.
3558 */
3559
3560 total = 0;
3561 for_each_netdev(net, dev) {
3562 for (i = 0; i < NPROTO; i++) {
3563 if (gifconf_list[i]) {
3564 int done;
3565 if (!pos)
3566 done = gifconf_list[i](dev, NULL, 0);
3567 else
3568 done = gifconf_list[i](dev, pos + total,
3569 len - total);
3570 if (done < 0)
3571 return -EFAULT;
3572 total += done;
3573 }
3574 }
3575 }
3576
3577 /*
3578 * All done. Write the updated control block back to the caller.
3579 */
3580 ifc.ifc_len = total;
3581
3582 /*
3583 * Both BSD and Solaris return 0 here, so we do too.
3584 */
3585 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3586 }
3587
3588 #ifdef CONFIG_PROC_FS
3589 /*
3590 * This is invoked by the /proc filesystem handler to display a device
3591 * in detail.
3592 */
3593 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3594 __acquires(RCU)
3595 {
3596 struct net *net = seq_file_net(seq);
3597 loff_t off;
3598 struct net_device *dev;
3599
3600 rcu_read_lock();
3601 if (!*pos)
3602 return SEQ_START_TOKEN;
3603
3604 off = 1;
3605 for_each_netdev_rcu(net, dev)
3606 if (off++ == *pos)
3607 return dev;
3608
3609 return NULL;
3610 }
3611
3612 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3613 {
3614 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3615 first_net_device(seq_file_net(seq)) :
3616 next_net_device((struct net_device *)v);
3617
3618 ++*pos;
3619 return rcu_dereference(dev);
3620 }
3621
3622 void dev_seq_stop(struct seq_file *seq, void *v)
3623 __releases(RCU)
3624 {
3625 rcu_read_unlock();
3626 }
3627
3628 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3629 {
3630 const struct net_device_stats *stats = dev_get_stats(dev);
3631
3632 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3633 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3634 dev->name, stats->rx_bytes, stats->rx_packets,
3635 stats->rx_errors,
3636 stats->rx_dropped + stats->rx_missed_errors,
3637 stats->rx_fifo_errors,
3638 stats->rx_length_errors + stats->rx_over_errors +
3639 stats->rx_crc_errors + stats->rx_frame_errors,
3640 stats->rx_compressed, stats->multicast,
3641 stats->tx_bytes, stats->tx_packets,
3642 stats->tx_errors, stats->tx_dropped,
3643 stats->tx_fifo_errors, stats->collisions,
3644 stats->tx_carrier_errors +
3645 stats->tx_aborted_errors +
3646 stats->tx_window_errors +
3647 stats->tx_heartbeat_errors,
3648 stats->tx_compressed);
3649 }
3650
3651 /*
3652 * Called from the PROCfs module. This now uses the new arbitrary sized
3653 * /proc/net interface to create /proc/net/dev
3654 */
3655 static int dev_seq_show(struct seq_file *seq, void *v)
3656 {
3657 if (v == SEQ_START_TOKEN)
3658 seq_puts(seq, "Inter-| Receive "
3659 " | Transmit\n"
3660 " face |bytes packets errs drop fifo frame "
3661 "compressed multicast|bytes packets errs "
3662 "drop fifo colls carrier compressed\n");
3663 else
3664 dev_seq_printf_stats(seq, v);
3665 return 0;
3666 }
3667
3668 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3669 {
3670 struct netif_rx_stats *rc = NULL;
3671
3672 while (*pos < nr_cpu_ids)
3673 if (cpu_online(*pos)) {
3674 rc = &per_cpu(netdev_rx_stat, *pos);
3675 break;
3676 } else
3677 ++*pos;
3678 return rc;
3679 }
3680
3681 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3682 {
3683 return softnet_get_online(pos);
3684 }
3685
3686 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3687 {
3688 ++*pos;
3689 return softnet_get_online(pos);
3690 }
3691
3692 static void softnet_seq_stop(struct seq_file *seq, void *v)
3693 {
3694 }
3695
3696 static int softnet_seq_show(struct seq_file *seq, void *v)
3697 {
3698 struct netif_rx_stats *s = v;
3699
3700 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3701 s->total, s->dropped, s->time_squeeze, 0,
3702 0, 0, 0, 0, /* was fastroute */
3703 s->cpu_collision, s->received_rps);
3704 return 0;
3705 }
3706
3707 static const struct seq_operations dev_seq_ops = {
3708 .start = dev_seq_start,
3709 .next = dev_seq_next,
3710 .stop = dev_seq_stop,
3711 .show = dev_seq_show,
3712 };
3713
3714 static int dev_seq_open(struct inode *inode, struct file *file)
3715 {
3716 return seq_open_net(inode, file, &dev_seq_ops,
3717 sizeof(struct seq_net_private));
3718 }
3719
3720 static const struct file_operations dev_seq_fops = {
3721 .owner = THIS_MODULE,
3722 .open = dev_seq_open,
3723 .read = seq_read,
3724 .llseek = seq_lseek,
3725 .release = seq_release_net,
3726 };
3727
3728 static const struct seq_operations softnet_seq_ops = {
3729 .start = softnet_seq_start,
3730 .next = softnet_seq_next,
3731 .stop = softnet_seq_stop,
3732 .show = softnet_seq_show,
3733 };
3734
3735 static int softnet_seq_open(struct inode *inode, struct file *file)
3736 {
3737 return seq_open(file, &softnet_seq_ops);
3738 }
3739
3740 static const struct file_operations softnet_seq_fops = {
3741 .owner = THIS_MODULE,
3742 .open = softnet_seq_open,
3743 .read = seq_read,
3744 .llseek = seq_lseek,
3745 .release = seq_release,
3746 };
3747
3748 static void *ptype_get_idx(loff_t pos)
3749 {
3750 struct packet_type *pt = NULL;
3751 loff_t i = 0;
3752 int t;
3753
3754 list_for_each_entry_rcu(pt, &ptype_all, list) {
3755 if (i == pos)
3756 return pt;
3757 ++i;
3758 }
3759
3760 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3761 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3762 if (i == pos)
3763 return pt;
3764 ++i;
3765 }
3766 }
3767 return NULL;
3768 }
3769
3770 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3771 __acquires(RCU)
3772 {
3773 rcu_read_lock();
3774 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3775 }
3776
3777 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3778 {
3779 struct packet_type *pt;
3780 struct list_head *nxt;
3781 int hash;
3782
3783 ++*pos;
3784 if (v == SEQ_START_TOKEN)
3785 return ptype_get_idx(0);
3786
3787 pt = v;
3788 nxt = pt->list.next;
3789 if (pt->type == htons(ETH_P_ALL)) {
3790 if (nxt != &ptype_all)
3791 goto found;
3792 hash = 0;
3793 nxt = ptype_base[0].next;
3794 } else
3795 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3796
3797 while (nxt == &ptype_base[hash]) {
3798 if (++hash >= PTYPE_HASH_SIZE)
3799 return NULL;
3800 nxt = ptype_base[hash].next;
3801 }
3802 found:
3803 return list_entry(nxt, struct packet_type, list);
3804 }
3805
3806 static void ptype_seq_stop(struct seq_file *seq, void *v)
3807 __releases(RCU)
3808 {
3809 rcu_read_unlock();
3810 }
3811
3812 static int ptype_seq_show(struct seq_file *seq, void *v)
3813 {
3814 struct packet_type *pt = v;
3815
3816 if (v == SEQ_START_TOKEN)
3817 seq_puts(seq, "Type Device Function\n");
3818 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3819 if (pt->type == htons(ETH_P_ALL))
3820 seq_puts(seq, "ALL ");
3821 else
3822 seq_printf(seq, "%04x", ntohs(pt->type));
3823
3824 seq_printf(seq, " %-8s %pF\n",
3825 pt->dev ? pt->dev->name : "", pt->func);
3826 }
3827
3828 return 0;
3829 }
3830
3831 static const struct seq_operations ptype_seq_ops = {
3832 .start = ptype_seq_start,
3833 .next = ptype_seq_next,
3834 .stop = ptype_seq_stop,
3835 .show = ptype_seq_show,
3836 };
3837
3838 static int ptype_seq_open(struct inode *inode, struct file *file)
3839 {
3840 return seq_open_net(inode, file, &ptype_seq_ops,
3841 sizeof(struct seq_net_private));
3842 }
3843
3844 static const struct file_operations ptype_seq_fops = {
3845 .owner = THIS_MODULE,
3846 .open = ptype_seq_open,
3847 .read = seq_read,
3848 .llseek = seq_lseek,
3849 .release = seq_release_net,
3850 };
3851
3852
3853 static int __net_init dev_proc_net_init(struct net *net)
3854 {
3855 int rc = -ENOMEM;
3856
3857 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3858 goto out;
3859 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3860 goto out_dev;
3861 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3862 goto out_softnet;
3863
3864 if (wext_proc_init(net))
3865 goto out_ptype;
3866 rc = 0;
3867 out:
3868 return rc;
3869 out_ptype:
3870 proc_net_remove(net, "ptype");
3871 out_softnet:
3872 proc_net_remove(net, "softnet_stat");
3873 out_dev:
3874 proc_net_remove(net, "dev");
3875 goto out;
3876 }
3877
3878 static void __net_exit dev_proc_net_exit(struct net *net)
3879 {
3880 wext_proc_exit(net);
3881
3882 proc_net_remove(net, "ptype");
3883 proc_net_remove(net, "softnet_stat");
3884 proc_net_remove(net, "dev");
3885 }
3886
3887 static struct pernet_operations __net_initdata dev_proc_ops = {
3888 .init = dev_proc_net_init,
3889 .exit = dev_proc_net_exit,
3890 };
3891
3892 static int __init dev_proc_init(void)
3893 {
3894 return register_pernet_subsys(&dev_proc_ops);
3895 }
3896 #else
3897 #define dev_proc_init() 0
3898 #endif /* CONFIG_PROC_FS */
3899
3900
3901 /**
3902 * netdev_set_master - set up master/slave pair
3903 * @slave: slave device
3904 * @master: new master device
3905 *
3906 * Changes the master device of the slave. Pass %NULL to break the
3907 * bonding. The caller must hold the RTNL semaphore. On a failure
3908 * a negative errno code is returned. On success the reference counts
3909 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3910 * function returns zero.
3911 */
3912 int netdev_set_master(struct net_device *slave, struct net_device *master)
3913 {
3914 struct net_device *old = slave->master;
3915
3916 ASSERT_RTNL();
3917
3918 if (master) {
3919 if (old)
3920 return -EBUSY;
3921 dev_hold(master);
3922 }
3923
3924 slave->master = master;
3925
3926 if (old) {
3927 synchronize_net();
3928 dev_put(old);
3929 }
3930 if (master)
3931 slave->flags |= IFF_SLAVE;
3932 else
3933 slave->flags &= ~IFF_SLAVE;
3934
3935 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3936 return 0;
3937 }
3938 EXPORT_SYMBOL(netdev_set_master);
3939
3940 static void dev_change_rx_flags(struct net_device *dev, int flags)
3941 {
3942 const struct net_device_ops *ops = dev->netdev_ops;
3943
3944 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3945 ops->ndo_change_rx_flags(dev, flags);
3946 }
3947
3948 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3949 {
3950 unsigned short old_flags = dev->flags;
3951 uid_t uid;
3952 gid_t gid;
3953
3954 ASSERT_RTNL();
3955
3956 dev->flags |= IFF_PROMISC;
3957 dev->promiscuity += inc;
3958 if (dev->promiscuity == 0) {
3959 /*
3960 * Avoid overflow.
3961 * If inc causes overflow, untouch promisc and return error.
3962 */
3963 if (inc < 0)
3964 dev->flags &= ~IFF_PROMISC;
3965 else {
3966 dev->promiscuity -= inc;
3967 printk(KERN_WARNING "%s: promiscuity touches roof, "
3968 "set promiscuity failed, promiscuity feature "
3969 "of device might be broken.\n", dev->name);
3970 return -EOVERFLOW;
3971 }
3972 }
3973 if (dev->flags != old_flags) {
3974 printk(KERN_INFO "device %s %s promiscuous mode\n",
3975 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3976 "left");
3977 if (audit_enabled) {
3978 current_uid_gid(&uid, &gid);
3979 audit_log(current->audit_context, GFP_ATOMIC,
3980 AUDIT_ANOM_PROMISCUOUS,
3981 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3982 dev->name, (dev->flags & IFF_PROMISC),
3983 (old_flags & IFF_PROMISC),
3984 audit_get_loginuid(current),
3985 uid, gid,
3986 audit_get_sessionid(current));
3987 }
3988
3989 dev_change_rx_flags(dev, IFF_PROMISC);
3990 }
3991 return 0;
3992 }
3993
3994 /**
3995 * dev_set_promiscuity - update promiscuity count on a device
3996 * @dev: device
3997 * @inc: modifier
3998 *
3999 * Add or remove promiscuity from a device. While the count in the device
4000 * remains above zero the interface remains promiscuous. Once it hits zero
4001 * the device reverts back to normal filtering operation. A negative inc
4002 * value is used to drop promiscuity on the device.
4003 * Return 0 if successful or a negative errno code on error.
4004 */
4005 int dev_set_promiscuity(struct net_device *dev, int inc)
4006 {
4007 unsigned short old_flags = dev->flags;
4008 int err;
4009
4010 err = __dev_set_promiscuity(dev, inc);
4011 if (err < 0)
4012 return err;
4013 if (dev->flags != old_flags)
4014 dev_set_rx_mode(dev);
4015 return err;
4016 }
4017 EXPORT_SYMBOL(dev_set_promiscuity);
4018
4019 /**
4020 * dev_set_allmulti - update allmulti count on a device
4021 * @dev: device
4022 * @inc: modifier
4023 *
4024 * Add or remove reception of all multicast frames to a device. While the
4025 * count in the device remains above zero the interface remains listening
4026 * to all interfaces. Once it hits zero the device reverts back to normal
4027 * filtering operation. A negative @inc value is used to drop the counter
4028 * when releasing a resource needing all multicasts.
4029 * Return 0 if successful or a negative errno code on error.
4030 */
4031
4032 int dev_set_allmulti(struct net_device *dev, int inc)
4033 {
4034 unsigned short old_flags = dev->flags;
4035
4036 ASSERT_RTNL();
4037
4038 dev->flags |= IFF_ALLMULTI;
4039 dev->allmulti += inc;
4040 if (dev->allmulti == 0) {
4041 /*
4042 * Avoid overflow.
4043 * If inc causes overflow, untouch allmulti and return error.
4044 */
4045 if (inc < 0)
4046 dev->flags &= ~IFF_ALLMULTI;
4047 else {
4048 dev->allmulti -= inc;
4049 printk(KERN_WARNING "%s: allmulti touches roof, "
4050 "set allmulti failed, allmulti feature of "
4051 "device might be broken.\n", dev->name);
4052 return -EOVERFLOW;
4053 }
4054 }
4055 if (dev->flags ^ old_flags) {
4056 dev_change_rx_flags(dev, IFF_ALLMULTI);
4057 dev_set_rx_mode(dev);
4058 }
4059 return 0;
4060 }
4061 EXPORT_SYMBOL(dev_set_allmulti);
4062
4063 /*
4064 * Upload unicast and multicast address lists to device and
4065 * configure RX filtering. When the device doesn't support unicast
4066 * filtering it is put in promiscuous mode while unicast addresses
4067 * are present.
4068 */
4069 void __dev_set_rx_mode(struct net_device *dev)
4070 {
4071 const struct net_device_ops *ops = dev->netdev_ops;
4072
4073 /* dev_open will call this function so the list will stay sane. */
4074 if (!(dev->flags&IFF_UP))
4075 return;
4076
4077 if (!netif_device_present(dev))
4078 return;
4079
4080 if (ops->ndo_set_rx_mode)
4081 ops->ndo_set_rx_mode(dev);
4082 else {
4083 /* Unicast addresses changes may only happen under the rtnl,
4084 * therefore calling __dev_set_promiscuity here is safe.
4085 */
4086 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4087 __dev_set_promiscuity(dev, 1);
4088 dev->uc_promisc = 1;
4089 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4090 __dev_set_promiscuity(dev, -1);
4091 dev->uc_promisc = 0;
4092 }
4093
4094 if (ops->ndo_set_multicast_list)
4095 ops->ndo_set_multicast_list(dev);
4096 }
4097 }
4098
4099 void dev_set_rx_mode(struct net_device *dev)
4100 {
4101 netif_addr_lock_bh(dev);
4102 __dev_set_rx_mode(dev);
4103 netif_addr_unlock_bh(dev);
4104 }
4105
4106 /**
4107 * dev_get_flags - get flags reported to userspace
4108 * @dev: device
4109 *
4110 * Get the combination of flag bits exported through APIs to userspace.
4111 */
4112 unsigned dev_get_flags(const struct net_device *dev)
4113 {
4114 unsigned flags;
4115
4116 flags = (dev->flags & ~(IFF_PROMISC |
4117 IFF_ALLMULTI |
4118 IFF_RUNNING |
4119 IFF_LOWER_UP |
4120 IFF_DORMANT)) |
4121 (dev->gflags & (IFF_PROMISC |
4122 IFF_ALLMULTI));
4123
4124 if (netif_running(dev)) {
4125 if (netif_oper_up(dev))
4126 flags |= IFF_RUNNING;
4127 if (netif_carrier_ok(dev))
4128 flags |= IFF_LOWER_UP;
4129 if (netif_dormant(dev))
4130 flags |= IFF_DORMANT;
4131 }
4132
4133 return flags;
4134 }
4135 EXPORT_SYMBOL(dev_get_flags);
4136
4137 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4138 {
4139 int old_flags = dev->flags;
4140 int ret;
4141
4142 ASSERT_RTNL();
4143
4144 /*
4145 * Set the flags on our device.
4146 */
4147
4148 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4149 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4150 IFF_AUTOMEDIA)) |
4151 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4152 IFF_ALLMULTI));
4153
4154 /*
4155 * Load in the correct multicast list now the flags have changed.
4156 */
4157
4158 if ((old_flags ^ flags) & IFF_MULTICAST)
4159 dev_change_rx_flags(dev, IFF_MULTICAST);
4160
4161 dev_set_rx_mode(dev);
4162
4163 /*
4164 * Have we downed the interface. We handle IFF_UP ourselves
4165 * according to user attempts to set it, rather than blindly
4166 * setting it.
4167 */
4168
4169 ret = 0;
4170 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4171 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4172
4173 if (!ret)
4174 dev_set_rx_mode(dev);
4175 }
4176
4177 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4178 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4179
4180 dev->gflags ^= IFF_PROMISC;
4181 dev_set_promiscuity(dev, inc);
4182 }
4183
4184 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4185 is important. Some (broken) drivers set IFF_PROMISC, when
4186 IFF_ALLMULTI is requested not asking us and not reporting.
4187 */
4188 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4189 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4190
4191 dev->gflags ^= IFF_ALLMULTI;
4192 dev_set_allmulti(dev, inc);
4193 }
4194
4195 return ret;
4196 }
4197
4198 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4199 {
4200 unsigned int changes = dev->flags ^ old_flags;
4201
4202 if (changes & IFF_UP) {
4203 if (dev->flags & IFF_UP)
4204 call_netdevice_notifiers(NETDEV_UP, dev);
4205 else
4206 call_netdevice_notifiers(NETDEV_DOWN, dev);
4207 }
4208
4209 if (dev->flags & IFF_UP &&
4210 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4211 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4212 }
4213
4214 /**
4215 * dev_change_flags - change device settings
4216 * @dev: device
4217 * @flags: device state flags
4218 *
4219 * Change settings on device based state flags. The flags are
4220 * in the userspace exported format.
4221 */
4222 int dev_change_flags(struct net_device *dev, unsigned flags)
4223 {
4224 int ret, changes;
4225 int old_flags = dev->flags;
4226
4227 ret = __dev_change_flags(dev, flags);
4228 if (ret < 0)
4229 return ret;
4230
4231 changes = old_flags ^ dev->flags;
4232 if (changes)
4233 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4234
4235 __dev_notify_flags(dev, old_flags);
4236 return ret;
4237 }
4238 EXPORT_SYMBOL(dev_change_flags);
4239
4240 /**
4241 * dev_set_mtu - Change maximum transfer unit
4242 * @dev: device
4243 * @new_mtu: new transfer unit
4244 *
4245 * Change the maximum transfer size of the network device.
4246 */
4247 int dev_set_mtu(struct net_device *dev, int new_mtu)
4248 {
4249 const struct net_device_ops *ops = dev->netdev_ops;
4250 int err;
4251
4252 if (new_mtu == dev->mtu)
4253 return 0;
4254
4255 /* MTU must be positive. */
4256 if (new_mtu < 0)
4257 return -EINVAL;
4258
4259 if (!netif_device_present(dev))
4260 return -ENODEV;
4261
4262 err = 0;
4263 if (ops->ndo_change_mtu)
4264 err = ops->ndo_change_mtu(dev, new_mtu);
4265 else
4266 dev->mtu = new_mtu;
4267
4268 if (!err && dev->flags & IFF_UP)
4269 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4270 return err;
4271 }
4272 EXPORT_SYMBOL(dev_set_mtu);
4273
4274 /**
4275 * dev_set_mac_address - Change Media Access Control Address
4276 * @dev: device
4277 * @sa: new address
4278 *
4279 * Change the hardware (MAC) address of the device
4280 */
4281 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4282 {
4283 const struct net_device_ops *ops = dev->netdev_ops;
4284 int err;
4285
4286 if (!ops->ndo_set_mac_address)
4287 return -EOPNOTSUPP;
4288 if (sa->sa_family != dev->type)
4289 return -EINVAL;
4290 if (!netif_device_present(dev))
4291 return -ENODEV;
4292 err = ops->ndo_set_mac_address(dev, sa);
4293 if (!err)
4294 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4295 return err;
4296 }
4297 EXPORT_SYMBOL(dev_set_mac_address);
4298
4299 /*
4300 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4301 */
4302 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4303 {
4304 int err;
4305 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4306
4307 if (!dev)
4308 return -ENODEV;
4309
4310 switch (cmd) {
4311 case SIOCGIFFLAGS: /* Get interface flags */
4312 ifr->ifr_flags = (short) dev_get_flags(dev);
4313 return 0;
4314
4315 case SIOCGIFMETRIC: /* Get the metric on the interface
4316 (currently unused) */
4317 ifr->ifr_metric = 0;
4318 return 0;
4319
4320 case SIOCGIFMTU: /* Get the MTU of a device */
4321 ifr->ifr_mtu = dev->mtu;
4322 return 0;
4323
4324 case SIOCGIFHWADDR:
4325 if (!dev->addr_len)
4326 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4327 else
4328 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4329 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4330 ifr->ifr_hwaddr.sa_family = dev->type;
4331 return 0;
4332
4333 case SIOCGIFSLAVE:
4334 err = -EINVAL;
4335 break;
4336
4337 case SIOCGIFMAP:
4338 ifr->ifr_map.mem_start = dev->mem_start;
4339 ifr->ifr_map.mem_end = dev->mem_end;
4340 ifr->ifr_map.base_addr = dev->base_addr;
4341 ifr->ifr_map.irq = dev->irq;
4342 ifr->ifr_map.dma = dev->dma;
4343 ifr->ifr_map.port = dev->if_port;
4344 return 0;
4345
4346 case SIOCGIFINDEX:
4347 ifr->ifr_ifindex = dev->ifindex;
4348 return 0;
4349
4350 case SIOCGIFTXQLEN:
4351 ifr->ifr_qlen = dev->tx_queue_len;
4352 return 0;
4353
4354 default:
4355 /* dev_ioctl() should ensure this case
4356 * is never reached
4357 */
4358 WARN_ON(1);
4359 err = -EINVAL;
4360 break;
4361
4362 }
4363 return err;
4364 }
4365
4366 /*
4367 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4368 */
4369 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4370 {
4371 int err;
4372 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4373 const struct net_device_ops *ops;
4374
4375 if (!dev)
4376 return -ENODEV;
4377
4378 ops = dev->netdev_ops;
4379
4380 switch (cmd) {
4381 case SIOCSIFFLAGS: /* Set interface flags */
4382 return dev_change_flags(dev, ifr->ifr_flags);
4383
4384 case SIOCSIFMETRIC: /* Set the metric on the interface
4385 (currently unused) */
4386 return -EOPNOTSUPP;
4387
4388 case SIOCSIFMTU: /* Set the MTU of a device */
4389 return dev_set_mtu(dev, ifr->ifr_mtu);
4390
4391 case SIOCSIFHWADDR:
4392 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4393
4394 case SIOCSIFHWBROADCAST:
4395 if (ifr->ifr_hwaddr.sa_family != dev->type)
4396 return -EINVAL;
4397 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4398 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4399 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4400 return 0;
4401
4402 case SIOCSIFMAP:
4403 if (ops->ndo_set_config) {
4404 if (!netif_device_present(dev))
4405 return -ENODEV;
4406 return ops->ndo_set_config(dev, &ifr->ifr_map);
4407 }
4408 return -EOPNOTSUPP;
4409
4410 case SIOCADDMULTI:
4411 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4412 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4413 return -EINVAL;
4414 if (!netif_device_present(dev))
4415 return -ENODEV;
4416 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4417
4418 case SIOCDELMULTI:
4419 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4420 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4421 return -EINVAL;
4422 if (!netif_device_present(dev))
4423 return -ENODEV;
4424 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4425
4426 case SIOCSIFTXQLEN:
4427 if (ifr->ifr_qlen < 0)
4428 return -EINVAL;
4429 dev->tx_queue_len = ifr->ifr_qlen;
4430 return 0;
4431
4432 case SIOCSIFNAME:
4433 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4434 return dev_change_name(dev, ifr->ifr_newname);
4435
4436 /*
4437 * Unknown or private ioctl
4438 */
4439 default:
4440 if ((cmd >= SIOCDEVPRIVATE &&
4441 cmd <= SIOCDEVPRIVATE + 15) ||
4442 cmd == SIOCBONDENSLAVE ||
4443 cmd == SIOCBONDRELEASE ||
4444 cmd == SIOCBONDSETHWADDR ||
4445 cmd == SIOCBONDSLAVEINFOQUERY ||
4446 cmd == SIOCBONDINFOQUERY ||
4447 cmd == SIOCBONDCHANGEACTIVE ||
4448 cmd == SIOCGMIIPHY ||
4449 cmd == SIOCGMIIREG ||
4450 cmd == SIOCSMIIREG ||
4451 cmd == SIOCBRADDIF ||
4452 cmd == SIOCBRDELIF ||
4453 cmd == SIOCSHWTSTAMP ||
4454 cmd == SIOCWANDEV) {
4455 err = -EOPNOTSUPP;
4456 if (ops->ndo_do_ioctl) {
4457 if (netif_device_present(dev))
4458 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4459 else
4460 err = -ENODEV;
4461 }
4462 } else
4463 err = -EINVAL;
4464
4465 }
4466 return err;
4467 }
4468
4469 /*
4470 * This function handles all "interface"-type I/O control requests. The actual
4471 * 'doing' part of this is dev_ifsioc above.
4472 */
4473
4474 /**
4475 * dev_ioctl - network device ioctl
4476 * @net: the applicable net namespace
4477 * @cmd: command to issue
4478 * @arg: pointer to a struct ifreq in user space
4479 *
4480 * Issue ioctl functions to devices. This is normally called by the
4481 * user space syscall interfaces but can sometimes be useful for
4482 * other purposes. The return value is the return from the syscall if
4483 * positive or a negative errno code on error.
4484 */
4485
4486 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4487 {
4488 struct ifreq ifr;
4489 int ret;
4490 char *colon;
4491
4492 /* One special case: SIOCGIFCONF takes ifconf argument
4493 and requires shared lock, because it sleeps writing
4494 to user space.
4495 */
4496
4497 if (cmd == SIOCGIFCONF) {
4498 rtnl_lock();
4499 ret = dev_ifconf(net, (char __user *) arg);
4500 rtnl_unlock();
4501 return ret;
4502 }
4503 if (cmd == SIOCGIFNAME)
4504 return dev_ifname(net, (struct ifreq __user *)arg);
4505
4506 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4507 return -EFAULT;
4508
4509 ifr.ifr_name[IFNAMSIZ-1] = 0;
4510
4511 colon = strchr(ifr.ifr_name, ':');
4512 if (colon)
4513 *colon = 0;
4514
4515 /*
4516 * See which interface the caller is talking about.
4517 */
4518
4519 switch (cmd) {
4520 /*
4521 * These ioctl calls:
4522 * - can be done by all.
4523 * - atomic and do not require locking.
4524 * - return a value
4525 */
4526 case SIOCGIFFLAGS:
4527 case SIOCGIFMETRIC:
4528 case SIOCGIFMTU:
4529 case SIOCGIFHWADDR:
4530 case SIOCGIFSLAVE:
4531 case SIOCGIFMAP:
4532 case SIOCGIFINDEX:
4533 case SIOCGIFTXQLEN:
4534 dev_load(net, ifr.ifr_name);
4535 rcu_read_lock();
4536 ret = dev_ifsioc_locked(net, &ifr, cmd);
4537 rcu_read_unlock();
4538 if (!ret) {
4539 if (colon)
4540 *colon = ':';
4541 if (copy_to_user(arg, &ifr,
4542 sizeof(struct ifreq)))
4543 ret = -EFAULT;
4544 }
4545 return ret;
4546
4547 case SIOCETHTOOL:
4548 dev_load(net, ifr.ifr_name);
4549 rtnl_lock();
4550 ret = dev_ethtool(net, &ifr);
4551 rtnl_unlock();
4552 if (!ret) {
4553 if (colon)
4554 *colon = ':';
4555 if (copy_to_user(arg, &ifr,
4556 sizeof(struct ifreq)))
4557 ret = -EFAULT;
4558 }
4559 return ret;
4560
4561 /*
4562 * These ioctl calls:
4563 * - require superuser power.
4564 * - require strict serialization.
4565 * - return a value
4566 */
4567 case SIOCGMIIPHY:
4568 case SIOCGMIIREG:
4569 case SIOCSIFNAME:
4570 if (!capable(CAP_NET_ADMIN))
4571 return -EPERM;
4572 dev_load(net, ifr.ifr_name);
4573 rtnl_lock();
4574 ret = dev_ifsioc(net, &ifr, cmd);
4575 rtnl_unlock();
4576 if (!ret) {
4577 if (colon)
4578 *colon = ':';
4579 if (copy_to_user(arg, &ifr,
4580 sizeof(struct ifreq)))
4581 ret = -EFAULT;
4582 }
4583 return ret;
4584
4585 /*
4586 * These ioctl calls:
4587 * - require superuser power.
4588 * - require strict serialization.
4589 * - do not return a value
4590 */
4591 case SIOCSIFFLAGS:
4592 case SIOCSIFMETRIC:
4593 case SIOCSIFMTU:
4594 case SIOCSIFMAP:
4595 case SIOCSIFHWADDR:
4596 case SIOCSIFSLAVE:
4597 case SIOCADDMULTI:
4598 case SIOCDELMULTI:
4599 case SIOCSIFHWBROADCAST:
4600 case SIOCSIFTXQLEN:
4601 case SIOCSMIIREG:
4602 case SIOCBONDENSLAVE:
4603 case SIOCBONDRELEASE:
4604 case SIOCBONDSETHWADDR:
4605 case SIOCBONDCHANGEACTIVE:
4606 case SIOCBRADDIF:
4607 case SIOCBRDELIF:
4608 case SIOCSHWTSTAMP:
4609 if (!capable(CAP_NET_ADMIN))
4610 return -EPERM;
4611 /* fall through */
4612 case SIOCBONDSLAVEINFOQUERY:
4613 case SIOCBONDINFOQUERY:
4614 dev_load(net, ifr.ifr_name);
4615 rtnl_lock();
4616 ret = dev_ifsioc(net, &ifr, cmd);
4617 rtnl_unlock();
4618 return ret;
4619
4620 case SIOCGIFMEM:
4621 /* Get the per device memory space. We can add this but
4622 * currently do not support it */
4623 case SIOCSIFMEM:
4624 /* Set the per device memory buffer space.
4625 * Not applicable in our case */
4626 case SIOCSIFLINK:
4627 return -EINVAL;
4628
4629 /*
4630 * Unknown or private ioctl.
4631 */
4632 default:
4633 if (cmd == SIOCWANDEV ||
4634 (cmd >= SIOCDEVPRIVATE &&
4635 cmd <= SIOCDEVPRIVATE + 15)) {
4636 dev_load(net, ifr.ifr_name);
4637 rtnl_lock();
4638 ret = dev_ifsioc(net, &ifr, cmd);
4639 rtnl_unlock();
4640 if (!ret && copy_to_user(arg, &ifr,
4641 sizeof(struct ifreq)))
4642 ret = -EFAULT;
4643 return ret;
4644 }
4645 /* Take care of Wireless Extensions */
4646 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4647 return wext_handle_ioctl(net, &ifr, cmd, arg);
4648 return -EINVAL;
4649 }
4650 }
4651
4652
4653 /**
4654 * dev_new_index - allocate an ifindex
4655 * @net: the applicable net namespace
4656 *
4657 * Returns a suitable unique value for a new device interface
4658 * number. The caller must hold the rtnl semaphore or the
4659 * dev_base_lock to be sure it remains unique.
4660 */
4661 static int dev_new_index(struct net *net)
4662 {
4663 static int ifindex;
4664 for (;;) {
4665 if (++ifindex <= 0)
4666 ifindex = 1;
4667 if (!__dev_get_by_index(net, ifindex))
4668 return ifindex;
4669 }
4670 }
4671
4672 /* Delayed registration/unregisteration */
4673 static LIST_HEAD(net_todo_list);
4674
4675 static void net_set_todo(struct net_device *dev)
4676 {
4677 list_add_tail(&dev->todo_list, &net_todo_list);
4678 }
4679
4680 static void rollback_registered_many(struct list_head *head)
4681 {
4682 struct net_device *dev, *tmp;
4683
4684 BUG_ON(dev_boot_phase);
4685 ASSERT_RTNL();
4686
4687 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4688 /* Some devices call without registering
4689 * for initialization unwind. Remove those
4690 * devices and proceed with the remaining.
4691 */
4692 if (dev->reg_state == NETREG_UNINITIALIZED) {
4693 pr_debug("unregister_netdevice: device %s/%p never "
4694 "was registered\n", dev->name, dev);
4695
4696 WARN_ON(1);
4697 list_del(&dev->unreg_list);
4698 continue;
4699 }
4700
4701 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4702
4703 /* If device is running, close it first. */
4704 dev_close(dev);
4705
4706 /* And unlink it from device chain. */
4707 unlist_netdevice(dev);
4708
4709 dev->reg_state = NETREG_UNREGISTERING;
4710 }
4711
4712 synchronize_net();
4713
4714 list_for_each_entry(dev, head, unreg_list) {
4715 /* Shutdown queueing discipline. */
4716 dev_shutdown(dev);
4717
4718
4719 /* Notify protocols, that we are about to destroy
4720 this device. They should clean all the things.
4721 */
4722 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4723
4724 if (!dev->rtnl_link_ops ||
4725 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4726 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4727
4728 /*
4729 * Flush the unicast and multicast chains
4730 */
4731 dev_uc_flush(dev);
4732 dev_mc_flush(dev);
4733
4734 if (dev->netdev_ops->ndo_uninit)
4735 dev->netdev_ops->ndo_uninit(dev);
4736
4737 /* Notifier chain MUST detach us from master device. */
4738 WARN_ON(dev->master);
4739
4740 /* Remove entries from kobject tree */
4741 netdev_unregister_kobject(dev);
4742 }
4743
4744 /* Process any work delayed until the end of the batch */
4745 dev = list_first_entry(head, struct net_device, unreg_list);
4746 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4747
4748 synchronize_net();
4749
4750 list_for_each_entry(dev, head, unreg_list)
4751 dev_put(dev);
4752 }
4753
4754 static void rollback_registered(struct net_device *dev)
4755 {
4756 LIST_HEAD(single);
4757
4758 list_add(&dev->unreg_list, &single);
4759 rollback_registered_many(&single);
4760 }
4761
4762 static void __netdev_init_queue_locks_one(struct net_device *dev,
4763 struct netdev_queue *dev_queue,
4764 void *_unused)
4765 {
4766 spin_lock_init(&dev_queue->_xmit_lock);
4767 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4768 dev_queue->xmit_lock_owner = -1;
4769 }
4770
4771 static void netdev_init_queue_locks(struct net_device *dev)
4772 {
4773 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4774 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4775 }
4776
4777 unsigned long netdev_fix_features(unsigned long features, const char *name)
4778 {
4779 /* Fix illegal SG+CSUM combinations. */
4780 if ((features & NETIF_F_SG) &&
4781 !(features & NETIF_F_ALL_CSUM)) {
4782 if (name)
4783 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4784 "checksum feature.\n", name);
4785 features &= ~NETIF_F_SG;
4786 }
4787
4788 /* TSO requires that SG is present as well. */
4789 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4790 if (name)
4791 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4792 "SG feature.\n", name);
4793 features &= ~NETIF_F_TSO;
4794 }
4795
4796 if (features & NETIF_F_UFO) {
4797 if (!(features & NETIF_F_GEN_CSUM)) {
4798 if (name)
4799 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4800 "since no NETIF_F_HW_CSUM feature.\n",
4801 name);
4802 features &= ~NETIF_F_UFO;
4803 }
4804
4805 if (!(features & NETIF_F_SG)) {
4806 if (name)
4807 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4808 "since no NETIF_F_SG feature.\n", name);
4809 features &= ~NETIF_F_UFO;
4810 }
4811 }
4812
4813 return features;
4814 }
4815 EXPORT_SYMBOL(netdev_fix_features);
4816
4817 /**
4818 * netif_stacked_transfer_operstate - transfer operstate
4819 * @rootdev: the root or lower level device to transfer state from
4820 * @dev: the device to transfer operstate to
4821 *
4822 * Transfer operational state from root to device. This is normally
4823 * called when a stacking relationship exists between the root
4824 * device and the device(a leaf device).
4825 */
4826 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4827 struct net_device *dev)
4828 {
4829 if (rootdev->operstate == IF_OPER_DORMANT)
4830 netif_dormant_on(dev);
4831 else
4832 netif_dormant_off(dev);
4833
4834 if (netif_carrier_ok(rootdev)) {
4835 if (!netif_carrier_ok(dev))
4836 netif_carrier_on(dev);
4837 } else {
4838 if (netif_carrier_ok(dev))
4839 netif_carrier_off(dev);
4840 }
4841 }
4842 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4843
4844 /**
4845 * register_netdevice - register a network device
4846 * @dev: device to register
4847 *
4848 * Take a completed network device structure and add it to the kernel
4849 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4850 * chain. 0 is returned on success. A negative errno code is returned
4851 * on a failure to set up the device, or if the name is a duplicate.
4852 *
4853 * Callers must hold the rtnl semaphore. You may want
4854 * register_netdev() instead of this.
4855 *
4856 * BUGS:
4857 * The locking appears insufficient to guarantee two parallel registers
4858 * will not get the same name.
4859 */
4860
4861 int register_netdevice(struct net_device *dev)
4862 {
4863 int ret;
4864 struct net *net = dev_net(dev);
4865
4866 BUG_ON(dev_boot_phase);
4867 ASSERT_RTNL();
4868
4869 might_sleep();
4870
4871 /* When net_device's are persistent, this will be fatal. */
4872 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4873 BUG_ON(!net);
4874
4875 spin_lock_init(&dev->addr_list_lock);
4876 netdev_set_addr_lockdep_class(dev);
4877 netdev_init_queue_locks(dev);
4878
4879 dev->iflink = -1;
4880
4881 #ifdef CONFIG_RPS
4882 if (!dev->num_rx_queues) {
4883 /*
4884 * Allocate a single RX queue if driver never called
4885 * alloc_netdev_mq
4886 */
4887
4888 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4889 if (!dev->_rx) {
4890 ret = -ENOMEM;
4891 goto out;
4892 }
4893
4894 dev->_rx->first = dev->_rx;
4895 atomic_set(&dev->_rx->count, 1);
4896 dev->num_rx_queues = 1;
4897 }
4898 #endif
4899 /* Init, if this function is available */
4900 if (dev->netdev_ops->ndo_init) {
4901 ret = dev->netdev_ops->ndo_init(dev);
4902 if (ret) {
4903 if (ret > 0)
4904 ret = -EIO;
4905 goto out;
4906 }
4907 }
4908
4909 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
4910 if (ret)
4911 goto err_uninit;
4912
4913 dev->ifindex = dev_new_index(net);
4914 if (dev->iflink == -1)
4915 dev->iflink = dev->ifindex;
4916
4917 /* Fix illegal checksum combinations */
4918 if ((dev->features & NETIF_F_HW_CSUM) &&
4919 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4920 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4921 dev->name);
4922 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4923 }
4924
4925 if ((dev->features & NETIF_F_NO_CSUM) &&
4926 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4927 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4928 dev->name);
4929 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4930 }
4931
4932 dev->features = netdev_fix_features(dev->features, dev->name);
4933
4934 /* Enable software GSO if SG is supported. */
4935 if (dev->features & NETIF_F_SG)
4936 dev->features |= NETIF_F_GSO;
4937
4938 netdev_initialize_kobject(dev);
4939
4940 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4941 ret = notifier_to_errno(ret);
4942 if (ret)
4943 goto err_uninit;
4944
4945 ret = netdev_register_kobject(dev);
4946 if (ret)
4947 goto err_uninit;
4948 dev->reg_state = NETREG_REGISTERED;
4949
4950 /*
4951 * Default initial state at registry is that the
4952 * device is present.
4953 */
4954
4955 set_bit(__LINK_STATE_PRESENT, &dev->state);
4956
4957 dev_init_scheduler(dev);
4958 dev_hold(dev);
4959 list_netdevice(dev);
4960
4961 /* Notify protocols, that a new device appeared. */
4962 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4963 ret = notifier_to_errno(ret);
4964 if (ret) {
4965 rollback_registered(dev);
4966 dev->reg_state = NETREG_UNREGISTERED;
4967 }
4968 /*
4969 * Prevent userspace races by waiting until the network
4970 * device is fully setup before sending notifications.
4971 */
4972 if (!dev->rtnl_link_ops ||
4973 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4974 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
4975
4976 out:
4977 return ret;
4978
4979 err_uninit:
4980 if (dev->netdev_ops->ndo_uninit)
4981 dev->netdev_ops->ndo_uninit(dev);
4982 goto out;
4983 }
4984 EXPORT_SYMBOL(register_netdevice);
4985
4986 /**
4987 * init_dummy_netdev - init a dummy network device for NAPI
4988 * @dev: device to init
4989 *
4990 * This takes a network device structure and initialize the minimum
4991 * amount of fields so it can be used to schedule NAPI polls without
4992 * registering a full blown interface. This is to be used by drivers
4993 * that need to tie several hardware interfaces to a single NAPI
4994 * poll scheduler due to HW limitations.
4995 */
4996 int init_dummy_netdev(struct net_device *dev)
4997 {
4998 /* Clear everything. Note we don't initialize spinlocks
4999 * are they aren't supposed to be taken by any of the
5000 * NAPI code and this dummy netdev is supposed to be
5001 * only ever used for NAPI polls
5002 */
5003 memset(dev, 0, sizeof(struct net_device));
5004
5005 /* make sure we BUG if trying to hit standard
5006 * register/unregister code path
5007 */
5008 dev->reg_state = NETREG_DUMMY;
5009
5010 /* initialize the ref count */
5011 atomic_set(&dev->refcnt, 1);
5012
5013 /* NAPI wants this */
5014 INIT_LIST_HEAD(&dev->napi_list);
5015
5016 /* a dummy interface is started by default */
5017 set_bit(__LINK_STATE_PRESENT, &dev->state);
5018 set_bit(__LINK_STATE_START, &dev->state);
5019
5020 return 0;
5021 }
5022 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5023
5024
5025 /**
5026 * register_netdev - register a network device
5027 * @dev: device to register
5028 *
5029 * Take a completed network device structure and add it to the kernel
5030 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5031 * chain. 0 is returned on success. A negative errno code is returned
5032 * on a failure to set up the device, or if the name is a duplicate.
5033 *
5034 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5035 * and expands the device name if you passed a format string to
5036 * alloc_netdev.
5037 */
5038 int register_netdev(struct net_device *dev)
5039 {
5040 int err;
5041
5042 rtnl_lock();
5043
5044 /*
5045 * If the name is a format string the caller wants us to do a
5046 * name allocation.
5047 */
5048 if (strchr(dev->name, '%')) {
5049 err = dev_alloc_name(dev, dev->name);
5050 if (err < 0)
5051 goto out;
5052 }
5053
5054 err = register_netdevice(dev);
5055 out:
5056 rtnl_unlock();
5057 return err;
5058 }
5059 EXPORT_SYMBOL(register_netdev);
5060
5061 /*
5062 * netdev_wait_allrefs - wait until all references are gone.
5063 *
5064 * This is called when unregistering network devices.
5065 *
5066 * Any protocol or device that holds a reference should register
5067 * for netdevice notification, and cleanup and put back the
5068 * reference if they receive an UNREGISTER event.
5069 * We can get stuck here if buggy protocols don't correctly
5070 * call dev_put.
5071 */
5072 static void netdev_wait_allrefs(struct net_device *dev)
5073 {
5074 unsigned long rebroadcast_time, warning_time;
5075
5076 linkwatch_forget_dev(dev);
5077
5078 rebroadcast_time = warning_time = jiffies;
5079 while (atomic_read(&dev->refcnt) != 0) {
5080 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5081 rtnl_lock();
5082
5083 /* Rebroadcast unregister notification */
5084 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5085 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5086 * should have already handle it the first time */
5087
5088 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5089 &dev->state)) {
5090 /* We must not have linkwatch events
5091 * pending on unregister. If this
5092 * happens, we simply run the queue
5093 * unscheduled, resulting in a noop
5094 * for this device.
5095 */
5096 linkwatch_run_queue();
5097 }
5098
5099 __rtnl_unlock();
5100
5101 rebroadcast_time = jiffies;
5102 }
5103
5104 msleep(250);
5105
5106 if (time_after(jiffies, warning_time + 10 * HZ)) {
5107 printk(KERN_EMERG "unregister_netdevice: "
5108 "waiting for %s to become free. Usage "
5109 "count = %d\n",
5110 dev->name, atomic_read(&dev->refcnt));
5111 warning_time = jiffies;
5112 }
5113 }
5114 }
5115
5116 /* The sequence is:
5117 *
5118 * rtnl_lock();
5119 * ...
5120 * register_netdevice(x1);
5121 * register_netdevice(x2);
5122 * ...
5123 * unregister_netdevice(y1);
5124 * unregister_netdevice(y2);
5125 * ...
5126 * rtnl_unlock();
5127 * free_netdev(y1);
5128 * free_netdev(y2);
5129 *
5130 * We are invoked by rtnl_unlock().
5131 * This allows us to deal with problems:
5132 * 1) We can delete sysfs objects which invoke hotplug
5133 * without deadlocking with linkwatch via keventd.
5134 * 2) Since we run with the RTNL semaphore not held, we can sleep
5135 * safely in order to wait for the netdev refcnt to drop to zero.
5136 *
5137 * We must not return until all unregister events added during
5138 * the interval the lock was held have been completed.
5139 */
5140 void netdev_run_todo(void)
5141 {
5142 struct list_head list;
5143
5144 /* Snapshot list, allow later requests */
5145 list_replace_init(&net_todo_list, &list);
5146
5147 __rtnl_unlock();
5148
5149 while (!list_empty(&list)) {
5150 struct net_device *dev
5151 = list_first_entry(&list, struct net_device, todo_list);
5152 list_del(&dev->todo_list);
5153
5154 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5155 printk(KERN_ERR "network todo '%s' but state %d\n",
5156 dev->name, dev->reg_state);
5157 dump_stack();
5158 continue;
5159 }
5160
5161 dev->reg_state = NETREG_UNREGISTERED;
5162
5163 on_each_cpu(flush_backlog, dev, 1);
5164
5165 netdev_wait_allrefs(dev);
5166
5167 /* paranoia */
5168 BUG_ON(atomic_read(&dev->refcnt));
5169 WARN_ON(dev->ip_ptr);
5170 WARN_ON(dev->ip6_ptr);
5171 WARN_ON(dev->dn_ptr);
5172
5173 if (dev->destructor)
5174 dev->destructor(dev);
5175
5176 /* Free network device */
5177 kobject_put(&dev->dev.kobj);
5178 }
5179 }
5180
5181 /**
5182 * dev_txq_stats_fold - fold tx_queues stats
5183 * @dev: device to get statistics from
5184 * @stats: struct net_device_stats to hold results
5185 */
5186 void dev_txq_stats_fold(const struct net_device *dev,
5187 struct net_device_stats *stats)
5188 {
5189 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5190 unsigned int i;
5191 struct netdev_queue *txq;
5192
5193 for (i = 0; i < dev->num_tx_queues; i++) {
5194 txq = netdev_get_tx_queue(dev, i);
5195 tx_bytes += txq->tx_bytes;
5196 tx_packets += txq->tx_packets;
5197 tx_dropped += txq->tx_dropped;
5198 }
5199 if (tx_bytes || tx_packets || tx_dropped) {
5200 stats->tx_bytes = tx_bytes;
5201 stats->tx_packets = tx_packets;
5202 stats->tx_dropped = tx_dropped;
5203 }
5204 }
5205 EXPORT_SYMBOL(dev_txq_stats_fold);
5206
5207 /**
5208 * dev_get_stats - get network device statistics
5209 * @dev: device to get statistics from
5210 *
5211 * Get network statistics from device. The device driver may provide
5212 * its own method by setting dev->netdev_ops->get_stats; otherwise
5213 * the internal statistics structure is used.
5214 */
5215 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5216 {
5217 const struct net_device_ops *ops = dev->netdev_ops;
5218
5219 if (ops->ndo_get_stats)
5220 return ops->ndo_get_stats(dev);
5221
5222 dev_txq_stats_fold(dev, &dev->stats);
5223 return &dev->stats;
5224 }
5225 EXPORT_SYMBOL(dev_get_stats);
5226
5227 static void netdev_init_one_queue(struct net_device *dev,
5228 struct netdev_queue *queue,
5229 void *_unused)
5230 {
5231 queue->dev = dev;
5232 }
5233
5234 static void netdev_init_queues(struct net_device *dev)
5235 {
5236 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5237 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5238 spin_lock_init(&dev->tx_global_lock);
5239 }
5240
5241 /**
5242 * alloc_netdev_mq - allocate network device
5243 * @sizeof_priv: size of private data to allocate space for
5244 * @name: device name format string
5245 * @setup: callback to initialize device
5246 * @queue_count: the number of subqueues to allocate
5247 *
5248 * Allocates a struct net_device with private data area for driver use
5249 * and performs basic initialization. Also allocates subquue structs
5250 * for each queue on the device at the end of the netdevice.
5251 */
5252 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5253 void (*setup)(struct net_device *), unsigned int queue_count)
5254 {
5255 struct netdev_queue *tx;
5256 struct net_device *dev;
5257 size_t alloc_size;
5258 struct net_device *p;
5259 #ifdef CONFIG_RPS
5260 struct netdev_rx_queue *rx;
5261 int i;
5262 #endif
5263
5264 BUG_ON(strlen(name) >= sizeof(dev->name));
5265
5266 alloc_size = sizeof(struct net_device);
5267 if (sizeof_priv) {
5268 /* ensure 32-byte alignment of private area */
5269 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5270 alloc_size += sizeof_priv;
5271 }
5272 /* ensure 32-byte alignment of whole construct */
5273 alloc_size += NETDEV_ALIGN - 1;
5274
5275 p = kzalloc(alloc_size, GFP_KERNEL);
5276 if (!p) {
5277 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5278 return NULL;
5279 }
5280
5281 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5282 if (!tx) {
5283 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5284 "tx qdiscs.\n");
5285 goto free_p;
5286 }
5287
5288 #ifdef CONFIG_RPS
5289 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5290 if (!rx) {
5291 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5292 "rx queues.\n");
5293 goto free_tx;
5294 }
5295
5296 atomic_set(&rx->count, queue_count);
5297
5298 /*
5299 * Set a pointer to first element in the array which holds the
5300 * reference count.
5301 */
5302 for (i = 0; i < queue_count; i++)
5303 rx[i].first = rx;
5304 #endif
5305
5306 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5307 dev->padded = (char *)dev - (char *)p;
5308
5309 if (dev_addr_init(dev))
5310 goto free_rx;
5311
5312 dev_mc_init(dev);
5313 dev_uc_init(dev);
5314
5315 dev_net_set(dev, &init_net);
5316
5317 dev->_tx = tx;
5318 dev->num_tx_queues = queue_count;
5319 dev->real_num_tx_queues = queue_count;
5320
5321 #ifdef CONFIG_RPS
5322 dev->_rx = rx;
5323 dev->num_rx_queues = queue_count;
5324 #endif
5325
5326 dev->gso_max_size = GSO_MAX_SIZE;
5327
5328 netdev_init_queues(dev);
5329
5330 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5331 dev->ethtool_ntuple_list.count = 0;
5332 INIT_LIST_HEAD(&dev->napi_list);
5333 INIT_LIST_HEAD(&dev->unreg_list);
5334 INIT_LIST_HEAD(&dev->link_watch_list);
5335 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5336 setup(dev);
5337 strcpy(dev->name, name);
5338 return dev;
5339
5340 free_rx:
5341 #ifdef CONFIG_RPS
5342 kfree(rx);
5343 free_tx:
5344 #endif
5345 kfree(tx);
5346 free_p:
5347 kfree(p);
5348 return NULL;
5349 }
5350 EXPORT_SYMBOL(alloc_netdev_mq);
5351
5352 /**
5353 * free_netdev - free network device
5354 * @dev: device
5355 *
5356 * This function does the last stage of destroying an allocated device
5357 * interface. The reference to the device object is released.
5358 * If this is the last reference then it will be freed.
5359 */
5360 void free_netdev(struct net_device *dev)
5361 {
5362 struct napi_struct *p, *n;
5363
5364 release_net(dev_net(dev));
5365
5366 kfree(dev->_tx);
5367
5368 /* Flush device addresses */
5369 dev_addr_flush(dev);
5370
5371 /* Clear ethtool n-tuple list */
5372 ethtool_ntuple_flush(dev);
5373
5374 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5375 netif_napi_del(p);
5376
5377 /* Compatibility with error handling in drivers */
5378 if (dev->reg_state == NETREG_UNINITIALIZED) {
5379 kfree((char *)dev - dev->padded);
5380 return;
5381 }
5382
5383 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5384 dev->reg_state = NETREG_RELEASED;
5385
5386 /* will free via device release */
5387 put_device(&dev->dev);
5388 }
5389 EXPORT_SYMBOL(free_netdev);
5390
5391 /**
5392 * synchronize_net - Synchronize with packet receive processing
5393 *
5394 * Wait for packets currently being received to be done.
5395 * Does not block later packets from starting.
5396 */
5397 void synchronize_net(void)
5398 {
5399 might_sleep();
5400 synchronize_rcu();
5401 }
5402 EXPORT_SYMBOL(synchronize_net);
5403
5404 /**
5405 * unregister_netdevice_queue - remove device from the kernel
5406 * @dev: device
5407 * @head: list
5408 *
5409 * This function shuts down a device interface and removes it
5410 * from the kernel tables.
5411 * If head not NULL, device is queued to be unregistered later.
5412 *
5413 * Callers must hold the rtnl semaphore. You may want
5414 * unregister_netdev() instead of this.
5415 */
5416
5417 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5418 {
5419 ASSERT_RTNL();
5420
5421 if (head) {
5422 list_move_tail(&dev->unreg_list, head);
5423 } else {
5424 rollback_registered(dev);
5425 /* Finish processing unregister after unlock */
5426 net_set_todo(dev);
5427 }
5428 }
5429 EXPORT_SYMBOL(unregister_netdevice_queue);
5430
5431 /**
5432 * unregister_netdevice_many - unregister many devices
5433 * @head: list of devices
5434 */
5435 void unregister_netdevice_many(struct list_head *head)
5436 {
5437 struct net_device *dev;
5438
5439 if (!list_empty(head)) {
5440 rollback_registered_many(head);
5441 list_for_each_entry(dev, head, unreg_list)
5442 net_set_todo(dev);
5443 }
5444 }
5445 EXPORT_SYMBOL(unregister_netdevice_many);
5446
5447 /**
5448 * unregister_netdev - remove device from the kernel
5449 * @dev: device
5450 *
5451 * This function shuts down a device interface and removes it
5452 * from the kernel tables.
5453 *
5454 * This is just a wrapper for unregister_netdevice that takes
5455 * the rtnl semaphore. In general you want to use this and not
5456 * unregister_netdevice.
5457 */
5458 void unregister_netdev(struct net_device *dev)
5459 {
5460 rtnl_lock();
5461 unregister_netdevice(dev);
5462 rtnl_unlock();
5463 }
5464 EXPORT_SYMBOL(unregister_netdev);
5465
5466 /**
5467 * dev_change_net_namespace - move device to different nethost namespace
5468 * @dev: device
5469 * @net: network namespace
5470 * @pat: If not NULL name pattern to try if the current device name
5471 * is already taken in the destination network namespace.
5472 *
5473 * This function shuts down a device interface and moves it
5474 * to a new network namespace. On success 0 is returned, on
5475 * a failure a netagive errno code is returned.
5476 *
5477 * Callers must hold the rtnl semaphore.
5478 */
5479
5480 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5481 {
5482 int err;
5483
5484 ASSERT_RTNL();
5485
5486 /* Don't allow namespace local devices to be moved. */
5487 err = -EINVAL;
5488 if (dev->features & NETIF_F_NETNS_LOCAL)
5489 goto out;
5490
5491 #ifdef CONFIG_SYSFS
5492 /* Don't allow real devices to be moved when sysfs
5493 * is enabled.
5494 */
5495 err = -EINVAL;
5496 if (dev->dev.parent)
5497 goto out;
5498 #endif
5499
5500 /* Ensure the device has been registrered */
5501 err = -EINVAL;
5502 if (dev->reg_state != NETREG_REGISTERED)
5503 goto out;
5504
5505 /* Get out if there is nothing todo */
5506 err = 0;
5507 if (net_eq(dev_net(dev), net))
5508 goto out;
5509
5510 /* Pick the destination device name, and ensure
5511 * we can use it in the destination network namespace.
5512 */
5513 err = -EEXIST;
5514 if (__dev_get_by_name(net, dev->name)) {
5515 /* We get here if we can't use the current device name */
5516 if (!pat)
5517 goto out;
5518 if (dev_get_valid_name(net, pat, dev->name, 1))
5519 goto out;
5520 }
5521
5522 /*
5523 * And now a mini version of register_netdevice unregister_netdevice.
5524 */
5525
5526 /* If device is running close it first. */
5527 dev_close(dev);
5528
5529 /* And unlink it from device chain */
5530 err = -ENODEV;
5531 unlist_netdevice(dev);
5532
5533 synchronize_net();
5534
5535 /* Shutdown queueing discipline. */
5536 dev_shutdown(dev);
5537
5538 /* Notify protocols, that we are about to destroy
5539 this device. They should clean all the things.
5540 */
5541 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5542 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5543
5544 /*
5545 * Flush the unicast and multicast chains
5546 */
5547 dev_uc_flush(dev);
5548 dev_mc_flush(dev);
5549
5550 netdev_unregister_kobject(dev);
5551
5552 /* Actually switch the network namespace */
5553 dev_net_set(dev, net);
5554
5555 /* If there is an ifindex conflict assign a new one */
5556 if (__dev_get_by_index(net, dev->ifindex)) {
5557 int iflink = (dev->iflink == dev->ifindex);
5558 dev->ifindex = dev_new_index(net);
5559 if (iflink)
5560 dev->iflink = dev->ifindex;
5561 }
5562
5563 /* Fixup kobjects */
5564 err = netdev_register_kobject(dev);
5565 WARN_ON(err);
5566
5567 /* Add the device back in the hashes */
5568 list_netdevice(dev);
5569
5570 /* Notify protocols, that a new device appeared. */
5571 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5572
5573 /*
5574 * Prevent userspace races by waiting until the network
5575 * device is fully setup before sending notifications.
5576 */
5577 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5578
5579 synchronize_net();
5580 err = 0;
5581 out:
5582 return err;
5583 }
5584 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5585
5586 static int dev_cpu_callback(struct notifier_block *nfb,
5587 unsigned long action,
5588 void *ocpu)
5589 {
5590 struct sk_buff **list_skb;
5591 struct Qdisc **list_net;
5592 struct sk_buff *skb;
5593 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5594 struct softnet_data *sd, *oldsd;
5595
5596 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5597 return NOTIFY_OK;
5598
5599 local_irq_disable();
5600 cpu = smp_processor_id();
5601 sd = &per_cpu(softnet_data, cpu);
5602 oldsd = &per_cpu(softnet_data, oldcpu);
5603
5604 /* Find end of our completion_queue. */
5605 list_skb = &sd->completion_queue;
5606 while (*list_skb)
5607 list_skb = &(*list_skb)->next;
5608 /* Append completion queue from offline CPU. */
5609 *list_skb = oldsd->completion_queue;
5610 oldsd->completion_queue = NULL;
5611
5612 /* Find end of our output_queue. */
5613 list_net = &sd->output_queue;
5614 while (*list_net)
5615 list_net = &(*list_net)->next_sched;
5616 /* Append output queue from offline CPU. */
5617 *list_net = oldsd->output_queue;
5618 oldsd->output_queue = NULL;
5619
5620 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5621 local_irq_enable();
5622
5623 /* Process offline CPU's input_pkt_queue */
5624 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5625 netif_rx(skb);
5626 input_queue_head_incr(oldsd);
5627 }
5628
5629 return NOTIFY_OK;
5630 }
5631
5632
5633 /**
5634 * netdev_increment_features - increment feature set by one
5635 * @all: current feature set
5636 * @one: new feature set
5637 * @mask: mask feature set
5638 *
5639 * Computes a new feature set after adding a device with feature set
5640 * @one to the master device with current feature set @all. Will not
5641 * enable anything that is off in @mask. Returns the new feature set.
5642 */
5643 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5644 unsigned long mask)
5645 {
5646 /* If device needs checksumming, downgrade to it. */
5647 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5648 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5649 else if (mask & NETIF_F_ALL_CSUM) {
5650 /* If one device supports v4/v6 checksumming, set for all. */
5651 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5652 !(all & NETIF_F_GEN_CSUM)) {
5653 all &= ~NETIF_F_ALL_CSUM;
5654 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5655 }
5656
5657 /* If one device supports hw checksumming, set for all. */
5658 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5659 all &= ~NETIF_F_ALL_CSUM;
5660 all |= NETIF_F_HW_CSUM;
5661 }
5662 }
5663
5664 one |= NETIF_F_ALL_CSUM;
5665
5666 one |= all & NETIF_F_ONE_FOR_ALL;
5667 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5668 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5669
5670 return all;
5671 }
5672 EXPORT_SYMBOL(netdev_increment_features);
5673
5674 static struct hlist_head *netdev_create_hash(void)
5675 {
5676 int i;
5677 struct hlist_head *hash;
5678
5679 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5680 if (hash != NULL)
5681 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5682 INIT_HLIST_HEAD(&hash[i]);
5683
5684 return hash;
5685 }
5686
5687 /* Initialize per network namespace state */
5688 static int __net_init netdev_init(struct net *net)
5689 {
5690 INIT_LIST_HEAD(&net->dev_base_head);
5691
5692 net->dev_name_head = netdev_create_hash();
5693 if (net->dev_name_head == NULL)
5694 goto err_name;
5695
5696 net->dev_index_head = netdev_create_hash();
5697 if (net->dev_index_head == NULL)
5698 goto err_idx;
5699
5700 return 0;
5701
5702 err_idx:
5703 kfree(net->dev_name_head);
5704 err_name:
5705 return -ENOMEM;
5706 }
5707
5708 /**
5709 * netdev_drivername - network driver for the device
5710 * @dev: network device
5711 * @buffer: buffer for resulting name
5712 * @len: size of buffer
5713 *
5714 * Determine network driver for device.
5715 */
5716 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5717 {
5718 const struct device_driver *driver;
5719 const struct device *parent;
5720
5721 if (len <= 0 || !buffer)
5722 return buffer;
5723 buffer[0] = 0;
5724
5725 parent = dev->dev.parent;
5726
5727 if (!parent)
5728 return buffer;
5729
5730 driver = parent->driver;
5731 if (driver && driver->name)
5732 strlcpy(buffer, driver->name, len);
5733 return buffer;
5734 }
5735
5736 static void __net_exit netdev_exit(struct net *net)
5737 {
5738 kfree(net->dev_name_head);
5739 kfree(net->dev_index_head);
5740 }
5741
5742 static struct pernet_operations __net_initdata netdev_net_ops = {
5743 .init = netdev_init,
5744 .exit = netdev_exit,
5745 };
5746
5747 static void __net_exit default_device_exit(struct net *net)
5748 {
5749 struct net_device *dev, *aux;
5750 /*
5751 * Push all migratable network devices back to the
5752 * initial network namespace
5753 */
5754 rtnl_lock();
5755 for_each_netdev_safe(net, dev, aux) {
5756 int err;
5757 char fb_name[IFNAMSIZ];
5758
5759 /* Ignore unmoveable devices (i.e. loopback) */
5760 if (dev->features & NETIF_F_NETNS_LOCAL)
5761 continue;
5762
5763 /* Leave virtual devices for the generic cleanup */
5764 if (dev->rtnl_link_ops)
5765 continue;
5766
5767 /* Push remaing network devices to init_net */
5768 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5769 err = dev_change_net_namespace(dev, &init_net, fb_name);
5770 if (err) {
5771 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5772 __func__, dev->name, err);
5773 BUG();
5774 }
5775 }
5776 rtnl_unlock();
5777 }
5778
5779 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5780 {
5781 /* At exit all network devices most be removed from a network
5782 * namespace. Do this in the reverse order of registeration.
5783 * Do this across as many network namespaces as possible to
5784 * improve batching efficiency.
5785 */
5786 struct net_device *dev;
5787 struct net *net;
5788 LIST_HEAD(dev_kill_list);
5789
5790 rtnl_lock();
5791 list_for_each_entry(net, net_list, exit_list) {
5792 for_each_netdev_reverse(net, dev) {
5793 if (dev->rtnl_link_ops)
5794 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5795 else
5796 unregister_netdevice_queue(dev, &dev_kill_list);
5797 }
5798 }
5799 unregister_netdevice_many(&dev_kill_list);
5800 rtnl_unlock();
5801 }
5802
5803 static struct pernet_operations __net_initdata default_device_ops = {
5804 .exit = default_device_exit,
5805 .exit_batch = default_device_exit_batch,
5806 };
5807
5808 /*
5809 * Initialize the DEV module. At boot time this walks the device list and
5810 * unhooks any devices that fail to initialise (normally hardware not
5811 * present) and leaves us with a valid list of present and active devices.
5812 *
5813 */
5814
5815 /*
5816 * This is called single threaded during boot, so no need
5817 * to take the rtnl semaphore.
5818 */
5819 static int __init net_dev_init(void)
5820 {
5821 int i, rc = -ENOMEM;
5822
5823 BUG_ON(!dev_boot_phase);
5824
5825 if (dev_proc_init())
5826 goto out;
5827
5828 if (netdev_kobject_init())
5829 goto out;
5830
5831 INIT_LIST_HEAD(&ptype_all);
5832 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5833 INIT_LIST_HEAD(&ptype_base[i]);
5834
5835 if (register_pernet_subsys(&netdev_net_ops))
5836 goto out;
5837
5838 /*
5839 * Initialise the packet receive queues.
5840 */
5841
5842 for_each_possible_cpu(i) {
5843 struct softnet_data *sd = &per_cpu(softnet_data, i);
5844
5845 skb_queue_head_init(&sd->input_pkt_queue);
5846 sd->completion_queue = NULL;
5847 INIT_LIST_HEAD(&sd->poll_list);
5848
5849 #ifdef CONFIG_RPS
5850 sd->csd.func = rps_trigger_softirq;
5851 sd->csd.info = sd;
5852 sd->csd.flags = 0;
5853 sd->cpu = i;
5854 #endif
5855
5856 sd->backlog.poll = process_backlog;
5857 sd->backlog.weight = weight_p;
5858 sd->backlog.gro_list = NULL;
5859 sd->backlog.gro_count = 0;
5860 }
5861
5862 dev_boot_phase = 0;
5863
5864 /* The loopback device is special if any other network devices
5865 * is present in a network namespace the loopback device must
5866 * be present. Since we now dynamically allocate and free the
5867 * loopback device ensure this invariant is maintained by
5868 * keeping the loopback device as the first device on the
5869 * list of network devices. Ensuring the loopback devices
5870 * is the first device that appears and the last network device
5871 * that disappears.
5872 */
5873 if (register_pernet_device(&loopback_net_ops))
5874 goto out;
5875
5876 if (register_pernet_device(&default_device_ops))
5877 goto out;
5878
5879 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5880 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5881
5882 hotcpu_notifier(dev_cpu_callback, 0);
5883 dst_init();
5884 dev_mcast_init();
5885 rc = 0;
5886 out:
5887 return rc;
5888 }
5889
5890 subsys_initcall(net_dev_init);
5891
5892 static int __init initialize_hashrnd(void)
5893 {
5894 get_random_bytes(&hashrnd, sizeof(hashrnd));
5895 return 0;
5896 }
5897
5898 late_initcall_sync(initialize_hashrnd);
5899
This page took 0.180131 seconds and 5 git commands to generate.