net: introduce and use netdev_features_t for device features sets
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
138 #include <linux/ppp_defs.h>
139 #include <linux/net_tstamp.h>
140 #include <linux/jump_label.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 /*
151 * The list of packet types we will receive (as opposed to discard)
152 * and the routines to invoke.
153 *
154 * Why 16. Because with 16 the only overlap we get on a hash of the
155 * low nibble of the protocol value is RARP/SNAP/X.25.
156 *
157 * NOTE: That is no longer true with the addition of VLAN tags. Not
158 * sure which should go first, but I bet it won't make much
159 * difference if we are running VLANs. The good news is that
160 * this protocol won't be in the list unless compiled in, so
161 * the average user (w/out VLANs) will not be adversely affected.
162 * --BLG
163 *
164 * 0800 IP
165 * 8100 802.1Q VLAN
166 * 0001 802.3
167 * 0002 AX.25
168 * 0004 802.2
169 * 8035 RARP
170 * 0005 SNAP
171 * 0805 X.25
172 * 0806 ARP
173 * 8137 IPX
174 * 0009 Localtalk
175 * 86DD IPv6
176 */
177
178 #define PTYPE_HASH_SIZE (16)
179 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
180
181 static DEFINE_SPINLOCK(ptype_lock);
182 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
183 static struct list_head ptype_all __read_mostly; /* Taps */
184
185 /*
186 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
187 * semaphore.
188 *
189 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
190 *
191 * Writers must hold the rtnl semaphore while they loop through the
192 * dev_base_head list, and hold dev_base_lock for writing when they do the
193 * actual updates. This allows pure readers to access the list even
194 * while a writer is preparing to update it.
195 *
196 * To put it another way, dev_base_lock is held for writing only to
197 * protect against pure readers; the rtnl semaphore provides the
198 * protection against other writers.
199 *
200 * See, for example usages, register_netdevice() and
201 * unregister_netdevice(), which must be called with the rtnl
202 * semaphore held.
203 */
204 DEFINE_RWLOCK(dev_base_lock);
205 EXPORT_SYMBOL(dev_base_lock);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 while (++net->dev_base_seq == 0);
210 }
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 /* Device list insertion */
238 static int list_netdevice(struct net_device *dev)
239 {
240 struct net *net = dev_net(dev);
241
242 ASSERT_RTNL();
243
244 write_lock_bh(&dev_base_lock);
245 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
246 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
247 hlist_add_head_rcu(&dev->index_hlist,
248 dev_index_hash(net, dev->ifindex));
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(net);
252
253 return 0;
254 }
255
256 /* Device list removal
257 * caller must respect a RCU grace period before freeing/reusing dev
258 */
259 static void unlist_netdevice(struct net_device *dev)
260 {
261 ASSERT_RTNL();
262
263 /* Unlink dev from the device chain */
264 write_lock_bh(&dev_base_lock);
265 list_del_rcu(&dev->dev_list);
266 hlist_del_rcu(&dev->name_hlist);
267 hlist_del_rcu(&dev->index_hlist);
268 write_unlock_bh(&dev_base_lock);
269
270 dev_base_seq_inc(dev_net(dev));
271 }
272
273 /*
274 * Our notifier list
275 */
276
277 static RAW_NOTIFIER_HEAD(netdev_chain);
278
279 /*
280 * Device drivers call our routines to queue packets here. We empty the
281 * queue in the local softnet handler.
282 */
283
284 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
285 EXPORT_PER_CPU_SYMBOL(softnet_data);
286
287 #ifdef CONFIG_LOCKDEP
288 /*
289 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
290 * according to dev->type
291 */
292 static const unsigned short netdev_lock_type[] =
293 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
294 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
295 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
296 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
297 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
298 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
299 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
300 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
301 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
302 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
303 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
304 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
305 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
306 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
307 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
308 ARPHRD_VOID, ARPHRD_NONE};
309
310 static const char *const netdev_lock_name[] =
311 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
312 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
313 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
314 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
315 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
316 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
317 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
318 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
319 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
320 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
321 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
322 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
323 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
324 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
325 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
326 "_xmit_VOID", "_xmit_NONE"};
327
328 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
329 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
330
331 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
332 {
333 int i;
334
335 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
336 if (netdev_lock_type[i] == dev_type)
337 return i;
338 /* the last key is used by default */
339 return ARRAY_SIZE(netdev_lock_type) - 1;
340 }
341
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 int i;
346
347 i = netdev_lock_pos(dev_type);
348 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
349 netdev_lock_name[i]);
350 }
351
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 int i;
355
356 i = netdev_lock_pos(dev->type);
357 lockdep_set_class_and_name(&dev->addr_list_lock,
358 &netdev_addr_lock_key[i],
359 netdev_lock_name[i]);
360 }
361 #else
362 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
363 unsigned short dev_type)
364 {
365 }
366 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 {
368 }
369 #endif
370
371 /*******************************************************************************
372
373 Protocol management and registration routines
374
375 *******************************************************************************/
376
377 /*
378 * Add a protocol ID to the list. Now that the input handler is
379 * smarter we can dispense with all the messy stuff that used to be
380 * here.
381 *
382 * BEWARE!!! Protocol handlers, mangling input packets,
383 * MUST BE last in hash buckets and checking protocol handlers
384 * MUST start from promiscuous ptype_all chain in net_bh.
385 * It is true now, do not change it.
386 * Explanation follows: if protocol handler, mangling packet, will
387 * be the first on list, it is not able to sense, that packet
388 * is cloned and should be copied-on-write, so that it will
389 * change it and subsequent readers will get broken packet.
390 * --ANK (980803)
391 */
392
393 static inline struct list_head *ptype_head(const struct packet_type *pt)
394 {
395 if (pt->type == htons(ETH_P_ALL))
396 return &ptype_all;
397 else
398 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 }
400
401 /**
402 * dev_add_pack - add packet handler
403 * @pt: packet type declaration
404 *
405 * Add a protocol handler to the networking stack. The passed &packet_type
406 * is linked into kernel lists and may not be freed until it has been
407 * removed from the kernel lists.
408 *
409 * This call does not sleep therefore it can not
410 * guarantee all CPU's that are in middle of receiving packets
411 * will see the new packet type (until the next received packet).
412 */
413
414 void dev_add_pack(struct packet_type *pt)
415 {
416 struct list_head *head = ptype_head(pt);
417
418 spin_lock(&ptype_lock);
419 list_add_rcu(&pt->list, head);
420 spin_unlock(&ptype_lock);
421 }
422 EXPORT_SYMBOL(dev_add_pack);
423
424 /**
425 * __dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * The packet type might still be in use by receivers
434 * and must not be freed until after all the CPU's have gone
435 * through a quiescent state.
436 */
437 void __dev_remove_pack(struct packet_type *pt)
438 {
439 struct list_head *head = ptype_head(pt);
440 struct packet_type *pt1;
441
442 spin_lock(&ptype_lock);
443
444 list_for_each_entry(pt1, head, list) {
445 if (pt == pt1) {
446 list_del_rcu(&pt->list);
447 goto out;
448 }
449 }
450
451 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
452 out:
453 spin_unlock(&ptype_lock);
454 }
455 EXPORT_SYMBOL(__dev_remove_pack);
456
457 /**
458 * dev_remove_pack - remove packet handler
459 * @pt: packet type declaration
460 *
461 * Remove a protocol handler that was previously added to the kernel
462 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
463 * from the kernel lists and can be freed or reused once this function
464 * returns.
465 *
466 * This call sleeps to guarantee that no CPU is looking at the packet
467 * type after return.
468 */
469 void dev_remove_pack(struct packet_type *pt)
470 {
471 __dev_remove_pack(pt);
472
473 synchronize_net();
474 }
475 EXPORT_SYMBOL(dev_remove_pack);
476
477 /******************************************************************************
478
479 Device Boot-time Settings Routines
480
481 *******************************************************************************/
482
483 /* Boot time configuration table */
484 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
485
486 /**
487 * netdev_boot_setup_add - add new setup entry
488 * @name: name of the device
489 * @map: configured settings for the device
490 *
491 * Adds new setup entry to the dev_boot_setup list. The function
492 * returns 0 on error and 1 on success. This is a generic routine to
493 * all netdevices.
494 */
495 static int netdev_boot_setup_add(char *name, struct ifmap *map)
496 {
497 struct netdev_boot_setup *s;
498 int i;
499
500 s = dev_boot_setup;
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
503 memset(s[i].name, 0, sizeof(s[i].name));
504 strlcpy(s[i].name, name, IFNAMSIZ);
505 memcpy(&s[i].map, map, sizeof(s[i].map));
506 break;
507 }
508 }
509
510 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
511 }
512
513 /**
514 * netdev_boot_setup_check - check boot time settings
515 * @dev: the netdevice
516 *
517 * Check boot time settings for the device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found, 1 if they are.
521 */
522 int netdev_boot_setup_check(struct net_device *dev)
523 {
524 struct netdev_boot_setup *s = dev_boot_setup;
525 int i;
526
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
528 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
529 !strcmp(dev->name, s[i].name)) {
530 dev->irq = s[i].map.irq;
531 dev->base_addr = s[i].map.base_addr;
532 dev->mem_start = s[i].map.mem_start;
533 dev->mem_end = s[i].map.mem_end;
534 return 1;
535 }
536 }
537 return 0;
538 }
539 EXPORT_SYMBOL(netdev_boot_setup_check);
540
541
542 /**
543 * netdev_boot_base - get address from boot time settings
544 * @prefix: prefix for network device
545 * @unit: id for network device
546 *
547 * Check boot time settings for the base address of device.
548 * The found settings are set for the device to be used
549 * later in the device probing.
550 * Returns 0 if no settings found.
551 */
552 unsigned long netdev_boot_base(const char *prefix, int unit)
553 {
554 const struct netdev_boot_setup *s = dev_boot_setup;
555 char name[IFNAMSIZ];
556 int i;
557
558 sprintf(name, "%s%d", prefix, unit);
559
560 /*
561 * If device already registered then return base of 1
562 * to indicate not to probe for this interface
563 */
564 if (__dev_get_by_name(&init_net, name))
565 return 1;
566
567 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
568 if (!strcmp(name, s[i].name))
569 return s[i].map.base_addr;
570 return 0;
571 }
572
573 /*
574 * Saves at boot time configured settings for any netdevice.
575 */
576 int __init netdev_boot_setup(char *str)
577 {
578 int ints[5];
579 struct ifmap map;
580
581 str = get_options(str, ARRAY_SIZE(ints), ints);
582 if (!str || !*str)
583 return 0;
584
585 /* Save settings */
586 memset(&map, 0, sizeof(map));
587 if (ints[0] > 0)
588 map.irq = ints[1];
589 if (ints[0] > 1)
590 map.base_addr = ints[2];
591 if (ints[0] > 2)
592 map.mem_start = ints[3];
593 if (ints[0] > 3)
594 map.mem_end = ints[4];
595
596 /* Add new entry to the list */
597 return netdev_boot_setup_add(str, &map);
598 }
599
600 __setup("netdev=", netdev_boot_setup);
601
602 /*******************************************************************************
603
604 Device Interface Subroutines
605
606 *******************************************************************************/
607
608 /**
609 * __dev_get_by_name - find a device by its name
610 * @net: the applicable net namespace
611 * @name: name to find
612 *
613 * Find an interface by name. Must be called under RTNL semaphore
614 * or @dev_base_lock. If the name is found a pointer to the device
615 * is returned. If the name is not found then %NULL is returned. The
616 * reference counters are not incremented so the caller must be
617 * careful with locks.
618 */
619
620 struct net_device *__dev_get_by_name(struct net *net, const char *name)
621 {
622 struct hlist_node *p;
623 struct net_device *dev;
624 struct hlist_head *head = dev_name_hash(net, name);
625
626 hlist_for_each_entry(dev, p, head, name_hlist)
627 if (!strncmp(dev->name, name, IFNAMSIZ))
628 return dev;
629
630 return NULL;
631 }
632 EXPORT_SYMBOL(__dev_get_by_name);
633
634 /**
635 * dev_get_by_name_rcu - find a device by its name
636 * @net: the applicable net namespace
637 * @name: name to find
638 *
639 * Find an interface by name.
640 * If the name is found a pointer to the device is returned.
641 * If the name is not found then %NULL is returned.
642 * The reference counters are not incremented so the caller must be
643 * careful with locks. The caller must hold RCU lock.
644 */
645
646 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
647 {
648 struct hlist_node *p;
649 struct net_device *dev;
650 struct hlist_head *head = dev_name_hash(net, name);
651
652 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
653 if (!strncmp(dev->name, name, IFNAMSIZ))
654 return dev;
655
656 return NULL;
657 }
658 EXPORT_SYMBOL(dev_get_by_name_rcu);
659
660 /**
661 * dev_get_by_name - find a device by its name
662 * @net: the applicable net namespace
663 * @name: name to find
664 *
665 * Find an interface by name. This can be called from any
666 * context and does its own locking. The returned handle has
667 * the usage count incremented and the caller must use dev_put() to
668 * release it when it is no longer needed. %NULL is returned if no
669 * matching device is found.
670 */
671
672 struct net_device *dev_get_by_name(struct net *net, const char *name)
673 {
674 struct net_device *dev;
675
676 rcu_read_lock();
677 dev = dev_get_by_name_rcu(net, name);
678 if (dev)
679 dev_hold(dev);
680 rcu_read_unlock();
681 return dev;
682 }
683 EXPORT_SYMBOL(dev_get_by_name);
684
685 /**
686 * __dev_get_by_index - find a device by its ifindex
687 * @net: the applicable net namespace
688 * @ifindex: index of device
689 *
690 * Search for an interface by index. Returns %NULL if the device
691 * is not found or a pointer to the device. The device has not
692 * had its reference counter increased so the caller must be careful
693 * about locking. The caller must hold either the RTNL semaphore
694 * or @dev_base_lock.
695 */
696
697 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
698 {
699 struct hlist_node *p;
700 struct net_device *dev;
701 struct hlist_head *head = dev_index_hash(net, ifindex);
702
703 hlist_for_each_entry(dev, p, head, index_hlist)
704 if (dev->ifindex == ifindex)
705 return dev;
706
707 return NULL;
708 }
709 EXPORT_SYMBOL(__dev_get_by_index);
710
711 /**
712 * dev_get_by_index_rcu - find a device by its ifindex
713 * @net: the applicable net namespace
714 * @ifindex: index of device
715 *
716 * Search for an interface by index. Returns %NULL if the device
717 * is not found or a pointer to the device. The device has not
718 * had its reference counter increased so the caller must be careful
719 * about locking. The caller must hold RCU lock.
720 */
721
722 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
723 {
724 struct hlist_node *p;
725 struct net_device *dev;
726 struct hlist_head *head = dev_index_hash(net, ifindex);
727
728 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
729 if (dev->ifindex == ifindex)
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(dev_get_by_index_rcu);
735
736
737 /**
738 * dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns NULL if the device
743 * is not found or a pointer to the device. The device returned has
744 * had a reference added and the pointer is safe until the user calls
745 * dev_put to indicate they have finished with it.
746 */
747
748 struct net_device *dev_get_by_index(struct net *net, int ifindex)
749 {
750 struct net_device *dev;
751
752 rcu_read_lock();
753 dev = dev_get_by_index_rcu(net, ifindex);
754 if (dev)
755 dev_hold(dev);
756 rcu_read_unlock();
757 return dev;
758 }
759 EXPORT_SYMBOL(dev_get_by_index);
760
761 /**
762 * dev_getbyhwaddr_rcu - find a device by its hardware address
763 * @net: the applicable net namespace
764 * @type: media type of device
765 * @ha: hardware address
766 *
767 * Search for an interface by MAC address. Returns NULL if the device
768 * is not found or a pointer to the device.
769 * The caller must hold RCU or RTNL.
770 * The returned device has not had its ref count increased
771 * and the caller must therefore be careful about locking
772 *
773 */
774
775 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
776 const char *ha)
777 {
778 struct net_device *dev;
779
780 for_each_netdev_rcu(net, dev)
781 if (dev->type == type &&
782 !memcmp(dev->dev_addr, ha, dev->addr_len))
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
788
789 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev;
792
793 ASSERT_RTNL();
794 for_each_netdev(net, dev)
795 if (dev->type == type)
796 return dev;
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
801
802 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
803 {
804 struct net_device *dev, *ret = NULL;
805
806 rcu_read_lock();
807 for_each_netdev_rcu(net, dev)
808 if (dev->type == type) {
809 dev_hold(dev);
810 ret = dev;
811 break;
812 }
813 rcu_read_unlock();
814 return ret;
815 }
816 EXPORT_SYMBOL(dev_getfirstbyhwtype);
817
818 /**
819 * dev_get_by_flags_rcu - find any device with given flags
820 * @net: the applicable net namespace
821 * @if_flags: IFF_* values
822 * @mask: bitmask of bits in if_flags to check
823 *
824 * Search for any interface with the given flags. Returns NULL if a device
825 * is not found or a pointer to the device. Must be called inside
826 * rcu_read_lock(), and result refcount is unchanged.
827 */
828
829 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
830 unsigned short mask)
831 {
832 struct net_device *dev, *ret;
833
834 ret = NULL;
835 for_each_netdev_rcu(net, dev) {
836 if (((dev->flags ^ if_flags) & mask) == 0) {
837 ret = dev;
838 break;
839 }
840 }
841 return ret;
842 }
843 EXPORT_SYMBOL(dev_get_by_flags_rcu);
844
845 /**
846 * dev_valid_name - check if name is okay for network device
847 * @name: name string
848 *
849 * Network device names need to be valid file names to
850 * to allow sysfs to work. We also disallow any kind of
851 * whitespace.
852 */
853 int dev_valid_name(const char *name)
854 {
855 if (*name == '\0')
856 return 0;
857 if (strlen(name) >= IFNAMSIZ)
858 return 0;
859 if (!strcmp(name, ".") || !strcmp(name, ".."))
860 return 0;
861
862 while (*name) {
863 if (*name == '/' || isspace(*name))
864 return 0;
865 name++;
866 }
867 return 1;
868 }
869 EXPORT_SYMBOL(dev_valid_name);
870
871 /**
872 * __dev_alloc_name - allocate a name for a device
873 * @net: network namespace to allocate the device name in
874 * @name: name format string
875 * @buf: scratch buffer and result name string
876 *
877 * Passed a format string - eg "lt%d" it will try and find a suitable
878 * id. It scans list of devices to build up a free map, then chooses
879 * the first empty slot. The caller must hold the dev_base or rtnl lock
880 * while allocating the name and adding the device in order to avoid
881 * duplicates.
882 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
883 * Returns the number of the unit assigned or a negative errno code.
884 */
885
886 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
887 {
888 int i = 0;
889 const char *p;
890 const int max_netdevices = 8*PAGE_SIZE;
891 unsigned long *inuse;
892 struct net_device *d;
893
894 p = strnchr(name, IFNAMSIZ-1, '%');
895 if (p) {
896 /*
897 * Verify the string as this thing may have come from
898 * the user. There must be either one "%d" and no other "%"
899 * characters.
900 */
901 if (p[1] != 'd' || strchr(p + 2, '%'))
902 return -EINVAL;
903
904 /* Use one page as a bit array of possible slots */
905 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 if (!inuse)
907 return -ENOMEM;
908
909 for_each_netdev(net, d) {
910 if (!sscanf(d->name, name, &i))
911 continue;
912 if (i < 0 || i >= max_netdevices)
913 continue;
914
915 /* avoid cases where sscanf is not exact inverse of printf */
916 snprintf(buf, IFNAMSIZ, name, i);
917 if (!strncmp(buf, d->name, IFNAMSIZ))
918 set_bit(i, inuse);
919 }
920
921 i = find_first_zero_bit(inuse, max_netdevices);
922 free_page((unsigned long) inuse);
923 }
924
925 if (buf != name)
926 snprintf(buf, IFNAMSIZ, name, i);
927 if (!__dev_get_by_name(net, buf))
928 return i;
929
930 /* It is possible to run out of possible slots
931 * when the name is long and there isn't enough space left
932 * for the digits, or if all bits are used.
933 */
934 return -ENFILE;
935 }
936
937 /**
938 * dev_alloc_name - allocate a name for a device
939 * @dev: device
940 * @name: name format string
941 *
942 * Passed a format string - eg "lt%d" it will try and find a suitable
943 * id. It scans list of devices to build up a free map, then chooses
944 * the first empty slot. The caller must hold the dev_base or rtnl lock
945 * while allocating the name and adding the device in order to avoid
946 * duplicates.
947 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
948 * Returns the number of the unit assigned or a negative errno code.
949 */
950
951 int dev_alloc_name(struct net_device *dev, const char *name)
952 {
953 char buf[IFNAMSIZ];
954 struct net *net;
955 int ret;
956
957 BUG_ON(!dev_net(dev));
958 net = dev_net(dev);
959 ret = __dev_alloc_name(net, name, buf);
960 if (ret >= 0)
961 strlcpy(dev->name, buf, IFNAMSIZ);
962 return ret;
963 }
964 EXPORT_SYMBOL(dev_alloc_name);
965
966 static int dev_get_valid_name(struct net_device *dev, const char *name)
967 {
968 struct net *net;
969
970 BUG_ON(!dev_net(dev));
971 net = dev_net(dev);
972
973 if (!dev_valid_name(name))
974 return -EINVAL;
975
976 if (strchr(name, '%'))
977 return dev_alloc_name(dev, name);
978 else if (__dev_get_by_name(net, name))
979 return -EEXIST;
980 else if (dev->name != name)
981 strlcpy(dev->name, name, IFNAMSIZ);
982
983 return 0;
984 }
985
986 /**
987 * dev_change_name - change name of a device
988 * @dev: device
989 * @newname: name (or format string) must be at least IFNAMSIZ
990 *
991 * Change name of a device, can pass format strings "eth%d".
992 * for wildcarding.
993 */
994 int dev_change_name(struct net_device *dev, const char *newname)
995 {
996 char oldname[IFNAMSIZ];
997 int err = 0;
998 int ret;
999 struct net *net;
1000
1001 ASSERT_RTNL();
1002 BUG_ON(!dev_net(dev));
1003
1004 net = dev_net(dev);
1005 if (dev->flags & IFF_UP)
1006 return -EBUSY;
1007
1008 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1009 return 0;
1010
1011 memcpy(oldname, dev->name, IFNAMSIZ);
1012
1013 err = dev_get_valid_name(dev, newname);
1014 if (err < 0)
1015 return err;
1016
1017 rollback:
1018 ret = device_rename(&dev->dev, dev->name);
1019 if (ret) {
1020 memcpy(dev->name, oldname, IFNAMSIZ);
1021 return ret;
1022 }
1023
1024 write_lock_bh(&dev_base_lock);
1025 hlist_del_rcu(&dev->name_hlist);
1026 write_unlock_bh(&dev_base_lock);
1027
1028 synchronize_rcu();
1029
1030 write_lock_bh(&dev_base_lock);
1031 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1032 write_unlock_bh(&dev_base_lock);
1033
1034 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1035 ret = notifier_to_errno(ret);
1036
1037 if (ret) {
1038 /* err >= 0 after dev_alloc_name() or stores the first errno */
1039 if (err >= 0) {
1040 err = ret;
1041 memcpy(dev->name, oldname, IFNAMSIZ);
1042 goto rollback;
1043 } else {
1044 printk(KERN_ERR
1045 "%s: name change rollback failed: %d.\n",
1046 dev->name, ret);
1047 }
1048 }
1049
1050 return err;
1051 }
1052
1053 /**
1054 * dev_set_alias - change ifalias of a device
1055 * @dev: device
1056 * @alias: name up to IFALIASZ
1057 * @len: limit of bytes to copy from info
1058 *
1059 * Set ifalias for a device,
1060 */
1061 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1062 {
1063 ASSERT_RTNL();
1064
1065 if (len >= IFALIASZ)
1066 return -EINVAL;
1067
1068 if (!len) {
1069 if (dev->ifalias) {
1070 kfree(dev->ifalias);
1071 dev->ifalias = NULL;
1072 }
1073 return 0;
1074 }
1075
1076 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1077 if (!dev->ifalias)
1078 return -ENOMEM;
1079
1080 strlcpy(dev->ifalias, alias, len+1);
1081 return len;
1082 }
1083
1084
1085 /**
1086 * netdev_features_change - device changes features
1087 * @dev: device to cause notification
1088 *
1089 * Called to indicate a device has changed features.
1090 */
1091 void netdev_features_change(struct net_device *dev)
1092 {
1093 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1094 }
1095 EXPORT_SYMBOL(netdev_features_change);
1096
1097 /**
1098 * netdev_state_change - device changes state
1099 * @dev: device to cause notification
1100 *
1101 * Called to indicate a device has changed state. This function calls
1102 * the notifier chains for netdev_chain and sends a NEWLINK message
1103 * to the routing socket.
1104 */
1105 void netdev_state_change(struct net_device *dev)
1106 {
1107 if (dev->flags & IFF_UP) {
1108 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1109 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1110 }
1111 }
1112 EXPORT_SYMBOL(netdev_state_change);
1113
1114 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1115 {
1116 return call_netdevice_notifiers(event, dev);
1117 }
1118 EXPORT_SYMBOL(netdev_bonding_change);
1119
1120 /**
1121 * dev_load - load a network module
1122 * @net: the applicable net namespace
1123 * @name: name of interface
1124 *
1125 * If a network interface is not present and the process has suitable
1126 * privileges this function loads the module. If module loading is not
1127 * available in this kernel then it becomes a nop.
1128 */
1129
1130 void dev_load(struct net *net, const char *name)
1131 {
1132 struct net_device *dev;
1133 int no_module;
1134
1135 rcu_read_lock();
1136 dev = dev_get_by_name_rcu(net, name);
1137 rcu_read_unlock();
1138
1139 no_module = !dev;
1140 if (no_module && capable(CAP_NET_ADMIN))
1141 no_module = request_module("netdev-%s", name);
1142 if (no_module && capable(CAP_SYS_MODULE)) {
1143 if (!request_module("%s", name))
1144 pr_err("Loading kernel module for a network device "
1145 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1146 "instead\n", name);
1147 }
1148 }
1149 EXPORT_SYMBOL(dev_load);
1150
1151 static int __dev_open(struct net_device *dev)
1152 {
1153 const struct net_device_ops *ops = dev->netdev_ops;
1154 int ret;
1155
1156 ASSERT_RTNL();
1157
1158 if (!netif_device_present(dev))
1159 return -ENODEV;
1160
1161 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1162 ret = notifier_to_errno(ret);
1163 if (ret)
1164 return ret;
1165
1166 set_bit(__LINK_STATE_START, &dev->state);
1167
1168 if (ops->ndo_validate_addr)
1169 ret = ops->ndo_validate_addr(dev);
1170
1171 if (!ret && ops->ndo_open)
1172 ret = ops->ndo_open(dev);
1173
1174 if (ret)
1175 clear_bit(__LINK_STATE_START, &dev->state);
1176 else {
1177 dev->flags |= IFF_UP;
1178 net_dmaengine_get();
1179 dev_set_rx_mode(dev);
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 if (dev->flags & IFF_UP)
1203 return 0;
1204
1205 ret = __dev_open(dev);
1206 if (ret < 0)
1207 return ret;
1208
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1211
1212 return ret;
1213 }
1214 EXPORT_SYMBOL(dev_open);
1215
1216 static int __dev_close_many(struct list_head *head)
1217 {
1218 struct net_device *dev;
1219
1220 ASSERT_RTNL();
1221 might_sleep();
1222
1223 list_for_each_entry(dev, head, unreg_list) {
1224 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225
1226 clear_bit(__LINK_STATE_START, &dev->state);
1227
1228 /* Synchronize to scheduled poll. We cannot touch poll list, it
1229 * can be even on different cpu. So just clear netif_running().
1230 *
1231 * dev->stop() will invoke napi_disable() on all of it's
1232 * napi_struct instances on this device.
1233 */
1234 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 }
1236
1237 dev_deactivate_many(head);
1238
1239 list_for_each_entry(dev, head, unreg_list) {
1240 const struct net_device_ops *ops = dev->netdev_ops;
1241
1242 /*
1243 * Call the device specific close. This cannot fail.
1244 * Only if device is UP
1245 *
1246 * We allow it to be called even after a DETACH hot-plug
1247 * event.
1248 */
1249 if (ops->ndo_stop)
1250 ops->ndo_stop(dev);
1251
1252 dev->flags &= ~IFF_UP;
1253 net_dmaengine_put();
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int __dev_close(struct net_device *dev)
1260 {
1261 int retval;
1262 LIST_HEAD(single);
1263
1264 list_add(&dev->unreg_list, &single);
1265 retval = __dev_close_many(&single);
1266 list_del(&single);
1267 return retval;
1268 }
1269
1270 static int dev_close_many(struct list_head *head)
1271 {
1272 struct net_device *dev, *tmp;
1273 LIST_HEAD(tmp_list);
1274
1275 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1276 if (!(dev->flags & IFF_UP))
1277 list_move(&dev->unreg_list, &tmp_list);
1278
1279 __dev_close_many(head);
1280
1281 list_for_each_entry(dev, head, unreg_list) {
1282 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1283 call_netdevice_notifiers(NETDEV_DOWN, dev);
1284 }
1285
1286 /* rollback_registered_many needs the complete original list */
1287 list_splice(&tmp_list, head);
1288 return 0;
1289 }
1290
1291 /**
1292 * dev_close - shutdown an interface.
1293 * @dev: device to shutdown
1294 *
1295 * This function moves an active device into down state. A
1296 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1297 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1298 * chain.
1299 */
1300 int dev_close(struct net_device *dev)
1301 {
1302 if (dev->flags & IFF_UP) {
1303 LIST_HEAD(single);
1304
1305 list_add(&dev->unreg_list, &single);
1306 dev_close_many(&single);
1307 list_del(&single);
1308 }
1309 return 0;
1310 }
1311 EXPORT_SYMBOL(dev_close);
1312
1313
1314 /**
1315 * dev_disable_lro - disable Large Receive Offload on a device
1316 * @dev: device
1317 *
1318 * Disable Large Receive Offload (LRO) on a net device. Must be
1319 * called under RTNL. This is needed if received packets may be
1320 * forwarded to another interface.
1321 */
1322 void dev_disable_lro(struct net_device *dev)
1323 {
1324 /*
1325 * If we're trying to disable lro on a vlan device
1326 * use the underlying physical device instead
1327 */
1328 if (is_vlan_dev(dev))
1329 dev = vlan_dev_real_dev(dev);
1330
1331 dev->wanted_features &= ~NETIF_F_LRO;
1332 netdev_update_features(dev);
1333
1334 if (unlikely(dev->features & NETIF_F_LRO))
1335 netdev_WARN(dev, "failed to disable LRO!\n");
1336 }
1337 EXPORT_SYMBOL(dev_disable_lro);
1338
1339
1340 static int dev_boot_phase = 1;
1341
1342 /**
1343 * register_netdevice_notifier - register a network notifier block
1344 * @nb: notifier
1345 *
1346 * Register a notifier to be called when network device events occur.
1347 * The notifier passed is linked into the kernel structures and must
1348 * not be reused until it has been unregistered. A negative errno code
1349 * is returned on a failure.
1350 *
1351 * When registered all registration and up events are replayed
1352 * to the new notifier to allow device to have a race free
1353 * view of the network device list.
1354 */
1355
1356 int register_netdevice_notifier(struct notifier_block *nb)
1357 {
1358 struct net_device *dev;
1359 struct net_device *last;
1360 struct net *net;
1361 int err;
1362
1363 rtnl_lock();
1364 err = raw_notifier_chain_register(&netdev_chain, nb);
1365 if (err)
1366 goto unlock;
1367 if (dev_boot_phase)
1368 goto unlock;
1369 for_each_net(net) {
1370 for_each_netdev(net, dev) {
1371 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1372 err = notifier_to_errno(err);
1373 if (err)
1374 goto rollback;
1375
1376 if (!(dev->flags & IFF_UP))
1377 continue;
1378
1379 nb->notifier_call(nb, NETDEV_UP, dev);
1380 }
1381 }
1382
1383 unlock:
1384 rtnl_unlock();
1385 return err;
1386
1387 rollback:
1388 last = dev;
1389 for_each_net(net) {
1390 for_each_netdev(net, dev) {
1391 if (dev == last)
1392 break;
1393
1394 if (dev->flags & IFF_UP) {
1395 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_DOWN, dev);
1397 }
1398 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1399 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1400 }
1401 }
1402
1403 raw_notifier_chain_unregister(&netdev_chain, nb);
1404 goto unlock;
1405 }
1406 EXPORT_SYMBOL(register_netdevice_notifier);
1407
1408 /**
1409 * unregister_netdevice_notifier - unregister a network notifier block
1410 * @nb: notifier
1411 *
1412 * Unregister a notifier previously registered by
1413 * register_netdevice_notifier(). The notifier is unlinked into the
1414 * kernel structures and may then be reused. A negative errno code
1415 * is returned on a failure.
1416 */
1417
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 int err;
1421
1422 rtnl_lock();
1423 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1424 rtnl_unlock();
1425 return err;
1426 }
1427 EXPORT_SYMBOL(unregister_netdevice_notifier);
1428
1429 /**
1430 * call_netdevice_notifiers - call all network notifier blocks
1431 * @val: value passed unmodified to notifier function
1432 * @dev: net_device pointer passed unmodified to notifier function
1433 *
1434 * Call all network notifier blocks. Parameters and return value
1435 * are as for raw_notifier_call_chain().
1436 */
1437
1438 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1439 {
1440 ASSERT_RTNL();
1441 return raw_notifier_call_chain(&netdev_chain, val, dev);
1442 }
1443 EXPORT_SYMBOL(call_netdevice_notifiers);
1444
1445 static struct jump_label_key netstamp_needed __read_mostly;
1446
1447 void net_enable_timestamp(void)
1448 {
1449 jump_label_inc(&netstamp_needed);
1450 }
1451 EXPORT_SYMBOL(net_enable_timestamp);
1452
1453 void net_disable_timestamp(void)
1454 {
1455 jump_label_dec(&netstamp_needed);
1456 }
1457 EXPORT_SYMBOL(net_disable_timestamp);
1458
1459 static inline void net_timestamp_set(struct sk_buff *skb)
1460 {
1461 skb->tstamp.tv64 = 0;
1462 if (static_branch(&netstamp_needed))
1463 __net_timestamp(skb);
1464 }
1465
1466 #define net_timestamp_check(COND, SKB) \
1467 if (static_branch(&netstamp_needed)) { \
1468 if ((COND) && !(SKB)->tstamp.tv64) \
1469 __net_timestamp(SKB); \
1470 } \
1471
1472 static int net_hwtstamp_validate(struct ifreq *ifr)
1473 {
1474 struct hwtstamp_config cfg;
1475 enum hwtstamp_tx_types tx_type;
1476 enum hwtstamp_rx_filters rx_filter;
1477 int tx_type_valid = 0;
1478 int rx_filter_valid = 0;
1479
1480 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1481 return -EFAULT;
1482
1483 if (cfg.flags) /* reserved for future extensions */
1484 return -EINVAL;
1485
1486 tx_type = cfg.tx_type;
1487 rx_filter = cfg.rx_filter;
1488
1489 switch (tx_type) {
1490 case HWTSTAMP_TX_OFF:
1491 case HWTSTAMP_TX_ON:
1492 case HWTSTAMP_TX_ONESTEP_SYNC:
1493 tx_type_valid = 1;
1494 break;
1495 }
1496
1497 switch (rx_filter) {
1498 case HWTSTAMP_FILTER_NONE:
1499 case HWTSTAMP_FILTER_ALL:
1500 case HWTSTAMP_FILTER_SOME:
1501 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1502 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1503 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1504 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1505 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1506 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1507 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1508 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1509 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1510 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1511 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1512 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1513 rx_filter_valid = 1;
1514 break;
1515 }
1516
1517 if (!tx_type_valid || !rx_filter_valid)
1518 return -ERANGE;
1519
1520 return 0;
1521 }
1522
1523 static inline bool is_skb_forwardable(struct net_device *dev,
1524 struct sk_buff *skb)
1525 {
1526 unsigned int len;
1527
1528 if (!(dev->flags & IFF_UP))
1529 return false;
1530
1531 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1532 if (skb->len <= len)
1533 return true;
1534
1535 /* if TSO is enabled, we don't care about the length as the packet
1536 * could be forwarded without being segmented before
1537 */
1538 if (skb_is_gso(skb))
1539 return true;
1540
1541 return false;
1542 }
1543
1544 /**
1545 * dev_forward_skb - loopback an skb to another netif
1546 *
1547 * @dev: destination network device
1548 * @skb: buffer to forward
1549 *
1550 * return values:
1551 * NET_RX_SUCCESS (no congestion)
1552 * NET_RX_DROP (packet was dropped, but freed)
1553 *
1554 * dev_forward_skb can be used for injecting an skb from the
1555 * start_xmit function of one device into the receive queue
1556 * of another device.
1557 *
1558 * The receiving device may be in another namespace, so
1559 * we have to clear all information in the skb that could
1560 * impact namespace isolation.
1561 */
1562 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1563 {
1564 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1565 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1566 atomic_long_inc(&dev->rx_dropped);
1567 kfree_skb(skb);
1568 return NET_RX_DROP;
1569 }
1570 }
1571
1572 skb_orphan(skb);
1573 nf_reset(skb);
1574
1575 if (unlikely(!is_skb_forwardable(dev, skb))) {
1576 atomic_long_inc(&dev->rx_dropped);
1577 kfree_skb(skb);
1578 return NET_RX_DROP;
1579 }
1580 skb_set_dev(skb, dev);
1581 skb->tstamp.tv64 = 0;
1582 skb->pkt_type = PACKET_HOST;
1583 skb->protocol = eth_type_trans(skb, dev);
1584 return netif_rx(skb);
1585 }
1586 EXPORT_SYMBOL_GPL(dev_forward_skb);
1587
1588 static inline int deliver_skb(struct sk_buff *skb,
1589 struct packet_type *pt_prev,
1590 struct net_device *orig_dev)
1591 {
1592 atomic_inc(&skb->users);
1593 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1594 }
1595
1596 /*
1597 * Support routine. Sends outgoing frames to any network
1598 * taps currently in use.
1599 */
1600
1601 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1602 {
1603 struct packet_type *ptype;
1604 struct sk_buff *skb2 = NULL;
1605 struct packet_type *pt_prev = NULL;
1606
1607 rcu_read_lock();
1608 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1609 /* Never send packets back to the socket
1610 * they originated from - MvS (miquels@drinkel.ow.org)
1611 */
1612 if ((ptype->dev == dev || !ptype->dev) &&
1613 (ptype->af_packet_priv == NULL ||
1614 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1615 if (pt_prev) {
1616 deliver_skb(skb2, pt_prev, skb->dev);
1617 pt_prev = ptype;
1618 continue;
1619 }
1620
1621 skb2 = skb_clone(skb, GFP_ATOMIC);
1622 if (!skb2)
1623 break;
1624
1625 net_timestamp_set(skb2);
1626
1627 /* skb->nh should be correctly
1628 set by sender, so that the second statement is
1629 just protection against buggy protocols.
1630 */
1631 skb_reset_mac_header(skb2);
1632
1633 if (skb_network_header(skb2) < skb2->data ||
1634 skb2->network_header > skb2->tail) {
1635 if (net_ratelimit())
1636 printk(KERN_CRIT "protocol %04x is "
1637 "buggy, dev %s\n",
1638 ntohs(skb2->protocol),
1639 dev->name);
1640 skb_reset_network_header(skb2);
1641 }
1642
1643 skb2->transport_header = skb2->network_header;
1644 skb2->pkt_type = PACKET_OUTGOING;
1645 pt_prev = ptype;
1646 }
1647 }
1648 if (pt_prev)
1649 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1650 rcu_read_unlock();
1651 }
1652
1653 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1654 * @dev: Network device
1655 * @txq: number of queues available
1656 *
1657 * If real_num_tx_queues is changed the tc mappings may no longer be
1658 * valid. To resolve this verify the tc mapping remains valid and if
1659 * not NULL the mapping. With no priorities mapping to this
1660 * offset/count pair it will no longer be used. In the worst case TC0
1661 * is invalid nothing can be done so disable priority mappings. If is
1662 * expected that drivers will fix this mapping if they can before
1663 * calling netif_set_real_num_tx_queues.
1664 */
1665 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1666 {
1667 int i;
1668 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1669
1670 /* If TC0 is invalidated disable TC mapping */
1671 if (tc->offset + tc->count > txq) {
1672 pr_warning("Number of in use tx queues changed "
1673 "invalidating tc mappings. Priority "
1674 "traffic classification disabled!\n");
1675 dev->num_tc = 0;
1676 return;
1677 }
1678
1679 /* Invalidated prio to tc mappings set to TC0 */
1680 for (i = 1; i < TC_BITMASK + 1; i++) {
1681 int q = netdev_get_prio_tc_map(dev, i);
1682
1683 tc = &dev->tc_to_txq[q];
1684 if (tc->offset + tc->count > txq) {
1685 pr_warning("Number of in use tx queues "
1686 "changed. Priority %i to tc "
1687 "mapping %i is no longer valid "
1688 "setting map to 0\n",
1689 i, q);
1690 netdev_set_prio_tc_map(dev, i, 0);
1691 }
1692 }
1693 }
1694
1695 /*
1696 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1697 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1698 */
1699 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1700 {
1701 int rc;
1702
1703 if (txq < 1 || txq > dev->num_tx_queues)
1704 return -EINVAL;
1705
1706 if (dev->reg_state == NETREG_REGISTERED ||
1707 dev->reg_state == NETREG_UNREGISTERING) {
1708 ASSERT_RTNL();
1709
1710 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1711 txq);
1712 if (rc)
1713 return rc;
1714
1715 if (dev->num_tc)
1716 netif_setup_tc(dev, txq);
1717
1718 if (txq < dev->real_num_tx_queues)
1719 qdisc_reset_all_tx_gt(dev, txq);
1720 }
1721
1722 dev->real_num_tx_queues = txq;
1723 return 0;
1724 }
1725 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1726
1727 #ifdef CONFIG_RPS
1728 /**
1729 * netif_set_real_num_rx_queues - set actual number of RX queues used
1730 * @dev: Network device
1731 * @rxq: Actual number of RX queues
1732 *
1733 * This must be called either with the rtnl_lock held or before
1734 * registration of the net device. Returns 0 on success, or a
1735 * negative error code. If called before registration, it always
1736 * succeeds.
1737 */
1738 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1739 {
1740 int rc;
1741
1742 if (rxq < 1 || rxq > dev->num_rx_queues)
1743 return -EINVAL;
1744
1745 if (dev->reg_state == NETREG_REGISTERED) {
1746 ASSERT_RTNL();
1747
1748 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1749 rxq);
1750 if (rc)
1751 return rc;
1752 }
1753
1754 dev->real_num_rx_queues = rxq;
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1758 #endif
1759
1760 static inline void __netif_reschedule(struct Qdisc *q)
1761 {
1762 struct softnet_data *sd;
1763 unsigned long flags;
1764
1765 local_irq_save(flags);
1766 sd = &__get_cpu_var(softnet_data);
1767 q->next_sched = NULL;
1768 *sd->output_queue_tailp = q;
1769 sd->output_queue_tailp = &q->next_sched;
1770 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1771 local_irq_restore(flags);
1772 }
1773
1774 void __netif_schedule(struct Qdisc *q)
1775 {
1776 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1777 __netif_reschedule(q);
1778 }
1779 EXPORT_SYMBOL(__netif_schedule);
1780
1781 void dev_kfree_skb_irq(struct sk_buff *skb)
1782 {
1783 if (atomic_dec_and_test(&skb->users)) {
1784 struct softnet_data *sd;
1785 unsigned long flags;
1786
1787 local_irq_save(flags);
1788 sd = &__get_cpu_var(softnet_data);
1789 skb->next = sd->completion_queue;
1790 sd->completion_queue = skb;
1791 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1792 local_irq_restore(flags);
1793 }
1794 }
1795 EXPORT_SYMBOL(dev_kfree_skb_irq);
1796
1797 void dev_kfree_skb_any(struct sk_buff *skb)
1798 {
1799 if (in_irq() || irqs_disabled())
1800 dev_kfree_skb_irq(skb);
1801 else
1802 dev_kfree_skb(skb);
1803 }
1804 EXPORT_SYMBOL(dev_kfree_skb_any);
1805
1806
1807 /**
1808 * netif_device_detach - mark device as removed
1809 * @dev: network device
1810 *
1811 * Mark device as removed from system and therefore no longer available.
1812 */
1813 void netif_device_detach(struct net_device *dev)
1814 {
1815 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1816 netif_running(dev)) {
1817 netif_tx_stop_all_queues(dev);
1818 }
1819 }
1820 EXPORT_SYMBOL(netif_device_detach);
1821
1822 /**
1823 * netif_device_attach - mark device as attached
1824 * @dev: network device
1825 *
1826 * Mark device as attached from system and restart if needed.
1827 */
1828 void netif_device_attach(struct net_device *dev)
1829 {
1830 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1831 netif_running(dev)) {
1832 netif_tx_wake_all_queues(dev);
1833 __netdev_watchdog_up(dev);
1834 }
1835 }
1836 EXPORT_SYMBOL(netif_device_attach);
1837
1838 /**
1839 * skb_dev_set -- assign a new device to a buffer
1840 * @skb: buffer for the new device
1841 * @dev: network device
1842 *
1843 * If an skb is owned by a device already, we have to reset
1844 * all data private to the namespace a device belongs to
1845 * before assigning it a new device.
1846 */
1847 #ifdef CONFIG_NET_NS
1848 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1849 {
1850 skb_dst_drop(skb);
1851 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1852 secpath_reset(skb);
1853 nf_reset(skb);
1854 skb_init_secmark(skb);
1855 skb->mark = 0;
1856 skb->priority = 0;
1857 skb->nf_trace = 0;
1858 skb->ipvs_property = 0;
1859 #ifdef CONFIG_NET_SCHED
1860 skb->tc_index = 0;
1861 #endif
1862 }
1863 skb->dev = dev;
1864 }
1865 EXPORT_SYMBOL(skb_set_dev);
1866 #endif /* CONFIG_NET_NS */
1867
1868 /*
1869 * Invalidate hardware checksum when packet is to be mangled, and
1870 * complete checksum manually on outgoing path.
1871 */
1872 int skb_checksum_help(struct sk_buff *skb)
1873 {
1874 __wsum csum;
1875 int ret = 0, offset;
1876
1877 if (skb->ip_summed == CHECKSUM_COMPLETE)
1878 goto out_set_summed;
1879
1880 if (unlikely(skb_shinfo(skb)->gso_size)) {
1881 /* Let GSO fix up the checksum. */
1882 goto out_set_summed;
1883 }
1884
1885 offset = skb_checksum_start_offset(skb);
1886 BUG_ON(offset >= skb_headlen(skb));
1887 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1888
1889 offset += skb->csum_offset;
1890 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1891
1892 if (skb_cloned(skb) &&
1893 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1894 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1895 if (ret)
1896 goto out;
1897 }
1898
1899 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1900 out_set_summed:
1901 skb->ip_summed = CHECKSUM_NONE;
1902 out:
1903 return ret;
1904 }
1905 EXPORT_SYMBOL(skb_checksum_help);
1906
1907 /**
1908 * skb_gso_segment - Perform segmentation on skb.
1909 * @skb: buffer to segment
1910 * @features: features for the output path (see dev->features)
1911 *
1912 * This function segments the given skb and returns a list of segments.
1913 *
1914 * It may return NULL if the skb requires no segmentation. This is
1915 * only possible when GSO is used for verifying header integrity.
1916 */
1917 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1918 netdev_features_t features)
1919 {
1920 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1921 struct packet_type *ptype;
1922 __be16 type = skb->protocol;
1923 int vlan_depth = ETH_HLEN;
1924 int err;
1925
1926 while (type == htons(ETH_P_8021Q)) {
1927 struct vlan_hdr *vh;
1928
1929 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1930 return ERR_PTR(-EINVAL);
1931
1932 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1933 type = vh->h_vlan_encapsulated_proto;
1934 vlan_depth += VLAN_HLEN;
1935 }
1936
1937 skb_reset_mac_header(skb);
1938 skb->mac_len = skb->network_header - skb->mac_header;
1939 __skb_pull(skb, skb->mac_len);
1940
1941 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1942 struct net_device *dev = skb->dev;
1943 struct ethtool_drvinfo info = {};
1944
1945 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1946 dev->ethtool_ops->get_drvinfo(dev, &info);
1947
1948 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d ip_summed=%d\n",
1949 info.driver, dev ? &dev->features : NULL,
1950 skb->sk ? &skb->sk->sk_route_caps : NULL,
1951 skb->len, skb->data_len, skb->ip_summed);
1952
1953 if (skb_header_cloned(skb) &&
1954 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1955 return ERR_PTR(err);
1956 }
1957
1958 rcu_read_lock();
1959 list_for_each_entry_rcu(ptype,
1960 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1961 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1962 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1963 err = ptype->gso_send_check(skb);
1964 segs = ERR_PTR(err);
1965 if (err || skb_gso_ok(skb, features))
1966 break;
1967 __skb_push(skb, (skb->data -
1968 skb_network_header(skb)));
1969 }
1970 segs = ptype->gso_segment(skb, features);
1971 break;
1972 }
1973 }
1974 rcu_read_unlock();
1975
1976 __skb_push(skb, skb->data - skb_mac_header(skb));
1977
1978 return segs;
1979 }
1980 EXPORT_SYMBOL(skb_gso_segment);
1981
1982 /* Take action when hardware reception checksum errors are detected. */
1983 #ifdef CONFIG_BUG
1984 void netdev_rx_csum_fault(struct net_device *dev)
1985 {
1986 if (net_ratelimit()) {
1987 printk(KERN_ERR "%s: hw csum failure.\n",
1988 dev ? dev->name : "<unknown>");
1989 dump_stack();
1990 }
1991 }
1992 EXPORT_SYMBOL(netdev_rx_csum_fault);
1993 #endif
1994
1995 /* Actually, we should eliminate this check as soon as we know, that:
1996 * 1. IOMMU is present and allows to map all the memory.
1997 * 2. No high memory really exists on this machine.
1998 */
1999
2000 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2001 {
2002 #ifdef CONFIG_HIGHMEM
2003 int i;
2004 if (!(dev->features & NETIF_F_HIGHDMA)) {
2005 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2006 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2007 if (PageHighMem(skb_frag_page(frag)))
2008 return 1;
2009 }
2010 }
2011
2012 if (PCI_DMA_BUS_IS_PHYS) {
2013 struct device *pdev = dev->dev.parent;
2014
2015 if (!pdev)
2016 return 0;
2017 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2018 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2019 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2020 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2021 return 1;
2022 }
2023 }
2024 #endif
2025 return 0;
2026 }
2027
2028 struct dev_gso_cb {
2029 void (*destructor)(struct sk_buff *skb);
2030 };
2031
2032 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2033
2034 static void dev_gso_skb_destructor(struct sk_buff *skb)
2035 {
2036 struct dev_gso_cb *cb;
2037
2038 do {
2039 struct sk_buff *nskb = skb->next;
2040
2041 skb->next = nskb->next;
2042 nskb->next = NULL;
2043 kfree_skb(nskb);
2044 } while (skb->next);
2045
2046 cb = DEV_GSO_CB(skb);
2047 if (cb->destructor)
2048 cb->destructor(skb);
2049 }
2050
2051 /**
2052 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2053 * @skb: buffer to segment
2054 * @features: device features as applicable to this skb
2055 *
2056 * This function segments the given skb and stores the list of segments
2057 * in skb->next.
2058 */
2059 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2060 {
2061 struct sk_buff *segs;
2062
2063 segs = skb_gso_segment(skb, features);
2064
2065 /* Verifying header integrity only. */
2066 if (!segs)
2067 return 0;
2068
2069 if (IS_ERR(segs))
2070 return PTR_ERR(segs);
2071
2072 skb->next = segs;
2073 DEV_GSO_CB(skb)->destructor = skb->destructor;
2074 skb->destructor = dev_gso_skb_destructor;
2075
2076 return 0;
2077 }
2078
2079 /*
2080 * Try to orphan skb early, right before transmission by the device.
2081 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2082 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2083 */
2084 static inline void skb_orphan_try(struct sk_buff *skb)
2085 {
2086 struct sock *sk = skb->sk;
2087
2088 if (sk && !skb_shinfo(skb)->tx_flags) {
2089 /* skb_tx_hash() wont be able to get sk.
2090 * We copy sk_hash into skb->rxhash
2091 */
2092 if (!skb->rxhash)
2093 skb->rxhash = sk->sk_hash;
2094 skb_orphan(skb);
2095 }
2096 }
2097
2098 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2099 {
2100 return ((features & NETIF_F_GEN_CSUM) ||
2101 ((features & NETIF_F_V4_CSUM) &&
2102 protocol == htons(ETH_P_IP)) ||
2103 ((features & NETIF_F_V6_CSUM) &&
2104 protocol == htons(ETH_P_IPV6)) ||
2105 ((features & NETIF_F_FCOE_CRC) &&
2106 protocol == htons(ETH_P_FCOE)));
2107 }
2108
2109 static netdev_features_t harmonize_features(struct sk_buff *skb,
2110 __be16 protocol, netdev_features_t features)
2111 {
2112 if (!can_checksum_protocol(features, protocol)) {
2113 features &= ~NETIF_F_ALL_CSUM;
2114 features &= ~NETIF_F_SG;
2115 } else if (illegal_highdma(skb->dev, skb)) {
2116 features &= ~NETIF_F_SG;
2117 }
2118
2119 return features;
2120 }
2121
2122 netdev_features_t netif_skb_features(struct sk_buff *skb)
2123 {
2124 __be16 protocol = skb->protocol;
2125 netdev_features_t features = skb->dev->features;
2126
2127 if (protocol == htons(ETH_P_8021Q)) {
2128 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2129 protocol = veh->h_vlan_encapsulated_proto;
2130 } else if (!vlan_tx_tag_present(skb)) {
2131 return harmonize_features(skb, protocol, features);
2132 }
2133
2134 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2135
2136 if (protocol != htons(ETH_P_8021Q)) {
2137 return harmonize_features(skb, protocol, features);
2138 } else {
2139 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2140 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2141 return harmonize_features(skb, protocol, features);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_skb_features);
2145
2146 /*
2147 * Returns true if either:
2148 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2149 * 2. skb is fragmented and the device does not support SG, or if
2150 * at least one of fragments is in highmem and device does not
2151 * support DMA from it.
2152 */
2153 static inline int skb_needs_linearize(struct sk_buff *skb,
2154 int features)
2155 {
2156 return skb_is_nonlinear(skb) &&
2157 ((skb_has_frag_list(skb) &&
2158 !(features & NETIF_F_FRAGLIST)) ||
2159 (skb_shinfo(skb)->nr_frags &&
2160 !(features & NETIF_F_SG)));
2161 }
2162
2163 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2164 struct netdev_queue *txq)
2165 {
2166 const struct net_device_ops *ops = dev->netdev_ops;
2167 int rc = NETDEV_TX_OK;
2168 unsigned int skb_len;
2169
2170 if (likely(!skb->next)) {
2171 netdev_features_t features;
2172
2173 /*
2174 * If device doesn't need skb->dst, release it right now while
2175 * its hot in this cpu cache
2176 */
2177 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2178 skb_dst_drop(skb);
2179
2180 if (!list_empty(&ptype_all))
2181 dev_queue_xmit_nit(skb, dev);
2182
2183 skb_orphan_try(skb);
2184
2185 features = netif_skb_features(skb);
2186
2187 if (vlan_tx_tag_present(skb) &&
2188 !(features & NETIF_F_HW_VLAN_TX)) {
2189 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2190 if (unlikely(!skb))
2191 goto out;
2192
2193 skb->vlan_tci = 0;
2194 }
2195
2196 if (netif_needs_gso(skb, features)) {
2197 if (unlikely(dev_gso_segment(skb, features)))
2198 goto out_kfree_skb;
2199 if (skb->next)
2200 goto gso;
2201 } else {
2202 if (skb_needs_linearize(skb, features) &&
2203 __skb_linearize(skb))
2204 goto out_kfree_skb;
2205
2206 /* If packet is not checksummed and device does not
2207 * support checksumming for this protocol, complete
2208 * checksumming here.
2209 */
2210 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2211 skb_set_transport_header(skb,
2212 skb_checksum_start_offset(skb));
2213 if (!(features & NETIF_F_ALL_CSUM) &&
2214 skb_checksum_help(skb))
2215 goto out_kfree_skb;
2216 }
2217 }
2218
2219 skb_len = skb->len;
2220 rc = ops->ndo_start_xmit(skb, dev);
2221 trace_net_dev_xmit(skb, rc, dev, skb_len);
2222 if (rc == NETDEV_TX_OK)
2223 txq_trans_update(txq);
2224 return rc;
2225 }
2226
2227 gso:
2228 do {
2229 struct sk_buff *nskb = skb->next;
2230
2231 skb->next = nskb->next;
2232 nskb->next = NULL;
2233
2234 /*
2235 * If device doesn't need nskb->dst, release it right now while
2236 * its hot in this cpu cache
2237 */
2238 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2239 skb_dst_drop(nskb);
2240
2241 skb_len = nskb->len;
2242 rc = ops->ndo_start_xmit(nskb, dev);
2243 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2244 if (unlikely(rc != NETDEV_TX_OK)) {
2245 if (rc & ~NETDEV_TX_MASK)
2246 goto out_kfree_gso_skb;
2247 nskb->next = skb->next;
2248 skb->next = nskb;
2249 return rc;
2250 }
2251 txq_trans_update(txq);
2252 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2253 return NETDEV_TX_BUSY;
2254 } while (skb->next);
2255
2256 out_kfree_gso_skb:
2257 if (likely(skb->next == NULL))
2258 skb->destructor = DEV_GSO_CB(skb)->destructor;
2259 out_kfree_skb:
2260 kfree_skb(skb);
2261 out:
2262 return rc;
2263 }
2264
2265 static u32 hashrnd __read_mostly;
2266
2267 /*
2268 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2269 * to be used as a distribution range.
2270 */
2271 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2272 unsigned int num_tx_queues)
2273 {
2274 u32 hash;
2275 u16 qoffset = 0;
2276 u16 qcount = num_tx_queues;
2277
2278 if (skb_rx_queue_recorded(skb)) {
2279 hash = skb_get_rx_queue(skb);
2280 while (unlikely(hash >= num_tx_queues))
2281 hash -= num_tx_queues;
2282 return hash;
2283 }
2284
2285 if (dev->num_tc) {
2286 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2287 qoffset = dev->tc_to_txq[tc].offset;
2288 qcount = dev->tc_to_txq[tc].count;
2289 }
2290
2291 if (skb->sk && skb->sk->sk_hash)
2292 hash = skb->sk->sk_hash;
2293 else
2294 hash = (__force u16) skb->protocol ^ skb->rxhash;
2295 hash = jhash_1word(hash, hashrnd);
2296
2297 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2298 }
2299 EXPORT_SYMBOL(__skb_tx_hash);
2300
2301 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2302 {
2303 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2304 if (net_ratelimit()) {
2305 pr_warning("%s selects TX queue %d, but "
2306 "real number of TX queues is %d\n",
2307 dev->name, queue_index, dev->real_num_tx_queues);
2308 }
2309 return 0;
2310 }
2311 return queue_index;
2312 }
2313
2314 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2315 {
2316 #ifdef CONFIG_XPS
2317 struct xps_dev_maps *dev_maps;
2318 struct xps_map *map;
2319 int queue_index = -1;
2320
2321 rcu_read_lock();
2322 dev_maps = rcu_dereference(dev->xps_maps);
2323 if (dev_maps) {
2324 map = rcu_dereference(
2325 dev_maps->cpu_map[raw_smp_processor_id()]);
2326 if (map) {
2327 if (map->len == 1)
2328 queue_index = map->queues[0];
2329 else {
2330 u32 hash;
2331 if (skb->sk && skb->sk->sk_hash)
2332 hash = skb->sk->sk_hash;
2333 else
2334 hash = (__force u16) skb->protocol ^
2335 skb->rxhash;
2336 hash = jhash_1word(hash, hashrnd);
2337 queue_index = map->queues[
2338 ((u64)hash * map->len) >> 32];
2339 }
2340 if (unlikely(queue_index >= dev->real_num_tx_queues))
2341 queue_index = -1;
2342 }
2343 }
2344 rcu_read_unlock();
2345
2346 return queue_index;
2347 #else
2348 return -1;
2349 #endif
2350 }
2351
2352 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2353 struct sk_buff *skb)
2354 {
2355 int queue_index;
2356 const struct net_device_ops *ops = dev->netdev_ops;
2357
2358 if (dev->real_num_tx_queues == 1)
2359 queue_index = 0;
2360 else if (ops->ndo_select_queue) {
2361 queue_index = ops->ndo_select_queue(dev, skb);
2362 queue_index = dev_cap_txqueue(dev, queue_index);
2363 } else {
2364 struct sock *sk = skb->sk;
2365 queue_index = sk_tx_queue_get(sk);
2366
2367 if (queue_index < 0 || skb->ooo_okay ||
2368 queue_index >= dev->real_num_tx_queues) {
2369 int old_index = queue_index;
2370
2371 queue_index = get_xps_queue(dev, skb);
2372 if (queue_index < 0)
2373 queue_index = skb_tx_hash(dev, skb);
2374
2375 if (queue_index != old_index && sk) {
2376 struct dst_entry *dst =
2377 rcu_dereference_check(sk->sk_dst_cache, 1);
2378
2379 if (dst && skb_dst(skb) == dst)
2380 sk_tx_queue_set(sk, queue_index);
2381 }
2382 }
2383 }
2384
2385 skb_set_queue_mapping(skb, queue_index);
2386 return netdev_get_tx_queue(dev, queue_index);
2387 }
2388
2389 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2390 struct net_device *dev,
2391 struct netdev_queue *txq)
2392 {
2393 spinlock_t *root_lock = qdisc_lock(q);
2394 bool contended;
2395 int rc;
2396
2397 qdisc_skb_cb(skb)->pkt_len = skb->len;
2398 qdisc_calculate_pkt_len(skb, q);
2399 /*
2400 * Heuristic to force contended enqueues to serialize on a
2401 * separate lock before trying to get qdisc main lock.
2402 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2403 * and dequeue packets faster.
2404 */
2405 contended = qdisc_is_running(q);
2406 if (unlikely(contended))
2407 spin_lock(&q->busylock);
2408
2409 spin_lock(root_lock);
2410 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2411 kfree_skb(skb);
2412 rc = NET_XMIT_DROP;
2413 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2414 qdisc_run_begin(q)) {
2415 /*
2416 * This is a work-conserving queue; there are no old skbs
2417 * waiting to be sent out; and the qdisc is not running -
2418 * xmit the skb directly.
2419 */
2420 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2421 skb_dst_force(skb);
2422
2423 qdisc_bstats_update(q, skb);
2424
2425 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2426 if (unlikely(contended)) {
2427 spin_unlock(&q->busylock);
2428 contended = false;
2429 }
2430 __qdisc_run(q);
2431 } else
2432 qdisc_run_end(q);
2433
2434 rc = NET_XMIT_SUCCESS;
2435 } else {
2436 skb_dst_force(skb);
2437 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2438 if (qdisc_run_begin(q)) {
2439 if (unlikely(contended)) {
2440 spin_unlock(&q->busylock);
2441 contended = false;
2442 }
2443 __qdisc_run(q);
2444 }
2445 }
2446 spin_unlock(root_lock);
2447 if (unlikely(contended))
2448 spin_unlock(&q->busylock);
2449 return rc;
2450 }
2451
2452 static DEFINE_PER_CPU(int, xmit_recursion);
2453 #define RECURSION_LIMIT 10
2454
2455 /**
2456 * dev_queue_xmit - transmit a buffer
2457 * @skb: buffer to transmit
2458 *
2459 * Queue a buffer for transmission to a network device. The caller must
2460 * have set the device and priority and built the buffer before calling
2461 * this function. The function can be called from an interrupt.
2462 *
2463 * A negative errno code is returned on a failure. A success does not
2464 * guarantee the frame will be transmitted as it may be dropped due
2465 * to congestion or traffic shaping.
2466 *
2467 * -----------------------------------------------------------------------------------
2468 * I notice this method can also return errors from the queue disciplines,
2469 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2470 * be positive.
2471 *
2472 * Regardless of the return value, the skb is consumed, so it is currently
2473 * difficult to retry a send to this method. (You can bump the ref count
2474 * before sending to hold a reference for retry if you are careful.)
2475 *
2476 * When calling this method, interrupts MUST be enabled. This is because
2477 * the BH enable code must have IRQs enabled so that it will not deadlock.
2478 * --BLG
2479 */
2480 int dev_queue_xmit(struct sk_buff *skb)
2481 {
2482 struct net_device *dev = skb->dev;
2483 struct netdev_queue *txq;
2484 struct Qdisc *q;
2485 int rc = -ENOMEM;
2486
2487 /* Disable soft irqs for various locks below. Also
2488 * stops preemption for RCU.
2489 */
2490 rcu_read_lock_bh();
2491
2492 txq = dev_pick_tx(dev, skb);
2493 q = rcu_dereference_bh(txq->qdisc);
2494
2495 #ifdef CONFIG_NET_CLS_ACT
2496 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2497 #endif
2498 trace_net_dev_queue(skb);
2499 if (q->enqueue) {
2500 rc = __dev_xmit_skb(skb, q, dev, txq);
2501 goto out;
2502 }
2503
2504 /* The device has no queue. Common case for software devices:
2505 loopback, all the sorts of tunnels...
2506
2507 Really, it is unlikely that netif_tx_lock protection is necessary
2508 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2509 counters.)
2510 However, it is possible, that they rely on protection
2511 made by us here.
2512
2513 Check this and shot the lock. It is not prone from deadlocks.
2514 Either shot noqueue qdisc, it is even simpler 8)
2515 */
2516 if (dev->flags & IFF_UP) {
2517 int cpu = smp_processor_id(); /* ok because BHs are off */
2518
2519 if (txq->xmit_lock_owner != cpu) {
2520
2521 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2522 goto recursion_alert;
2523
2524 HARD_TX_LOCK(dev, txq, cpu);
2525
2526 if (!netif_tx_queue_stopped(txq)) {
2527 __this_cpu_inc(xmit_recursion);
2528 rc = dev_hard_start_xmit(skb, dev, txq);
2529 __this_cpu_dec(xmit_recursion);
2530 if (dev_xmit_complete(rc)) {
2531 HARD_TX_UNLOCK(dev, txq);
2532 goto out;
2533 }
2534 }
2535 HARD_TX_UNLOCK(dev, txq);
2536 if (net_ratelimit())
2537 printk(KERN_CRIT "Virtual device %s asks to "
2538 "queue packet!\n", dev->name);
2539 } else {
2540 /* Recursion is detected! It is possible,
2541 * unfortunately
2542 */
2543 recursion_alert:
2544 if (net_ratelimit())
2545 printk(KERN_CRIT "Dead loop on virtual device "
2546 "%s, fix it urgently!\n", dev->name);
2547 }
2548 }
2549
2550 rc = -ENETDOWN;
2551 rcu_read_unlock_bh();
2552
2553 kfree_skb(skb);
2554 return rc;
2555 out:
2556 rcu_read_unlock_bh();
2557 return rc;
2558 }
2559 EXPORT_SYMBOL(dev_queue_xmit);
2560
2561
2562 /*=======================================================================
2563 Receiver routines
2564 =======================================================================*/
2565
2566 int netdev_max_backlog __read_mostly = 1000;
2567 int netdev_tstamp_prequeue __read_mostly = 1;
2568 int netdev_budget __read_mostly = 300;
2569 int weight_p __read_mostly = 64; /* old backlog weight */
2570
2571 /* Called with irq disabled */
2572 static inline void ____napi_schedule(struct softnet_data *sd,
2573 struct napi_struct *napi)
2574 {
2575 list_add_tail(&napi->poll_list, &sd->poll_list);
2576 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2577 }
2578
2579 /*
2580 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2581 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2582 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2583 * if hash is a canonical 4-tuple hash over transport ports.
2584 */
2585 void __skb_get_rxhash(struct sk_buff *skb)
2586 {
2587 int nhoff, hash = 0, poff;
2588 const struct ipv6hdr *ip6;
2589 const struct iphdr *ip;
2590 const struct vlan_hdr *vlan;
2591 u8 ip_proto;
2592 u32 addr1, addr2;
2593 u16 proto;
2594 union {
2595 u32 v32;
2596 u16 v16[2];
2597 } ports;
2598
2599 nhoff = skb_network_offset(skb);
2600 proto = skb->protocol;
2601
2602 again:
2603 switch (proto) {
2604 case __constant_htons(ETH_P_IP):
2605 ip:
2606 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2607 goto done;
2608
2609 ip = (const struct iphdr *) (skb->data + nhoff);
2610 if (ip_is_fragment(ip))
2611 ip_proto = 0;
2612 else
2613 ip_proto = ip->protocol;
2614 addr1 = (__force u32) ip->saddr;
2615 addr2 = (__force u32) ip->daddr;
2616 nhoff += ip->ihl * 4;
2617 break;
2618 case __constant_htons(ETH_P_IPV6):
2619 ipv6:
2620 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2621 goto done;
2622
2623 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2624 ip_proto = ip6->nexthdr;
2625 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2626 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2627 nhoff += 40;
2628 break;
2629 case __constant_htons(ETH_P_8021Q):
2630 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2631 goto done;
2632 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2633 proto = vlan->h_vlan_encapsulated_proto;
2634 nhoff += sizeof(*vlan);
2635 goto again;
2636 case __constant_htons(ETH_P_PPP_SES):
2637 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2638 goto done;
2639 proto = *((__be16 *) (skb->data + nhoff +
2640 sizeof(struct pppoe_hdr)));
2641 nhoff += PPPOE_SES_HLEN;
2642 switch (proto) {
2643 case __constant_htons(PPP_IP):
2644 goto ip;
2645 case __constant_htons(PPP_IPV6):
2646 goto ipv6;
2647 default:
2648 goto done;
2649 }
2650 default:
2651 goto done;
2652 }
2653
2654 switch (ip_proto) {
2655 case IPPROTO_GRE:
2656 if (pskb_may_pull(skb, nhoff + 16)) {
2657 u8 *h = skb->data + nhoff;
2658 __be16 flags = *(__be16 *)h;
2659
2660 /*
2661 * Only look inside GRE if version zero and no
2662 * routing
2663 */
2664 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2665 proto = *(__be16 *)(h + 2);
2666 nhoff += 4;
2667 if (flags & GRE_CSUM)
2668 nhoff += 4;
2669 if (flags & GRE_KEY)
2670 nhoff += 4;
2671 if (flags & GRE_SEQ)
2672 nhoff += 4;
2673 goto again;
2674 }
2675 }
2676 break;
2677 case IPPROTO_IPIP:
2678 goto again;
2679 default:
2680 break;
2681 }
2682
2683 ports.v32 = 0;
2684 poff = proto_ports_offset(ip_proto);
2685 if (poff >= 0) {
2686 nhoff += poff;
2687 if (pskb_may_pull(skb, nhoff + 4)) {
2688 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2689 if (ports.v16[1] < ports.v16[0])
2690 swap(ports.v16[0], ports.v16[1]);
2691 skb->l4_rxhash = 1;
2692 }
2693 }
2694
2695 /* get a consistent hash (same value on both flow directions) */
2696 if (addr2 < addr1)
2697 swap(addr1, addr2);
2698
2699 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2700 if (!hash)
2701 hash = 1;
2702
2703 done:
2704 skb->rxhash = hash;
2705 }
2706 EXPORT_SYMBOL(__skb_get_rxhash);
2707
2708 #ifdef CONFIG_RPS
2709
2710 /* One global table that all flow-based protocols share. */
2711 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2712 EXPORT_SYMBOL(rps_sock_flow_table);
2713
2714 static struct rps_dev_flow *
2715 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2716 struct rps_dev_flow *rflow, u16 next_cpu)
2717 {
2718 if (next_cpu != RPS_NO_CPU) {
2719 #ifdef CONFIG_RFS_ACCEL
2720 struct netdev_rx_queue *rxqueue;
2721 struct rps_dev_flow_table *flow_table;
2722 struct rps_dev_flow *old_rflow;
2723 u32 flow_id;
2724 u16 rxq_index;
2725 int rc;
2726
2727 /* Should we steer this flow to a different hardware queue? */
2728 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2729 !(dev->features & NETIF_F_NTUPLE))
2730 goto out;
2731 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2732 if (rxq_index == skb_get_rx_queue(skb))
2733 goto out;
2734
2735 rxqueue = dev->_rx + rxq_index;
2736 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2737 if (!flow_table)
2738 goto out;
2739 flow_id = skb->rxhash & flow_table->mask;
2740 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2741 rxq_index, flow_id);
2742 if (rc < 0)
2743 goto out;
2744 old_rflow = rflow;
2745 rflow = &flow_table->flows[flow_id];
2746 rflow->filter = rc;
2747 if (old_rflow->filter == rflow->filter)
2748 old_rflow->filter = RPS_NO_FILTER;
2749 out:
2750 #endif
2751 rflow->last_qtail =
2752 per_cpu(softnet_data, next_cpu).input_queue_head;
2753 }
2754
2755 rflow->cpu = next_cpu;
2756 return rflow;
2757 }
2758
2759 /*
2760 * get_rps_cpu is called from netif_receive_skb and returns the target
2761 * CPU from the RPS map of the receiving queue for a given skb.
2762 * rcu_read_lock must be held on entry.
2763 */
2764 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2765 struct rps_dev_flow **rflowp)
2766 {
2767 struct netdev_rx_queue *rxqueue;
2768 struct rps_map *map;
2769 struct rps_dev_flow_table *flow_table;
2770 struct rps_sock_flow_table *sock_flow_table;
2771 int cpu = -1;
2772 u16 tcpu;
2773
2774 if (skb_rx_queue_recorded(skb)) {
2775 u16 index = skb_get_rx_queue(skb);
2776 if (unlikely(index >= dev->real_num_rx_queues)) {
2777 WARN_ONCE(dev->real_num_rx_queues > 1,
2778 "%s received packet on queue %u, but number "
2779 "of RX queues is %u\n",
2780 dev->name, index, dev->real_num_rx_queues);
2781 goto done;
2782 }
2783 rxqueue = dev->_rx + index;
2784 } else
2785 rxqueue = dev->_rx;
2786
2787 map = rcu_dereference(rxqueue->rps_map);
2788 if (map) {
2789 if (map->len == 1 &&
2790 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2791 tcpu = map->cpus[0];
2792 if (cpu_online(tcpu))
2793 cpu = tcpu;
2794 goto done;
2795 }
2796 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2797 goto done;
2798 }
2799
2800 skb_reset_network_header(skb);
2801 if (!skb_get_rxhash(skb))
2802 goto done;
2803
2804 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2805 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2806 if (flow_table && sock_flow_table) {
2807 u16 next_cpu;
2808 struct rps_dev_flow *rflow;
2809
2810 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2811 tcpu = rflow->cpu;
2812
2813 next_cpu = sock_flow_table->ents[skb->rxhash &
2814 sock_flow_table->mask];
2815
2816 /*
2817 * If the desired CPU (where last recvmsg was done) is
2818 * different from current CPU (one in the rx-queue flow
2819 * table entry), switch if one of the following holds:
2820 * - Current CPU is unset (equal to RPS_NO_CPU).
2821 * - Current CPU is offline.
2822 * - The current CPU's queue tail has advanced beyond the
2823 * last packet that was enqueued using this table entry.
2824 * This guarantees that all previous packets for the flow
2825 * have been dequeued, thus preserving in order delivery.
2826 */
2827 if (unlikely(tcpu != next_cpu) &&
2828 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2829 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2830 rflow->last_qtail)) >= 0))
2831 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2832
2833 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2834 *rflowp = rflow;
2835 cpu = tcpu;
2836 goto done;
2837 }
2838 }
2839
2840 if (map) {
2841 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2842
2843 if (cpu_online(tcpu)) {
2844 cpu = tcpu;
2845 goto done;
2846 }
2847 }
2848
2849 done:
2850 return cpu;
2851 }
2852
2853 #ifdef CONFIG_RFS_ACCEL
2854
2855 /**
2856 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2857 * @dev: Device on which the filter was set
2858 * @rxq_index: RX queue index
2859 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2860 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2861 *
2862 * Drivers that implement ndo_rx_flow_steer() should periodically call
2863 * this function for each installed filter and remove the filters for
2864 * which it returns %true.
2865 */
2866 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2867 u32 flow_id, u16 filter_id)
2868 {
2869 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2870 struct rps_dev_flow_table *flow_table;
2871 struct rps_dev_flow *rflow;
2872 bool expire = true;
2873 int cpu;
2874
2875 rcu_read_lock();
2876 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2877 if (flow_table && flow_id <= flow_table->mask) {
2878 rflow = &flow_table->flows[flow_id];
2879 cpu = ACCESS_ONCE(rflow->cpu);
2880 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2881 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2882 rflow->last_qtail) <
2883 (int)(10 * flow_table->mask)))
2884 expire = false;
2885 }
2886 rcu_read_unlock();
2887 return expire;
2888 }
2889 EXPORT_SYMBOL(rps_may_expire_flow);
2890
2891 #endif /* CONFIG_RFS_ACCEL */
2892
2893 /* Called from hardirq (IPI) context */
2894 static void rps_trigger_softirq(void *data)
2895 {
2896 struct softnet_data *sd = data;
2897
2898 ____napi_schedule(sd, &sd->backlog);
2899 sd->received_rps++;
2900 }
2901
2902 #endif /* CONFIG_RPS */
2903
2904 /*
2905 * Check if this softnet_data structure is another cpu one
2906 * If yes, queue it to our IPI list and return 1
2907 * If no, return 0
2908 */
2909 static int rps_ipi_queued(struct softnet_data *sd)
2910 {
2911 #ifdef CONFIG_RPS
2912 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2913
2914 if (sd != mysd) {
2915 sd->rps_ipi_next = mysd->rps_ipi_list;
2916 mysd->rps_ipi_list = sd;
2917
2918 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2919 return 1;
2920 }
2921 #endif /* CONFIG_RPS */
2922 return 0;
2923 }
2924
2925 /*
2926 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2927 * queue (may be a remote CPU queue).
2928 */
2929 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2930 unsigned int *qtail)
2931 {
2932 struct softnet_data *sd;
2933 unsigned long flags;
2934
2935 sd = &per_cpu(softnet_data, cpu);
2936
2937 local_irq_save(flags);
2938
2939 rps_lock(sd);
2940 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2941 if (skb_queue_len(&sd->input_pkt_queue)) {
2942 enqueue:
2943 __skb_queue_tail(&sd->input_pkt_queue, skb);
2944 input_queue_tail_incr_save(sd, qtail);
2945 rps_unlock(sd);
2946 local_irq_restore(flags);
2947 return NET_RX_SUCCESS;
2948 }
2949
2950 /* Schedule NAPI for backlog device
2951 * We can use non atomic operation since we own the queue lock
2952 */
2953 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2954 if (!rps_ipi_queued(sd))
2955 ____napi_schedule(sd, &sd->backlog);
2956 }
2957 goto enqueue;
2958 }
2959
2960 sd->dropped++;
2961 rps_unlock(sd);
2962
2963 local_irq_restore(flags);
2964
2965 atomic_long_inc(&skb->dev->rx_dropped);
2966 kfree_skb(skb);
2967 return NET_RX_DROP;
2968 }
2969
2970 /**
2971 * netif_rx - post buffer to the network code
2972 * @skb: buffer to post
2973 *
2974 * This function receives a packet from a device driver and queues it for
2975 * the upper (protocol) levels to process. It always succeeds. The buffer
2976 * may be dropped during processing for congestion control or by the
2977 * protocol layers.
2978 *
2979 * return values:
2980 * NET_RX_SUCCESS (no congestion)
2981 * NET_RX_DROP (packet was dropped)
2982 *
2983 */
2984
2985 int netif_rx(struct sk_buff *skb)
2986 {
2987 int ret;
2988
2989 /* if netpoll wants it, pretend we never saw it */
2990 if (netpoll_rx(skb))
2991 return NET_RX_DROP;
2992
2993 net_timestamp_check(netdev_tstamp_prequeue, skb);
2994
2995 trace_netif_rx(skb);
2996 #ifdef CONFIG_RPS
2997 {
2998 struct rps_dev_flow voidflow, *rflow = &voidflow;
2999 int cpu;
3000
3001 preempt_disable();
3002 rcu_read_lock();
3003
3004 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3005 if (cpu < 0)
3006 cpu = smp_processor_id();
3007
3008 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3009
3010 rcu_read_unlock();
3011 preempt_enable();
3012 }
3013 #else
3014 {
3015 unsigned int qtail;
3016 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3017 put_cpu();
3018 }
3019 #endif
3020 return ret;
3021 }
3022 EXPORT_SYMBOL(netif_rx);
3023
3024 int netif_rx_ni(struct sk_buff *skb)
3025 {
3026 int err;
3027
3028 preempt_disable();
3029 err = netif_rx(skb);
3030 if (local_softirq_pending())
3031 do_softirq();
3032 preempt_enable();
3033
3034 return err;
3035 }
3036 EXPORT_SYMBOL(netif_rx_ni);
3037
3038 static void net_tx_action(struct softirq_action *h)
3039 {
3040 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3041
3042 if (sd->completion_queue) {
3043 struct sk_buff *clist;
3044
3045 local_irq_disable();
3046 clist = sd->completion_queue;
3047 sd->completion_queue = NULL;
3048 local_irq_enable();
3049
3050 while (clist) {
3051 struct sk_buff *skb = clist;
3052 clist = clist->next;
3053
3054 WARN_ON(atomic_read(&skb->users));
3055 trace_kfree_skb(skb, net_tx_action);
3056 __kfree_skb(skb);
3057 }
3058 }
3059
3060 if (sd->output_queue) {
3061 struct Qdisc *head;
3062
3063 local_irq_disable();
3064 head = sd->output_queue;
3065 sd->output_queue = NULL;
3066 sd->output_queue_tailp = &sd->output_queue;
3067 local_irq_enable();
3068
3069 while (head) {
3070 struct Qdisc *q = head;
3071 spinlock_t *root_lock;
3072
3073 head = head->next_sched;
3074
3075 root_lock = qdisc_lock(q);
3076 if (spin_trylock(root_lock)) {
3077 smp_mb__before_clear_bit();
3078 clear_bit(__QDISC_STATE_SCHED,
3079 &q->state);
3080 qdisc_run(q);
3081 spin_unlock(root_lock);
3082 } else {
3083 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3084 &q->state)) {
3085 __netif_reschedule(q);
3086 } else {
3087 smp_mb__before_clear_bit();
3088 clear_bit(__QDISC_STATE_SCHED,
3089 &q->state);
3090 }
3091 }
3092 }
3093 }
3094 }
3095
3096 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3097 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3098 /* This hook is defined here for ATM LANE */
3099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3100 unsigned char *addr) __read_mostly;
3101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3102 #endif
3103
3104 #ifdef CONFIG_NET_CLS_ACT
3105 /* TODO: Maybe we should just force sch_ingress to be compiled in
3106 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3107 * a compare and 2 stores extra right now if we dont have it on
3108 * but have CONFIG_NET_CLS_ACT
3109 * NOTE: This doesn't stop any functionality; if you dont have
3110 * the ingress scheduler, you just can't add policies on ingress.
3111 *
3112 */
3113 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3114 {
3115 struct net_device *dev = skb->dev;
3116 u32 ttl = G_TC_RTTL(skb->tc_verd);
3117 int result = TC_ACT_OK;
3118 struct Qdisc *q;
3119
3120 if (unlikely(MAX_RED_LOOP < ttl++)) {
3121 if (net_ratelimit())
3122 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3123 skb->skb_iif, dev->ifindex);
3124 return TC_ACT_SHOT;
3125 }
3126
3127 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3128 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3129
3130 q = rxq->qdisc;
3131 if (q != &noop_qdisc) {
3132 spin_lock(qdisc_lock(q));
3133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3134 result = qdisc_enqueue_root(skb, q);
3135 spin_unlock(qdisc_lock(q));
3136 }
3137
3138 return result;
3139 }
3140
3141 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3142 struct packet_type **pt_prev,
3143 int *ret, struct net_device *orig_dev)
3144 {
3145 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3146
3147 if (!rxq || rxq->qdisc == &noop_qdisc)
3148 goto out;
3149
3150 if (*pt_prev) {
3151 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3152 *pt_prev = NULL;
3153 }
3154
3155 switch (ing_filter(skb, rxq)) {
3156 case TC_ACT_SHOT:
3157 case TC_ACT_STOLEN:
3158 kfree_skb(skb);
3159 return NULL;
3160 }
3161
3162 out:
3163 skb->tc_verd = 0;
3164 return skb;
3165 }
3166 #endif
3167
3168 /**
3169 * netdev_rx_handler_register - register receive handler
3170 * @dev: device to register a handler for
3171 * @rx_handler: receive handler to register
3172 * @rx_handler_data: data pointer that is used by rx handler
3173 *
3174 * Register a receive hander for a device. This handler will then be
3175 * called from __netif_receive_skb. A negative errno code is returned
3176 * on a failure.
3177 *
3178 * The caller must hold the rtnl_mutex.
3179 *
3180 * For a general description of rx_handler, see enum rx_handler_result.
3181 */
3182 int netdev_rx_handler_register(struct net_device *dev,
3183 rx_handler_func_t *rx_handler,
3184 void *rx_handler_data)
3185 {
3186 ASSERT_RTNL();
3187
3188 if (dev->rx_handler)
3189 return -EBUSY;
3190
3191 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3192 rcu_assign_pointer(dev->rx_handler, rx_handler);
3193
3194 return 0;
3195 }
3196 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3197
3198 /**
3199 * netdev_rx_handler_unregister - unregister receive handler
3200 * @dev: device to unregister a handler from
3201 *
3202 * Unregister a receive hander from a device.
3203 *
3204 * The caller must hold the rtnl_mutex.
3205 */
3206 void netdev_rx_handler_unregister(struct net_device *dev)
3207 {
3208
3209 ASSERT_RTNL();
3210 RCU_INIT_POINTER(dev->rx_handler, NULL);
3211 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3212 }
3213 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3214
3215 static int __netif_receive_skb(struct sk_buff *skb)
3216 {
3217 struct packet_type *ptype, *pt_prev;
3218 rx_handler_func_t *rx_handler;
3219 struct net_device *orig_dev;
3220 struct net_device *null_or_dev;
3221 bool deliver_exact = false;
3222 int ret = NET_RX_DROP;
3223 __be16 type;
3224
3225 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3226
3227 trace_netif_receive_skb(skb);
3228
3229 /* if we've gotten here through NAPI, check netpoll */
3230 if (netpoll_receive_skb(skb))
3231 return NET_RX_DROP;
3232
3233 if (!skb->skb_iif)
3234 skb->skb_iif = skb->dev->ifindex;
3235 orig_dev = skb->dev;
3236
3237 skb_reset_network_header(skb);
3238 skb_reset_transport_header(skb);
3239 skb_reset_mac_len(skb);
3240
3241 pt_prev = NULL;
3242
3243 rcu_read_lock();
3244
3245 another_round:
3246
3247 __this_cpu_inc(softnet_data.processed);
3248
3249 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3250 skb = vlan_untag(skb);
3251 if (unlikely(!skb))
3252 goto out;
3253 }
3254
3255 #ifdef CONFIG_NET_CLS_ACT
3256 if (skb->tc_verd & TC_NCLS) {
3257 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3258 goto ncls;
3259 }
3260 #endif
3261
3262 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3263 if (!ptype->dev || ptype->dev == skb->dev) {
3264 if (pt_prev)
3265 ret = deliver_skb(skb, pt_prev, orig_dev);
3266 pt_prev = ptype;
3267 }
3268 }
3269
3270 #ifdef CONFIG_NET_CLS_ACT
3271 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3272 if (!skb)
3273 goto out;
3274 ncls:
3275 #endif
3276
3277 rx_handler = rcu_dereference(skb->dev->rx_handler);
3278 if (vlan_tx_tag_present(skb)) {
3279 if (pt_prev) {
3280 ret = deliver_skb(skb, pt_prev, orig_dev);
3281 pt_prev = NULL;
3282 }
3283 if (vlan_do_receive(&skb, !rx_handler))
3284 goto another_round;
3285 else if (unlikely(!skb))
3286 goto out;
3287 }
3288
3289 if (rx_handler) {
3290 if (pt_prev) {
3291 ret = deliver_skb(skb, pt_prev, orig_dev);
3292 pt_prev = NULL;
3293 }
3294 switch (rx_handler(&skb)) {
3295 case RX_HANDLER_CONSUMED:
3296 goto out;
3297 case RX_HANDLER_ANOTHER:
3298 goto another_round;
3299 case RX_HANDLER_EXACT:
3300 deliver_exact = true;
3301 case RX_HANDLER_PASS:
3302 break;
3303 default:
3304 BUG();
3305 }
3306 }
3307
3308 /* deliver only exact match when indicated */
3309 null_or_dev = deliver_exact ? skb->dev : NULL;
3310
3311 type = skb->protocol;
3312 list_for_each_entry_rcu(ptype,
3313 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3314 if (ptype->type == type &&
3315 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3316 ptype->dev == orig_dev)) {
3317 if (pt_prev)
3318 ret = deliver_skb(skb, pt_prev, orig_dev);
3319 pt_prev = ptype;
3320 }
3321 }
3322
3323 if (pt_prev) {
3324 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3325 } else {
3326 atomic_long_inc(&skb->dev->rx_dropped);
3327 kfree_skb(skb);
3328 /* Jamal, now you will not able to escape explaining
3329 * me how you were going to use this. :-)
3330 */
3331 ret = NET_RX_DROP;
3332 }
3333
3334 out:
3335 rcu_read_unlock();
3336 return ret;
3337 }
3338
3339 /**
3340 * netif_receive_skb - process receive buffer from network
3341 * @skb: buffer to process
3342 *
3343 * netif_receive_skb() is the main receive data processing function.
3344 * It always succeeds. The buffer may be dropped during processing
3345 * for congestion control or by the protocol layers.
3346 *
3347 * This function may only be called from softirq context and interrupts
3348 * should be enabled.
3349 *
3350 * Return values (usually ignored):
3351 * NET_RX_SUCCESS: no congestion
3352 * NET_RX_DROP: packet was dropped
3353 */
3354 int netif_receive_skb(struct sk_buff *skb)
3355 {
3356 net_timestamp_check(netdev_tstamp_prequeue, skb);
3357
3358 if (skb_defer_rx_timestamp(skb))
3359 return NET_RX_SUCCESS;
3360
3361 #ifdef CONFIG_RPS
3362 {
3363 struct rps_dev_flow voidflow, *rflow = &voidflow;
3364 int cpu, ret;
3365
3366 rcu_read_lock();
3367
3368 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3369
3370 if (cpu >= 0) {
3371 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3372 rcu_read_unlock();
3373 } else {
3374 rcu_read_unlock();
3375 ret = __netif_receive_skb(skb);
3376 }
3377
3378 return ret;
3379 }
3380 #else
3381 return __netif_receive_skb(skb);
3382 #endif
3383 }
3384 EXPORT_SYMBOL(netif_receive_skb);
3385
3386 /* Network device is going away, flush any packets still pending
3387 * Called with irqs disabled.
3388 */
3389 static void flush_backlog(void *arg)
3390 {
3391 struct net_device *dev = arg;
3392 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3393 struct sk_buff *skb, *tmp;
3394
3395 rps_lock(sd);
3396 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3397 if (skb->dev == dev) {
3398 __skb_unlink(skb, &sd->input_pkt_queue);
3399 kfree_skb(skb);
3400 input_queue_head_incr(sd);
3401 }
3402 }
3403 rps_unlock(sd);
3404
3405 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3406 if (skb->dev == dev) {
3407 __skb_unlink(skb, &sd->process_queue);
3408 kfree_skb(skb);
3409 input_queue_head_incr(sd);
3410 }
3411 }
3412 }
3413
3414 static int napi_gro_complete(struct sk_buff *skb)
3415 {
3416 struct packet_type *ptype;
3417 __be16 type = skb->protocol;
3418 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3419 int err = -ENOENT;
3420
3421 if (NAPI_GRO_CB(skb)->count == 1) {
3422 skb_shinfo(skb)->gso_size = 0;
3423 goto out;
3424 }
3425
3426 rcu_read_lock();
3427 list_for_each_entry_rcu(ptype, head, list) {
3428 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3429 continue;
3430
3431 err = ptype->gro_complete(skb);
3432 break;
3433 }
3434 rcu_read_unlock();
3435
3436 if (err) {
3437 WARN_ON(&ptype->list == head);
3438 kfree_skb(skb);
3439 return NET_RX_SUCCESS;
3440 }
3441
3442 out:
3443 return netif_receive_skb(skb);
3444 }
3445
3446 inline void napi_gro_flush(struct napi_struct *napi)
3447 {
3448 struct sk_buff *skb, *next;
3449
3450 for (skb = napi->gro_list; skb; skb = next) {
3451 next = skb->next;
3452 skb->next = NULL;
3453 napi_gro_complete(skb);
3454 }
3455
3456 napi->gro_count = 0;
3457 napi->gro_list = NULL;
3458 }
3459 EXPORT_SYMBOL(napi_gro_flush);
3460
3461 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3462 {
3463 struct sk_buff **pp = NULL;
3464 struct packet_type *ptype;
3465 __be16 type = skb->protocol;
3466 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3467 int same_flow;
3468 int mac_len;
3469 enum gro_result ret;
3470
3471 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3472 goto normal;
3473
3474 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3475 goto normal;
3476
3477 rcu_read_lock();
3478 list_for_each_entry_rcu(ptype, head, list) {
3479 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3480 continue;
3481
3482 skb_set_network_header(skb, skb_gro_offset(skb));
3483 mac_len = skb->network_header - skb->mac_header;
3484 skb->mac_len = mac_len;
3485 NAPI_GRO_CB(skb)->same_flow = 0;
3486 NAPI_GRO_CB(skb)->flush = 0;
3487 NAPI_GRO_CB(skb)->free = 0;
3488
3489 pp = ptype->gro_receive(&napi->gro_list, skb);
3490 break;
3491 }
3492 rcu_read_unlock();
3493
3494 if (&ptype->list == head)
3495 goto normal;
3496
3497 same_flow = NAPI_GRO_CB(skb)->same_flow;
3498 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3499
3500 if (pp) {
3501 struct sk_buff *nskb = *pp;
3502
3503 *pp = nskb->next;
3504 nskb->next = NULL;
3505 napi_gro_complete(nskb);
3506 napi->gro_count--;
3507 }
3508
3509 if (same_flow)
3510 goto ok;
3511
3512 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3513 goto normal;
3514
3515 napi->gro_count++;
3516 NAPI_GRO_CB(skb)->count = 1;
3517 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3518 skb->next = napi->gro_list;
3519 napi->gro_list = skb;
3520 ret = GRO_HELD;
3521
3522 pull:
3523 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3524 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3525
3526 BUG_ON(skb->end - skb->tail < grow);
3527
3528 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3529
3530 skb->tail += grow;
3531 skb->data_len -= grow;
3532
3533 skb_shinfo(skb)->frags[0].page_offset += grow;
3534 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3535
3536 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3537 skb_frag_unref(skb, 0);
3538 memmove(skb_shinfo(skb)->frags,
3539 skb_shinfo(skb)->frags + 1,
3540 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3541 }
3542 }
3543
3544 ok:
3545 return ret;
3546
3547 normal:
3548 ret = GRO_NORMAL;
3549 goto pull;
3550 }
3551 EXPORT_SYMBOL(dev_gro_receive);
3552
3553 static inline gro_result_t
3554 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3555 {
3556 struct sk_buff *p;
3557
3558 for (p = napi->gro_list; p; p = p->next) {
3559 unsigned long diffs;
3560
3561 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3562 diffs |= p->vlan_tci ^ skb->vlan_tci;
3563 diffs |= compare_ether_header(skb_mac_header(p),
3564 skb_gro_mac_header(skb));
3565 NAPI_GRO_CB(p)->same_flow = !diffs;
3566 NAPI_GRO_CB(p)->flush = 0;
3567 }
3568
3569 return dev_gro_receive(napi, skb);
3570 }
3571
3572 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3573 {
3574 switch (ret) {
3575 case GRO_NORMAL:
3576 if (netif_receive_skb(skb))
3577 ret = GRO_DROP;
3578 break;
3579
3580 case GRO_DROP:
3581 case GRO_MERGED_FREE:
3582 kfree_skb(skb);
3583 break;
3584
3585 case GRO_HELD:
3586 case GRO_MERGED:
3587 break;
3588 }
3589
3590 return ret;
3591 }
3592 EXPORT_SYMBOL(napi_skb_finish);
3593
3594 void skb_gro_reset_offset(struct sk_buff *skb)
3595 {
3596 NAPI_GRO_CB(skb)->data_offset = 0;
3597 NAPI_GRO_CB(skb)->frag0 = NULL;
3598 NAPI_GRO_CB(skb)->frag0_len = 0;
3599
3600 if (skb->mac_header == skb->tail &&
3601 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3602 NAPI_GRO_CB(skb)->frag0 =
3603 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3604 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3605 }
3606 }
3607 EXPORT_SYMBOL(skb_gro_reset_offset);
3608
3609 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3610 {
3611 skb_gro_reset_offset(skb);
3612
3613 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3614 }
3615 EXPORT_SYMBOL(napi_gro_receive);
3616
3617 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3618 {
3619 __skb_pull(skb, skb_headlen(skb));
3620 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3621 skb->vlan_tci = 0;
3622 skb->dev = napi->dev;
3623 skb->skb_iif = 0;
3624
3625 napi->skb = skb;
3626 }
3627
3628 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3629 {
3630 struct sk_buff *skb = napi->skb;
3631
3632 if (!skb) {
3633 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3634 if (skb)
3635 napi->skb = skb;
3636 }
3637 return skb;
3638 }
3639 EXPORT_SYMBOL(napi_get_frags);
3640
3641 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3642 gro_result_t ret)
3643 {
3644 switch (ret) {
3645 case GRO_NORMAL:
3646 case GRO_HELD:
3647 skb->protocol = eth_type_trans(skb, skb->dev);
3648
3649 if (ret == GRO_HELD)
3650 skb_gro_pull(skb, -ETH_HLEN);
3651 else if (netif_receive_skb(skb))
3652 ret = GRO_DROP;
3653 break;
3654
3655 case GRO_DROP:
3656 case GRO_MERGED_FREE:
3657 napi_reuse_skb(napi, skb);
3658 break;
3659
3660 case GRO_MERGED:
3661 break;
3662 }
3663
3664 return ret;
3665 }
3666 EXPORT_SYMBOL(napi_frags_finish);
3667
3668 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3669 {
3670 struct sk_buff *skb = napi->skb;
3671 struct ethhdr *eth;
3672 unsigned int hlen;
3673 unsigned int off;
3674
3675 napi->skb = NULL;
3676
3677 skb_reset_mac_header(skb);
3678 skb_gro_reset_offset(skb);
3679
3680 off = skb_gro_offset(skb);
3681 hlen = off + sizeof(*eth);
3682 eth = skb_gro_header_fast(skb, off);
3683 if (skb_gro_header_hard(skb, hlen)) {
3684 eth = skb_gro_header_slow(skb, hlen, off);
3685 if (unlikely(!eth)) {
3686 napi_reuse_skb(napi, skb);
3687 skb = NULL;
3688 goto out;
3689 }
3690 }
3691
3692 skb_gro_pull(skb, sizeof(*eth));
3693
3694 /*
3695 * This works because the only protocols we care about don't require
3696 * special handling. We'll fix it up properly at the end.
3697 */
3698 skb->protocol = eth->h_proto;
3699
3700 out:
3701 return skb;
3702 }
3703 EXPORT_SYMBOL(napi_frags_skb);
3704
3705 gro_result_t napi_gro_frags(struct napi_struct *napi)
3706 {
3707 struct sk_buff *skb = napi_frags_skb(napi);
3708
3709 if (!skb)
3710 return GRO_DROP;
3711
3712 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3713 }
3714 EXPORT_SYMBOL(napi_gro_frags);
3715
3716 /*
3717 * net_rps_action sends any pending IPI's for rps.
3718 * Note: called with local irq disabled, but exits with local irq enabled.
3719 */
3720 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3721 {
3722 #ifdef CONFIG_RPS
3723 struct softnet_data *remsd = sd->rps_ipi_list;
3724
3725 if (remsd) {
3726 sd->rps_ipi_list = NULL;
3727
3728 local_irq_enable();
3729
3730 /* Send pending IPI's to kick RPS processing on remote cpus. */
3731 while (remsd) {
3732 struct softnet_data *next = remsd->rps_ipi_next;
3733
3734 if (cpu_online(remsd->cpu))
3735 __smp_call_function_single(remsd->cpu,
3736 &remsd->csd, 0);
3737 remsd = next;
3738 }
3739 } else
3740 #endif
3741 local_irq_enable();
3742 }
3743
3744 static int process_backlog(struct napi_struct *napi, int quota)
3745 {
3746 int work = 0;
3747 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3748
3749 #ifdef CONFIG_RPS
3750 /* Check if we have pending ipi, its better to send them now,
3751 * not waiting net_rx_action() end.
3752 */
3753 if (sd->rps_ipi_list) {
3754 local_irq_disable();
3755 net_rps_action_and_irq_enable(sd);
3756 }
3757 #endif
3758 napi->weight = weight_p;
3759 local_irq_disable();
3760 while (work < quota) {
3761 struct sk_buff *skb;
3762 unsigned int qlen;
3763
3764 while ((skb = __skb_dequeue(&sd->process_queue))) {
3765 local_irq_enable();
3766 __netif_receive_skb(skb);
3767 local_irq_disable();
3768 input_queue_head_incr(sd);
3769 if (++work >= quota) {
3770 local_irq_enable();
3771 return work;
3772 }
3773 }
3774
3775 rps_lock(sd);
3776 qlen = skb_queue_len(&sd->input_pkt_queue);
3777 if (qlen)
3778 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3779 &sd->process_queue);
3780
3781 if (qlen < quota - work) {
3782 /*
3783 * Inline a custom version of __napi_complete().
3784 * only current cpu owns and manipulates this napi,
3785 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3786 * we can use a plain write instead of clear_bit(),
3787 * and we dont need an smp_mb() memory barrier.
3788 */
3789 list_del(&napi->poll_list);
3790 napi->state = 0;
3791
3792 quota = work + qlen;
3793 }
3794 rps_unlock(sd);
3795 }
3796 local_irq_enable();
3797
3798 return work;
3799 }
3800
3801 /**
3802 * __napi_schedule - schedule for receive
3803 * @n: entry to schedule
3804 *
3805 * The entry's receive function will be scheduled to run
3806 */
3807 void __napi_schedule(struct napi_struct *n)
3808 {
3809 unsigned long flags;
3810
3811 local_irq_save(flags);
3812 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3813 local_irq_restore(flags);
3814 }
3815 EXPORT_SYMBOL(__napi_schedule);
3816
3817 void __napi_complete(struct napi_struct *n)
3818 {
3819 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3820 BUG_ON(n->gro_list);
3821
3822 list_del(&n->poll_list);
3823 smp_mb__before_clear_bit();
3824 clear_bit(NAPI_STATE_SCHED, &n->state);
3825 }
3826 EXPORT_SYMBOL(__napi_complete);
3827
3828 void napi_complete(struct napi_struct *n)
3829 {
3830 unsigned long flags;
3831
3832 /*
3833 * don't let napi dequeue from the cpu poll list
3834 * just in case its running on a different cpu
3835 */
3836 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3837 return;
3838
3839 napi_gro_flush(n);
3840 local_irq_save(flags);
3841 __napi_complete(n);
3842 local_irq_restore(flags);
3843 }
3844 EXPORT_SYMBOL(napi_complete);
3845
3846 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3847 int (*poll)(struct napi_struct *, int), int weight)
3848 {
3849 INIT_LIST_HEAD(&napi->poll_list);
3850 napi->gro_count = 0;
3851 napi->gro_list = NULL;
3852 napi->skb = NULL;
3853 napi->poll = poll;
3854 napi->weight = weight;
3855 list_add(&napi->dev_list, &dev->napi_list);
3856 napi->dev = dev;
3857 #ifdef CONFIG_NETPOLL
3858 spin_lock_init(&napi->poll_lock);
3859 napi->poll_owner = -1;
3860 #endif
3861 set_bit(NAPI_STATE_SCHED, &napi->state);
3862 }
3863 EXPORT_SYMBOL(netif_napi_add);
3864
3865 void netif_napi_del(struct napi_struct *napi)
3866 {
3867 struct sk_buff *skb, *next;
3868
3869 list_del_init(&napi->dev_list);
3870 napi_free_frags(napi);
3871
3872 for (skb = napi->gro_list; skb; skb = next) {
3873 next = skb->next;
3874 skb->next = NULL;
3875 kfree_skb(skb);
3876 }
3877
3878 napi->gro_list = NULL;
3879 napi->gro_count = 0;
3880 }
3881 EXPORT_SYMBOL(netif_napi_del);
3882
3883 static void net_rx_action(struct softirq_action *h)
3884 {
3885 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3886 unsigned long time_limit = jiffies + 2;
3887 int budget = netdev_budget;
3888 void *have;
3889
3890 local_irq_disable();
3891
3892 while (!list_empty(&sd->poll_list)) {
3893 struct napi_struct *n;
3894 int work, weight;
3895
3896 /* If softirq window is exhuasted then punt.
3897 * Allow this to run for 2 jiffies since which will allow
3898 * an average latency of 1.5/HZ.
3899 */
3900 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3901 goto softnet_break;
3902
3903 local_irq_enable();
3904
3905 /* Even though interrupts have been re-enabled, this
3906 * access is safe because interrupts can only add new
3907 * entries to the tail of this list, and only ->poll()
3908 * calls can remove this head entry from the list.
3909 */
3910 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3911
3912 have = netpoll_poll_lock(n);
3913
3914 weight = n->weight;
3915
3916 /* This NAPI_STATE_SCHED test is for avoiding a race
3917 * with netpoll's poll_napi(). Only the entity which
3918 * obtains the lock and sees NAPI_STATE_SCHED set will
3919 * actually make the ->poll() call. Therefore we avoid
3920 * accidentally calling ->poll() when NAPI is not scheduled.
3921 */
3922 work = 0;
3923 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3924 work = n->poll(n, weight);
3925 trace_napi_poll(n);
3926 }
3927
3928 WARN_ON_ONCE(work > weight);
3929
3930 budget -= work;
3931
3932 local_irq_disable();
3933
3934 /* Drivers must not modify the NAPI state if they
3935 * consume the entire weight. In such cases this code
3936 * still "owns" the NAPI instance and therefore can
3937 * move the instance around on the list at-will.
3938 */
3939 if (unlikely(work == weight)) {
3940 if (unlikely(napi_disable_pending(n))) {
3941 local_irq_enable();
3942 napi_complete(n);
3943 local_irq_disable();
3944 } else
3945 list_move_tail(&n->poll_list, &sd->poll_list);
3946 }
3947
3948 netpoll_poll_unlock(have);
3949 }
3950 out:
3951 net_rps_action_and_irq_enable(sd);
3952
3953 #ifdef CONFIG_NET_DMA
3954 /*
3955 * There may not be any more sk_buffs coming right now, so push
3956 * any pending DMA copies to hardware
3957 */
3958 dma_issue_pending_all();
3959 #endif
3960
3961 return;
3962
3963 softnet_break:
3964 sd->time_squeeze++;
3965 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3966 goto out;
3967 }
3968
3969 static gifconf_func_t *gifconf_list[NPROTO];
3970
3971 /**
3972 * register_gifconf - register a SIOCGIF handler
3973 * @family: Address family
3974 * @gifconf: Function handler
3975 *
3976 * Register protocol dependent address dumping routines. The handler
3977 * that is passed must not be freed or reused until it has been replaced
3978 * by another handler.
3979 */
3980 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3981 {
3982 if (family >= NPROTO)
3983 return -EINVAL;
3984 gifconf_list[family] = gifconf;
3985 return 0;
3986 }
3987 EXPORT_SYMBOL(register_gifconf);
3988
3989
3990 /*
3991 * Map an interface index to its name (SIOCGIFNAME)
3992 */
3993
3994 /*
3995 * We need this ioctl for efficient implementation of the
3996 * if_indextoname() function required by the IPv6 API. Without
3997 * it, we would have to search all the interfaces to find a
3998 * match. --pb
3999 */
4000
4001 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4002 {
4003 struct net_device *dev;
4004 struct ifreq ifr;
4005
4006 /*
4007 * Fetch the caller's info block.
4008 */
4009
4010 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4011 return -EFAULT;
4012
4013 rcu_read_lock();
4014 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4015 if (!dev) {
4016 rcu_read_unlock();
4017 return -ENODEV;
4018 }
4019
4020 strcpy(ifr.ifr_name, dev->name);
4021 rcu_read_unlock();
4022
4023 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4024 return -EFAULT;
4025 return 0;
4026 }
4027
4028 /*
4029 * Perform a SIOCGIFCONF call. This structure will change
4030 * size eventually, and there is nothing I can do about it.
4031 * Thus we will need a 'compatibility mode'.
4032 */
4033
4034 static int dev_ifconf(struct net *net, char __user *arg)
4035 {
4036 struct ifconf ifc;
4037 struct net_device *dev;
4038 char __user *pos;
4039 int len;
4040 int total;
4041 int i;
4042
4043 /*
4044 * Fetch the caller's info block.
4045 */
4046
4047 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4048 return -EFAULT;
4049
4050 pos = ifc.ifc_buf;
4051 len = ifc.ifc_len;
4052
4053 /*
4054 * Loop over the interfaces, and write an info block for each.
4055 */
4056
4057 total = 0;
4058 for_each_netdev(net, dev) {
4059 for (i = 0; i < NPROTO; i++) {
4060 if (gifconf_list[i]) {
4061 int done;
4062 if (!pos)
4063 done = gifconf_list[i](dev, NULL, 0);
4064 else
4065 done = gifconf_list[i](dev, pos + total,
4066 len - total);
4067 if (done < 0)
4068 return -EFAULT;
4069 total += done;
4070 }
4071 }
4072 }
4073
4074 /*
4075 * All done. Write the updated control block back to the caller.
4076 */
4077 ifc.ifc_len = total;
4078
4079 /*
4080 * Both BSD and Solaris return 0 here, so we do too.
4081 */
4082 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4083 }
4084
4085 #ifdef CONFIG_PROC_FS
4086
4087 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4088
4089 struct dev_iter_state {
4090 struct seq_net_private p;
4091 unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4092 };
4093
4094 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4095 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4096 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4097
4098 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4099 {
4100 struct dev_iter_state *state = seq->private;
4101 struct net *net = seq_file_net(seq);
4102 struct net_device *dev;
4103 struct hlist_node *p;
4104 struct hlist_head *h;
4105 unsigned int count, bucket, offset;
4106
4107 bucket = get_bucket(state->pos);
4108 offset = get_offset(state->pos);
4109 h = &net->dev_name_head[bucket];
4110 count = 0;
4111 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4112 if (count++ == offset) {
4113 state->pos = set_bucket_offset(bucket, count);
4114 return dev;
4115 }
4116 }
4117
4118 return NULL;
4119 }
4120
4121 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4122 {
4123 struct dev_iter_state *state = seq->private;
4124 struct net_device *dev;
4125 unsigned int bucket;
4126
4127 bucket = get_bucket(state->pos);
4128 do {
4129 dev = dev_from_same_bucket(seq);
4130 if (dev)
4131 return dev;
4132
4133 bucket++;
4134 state->pos = set_bucket_offset(bucket, 0);
4135 } while (bucket < NETDEV_HASHENTRIES);
4136
4137 return NULL;
4138 }
4139
4140 /*
4141 * This is invoked by the /proc filesystem handler to display a device
4142 * in detail.
4143 */
4144 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4145 __acquires(RCU)
4146 {
4147 struct dev_iter_state *state = seq->private;
4148
4149 rcu_read_lock();
4150 if (!*pos)
4151 return SEQ_START_TOKEN;
4152
4153 /* check for end of the hash */
4154 if (state->pos == 0 && *pos > 1)
4155 return NULL;
4156
4157 return dev_from_new_bucket(seq);
4158 }
4159
4160 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4161 {
4162 struct net_device *dev;
4163
4164 ++*pos;
4165
4166 if (v == SEQ_START_TOKEN)
4167 return dev_from_new_bucket(seq);
4168
4169 dev = dev_from_same_bucket(seq);
4170 if (dev)
4171 return dev;
4172
4173 return dev_from_new_bucket(seq);
4174 }
4175
4176 void dev_seq_stop(struct seq_file *seq, void *v)
4177 __releases(RCU)
4178 {
4179 rcu_read_unlock();
4180 }
4181
4182 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4183 {
4184 struct rtnl_link_stats64 temp;
4185 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4186
4187 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4188 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4189 dev->name, stats->rx_bytes, stats->rx_packets,
4190 stats->rx_errors,
4191 stats->rx_dropped + stats->rx_missed_errors,
4192 stats->rx_fifo_errors,
4193 stats->rx_length_errors + stats->rx_over_errors +
4194 stats->rx_crc_errors + stats->rx_frame_errors,
4195 stats->rx_compressed, stats->multicast,
4196 stats->tx_bytes, stats->tx_packets,
4197 stats->tx_errors, stats->tx_dropped,
4198 stats->tx_fifo_errors, stats->collisions,
4199 stats->tx_carrier_errors +
4200 stats->tx_aborted_errors +
4201 stats->tx_window_errors +
4202 stats->tx_heartbeat_errors,
4203 stats->tx_compressed);
4204 }
4205
4206 /*
4207 * Called from the PROCfs module. This now uses the new arbitrary sized
4208 * /proc/net interface to create /proc/net/dev
4209 */
4210 static int dev_seq_show(struct seq_file *seq, void *v)
4211 {
4212 if (v == SEQ_START_TOKEN)
4213 seq_puts(seq, "Inter-| Receive "
4214 " | Transmit\n"
4215 " face |bytes packets errs drop fifo frame "
4216 "compressed multicast|bytes packets errs "
4217 "drop fifo colls carrier compressed\n");
4218 else
4219 dev_seq_printf_stats(seq, v);
4220 return 0;
4221 }
4222
4223 static struct softnet_data *softnet_get_online(loff_t *pos)
4224 {
4225 struct softnet_data *sd = NULL;
4226
4227 while (*pos < nr_cpu_ids)
4228 if (cpu_online(*pos)) {
4229 sd = &per_cpu(softnet_data, *pos);
4230 break;
4231 } else
4232 ++*pos;
4233 return sd;
4234 }
4235
4236 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4237 {
4238 return softnet_get_online(pos);
4239 }
4240
4241 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4242 {
4243 ++*pos;
4244 return softnet_get_online(pos);
4245 }
4246
4247 static void softnet_seq_stop(struct seq_file *seq, void *v)
4248 {
4249 }
4250
4251 static int softnet_seq_show(struct seq_file *seq, void *v)
4252 {
4253 struct softnet_data *sd = v;
4254
4255 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4256 sd->processed, sd->dropped, sd->time_squeeze, 0,
4257 0, 0, 0, 0, /* was fastroute */
4258 sd->cpu_collision, sd->received_rps);
4259 return 0;
4260 }
4261
4262 static const struct seq_operations dev_seq_ops = {
4263 .start = dev_seq_start,
4264 .next = dev_seq_next,
4265 .stop = dev_seq_stop,
4266 .show = dev_seq_show,
4267 };
4268
4269 static int dev_seq_open(struct inode *inode, struct file *file)
4270 {
4271 return seq_open_net(inode, file, &dev_seq_ops,
4272 sizeof(struct dev_iter_state));
4273 }
4274
4275 static const struct file_operations dev_seq_fops = {
4276 .owner = THIS_MODULE,
4277 .open = dev_seq_open,
4278 .read = seq_read,
4279 .llseek = seq_lseek,
4280 .release = seq_release_net,
4281 };
4282
4283 static const struct seq_operations softnet_seq_ops = {
4284 .start = softnet_seq_start,
4285 .next = softnet_seq_next,
4286 .stop = softnet_seq_stop,
4287 .show = softnet_seq_show,
4288 };
4289
4290 static int softnet_seq_open(struct inode *inode, struct file *file)
4291 {
4292 return seq_open(file, &softnet_seq_ops);
4293 }
4294
4295 static const struct file_operations softnet_seq_fops = {
4296 .owner = THIS_MODULE,
4297 .open = softnet_seq_open,
4298 .read = seq_read,
4299 .llseek = seq_lseek,
4300 .release = seq_release,
4301 };
4302
4303 static void *ptype_get_idx(loff_t pos)
4304 {
4305 struct packet_type *pt = NULL;
4306 loff_t i = 0;
4307 int t;
4308
4309 list_for_each_entry_rcu(pt, &ptype_all, list) {
4310 if (i == pos)
4311 return pt;
4312 ++i;
4313 }
4314
4315 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4316 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4317 if (i == pos)
4318 return pt;
4319 ++i;
4320 }
4321 }
4322 return NULL;
4323 }
4324
4325 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4326 __acquires(RCU)
4327 {
4328 rcu_read_lock();
4329 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4330 }
4331
4332 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4333 {
4334 struct packet_type *pt;
4335 struct list_head *nxt;
4336 int hash;
4337
4338 ++*pos;
4339 if (v == SEQ_START_TOKEN)
4340 return ptype_get_idx(0);
4341
4342 pt = v;
4343 nxt = pt->list.next;
4344 if (pt->type == htons(ETH_P_ALL)) {
4345 if (nxt != &ptype_all)
4346 goto found;
4347 hash = 0;
4348 nxt = ptype_base[0].next;
4349 } else
4350 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4351
4352 while (nxt == &ptype_base[hash]) {
4353 if (++hash >= PTYPE_HASH_SIZE)
4354 return NULL;
4355 nxt = ptype_base[hash].next;
4356 }
4357 found:
4358 return list_entry(nxt, struct packet_type, list);
4359 }
4360
4361 static void ptype_seq_stop(struct seq_file *seq, void *v)
4362 __releases(RCU)
4363 {
4364 rcu_read_unlock();
4365 }
4366
4367 static int ptype_seq_show(struct seq_file *seq, void *v)
4368 {
4369 struct packet_type *pt = v;
4370
4371 if (v == SEQ_START_TOKEN)
4372 seq_puts(seq, "Type Device Function\n");
4373 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4374 if (pt->type == htons(ETH_P_ALL))
4375 seq_puts(seq, "ALL ");
4376 else
4377 seq_printf(seq, "%04x", ntohs(pt->type));
4378
4379 seq_printf(seq, " %-8s %pF\n",
4380 pt->dev ? pt->dev->name : "", pt->func);
4381 }
4382
4383 return 0;
4384 }
4385
4386 static const struct seq_operations ptype_seq_ops = {
4387 .start = ptype_seq_start,
4388 .next = ptype_seq_next,
4389 .stop = ptype_seq_stop,
4390 .show = ptype_seq_show,
4391 };
4392
4393 static int ptype_seq_open(struct inode *inode, struct file *file)
4394 {
4395 return seq_open_net(inode, file, &ptype_seq_ops,
4396 sizeof(struct seq_net_private));
4397 }
4398
4399 static const struct file_operations ptype_seq_fops = {
4400 .owner = THIS_MODULE,
4401 .open = ptype_seq_open,
4402 .read = seq_read,
4403 .llseek = seq_lseek,
4404 .release = seq_release_net,
4405 };
4406
4407
4408 static int __net_init dev_proc_net_init(struct net *net)
4409 {
4410 int rc = -ENOMEM;
4411
4412 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4413 goto out;
4414 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4415 goto out_dev;
4416 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4417 goto out_softnet;
4418
4419 if (wext_proc_init(net))
4420 goto out_ptype;
4421 rc = 0;
4422 out:
4423 return rc;
4424 out_ptype:
4425 proc_net_remove(net, "ptype");
4426 out_softnet:
4427 proc_net_remove(net, "softnet_stat");
4428 out_dev:
4429 proc_net_remove(net, "dev");
4430 goto out;
4431 }
4432
4433 static void __net_exit dev_proc_net_exit(struct net *net)
4434 {
4435 wext_proc_exit(net);
4436
4437 proc_net_remove(net, "ptype");
4438 proc_net_remove(net, "softnet_stat");
4439 proc_net_remove(net, "dev");
4440 }
4441
4442 static struct pernet_operations __net_initdata dev_proc_ops = {
4443 .init = dev_proc_net_init,
4444 .exit = dev_proc_net_exit,
4445 };
4446
4447 static int __init dev_proc_init(void)
4448 {
4449 return register_pernet_subsys(&dev_proc_ops);
4450 }
4451 #else
4452 #define dev_proc_init() 0
4453 #endif /* CONFIG_PROC_FS */
4454
4455
4456 /**
4457 * netdev_set_master - set up master pointer
4458 * @slave: slave device
4459 * @master: new master device
4460 *
4461 * Changes the master device of the slave. Pass %NULL to break the
4462 * bonding. The caller must hold the RTNL semaphore. On a failure
4463 * a negative errno code is returned. On success the reference counts
4464 * are adjusted and the function returns zero.
4465 */
4466 int netdev_set_master(struct net_device *slave, struct net_device *master)
4467 {
4468 struct net_device *old = slave->master;
4469
4470 ASSERT_RTNL();
4471
4472 if (master) {
4473 if (old)
4474 return -EBUSY;
4475 dev_hold(master);
4476 }
4477
4478 slave->master = master;
4479
4480 if (old)
4481 dev_put(old);
4482 return 0;
4483 }
4484 EXPORT_SYMBOL(netdev_set_master);
4485
4486 /**
4487 * netdev_set_bond_master - set up bonding master/slave pair
4488 * @slave: slave device
4489 * @master: new master device
4490 *
4491 * Changes the master device of the slave. Pass %NULL to break the
4492 * bonding. The caller must hold the RTNL semaphore. On a failure
4493 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4494 * to the routing socket and the function returns zero.
4495 */
4496 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4497 {
4498 int err;
4499
4500 ASSERT_RTNL();
4501
4502 err = netdev_set_master(slave, master);
4503 if (err)
4504 return err;
4505 if (master)
4506 slave->flags |= IFF_SLAVE;
4507 else
4508 slave->flags &= ~IFF_SLAVE;
4509
4510 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4511 return 0;
4512 }
4513 EXPORT_SYMBOL(netdev_set_bond_master);
4514
4515 static void dev_change_rx_flags(struct net_device *dev, int flags)
4516 {
4517 const struct net_device_ops *ops = dev->netdev_ops;
4518
4519 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4520 ops->ndo_change_rx_flags(dev, flags);
4521 }
4522
4523 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4524 {
4525 unsigned short old_flags = dev->flags;
4526 uid_t uid;
4527 gid_t gid;
4528
4529 ASSERT_RTNL();
4530
4531 dev->flags |= IFF_PROMISC;
4532 dev->promiscuity += inc;
4533 if (dev->promiscuity == 0) {
4534 /*
4535 * Avoid overflow.
4536 * If inc causes overflow, untouch promisc and return error.
4537 */
4538 if (inc < 0)
4539 dev->flags &= ~IFF_PROMISC;
4540 else {
4541 dev->promiscuity -= inc;
4542 printk(KERN_WARNING "%s: promiscuity touches roof, "
4543 "set promiscuity failed, promiscuity feature "
4544 "of device might be broken.\n", dev->name);
4545 return -EOVERFLOW;
4546 }
4547 }
4548 if (dev->flags != old_flags) {
4549 printk(KERN_INFO "device %s %s promiscuous mode\n",
4550 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4551 "left");
4552 if (audit_enabled) {
4553 current_uid_gid(&uid, &gid);
4554 audit_log(current->audit_context, GFP_ATOMIC,
4555 AUDIT_ANOM_PROMISCUOUS,
4556 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4557 dev->name, (dev->flags & IFF_PROMISC),
4558 (old_flags & IFF_PROMISC),
4559 audit_get_loginuid(current),
4560 uid, gid,
4561 audit_get_sessionid(current));
4562 }
4563
4564 dev_change_rx_flags(dev, IFF_PROMISC);
4565 }
4566 return 0;
4567 }
4568
4569 /**
4570 * dev_set_promiscuity - update promiscuity count on a device
4571 * @dev: device
4572 * @inc: modifier
4573 *
4574 * Add or remove promiscuity from a device. While the count in the device
4575 * remains above zero the interface remains promiscuous. Once it hits zero
4576 * the device reverts back to normal filtering operation. A negative inc
4577 * value is used to drop promiscuity on the device.
4578 * Return 0 if successful or a negative errno code on error.
4579 */
4580 int dev_set_promiscuity(struct net_device *dev, int inc)
4581 {
4582 unsigned short old_flags = dev->flags;
4583 int err;
4584
4585 err = __dev_set_promiscuity(dev, inc);
4586 if (err < 0)
4587 return err;
4588 if (dev->flags != old_flags)
4589 dev_set_rx_mode(dev);
4590 return err;
4591 }
4592 EXPORT_SYMBOL(dev_set_promiscuity);
4593
4594 /**
4595 * dev_set_allmulti - update allmulti count on a device
4596 * @dev: device
4597 * @inc: modifier
4598 *
4599 * Add or remove reception of all multicast frames to a device. While the
4600 * count in the device remains above zero the interface remains listening
4601 * to all interfaces. Once it hits zero the device reverts back to normal
4602 * filtering operation. A negative @inc value is used to drop the counter
4603 * when releasing a resource needing all multicasts.
4604 * Return 0 if successful or a negative errno code on error.
4605 */
4606
4607 int dev_set_allmulti(struct net_device *dev, int inc)
4608 {
4609 unsigned short old_flags = dev->flags;
4610
4611 ASSERT_RTNL();
4612
4613 dev->flags |= IFF_ALLMULTI;
4614 dev->allmulti += inc;
4615 if (dev->allmulti == 0) {
4616 /*
4617 * Avoid overflow.
4618 * If inc causes overflow, untouch allmulti and return error.
4619 */
4620 if (inc < 0)
4621 dev->flags &= ~IFF_ALLMULTI;
4622 else {
4623 dev->allmulti -= inc;
4624 printk(KERN_WARNING "%s: allmulti touches roof, "
4625 "set allmulti failed, allmulti feature of "
4626 "device might be broken.\n", dev->name);
4627 return -EOVERFLOW;
4628 }
4629 }
4630 if (dev->flags ^ old_flags) {
4631 dev_change_rx_flags(dev, IFF_ALLMULTI);
4632 dev_set_rx_mode(dev);
4633 }
4634 return 0;
4635 }
4636 EXPORT_SYMBOL(dev_set_allmulti);
4637
4638 /*
4639 * Upload unicast and multicast address lists to device and
4640 * configure RX filtering. When the device doesn't support unicast
4641 * filtering it is put in promiscuous mode while unicast addresses
4642 * are present.
4643 */
4644 void __dev_set_rx_mode(struct net_device *dev)
4645 {
4646 const struct net_device_ops *ops = dev->netdev_ops;
4647
4648 /* dev_open will call this function so the list will stay sane. */
4649 if (!(dev->flags&IFF_UP))
4650 return;
4651
4652 if (!netif_device_present(dev))
4653 return;
4654
4655 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4656 /* Unicast addresses changes may only happen under the rtnl,
4657 * therefore calling __dev_set_promiscuity here is safe.
4658 */
4659 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4660 __dev_set_promiscuity(dev, 1);
4661 dev->uc_promisc = true;
4662 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4663 __dev_set_promiscuity(dev, -1);
4664 dev->uc_promisc = false;
4665 }
4666 }
4667
4668 if (ops->ndo_set_rx_mode)
4669 ops->ndo_set_rx_mode(dev);
4670 }
4671
4672 void dev_set_rx_mode(struct net_device *dev)
4673 {
4674 netif_addr_lock_bh(dev);
4675 __dev_set_rx_mode(dev);
4676 netif_addr_unlock_bh(dev);
4677 }
4678
4679 /**
4680 * dev_get_flags - get flags reported to userspace
4681 * @dev: device
4682 *
4683 * Get the combination of flag bits exported through APIs to userspace.
4684 */
4685 unsigned dev_get_flags(const struct net_device *dev)
4686 {
4687 unsigned flags;
4688
4689 flags = (dev->flags & ~(IFF_PROMISC |
4690 IFF_ALLMULTI |
4691 IFF_RUNNING |
4692 IFF_LOWER_UP |
4693 IFF_DORMANT)) |
4694 (dev->gflags & (IFF_PROMISC |
4695 IFF_ALLMULTI));
4696
4697 if (netif_running(dev)) {
4698 if (netif_oper_up(dev))
4699 flags |= IFF_RUNNING;
4700 if (netif_carrier_ok(dev))
4701 flags |= IFF_LOWER_UP;
4702 if (netif_dormant(dev))
4703 flags |= IFF_DORMANT;
4704 }
4705
4706 return flags;
4707 }
4708 EXPORT_SYMBOL(dev_get_flags);
4709
4710 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4711 {
4712 int old_flags = dev->flags;
4713 int ret;
4714
4715 ASSERT_RTNL();
4716
4717 /*
4718 * Set the flags on our device.
4719 */
4720
4721 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4722 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4723 IFF_AUTOMEDIA)) |
4724 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4725 IFF_ALLMULTI));
4726
4727 /*
4728 * Load in the correct multicast list now the flags have changed.
4729 */
4730
4731 if ((old_flags ^ flags) & IFF_MULTICAST)
4732 dev_change_rx_flags(dev, IFF_MULTICAST);
4733
4734 dev_set_rx_mode(dev);
4735
4736 /*
4737 * Have we downed the interface. We handle IFF_UP ourselves
4738 * according to user attempts to set it, rather than blindly
4739 * setting it.
4740 */
4741
4742 ret = 0;
4743 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4744 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4745
4746 if (!ret)
4747 dev_set_rx_mode(dev);
4748 }
4749
4750 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4751 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4752
4753 dev->gflags ^= IFF_PROMISC;
4754 dev_set_promiscuity(dev, inc);
4755 }
4756
4757 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4758 is important. Some (broken) drivers set IFF_PROMISC, when
4759 IFF_ALLMULTI is requested not asking us and not reporting.
4760 */
4761 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4762 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4763
4764 dev->gflags ^= IFF_ALLMULTI;
4765 dev_set_allmulti(dev, inc);
4766 }
4767
4768 return ret;
4769 }
4770
4771 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4772 {
4773 unsigned int changes = dev->flags ^ old_flags;
4774
4775 if (changes & IFF_UP) {
4776 if (dev->flags & IFF_UP)
4777 call_netdevice_notifiers(NETDEV_UP, dev);
4778 else
4779 call_netdevice_notifiers(NETDEV_DOWN, dev);
4780 }
4781
4782 if (dev->flags & IFF_UP &&
4783 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4784 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4785 }
4786
4787 /**
4788 * dev_change_flags - change device settings
4789 * @dev: device
4790 * @flags: device state flags
4791 *
4792 * Change settings on device based state flags. The flags are
4793 * in the userspace exported format.
4794 */
4795 int dev_change_flags(struct net_device *dev, unsigned flags)
4796 {
4797 int ret, changes;
4798 int old_flags = dev->flags;
4799
4800 ret = __dev_change_flags(dev, flags);
4801 if (ret < 0)
4802 return ret;
4803
4804 changes = old_flags ^ dev->flags;
4805 if (changes)
4806 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4807
4808 __dev_notify_flags(dev, old_flags);
4809 return ret;
4810 }
4811 EXPORT_SYMBOL(dev_change_flags);
4812
4813 /**
4814 * dev_set_mtu - Change maximum transfer unit
4815 * @dev: device
4816 * @new_mtu: new transfer unit
4817 *
4818 * Change the maximum transfer size of the network device.
4819 */
4820 int dev_set_mtu(struct net_device *dev, int new_mtu)
4821 {
4822 const struct net_device_ops *ops = dev->netdev_ops;
4823 int err;
4824
4825 if (new_mtu == dev->mtu)
4826 return 0;
4827
4828 /* MTU must be positive. */
4829 if (new_mtu < 0)
4830 return -EINVAL;
4831
4832 if (!netif_device_present(dev))
4833 return -ENODEV;
4834
4835 err = 0;
4836 if (ops->ndo_change_mtu)
4837 err = ops->ndo_change_mtu(dev, new_mtu);
4838 else
4839 dev->mtu = new_mtu;
4840
4841 if (!err && dev->flags & IFF_UP)
4842 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4843 return err;
4844 }
4845 EXPORT_SYMBOL(dev_set_mtu);
4846
4847 /**
4848 * dev_set_group - Change group this device belongs to
4849 * @dev: device
4850 * @new_group: group this device should belong to
4851 */
4852 void dev_set_group(struct net_device *dev, int new_group)
4853 {
4854 dev->group = new_group;
4855 }
4856 EXPORT_SYMBOL(dev_set_group);
4857
4858 /**
4859 * dev_set_mac_address - Change Media Access Control Address
4860 * @dev: device
4861 * @sa: new address
4862 *
4863 * Change the hardware (MAC) address of the device
4864 */
4865 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4866 {
4867 const struct net_device_ops *ops = dev->netdev_ops;
4868 int err;
4869
4870 if (!ops->ndo_set_mac_address)
4871 return -EOPNOTSUPP;
4872 if (sa->sa_family != dev->type)
4873 return -EINVAL;
4874 if (!netif_device_present(dev))
4875 return -ENODEV;
4876 err = ops->ndo_set_mac_address(dev, sa);
4877 if (!err)
4878 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4879 return err;
4880 }
4881 EXPORT_SYMBOL(dev_set_mac_address);
4882
4883 /*
4884 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4885 */
4886 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4887 {
4888 int err;
4889 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4890
4891 if (!dev)
4892 return -ENODEV;
4893
4894 switch (cmd) {
4895 case SIOCGIFFLAGS: /* Get interface flags */
4896 ifr->ifr_flags = (short) dev_get_flags(dev);
4897 return 0;
4898
4899 case SIOCGIFMETRIC: /* Get the metric on the interface
4900 (currently unused) */
4901 ifr->ifr_metric = 0;
4902 return 0;
4903
4904 case SIOCGIFMTU: /* Get the MTU of a device */
4905 ifr->ifr_mtu = dev->mtu;
4906 return 0;
4907
4908 case SIOCGIFHWADDR:
4909 if (!dev->addr_len)
4910 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4911 else
4912 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4913 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4914 ifr->ifr_hwaddr.sa_family = dev->type;
4915 return 0;
4916
4917 case SIOCGIFSLAVE:
4918 err = -EINVAL;
4919 break;
4920
4921 case SIOCGIFMAP:
4922 ifr->ifr_map.mem_start = dev->mem_start;
4923 ifr->ifr_map.mem_end = dev->mem_end;
4924 ifr->ifr_map.base_addr = dev->base_addr;
4925 ifr->ifr_map.irq = dev->irq;
4926 ifr->ifr_map.dma = dev->dma;
4927 ifr->ifr_map.port = dev->if_port;
4928 return 0;
4929
4930 case SIOCGIFINDEX:
4931 ifr->ifr_ifindex = dev->ifindex;
4932 return 0;
4933
4934 case SIOCGIFTXQLEN:
4935 ifr->ifr_qlen = dev->tx_queue_len;
4936 return 0;
4937
4938 default:
4939 /* dev_ioctl() should ensure this case
4940 * is never reached
4941 */
4942 WARN_ON(1);
4943 err = -ENOTTY;
4944 break;
4945
4946 }
4947 return err;
4948 }
4949
4950 /*
4951 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4952 */
4953 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4954 {
4955 int err;
4956 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4957 const struct net_device_ops *ops;
4958
4959 if (!dev)
4960 return -ENODEV;
4961
4962 ops = dev->netdev_ops;
4963
4964 switch (cmd) {
4965 case SIOCSIFFLAGS: /* Set interface flags */
4966 return dev_change_flags(dev, ifr->ifr_flags);
4967
4968 case SIOCSIFMETRIC: /* Set the metric on the interface
4969 (currently unused) */
4970 return -EOPNOTSUPP;
4971
4972 case SIOCSIFMTU: /* Set the MTU of a device */
4973 return dev_set_mtu(dev, ifr->ifr_mtu);
4974
4975 case SIOCSIFHWADDR:
4976 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4977
4978 case SIOCSIFHWBROADCAST:
4979 if (ifr->ifr_hwaddr.sa_family != dev->type)
4980 return -EINVAL;
4981 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4982 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4983 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4984 return 0;
4985
4986 case SIOCSIFMAP:
4987 if (ops->ndo_set_config) {
4988 if (!netif_device_present(dev))
4989 return -ENODEV;
4990 return ops->ndo_set_config(dev, &ifr->ifr_map);
4991 }
4992 return -EOPNOTSUPP;
4993
4994 case SIOCADDMULTI:
4995 if (!ops->ndo_set_rx_mode ||
4996 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4997 return -EINVAL;
4998 if (!netif_device_present(dev))
4999 return -ENODEV;
5000 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
5001
5002 case SIOCDELMULTI:
5003 if (!ops->ndo_set_rx_mode ||
5004 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5005 return -EINVAL;
5006 if (!netif_device_present(dev))
5007 return -ENODEV;
5008 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5009
5010 case SIOCSIFTXQLEN:
5011 if (ifr->ifr_qlen < 0)
5012 return -EINVAL;
5013 dev->tx_queue_len = ifr->ifr_qlen;
5014 return 0;
5015
5016 case SIOCSIFNAME:
5017 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5018 return dev_change_name(dev, ifr->ifr_newname);
5019
5020 case SIOCSHWTSTAMP:
5021 err = net_hwtstamp_validate(ifr);
5022 if (err)
5023 return err;
5024 /* fall through */
5025
5026 /*
5027 * Unknown or private ioctl
5028 */
5029 default:
5030 if ((cmd >= SIOCDEVPRIVATE &&
5031 cmd <= SIOCDEVPRIVATE + 15) ||
5032 cmd == SIOCBONDENSLAVE ||
5033 cmd == SIOCBONDRELEASE ||
5034 cmd == SIOCBONDSETHWADDR ||
5035 cmd == SIOCBONDSLAVEINFOQUERY ||
5036 cmd == SIOCBONDINFOQUERY ||
5037 cmd == SIOCBONDCHANGEACTIVE ||
5038 cmd == SIOCGMIIPHY ||
5039 cmd == SIOCGMIIREG ||
5040 cmd == SIOCSMIIREG ||
5041 cmd == SIOCBRADDIF ||
5042 cmd == SIOCBRDELIF ||
5043 cmd == SIOCSHWTSTAMP ||
5044 cmd == SIOCWANDEV) {
5045 err = -EOPNOTSUPP;
5046 if (ops->ndo_do_ioctl) {
5047 if (netif_device_present(dev))
5048 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5049 else
5050 err = -ENODEV;
5051 }
5052 } else
5053 err = -EINVAL;
5054
5055 }
5056 return err;
5057 }
5058
5059 /*
5060 * This function handles all "interface"-type I/O control requests. The actual
5061 * 'doing' part of this is dev_ifsioc above.
5062 */
5063
5064 /**
5065 * dev_ioctl - network device ioctl
5066 * @net: the applicable net namespace
5067 * @cmd: command to issue
5068 * @arg: pointer to a struct ifreq in user space
5069 *
5070 * Issue ioctl functions to devices. This is normally called by the
5071 * user space syscall interfaces but can sometimes be useful for
5072 * other purposes. The return value is the return from the syscall if
5073 * positive or a negative errno code on error.
5074 */
5075
5076 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5077 {
5078 struct ifreq ifr;
5079 int ret;
5080 char *colon;
5081
5082 /* One special case: SIOCGIFCONF takes ifconf argument
5083 and requires shared lock, because it sleeps writing
5084 to user space.
5085 */
5086
5087 if (cmd == SIOCGIFCONF) {
5088 rtnl_lock();
5089 ret = dev_ifconf(net, (char __user *) arg);
5090 rtnl_unlock();
5091 return ret;
5092 }
5093 if (cmd == SIOCGIFNAME)
5094 return dev_ifname(net, (struct ifreq __user *)arg);
5095
5096 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5097 return -EFAULT;
5098
5099 ifr.ifr_name[IFNAMSIZ-1] = 0;
5100
5101 colon = strchr(ifr.ifr_name, ':');
5102 if (colon)
5103 *colon = 0;
5104
5105 /*
5106 * See which interface the caller is talking about.
5107 */
5108
5109 switch (cmd) {
5110 /*
5111 * These ioctl calls:
5112 * - can be done by all.
5113 * - atomic and do not require locking.
5114 * - return a value
5115 */
5116 case SIOCGIFFLAGS:
5117 case SIOCGIFMETRIC:
5118 case SIOCGIFMTU:
5119 case SIOCGIFHWADDR:
5120 case SIOCGIFSLAVE:
5121 case SIOCGIFMAP:
5122 case SIOCGIFINDEX:
5123 case SIOCGIFTXQLEN:
5124 dev_load(net, ifr.ifr_name);
5125 rcu_read_lock();
5126 ret = dev_ifsioc_locked(net, &ifr, cmd);
5127 rcu_read_unlock();
5128 if (!ret) {
5129 if (colon)
5130 *colon = ':';
5131 if (copy_to_user(arg, &ifr,
5132 sizeof(struct ifreq)))
5133 ret = -EFAULT;
5134 }
5135 return ret;
5136
5137 case SIOCETHTOOL:
5138 dev_load(net, ifr.ifr_name);
5139 rtnl_lock();
5140 ret = dev_ethtool(net, &ifr);
5141 rtnl_unlock();
5142 if (!ret) {
5143 if (colon)
5144 *colon = ':';
5145 if (copy_to_user(arg, &ifr,
5146 sizeof(struct ifreq)))
5147 ret = -EFAULT;
5148 }
5149 return ret;
5150
5151 /*
5152 * These ioctl calls:
5153 * - require superuser power.
5154 * - require strict serialization.
5155 * - return a value
5156 */
5157 case SIOCGMIIPHY:
5158 case SIOCGMIIREG:
5159 case SIOCSIFNAME:
5160 if (!capable(CAP_NET_ADMIN))
5161 return -EPERM;
5162 dev_load(net, ifr.ifr_name);
5163 rtnl_lock();
5164 ret = dev_ifsioc(net, &ifr, cmd);
5165 rtnl_unlock();
5166 if (!ret) {
5167 if (colon)
5168 *colon = ':';
5169 if (copy_to_user(arg, &ifr,
5170 sizeof(struct ifreq)))
5171 ret = -EFAULT;
5172 }
5173 return ret;
5174
5175 /*
5176 * These ioctl calls:
5177 * - require superuser power.
5178 * - require strict serialization.
5179 * - do not return a value
5180 */
5181 case SIOCSIFFLAGS:
5182 case SIOCSIFMETRIC:
5183 case SIOCSIFMTU:
5184 case SIOCSIFMAP:
5185 case SIOCSIFHWADDR:
5186 case SIOCSIFSLAVE:
5187 case SIOCADDMULTI:
5188 case SIOCDELMULTI:
5189 case SIOCSIFHWBROADCAST:
5190 case SIOCSIFTXQLEN:
5191 case SIOCSMIIREG:
5192 case SIOCBONDENSLAVE:
5193 case SIOCBONDRELEASE:
5194 case SIOCBONDSETHWADDR:
5195 case SIOCBONDCHANGEACTIVE:
5196 case SIOCBRADDIF:
5197 case SIOCBRDELIF:
5198 case SIOCSHWTSTAMP:
5199 if (!capable(CAP_NET_ADMIN))
5200 return -EPERM;
5201 /* fall through */
5202 case SIOCBONDSLAVEINFOQUERY:
5203 case SIOCBONDINFOQUERY:
5204 dev_load(net, ifr.ifr_name);
5205 rtnl_lock();
5206 ret = dev_ifsioc(net, &ifr, cmd);
5207 rtnl_unlock();
5208 return ret;
5209
5210 case SIOCGIFMEM:
5211 /* Get the per device memory space. We can add this but
5212 * currently do not support it */
5213 case SIOCSIFMEM:
5214 /* Set the per device memory buffer space.
5215 * Not applicable in our case */
5216 case SIOCSIFLINK:
5217 return -ENOTTY;
5218
5219 /*
5220 * Unknown or private ioctl.
5221 */
5222 default:
5223 if (cmd == SIOCWANDEV ||
5224 (cmd >= SIOCDEVPRIVATE &&
5225 cmd <= SIOCDEVPRIVATE + 15)) {
5226 dev_load(net, ifr.ifr_name);
5227 rtnl_lock();
5228 ret = dev_ifsioc(net, &ifr, cmd);
5229 rtnl_unlock();
5230 if (!ret && copy_to_user(arg, &ifr,
5231 sizeof(struct ifreq)))
5232 ret = -EFAULT;
5233 return ret;
5234 }
5235 /* Take care of Wireless Extensions */
5236 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5237 return wext_handle_ioctl(net, &ifr, cmd, arg);
5238 return -ENOTTY;
5239 }
5240 }
5241
5242
5243 /**
5244 * dev_new_index - allocate an ifindex
5245 * @net: the applicable net namespace
5246 *
5247 * Returns a suitable unique value for a new device interface
5248 * number. The caller must hold the rtnl semaphore or the
5249 * dev_base_lock to be sure it remains unique.
5250 */
5251 static int dev_new_index(struct net *net)
5252 {
5253 static int ifindex;
5254 for (;;) {
5255 if (++ifindex <= 0)
5256 ifindex = 1;
5257 if (!__dev_get_by_index(net, ifindex))
5258 return ifindex;
5259 }
5260 }
5261
5262 /* Delayed registration/unregisteration */
5263 static LIST_HEAD(net_todo_list);
5264
5265 static void net_set_todo(struct net_device *dev)
5266 {
5267 list_add_tail(&dev->todo_list, &net_todo_list);
5268 }
5269
5270 static void rollback_registered_many(struct list_head *head)
5271 {
5272 struct net_device *dev, *tmp;
5273
5274 BUG_ON(dev_boot_phase);
5275 ASSERT_RTNL();
5276
5277 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5278 /* Some devices call without registering
5279 * for initialization unwind. Remove those
5280 * devices and proceed with the remaining.
5281 */
5282 if (dev->reg_state == NETREG_UNINITIALIZED) {
5283 pr_debug("unregister_netdevice: device %s/%p never "
5284 "was registered\n", dev->name, dev);
5285
5286 WARN_ON(1);
5287 list_del(&dev->unreg_list);
5288 continue;
5289 }
5290 dev->dismantle = true;
5291 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5292 }
5293
5294 /* If device is running, close it first. */
5295 dev_close_many(head);
5296
5297 list_for_each_entry(dev, head, unreg_list) {
5298 /* And unlink it from device chain. */
5299 unlist_netdevice(dev);
5300
5301 dev->reg_state = NETREG_UNREGISTERING;
5302 }
5303
5304 synchronize_net();
5305
5306 list_for_each_entry(dev, head, unreg_list) {
5307 /* Shutdown queueing discipline. */
5308 dev_shutdown(dev);
5309
5310
5311 /* Notify protocols, that we are about to destroy
5312 this device. They should clean all the things.
5313 */
5314 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5315
5316 if (!dev->rtnl_link_ops ||
5317 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5318 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5319
5320 /*
5321 * Flush the unicast and multicast chains
5322 */
5323 dev_uc_flush(dev);
5324 dev_mc_flush(dev);
5325
5326 if (dev->netdev_ops->ndo_uninit)
5327 dev->netdev_ops->ndo_uninit(dev);
5328
5329 /* Notifier chain MUST detach us from master device. */
5330 WARN_ON(dev->master);
5331
5332 /* Remove entries from kobject tree */
5333 netdev_unregister_kobject(dev);
5334 }
5335
5336 /* Process any work delayed until the end of the batch */
5337 dev = list_first_entry(head, struct net_device, unreg_list);
5338 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5339
5340 synchronize_net();
5341
5342 list_for_each_entry(dev, head, unreg_list)
5343 dev_put(dev);
5344 }
5345
5346 static void rollback_registered(struct net_device *dev)
5347 {
5348 LIST_HEAD(single);
5349
5350 list_add(&dev->unreg_list, &single);
5351 rollback_registered_many(&single);
5352 list_del(&single);
5353 }
5354
5355 static netdev_features_t netdev_fix_features(struct net_device *dev,
5356 netdev_features_t features)
5357 {
5358 /* Fix illegal checksum combinations */
5359 if ((features & NETIF_F_HW_CSUM) &&
5360 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5361 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5362 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5363 }
5364
5365 if ((features & NETIF_F_NO_CSUM) &&
5366 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5367 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5368 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5369 }
5370
5371 /* Fix illegal SG+CSUM combinations. */
5372 if ((features & NETIF_F_SG) &&
5373 !(features & NETIF_F_ALL_CSUM)) {
5374 netdev_dbg(dev,
5375 "Dropping NETIF_F_SG since no checksum feature.\n");
5376 features &= ~NETIF_F_SG;
5377 }
5378
5379 /* TSO requires that SG is present as well. */
5380 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5381 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5382 features &= ~NETIF_F_ALL_TSO;
5383 }
5384
5385 /* TSO ECN requires that TSO is present as well. */
5386 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5387 features &= ~NETIF_F_TSO_ECN;
5388
5389 /* Software GSO depends on SG. */
5390 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5391 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5392 features &= ~NETIF_F_GSO;
5393 }
5394
5395 /* UFO needs SG and checksumming */
5396 if (features & NETIF_F_UFO) {
5397 /* maybe split UFO into V4 and V6? */
5398 if (!((features & NETIF_F_GEN_CSUM) ||
5399 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5400 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5401 netdev_dbg(dev,
5402 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5403 features &= ~NETIF_F_UFO;
5404 }
5405
5406 if (!(features & NETIF_F_SG)) {
5407 netdev_dbg(dev,
5408 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5409 features &= ~NETIF_F_UFO;
5410 }
5411 }
5412
5413 return features;
5414 }
5415
5416 int __netdev_update_features(struct net_device *dev)
5417 {
5418 netdev_features_t features;
5419 int err = 0;
5420
5421 ASSERT_RTNL();
5422
5423 features = netdev_get_wanted_features(dev);
5424
5425 if (dev->netdev_ops->ndo_fix_features)
5426 features = dev->netdev_ops->ndo_fix_features(dev, features);
5427
5428 /* driver might be less strict about feature dependencies */
5429 features = netdev_fix_features(dev, features);
5430
5431 if (dev->features == features)
5432 return 0;
5433
5434 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5435 &dev->features, &features);
5436
5437 if (dev->netdev_ops->ndo_set_features)
5438 err = dev->netdev_ops->ndo_set_features(dev, features);
5439
5440 if (unlikely(err < 0)) {
5441 netdev_err(dev,
5442 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5443 err, &features, &dev->features);
5444 return -1;
5445 }
5446
5447 if (!err)
5448 dev->features = features;
5449
5450 return 1;
5451 }
5452
5453 /**
5454 * netdev_update_features - recalculate device features
5455 * @dev: the device to check
5456 *
5457 * Recalculate dev->features set and send notifications if it
5458 * has changed. Should be called after driver or hardware dependent
5459 * conditions might have changed that influence the features.
5460 */
5461 void netdev_update_features(struct net_device *dev)
5462 {
5463 if (__netdev_update_features(dev))
5464 netdev_features_change(dev);
5465 }
5466 EXPORT_SYMBOL(netdev_update_features);
5467
5468 /**
5469 * netdev_change_features - recalculate device features
5470 * @dev: the device to check
5471 *
5472 * Recalculate dev->features set and send notifications even
5473 * if they have not changed. Should be called instead of
5474 * netdev_update_features() if also dev->vlan_features might
5475 * have changed to allow the changes to be propagated to stacked
5476 * VLAN devices.
5477 */
5478 void netdev_change_features(struct net_device *dev)
5479 {
5480 __netdev_update_features(dev);
5481 netdev_features_change(dev);
5482 }
5483 EXPORT_SYMBOL(netdev_change_features);
5484
5485 /**
5486 * netif_stacked_transfer_operstate - transfer operstate
5487 * @rootdev: the root or lower level device to transfer state from
5488 * @dev: the device to transfer operstate to
5489 *
5490 * Transfer operational state from root to device. This is normally
5491 * called when a stacking relationship exists between the root
5492 * device and the device(a leaf device).
5493 */
5494 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5495 struct net_device *dev)
5496 {
5497 if (rootdev->operstate == IF_OPER_DORMANT)
5498 netif_dormant_on(dev);
5499 else
5500 netif_dormant_off(dev);
5501
5502 if (netif_carrier_ok(rootdev)) {
5503 if (!netif_carrier_ok(dev))
5504 netif_carrier_on(dev);
5505 } else {
5506 if (netif_carrier_ok(dev))
5507 netif_carrier_off(dev);
5508 }
5509 }
5510 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5511
5512 #ifdef CONFIG_RPS
5513 static int netif_alloc_rx_queues(struct net_device *dev)
5514 {
5515 unsigned int i, count = dev->num_rx_queues;
5516 struct netdev_rx_queue *rx;
5517
5518 BUG_ON(count < 1);
5519
5520 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5521 if (!rx) {
5522 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5523 return -ENOMEM;
5524 }
5525 dev->_rx = rx;
5526
5527 for (i = 0; i < count; i++)
5528 rx[i].dev = dev;
5529 return 0;
5530 }
5531 #endif
5532
5533 static void netdev_init_one_queue(struct net_device *dev,
5534 struct netdev_queue *queue, void *_unused)
5535 {
5536 /* Initialize queue lock */
5537 spin_lock_init(&queue->_xmit_lock);
5538 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5539 queue->xmit_lock_owner = -1;
5540 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5541 queue->dev = dev;
5542 }
5543
5544 static int netif_alloc_netdev_queues(struct net_device *dev)
5545 {
5546 unsigned int count = dev->num_tx_queues;
5547 struct netdev_queue *tx;
5548
5549 BUG_ON(count < 1);
5550
5551 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5552 if (!tx) {
5553 pr_err("netdev: Unable to allocate %u tx queues.\n",
5554 count);
5555 return -ENOMEM;
5556 }
5557 dev->_tx = tx;
5558
5559 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5560 spin_lock_init(&dev->tx_global_lock);
5561
5562 return 0;
5563 }
5564
5565 /**
5566 * register_netdevice - register a network device
5567 * @dev: device to register
5568 *
5569 * Take a completed network device structure and add it to the kernel
5570 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5571 * chain. 0 is returned on success. A negative errno code is returned
5572 * on a failure to set up the device, or if the name is a duplicate.
5573 *
5574 * Callers must hold the rtnl semaphore. You may want
5575 * register_netdev() instead of this.
5576 *
5577 * BUGS:
5578 * The locking appears insufficient to guarantee two parallel registers
5579 * will not get the same name.
5580 */
5581
5582 int register_netdevice(struct net_device *dev)
5583 {
5584 int ret;
5585 struct net *net = dev_net(dev);
5586
5587 BUG_ON(dev_boot_phase);
5588 ASSERT_RTNL();
5589
5590 might_sleep();
5591
5592 /* When net_device's are persistent, this will be fatal. */
5593 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5594 BUG_ON(!net);
5595
5596 spin_lock_init(&dev->addr_list_lock);
5597 netdev_set_addr_lockdep_class(dev);
5598
5599 dev->iflink = -1;
5600
5601 ret = dev_get_valid_name(dev, dev->name);
5602 if (ret < 0)
5603 goto out;
5604
5605 /* Init, if this function is available */
5606 if (dev->netdev_ops->ndo_init) {
5607 ret = dev->netdev_ops->ndo_init(dev);
5608 if (ret) {
5609 if (ret > 0)
5610 ret = -EIO;
5611 goto out;
5612 }
5613 }
5614
5615 dev->ifindex = dev_new_index(net);
5616 if (dev->iflink == -1)
5617 dev->iflink = dev->ifindex;
5618
5619 /* Transfer changeable features to wanted_features and enable
5620 * software offloads (GSO and GRO).
5621 */
5622 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5623 dev->features |= NETIF_F_SOFT_FEATURES;
5624 dev->wanted_features = dev->features & dev->hw_features;
5625
5626 /* Turn on no cache copy if HW is doing checksum */
5627 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5628 if ((dev->features & NETIF_F_ALL_CSUM) &&
5629 !(dev->features & NETIF_F_NO_CSUM)) {
5630 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5631 dev->features |= NETIF_F_NOCACHE_COPY;
5632 }
5633
5634 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5635 */
5636 dev->vlan_features |= NETIF_F_HIGHDMA;
5637
5638 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5639 ret = notifier_to_errno(ret);
5640 if (ret)
5641 goto err_uninit;
5642
5643 ret = netdev_register_kobject(dev);
5644 if (ret)
5645 goto err_uninit;
5646 dev->reg_state = NETREG_REGISTERED;
5647
5648 __netdev_update_features(dev);
5649
5650 /*
5651 * Default initial state at registry is that the
5652 * device is present.
5653 */
5654
5655 set_bit(__LINK_STATE_PRESENT, &dev->state);
5656
5657 dev_init_scheduler(dev);
5658 dev_hold(dev);
5659 list_netdevice(dev);
5660
5661 /* Notify protocols, that a new device appeared. */
5662 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5663 ret = notifier_to_errno(ret);
5664 if (ret) {
5665 rollback_registered(dev);
5666 dev->reg_state = NETREG_UNREGISTERED;
5667 }
5668 /*
5669 * Prevent userspace races by waiting until the network
5670 * device is fully setup before sending notifications.
5671 */
5672 if (!dev->rtnl_link_ops ||
5673 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5674 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5675
5676 out:
5677 return ret;
5678
5679 err_uninit:
5680 if (dev->netdev_ops->ndo_uninit)
5681 dev->netdev_ops->ndo_uninit(dev);
5682 goto out;
5683 }
5684 EXPORT_SYMBOL(register_netdevice);
5685
5686 /**
5687 * init_dummy_netdev - init a dummy network device for NAPI
5688 * @dev: device to init
5689 *
5690 * This takes a network device structure and initialize the minimum
5691 * amount of fields so it can be used to schedule NAPI polls without
5692 * registering a full blown interface. This is to be used by drivers
5693 * that need to tie several hardware interfaces to a single NAPI
5694 * poll scheduler due to HW limitations.
5695 */
5696 int init_dummy_netdev(struct net_device *dev)
5697 {
5698 /* Clear everything. Note we don't initialize spinlocks
5699 * are they aren't supposed to be taken by any of the
5700 * NAPI code and this dummy netdev is supposed to be
5701 * only ever used for NAPI polls
5702 */
5703 memset(dev, 0, sizeof(struct net_device));
5704
5705 /* make sure we BUG if trying to hit standard
5706 * register/unregister code path
5707 */
5708 dev->reg_state = NETREG_DUMMY;
5709
5710 /* NAPI wants this */
5711 INIT_LIST_HEAD(&dev->napi_list);
5712
5713 /* a dummy interface is started by default */
5714 set_bit(__LINK_STATE_PRESENT, &dev->state);
5715 set_bit(__LINK_STATE_START, &dev->state);
5716
5717 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5718 * because users of this 'device' dont need to change
5719 * its refcount.
5720 */
5721
5722 return 0;
5723 }
5724 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5725
5726
5727 /**
5728 * register_netdev - register a network device
5729 * @dev: device to register
5730 *
5731 * Take a completed network device structure and add it to the kernel
5732 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5733 * chain. 0 is returned on success. A negative errno code is returned
5734 * on a failure to set up the device, or if the name is a duplicate.
5735 *
5736 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5737 * and expands the device name if you passed a format string to
5738 * alloc_netdev.
5739 */
5740 int register_netdev(struct net_device *dev)
5741 {
5742 int err;
5743
5744 rtnl_lock();
5745 err = register_netdevice(dev);
5746 rtnl_unlock();
5747 return err;
5748 }
5749 EXPORT_SYMBOL(register_netdev);
5750
5751 int netdev_refcnt_read(const struct net_device *dev)
5752 {
5753 int i, refcnt = 0;
5754
5755 for_each_possible_cpu(i)
5756 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5757 return refcnt;
5758 }
5759 EXPORT_SYMBOL(netdev_refcnt_read);
5760
5761 /*
5762 * netdev_wait_allrefs - wait until all references are gone.
5763 *
5764 * This is called when unregistering network devices.
5765 *
5766 * Any protocol or device that holds a reference should register
5767 * for netdevice notification, and cleanup and put back the
5768 * reference if they receive an UNREGISTER event.
5769 * We can get stuck here if buggy protocols don't correctly
5770 * call dev_put.
5771 */
5772 static void netdev_wait_allrefs(struct net_device *dev)
5773 {
5774 unsigned long rebroadcast_time, warning_time;
5775 int refcnt;
5776
5777 linkwatch_forget_dev(dev);
5778
5779 rebroadcast_time = warning_time = jiffies;
5780 refcnt = netdev_refcnt_read(dev);
5781
5782 while (refcnt != 0) {
5783 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5784 rtnl_lock();
5785
5786 /* Rebroadcast unregister notification */
5787 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5788 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5789 * should have already handle it the first time */
5790
5791 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5792 &dev->state)) {
5793 /* We must not have linkwatch events
5794 * pending on unregister. If this
5795 * happens, we simply run the queue
5796 * unscheduled, resulting in a noop
5797 * for this device.
5798 */
5799 linkwatch_run_queue();
5800 }
5801
5802 __rtnl_unlock();
5803
5804 rebroadcast_time = jiffies;
5805 }
5806
5807 msleep(250);
5808
5809 refcnt = netdev_refcnt_read(dev);
5810
5811 if (time_after(jiffies, warning_time + 10 * HZ)) {
5812 printk(KERN_EMERG "unregister_netdevice: "
5813 "waiting for %s to become free. Usage "
5814 "count = %d\n",
5815 dev->name, refcnt);
5816 warning_time = jiffies;
5817 }
5818 }
5819 }
5820
5821 /* The sequence is:
5822 *
5823 * rtnl_lock();
5824 * ...
5825 * register_netdevice(x1);
5826 * register_netdevice(x2);
5827 * ...
5828 * unregister_netdevice(y1);
5829 * unregister_netdevice(y2);
5830 * ...
5831 * rtnl_unlock();
5832 * free_netdev(y1);
5833 * free_netdev(y2);
5834 *
5835 * We are invoked by rtnl_unlock().
5836 * This allows us to deal with problems:
5837 * 1) We can delete sysfs objects which invoke hotplug
5838 * without deadlocking with linkwatch via keventd.
5839 * 2) Since we run with the RTNL semaphore not held, we can sleep
5840 * safely in order to wait for the netdev refcnt to drop to zero.
5841 *
5842 * We must not return until all unregister events added during
5843 * the interval the lock was held have been completed.
5844 */
5845 void netdev_run_todo(void)
5846 {
5847 struct list_head list;
5848
5849 /* Snapshot list, allow later requests */
5850 list_replace_init(&net_todo_list, &list);
5851
5852 __rtnl_unlock();
5853
5854 /* Wait for rcu callbacks to finish before attempting to drain
5855 * the device list. This usually avoids a 250ms wait.
5856 */
5857 if (!list_empty(&list))
5858 rcu_barrier();
5859
5860 while (!list_empty(&list)) {
5861 struct net_device *dev
5862 = list_first_entry(&list, struct net_device, todo_list);
5863 list_del(&dev->todo_list);
5864
5865 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5866 printk(KERN_ERR "network todo '%s' but state %d\n",
5867 dev->name, dev->reg_state);
5868 dump_stack();
5869 continue;
5870 }
5871
5872 dev->reg_state = NETREG_UNREGISTERED;
5873
5874 on_each_cpu(flush_backlog, dev, 1);
5875
5876 netdev_wait_allrefs(dev);
5877
5878 /* paranoia */
5879 BUG_ON(netdev_refcnt_read(dev));
5880 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5881 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5882 WARN_ON(dev->dn_ptr);
5883
5884 if (dev->destructor)
5885 dev->destructor(dev);
5886
5887 /* Free network device */
5888 kobject_put(&dev->dev.kobj);
5889 }
5890 }
5891
5892 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5893 * fields in the same order, with only the type differing.
5894 */
5895 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5896 const struct net_device_stats *netdev_stats)
5897 {
5898 #if BITS_PER_LONG == 64
5899 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5900 memcpy(stats64, netdev_stats, sizeof(*stats64));
5901 #else
5902 size_t i, n = sizeof(*stats64) / sizeof(u64);
5903 const unsigned long *src = (const unsigned long *)netdev_stats;
5904 u64 *dst = (u64 *)stats64;
5905
5906 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5907 sizeof(*stats64) / sizeof(u64));
5908 for (i = 0; i < n; i++)
5909 dst[i] = src[i];
5910 #endif
5911 }
5912
5913 /**
5914 * dev_get_stats - get network device statistics
5915 * @dev: device to get statistics from
5916 * @storage: place to store stats
5917 *
5918 * Get network statistics from device. Return @storage.
5919 * The device driver may provide its own method by setting
5920 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5921 * otherwise the internal statistics structure is used.
5922 */
5923 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5924 struct rtnl_link_stats64 *storage)
5925 {
5926 const struct net_device_ops *ops = dev->netdev_ops;
5927
5928 if (ops->ndo_get_stats64) {
5929 memset(storage, 0, sizeof(*storage));
5930 ops->ndo_get_stats64(dev, storage);
5931 } else if (ops->ndo_get_stats) {
5932 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5933 } else {
5934 netdev_stats_to_stats64(storage, &dev->stats);
5935 }
5936 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5937 return storage;
5938 }
5939 EXPORT_SYMBOL(dev_get_stats);
5940
5941 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5942 {
5943 struct netdev_queue *queue = dev_ingress_queue(dev);
5944
5945 #ifdef CONFIG_NET_CLS_ACT
5946 if (queue)
5947 return queue;
5948 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5949 if (!queue)
5950 return NULL;
5951 netdev_init_one_queue(dev, queue, NULL);
5952 queue->qdisc = &noop_qdisc;
5953 queue->qdisc_sleeping = &noop_qdisc;
5954 rcu_assign_pointer(dev->ingress_queue, queue);
5955 #endif
5956 return queue;
5957 }
5958
5959 /**
5960 * alloc_netdev_mqs - allocate network device
5961 * @sizeof_priv: size of private data to allocate space for
5962 * @name: device name format string
5963 * @setup: callback to initialize device
5964 * @txqs: the number of TX subqueues to allocate
5965 * @rxqs: the number of RX subqueues to allocate
5966 *
5967 * Allocates a struct net_device with private data area for driver use
5968 * and performs basic initialization. Also allocates subquue structs
5969 * for each queue on the device.
5970 */
5971 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5972 void (*setup)(struct net_device *),
5973 unsigned int txqs, unsigned int rxqs)
5974 {
5975 struct net_device *dev;
5976 size_t alloc_size;
5977 struct net_device *p;
5978
5979 BUG_ON(strlen(name) >= sizeof(dev->name));
5980
5981 if (txqs < 1) {
5982 pr_err("alloc_netdev: Unable to allocate device "
5983 "with zero queues.\n");
5984 return NULL;
5985 }
5986
5987 #ifdef CONFIG_RPS
5988 if (rxqs < 1) {
5989 pr_err("alloc_netdev: Unable to allocate device "
5990 "with zero RX queues.\n");
5991 return NULL;
5992 }
5993 #endif
5994
5995 alloc_size = sizeof(struct net_device);
5996 if (sizeof_priv) {
5997 /* ensure 32-byte alignment of private area */
5998 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5999 alloc_size += sizeof_priv;
6000 }
6001 /* ensure 32-byte alignment of whole construct */
6002 alloc_size += NETDEV_ALIGN - 1;
6003
6004 p = kzalloc(alloc_size, GFP_KERNEL);
6005 if (!p) {
6006 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
6007 return NULL;
6008 }
6009
6010 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6011 dev->padded = (char *)dev - (char *)p;
6012
6013 dev->pcpu_refcnt = alloc_percpu(int);
6014 if (!dev->pcpu_refcnt)
6015 goto free_p;
6016
6017 if (dev_addr_init(dev))
6018 goto free_pcpu;
6019
6020 dev_mc_init(dev);
6021 dev_uc_init(dev);
6022
6023 dev_net_set(dev, &init_net);
6024
6025 dev->gso_max_size = GSO_MAX_SIZE;
6026
6027 INIT_LIST_HEAD(&dev->napi_list);
6028 INIT_LIST_HEAD(&dev->unreg_list);
6029 INIT_LIST_HEAD(&dev->link_watch_list);
6030 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6031 setup(dev);
6032
6033 dev->num_tx_queues = txqs;
6034 dev->real_num_tx_queues = txqs;
6035 if (netif_alloc_netdev_queues(dev))
6036 goto free_all;
6037
6038 #ifdef CONFIG_RPS
6039 dev->num_rx_queues = rxqs;
6040 dev->real_num_rx_queues = rxqs;
6041 if (netif_alloc_rx_queues(dev))
6042 goto free_all;
6043 #endif
6044
6045 strcpy(dev->name, name);
6046 dev->group = INIT_NETDEV_GROUP;
6047 return dev;
6048
6049 free_all:
6050 free_netdev(dev);
6051 return NULL;
6052
6053 free_pcpu:
6054 free_percpu(dev->pcpu_refcnt);
6055 kfree(dev->_tx);
6056 #ifdef CONFIG_RPS
6057 kfree(dev->_rx);
6058 #endif
6059
6060 free_p:
6061 kfree(p);
6062 return NULL;
6063 }
6064 EXPORT_SYMBOL(alloc_netdev_mqs);
6065
6066 /**
6067 * free_netdev - free network device
6068 * @dev: device
6069 *
6070 * This function does the last stage of destroying an allocated device
6071 * interface. The reference to the device object is released.
6072 * If this is the last reference then it will be freed.
6073 */
6074 void free_netdev(struct net_device *dev)
6075 {
6076 struct napi_struct *p, *n;
6077
6078 release_net(dev_net(dev));
6079
6080 kfree(dev->_tx);
6081 #ifdef CONFIG_RPS
6082 kfree(dev->_rx);
6083 #endif
6084
6085 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6086
6087 /* Flush device addresses */
6088 dev_addr_flush(dev);
6089
6090 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6091 netif_napi_del(p);
6092
6093 free_percpu(dev->pcpu_refcnt);
6094 dev->pcpu_refcnt = NULL;
6095
6096 /* Compatibility with error handling in drivers */
6097 if (dev->reg_state == NETREG_UNINITIALIZED) {
6098 kfree((char *)dev - dev->padded);
6099 return;
6100 }
6101
6102 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6103 dev->reg_state = NETREG_RELEASED;
6104
6105 /* will free via device release */
6106 put_device(&dev->dev);
6107 }
6108 EXPORT_SYMBOL(free_netdev);
6109
6110 /**
6111 * synchronize_net - Synchronize with packet receive processing
6112 *
6113 * Wait for packets currently being received to be done.
6114 * Does not block later packets from starting.
6115 */
6116 void synchronize_net(void)
6117 {
6118 might_sleep();
6119 if (rtnl_is_locked())
6120 synchronize_rcu_expedited();
6121 else
6122 synchronize_rcu();
6123 }
6124 EXPORT_SYMBOL(synchronize_net);
6125
6126 /**
6127 * unregister_netdevice_queue - remove device from the kernel
6128 * @dev: device
6129 * @head: list
6130 *
6131 * This function shuts down a device interface and removes it
6132 * from the kernel tables.
6133 * If head not NULL, device is queued to be unregistered later.
6134 *
6135 * Callers must hold the rtnl semaphore. You may want
6136 * unregister_netdev() instead of this.
6137 */
6138
6139 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6140 {
6141 ASSERT_RTNL();
6142
6143 if (head) {
6144 list_move_tail(&dev->unreg_list, head);
6145 } else {
6146 rollback_registered(dev);
6147 /* Finish processing unregister after unlock */
6148 net_set_todo(dev);
6149 }
6150 }
6151 EXPORT_SYMBOL(unregister_netdevice_queue);
6152
6153 /**
6154 * unregister_netdevice_many - unregister many devices
6155 * @head: list of devices
6156 */
6157 void unregister_netdevice_many(struct list_head *head)
6158 {
6159 struct net_device *dev;
6160
6161 if (!list_empty(head)) {
6162 rollback_registered_many(head);
6163 list_for_each_entry(dev, head, unreg_list)
6164 net_set_todo(dev);
6165 }
6166 }
6167 EXPORT_SYMBOL(unregister_netdevice_many);
6168
6169 /**
6170 * unregister_netdev - remove device from the kernel
6171 * @dev: device
6172 *
6173 * This function shuts down a device interface and removes it
6174 * from the kernel tables.
6175 *
6176 * This is just a wrapper for unregister_netdevice that takes
6177 * the rtnl semaphore. In general you want to use this and not
6178 * unregister_netdevice.
6179 */
6180 void unregister_netdev(struct net_device *dev)
6181 {
6182 rtnl_lock();
6183 unregister_netdevice(dev);
6184 rtnl_unlock();
6185 }
6186 EXPORT_SYMBOL(unregister_netdev);
6187
6188 /**
6189 * dev_change_net_namespace - move device to different nethost namespace
6190 * @dev: device
6191 * @net: network namespace
6192 * @pat: If not NULL name pattern to try if the current device name
6193 * is already taken in the destination network namespace.
6194 *
6195 * This function shuts down a device interface and moves it
6196 * to a new network namespace. On success 0 is returned, on
6197 * a failure a netagive errno code is returned.
6198 *
6199 * Callers must hold the rtnl semaphore.
6200 */
6201
6202 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6203 {
6204 int err;
6205
6206 ASSERT_RTNL();
6207
6208 /* Don't allow namespace local devices to be moved. */
6209 err = -EINVAL;
6210 if (dev->features & NETIF_F_NETNS_LOCAL)
6211 goto out;
6212
6213 /* Ensure the device has been registrered */
6214 err = -EINVAL;
6215 if (dev->reg_state != NETREG_REGISTERED)
6216 goto out;
6217
6218 /* Get out if there is nothing todo */
6219 err = 0;
6220 if (net_eq(dev_net(dev), net))
6221 goto out;
6222
6223 /* Pick the destination device name, and ensure
6224 * we can use it in the destination network namespace.
6225 */
6226 err = -EEXIST;
6227 if (__dev_get_by_name(net, dev->name)) {
6228 /* We get here if we can't use the current device name */
6229 if (!pat)
6230 goto out;
6231 if (dev_get_valid_name(dev, pat) < 0)
6232 goto out;
6233 }
6234
6235 /*
6236 * And now a mini version of register_netdevice unregister_netdevice.
6237 */
6238
6239 /* If device is running close it first. */
6240 dev_close(dev);
6241
6242 /* And unlink it from device chain */
6243 err = -ENODEV;
6244 unlist_netdevice(dev);
6245
6246 synchronize_net();
6247
6248 /* Shutdown queueing discipline. */
6249 dev_shutdown(dev);
6250
6251 /* Notify protocols, that we are about to destroy
6252 this device. They should clean all the things.
6253
6254 Note that dev->reg_state stays at NETREG_REGISTERED.
6255 This is wanted because this way 8021q and macvlan know
6256 the device is just moving and can keep their slaves up.
6257 */
6258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6259 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6260 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6261
6262 /*
6263 * Flush the unicast and multicast chains
6264 */
6265 dev_uc_flush(dev);
6266 dev_mc_flush(dev);
6267
6268 /* Actually switch the network namespace */
6269 dev_net_set(dev, net);
6270
6271 /* If there is an ifindex conflict assign a new one */
6272 if (__dev_get_by_index(net, dev->ifindex)) {
6273 int iflink = (dev->iflink == dev->ifindex);
6274 dev->ifindex = dev_new_index(net);
6275 if (iflink)
6276 dev->iflink = dev->ifindex;
6277 }
6278
6279 /* Fixup kobjects */
6280 err = device_rename(&dev->dev, dev->name);
6281 WARN_ON(err);
6282
6283 /* Add the device back in the hashes */
6284 list_netdevice(dev);
6285
6286 /* Notify protocols, that a new device appeared. */
6287 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6288
6289 /*
6290 * Prevent userspace races by waiting until the network
6291 * device is fully setup before sending notifications.
6292 */
6293 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6294
6295 synchronize_net();
6296 err = 0;
6297 out:
6298 return err;
6299 }
6300 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6301
6302 static int dev_cpu_callback(struct notifier_block *nfb,
6303 unsigned long action,
6304 void *ocpu)
6305 {
6306 struct sk_buff **list_skb;
6307 struct sk_buff *skb;
6308 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6309 struct softnet_data *sd, *oldsd;
6310
6311 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6312 return NOTIFY_OK;
6313
6314 local_irq_disable();
6315 cpu = smp_processor_id();
6316 sd = &per_cpu(softnet_data, cpu);
6317 oldsd = &per_cpu(softnet_data, oldcpu);
6318
6319 /* Find end of our completion_queue. */
6320 list_skb = &sd->completion_queue;
6321 while (*list_skb)
6322 list_skb = &(*list_skb)->next;
6323 /* Append completion queue from offline CPU. */
6324 *list_skb = oldsd->completion_queue;
6325 oldsd->completion_queue = NULL;
6326
6327 /* Append output queue from offline CPU. */
6328 if (oldsd->output_queue) {
6329 *sd->output_queue_tailp = oldsd->output_queue;
6330 sd->output_queue_tailp = oldsd->output_queue_tailp;
6331 oldsd->output_queue = NULL;
6332 oldsd->output_queue_tailp = &oldsd->output_queue;
6333 }
6334 /* Append NAPI poll list from offline CPU. */
6335 if (!list_empty(&oldsd->poll_list)) {
6336 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6337 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6338 }
6339
6340 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6341 local_irq_enable();
6342
6343 /* Process offline CPU's input_pkt_queue */
6344 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6345 netif_rx(skb);
6346 input_queue_head_incr(oldsd);
6347 }
6348 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6349 netif_rx(skb);
6350 input_queue_head_incr(oldsd);
6351 }
6352
6353 return NOTIFY_OK;
6354 }
6355
6356
6357 /**
6358 * netdev_increment_features - increment feature set by one
6359 * @all: current feature set
6360 * @one: new feature set
6361 * @mask: mask feature set
6362 *
6363 * Computes a new feature set after adding a device with feature set
6364 * @one to the master device with current feature set @all. Will not
6365 * enable anything that is off in @mask. Returns the new feature set.
6366 */
6367 netdev_features_t netdev_increment_features(netdev_features_t all,
6368 netdev_features_t one, netdev_features_t mask)
6369 {
6370 if (mask & NETIF_F_GEN_CSUM)
6371 mask |= NETIF_F_ALL_CSUM;
6372 mask |= NETIF_F_VLAN_CHALLENGED;
6373
6374 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6375 all &= one | ~NETIF_F_ALL_FOR_ALL;
6376
6377 /* If device needs checksumming, downgrade to it. */
6378 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6379 all &= ~NETIF_F_NO_CSUM;
6380
6381 /* If one device supports hw checksumming, set for all. */
6382 if (all & NETIF_F_GEN_CSUM)
6383 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6384
6385 return all;
6386 }
6387 EXPORT_SYMBOL(netdev_increment_features);
6388
6389 static struct hlist_head *netdev_create_hash(void)
6390 {
6391 int i;
6392 struct hlist_head *hash;
6393
6394 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6395 if (hash != NULL)
6396 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6397 INIT_HLIST_HEAD(&hash[i]);
6398
6399 return hash;
6400 }
6401
6402 /* Initialize per network namespace state */
6403 static int __net_init netdev_init(struct net *net)
6404 {
6405 INIT_LIST_HEAD(&net->dev_base_head);
6406
6407 net->dev_name_head = netdev_create_hash();
6408 if (net->dev_name_head == NULL)
6409 goto err_name;
6410
6411 net->dev_index_head = netdev_create_hash();
6412 if (net->dev_index_head == NULL)
6413 goto err_idx;
6414
6415 return 0;
6416
6417 err_idx:
6418 kfree(net->dev_name_head);
6419 err_name:
6420 return -ENOMEM;
6421 }
6422
6423 /**
6424 * netdev_drivername - network driver for the device
6425 * @dev: network device
6426 *
6427 * Determine network driver for device.
6428 */
6429 const char *netdev_drivername(const struct net_device *dev)
6430 {
6431 const struct device_driver *driver;
6432 const struct device *parent;
6433 const char *empty = "";
6434
6435 parent = dev->dev.parent;
6436 if (!parent)
6437 return empty;
6438
6439 driver = parent->driver;
6440 if (driver && driver->name)
6441 return driver->name;
6442 return empty;
6443 }
6444
6445 int __netdev_printk(const char *level, const struct net_device *dev,
6446 struct va_format *vaf)
6447 {
6448 int r;
6449
6450 if (dev && dev->dev.parent)
6451 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6452 netdev_name(dev), vaf);
6453 else if (dev)
6454 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6455 else
6456 r = printk("%s(NULL net_device): %pV", level, vaf);
6457
6458 return r;
6459 }
6460 EXPORT_SYMBOL(__netdev_printk);
6461
6462 int netdev_printk(const char *level, const struct net_device *dev,
6463 const char *format, ...)
6464 {
6465 struct va_format vaf;
6466 va_list args;
6467 int r;
6468
6469 va_start(args, format);
6470
6471 vaf.fmt = format;
6472 vaf.va = &args;
6473
6474 r = __netdev_printk(level, dev, &vaf);
6475 va_end(args);
6476
6477 return r;
6478 }
6479 EXPORT_SYMBOL(netdev_printk);
6480
6481 #define define_netdev_printk_level(func, level) \
6482 int func(const struct net_device *dev, const char *fmt, ...) \
6483 { \
6484 int r; \
6485 struct va_format vaf; \
6486 va_list args; \
6487 \
6488 va_start(args, fmt); \
6489 \
6490 vaf.fmt = fmt; \
6491 vaf.va = &args; \
6492 \
6493 r = __netdev_printk(level, dev, &vaf); \
6494 va_end(args); \
6495 \
6496 return r; \
6497 } \
6498 EXPORT_SYMBOL(func);
6499
6500 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6501 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6502 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6503 define_netdev_printk_level(netdev_err, KERN_ERR);
6504 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6505 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6506 define_netdev_printk_level(netdev_info, KERN_INFO);
6507
6508 static void __net_exit netdev_exit(struct net *net)
6509 {
6510 kfree(net->dev_name_head);
6511 kfree(net->dev_index_head);
6512 }
6513
6514 static struct pernet_operations __net_initdata netdev_net_ops = {
6515 .init = netdev_init,
6516 .exit = netdev_exit,
6517 };
6518
6519 static void __net_exit default_device_exit(struct net *net)
6520 {
6521 struct net_device *dev, *aux;
6522 /*
6523 * Push all migratable network devices back to the
6524 * initial network namespace
6525 */
6526 rtnl_lock();
6527 for_each_netdev_safe(net, dev, aux) {
6528 int err;
6529 char fb_name[IFNAMSIZ];
6530
6531 /* Ignore unmoveable devices (i.e. loopback) */
6532 if (dev->features & NETIF_F_NETNS_LOCAL)
6533 continue;
6534
6535 /* Leave virtual devices for the generic cleanup */
6536 if (dev->rtnl_link_ops)
6537 continue;
6538
6539 /* Push remaining network devices to init_net */
6540 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6541 err = dev_change_net_namespace(dev, &init_net, fb_name);
6542 if (err) {
6543 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6544 __func__, dev->name, err);
6545 BUG();
6546 }
6547 }
6548 rtnl_unlock();
6549 }
6550
6551 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6552 {
6553 /* At exit all network devices most be removed from a network
6554 * namespace. Do this in the reverse order of registration.
6555 * Do this across as many network namespaces as possible to
6556 * improve batching efficiency.
6557 */
6558 struct net_device *dev;
6559 struct net *net;
6560 LIST_HEAD(dev_kill_list);
6561
6562 rtnl_lock();
6563 list_for_each_entry(net, net_list, exit_list) {
6564 for_each_netdev_reverse(net, dev) {
6565 if (dev->rtnl_link_ops)
6566 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6567 else
6568 unregister_netdevice_queue(dev, &dev_kill_list);
6569 }
6570 }
6571 unregister_netdevice_many(&dev_kill_list);
6572 list_del(&dev_kill_list);
6573 rtnl_unlock();
6574 }
6575
6576 static struct pernet_operations __net_initdata default_device_ops = {
6577 .exit = default_device_exit,
6578 .exit_batch = default_device_exit_batch,
6579 };
6580
6581 /*
6582 * Initialize the DEV module. At boot time this walks the device list and
6583 * unhooks any devices that fail to initialise (normally hardware not
6584 * present) and leaves us with a valid list of present and active devices.
6585 *
6586 */
6587
6588 /*
6589 * This is called single threaded during boot, so no need
6590 * to take the rtnl semaphore.
6591 */
6592 static int __init net_dev_init(void)
6593 {
6594 int i, rc = -ENOMEM;
6595
6596 BUG_ON(!dev_boot_phase);
6597
6598 if (dev_proc_init())
6599 goto out;
6600
6601 if (netdev_kobject_init())
6602 goto out;
6603
6604 INIT_LIST_HEAD(&ptype_all);
6605 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6606 INIT_LIST_HEAD(&ptype_base[i]);
6607
6608 if (register_pernet_subsys(&netdev_net_ops))
6609 goto out;
6610
6611 /*
6612 * Initialise the packet receive queues.
6613 */
6614
6615 for_each_possible_cpu(i) {
6616 struct softnet_data *sd = &per_cpu(softnet_data, i);
6617
6618 memset(sd, 0, sizeof(*sd));
6619 skb_queue_head_init(&sd->input_pkt_queue);
6620 skb_queue_head_init(&sd->process_queue);
6621 sd->completion_queue = NULL;
6622 INIT_LIST_HEAD(&sd->poll_list);
6623 sd->output_queue = NULL;
6624 sd->output_queue_tailp = &sd->output_queue;
6625 #ifdef CONFIG_RPS
6626 sd->csd.func = rps_trigger_softirq;
6627 sd->csd.info = sd;
6628 sd->csd.flags = 0;
6629 sd->cpu = i;
6630 #endif
6631
6632 sd->backlog.poll = process_backlog;
6633 sd->backlog.weight = weight_p;
6634 sd->backlog.gro_list = NULL;
6635 sd->backlog.gro_count = 0;
6636 }
6637
6638 dev_boot_phase = 0;
6639
6640 /* The loopback device is special if any other network devices
6641 * is present in a network namespace the loopback device must
6642 * be present. Since we now dynamically allocate and free the
6643 * loopback device ensure this invariant is maintained by
6644 * keeping the loopback device as the first device on the
6645 * list of network devices. Ensuring the loopback devices
6646 * is the first device that appears and the last network device
6647 * that disappears.
6648 */
6649 if (register_pernet_device(&loopback_net_ops))
6650 goto out;
6651
6652 if (register_pernet_device(&default_device_ops))
6653 goto out;
6654
6655 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6656 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6657
6658 hotcpu_notifier(dev_cpu_callback, 0);
6659 dst_init();
6660 dev_mcast_init();
6661 rc = 0;
6662 out:
6663 return rc;
6664 }
6665
6666 subsys_initcall(net_dev_init);
6667
6668 static int __init initialize_hashrnd(void)
6669 {
6670 get_random_bytes(&hashrnd, sizeof(hashrnd));
6671 return 0;
6672 }
6673
6674 late_initcall_sync(initialize_hashrnd);
6675
This page took 0.200312 seconds and 5 git commands to generate.