Merge commit 'gcl/next' into next
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)));
1461 }
1462
1463 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1464 {
1465 if (can_checksum_protocol(dev->features, skb->protocol))
1466 return true;
1467
1468 if (skb->protocol == htons(ETH_P_8021Q)) {
1469 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1470 if (can_checksum_protocol(dev->features & dev->vlan_features,
1471 veh->h_vlan_encapsulated_proto))
1472 return true;
1473 }
1474
1475 return false;
1476 }
1477
1478 /*
1479 * Invalidate hardware checksum when packet is to be mangled, and
1480 * complete checksum manually on outgoing path.
1481 */
1482 int skb_checksum_help(struct sk_buff *skb)
1483 {
1484 __wsum csum;
1485 int ret = 0, offset;
1486
1487 if (skb->ip_summed == CHECKSUM_COMPLETE)
1488 goto out_set_summed;
1489
1490 if (unlikely(skb_shinfo(skb)->gso_size)) {
1491 /* Let GSO fix up the checksum. */
1492 goto out_set_summed;
1493 }
1494
1495 offset = skb->csum_start - skb_headroom(skb);
1496 BUG_ON(offset >= skb_headlen(skb));
1497 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1498
1499 offset += skb->csum_offset;
1500 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1501
1502 if (skb_cloned(skb) &&
1503 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1504 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1505 if (ret)
1506 goto out;
1507 }
1508
1509 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1510 out_set_summed:
1511 skb->ip_summed = CHECKSUM_NONE;
1512 out:
1513 return ret;
1514 }
1515
1516 /**
1517 * skb_gso_segment - Perform segmentation on skb.
1518 * @skb: buffer to segment
1519 * @features: features for the output path (see dev->features)
1520 *
1521 * This function segments the given skb and returns a list of segments.
1522 *
1523 * It may return NULL if the skb requires no segmentation. This is
1524 * only possible when GSO is used for verifying header integrity.
1525 */
1526 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1527 {
1528 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1529 struct packet_type *ptype;
1530 __be16 type = skb->protocol;
1531 int err;
1532
1533 skb_reset_mac_header(skb);
1534 skb->mac_len = skb->network_header - skb->mac_header;
1535 __skb_pull(skb, skb->mac_len);
1536
1537 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1538 struct net_device *dev = skb->dev;
1539 struct ethtool_drvinfo info = {};
1540
1541 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1542 dev->ethtool_ops->get_drvinfo(dev, &info);
1543
1544 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1545 "ip_summed=%d",
1546 info.driver, dev ? dev->features : 0L,
1547 skb->sk ? skb->sk->sk_route_caps : 0L,
1548 skb->len, skb->data_len, skb->ip_summed);
1549
1550 if (skb_header_cloned(skb) &&
1551 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1552 return ERR_PTR(err);
1553 }
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype,
1557 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1558 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1559 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1560 err = ptype->gso_send_check(skb);
1561 segs = ERR_PTR(err);
1562 if (err || skb_gso_ok(skb, features))
1563 break;
1564 __skb_push(skb, (skb->data -
1565 skb_network_header(skb)));
1566 }
1567 segs = ptype->gso_segment(skb, features);
1568 break;
1569 }
1570 }
1571 rcu_read_unlock();
1572
1573 __skb_push(skb, skb->data - skb_mac_header(skb));
1574
1575 return segs;
1576 }
1577
1578 EXPORT_SYMBOL(skb_gso_segment);
1579
1580 /* Take action when hardware reception checksum errors are detected. */
1581 #ifdef CONFIG_BUG
1582 void netdev_rx_csum_fault(struct net_device *dev)
1583 {
1584 if (net_ratelimit()) {
1585 printk(KERN_ERR "%s: hw csum failure.\n",
1586 dev ? dev->name : "<unknown>");
1587 dump_stack();
1588 }
1589 }
1590 EXPORT_SYMBOL(netdev_rx_csum_fault);
1591 #endif
1592
1593 /* Actually, we should eliminate this check as soon as we know, that:
1594 * 1. IOMMU is present and allows to map all the memory.
1595 * 2. No high memory really exists on this machine.
1596 */
1597
1598 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1599 {
1600 #ifdef CONFIG_HIGHMEM
1601 int i;
1602
1603 if (dev->features & NETIF_F_HIGHDMA)
1604 return 0;
1605
1606 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1607 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1608 return 1;
1609
1610 #endif
1611 return 0;
1612 }
1613
1614 struct dev_gso_cb {
1615 void (*destructor)(struct sk_buff *skb);
1616 };
1617
1618 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1619
1620 static void dev_gso_skb_destructor(struct sk_buff *skb)
1621 {
1622 struct dev_gso_cb *cb;
1623
1624 do {
1625 struct sk_buff *nskb = skb->next;
1626
1627 skb->next = nskb->next;
1628 nskb->next = NULL;
1629 kfree_skb(nskb);
1630 } while (skb->next);
1631
1632 cb = DEV_GSO_CB(skb);
1633 if (cb->destructor)
1634 cb->destructor(skb);
1635 }
1636
1637 /**
1638 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1639 * @skb: buffer to segment
1640 *
1641 * This function segments the given skb and stores the list of segments
1642 * in skb->next.
1643 */
1644 static int dev_gso_segment(struct sk_buff *skb)
1645 {
1646 struct net_device *dev = skb->dev;
1647 struct sk_buff *segs;
1648 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1649 NETIF_F_SG : 0);
1650
1651 segs = skb_gso_segment(skb, features);
1652
1653 /* Verifying header integrity only. */
1654 if (!segs)
1655 return 0;
1656
1657 if (IS_ERR(segs))
1658 return PTR_ERR(segs);
1659
1660 skb->next = segs;
1661 DEV_GSO_CB(skb)->destructor = skb->destructor;
1662 skb->destructor = dev_gso_skb_destructor;
1663
1664 return 0;
1665 }
1666
1667 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1668 struct netdev_queue *txq)
1669 {
1670 const struct net_device_ops *ops = dev->netdev_ops;
1671
1672 prefetch(&dev->netdev_ops->ndo_start_xmit);
1673 if (likely(!skb->next)) {
1674 if (!list_empty(&ptype_all))
1675 dev_queue_xmit_nit(skb, dev);
1676
1677 if (netif_needs_gso(dev, skb)) {
1678 if (unlikely(dev_gso_segment(skb)))
1679 goto out_kfree_skb;
1680 if (skb->next)
1681 goto gso;
1682 }
1683
1684 return ops->ndo_start_xmit(skb, dev);
1685 }
1686
1687 gso:
1688 do {
1689 struct sk_buff *nskb = skb->next;
1690 int rc;
1691
1692 skb->next = nskb->next;
1693 nskb->next = NULL;
1694 rc = ops->ndo_start_xmit(nskb, dev);
1695 if (unlikely(rc)) {
1696 nskb->next = skb->next;
1697 skb->next = nskb;
1698 return rc;
1699 }
1700 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1701 return NETDEV_TX_BUSY;
1702 } while (skb->next);
1703
1704 skb->destructor = DEV_GSO_CB(skb)->destructor;
1705
1706 out_kfree_skb:
1707 kfree_skb(skb);
1708 return 0;
1709 }
1710
1711 static u32 simple_tx_hashrnd;
1712 static int simple_tx_hashrnd_initialized = 0;
1713
1714 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1715 {
1716 u32 addr1, addr2, ports;
1717 u32 hash, ihl;
1718 u8 ip_proto = 0;
1719
1720 if (unlikely(!simple_tx_hashrnd_initialized)) {
1721 get_random_bytes(&simple_tx_hashrnd, 4);
1722 simple_tx_hashrnd_initialized = 1;
1723 }
1724
1725 switch (skb->protocol) {
1726 case htons(ETH_P_IP):
1727 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1728 ip_proto = ip_hdr(skb)->protocol;
1729 addr1 = ip_hdr(skb)->saddr;
1730 addr2 = ip_hdr(skb)->daddr;
1731 ihl = ip_hdr(skb)->ihl;
1732 break;
1733 case htons(ETH_P_IPV6):
1734 ip_proto = ipv6_hdr(skb)->nexthdr;
1735 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1736 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1737 ihl = (40 >> 2);
1738 break;
1739 default:
1740 return 0;
1741 }
1742
1743
1744 switch (ip_proto) {
1745 case IPPROTO_TCP:
1746 case IPPROTO_UDP:
1747 case IPPROTO_DCCP:
1748 case IPPROTO_ESP:
1749 case IPPROTO_AH:
1750 case IPPROTO_SCTP:
1751 case IPPROTO_UDPLITE:
1752 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1753 break;
1754
1755 default:
1756 ports = 0;
1757 break;
1758 }
1759
1760 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1761
1762 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1763 }
1764
1765 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1766 struct sk_buff *skb)
1767 {
1768 const struct net_device_ops *ops = dev->netdev_ops;
1769 u16 queue_index = 0;
1770
1771 if (ops->ndo_select_queue)
1772 queue_index = ops->ndo_select_queue(dev, skb);
1773 else if (dev->real_num_tx_queues > 1)
1774 queue_index = simple_tx_hash(dev, skb);
1775
1776 skb_set_queue_mapping(skb, queue_index);
1777 return netdev_get_tx_queue(dev, queue_index);
1778 }
1779
1780 /**
1781 * dev_queue_xmit - transmit a buffer
1782 * @skb: buffer to transmit
1783 *
1784 * Queue a buffer for transmission to a network device. The caller must
1785 * have set the device and priority and built the buffer before calling
1786 * this function. The function can be called from an interrupt.
1787 *
1788 * A negative errno code is returned on a failure. A success does not
1789 * guarantee the frame will be transmitted as it may be dropped due
1790 * to congestion or traffic shaping.
1791 *
1792 * -----------------------------------------------------------------------------------
1793 * I notice this method can also return errors from the queue disciplines,
1794 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1795 * be positive.
1796 *
1797 * Regardless of the return value, the skb is consumed, so it is currently
1798 * difficult to retry a send to this method. (You can bump the ref count
1799 * before sending to hold a reference for retry if you are careful.)
1800 *
1801 * When calling this method, interrupts MUST be enabled. This is because
1802 * the BH enable code must have IRQs enabled so that it will not deadlock.
1803 * --BLG
1804 */
1805 int dev_queue_xmit(struct sk_buff *skb)
1806 {
1807 struct net_device *dev = skb->dev;
1808 struct netdev_queue *txq;
1809 struct Qdisc *q;
1810 int rc = -ENOMEM;
1811
1812 /* GSO will handle the following emulations directly. */
1813 if (netif_needs_gso(dev, skb))
1814 goto gso;
1815
1816 if (skb_shinfo(skb)->frag_list &&
1817 !(dev->features & NETIF_F_FRAGLIST) &&
1818 __skb_linearize(skb))
1819 goto out_kfree_skb;
1820
1821 /* Fragmented skb is linearized if device does not support SG,
1822 * or if at least one of fragments is in highmem and device
1823 * does not support DMA from it.
1824 */
1825 if (skb_shinfo(skb)->nr_frags &&
1826 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1827 __skb_linearize(skb))
1828 goto out_kfree_skb;
1829
1830 /* If packet is not checksummed and device does not support
1831 * checksumming for this protocol, complete checksumming here.
1832 */
1833 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1834 skb_set_transport_header(skb, skb->csum_start -
1835 skb_headroom(skb));
1836 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1837 goto out_kfree_skb;
1838 }
1839
1840 gso:
1841 /* Disable soft irqs for various locks below. Also
1842 * stops preemption for RCU.
1843 */
1844 rcu_read_lock_bh();
1845
1846 txq = dev_pick_tx(dev, skb);
1847 q = rcu_dereference(txq->qdisc);
1848
1849 #ifdef CONFIG_NET_CLS_ACT
1850 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1851 #endif
1852 if (q->enqueue) {
1853 spinlock_t *root_lock = qdisc_lock(q);
1854
1855 spin_lock(root_lock);
1856
1857 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1858 kfree_skb(skb);
1859 rc = NET_XMIT_DROP;
1860 } else {
1861 rc = qdisc_enqueue_root(skb, q);
1862 qdisc_run(q);
1863 }
1864 spin_unlock(root_lock);
1865
1866 goto out;
1867 }
1868
1869 /* The device has no queue. Common case for software devices:
1870 loopback, all the sorts of tunnels...
1871
1872 Really, it is unlikely that netif_tx_lock protection is necessary
1873 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1874 counters.)
1875 However, it is possible, that they rely on protection
1876 made by us here.
1877
1878 Check this and shot the lock. It is not prone from deadlocks.
1879 Either shot noqueue qdisc, it is even simpler 8)
1880 */
1881 if (dev->flags & IFF_UP) {
1882 int cpu = smp_processor_id(); /* ok because BHs are off */
1883
1884 if (txq->xmit_lock_owner != cpu) {
1885
1886 HARD_TX_LOCK(dev, txq, cpu);
1887
1888 if (!netif_tx_queue_stopped(txq)) {
1889 rc = 0;
1890 if (!dev_hard_start_xmit(skb, dev, txq)) {
1891 HARD_TX_UNLOCK(dev, txq);
1892 goto out;
1893 }
1894 }
1895 HARD_TX_UNLOCK(dev, txq);
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Virtual device %s asks to "
1898 "queue packet!\n", dev->name);
1899 } else {
1900 /* Recursion is detected! It is possible,
1901 * unfortunately */
1902 if (net_ratelimit())
1903 printk(KERN_CRIT "Dead loop on virtual device "
1904 "%s, fix it urgently!\n", dev->name);
1905 }
1906 }
1907
1908 rc = -ENETDOWN;
1909 rcu_read_unlock_bh();
1910
1911 out_kfree_skb:
1912 kfree_skb(skb);
1913 return rc;
1914 out:
1915 rcu_read_unlock_bh();
1916 return rc;
1917 }
1918
1919
1920 /*=======================================================================
1921 Receiver routines
1922 =======================================================================*/
1923
1924 int netdev_max_backlog __read_mostly = 1000;
1925 int netdev_budget __read_mostly = 300;
1926 int weight_p __read_mostly = 64; /* old backlog weight */
1927
1928 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1929
1930
1931 /**
1932 * netif_rx - post buffer to the network code
1933 * @skb: buffer to post
1934 *
1935 * This function receives a packet from a device driver and queues it for
1936 * the upper (protocol) levels to process. It always succeeds. The buffer
1937 * may be dropped during processing for congestion control or by the
1938 * protocol layers.
1939 *
1940 * return values:
1941 * NET_RX_SUCCESS (no congestion)
1942 * NET_RX_DROP (packet was dropped)
1943 *
1944 */
1945
1946 int netif_rx(struct sk_buff *skb)
1947 {
1948 struct softnet_data *queue;
1949 unsigned long flags;
1950
1951 /* if netpoll wants it, pretend we never saw it */
1952 if (netpoll_rx(skb))
1953 return NET_RX_DROP;
1954
1955 if (!skb->tstamp.tv64)
1956 net_timestamp(skb);
1957
1958 /*
1959 * The code is rearranged so that the path is the most
1960 * short when CPU is congested, but is still operating.
1961 */
1962 local_irq_save(flags);
1963 queue = &__get_cpu_var(softnet_data);
1964
1965 __get_cpu_var(netdev_rx_stat).total++;
1966 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1967 if (queue->input_pkt_queue.qlen) {
1968 enqueue:
1969 __skb_queue_tail(&queue->input_pkt_queue, skb);
1970 local_irq_restore(flags);
1971 return NET_RX_SUCCESS;
1972 }
1973
1974 napi_schedule(&queue->backlog);
1975 goto enqueue;
1976 }
1977
1978 __get_cpu_var(netdev_rx_stat).dropped++;
1979 local_irq_restore(flags);
1980
1981 kfree_skb(skb);
1982 return NET_RX_DROP;
1983 }
1984
1985 int netif_rx_ni(struct sk_buff *skb)
1986 {
1987 int err;
1988
1989 preempt_disable();
1990 err = netif_rx(skb);
1991 if (local_softirq_pending())
1992 do_softirq();
1993 preempt_enable();
1994
1995 return err;
1996 }
1997
1998 EXPORT_SYMBOL(netif_rx_ni);
1999
2000 static void net_tx_action(struct softirq_action *h)
2001 {
2002 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2003
2004 if (sd->completion_queue) {
2005 struct sk_buff *clist;
2006
2007 local_irq_disable();
2008 clist = sd->completion_queue;
2009 sd->completion_queue = NULL;
2010 local_irq_enable();
2011
2012 while (clist) {
2013 struct sk_buff *skb = clist;
2014 clist = clist->next;
2015
2016 WARN_ON(atomic_read(&skb->users));
2017 __kfree_skb(skb);
2018 }
2019 }
2020
2021 if (sd->output_queue) {
2022 struct Qdisc *head;
2023
2024 local_irq_disable();
2025 head = sd->output_queue;
2026 sd->output_queue = NULL;
2027 local_irq_enable();
2028
2029 while (head) {
2030 struct Qdisc *q = head;
2031 spinlock_t *root_lock;
2032
2033 head = head->next_sched;
2034
2035 root_lock = qdisc_lock(q);
2036 if (spin_trylock(root_lock)) {
2037 smp_mb__before_clear_bit();
2038 clear_bit(__QDISC_STATE_SCHED,
2039 &q->state);
2040 qdisc_run(q);
2041 spin_unlock(root_lock);
2042 } else {
2043 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2044 &q->state)) {
2045 __netif_reschedule(q);
2046 } else {
2047 smp_mb__before_clear_bit();
2048 clear_bit(__QDISC_STATE_SCHED,
2049 &q->state);
2050 }
2051 }
2052 }
2053 }
2054 }
2055
2056 static inline int deliver_skb(struct sk_buff *skb,
2057 struct packet_type *pt_prev,
2058 struct net_device *orig_dev)
2059 {
2060 atomic_inc(&skb->users);
2061 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2062 }
2063
2064 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2065 /* These hooks defined here for ATM */
2066 struct net_bridge;
2067 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2068 unsigned char *addr);
2069 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2070
2071 /*
2072 * If bridge module is loaded call bridging hook.
2073 * returns NULL if packet was consumed.
2074 */
2075 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2076 struct sk_buff *skb) __read_mostly;
2077 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2078 struct packet_type **pt_prev, int *ret,
2079 struct net_device *orig_dev)
2080 {
2081 struct net_bridge_port *port;
2082
2083 if (skb->pkt_type == PACKET_LOOPBACK ||
2084 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2085 return skb;
2086
2087 if (*pt_prev) {
2088 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2089 *pt_prev = NULL;
2090 }
2091
2092 return br_handle_frame_hook(port, skb);
2093 }
2094 #else
2095 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2096 #endif
2097
2098 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2099 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2100 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2101
2102 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2103 struct packet_type **pt_prev,
2104 int *ret,
2105 struct net_device *orig_dev)
2106 {
2107 if (skb->dev->macvlan_port == NULL)
2108 return skb;
2109
2110 if (*pt_prev) {
2111 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2112 *pt_prev = NULL;
2113 }
2114 return macvlan_handle_frame_hook(skb);
2115 }
2116 #else
2117 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2118 #endif
2119
2120 #ifdef CONFIG_NET_CLS_ACT
2121 /* TODO: Maybe we should just force sch_ingress to be compiled in
2122 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2123 * a compare and 2 stores extra right now if we dont have it on
2124 * but have CONFIG_NET_CLS_ACT
2125 * NOTE: This doesnt stop any functionality; if you dont have
2126 * the ingress scheduler, you just cant add policies on ingress.
2127 *
2128 */
2129 static int ing_filter(struct sk_buff *skb)
2130 {
2131 struct net_device *dev = skb->dev;
2132 u32 ttl = G_TC_RTTL(skb->tc_verd);
2133 struct netdev_queue *rxq;
2134 int result = TC_ACT_OK;
2135 struct Qdisc *q;
2136
2137 if (MAX_RED_LOOP < ttl++) {
2138 printk(KERN_WARNING
2139 "Redir loop detected Dropping packet (%d->%d)\n",
2140 skb->iif, dev->ifindex);
2141 return TC_ACT_SHOT;
2142 }
2143
2144 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2145 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2146
2147 rxq = &dev->rx_queue;
2148
2149 q = rxq->qdisc;
2150 if (q != &noop_qdisc) {
2151 spin_lock(qdisc_lock(q));
2152 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2153 result = qdisc_enqueue_root(skb, q);
2154 spin_unlock(qdisc_lock(q));
2155 }
2156
2157 return result;
2158 }
2159
2160 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2161 struct packet_type **pt_prev,
2162 int *ret, struct net_device *orig_dev)
2163 {
2164 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2165 goto out;
2166
2167 if (*pt_prev) {
2168 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2169 *pt_prev = NULL;
2170 } else {
2171 /* Huh? Why does turning on AF_PACKET affect this? */
2172 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2173 }
2174
2175 switch (ing_filter(skb)) {
2176 case TC_ACT_SHOT:
2177 case TC_ACT_STOLEN:
2178 kfree_skb(skb);
2179 return NULL;
2180 }
2181
2182 out:
2183 skb->tc_verd = 0;
2184 return skb;
2185 }
2186 #endif
2187
2188 /*
2189 * netif_nit_deliver - deliver received packets to network taps
2190 * @skb: buffer
2191 *
2192 * This function is used to deliver incoming packets to network
2193 * taps. It should be used when the normal netif_receive_skb path
2194 * is bypassed, for example because of VLAN acceleration.
2195 */
2196 void netif_nit_deliver(struct sk_buff *skb)
2197 {
2198 struct packet_type *ptype;
2199
2200 if (list_empty(&ptype_all))
2201 return;
2202
2203 skb_reset_network_header(skb);
2204 skb_reset_transport_header(skb);
2205 skb->mac_len = skb->network_header - skb->mac_header;
2206
2207 rcu_read_lock();
2208 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2209 if (!ptype->dev || ptype->dev == skb->dev)
2210 deliver_skb(skb, ptype, skb->dev);
2211 }
2212 rcu_read_unlock();
2213 }
2214
2215 /**
2216 * netif_receive_skb - process receive buffer from network
2217 * @skb: buffer to process
2218 *
2219 * netif_receive_skb() is the main receive data processing function.
2220 * It always succeeds. The buffer may be dropped during processing
2221 * for congestion control or by the protocol layers.
2222 *
2223 * This function may only be called from softirq context and interrupts
2224 * should be enabled.
2225 *
2226 * Return values (usually ignored):
2227 * NET_RX_SUCCESS: no congestion
2228 * NET_RX_DROP: packet was dropped
2229 */
2230 int netif_receive_skb(struct sk_buff *skb)
2231 {
2232 struct packet_type *ptype, *pt_prev;
2233 struct net_device *orig_dev;
2234 struct net_device *null_or_orig;
2235 int ret = NET_RX_DROP;
2236 __be16 type;
2237
2238 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2239 return NET_RX_SUCCESS;
2240
2241 /* if we've gotten here through NAPI, check netpoll */
2242 if (netpoll_receive_skb(skb))
2243 return NET_RX_DROP;
2244
2245 if (!skb->tstamp.tv64)
2246 net_timestamp(skb);
2247
2248 if (!skb->iif)
2249 skb->iif = skb->dev->ifindex;
2250
2251 null_or_orig = NULL;
2252 orig_dev = skb->dev;
2253 if (orig_dev->master) {
2254 if (skb_bond_should_drop(skb))
2255 null_or_orig = orig_dev; /* deliver only exact match */
2256 else
2257 skb->dev = orig_dev->master;
2258 }
2259
2260 __get_cpu_var(netdev_rx_stat).total++;
2261
2262 skb_reset_network_header(skb);
2263 skb_reset_transport_header(skb);
2264 skb->mac_len = skb->network_header - skb->mac_header;
2265
2266 pt_prev = NULL;
2267
2268 rcu_read_lock();
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 if (skb->tc_verd & TC_NCLS) {
2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2273 goto ncls;
2274 }
2275 #endif
2276
2277 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2279 ptype->dev == orig_dev) {
2280 if (pt_prev)
2281 ret = deliver_skb(skb, pt_prev, orig_dev);
2282 pt_prev = ptype;
2283 }
2284 }
2285
2286 #ifdef CONFIG_NET_CLS_ACT
2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 ncls:
2291 #endif
2292
2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299
2300 type = skb->protocol;
2301 list_for_each_entry_rcu(ptype,
2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2303 if (ptype->type == type &&
2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2305 ptype->dev == orig_dev)) {
2306 if (pt_prev)
2307 ret = deliver_skb(skb, pt_prev, orig_dev);
2308 pt_prev = ptype;
2309 }
2310 }
2311
2312 if (pt_prev) {
2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 } else {
2315 kfree_skb(skb);
2316 /* Jamal, now you will not able to escape explaining
2317 * me how you were going to use this. :-)
2318 */
2319 ret = NET_RX_DROP;
2320 }
2321
2322 out:
2323 rcu_read_unlock();
2324 return ret;
2325 }
2326
2327 /* Network device is going away, flush any packets still pending */
2328 static void flush_backlog(void *arg)
2329 {
2330 struct net_device *dev = arg;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 struct sk_buff *skb, *tmp;
2333
2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2335 if (skb->dev == dev) {
2336 __skb_unlink(skb, &queue->input_pkt_queue);
2337 kfree_skb(skb);
2338 }
2339 }
2340
2341 static int napi_gro_complete(struct sk_buff *skb)
2342 {
2343 struct packet_type *ptype;
2344 __be16 type = skb->protocol;
2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2346 int err = -ENOENT;
2347
2348 if (NAPI_GRO_CB(skb)->count == 1)
2349 goto out;
2350
2351 rcu_read_lock();
2352 list_for_each_entry_rcu(ptype, head, list) {
2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2354 continue;
2355
2356 err = ptype->gro_complete(skb);
2357 break;
2358 }
2359 rcu_read_unlock();
2360
2361 if (err) {
2362 WARN_ON(&ptype->list == head);
2363 kfree_skb(skb);
2364 return NET_RX_SUCCESS;
2365 }
2366
2367 out:
2368 skb_shinfo(skb)->gso_size = 0;
2369 __skb_push(skb, -skb_network_offset(skb));
2370 return netif_receive_skb(skb);
2371 }
2372
2373 void napi_gro_flush(struct napi_struct *napi)
2374 {
2375 struct sk_buff *skb, *next;
2376
2377 for (skb = napi->gro_list; skb; skb = next) {
2378 next = skb->next;
2379 skb->next = NULL;
2380 napi_gro_complete(skb);
2381 }
2382
2383 napi->gro_list = NULL;
2384 }
2385 EXPORT_SYMBOL(napi_gro_flush);
2386
2387 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2388 {
2389 struct sk_buff **pp = NULL;
2390 struct packet_type *ptype;
2391 __be16 type = skb->protocol;
2392 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2393 int count = 0;
2394 int same_flow;
2395 int mac_len;
2396 int free;
2397
2398 if (!(skb->dev->features & NETIF_F_GRO))
2399 goto normal;
2400
2401 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2402 goto normal;
2403
2404 rcu_read_lock();
2405 list_for_each_entry_rcu(ptype, head, list) {
2406 struct sk_buff *p;
2407
2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 continue;
2410
2411 skb_reset_network_header(skb);
2412 mac_len = skb->network_header - skb->mac_header;
2413 skb->mac_len = mac_len;
2414 NAPI_GRO_CB(skb)->same_flow = 0;
2415 NAPI_GRO_CB(skb)->flush = 0;
2416 NAPI_GRO_CB(skb)->free = 0;
2417
2418 for (p = napi->gro_list; p; p = p->next) {
2419 count++;
2420
2421 if (!NAPI_GRO_CB(p)->same_flow)
2422 continue;
2423
2424 if (p->mac_len != mac_len ||
2425 memcmp(skb_mac_header(p), skb_mac_header(skb),
2426 mac_len))
2427 NAPI_GRO_CB(p)->same_flow = 0;
2428 }
2429
2430 pp = ptype->gro_receive(&napi->gro_list, skb);
2431 break;
2432 }
2433 rcu_read_unlock();
2434
2435 if (&ptype->list == head)
2436 goto normal;
2437
2438 same_flow = NAPI_GRO_CB(skb)->same_flow;
2439 free = NAPI_GRO_CB(skb)->free;
2440
2441 if (pp) {
2442 struct sk_buff *nskb = *pp;
2443
2444 *pp = nskb->next;
2445 nskb->next = NULL;
2446 napi_gro_complete(nskb);
2447 count--;
2448 }
2449
2450 if (same_flow)
2451 goto ok;
2452
2453 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2454 __skb_push(skb, -skb_network_offset(skb));
2455 goto normal;
2456 }
2457
2458 NAPI_GRO_CB(skb)->count = 1;
2459 skb_shinfo(skb)->gso_size = skb->len;
2460 skb->next = napi->gro_list;
2461 napi->gro_list = skb;
2462
2463 ok:
2464 return free;
2465
2466 normal:
2467 return -1;
2468 }
2469 EXPORT_SYMBOL(dev_gro_receive);
2470
2471 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2472 {
2473 struct sk_buff *p;
2474
2475 for (p = napi->gro_list; p; p = p->next) {
2476 NAPI_GRO_CB(p)->same_flow = 1;
2477 NAPI_GRO_CB(p)->flush = 0;
2478 }
2479
2480 return dev_gro_receive(napi, skb);
2481 }
2482
2483 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2484 {
2485 if (netpoll_receive_skb(skb))
2486 return NET_RX_DROP;
2487
2488 switch (__napi_gro_receive(napi, skb)) {
2489 case -1:
2490 return netif_receive_skb(skb);
2491
2492 case 1:
2493 kfree_skb(skb);
2494 break;
2495 }
2496
2497 return NET_RX_SUCCESS;
2498 }
2499 EXPORT_SYMBOL(napi_gro_receive);
2500
2501 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2502 {
2503 __skb_pull(skb, skb_headlen(skb));
2504 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2505
2506 napi->skb = skb;
2507 }
2508 EXPORT_SYMBOL(napi_reuse_skb);
2509
2510 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2511 struct napi_gro_fraginfo *info)
2512 {
2513 struct net_device *dev = napi->dev;
2514 struct sk_buff *skb = napi->skb;
2515
2516 napi->skb = NULL;
2517
2518 if (!skb) {
2519 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2520 if (!skb)
2521 goto out;
2522
2523 skb_reserve(skb, NET_IP_ALIGN);
2524 }
2525
2526 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2527 skb_shinfo(skb)->nr_frags = info->nr_frags;
2528 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2529
2530 skb->data_len = info->len;
2531 skb->len += info->len;
2532 skb->truesize += info->len;
2533
2534 if (!pskb_may_pull(skb, ETH_HLEN)) {
2535 napi_reuse_skb(napi, skb);
2536 skb = NULL;
2537 goto out;
2538 }
2539
2540 skb->protocol = eth_type_trans(skb, dev);
2541
2542 skb->ip_summed = info->ip_summed;
2543 skb->csum = info->csum;
2544
2545 out:
2546 return skb;
2547 }
2548 EXPORT_SYMBOL(napi_fraginfo_skb);
2549
2550 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2551 {
2552 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2553 int err = NET_RX_DROP;
2554
2555 if (!skb)
2556 goto out;
2557
2558 if (netpoll_receive_skb(skb))
2559 goto out;
2560
2561 err = NET_RX_SUCCESS;
2562
2563 switch (__napi_gro_receive(napi, skb)) {
2564 case -1:
2565 return netif_receive_skb(skb);
2566
2567 case 0:
2568 goto out;
2569 }
2570
2571 napi_reuse_skb(napi, skb);
2572
2573 out:
2574 return err;
2575 }
2576 EXPORT_SYMBOL(napi_gro_frags);
2577
2578 static int process_backlog(struct napi_struct *napi, int quota)
2579 {
2580 int work = 0;
2581 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2582 unsigned long start_time = jiffies;
2583
2584 napi->weight = weight_p;
2585 do {
2586 struct sk_buff *skb;
2587
2588 local_irq_disable();
2589 skb = __skb_dequeue(&queue->input_pkt_queue);
2590 if (!skb) {
2591 __napi_complete(napi);
2592 local_irq_enable();
2593 break;
2594 }
2595 local_irq_enable();
2596
2597 napi_gro_receive(napi, skb);
2598 } while (++work < quota && jiffies == start_time);
2599
2600 napi_gro_flush(napi);
2601
2602 return work;
2603 }
2604
2605 /**
2606 * __napi_schedule - schedule for receive
2607 * @n: entry to schedule
2608 *
2609 * The entry's receive function will be scheduled to run
2610 */
2611 void __napi_schedule(struct napi_struct *n)
2612 {
2613 unsigned long flags;
2614
2615 local_irq_save(flags);
2616 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2617 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2618 local_irq_restore(flags);
2619 }
2620 EXPORT_SYMBOL(__napi_schedule);
2621
2622 void __napi_complete(struct napi_struct *n)
2623 {
2624 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2625 BUG_ON(n->gro_list);
2626
2627 list_del(&n->poll_list);
2628 smp_mb__before_clear_bit();
2629 clear_bit(NAPI_STATE_SCHED, &n->state);
2630 }
2631 EXPORT_SYMBOL(__napi_complete);
2632
2633 void napi_complete(struct napi_struct *n)
2634 {
2635 unsigned long flags;
2636
2637 /*
2638 * don't let napi dequeue from the cpu poll list
2639 * just in case its running on a different cpu
2640 */
2641 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2642 return;
2643
2644 napi_gro_flush(n);
2645 local_irq_save(flags);
2646 __napi_complete(n);
2647 local_irq_restore(flags);
2648 }
2649 EXPORT_SYMBOL(napi_complete);
2650
2651 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2652 int (*poll)(struct napi_struct *, int), int weight)
2653 {
2654 INIT_LIST_HEAD(&napi->poll_list);
2655 napi->gro_list = NULL;
2656 napi->skb = NULL;
2657 napi->poll = poll;
2658 napi->weight = weight;
2659 list_add(&napi->dev_list, &dev->napi_list);
2660 napi->dev = dev;
2661 #ifdef CONFIG_NETPOLL
2662 spin_lock_init(&napi->poll_lock);
2663 napi->poll_owner = -1;
2664 #endif
2665 set_bit(NAPI_STATE_SCHED, &napi->state);
2666 }
2667 EXPORT_SYMBOL(netif_napi_add);
2668
2669 void netif_napi_del(struct napi_struct *napi)
2670 {
2671 struct sk_buff *skb, *next;
2672
2673 list_del_init(&napi->dev_list);
2674 kfree(napi->skb);
2675
2676 for (skb = napi->gro_list; skb; skb = next) {
2677 next = skb->next;
2678 skb->next = NULL;
2679 kfree_skb(skb);
2680 }
2681
2682 napi->gro_list = NULL;
2683 }
2684 EXPORT_SYMBOL(netif_napi_del);
2685
2686
2687 static void net_rx_action(struct softirq_action *h)
2688 {
2689 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2690 unsigned long time_limit = jiffies + 2;
2691 int budget = netdev_budget;
2692 void *have;
2693
2694 local_irq_disable();
2695
2696 while (!list_empty(list)) {
2697 struct napi_struct *n;
2698 int work, weight;
2699
2700 /* If softirq window is exhuasted then punt.
2701 * Allow this to run for 2 jiffies since which will allow
2702 * an average latency of 1.5/HZ.
2703 */
2704 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2705 goto softnet_break;
2706
2707 local_irq_enable();
2708
2709 /* Even though interrupts have been re-enabled, this
2710 * access is safe because interrupts can only add new
2711 * entries to the tail of this list, and only ->poll()
2712 * calls can remove this head entry from the list.
2713 */
2714 n = list_entry(list->next, struct napi_struct, poll_list);
2715
2716 have = netpoll_poll_lock(n);
2717
2718 weight = n->weight;
2719
2720 /* This NAPI_STATE_SCHED test is for avoiding a race
2721 * with netpoll's poll_napi(). Only the entity which
2722 * obtains the lock and sees NAPI_STATE_SCHED set will
2723 * actually make the ->poll() call. Therefore we avoid
2724 * accidently calling ->poll() when NAPI is not scheduled.
2725 */
2726 work = 0;
2727 if (test_bit(NAPI_STATE_SCHED, &n->state))
2728 work = n->poll(n, weight);
2729
2730 WARN_ON_ONCE(work > weight);
2731
2732 budget -= work;
2733
2734 local_irq_disable();
2735
2736 /* Drivers must not modify the NAPI state if they
2737 * consume the entire weight. In such cases this code
2738 * still "owns" the NAPI instance and therefore can
2739 * move the instance around on the list at-will.
2740 */
2741 if (unlikely(work == weight)) {
2742 if (unlikely(napi_disable_pending(n)))
2743 __napi_complete(n);
2744 else
2745 list_move_tail(&n->poll_list, list);
2746 }
2747
2748 netpoll_poll_unlock(have);
2749 }
2750 out:
2751 local_irq_enable();
2752
2753 #ifdef CONFIG_NET_DMA
2754 /*
2755 * There may not be any more sk_buffs coming right now, so push
2756 * any pending DMA copies to hardware
2757 */
2758 dma_issue_pending_all();
2759 #endif
2760
2761 return;
2762
2763 softnet_break:
2764 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2765 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2766 goto out;
2767 }
2768
2769 static gifconf_func_t * gifconf_list [NPROTO];
2770
2771 /**
2772 * register_gifconf - register a SIOCGIF handler
2773 * @family: Address family
2774 * @gifconf: Function handler
2775 *
2776 * Register protocol dependent address dumping routines. The handler
2777 * that is passed must not be freed or reused until it has been replaced
2778 * by another handler.
2779 */
2780 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2781 {
2782 if (family >= NPROTO)
2783 return -EINVAL;
2784 gifconf_list[family] = gifconf;
2785 return 0;
2786 }
2787
2788
2789 /*
2790 * Map an interface index to its name (SIOCGIFNAME)
2791 */
2792
2793 /*
2794 * We need this ioctl for efficient implementation of the
2795 * if_indextoname() function required by the IPv6 API. Without
2796 * it, we would have to search all the interfaces to find a
2797 * match. --pb
2798 */
2799
2800 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2801 {
2802 struct net_device *dev;
2803 struct ifreq ifr;
2804
2805 /*
2806 * Fetch the caller's info block.
2807 */
2808
2809 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2810 return -EFAULT;
2811
2812 read_lock(&dev_base_lock);
2813 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2814 if (!dev) {
2815 read_unlock(&dev_base_lock);
2816 return -ENODEV;
2817 }
2818
2819 strcpy(ifr.ifr_name, dev->name);
2820 read_unlock(&dev_base_lock);
2821
2822 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2823 return -EFAULT;
2824 return 0;
2825 }
2826
2827 /*
2828 * Perform a SIOCGIFCONF call. This structure will change
2829 * size eventually, and there is nothing I can do about it.
2830 * Thus we will need a 'compatibility mode'.
2831 */
2832
2833 static int dev_ifconf(struct net *net, char __user *arg)
2834 {
2835 struct ifconf ifc;
2836 struct net_device *dev;
2837 char __user *pos;
2838 int len;
2839 int total;
2840 int i;
2841
2842 /*
2843 * Fetch the caller's info block.
2844 */
2845
2846 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2847 return -EFAULT;
2848
2849 pos = ifc.ifc_buf;
2850 len = ifc.ifc_len;
2851
2852 /*
2853 * Loop over the interfaces, and write an info block for each.
2854 */
2855
2856 total = 0;
2857 for_each_netdev(net, dev) {
2858 for (i = 0; i < NPROTO; i++) {
2859 if (gifconf_list[i]) {
2860 int done;
2861 if (!pos)
2862 done = gifconf_list[i](dev, NULL, 0);
2863 else
2864 done = gifconf_list[i](dev, pos + total,
2865 len - total);
2866 if (done < 0)
2867 return -EFAULT;
2868 total += done;
2869 }
2870 }
2871 }
2872
2873 /*
2874 * All done. Write the updated control block back to the caller.
2875 */
2876 ifc.ifc_len = total;
2877
2878 /*
2879 * Both BSD and Solaris return 0 here, so we do too.
2880 */
2881 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2882 }
2883
2884 #ifdef CONFIG_PROC_FS
2885 /*
2886 * This is invoked by the /proc filesystem handler to display a device
2887 * in detail.
2888 */
2889 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2890 __acquires(dev_base_lock)
2891 {
2892 struct net *net = seq_file_net(seq);
2893 loff_t off;
2894 struct net_device *dev;
2895
2896 read_lock(&dev_base_lock);
2897 if (!*pos)
2898 return SEQ_START_TOKEN;
2899
2900 off = 1;
2901 for_each_netdev(net, dev)
2902 if (off++ == *pos)
2903 return dev;
2904
2905 return NULL;
2906 }
2907
2908 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2909 {
2910 struct net *net = seq_file_net(seq);
2911 ++*pos;
2912 return v == SEQ_START_TOKEN ?
2913 first_net_device(net) : next_net_device((struct net_device *)v);
2914 }
2915
2916 void dev_seq_stop(struct seq_file *seq, void *v)
2917 __releases(dev_base_lock)
2918 {
2919 read_unlock(&dev_base_lock);
2920 }
2921
2922 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2923 {
2924 const struct net_device_stats *stats = dev_get_stats(dev);
2925
2926 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2927 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2928 dev->name, stats->rx_bytes, stats->rx_packets,
2929 stats->rx_errors,
2930 stats->rx_dropped + stats->rx_missed_errors,
2931 stats->rx_fifo_errors,
2932 stats->rx_length_errors + stats->rx_over_errors +
2933 stats->rx_crc_errors + stats->rx_frame_errors,
2934 stats->rx_compressed, stats->multicast,
2935 stats->tx_bytes, stats->tx_packets,
2936 stats->tx_errors, stats->tx_dropped,
2937 stats->tx_fifo_errors, stats->collisions,
2938 stats->tx_carrier_errors +
2939 stats->tx_aborted_errors +
2940 stats->tx_window_errors +
2941 stats->tx_heartbeat_errors,
2942 stats->tx_compressed);
2943 }
2944
2945 /*
2946 * Called from the PROCfs module. This now uses the new arbitrary sized
2947 * /proc/net interface to create /proc/net/dev
2948 */
2949 static int dev_seq_show(struct seq_file *seq, void *v)
2950 {
2951 if (v == SEQ_START_TOKEN)
2952 seq_puts(seq, "Inter-| Receive "
2953 " | Transmit\n"
2954 " face |bytes packets errs drop fifo frame "
2955 "compressed multicast|bytes packets errs "
2956 "drop fifo colls carrier compressed\n");
2957 else
2958 dev_seq_printf_stats(seq, v);
2959 return 0;
2960 }
2961
2962 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2963 {
2964 struct netif_rx_stats *rc = NULL;
2965
2966 while (*pos < nr_cpu_ids)
2967 if (cpu_online(*pos)) {
2968 rc = &per_cpu(netdev_rx_stat, *pos);
2969 break;
2970 } else
2971 ++*pos;
2972 return rc;
2973 }
2974
2975 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2976 {
2977 return softnet_get_online(pos);
2978 }
2979
2980 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2981 {
2982 ++*pos;
2983 return softnet_get_online(pos);
2984 }
2985
2986 static void softnet_seq_stop(struct seq_file *seq, void *v)
2987 {
2988 }
2989
2990 static int softnet_seq_show(struct seq_file *seq, void *v)
2991 {
2992 struct netif_rx_stats *s = v;
2993
2994 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2995 s->total, s->dropped, s->time_squeeze, 0,
2996 0, 0, 0, 0, /* was fastroute */
2997 s->cpu_collision );
2998 return 0;
2999 }
3000
3001 static const struct seq_operations dev_seq_ops = {
3002 .start = dev_seq_start,
3003 .next = dev_seq_next,
3004 .stop = dev_seq_stop,
3005 .show = dev_seq_show,
3006 };
3007
3008 static int dev_seq_open(struct inode *inode, struct file *file)
3009 {
3010 return seq_open_net(inode, file, &dev_seq_ops,
3011 sizeof(struct seq_net_private));
3012 }
3013
3014 static const struct file_operations dev_seq_fops = {
3015 .owner = THIS_MODULE,
3016 .open = dev_seq_open,
3017 .read = seq_read,
3018 .llseek = seq_lseek,
3019 .release = seq_release_net,
3020 };
3021
3022 static const struct seq_operations softnet_seq_ops = {
3023 .start = softnet_seq_start,
3024 .next = softnet_seq_next,
3025 .stop = softnet_seq_stop,
3026 .show = softnet_seq_show,
3027 };
3028
3029 static int softnet_seq_open(struct inode *inode, struct file *file)
3030 {
3031 return seq_open(file, &softnet_seq_ops);
3032 }
3033
3034 static const struct file_operations softnet_seq_fops = {
3035 .owner = THIS_MODULE,
3036 .open = softnet_seq_open,
3037 .read = seq_read,
3038 .llseek = seq_lseek,
3039 .release = seq_release,
3040 };
3041
3042 static void *ptype_get_idx(loff_t pos)
3043 {
3044 struct packet_type *pt = NULL;
3045 loff_t i = 0;
3046 int t;
3047
3048 list_for_each_entry_rcu(pt, &ptype_all, list) {
3049 if (i == pos)
3050 return pt;
3051 ++i;
3052 }
3053
3054 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3055 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3056 if (i == pos)
3057 return pt;
3058 ++i;
3059 }
3060 }
3061 return NULL;
3062 }
3063
3064 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3065 __acquires(RCU)
3066 {
3067 rcu_read_lock();
3068 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3069 }
3070
3071 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3072 {
3073 struct packet_type *pt;
3074 struct list_head *nxt;
3075 int hash;
3076
3077 ++*pos;
3078 if (v == SEQ_START_TOKEN)
3079 return ptype_get_idx(0);
3080
3081 pt = v;
3082 nxt = pt->list.next;
3083 if (pt->type == htons(ETH_P_ALL)) {
3084 if (nxt != &ptype_all)
3085 goto found;
3086 hash = 0;
3087 nxt = ptype_base[0].next;
3088 } else
3089 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3090
3091 while (nxt == &ptype_base[hash]) {
3092 if (++hash >= PTYPE_HASH_SIZE)
3093 return NULL;
3094 nxt = ptype_base[hash].next;
3095 }
3096 found:
3097 return list_entry(nxt, struct packet_type, list);
3098 }
3099
3100 static void ptype_seq_stop(struct seq_file *seq, void *v)
3101 __releases(RCU)
3102 {
3103 rcu_read_unlock();
3104 }
3105
3106 static int ptype_seq_show(struct seq_file *seq, void *v)
3107 {
3108 struct packet_type *pt = v;
3109
3110 if (v == SEQ_START_TOKEN)
3111 seq_puts(seq, "Type Device Function\n");
3112 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3113 if (pt->type == htons(ETH_P_ALL))
3114 seq_puts(seq, "ALL ");
3115 else
3116 seq_printf(seq, "%04x", ntohs(pt->type));
3117
3118 seq_printf(seq, " %-8s %pF\n",
3119 pt->dev ? pt->dev->name : "", pt->func);
3120 }
3121
3122 return 0;
3123 }
3124
3125 static const struct seq_operations ptype_seq_ops = {
3126 .start = ptype_seq_start,
3127 .next = ptype_seq_next,
3128 .stop = ptype_seq_stop,
3129 .show = ptype_seq_show,
3130 };
3131
3132 static int ptype_seq_open(struct inode *inode, struct file *file)
3133 {
3134 return seq_open_net(inode, file, &ptype_seq_ops,
3135 sizeof(struct seq_net_private));
3136 }
3137
3138 static const struct file_operations ptype_seq_fops = {
3139 .owner = THIS_MODULE,
3140 .open = ptype_seq_open,
3141 .read = seq_read,
3142 .llseek = seq_lseek,
3143 .release = seq_release_net,
3144 };
3145
3146
3147 static int __net_init dev_proc_net_init(struct net *net)
3148 {
3149 int rc = -ENOMEM;
3150
3151 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3152 goto out;
3153 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3154 goto out_dev;
3155 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3156 goto out_softnet;
3157
3158 if (wext_proc_init(net))
3159 goto out_ptype;
3160 rc = 0;
3161 out:
3162 return rc;
3163 out_ptype:
3164 proc_net_remove(net, "ptype");
3165 out_softnet:
3166 proc_net_remove(net, "softnet_stat");
3167 out_dev:
3168 proc_net_remove(net, "dev");
3169 goto out;
3170 }
3171
3172 static void __net_exit dev_proc_net_exit(struct net *net)
3173 {
3174 wext_proc_exit(net);
3175
3176 proc_net_remove(net, "ptype");
3177 proc_net_remove(net, "softnet_stat");
3178 proc_net_remove(net, "dev");
3179 }
3180
3181 static struct pernet_operations __net_initdata dev_proc_ops = {
3182 .init = dev_proc_net_init,
3183 .exit = dev_proc_net_exit,
3184 };
3185
3186 static int __init dev_proc_init(void)
3187 {
3188 return register_pernet_subsys(&dev_proc_ops);
3189 }
3190 #else
3191 #define dev_proc_init() 0
3192 #endif /* CONFIG_PROC_FS */
3193
3194
3195 /**
3196 * netdev_set_master - set up master/slave pair
3197 * @slave: slave device
3198 * @master: new master device
3199 *
3200 * Changes the master device of the slave. Pass %NULL to break the
3201 * bonding. The caller must hold the RTNL semaphore. On a failure
3202 * a negative errno code is returned. On success the reference counts
3203 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3204 * function returns zero.
3205 */
3206 int netdev_set_master(struct net_device *slave, struct net_device *master)
3207 {
3208 struct net_device *old = slave->master;
3209
3210 ASSERT_RTNL();
3211
3212 if (master) {
3213 if (old)
3214 return -EBUSY;
3215 dev_hold(master);
3216 }
3217
3218 slave->master = master;
3219
3220 synchronize_net();
3221
3222 if (old)
3223 dev_put(old);
3224
3225 if (master)
3226 slave->flags |= IFF_SLAVE;
3227 else
3228 slave->flags &= ~IFF_SLAVE;
3229
3230 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3231 return 0;
3232 }
3233
3234 static void dev_change_rx_flags(struct net_device *dev, int flags)
3235 {
3236 const struct net_device_ops *ops = dev->netdev_ops;
3237
3238 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3239 ops->ndo_change_rx_flags(dev, flags);
3240 }
3241
3242 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3243 {
3244 unsigned short old_flags = dev->flags;
3245 uid_t uid;
3246 gid_t gid;
3247
3248 ASSERT_RTNL();
3249
3250 dev->flags |= IFF_PROMISC;
3251 dev->promiscuity += inc;
3252 if (dev->promiscuity == 0) {
3253 /*
3254 * Avoid overflow.
3255 * If inc causes overflow, untouch promisc and return error.
3256 */
3257 if (inc < 0)
3258 dev->flags &= ~IFF_PROMISC;
3259 else {
3260 dev->promiscuity -= inc;
3261 printk(KERN_WARNING "%s: promiscuity touches roof, "
3262 "set promiscuity failed, promiscuity feature "
3263 "of device might be broken.\n", dev->name);
3264 return -EOVERFLOW;
3265 }
3266 }
3267 if (dev->flags != old_flags) {
3268 printk(KERN_INFO "device %s %s promiscuous mode\n",
3269 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3270 "left");
3271 if (audit_enabled) {
3272 current_uid_gid(&uid, &gid);
3273 audit_log(current->audit_context, GFP_ATOMIC,
3274 AUDIT_ANOM_PROMISCUOUS,
3275 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3276 dev->name, (dev->flags & IFF_PROMISC),
3277 (old_flags & IFF_PROMISC),
3278 audit_get_loginuid(current),
3279 uid, gid,
3280 audit_get_sessionid(current));
3281 }
3282
3283 dev_change_rx_flags(dev, IFF_PROMISC);
3284 }
3285 return 0;
3286 }
3287
3288 /**
3289 * dev_set_promiscuity - update promiscuity count on a device
3290 * @dev: device
3291 * @inc: modifier
3292 *
3293 * Add or remove promiscuity from a device. While the count in the device
3294 * remains above zero the interface remains promiscuous. Once it hits zero
3295 * the device reverts back to normal filtering operation. A negative inc
3296 * value is used to drop promiscuity on the device.
3297 * Return 0 if successful or a negative errno code on error.
3298 */
3299 int dev_set_promiscuity(struct net_device *dev, int inc)
3300 {
3301 unsigned short old_flags = dev->flags;
3302 int err;
3303
3304 err = __dev_set_promiscuity(dev, inc);
3305 if (err < 0)
3306 return err;
3307 if (dev->flags != old_flags)
3308 dev_set_rx_mode(dev);
3309 return err;
3310 }
3311
3312 /**
3313 * dev_set_allmulti - update allmulti count on a device
3314 * @dev: device
3315 * @inc: modifier
3316 *
3317 * Add or remove reception of all multicast frames to a device. While the
3318 * count in the device remains above zero the interface remains listening
3319 * to all interfaces. Once it hits zero the device reverts back to normal
3320 * filtering operation. A negative @inc value is used to drop the counter
3321 * when releasing a resource needing all multicasts.
3322 * Return 0 if successful or a negative errno code on error.
3323 */
3324
3325 int dev_set_allmulti(struct net_device *dev, int inc)
3326 {
3327 unsigned short old_flags = dev->flags;
3328
3329 ASSERT_RTNL();
3330
3331 dev->flags |= IFF_ALLMULTI;
3332 dev->allmulti += inc;
3333 if (dev->allmulti == 0) {
3334 /*
3335 * Avoid overflow.
3336 * If inc causes overflow, untouch allmulti and return error.
3337 */
3338 if (inc < 0)
3339 dev->flags &= ~IFF_ALLMULTI;
3340 else {
3341 dev->allmulti -= inc;
3342 printk(KERN_WARNING "%s: allmulti touches roof, "
3343 "set allmulti failed, allmulti feature of "
3344 "device might be broken.\n", dev->name);
3345 return -EOVERFLOW;
3346 }
3347 }
3348 if (dev->flags ^ old_flags) {
3349 dev_change_rx_flags(dev, IFF_ALLMULTI);
3350 dev_set_rx_mode(dev);
3351 }
3352 return 0;
3353 }
3354
3355 /*
3356 * Upload unicast and multicast address lists to device and
3357 * configure RX filtering. When the device doesn't support unicast
3358 * filtering it is put in promiscuous mode while unicast addresses
3359 * are present.
3360 */
3361 void __dev_set_rx_mode(struct net_device *dev)
3362 {
3363 const struct net_device_ops *ops = dev->netdev_ops;
3364
3365 /* dev_open will call this function so the list will stay sane. */
3366 if (!(dev->flags&IFF_UP))
3367 return;
3368
3369 if (!netif_device_present(dev))
3370 return;
3371
3372 if (ops->ndo_set_rx_mode)
3373 ops->ndo_set_rx_mode(dev);
3374 else {
3375 /* Unicast addresses changes may only happen under the rtnl,
3376 * therefore calling __dev_set_promiscuity here is safe.
3377 */
3378 if (dev->uc_count > 0 && !dev->uc_promisc) {
3379 __dev_set_promiscuity(dev, 1);
3380 dev->uc_promisc = 1;
3381 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3382 __dev_set_promiscuity(dev, -1);
3383 dev->uc_promisc = 0;
3384 }
3385
3386 if (ops->ndo_set_multicast_list)
3387 ops->ndo_set_multicast_list(dev);
3388 }
3389 }
3390
3391 void dev_set_rx_mode(struct net_device *dev)
3392 {
3393 netif_addr_lock_bh(dev);
3394 __dev_set_rx_mode(dev);
3395 netif_addr_unlock_bh(dev);
3396 }
3397
3398 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3399 void *addr, int alen, int glbl)
3400 {
3401 struct dev_addr_list *da;
3402
3403 for (; (da = *list) != NULL; list = &da->next) {
3404 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3405 alen == da->da_addrlen) {
3406 if (glbl) {
3407 int old_glbl = da->da_gusers;
3408 da->da_gusers = 0;
3409 if (old_glbl == 0)
3410 break;
3411 }
3412 if (--da->da_users)
3413 return 0;
3414
3415 *list = da->next;
3416 kfree(da);
3417 (*count)--;
3418 return 0;
3419 }
3420 }
3421 return -ENOENT;
3422 }
3423
3424 int __dev_addr_add(struct dev_addr_list **list, int *count,
3425 void *addr, int alen, int glbl)
3426 {
3427 struct dev_addr_list *da;
3428
3429 for (da = *list; da != NULL; da = da->next) {
3430 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3431 da->da_addrlen == alen) {
3432 if (glbl) {
3433 int old_glbl = da->da_gusers;
3434 da->da_gusers = 1;
3435 if (old_glbl)
3436 return 0;
3437 }
3438 da->da_users++;
3439 return 0;
3440 }
3441 }
3442
3443 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3444 if (da == NULL)
3445 return -ENOMEM;
3446 memcpy(da->da_addr, addr, alen);
3447 da->da_addrlen = alen;
3448 da->da_users = 1;
3449 da->da_gusers = glbl ? 1 : 0;
3450 da->next = *list;
3451 *list = da;
3452 (*count)++;
3453 return 0;
3454 }
3455
3456 /**
3457 * dev_unicast_delete - Release secondary unicast address.
3458 * @dev: device
3459 * @addr: address to delete
3460 * @alen: length of @addr
3461 *
3462 * Release reference to a secondary unicast address and remove it
3463 * from the device if the reference count drops to zero.
3464 *
3465 * The caller must hold the rtnl_mutex.
3466 */
3467 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3468 {
3469 int err;
3470
3471 ASSERT_RTNL();
3472
3473 netif_addr_lock_bh(dev);
3474 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3475 if (!err)
3476 __dev_set_rx_mode(dev);
3477 netif_addr_unlock_bh(dev);
3478 return err;
3479 }
3480 EXPORT_SYMBOL(dev_unicast_delete);
3481
3482 /**
3483 * dev_unicast_add - add a secondary unicast address
3484 * @dev: device
3485 * @addr: address to add
3486 * @alen: length of @addr
3487 *
3488 * Add a secondary unicast address to the device or increase
3489 * the reference count if it already exists.
3490 *
3491 * The caller must hold the rtnl_mutex.
3492 */
3493 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3494 {
3495 int err;
3496
3497 ASSERT_RTNL();
3498
3499 netif_addr_lock_bh(dev);
3500 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3501 if (!err)
3502 __dev_set_rx_mode(dev);
3503 netif_addr_unlock_bh(dev);
3504 return err;
3505 }
3506 EXPORT_SYMBOL(dev_unicast_add);
3507
3508 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3509 struct dev_addr_list **from, int *from_count)
3510 {
3511 struct dev_addr_list *da, *next;
3512 int err = 0;
3513
3514 da = *from;
3515 while (da != NULL) {
3516 next = da->next;
3517 if (!da->da_synced) {
3518 err = __dev_addr_add(to, to_count,
3519 da->da_addr, da->da_addrlen, 0);
3520 if (err < 0)
3521 break;
3522 da->da_synced = 1;
3523 da->da_users++;
3524 } else if (da->da_users == 1) {
3525 __dev_addr_delete(to, to_count,
3526 da->da_addr, da->da_addrlen, 0);
3527 __dev_addr_delete(from, from_count,
3528 da->da_addr, da->da_addrlen, 0);
3529 }
3530 da = next;
3531 }
3532 return err;
3533 }
3534
3535 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3536 struct dev_addr_list **from, int *from_count)
3537 {
3538 struct dev_addr_list *da, *next;
3539
3540 da = *from;
3541 while (da != NULL) {
3542 next = da->next;
3543 if (da->da_synced) {
3544 __dev_addr_delete(to, to_count,
3545 da->da_addr, da->da_addrlen, 0);
3546 da->da_synced = 0;
3547 __dev_addr_delete(from, from_count,
3548 da->da_addr, da->da_addrlen, 0);
3549 }
3550 da = next;
3551 }
3552 }
3553
3554 /**
3555 * dev_unicast_sync - Synchronize device's unicast list to another device
3556 * @to: destination device
3557 * @from: source device
3558 *
3559 * Add newly added addresses to the destination device and release
3560 * addresses that have no users left. The source device must be
3561 * locked by netif_tx_lock_bh.
3562 *
3563 * This function is intended to be called from the dev->set_rx_mode
3564 * function of layered software devices.
3565 */
3566 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3567 {
3568 int err = 0;
3569
3570 netif_addr_lock_bh(to);
3571 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3572 &from->uc_list, &from->uc_count);
3573 if (!err)
3574 __dev_set_rx_mode(to);
3575 netif_addr_unlock_bh(to);
3576 return err;
3577 }
3578 EXPORT_SYMBOL(dev_unicast_sync);
3579
3580 /**
3581 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3582 * @to: destination device
3583 * @from: source device
3584 *
3585 * Remove all addresses that were added to the destination device by
3586 * dev_unicast_sync(). This function is intended to be called from the
3587 * dev->stop function of layered software devices.
3588 */
3589 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3590 {
3591 netif_addr_lock_bh(from);
3592 netif_addr_lock(to);
3593
3594 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3595 &from->uc_list, &from->uc_count);
3596 __dev_set_rx_mode(to);
3597
3598 netif_addr_unlock(to);
3599 netif_addr_unlock_bh(from);
3600 }
3601 EXPORT_SYMBOL(dev_unicast_unsync);
3602
3603 static void __dev_addr_discard(struct dev_addr_list **list)
3604 {
3605 struct dev_addr_list *tmp;
3606
3607 while (*list != NULL) {
3608 tmp = *list;
3609 *list = tmp->next;
3610 if (tmp->da_users > tmp->da_gusers)
3611 printk("__dev_addr_discard: address leakage! "
3612 "da_users=%d\n", tmp->da_users);
3613 kfree(tmp);
3614 }
3615 }
3616
3617 static void dev_addr_discard(struct net_device *dev)
3618 {
3619 netif_addr_lock_bh(dev);
3620
3621 __dev_addr_discard(&dev->uc_list);
3622 dev->uc_count = 0;
3623
3624 __dev_addr_discard(&dev->mc_list);
3625 dev->mc_count = 0;
3626
3627 netif_addr_unlock_bh(dev);
3628 }
3629
3630 /**
3631 * dev_get_flags - get flags reported to userspace
3632 * @dev: device
3633 *
3634 * Get the combination of flag bits exported through APIs to userspace.
3635 */
3636 unsigned dev_get_flags(const struct net_device *dev)
3637 {
3638 unsigned flags;
3639
3640 flags = (dev->flags & ~(IFF_PROMISC |
3641 IFF_ALLMULTI |
3642 IFF_RUNNING |
3643 IFF_LOWER_UP |
3644 IFF_DORMANT)) |
3645 (dev->gflags & (IFF_PROMISC |
3646 IFF_ALLMULTI));
3647
3648 if (netif_running(dev)) {
3649 if (netif_oper_up(dev))
3650 flags |= IFF_RUNNING;
3651 if (netif_carrier_ok(dev))
3652 flags |= IFF_LOWER_UP;
3653 if (netif_dormant(dev))
3654 flags |= IFF_DORMANT;
3655 }
3656
3657 return flags;
3658 }
3659
3660 /**
3661 * dev_change_flags - change device settings
3662 * @dev: device
3663 * @flags: device state flags
3664 *
3665 * Change settings on device based state flags. The flags are
3666 * in the userspace exported format.
3667 */
3668 int dev_change_flags(struct net_device *dev, unsigned flags)
3669 {
3670 int ret, changes;
3671 int old_flags = dev->flags;
3672
3673 ASSERT_RTNL();
3674
3675 /*
3676 * Set the flags on our device.
3677 */
3678
3679 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3680 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3681 IFF_AUTOMEDIA)) |
3682 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3683 IFF_ALLMULTI));
3684
3685 /*
3686 * Load in the correct multicast list now the flags have changed.
3687 */
3688
3689 if ((old_flags ^ flags) & IFF_MULTICAST)
3690 dev_change_rx_flags(dev, IFF_MULTICAST);
3691
3692 dev_set_rx_mode(dev);
3693
3694 /*
3695 * Have we downed the interface. We handle IFF_UP ourselves
3696 * according to user attempts to set it, rather than blindly
3697 * setting it.
3698 */
3699
3700 ret = 0;
3701 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3702 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3703
3704 if (!ret)
3705 dev_set_rx_mode(dev);
3706 }
3707
3708 if (dev->flags & IFF_UP &&
3709 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3710 IFF_VOLATILE)))
3711 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3712
3713 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3714 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3715 dev->gflags ^= IFF_PROMISC;
3716 dev_set_promiscuity(dev, inc);
3717 }
3718
3719 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3720 is important. Some (broken) drivers set IFF_PROMISC, when
3721 IFF_ALLMULTI is requested not asking us and not reporting.
3722 */
3723 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3724 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3725 dev->gflags ^= IFF_ALLMULTI;
3726 dev_set_allmulti(dev, inc);
3727 }
3728
3729 /* Exclude state transition flags, already notified */
3730 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3731 if (changes)
3732 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3733
3734 return ret;
3735 }
3736
3737 /**
3738 * dev_set_mtu - Change maximum transfer unit
3739 * @dev: device
3740 * @new_mtu: new transfer unit
3741 *
3742 * Change the maximum transfer size of the network device.
3743 */
3744 int dev_set_mtu(struct net_device *dev, int new_mtu)
3745 {
3746 const struct net_device_ops *ops = dev->netdev_ops;
3747 int err;
3748
3749 if (new_mtu == dev->mtu)
3750 return 0;
3751
3752 /* MTU must be positive. */
3753 if (new_mtu < 0)
3754 return -EINVAL;
3755
3756 if (!netif_device_present(dev))
3757 return -ENODEV;
3758
3759 err = 0;
3760 if (ops->ndo_change_mtu)
3761 err = ops->ndo_change_mtu(dev, new_mtu);
3762 else
3763 dev->mtu = new_mtu;
3764
3765 if (!err && dev->flags & IFF_UP)
3766 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3767 return err;
3768 }
3769
3770 /**
3771 * dev_set_mac_address - Change Media Access Control Address
3772 * @dev: device
3773 * @sa: new address
3774 *
3775 * Change the hardware (MAC) address of the device
3776 */
3777 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3778 {
3779 const struct net_device_ops *ops = dev->netdev_ops;
3780 int err;
3781
3782 if (!ops->ndo_set_mac_address)
3783 return -EOPNOTSUPP;
3784 if (sa->sa_family != dev->type)
3785 return -EINVAL;
3786 if (!netif_device_present(dev))
3787 return -ENODEV;
3788 err = ops->ndo_set_mac_address(dev, sa);
3789 if (!err)
3790 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3791 return err;
3792 }
3793
3794 /*
3795 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3796 */
3797 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3798 {
3799 int err;
3800 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3801
3802 if (!dev)
3803 return -ENODEV;
3804
3805 switch (cmd) {
3806 case SIOCGIFFLAGS: /* Get interface flags */
3807 ifr->ifr_flags = dev_get_flags(dev);
3808 return 0;
3809
3810 case SIOCGIFMETRIC: /* Get the metric on the interface
3811 (currently unused) */
3812 ifr->ifr_metric = 0;
3813 return 0;
3814
3815 case SIOCGIFMTU: /* Get the MTU of a device */
3816 ifr->ifr_mtu = dev->mtu;
3817 return 0;
3818
3819 case SIOCGIFHWADDR:
3820 if (!dev->addr_len)
3821 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3822 else
3823 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3824 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3825 ifr->ifr_hwaddr.sa_family = dev->type;
3826 return 0;
3827
3828 case SIOCGIFSLAVE:
3829 err = -EINVAL;
3830 break;
3831
3832 case SIOCGIFMAP:
3833 ifr->ifr_map.mem_start = dev->mem_start;
3834 ifr->ifr_map.mem_end = dev->mem_end;
3835 ifr->ifr_map.base_addr = dev->base_addr;
3836 ifr->ifr_map.irq = dev->irq;
3837 ifr->ifr_map.dma = dev->dma;
3838 ifr->ifr_map.port = dev->if_port;
3839 return 0;
3840
3841 case SIOCGIFINDEX:
3842 ifr->ifr_ifindex = dev->ifindex;
3843 return 0;
3844
3845 case SIOCGIFTXQLEN:
3846 ifr->ifr_qlen = dev->tx_queue_len;
3847 return 0;
3848
3849 default:
3850 /* dev_ioctl() should ensure this case
3851 * is never reached
3852 */
3853 WARN_ON(1);
3854 err = -EINVAL;
3855 break;
3856
3857 }
3858 return err;
3859 }
3860
3861 /*
3862 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3863 */
3864 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3865 {
3866 int err;
3867 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3868 const struct net_device_ops *ops;
3869
3870 if (!dev)
3871 return -ENODEV;
3872
3873 ops = dev->netdev_ops;
3874
3875 switch (cmd) {
3876 case SIOCSIFFLAGS: /* Set interface flags */
3877 return dev_change_flags(dev, ifr->ifr_flags);
3878
3879 case SIOCSIFMETRIC: /* Set the metric on the interface
3880 (currently unused) */
3881 return -EOPNOTSUPP;
3882
3883 case SIOCSIFMTU: /* Set the MTU of a device */
3884 return dev_set_mtu(dev, ifr->ifr_mtu);
3885
3886 case SIOCSIFHWADDR:
3887 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3888
3889 case SIOCSIFHWBROADCAST:
3890 if (ifr->ifr_hwaddr.sa_family != dev->type)
3891 return -EINVAL;
3892 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3893 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3894 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3895 return 0;
3896
3897 case SIOCSIFMAP:
3898 if (ops->ndo_set_config) {
3899 if (!netif_device_present(dev))
3900 return -ENODEV;
3901 return ops->ndo_set_config(dev, &ifr->ifr_map);
3902 }
3903 return -EOPNOTSUPP;
3904
3905 case SIOCADDMULTI:
3906 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3907 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3908 return -EINVAL;
3909 if (!netif_device_present(dev))
3910 return -ENODEV;
3911 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3912 dev->addr_len, 1);
3913
3914 case SIOCDELMULTI:
3915 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3916 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3917 return -EINVAL;
3918 if (!netif_device_present(dev))
3919 return -ENODEV;
3920 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3921 dev->addr_len, 1);
3922
3923 case SIOCSIFTXQLEN:
3924 if (ifr->ifr_qlen < 0)
3925 return -EINVAL;
3926 dev->tx_queue_len = ifr->ifr_qlen;
3927 return 0;
3928
3929 case SIOCSIFNAME:
3930 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3931 return dev_change_name(dev, ifr->ifr_newname);
3932
3933 /*
3934 * Unknown or private ioctl
3935 */
3936
3937 default:
3938 if ((cmd >= SIOCDEVPRIVATE &&
3939 cmd <= SIOCDEVPRIVATE + 15) ||
3940 cmd == SIOCBONDENSLAVE ||
3941 cmd == SIOCBONDRELEASE ||
3942 cmd == SIOCBONDSETHWADDR ||
3943 cmd == SIOCBONDSLAVEINFOQUERY ||
3944 cmd == SIOCBONDINFOQUERY ||
3945 cmd == SIOCBONDCHANGEACTIVE ||
3946 cmd == SIOCGMIIPHY ||
3947 cmd == SIOCGMIIREG ||
3948 cmd == SIOCSMIIREG ||
3949 cmd == SIOCBRADDIF ||
3950 cmd == SIOCBRDELIF ||
3951 cmd == SIOCWANDEV) {
3952 err = -EOPNOTSUPP;
3953 if (ops->ndo_do_ioctl) {
3954 if (netif_device_present(dev))
3955 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3956 else
3957 err = -ENODEV;
3958 }
3959 } else
3960 err = -EINVAL;
3961
3962 }
3963 return err;
3964 }
3965
3966 /*
3967 * This function handles all "interface"-type I/O control requests. The actual
3968 * 'doing' part of this is dev_ifsioc above.
3969 */
3970
3971 /**
3972 * dev_ioctl - network device ioctl
3973 * @net: the applicable net namespace
3974 * @cmd: command to issue
3975 * @arg: pointer to a struct ifreq in user space
3976 *
3977 * Issue ioctl functions to devices. This is normally called by the
3978 * user space syscall interfaces but can sometimes be useful for
3979 * other purposes. The return value is the return from the syscall if
3980 * positive or a negative errno code on error.
3981 */
3982
3983 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3984 {
3985 struct ifreq ifr;
3986 int ret;
3987 char *colon;
3988
3989 /* One special case: SIOCGIFCONF takes ifconf argument
3990 and requires shared lock, because it sleeps writing
3991 to user space.
3992 */
3993
3994 if (cmd == SIOCGIFCONF) {
3995 rtnl_lock();
3996 ret = dev_ifconf(net, (char __user *) arg);
3997 rtnl_unlock();
3998 return ret;
3999 }
4000 if (cmd == SIOCGIFNAME)
4001 return dev_ifname(net, (struct ifreq __user *)arg);
4002
4003 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4004 return -EFAULT;
4005
4006 ifr.ifr_name[IFNAMSIZ-1] = 0;
4007
4008 colon = strchr(ifr.ifr_name, ':');
4009 if (colon)
4010 *colon = 0;
4011
4012 /*
4013 * See which interface the caller is talking about.
4014 */
4015
4016 switch (cmd) {
4017 /*
4018 * These ioctl calls:
4019 * - can be done by all.
4020 * - atomic and do not require locking.
4021 * - return a value
4022 */
4023 case SIOCGIFFLAGS:
4024 case SIOCGIFMETRIC:
4025 case SIOCGIFMTU:
4026 case SIOCGIFHWADDR:
4027 case SIOCGIFSLAVE:
4028 case SIOCGIFMAP:
4029 case SIOCGIFINDEX:
4030 case SIOCGIFTXQLEN:
4031 dev_load(net, ifr.ifr_name);
4032 read_lock(&dev_base_lock);
4033 ret = dev_ifsioc_locked(net, &ifr, cmd);
4034 read_unlock(&dev_base_lock);
4035 if (!ret) {
4036 if (colon)
4037 *colon = ':';
4038 if (copy_to_user(arg, &ifr,
4039 sizeof(struct ifreq)))
4040 ret = -EFAULT;
4041 }
4042 return ret;
4043
4044 case SIOCETHTOOL:
4045 dev_load(net, ifr.ifr_name);
4046 rtnl_lock();
4047 ret = dev_ethtool(net, &ifr);
4048 rtnl_unlock();
4049 if (!ret) {
4050 if (colon)
4051 *colon = ':';
4052 if (copy_to_user(arg, &ifr,
4053 sizeof(struct ifreq)))
4054 ret = -EFAULT;
4055 }
4056 return ret;
4057
4058 /*
4059 * These ioctl calls:
4060 * - require superuser power.
4061 * - require strict serialization.
4062 * - return a value
4063 */
4064 case SIOCGMIIPHY:
4065 case SIOCGMIIREG:
4066 case SIOCSIFNAME:
4067 if (!capable(CAP_NET_ADMIN))
4068 return -EPERM;
4069 dev_load(net, ifr.ifr_name);
4070 rtnl_lock();
4071 ret = dev_ifsioc(net, &ifr, cmd);
4072 rtnl_unlock();
4073 if (!ret) {
4074 if (colon)
4075 *colon = ':';
4076 if (copy_to_user(arg, &ifr,
4077 sizeof(struct ifreq)))
4078 ret = -EFAULT;
4079 }
4080 return ret;
4081
4082 /*
4083 * These ioctl calls:
4084 * - require superuser power.
4085 * - require strict serialization.
4086 * - do not return a value
4087 */
4088 case SIOCSIFFLAGS:
4089 case SIOCSIFMETRIC:
4090 case SIOCSIFMTU:
4091 case SIOCSIFMAP:
4092 case SIOCSIFHWADDR:
4093 case SIOCSIFSLAVE:
4094 case SIOCADDMULTI:
4095 case SIOCDELMULTI:
4096 case SIOCSIFHWBROADCAST:
4097 case SIOCSIFTXQLEN:
4098 case SIOCSMIIREG:
4099 case SIOCBONDENSLAVE:
4100 case SIOCBONDRELEASE:
4101 case SIOCBONDSETHWADDR:
4102 case SIOCBONDCHANGEACTIVE:
4103 case SIOCBRADDIF:
4104 case SIOCBRDELIF:
4105 if (!capable(CAP_NET_ADMIN))
4106 return -EPERM;
4107 /* fall through */
4108 case SIOCBONDSLAVEINFOQUERY:
4109 case SIOCBONDINFOQUERY:
4110 dev_load(net, ifr.ifr_name);
4111 rtnl_lock();
4112 ret = dev_ifsioc(net, &ifr, cmd);
4113 rtnl_unlock();
4114 return ret;
4115
4116 case SIOCGIFMEM:
4117 /* Get the per device memory space. We can add this but
4118 * currently do not support it */
4119 case SIOCSIFMEM:
4120 /* Set the per device memory buffer space.
4121 * Not applicable in our case */
4122 case SIOCSIFLINK:
4123 return -EINVAL;
4124
4125 /*
4126 * Unknown or private ioctl.
4127 */
4128 default:
4129 if (cmd == SIOCWANDEV ||
4130 (cmd >= SIOCDEVPRIVATE &&
4131 cmd <= SIOCDEVPRIVATE + 15)) {
4132 dev_load(net, ifr.ifr_name);
4133 rtnl_lock();
4134 ret = dev_ifsioc(net, &ifr, cmd);
4135 rtnl_unlock();
4136 if (!ret && copy_to_user(arg, &ifr,
4137 sizeof(struct ifreq)))
4138 ret = -EFAULT;
4139 return ret;
4140 }
4141 /* Take care of Wireless Extensions */
4142 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4143 return wext_handle_ioctl(net, &ifr, cmd, arg);
4144 return -EINVAL;
4145 }
4146 }
4147
4148
4149 /**
4150 * dev_new_index - allocate an ifindex
4151 * @net: the applicable net namespace
4152 *
4153 * Returns a suitable unique value for a new device interface
4154 * number. The caller must hold the rtnl semaphore or the
4155 * dev_base_lock to be sure it remains unique.
4156 */
4157 static int dev_new_index(struct net *net)
4158 {
4159 static int ifindex;
4160 for (;;) {
4161 if (++ifindex <= 0)
4162 ifindex = 1;
4163 if (!__dev_get_by_index(net, ifindex))
4164 return ifindex;
4165 }
4166 }
4167
4168 /* Delayed registration/unregisteration */
4169 static LIST_HEAD(net_todo_list);
4170
4171 static void net_set_todo(struct net_device *dev)
4172 {
4173 list_add_tail(&dev->todo_list, &net_todo_list);
4174 }
4175
4176 static void rollback_registered(struct net_device *dev)
4177 {
4178 BUG_ON(dev_boot_phase);
4179 ASSERT_RTNL();
4180
4181 /* Some devices call without registering for initialization unwind. */
4182 if (dev->reg_state == NETREG_UNINITIALIZED) {
4183 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4184 "was registered\n", dev->name, dev);
4185
4186 WARN_ON(1);
4187 return;
4188 }
4189
4190 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4191
4192 /* If device is running, close it first. */
4193 dev_close(dev);
4194
4195 /* And unlink it from device chain. */
4196 unlist_netdevice(dev);
4197
4198 dev->reg_state = NETREG_UNREGISTERING;
4199
4200 synchronize_net();
4201
4202 /* Shutdown queueing discipline. */
4203 dev_shutdown(dev);
4204
4205
4206 /* Notify protocols, that we are about to destroy
4207 this device. They should clean all the things.
4208 */
4209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4210
4211 /*
4212 * Flush the unicast and multicast chains
4213 */
4214 dev_addr_discard(dev);
4215
4216 if (dev->netdev_ops->ndo_uninit)
4217 dev->netdev_ops->ndo_uninit(dev);
4218
4219 /* Notifier chain MUST detach us from master device. */
4220 WARN_ON(dev->master);
4221
4222 /* Remove entries from kobject tree */
4223 netdev_unregister_kobject(dev);
4224
4225 synchronize_net();
4226
4227 dev_put(dev);
4228 }
4229
4230 static void __netdev_init_queue_locks_one(struct net_device *dev,
4231 struct netdev_queue *dev_queue,
4232 void *_unused)
4233 {
4234 spin_lock_init(&dev_queue->_xmit_lock);
4235 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4236 dev_queue->xmit_lock_owner = -1;
4237 }
4238
4239 static void netdev_init_queue_locks(struct net_device *dev)
4240 {
4241 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4242 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4243 }
4244
4245 unsigned long netdev_fix_features(unsigned long features, const char *name)
4246 {
4247 /* Fix illegal SG+CSUM combinations. */
4248 if ((features & NETIF_F_SG) &&
4249 !(features & NETIF_F_ALL_CSUM)) {
4250 if (name)
4251 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4252 "checksum feature.\n", name);
4253 features &= ~NETIF_F_SG;
4254 }
4255
4256 /* TSO requires that SG is present as well. */
4257 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4258 if (name)
4259 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4260 "SG feature.\n", name);
4261 features &= ~NETIF_F_TSO;
4262 }
4263
4264 if (features & NETIF_F_UFO) {
4265 if (!(features & NETIF_F_GEN_CSUM)) {
4266 if (name)
4267 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4268 "since no NETIF_F_HW_CSUM feature.\n",
4269 name);
4270 features &= ~NETIF_F_UFO;
4271 }
4272
4273 if (!(features & NETIF_F_SG)) {
4274 if (name)
4275 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4276 "since no NETIF_F_SG feature.\n", name);
4277 features &= ~NETIF_F_UFO;
4278 }
4279 }
4280
4281 return features;
4282 }
4283 EXPORT_SYMBOL(netdev_fix_features);
4284
4285 /* Some devices need to (re-)set their netdev_ops inside
4286 * ->init() or similar. If that happens, we have to setup
4287 * the compat pointers again.
4288 */
4289 void netdev_resync_ops(struct net_device *dev)
4290 {
4291 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4292 const struct net_device_ops *ops = dev->netdev_ops;
4293
4294 dev->init = ops->ndo_init;
4295 dev->uninit = ops->ndo_uninit;
4296 dev->open = ops->ndo_open;
4297 dev->change_rx_flags = ops->ndo_change_rx_flags;
4298 dev->set_rx_mode = ops->ndo_set_rx_mode;
4299 dev->set_multicast_list = ops->ndo_set_multicast_list;
4300 dev->set_mac_address = ops->ndo_set_mac_address;
4301 dev->validate_addr = ops->ndo_validate_addr;
4302 dev->do_ioctl = ops->ndo_do_ioctl;
4303 dev->set_config = ops->ndo_set_config;
4304 dev->change_mtu = ops->ndo_change_mtu;
4305 dev->neigh_setup = ops->ndo_neigh_setup;
4306 dev->tx_timeout = ops->ndo_tx_timeout;
4307 dev->get_stats = ops->ndo_get_stats;
4308 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4309 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4310 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4311 #ifdef CONFIG_NET_POLL_CONTROLLER
4312 dev->poll_controller = ops->ndo_poll_controller;
4313 #endif
4314 #endif
4315 }
4316 EXPORT_SYMBOL(netdev_resync_ops);
4317
4318 /**
4319 * register_netdevice - register a network device
4320 * @dev: device to register
4321 *
4322 * Take a completed network device structure and add it to the kernel
4323 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4324 * chain. 0 is returned on success. A negative errno code is returned
4325 * on a failure to set up the device, or if the name is a duplicate.
4326 *
4327 * Callers must hold the rtnl semaphore. You may want
4328 * register_netdev() instead of this.
4329 *
4330 * BUGS:
4331 * The locking appears insufficient to guarantee two parallel registers
4332 * will not get the same name.
4333 */
4334
4335 int register_netdevice(struct net_device *dev)
4336 {
4337 struct hlist_head *head;
4338 struct hlist_node *p;
4339 int ret;
4340 struct net *net = dev_net(dev);
4341
4342 BUG_ON(dev_boot_phase);
4343 ASSERT_RTNL();
4344
4345 might_sleep();
4346
4347 /* When net_device's are persistent, this will be fatal. */
4348 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4349 BUG_ON(!net);
4350
4351 spin_lock_init(&dev->addr_list_lock);
4352 netdev_set_addr_lockdep_class(dev);
4353 netdev_init_queue_locks(dev);
4354
4355 dev->iflink = -1;
4356
4357 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4358 /* Netdevice_ops API compatiability support.
4359 * This is temporary until all network devices are converted.
4360 */
4361 if (dev->netdev_ops) {
4362 netdev_resync_ops(dev);
4363 } else {
4364 char drivername[64];
4365 pr_info("%s (%s): not using net_device_ops yet\n",
4366 dev->name, netdev_drivername(dev, drivername, 64));
4367
4368 /* This works only because net_device_ops and the
4369 compatiablity structure are the same. */
4370 dev->netdev_ops = (void *) &(dev->init);
4371 }
4372 #endif
4373
4374 /* Init, if this function is available */
4375 if (dev->netdev_ops->ndo_init) {
4376 ret = dev->netdev_ops->ndo_init(dev);
4377 if (ret) {
4378 if (ret > 0)
4379 ret = -EIO;
4380 goto out;
4381 }
4382 }
4383
4384 if (!dev_valid_name(dev->name)) {
4385 ret = -EINVAL;
4386 goto err_uninit;
4387 }
4388
4389 dev->ifindex = dev_new_index(net);
4390 if (dev->iflink == -1)
4391 dev->iflink = dev->ifindex;
4392
4393 /* Check for existence of name */
4394 head = dev_name_hash(net, dev->name);
4395 hlist_for_each(p, head) {
4396 struct net_device *d
4397 = hlist_entry(p, struct net_device, name_hlist);
4398 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4399 ret = -EEXIST;
4400 goto err_uninit;
4401 }
4402 }
4403
4404 /* Fix illegal checksum combinations */
4405 if ((dev->features & NETIF_F_HW_CSUM) &&
4406 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4407 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4408 dev->name);
4409 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4410 }
4411
4412 if ((dev->features & NETIF_F_NO_CSUM) &&
4413 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4414 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4415 dev->name);
4416 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4417 }
4418
4419 dev->features = netdev_fix_features(dev->features, dev->name);
4420
4421 /* Enable software GSO if SG is supported. */
4422 if (dev->features & NETIF_F_SG)
4423 dev->features |= NETIF_F_GSO;
4424
4425 netdev_initialize_kobject(dev);
4426 ret = netdev_register_kobject(dev);
4427 if (ret)
4428 goto err_uninit;
4429 dev->reg_state = NETREG_REGISTERED;
4430
4431 /*
4432 * Default initial state at registry is that the
4433 * device is present.
4434 */
4435
4436 set_bit(__LINK_STATE_PRESENT, &dev->state);
4437
4438 dev_init_scheduler(dev);
4439 dev_hold(dev);
4440 list_netdevice(dev);
4441
4442 /* Notify protocols, that a new device appeared. */
4443 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4444 ret = notifier_to_errno(ret);
4445 if (ret) {
4446 rollback_registered(dev);
4447 dev->reg_state = NETREG_UNREGISTERED;
4448 }
4449
4450 out:
4451 return ret;
4452
4453 err_uninit:
4454 if (dev->netdev_ops->ndo_uninit)
4455 dev->netdev_ops->ndo_uninit(dev);
4456 goto out;
4457 }
4458
4459 /**
4460 * init_dummy_netdev - init a dummy network device for NAPI
4461 * @dev: device to init
4462 *
4463 * This takes a network device structure and initialize the minimum
4464 * amount of fields so it can be used to schedule NAPI polls without
4465 * registering a full blown interface. This is to be used by drivers
4466 * that need to tie several hardware interfaces to a single NAPI
4467 * poll scheduler due to HW limitations.
4468 */
4469 int init_dummy_netdev(struct net_device *dev)
4470 {
4471 /* Clear everything. Note we don't initialize spinlocks
4472 * are they aren't supposed to be taken by any of the
4473 * NAPI code and this dummy netdev is supposed to be
4474 * only ever used for NAPI polls
4475 */
4476 memset(dev, 0, sizeof(struct net_device));
4477
4478 /* make sure we BUG if trying to hit standard
4479 * register/unregister code path
4480 */
4481 dev->reg_state = NETREG_DUMMY;
4482
4483 /* initialize the ref count */
4484 atomic_set(&dev->refcnt, 1);
4485
4486 /* NAPI wants this */
4487 INIT_LIST_HEAD(&dev->napi_list);
4488
4489 /* a dummy interface is started by default */
4490 set_bit(__LINK_STATE_PRESENT, &dev->state);
4491 set_bit(__LINK_STATE_START, &dev->state);
4492
4493 return 0;
4494 }
4495 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4496
4497
4498 /**
4499 * register_netdev - register a network device
4500 * @dev: device to register
4501 *
4502 * Take a completed network device structure and add it to the kernel
4503 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4504 * chain. 0 is returned on success. A negative errno code is returned
4505 * on a failure to set up the device, or if the name is a duplicate.
4506 *
4507 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4508 * and expands the device name if you passed a format string to
4509 * alloc_netdev.
4510 */
4511 int register_netdev(struct net_device *dev)
4512 {
4513 int err;
4514
4515 rtnl_lock();
4516
4517 /*
4518 * If the name is a format string the caller wants us to do a
4519 * name allocation.
4520 */
4521 if (strchr(dev->name, '%')) {
4522 err = dev_alloc_name(dev, dev->name);
4523 if (err < 0)
4524 goto out;
4525 }
4526
4527 err = register_netdevice(dev);
4528 out:
4529 rtnl_unlock();
4530 return err;
4531 }
4532 EXPORT_SYMBOL(register_netdev);
4533
4534 /*
4535 * netdev_wait_allrefs - wait until all references are gone.
4536 *
4537 * This is called when unregistering network devices.
4538 *
4539 * Any protocol or device that holds a reference should register
4540 * for netdevice notification, and cleanup and put back the
4541 * reference if they receive an UNREGISTER event.
4542 * We can get stuck here if buggy protocols don't correctly
4543 * call dev_put.
4544 */
4545 static void netdev_wait_allrefs(struct net_device *dev)
4546 {
4547 unsigned long rebroadcast_time, warning_time;
4548
4549 rebroadcast_time = warning_time = jiffies;
4550 while (atomic_read(&dev->refcnt) != 0) {
4551 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4552 rtnl_lock();
4553
4554 /* Rebroadcast unregister notification */
4555 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4556
4557 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4558 &dev->state)) {
4559 /* We must not have linkwatch events
4560 * pending on unregister. If this
4561 * happens, we simply run the queue
4562 * unscheduled, resulting in a noop
4563 * for this device.
4564 */
4565 linkwatch_run_queue();
4566 }
4567
4568 __rtnl_unlock();
4569
4570 rebroadcast_time = jiffies;
4571 }
4572
4573 msleep(250);
4574
4575 if (time_after(jiffies, warning_time + 10 * HZ)) {
4576 printk(KERN_EMERG "unregister_netdevice: "
4577 "waiting for %s to become free. Usage "
4578 "count = %d\n",
4579 dev->name, atomic_read(&dev->refcnt));
4580 warning_time = jiffies;
4581 }
4582 }
4583 }
4584
4585 /* The sequence is:
4586 *
4587 * rtnl_lock();
4588 * ...
4589 * register_netdevice(x1);
4590 * register_netdevice(x2);
4591 * ...
4592 * unregister_netdevice(y1);
4593 * unregister_netdevice(y2);
4594 * ...
4595 * rtnl_unlock();
4596 * free_netdev(y1);
4597 * free_netdev(y2);
4598 *
4599 * We are invoked by rtnl_unlock().
4600 * This allows us to deal with problems:
4601 * 1) We can delete sysfs objects which invoke hotplug
4602 * without deadlocking with linkwatch via keventd.
4603 * 2) Since we run with the RTNL semaphore not held, we can sleep
4604 * safely in order to wait for the netdev refcnt to drop to zero.
4605 *
4606 * We must not return until all unregister events added during
4607 * the interval the lock was held have been completed.
4608 */
4609 void netdev_run_todo(void)
4610 {
4611 struct list_head list;
4612
4613 /* Snapshot list, allow later requests */
4614 list_replace_init(&net_todo_list, &list);
4615
4616 __rtnl_unlock();
4617
4618 while (!list_empty(&list)) {
4619 struct net_device *dev
4620 = list_entry(list.next, struct net_device, todo_list);
4621 list_del(&dev->todo_list);
4622
4623 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4624 printk(KERN_ERR "network todo '%s' but state %d\n",
4625 dev->name, dev->reg_state);
4626 dump_stack();
4627 continue;
4628 }
4629
4630 dev->reg_state = NETREG_UNREGISTERED;
4631
4632 on_each_cpu(flush_backlog, dev, 1);
4633
4634 netdev_wait_allrefs(dev);
4635
4636 /* paranoia */
4637 BUG_ON(atomic_read(&dev->refcnt));
4638 WARN_ON(dev->ip_ptr);
4639 WARN_ON(dev->ip6_ptr);
4640 WARN_ON(dev->dn_ptr);
4641
4642 if (dev->destructor)
4643 dev->destructor(dev);
4644
4645 /* Free network device */
4646 kobject_put(&dev->dev.kobj);
4647 }
4648 }
4649
4650 /**
4651 * dev_get_stats - get network device statistics
4652 * @dev: device to get statistics from
4653 *
4654 * Get network statistics from device. The device driver may provide
4655 * its own method by setting dev->netdev_ops->get_stats; otherwise
4656 * the internal statistics structure is used.
4657 */
4658 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4659 {
4660 const struct net_device_ops *ops = dev->netdev_ops;
4661
4662 if (ops->ndo_get_stats)
4663 return ops->ndo_get_stats(dev);
4664 else
4665 return &dev->stats;
4666 }
4667 EXPORT_SYMBOL(dev_get_stats);
4668
4669 static void netdev_init_one_queue(struct net_device *dev,
4670 struct netdev_queue *queue,
4671 void *_unused)
4672 {
4673 queue->dev = dev;
4674 }
4675
4676 static void netdev_init_queues(struct net_device *dev)
4677 {
4678 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4679 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4680 spin_lock_init(&dev->tx_global_lock);
4681 }
4682
4683 /**
4684 * alloc_netdev_mq - allocate network device
4685 * @sizeof_priv: size of private data to allocate space for
4686 * @name: device name format string
4687 * @setup: callback to initialize device
4688 * @queue_count: the number of subqueues to allocate
4689 *
4690 * Allocates a struct net_device with private data area for driver use
4691 * and performs basic initialization. Also allocates subquue structs
4692 * for each queue on the device at the end of the netdevice.
4693 */
4694 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4695 void (*setup)(struct net_device *), unsigned int queue_count)
4696 {
4697 struct netdev_queue *tx;
4698 struct net_device *dev;
4699 size_t alloc_size;
4700 void *p;
4701
4702 BUG_ON(strlen(name) >= sizeof(dev->name));
4703
4704 alloc_size = sizeof(struct net_device);
4705 if (sizeof_priv) {
4706 /* ensure 32-byte alignment of private area */
4707 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4708 alloc_size += sizeof_priv;
4709 }
4710 /* ensure 32-byte alignment of whole construct */
4711 alloc_size += NETDEV_ALIGN_CONST;
4712
4713 p = kzalloc(alloc_size, GFP_KERNEL);
4714 if (!p) {
4715 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4716 return NULL;
4717 }
4718
4719 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4720 if (!tx) {
4721 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4722 "tx qdiscs.\n");
4723 kfree(p);
4724 return NULL;
4725 }
4726
4727 dev = (struct net_device *)
4728 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4729 dev->padded = (char *)dev - (char *)p;
4730 dev_net_set(dev, &init_net);
4731
4732 dev->_tx = tx;
4733 dev->num_tx_queues = queue_count;
4734 dev->real_num_tx_queues = queue_count;
4735
4736 dev->gso_max_size = GSO_MAX_SIZE;
4737
4738 netdev_init_queues(dev);
4739
4740 INIT_LIST_HEAD(&dev->napi_list);
4741 setup(dev);
4742 strcpy(dev->name, name);
4743 return dev;
4744 }
4745 EXPORT_SYMBOL(alloc_netdev_mq);
4746
4747 /**
4748 * free_netdev - free network device
4749 * @dev: device
4750 *
4751 * This function does the last stage of destroying an allocated device
4752 * interface. The reference to the device object is released.
4753 * If this is the last reference then it will be freed.
4754 */
4755 void free_netdev(struct net_device *dev)
4756 {
4757 struct napi_struct *p, *n;
4758
4759 release_net(dev_net(dev));
4760
4761 kfree(dev->_tx);
4762
4763 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4764 netif_napi_del(p);
4765
4766 /* Compatibility with error handling in drivers */
4767 if (dev->reg_state == NETREG_UNINITIALIZED) {
4768 kfree((char *)dev - dev->padded);
4769 return;
4770 }
4771
4772 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4773 dev->reg_state = NETREG_RELEASED;
4774
4775 /* will free via device release */
4776 put_device(&dev->dev);
4777 }
4778
4779 /**
4780 * synchronize_net - Synchronize with packet receive processing
4781 *
4782 * Wait for packets currently being received to be done.
4783 * Does not block later packets from starting.
4784 */
4785 void synchronize_net(void)
4786 {
4787 might_sleep();
4788 synchronize_rcu();
4789 }
4790
4791 /**
4792 * unregister_netdevice - remove device from the kernel
4793 * @dev: device
4794 *
4795 * This function shuts down a device interface and removes it
4796 * from the kernel tables.
4797 *
4798 * Callers must hold the rtnl semaphore. You may want
4799 * unregister_netdev() instead of this.
4800 */
4801
4802 void unregister_netdevice(struct net_device *dev)
4803 {
4804 ASSERT_RTNL();
4805
4806 rollback_registered(dev);
4807 /* Finish processing unregister after unlock */
4808 net_set_todo(dev);
4809 }
4810
4811 /**
4812 * unregister_netdev - remove device from the kernel
4813 * @dev: device
4814 *
4815 * This function shuts down a device interface and removes it
4816 * from the kernel tables.
4817 *
4818 * This is just a wrapper for unregister_netdevice that takes
4819 * the rtnl semaphore. In general you want to use this and not
4820 * unregister_netdevice.
4821 */
4822 void unregister_netdev(struct net_device *dev)
4823 {
4824 rtnl_lock();
4825 unregister_netdevice(dev);
4826 rtnl_unlock();
4827 }
4828
4829 EXPORT_SYMBOL(unregister_netdev);
4830
4831 /**
4832 * dev_change_net_namespace - move device to different nethost namespace
4833 * @dev: device
4834 * @net: network namespace
4835 * @pat: If not NULL name pattern to try if the current device name
4836 * is already taken in the destination network namespace.
4837 *
4838 * This function shuts down a device interface and moves it
4839 * to a new network namespace. On success 0 is returned, on
4840 * a failure a netagive errno code is returned.
4841 *
4842 * Callers must hold the rtnl semaphore.
4843 */
4844
4845 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4846 {
4847 char buf[IFNAMSIZ];
4848 const char *destname;
4849 int err;
4850
4851 ASSERT_RTNL();
4852
4853 /* Don't allow namespace local devices to be moved. */
4854 err = -EINVAL;
4855 if (dev->features & NETIF_F_NETNS_LOCAL)
4856 goto out;
4857
4858 #ifdef CONFIG_SYSFS
4859 /* Don't allow real devices to be moved when sysfs
4860 * is enabled.
4861 */
4862 err = -EINVAL;
4863 if (dev->dev.parent)
4864 goto out;
4865 #endif
4866
4867 /* Ensure the device has been registrered */
4868 err = -EINVAL;
4869 if (dev->reg_state != NETREG_REGISTERED)
4870 goto out;
4871
4872 /* Get out if there is nothing todo */
4873 err = 0;
4874 if (net_eq(dev_net(dev), net))
4875 goto out;
4876
4877 /* Pick the destination device name, and ensure
4878 * we can use it in the destination network namespace.
4879 */
4880 err = -EEXIST;
4881 destname = dev->name;
4882 if (__dev_get_by_name(net, destname)) {
4883 /* We get here if we can't use the current device name */
4884 if (!pat)
4885 goto out;
4886 if (!dev_valid_name(pat))
4887 goto out;
4888 if (strchr(pat, '%')) {
4889 if (__dev_alloc_name(net, pat, buf) < 0)
4890 goto out;
4891 destname = buf;
4892 } else
4893 destname = pat;
4894 if (__dev_get_by_name(net, destname))
4895 goto out;
4896 }
4897
4898 /*
4899 * And now a mini version of register_netdevice unregister_netdevice.
4900 */
4901
4902 /* If device is running close it first. */
4903 dev_close(dev);
4904
4905 /* And unlink it from device chain */
4906 err = -ENODEV;
4907 unlist_netdevice(dev);
4908
4909 synchronize_net();
4910
4911 /* Shutdown queueing discipline. */
4912 dev_shutdown(dev);
4913
4914 /* Notify protocols, that we are about to destroy
4915 this device. They should clean all the things.
4916 */
4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4918
4919 /*
4920 * Flush the unicast and multicast chains
4921 */
4922 dev_addr_discard(dev);
4923
4924 netdev_unregister_kobject(dev);
4925
4926 /* Actually switch the network namespace */
4927 dev_net_set(dev, net);
4928
4929 /* Assign the new device name */
4930 if (destname != dev->name)
4931 strcpy(dev->name, destname);
4932
4933 /* If there is an ifindex conflict assign a new one */
4934 if (__dev_get_by_index(net, dev->ifindex)) {
4935 int iflink = (dev->iflink == dev->ifindex);
4936 dev->ifindex = dev_new_index(net);
4937 if (iflink)
4938 dev->iflink = dev->ifindex;
4939 }
4940
4941 /* Fixup kobjects */
4942 err = netdev_register_kobject(dev);
4943 WARN_ON(err);
4944
4945 /* Add the device back in the hashes */
4946 list_netdevice(dev);
4947
4948 /* Notify protocols, that a new device appeared. */
4949 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4950
4951 synchronize_net();
4952 err = 0;
4953 out:
4954 return err;
4955 }
4956
4957 static int dev_cpu_callback(struct notifier_block *nfb,
4958 unsigned long action,
4959 void *ocpu)
4960 {
4961 struct sk_buff **list_skb;
4962 struct Qdisc **list_net;
4963 struct sk_buff *skb;
4964 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4965 struct softnet_data *sd, *oldsd;
4966
4967 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4968 return NOTIFY_OK;
4969
4970 local_irq_disable();
4971 cpu = smp_processor_id();
4972 sd = &per_cpu(softnet_data, cpu);
4973 oldsd = &per_cpu(softnet_data, oldcpu);
4974
4975 /* Find end of our completion_queue. */
4976 list_skb = &sd->completion_queue;
4977 while (*list_skb)
4978 list_skb = &(*list_skb)->next;
4979 /* Append completion queue from offline CPU. */
4980 *list_skb = oldsd->completion_queue;
4981 oldsd->completion_queue = NULL;
4982
4983 /* Find end of our output_queue. */
4984 list_net = &sd->output_queue;
4985 while (*list_net)
4986 list_net = &(*list_net)->next_sched;
4987 /* Append output queue from offline CPU. */
4988 *list_net = oldsd->output_queue;
4989 oldsd->output_queue = NULL;
4990
4991 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4992 local_irq_enable();
4993
4994 /* Process offline CPU's input_pkt_queue */
4995 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4996 netif_rx(skb);
4997
4998 return NOTIFY_OK;
4999 }
5000
5001
5002 /**
5003 * netdev_increment_features - increment feature set by one
5004 * @all: current feature set
5005 * @one: new feature set
5006 * @mask: mask feature set
5007 *
5008 * Computes a new feature set after adding a device with feature set
5009 * @one to the master device with current feature set @all. Will not
5010 * enable anything that is off in @mask. Returns the new feature set.
5011 */
5012 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5013 unsigned long mask)
5014 {
5015 /* If device needs checksumming, downgrade to it. */
5016 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5017 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5018 else if (mask & NETIF_F_ALL_CSUM) {
5019 /* If one device supports v4/v6 checksumming, set for all. */
5020 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5021 !(all & NETIF_F_GEN_CSUM)) {
5022 all &= ~NETIF_F_ALL_CSUM;
5023 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5024 }
5025
5026 /* If one device supports hw checksumming, set for all. */
5027 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5028 all &= ~NETIF_F_ALL_CSUM;
5029 all |= NETIF_F_HW_CSUM;
5030 }
5031 }
5032
5033 one |= NETIF_F_ALL_CSUM;
5034
5035 one |= all & NETIF_F_ONE_FOR_ALL;
5036 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5037 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5038
5039 return all;
5040 }
5041 EXPORT_SYMBOL(netdev_increment_features);
5042
5043 static struct hlist_head *netdev_create_hash(void)
5044 {
5045 int i;
5046 struct hlist_head *hash;
5047
5048 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5049 if (hash != NULL)
5050 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5051 INIT_HLIST_HEAD(&hash[i]);
5052
5053 return hash;
5054 }
5055
5056 /* Initialize per network namespace state */
5057 static int __net_init netdev_init(struct net *net)
5058 {
5059 INIT_LIST_HEAD(&net->dev_base_head);
5060
5061 net->dev_name_head = netdev_create_hash();
5062 if (net->dev_name_head == NULL)
5063 goto err_name;
5064
5065 net->dev_index_head = netdev_create_hash();
5066 if (net->dev_index_head == NULL)
5067 goto err_idx;
5068
5069 return 0;
5070
5071 err_idx:
5072 kfree(net->dev_name_head);
5073 err_name:
5074 return -ENOMEM;
5075 }
5076
5077 /**
5078 * netdev_drivername - network driver for the device
5079 * @dev: network device
5080 * @buffer: buffer for resulting name
5081 * @len: size of buffer
5082 *
5083 * Determine network driver for device.
5084 */
5085 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5086 {
5087 const struct device_driver *driver;
5088 const struct device *parent;
5089
5090 if (len <= 0 || !buffer)
5091 return buffer;
5092 buffer[0] = 0;
5093
5094 parent = dev->dev.parent;
5095
5096 if (!parent)
5097 return buffer;
5098
5099 driver = parent->driver;
5100 if (driver && driver->name)
5101 strlcpy(buffer, driver->name, len);
5102 return buffer;
5103 }
5104
5105 static void __net_exit netdev_exit(struct net *net)
5106 {
5107 kfree(net->dev_name_head);
5108 kfree(net->dev_index_head);
5109 }
5110
5111 static struct pernet_operations __net_initdata netdev_net_ops = {
5112 .init = netdev_init,
5113 .exit = netdev_exit,
5114 };
5115
5116 static void __net_exit default_device_exit(struct net *net)
5117 {
5118 struct net_device *dev;
5119 /*
5120 * Push all migratable of the network devices back to the
5121 * initial network namespace
5122 */
5123 rtnl_lock();
5124 restart:
5125 for_each_netdev(net, dev) {
5126 int err;
5127 char fb_name[IFNAMSIZ];
5128
5129 /* Ignore unmoveable devices (i.e. loopback) */
5130 if (dev->features & NETIF_F_NETNS_LOCAL)
5131 continue;
5132
5133 /* Delete virtual devices */
5134 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5135 dev->rtnl_link_ops->dellink(dev);
5136 goto restart;
5137 }
5138
5139 /* Push remaing network devices to init_net */
5140 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5141 err = dev_change_net_namespace(dev, &init_net, fb_name);
5142 if (err) {
5143 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5144 __func__, dev->name, err);
5145 BUG();
5146 }
5147 goto restart;
5148 }
5149 rtnl_unlock();
5150 }
5151
5152 static struct pernet_operations __net_initdata default_device_ops = {
5153 .exit = default_device_exit,
5154 };
5155
5156 /*
5157 * Initialize the DEV module. At boot time this walks the device list and
5158 * unhooks any devices that fail to initialise (normally hardware not
5159 * present) and leaves us with a valid list of present and active devices.
5160 *
5161 */
5162
5163 /*
5164 * This is called single threaded during boot, so no need
5165 * to take the rtnl semaphore.
5166 */
5167 static int __init net_dev_init(void)
5168 {
5169 int i, rc = -ENOMEM;
5170
5171 BUG_ON(!dev_boot_phase);
5172
5173 if (dev_proc_init())
5174 goto out;
5175
5176 if (netdev_kobject_init())
5177 goto out;
5178
5179 INIT_LIST_HEAD(&ptype_all);
5180 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5181 INIT_LIST_HEAD(&ptype_base[i]);
5182
5183 if (register_pernet_subsys(&netdev_net_ops))
5184 goto out;
5185
5186 /*
5187 * Initialise the packet receive queues.
5188 */
5189
5190 for_each_possible_cpu(i) {
5191 struct softnet_data *queue;
5192
5193 queue = &per_cpu(softnet_data, i);
5194 skb_queue_head_init(&queue->input_pkt_queue);
5195 queue->completion_queue = NULL;
5196 INIT_LIST_HEAD(&queue->poll_list);
5197
5198 queue->backlog.poll = process_backlog;
5199 queue->backlog.weight = weight_p;
5200 queue->backlog.gro_list = NULL;
5201 }
5202
5203 dev_boot_phase = 0;
5204
5205 /* The loopback device is special if any other network devices
5206 * is present in a network namespace the loopback device must
5207 * be present. Since we now dynamically allocate and free the
5208 * loopback device ensure this invariant is maintained by
5209 * keeping the loopback device as the first device on the
5210 * list of network devices. Ensuring the loopback devices
5211 * is the first device that appears and the last network device
5212 * that disappears.
5213 */
5214 if (register_pernet_device(&loopback_net_ops))
5215 goto out;
5216
5217 if (register_pernet_device(&default_device_ops))
5218 goto out;
5219
5220 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5221 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5222
5223 hotcpu_notifier(dev_cpu_callback, 0);
5224 dst_init();
5225 dev_mcast_init();
5226 rc = 0;
5227 out:
5228 return rc;
5229 }
5230
5231 subsys_initcall(net_dev_init);
5232
5233 EXPORT_SYMBOL(__dev_get_by_index);
5234 EXPORT_SYMBOL(__dev_get_by_name);
5235 EXPORT_SYMBOL(__dev_remove_pack);
5236 EXPORT_SYMBOL(dev_valid_name);
5237 EXPORT_SYMBOL(dev_add_pack);
5238 EXPORT_SYMBOL(dev_alloc_name);
5239 EXPORT_SYMBOL(dev_close);
5240 EXPORT_SYMBOL(dev_get_by_flags);
5241 EXPORT_SYMBOL(dev_get_by_index);
5242 EXPORT_SYMBOL(dev_get_by_name);
5243 EXPORT_SYMBOL(dev_open);
5244 EXPORT_SYMBOL(dev_queue_xmit);
5245 EXPORT_SYMBOL(dev_remove_pack);
5246 EXPORT_SYMBOL(dev_set_allmulti);
5247 EXPORT_SYMBOL(dev_set_promiscuity);
5248 EXPORT_SYMBOL(dev_change_flags);
5249 EXPORT_SYMBOL(dev_set_mtu);
5250 EXPORT_SYMBOL(dev_set_mac_address);
5251 EXPORT_SYMBOL(free_netdev);
5252 EXPORT_SYMBOL(netdev_boot_setup_check);
5253 EXPORT_SYMBOL(netdev_set_master);
5254 EXPORT_SYMBOL(netdev_state_change);
5255 EXPORT_SYMBOL(netif_receive_skb);
5256 EXPORT_SYMBOL(netif_rx);
5257 EXPORT_SYMBOL(register_gifconf);
5258 EXPORT_SYMBOL(register_netdevice);
5259 EXPORT_SYMBOL(register_netdevice_notifier);
5260 EXPORT_SYMBOL(skb_checksum_help);
5261 EXPORT_SYMBOL(synchronize_net);
5262 EXPORT_SYMBOL(unregister_netdevice);
5263 EXPORT_SYMBOL(unregister_netdevice_notifier);
5264 EXPORT_SYMBOL(net_enable_timestamp);
5265 EXPORT_SYMBOL(net_disable_timestamp);
5266 EXPORT_SYMBOL(dev_get_flags);
5267
5268 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5269 EXPORT_SYMBOL(br_handle_frame_hook);
5270 EXPORT_SYMBOL(br_fdb_get_hook);
5271 EXPORT_SYMBOL(br_fdb_put_hook);
5272 #endif
5273
5274 EXPORT_SYMBOL(dev_load);
5275
5276 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.14585 seconds and 5 git commands to generate.