f7895999614837e525aedd6fe6fc91588fa1f901
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/if_tunnel.h>
137 #include <linux/if_pppox.h>
138 #include <linux/ppp_defs.h>
139 #include <linux/net_tstamp.h>
140 #include <linux/jump_label.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 /*
151 * The list of packet types we will receive (as opposed to discard)
152 * and the routines to invoke.
153 *
154 * Why 16. Because with 16 the only overlap we get on a hash of the
155 * low nibble of the protocol value is RARP/SNAP/X.25.
156 *
157 * NOTE: That is no longer true with the addition of VLAN tags. Not
158 * sure which should go first, but I bet it won't make much
159 * difference if we are running VLANs. The good news is that
160 * this protocol won't be in the list unless compiled in, so
161 * the average user (w/out VLANs) will not be adversely affected.
162 * --BLG
163 *
164 * 0800 IP
165 * 8100 802.1Q VLAN
166 * 0001 802.3
167 * 0002 AX.25
168 * 0004 802.2
169 * 8035 RARP
170 * 0005 SNAP
171 * 0805 X.25
172 * 0806 ARP
173 * 8137 IPX
174 * 0009 Localtalk
175 * 86DD IPv6
176 */
177
178 #define PTYPE_HASH_SIZE (16)
179 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
180
181 static DEFINE_SPINLOCK(ptype_lock);
182 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
183 static struct list_head ptype_all __read_mostly; /* Taps */
184
185 /*
186 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
187 * semaphore.
188 *
189 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
190 *
191 * Writers must hold the rtnl semaphore while they loop through the
192 * dev_base_head list, and hold dev_base_lock for writing when they do the
193 * actual updates. This allows pure readers to access the list even
194 * while a writer is preparing to update it.
195 *
196 * To put it another way, dev_base_lock is held for writing only to
197 * protect against pure readers; the rtnl semaphore provides the
198 * protection against other writers.
199 *
200 * See, for example usages, register_netdevice() and
201 * unregister_netdevice(), which must be called with the rtnl
202 * semaphore held.
203 */
204 DEFINE_RWLOCK(dev_base_lock);
205 EXPORT_SYMBOL(dev_base_lock);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 while (++net->dev_base_seq == 0);
210 }
211
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 /* Device list insertion */
238 static int list_netdevice(struct net_device *dev)
239 {
240 struct net *net = dev_net(dev);
241
242 ASSERT_RTNL();
243
244 write_lock_bh(&dev_base_lock);
245 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
246 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
247 hlist_add_head_rcu(&dev->index_hlist,
248 dev_index_hash(net, dev->ifindex));
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(net);
252
253 return 0;
254 }
255
256 /* Device list removal
257 * caller must respect a RCU grace period before freeing/reusing dev
258 */
259 static void unlist_netdevice(struct net_device *dev)
260 {
261 ASSERT_RTNL();
262
263 /* Unlink dev from the device chain */
264 write_lock_bh(&dev_base_lock);
265 list_del_rcu(&dev->dev_list);
266 hlist_del_rcu(&dev->name_hlist);
267 hlist_del_rcu(&dev->index_hlist);
268 write_unlock_bh(&dev_base_lock);
269
270 dev_base_seq_inc(dev_net(dev));
271 }
272
273 /*
274 * Our notifier list
275 */
276
277 static RAW_NOTIFIER_HEAD(netdev_chain);
278
279 /*
280 * Device drivers call our routines to queue packets here. We empty the
281 * queue in the local softnet handler.
282 */
283
284 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
285 EXPORT_PER_CPU_SYMBOL(softnet_data);
286
287 #ifdef CONFIG_LOCKDEP
288 /*
289 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
290 * according to dev->type
291 */
292 static const unsigned short netdev_lock_type[] =
293 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
294 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
295 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
296 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
297 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
298 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
299 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
300 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
301 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
302 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
303 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
304 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
305 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
306 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
307 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
308 ARPHRD_VOID, ARPHRD_NONE};
309
310 static const char *const netdev_lock_name[] =
311 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
312 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
313 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
314 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
315 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
316 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
317 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
318 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
319 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
320 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
321 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
322 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
323 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
324 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
325 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
326 "_xmit_VOID", "_xmit_NONE"};
327
328 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
329 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
330
331 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
332 {
333 int i;
334
335 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
336 if (netdev_lock_type[i] == dev_type)
337 return i;
338 /* the last key is used by default */
339 return ARRAY_SIZE(netdev_lock_type) - 1;
340 }
341
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 int i;
346
347 i = netdev_lock_pos(dev_type);
348 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
349 netdev_lock_name[i]);
350 }
351
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 int i;
355
356 i = netdev_lock_pos(dev->type);
357 lockdep_set_class_and_name(&dev->addr_list_lock,
358 &netdev_addr_lock_key[i],
359 netdev_lock_name[i]);
360 }
361 #else
362 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
363 unsigned short dev_type)
364 {
365 }
366 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
367 {
368 }
369 #endif
370
371 /*******************************************************************************
372
373 Protocol management and registration routines
374
375 *******************************************************************************/
376
377 /*
378 * Add a protocol ID to the list. Now that the input handler is
379 * smarter we can dispense with all the messy stuff that used to be
380 * here.
381 *
382 * BEWARE!!! Protocol handlers, mangling input packets,
383 * MUST BE last in hash buckets and checking protocol handlers
384 * MUST start from promiscuous ptype_all chain in net_bh.
385 * It is true now, do not change it.
386 * Explanation follows: if protocol handler, mangling packet, will
387 * be the first on list, it is not able to sense, that packet
388 * is cloned and should be copied-on-write, so that it will
389 * change it and subsequent readers will get broken packet.
390 * --ANK (980803)
391 */
392
393 static inline struct list_head *ptype_head(const struct packet_type *pt)
394 {
395 if (pt->type == htons(ETH_P_ALL))
396 return &ptype_all;
397 else
398 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399 }
400
401 /**
402 * dev_add_pack - add packet handler
403 * @pt: packet type declaration
404 *
405 * Add a protocol handler to the networking stack. The passed &packet_type
406 * is linked into kernel lists and may not be freed until it has been
407 * removed from the kernel lists.
408 *
409 * This call does not sleep therefore it can not
410 * guarantee all CPU's that are in middle of receiving packets
411 * will see the new packet type (until the next received packet).
412 */
413
414 void dev_add_pack(struct packet_type *pt)
415 {
416 struct list_head *head = ptype_head(pt);
417
418 spin_lock(&ptype_lock);
419 list_add_rcu(&pt->list, head);
420 spin_unlock(&ptype_lock);
421 }
422 EXPORT_SYMBOL(dev_add_pack);
423
424 /**
425 * __dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * The packet type might still be in use by receivers
434 * and must not be freed until after all the CPU's have gone
435 * through a quiescent state.
436 */
437 void __dev_remove_pack(struct packet_type *pt)
438 {
439 struct list_head *head = ptype_head(pt);
440 struct packet_type *pt1;
441
442 spin_lock(&ptype_lock);
443
444 list_for_each_entry(pt1, head, list) {
445 if (pt == pt1) {
446 list_del_rcu(&pt->list);
447 goto out;
448 }
449 }
450
451 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
452 out:
453 spin_unlock(&ptype_lock);
454 }
455 EXPORT_SYMBOL(__dev_remove_pack);
456
457 /**
458 * dev_remove_pack - remove packet handler
459 * @pt: packet type declaration
460 *
461 * Remove a protocol handler that was previously added to the kernel
462 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
463 * from the kernel lists and can be freed or reused once this function
464 * returns.
465 *
466 * This call sleeps to guarantee that no CPU is looking at the packet
467 * type after return.
468 */
469 void dev_remove_pack(struct packet_type *pt)
470 {
471 __dev_remove_pack(pt);
472
473 synchronize_net();
474 }
475 EXPORT_SYMBOL(dev_remove_pack);
476
477 /******************************************************************************
478
479 Device Boot-time Settings Routines
480
481 *******************************************************************************/
482
483 /* Boot time configuration table */
484 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
485
486 /**
487 * netdev_boot_setup_add - add new setup entry
488 * @name: name of the device
489 * @map: configured settings for the device
490 *
491 * Adds new setup entry to the dev_boot_setup list. The function
492 * returns 0 on error and 1 on success. This is a generic routine to
493 * all netdevices.
494 */
495 static int netdev_boot_setup_add(char *name, struct ifmap *map)
496 {
497 struct netdev_boot_setup *s;
498 int i;
499
500 s = dev_boot_setup;
501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
502 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
503 memset(s[i].name, 0, sizeof(s[i].name));
504 strlcpy(s[i].name, name, IFNAMSIZ);
505 memcpy(&s[i].map, map, sizeof(s[i].map));
506 break;
507 }
508 }
509
510 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
511 }
512
513 /**
514 * netdev_boot_setup_check - check boot time settings
515 * @dev: the netdevice
516 *
517 * Check boot time settings for the device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found, 1 if they are.
521 */
522 int netdev_boot_setup_check(struct net_device *dev)
523 {
524 struct netdev_boot_setup *s = dev_boot_setup;
525 int i;
526
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
528 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
529 !strcmp(dev->name, s[i].name)) {
530 dev->irq = s[i].map.irq;
531 dev->base_addr = s[i].map.base_addr;
532 dev->mem_start = s[i].map.mem_start;
533 dev->mem_end = s[i].map.mem_end;
534 return 1;
535 }
536 }
537 return 0;
538 }
539 EXPORT_SYMBOL(netdev_boot_setup_check);
540
541
542 /**
543 * netdev_boot_base - get address from boot time settings
544 * @prefix: prefix for network device
545 * @unit: id for network device
546 *
547 * Check boot time settings for the base address of device.
548 * The found settings are set for the device to be used
549 * later in the device probing.
550 * Returns 0 if no settings found.
551 */
552 unsigned long netdev_boot_base(const char *prefix, int unit)
553 {
554 const struct netdev_boot_setup *s = dev_boot_setup;
555 char name[IFNAMSIZ];
556 int i;
557
558 sprintf(name, "%s%d", prefix, unit);
559
560 /*
561 * If device already registered then return base of 1
562 * to indicate not to probe for this interface
563 */
564 if (__dev_get_by_name(&init_net, name))
565 return 1;
566
567 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
568 if (!strcmp(name, s[i].name))
569 return s[i].map.base_addr;
570 return 0;
571 }
572
573 /*
574 * Saves at boot time configured settings for any netdevice.
575 */
576 int __init netdev_boot_setup(char *str)
577 {
578 int ints[5];
579 struct ifmap map;
580
581 str = get_options(str, ARRAY_SIZE(ints), ints);
582 if (!str || !*str)
583 return 0;
584
585 /* Save settings */
586 memset(&map, 0, sizeof(map));
587 if (ints[0] > 0)
588 map.irq = ints[1];
589 if (ints[0] > 1)
590 map.base_addr = ints[2];
591 if (ints[0] > 2)
592 map.mem_start = ints[3];
593 if (ints[0] > 3)
594 map.mem_end = ints[4];
595
596 /* Add new entry to the list */
597 return netdev_boot_setup_add(str, &map);
598 }
599
600 __setup("netdev=", netdev_boot_setup);
601
602 /*******************************************************************************
603
604 Device Interface Subroutines
605
606 *******************************************************************************/
607
608 /**
609 * __dev_get_by_name - find a device by its name
610 * @net: the applicable net namespace
611 * @name: name to find
612 *
613 * Find an interface by name. Must be called under RTNL semaphore
614 * or @dev_base_lock. If the name is found a pointer to the device
615 * is returned. If the name is not found then %NULL is returned. The
616 * reference counters are not incremented so the caller must be
617 * careful with locks.
618 */
619
620 struct net_device *__dev_get_by_name(struct net *net, const char *name)
621 {
622 struct hlist_node *p;
623 struct net_device *dev;
624 struct hlist_head *head = dev_name_hash(net, name);
625
626 hlist_for_each_entry(dev, p, head, name_hlist)
627 if (!strncmp(dev->name, name, IFNAMSIZ))
628 return dev;
629
630 return NULL;
631 }
632 EXPORT_SYMBOL(__dev_get_by_name);
633
634 /**
635 * dev_get_by_name_rcu - find a device by its name
636 * @net: the applicable net namespace
637 * @name: name to find
638 *
639 * Find an interface by name.
640 * If the name is found a pointer to the device is returned.
641 * If the name is not found then %NULL is returned.
642 * The reference counters are not incremented so the caller must be
643 * careful with locks. The caller must hold RCU lock.
644 */
645
646 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
647 {
648 struct hlist_node *p;
649 struct net_device *dev;
650 struct hlist_head *head = dev_name_hash(net, name);
651
652 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
653 if (!strncmp(dev->name, name, IFNAMSIZ))
654 return dev;
655
656 return NULL;
657 }
658 EXPORT_SYMBOL(dev_get_by_name_rcu);
659
660 /**
661 * dev_get_by_name - find a device by its name
662 * @net: the applicable net namespace
663 * @name: name to find
664 *
665 * Find an interface by name. This can be called from any
666 * context and does its own locking. The returned handle has
667 * the usage count incremented and the caller must use dev_put() to
668 * release it when it is no longer needed. %NULL is returned if no
669 * matching device is found.
670 */
671
672 struct net_device *dev_get_by_name(struct net *net, const char *name)
673 {
674 struct net_device *dev;
675
676 rcu_read_lock();
677 dev = dev_get_by_name_rcu(net, name);
678 if (dev)
679 dev_hold(dev);
680 rcu_read_unlock();
681 return dev;
682 }
683 EXPORT_SYMBOL(dev_get_by_name);
684
685 /**
686 * __dev_get_by_index - find a device by its ifindex
687 * @net: the applicable net namespace
688 * @ifindex: index of device
689 *
690 * Search for an interface by index. Returns %NULL if the device
691 * is not found or a pointer to the device. The device has not
692 * had its reference counter increased so the caller must be careful
693 * about locking. The caller must hold either the RTNL semaphore
694 * or @dev_base_lock.
695 */
696
697 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
698 {
699 struct hlist_node *p;
700 struct net_device *dev;
701 struct hlist_head *head = dev_index_hash(net, ifindex);
702
703 hlist_for_each_entry(dev, p, head, index_hlist)
704 if (dev->ifindex == ifindex)
705 return dev;
706
707 return NULL;
708 }
709 EXPORT_SYMBOL(__dev_get_by_index);
710
711 /**
712 * dev_get_by_index_rcu - find a device by its ifindex
713 * @net: the applicable net namespace
714 * @ifindex: index of device
715 *
716 * Search for an interface by index. Returns %NULL if the device
717 * is not found or a pointer to the device. The device has not
718 * had its reference counter increased so the caller must be careful
719 * about locking. The caller must hold RCU lock.
720 */
721
722 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
723 {
724 struct hlist_node *p;
725 struct net_device *dev;
726 struct hlist_head *head = dev_index_hash(net, ifindex);
727
728 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
729 if (dev->ifindex == ifindex)
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(dev_get_by_index_rcu);
735
736
737 /**
738 * dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns NULL if the device
743 * is not found or a pointer to the device. The device returned has
744 * had a reference added and the pointer is safe until the user calls
745 * dev_put to indicate they have finished with it.
746 */
747
748 struct net_device *dev_get_by_index(struct net *net, int ifindex)
749 {
750 struct net_device *dev;
751
752 rcu_read_lock();
753 dev = dev_get_by_index_rcu(net, ifindex);
754 if (dev)
755 dev_hold(dev);
756 rcu_read_unlock();
757 return dev;
758 }
759 EXPORT_SYMBOL(dev_get_by_index);
760
761 /**
762 * dev_getbyhwaddr_rcu - find a device by its hardware address
763 * @net: the applicable net namespace
764 * @type: media type of device
765 * @ha: hardware address
766 *
767 * Search for an interface by MAC address. Returns NULL if the device
768 * is not found or a pointer to the device.
769 * The caller must hold RCU or RTNL.
770 * The returned device has not had its ref count increased
771 * and the caller must therefore be careful about locking
772 *
773 */
774
775 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
776 const char *ha)
777 {
778 struct net_device *dev;
779
780 for_each_netdev_rcu(net, dev)
781 if (dev->type == type &&
782 !memcmp(dev->dev_addr, ha, dev->addr_len))
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
788
789 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev;
792
793 ASSERT_RTNL();
794 for_each_netdev(net, dev)
795 if (dev->type == type)
796 return dev;
797
798 return NULL;
799 }
800 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
801
802 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
803 {
804 struct net_device *dev, *ret = NULL;
805
806 rcu_read_lock();
807 for_each_netdev_rcu(net, dev)
808 if (dev->type == type) {
809 dev_hold(dev);
810 ret = dev;
811 break;
812 }
813 rcu_read_unlock();
814 return ret;
815 }
816 EXPORT_SYMBOL(dev_getfirstbyhwtype);
817
818 /**
819 * dev_get_by_flags_rcu - find any device with given flags
820 * @net: the applicable net namespace
821 * @if_flags: IFF_* values
822 * @mask: bitmask of bits in if_flags to check
823 *
824 * Search for any interface with the given flags. Returns NULL if a device
825 * is not found or a pointer to the device. Must be called inside
826 * rcu_read_lock(), and result refcount is unchanged.
827 */
828
829 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
830 unsigned short mask)
831 {
832 struct net_device *dev, *ret;
833
834 ret = NULL;
835 for_each_netdev_rcu(net, dev) {
836 if (((dev->flags ^ if_flags) & mask) == 0) {
837 ret = dev;
838 break;
839 }
840 }
841 return ret;
842 }
843 EXPORT_SYMBOL(dev_get_by_flags_rcu);
844
845 /**
846 * dev_valid_name - check if name is okay for network device
847 * @name: name string
848 *
849 * Network device names need to be valid file names to
850 * to allow sysfs to work. We also disallow any kind of
851 * whitespace.
852 */
853 int dev_valid_name(const char *name)
854 {
855 if (*name == '\0')
856 return 0;
857 if (strlen(name) >= IFNAMSIZ)
858 return 0;
859 if (!strcmp(name, ".") || !strcmp(name, ".."))
860 return 0;
861
862 while (*name) {
863 if (*name == '/' || isspace(*name))
864 return 0;
865 name++;
866 }
867 return 1;
868 }
869 EXPORT_SYMBOL(dev_valid_name);
870
871 /**
872 * __dev_alloc_name - allocate a name for a device
873 * @net: network namespace to allocate the device name in
874 * @name: name format string
875 * @buf: scratch buffer and result name string
876 *
877 * Passed a format string - eg "lt%d" it will try and find a suitable
878 * id. It scans list of devices to build up a free map, then chooses
879 * the first empty slot. The caller must hold the dev_base or rtnl lock
880 * while allocating the name and adding the device in order to avoid
881 * duplicates.
882 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
883 * Returns the number of the unit assigned or a negative errno code.
884 */
885
886 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
887 {
888 int i = 0;
889 const char *p;
890 const int max_netdevices = 8*PAGE_SIZE;
891 unsigned long *inuse;
892 struct net_device *d;
893
894 p = strnchr(name, IFNAMSIZ-1, '%');
895 if (p) {
896 /*
897 * Verify the string as this thing may have come from
898 * the user. There must be either one "%d" and no other "%"
899 * characters.
900 */
901 if (p[1] != 'd' || strchr(p + 2, '%'))
902 return -EINVAL;
903
904 /* Use one page as a bit array of possible slots */
905 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 if (!inuse)
907 return -ENOMEM;
908
909 for_each_netdev(net, d) {
910 if (!sscanf(d->name, name, &i))
911 continue;
912 if (i < 0 || i >= max_netdevices)
913 continue;
914
915 /* avoid cases where sscanf is not exact inverse of printf */
916 snprintf(buf, IFNAMSIZ, name, i);
917 if (!strncmp(buf, d->name, IFNAMSIZ))
918 set_bit(i, inuse);
919 }
920
921 i = find_first_zero_bit(inuse, max_netdevices);
922 free_page((unsigned long) inuse);
923 }
924
925 if (buf != name)
926 snprintf(buf, IFNAMSIZ, name, i);
927 if (!__dev_get_by_name(net, buf))
928 return i;
929
930 /* It is possible to run out of possible slots
931 * when the name is long and there isn't enough space left
932 * for the digits, or if all bits are used.
933 */
934 return -ENFILE;
935 }
936
937 /**
938 * dev_alloc_name - allocate a name for a device
939 * @dev: device
940 * @name: name format string
941 *
942 * Passed a format string - eg "lt%d" it will try and find a suitable
943 * id. It scans list of devices to build up a free map, then chooses
944 * the first empty slot. The caller must hold the dev_base or rtnl lock
945 * while allocating the name and adding the device in order to avoid
946 * duplicates.
947 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
948 * Returns the number of the unit assigned or a negative errno code.
949 */
950
951 int dev_alloc_name(struct net_device *dev, const char *name)
952 {
953 char buf[IFNAMSIZ];
954 struct net *net;
955 int ret;
956
957 BUG_ON(!dev_net(dev));
958 net = dev_net(dev);
959 ret = __dev_alloc_name(net, name, buf);
960 if (ret >= 0)
961 strlcpy(dev->name, buf, IFNAMSIZ);
962 return ret;
963 }
964 EXPORT_SYMBOL(dev_alloc_name);
965
966 static int dev_get_valid_name(struct net_device *dev, const char *name)
967 {
968 struct net *net;
969
970 BUG_ON(!dev_net(dev));
971 net = dev_net(dev);
972
973 if (!dev_valid_name(name))
974 return -EINVAL;
975
976 if (strchr(name, '%'))
977 return dev_alloc_name(dev, name);
978 else if (__dev_get_by_name(net, name))
979 return -EEXIST;
980 else if (dev->name != name)
981 strlcpy(dev->name, name, IFNAMSIZ);
982
983 return 0;
984 }
985
986 /**
987 * dev_change_name - change name of a device
988 * @dev: device
989 * @newname: name (or format string) must be at least IFNAMSIZ
990 *
991 * Change name of a device, can pass format strings "eth%d".
992 * for wildcarding.
993 */
994 int dev_change_name(struct net_device *dev, const char *newname)
995 {
996 char oldname[IFNAMSIZ];
997 int err = 0;
998 int ret;
999 struct net *net;
1000
1001 ASSERT_RTNL();
1002 BUG_ON(!dev_net(dev));
1003
1004 net = dev_net(dev);
1005 if (dev->flags & IFF_UP)
1006 return -EBUSY;
1007
1008 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1009 return 0;
1010
1011 memcpy(oldname, dev->name, IFNAMSIZ);
1012
1013 err = dev_get_valid_name(dev, newname);
1014 if (err < 0)
1015 return err;
1016
1017 rollback:
1018 ret = device_rename(&dev->dev, dev->name);
1019 if (ret) {
1020 memcpy(dev->name, oldname, IFNAMSIZ);
1021 return ret;
1022 }
1023
1024 write_lock_bh(&dev_base_lock);
1025 hlist_del_rcu(&dev->name_hlist);
1026 write_unlock_bh(&dev_base_lock);
1027
1028 synchronize_rcu();
1029
1030 write_lock_bh(&dev_base_lock);
1031 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1032 write_unlock_bh(&dev_base_lock);
1033
1034 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1035 ret = notifier_to_errno(ret);
1036
1037 if (ret) {
1038 /* err >= 0 after dev_alloc_name() or stores the first errno */
1039 if (err >= 0) {
1040 err = ret;
1041 memcpy(dev->name, oldname, IFNAMSIZ);
1042 goto rollback;
1043 } else {
1044 printk(KERN_ERR
1045 "%s: name change rollback failed: %d.\n",
1046 dev->name, ret);
1047 }
1048 }
1049
1050 return err;
1051 }
1052
1053 /**
1054 * dev_set_alias - change ifalias of a device
1055 * @dev: device
1056 * @alias: name up to IFALIASZ
1057 * @len: limit of bytes to copy from info
1058 *
1059 * Set ifalias for a device,
1060 */
1061 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1062 {
1063 ASSERT_RTNL();
1064
1065 if (len >= IFALIASZ)
1066 return -EINVAL;
1067
1068 if (!len) {
1069 if (dev->ifalias) {
1070 kfree(dev->ifalias);
1071 dev->ifalias = NULL;
1072 }
1073 return 0;
1074 }
1075
1076 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1077 if (!dev->ifalias)
1078 return -ENOMEM;
1079
1080 strlcpy(dev->ifalias, alias, len+1);
1081 return len;
1082 }
1083
1084
1085 /**
1086 * netdev_features_change - device changes features
1087 * @dev: device to cause notification
1088 *
1089 * Called to indicate a device has changed features.
1090 */
1091 void netdev_features_change(struct net_device *dev)
1092 {
1093 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1094 }
1095 EXPORT_SYMBOL(netdev_features_change);
1096
1097 /**
1098 * netdev_state_change - device changes state
1099 * @dev: device to cause notification
1100 *
1101 * Called to indicate a device has changed state. This function calls
1102 * the notifier chains for netdev_chain and sends a NEWLINK message
1103 * to the routing socket.
1104 */
1105 void netdev_state_change(struct net_device *dev)
1106 {
1107 if (dev->flags & IFF_UP) {
1108 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1109 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1110 }
1111 }
1112 EXPORT_SYMBOL(netdev_state_change);
1113
1114 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1115 {
1116 return call_netdevice_notifiers(event, dev);
1117 }
1118 EXPORT_SYMBOL(netdev_bonding_change);
1119
1120 /**
1121 * dev_load - load a network module
1122 * @net: the applicable net namespace
1123 * @name: name of interface
1124 *
1125 * If a network interface is not present and the process has suitable
1126 * privileges this function loads the module. If module loading is not
1127 * available in this kernel then it becomes a nop.
1128 */
1129
1130 void dev_load(struct net *net, const char *name)
1131 {
1132 struct net_device *dev;
1133 int no_module;
1134
1135 rcu_read_lock();
1136 dev = dev_get_by_name_rcu(net, name);
1137 rcu_read_unlock();
1138
1139 no_module = !dev;
1140 if (no_module && capable(CAP_NET_ADMIN))
1141 no_module = request_module("netdev-%s", name);
1142 if (no_module && capable(CAP_SYS_MODULE)) {
1143 if (!request_module("%s", name))
1144 pr_err("Loading kernel module for a network device "
1145 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1146 "instead\n", name);
1147 }
1148 }
1149 EXPORT_SYMBOL(dev_load);
1150
1151 static int __dev_open(struct net_device *dev)
1152 {
1153 const struct net_device_ops *ops = dev->netdev_ops;
1154 int ret;
1155
1156 ASSERT_RTNL();
1157
1158 if (!netif_device_present(dev))
1159 return -ENODEV;
1160
1161 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1162 ret = notifier_to_errno(ret);
1163 if (ret)
1164 return ret;
1165
1166 set_bit(__LINK_STATE_START, &dev->state);
1167
1168 if (ops->ndo_validate_addr)
1169 ret = ops->ndo_validate_addr(dev);
1170
1171 if (!ret && ops->ndo_open)
1172 ret = ops->ndo_open(dev);
1173
1174 if (ret)
1175 clear_bit(__LINK_STATE_START, &dev->state);
1176 else {
1177 dev->flags |= IFF_UP;
1178 net_dmaengine_get();
1179 dev_set_rx_mode(dev);
1180 dev_activate(dev);
1181 }
1182
1183 return ret;
1184 }
1185
1186 /**
1187 * dev_open - prepare an interface for use.
1188 * @dev: device to open
1189 *
1190 * Takes a device from down to up state. The device's private open
1191 * function is invoked and then the multicast lists are loaded. Finally
1192 * the device is moved into the up state and a %NETDEV_UP message is
1193 * sent to the netdev notifier chain.
1194 *
1195 * Calling this function on an active interface is a nop. On a failure
1196 * a negative errno code is returned.
1197 */
1198 int dev_open(struct net_device *dev)
1199 {
1200 int ret;
1201
1202 if (dev->flags & IFF_UP)
1203 return 0;
1204
1205 ret = __dev_open(dev);
1206 if (ret < 0)
1207 return ret;
1208
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1211
1212 return ret;
1213 }
1214 EXPORT_SYMBOL(dev_open);
1215
1216 static int __dev_close_many(struct list_head *head)
1217 {
1218 struct net_device *dev;
1219
1220 ASSERT_RTNL();
1221 might_sleep();
1222
1223 list_for_each_entry(dev, head, unreg_list) {
1224 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225
1226 clear_bit(__LINK_STATE_START, &dev->state);
1227
1228 /* Synchronize to scheduled poll. We cannot touch poll list, it
1229 * can be even on different cpu. So just clear netif_running().
1230 *
1231 * dev->stop() will invoke napi_disable() on all of it's
1232 * napi_struct instances on this device.
1233 */
1234 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235 }
1236
1237 dev_deactivate_many(head);
1238
1239 list_for_each_entry(dev, head, unreg_list) {
1240 const struct net_device_ops *ops = dev->netdev_ops;
1241
1242 /*
1243 * Call the device specific close. This cannot fail.
1244 * Only if device is UP
1245 *
1246 * We allow it to be called even after a DETACH hot-plug
1247 * event.
1248 */
1249 if (ops->ndo_stop)
1250 ops->ndo_stop(dev);
1251
1252 dev->flags &= ~IFF_UP;
1253 net_dmaengine_put();
1254 }
1255
1256 return 0;
1257 }
1258
1259 static int __dev_close(struct net_device *dev)
1260 {
1261 int retval;
1262 LIST_HEAD(single);
1263
1264 list_add(&dev->unreg_list, &single);
1265 retval = __dev_close_many(&single);
1266 list_del(&single);
1267 return retval;
1268 }
1269
1270 static int dev_close_many(struct list_head *head)
1271 {
1272 struct net_device *dev, *tmp;
1273 LIST_HEAD(tmp_list);
1274
1275 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1276 if (!(dev->flags & IFF_UP))
1277 list_move(&dev->unreg_list, &tmp_list);
1278
1279 __dev_close_many(head);
1280
1281 list_for_each_entry(dev, head, unreg_list) {
1282 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1283 call_netdevice_notifiers(NETDEV_DOWN, dev);
1284 }
1285
1286 /* rollback_registered_many needs the complete original list */
1287 list_splice(&tmp_list, head);
1288 return 0;
1289 }
1290
1291 /**
1292 * dev_close - shutdown an interface.
1293 * @dev: device to shutdown
1294 *
1295 * This function moves an active device into down state. A
1296 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1297 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1298 * chain.
1299 */
1300 int dev_close(struct net_device *dev)
1301 {
1302 if (dev->flags & IFF_UP) {
1303 LIST_HEAD(single);
1304
1305 list_add(&dev->unreg_list, &single);
1306 dev_close_many(&single);
1307 list_del(&single);
1308 }
1309 return 0;
1310 }
1311 EXPORT_SYMBOL(dev_close);
1312
1313
1314 /**
1315 * dev_disable_lro - disable Large Receive Offload on a device
1316 * @dev: device
1317 *
1318 * Disable Large Receive Offload (LRO) on a net device. Must be
1319 * called under RTNL. This is needed if received packets may be
1320 * forwarded to another interface.
1321 */
1322 void dev_disable_lro(struct net_device *dev)
1323 {
1324 /*
1325 * If we're trying to disable lro on a vlan device
1326 * use the underlying physical device instead
1327 */
1328 if (is_vlan_dev(dev))
1329 dev = vlan_dev_real_dev(dev);
1330
1331 dev->wanted_features &= ~NETIF_F_LRO;
1332 netdev_update_features(dev);
1333
1334 if (unlikely(dev->features & NETIF_F_LRO))
1335 netdev_WARN(dev, "failed to disable LRO!\n");
1336 }
1337 EXPORT_SYMBOL(dev_disable_lro);
1338
1339
1340 static int dev_boot_phase = 1;
1341
1342 /**
1343 * register_netdevice_notifier - register a network notifier block
1344 * @nb: notifier
1345 *
1346 * Register a notifier to be called when network device events occur.
1347 * The notifier passed is linked into the kernel structures and must
1348 * not be reused until it has been unregistered. A negative errno code
1349 * is returned on a failure.
1350 *
1351 * When registered all registration and up events are replayed
1352 * to the new notifier to allow device to have a race free
1353 * view of the network device list.
1354 */
1355
1356 int register_netdevice_notifier(struct notifier_block *nb)
1357 {
1358 struct net_device *dev;
1359 struct net_device *last;
1360 struct net *net;
1361 int err;
1362
1363 rtnl_lock();
1364 err = raw_notifier_chain_register(&netdev_chain, nb);
1365 if (err)
1366 goto unlock;
1367 if (dev_boot_phase)
1368 goto unlock;
1369 for_each_net(net) {
1370 for_each_netdev(net, dev) {
1371 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1372 err = notifier_to_errno(err);
1373 if (err)
1374 goto rollback;
1375
1376 if (!(dev->flags & IFF_UP))
1377 continue;
1378
1379 nb->notifier_call(nb, NETDEV_UP, dev);
1380 }
1381 }
1382
1383 unlock:
1384 rtnl_unlock();
1385 return err;
1386
1387 rollback:
1388 last = dev;
1389 for_each_net(net) {
1390 for_each_netdev(net, dev) {
1391 if (dev == last)
1392 break;
1393
1394 if (dev->flags & IFF_UP) {
1395 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1396 nb->notifier_call(nb, NETDEV_DOWN, dev);
1397 }
1398 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1399 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1400 }
1401 }
1402
1403 raw_notifier_chain_unregister(&netdev_chain, nb);
1404 goto unlock;
1405 }
1406 EXPORT_SYMBOL(register_netdevice_notifier);
1407
1408 /**
1409 * unregister_netdevice_notifier - unregister a network notifier block
1410 * @nb: notifier
1411 *
1412 * Unregister a notifier previously registered by
1413 * register_netdevice_notifier(). The notifier is unlinked into the
1414 * kernel structures and may then be reused. A negative errno code
1415 * is returned on a failure.
1416 */
1417
1418 int unregister_netdevice_notifier(struct notifier_block *nb)
1419 {
1420 int err;
1421
1422 rtnl_lock();
1423 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1424 rtnl_unlock();
1425 return err;
1426 }
1427 EXPORT_SYMBOL(unregister_netdevice_notifier);
1428
1429 /**
1430 * call_netdevice_notifiers - call all network notifier blocks
1431 * @val: value passed unmodified to notifier function
1432 * @dev: net_device pointer passed unmodified to notifier function
1433 *
1434 * Call all network notifier blocks. Parameters and return value
1435 * are as for raw_notifier_call_chain().
1436 */
1437
1438 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1439 {
1440 ASSERT_RTNL();
1441 return raw_notifier_call_chain(&netdev_chain, val, dev);
1442 }
1443 EXPORT_SYMBOL(call_netdevice_notifiers);
1444
1445 static struct jump_label_key netstamp_needed __read_mostly;
1446
1447 void net_enable_timestamp(void)
1448 {
1449 jump_label_inc(&netstamp_needed);
1450 }
1451 EXPORT_SYMBOL(net_enable_timestamp);
1452
1453 void net_disable_timestamp(void)
1454 {
1455 jump_label_dec(&netstamp_needed);
1456 }
1457 EXPORT_SYMBOL(net_disable_timestamp);
1458
1459 static inline void net_timestamp_set(struct sk_buff *skb)
1460 {
1461 skb->tstamp.tv64 = 0;
1462 if (static_branch(&netstamp_needed))
1463 __net_timestamp(skb);
1464 }
1465
1466 #define net_timestamp_check(COND, SKB) \
1467 if (static_branch(&netstamp_needed)) { \
1468 if ((COND) && !(SKB)->tstamp.tv64) \
1469 __net_timestamp(SKB); \
1470 } \
1471
1472 static int net_hwtstamp_validate(struct ifreq *ifr)
1473 {
1474 struct hwtstamp_config cfg;
1475 enum hwtstamp_tx_types tx_type;
1476 enum hwtstamp_rx_filters rx_filter;
1477 int tx_type_valid = 0;
1478 int rx_filter_valid = 0;
1479
1480 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1481 return -EFAULT;
1482
1483 if (cfg.flags) /* reserved for future extensions */
1484 return -EINVAL;
1485
1486 tx_type = cfg.tx_type;
1487 rx_filter = cfg.rx_filter;
1488
1489 switch (tx_type) {
1490 case HWTSTAMP_TX_OFF:
1491 case HWTSTAMP_TX_ON:
1492 case HWTSTAMP_TX_ONESTEP_SYNC:
1493 tx_type_valid = 1;
1494 break;
1495 }
1496
1497 switch (rx_filter) {
1498 case HWTSTAMP_FILTER_NONE:
1499 case HWTSTAMP_FILTER_ALL:
1500 case HWTSTAMP_FILTER_SOME:
1501 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1502 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1503 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1504 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1505 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1506 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1507 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1508 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1509 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1510 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1511 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1512 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1513 rx_filter_valid = 1;
1514 break;
1515 }
1516
1517 if (!tx_type_valid || !rx_filter_valid)
1518 return -ERANGE;
1519
1520 return 0;
1521 }
1522
1523 static inline bool is_skb_forwardable(struct net_device *dev,
1524 struct sk_buff *skb)
1525 {
1526 unsigned int len;
1527
1528 if (!(dev->flags & IFF_UP))
1529 return false;
1530
1531 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1532 if (skb->len <= len)
1533 return true;
1534
1535 /* if TSO is enabled, we don't care about the length as the packet
1536 * could be forwarded without being segmented before
1537 */
1538 if (skb_is_gso(skb))
1539 return true;
1540
1541 return false;
1542 }
1543
1544 /**
1545 * dev_forward_skb - loopback an skb to another netif
1546 *
1547 * @dev: destination network device
1548 * @skb: buffer to forward
1549 *
1550 * return values:
1551 * NET_RX_SUCCESS (no congestion)
1552 * NET_RX_DROP (packet was dropped, but freed)
1553 *
1554 * dev_forward_skb can be used for injecting an skb from the
1555 * start_xmit function of one device into the receive queue
1556 * of another device.
1557 *
1558 * The receiving device may be in another namespace, so
1559 * we have to clear all information in the skb that could
1560 * impact namespace isolation.
1561 */
1562 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1563 {
1564 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1565 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1566 atomic_long_inc(&dev->rx_dropped);
1567 kfree_skb(skb);
1568 return NET_RX_DROP;
1569 }
1570 }
1571
1572 skb_orphan(skb);
1573 nf_reset(skb);
1574
1575 if (unlikely(!is_skb_forwardable(dev, skb))) {
1576 atomic_long_inc(&dev->rx_dropped);
1577 kfree_skb(skb);
1578 return NET_RX_DROP;
1579 }
1580 skb_set_dev(skb, dev);
1581 skb->tstamp.tv64 = 0;
1582 skb->pkt_type = PACKET_HOST;
1583 skb->protocol = eth_type_trans(skb, dev);
1584 return netif_rx(skb);
1585 }
1586 EXPORT_SYMBOL_GPL(dev_forward_skb);
1587
1588 static inline int deliver_skb(struct sk_buff *skb,
1589 struct packet_type *pt_prev,
1590 struct net_device *orig_dev)
1591 {
1592 atomic_inc(&skb->users);
1593 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1594 }
1595
1596 /*
1597 * Support routine. Sends outgoing frames to any network
1598 * taps currently in use.
1599 */
1600
1601 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1602 {
1603 struct packet_type *ptype;
1604 struct sk_buff *skb2 = NULL;
1605 struct packet_type *pt_prev = NULL;
1606
1607 rcu_read_lock();
1608 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1609 /* Never send packets back to the socket
1610 * they originated from - MvS (miquels@drinkel.ow.org)
1611 */
1612 if ((ptype->dev == dev || !ptype->dev) &&
1613 (ptype->af_packet_priv == NULL ||
1614 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1615 if (pt_prev) {
1616 deliver_skb(skb2, pt_prev, skb->dev);
1617 pt_prev = ptype;
1618 continue;
1619 }
1620
1621 skb2 = skb_clone(skb, GFP_ATOMIC);
1622 if (!skb2)
1623 break;
1624
1625 net_timestamp_set(skb2);
1626
1627 /* skb->nh should be correctly
1628 set by sender, so that the second statement is
1629 just protection against buggy protocols.
1630 */
1631 skb_reset_mac_header(skb2);
1632
1633 if (skb_network_header(skb2) < skb2->data ||
1634 skb2->network_header > skb2->tail) {
1635 if (net_ratelimit())
1636 printk(KERN_CRIT "protocol %04x is "
1637 "buggy, dev %s\n",
1638 ntohs(skb2->protocol),
1639 dev->name);
1640 skb_reset_network_header(skb2);
1641 }
1642
1643 skb2->transport_header = skb2->network_header;
1644 skb2->pkt_type = PACKET_OUTGOING;
1645 pt_prev = ptype;
1646 }
1647 }
1648 if (pt_prev)
1649 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1650 rcu_read_unlock();
1651 }
1652
1653 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1654 * @dev: Network device
1655 * @txq: number of queues available
1656 *
1657 * If real_num_tx_queues is changed the tc mappings may no longer be
1658 * valid. To resolve this verify the tc mapping remains valid and if
1659 * not NULL the mapping. With no priorities mapping to this
1660 * offset/count pair it will no longer be used. In the worst case TC0
1661 * is invalid nothing can be done so disable priority mappings. If is
1662 * expected that drivers will fix this mapping if they can before
1663 * calling netif_set_real_num_tx_queues.
1664 */
1665 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1666 {
1667 int i;
1668 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1669
1670 /* If TC0 is invalidated disable TC mapping */
1671 if (tc->offset + tc->count > txq) {
1672 pr_warning("Number of in use tx queues changed "
1673 "invalidating tc mappings. Priority "
1674 "traffic classification disabled!\n");
1675 dev->num_tc = 0;
1676 return;
1677 }
1678
1679 /* Invalidated prio to tc mappings set to TC0 */
1680 for (i = 1; i < TC_BITMASK + 1; i++) {
1681 int q = netdev_get_prio_tc_map(dev, i);
1682
1683 tc = &dev->tc_to_txq[q];
1684 if (tc->offset + tc->count > txq) {
1685 pr_warning("Number of in use tx queues "
1686 "changed. Priority %i to tc "
1687 "mapping %i is no longer valid "
1688 "setting map to 0\n",
1689 i, q);
1690 netdev_set_prio_tc_map(dev, i, 0);
1691 }
1692 }
1693 }
1694
1695 /*
1696 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1697 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1698 */
1699 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1700 {
1701 int rc;
1702
1703 if (txq < 1 || txq > dev->num_tx_queues)
1704 return -EINVAL;
1705
1706 if (dev->reg_state == NETREG_REGISTERED ||
1707 dev->reg_state == NETREG_UNREGISTERING) {
1708 ASSERT_RTNL();
1709
1710 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1711 txq);
1712 if (rc)
1713 return rc;
1714
1715 if (dev->num_tc)
1716 netif_setup_tc(dev, txq);
1717
1718 if (txq < dev->real_num_tx_queues)
1719 qdisc_reset_all_tx_gt(dev, txq);
1720 }
1721
1722 dev->real_num_tx_queues = txq;
1723 return 0;
1724 }
1725 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1726
1727 #ifdef CONFIG_RPS
1728 /**
1729 * netif_set_real_num_rx_queues - set actual number of RX queues used
1730 * @dev: Network device
1731 * @rxq: Actual number of RX queues
1732 *
1733 * This must be called either with the rtnl_lock held or before
1734 * registration of the net device. Returns 0 on success, or a
1735 * negative error code. If called before registration, it always
1736 * succeeds.
1737 */
1738 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1739 {
1740 int rc;
1741
1742 if (rxq < 1 || rxq > dev->num_rx_queues)
1743 return -EINVAL;
1744
1745 if (dev->reg_state == NETREG_REGISTERED) {
1746 ASSERT_RTNL();
1747
1748 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1749 rxq);
1750 if (rc)
1751 return rc;
1752 }
1753
1754 dev->real_num_rx_queues = rxq;
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1758 #endif
1759
1760 static inline void __netif_reschedule(struct Qdisc *q)
1761 {
1762 struct softnet_data *sd;
1763 unsigned long flags;
1764
1765 local_irq_save(flags);
1766 sd = &__get_cpu_var(softnet_data);
1767 q->next_sched = NULL;
1768 *sd->output_queue_tailp = q;
1769 sd->output_queue_tailp = &q->next_sched;
1770 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1771 local_irq_restore(flags);
1772 }
1773
1774 void __netif_schedule(struct Qdisc *q)
1775 {
1776 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1777 __netif_reschedule(q);
1778 }
1779 EXPORT_SYMBOL(__netif_schedule);
1780
1781 void dev_kfree_skb_irq(struct sk_buff *skb)
1782 {
1783 if (atomic_dec_and_test(&skb->users)) {
1784 struct softnet_data *sd;
1785 unsigned long flags;
1786
1787 local_irq_save(flags);
1788 sd = &__get_cpu_var(softnet_data);
1789 skb->next = sd->completion_queue;
1790 sd->completion_queue = skb;
1791 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1792 local_irq_restore(flags);
1793 }
1794 }
1795 EXPORT_SYMBOL(dev_kfree_skb_irq);
1796
1797 void dev_kfree_skb_any(struct sk_buff *skb)
1798 {
1799 if (in_irq() || irqs_disabled())
1800 dev_kfree_skb_irq(skb);
1801 else
1802 dev_kfree_skb(skb);
1803 }
1804 EXPORT_SYMBOL(dev_kfree_skb_any);
1805
1806
1807 /**
1808 * netif_device_detach - mark device as removed
1809 * @dev: network device
1810 *
1811 * Mark device as removed from system and therefore no longer available.
1812 */
1813 void netif_device_detach(struct net_device *dev)
1814 {
1815 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1816 netif_running(dev)) {
1817 netif_tx_stop_all_queues(dev);
1818 }
1819 }
1820 EXPORT_SYMBOL(netif_device_detach);
1821
1822 /**
1823 * netif_device_attach - mark device as attached
1824 * @dev: network device
1825 *
1826 * Mark device as attached from system and restart if needed.
1827 */
1828 void netif_device_attach(struct net_device *dev)
1829 {
1830 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1831 netif_running(dev)) {
1832 netif_tx_wake_all_queues(dev);
1833 __netdev_watchdog_up(dev);
1834 }
1835 }
1836 EXPORT_SYMBOL(netif_device_attach);
1837
1838 /**
1839 * skb_dev_set -- assign a new device to a buffer
1840 * @skb: buffer for the new device
1841 * @dev: network device
1842 *
1843 * If an skb is owned by a device already, we have to reset
1844 * all data private to the namespace a device belongs to
1845 * before assigning it a new device.
1846 */
1847 #ifdef CONFIG_NET_NS
1848 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1849 {
1850 skb_dst_drop(skb);
1851 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1852 secpath_reset(skb);
1853 nf_reset(skb);
1854 skb_init_secmark(skb);
1855 skb->mark = 0;
1856 skb->priority = 0;
1857 skb->nf_trace = 0;
1858 skb->ipvs_property = 0;
1859 #ifdef CONFIG_NET_SCHED
1860 skb->tc_index = 0;
1861 #endif
1862 }
1863 skb->dev = dev;
1864 }
1865 EXPORT_SYMBOL(skb_set_dev);
1866 #endif /* CONFIG_NET_NS */
1867
1868 /*
1869 * Invalidate hardware checksum when packet is to be mangled, and
1870 * complete checksum manually on outgoing path.
1871 */
1872 int skb_checksum_help(struct sk_buff *skb)
1873 {
1874 __wsum csum;
1875 int ret = 0, offset;
1876
1877 if (skb->ip_summed == CHECKSUM_COMPLETE)
1878 goto out_set_summed;
1879
1880 if (unlikely(skb_shinfo(skb)->gso_size)) {
1881 /* Let GSO fix up the checksum. */
1882 goto out_set_summed;
1883 }
1884
1885 offset = skb_checksum_start_offset(skb);
1886 BUG_ON(offset >= skb_headlen(skb));
1887 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1888
1889 offset += skb->csum_offset;
1890 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1891
1892 if (skb_cloned(skb) &&
1893 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1894 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1895 if (ret)
1896 goto out;
1897 }
1898
1899 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1900 out_set_summed:
1901 skb->ip_summed = CHECKSUM_NONE;
1902 out:
1903 return ret;
1904 }
1905 EXPORT_SYMBOL(skb_checksum_help);
1906
1907 /**
1908 * skb_gso_segment - Perform segmentation on skb.
1909 * @skb: buffer to segment
1910 * @features: features for the output path (see dev->features)
1911 *
1912 * This function segments the given skb and returns a list of segments.
1913 *
1914 * It may return NULL if the skb requires no segmentation. This is
1915 * only possible when GSO is used for verifying header integrity.
1916 */
1917 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1918 netdev_features_t features)
1919 {
1920 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1921 struct packet_type *ptype;
1922 __be16 type = skb->protocol;
1923 int vlan_depth = ETH_HLEN;
1924 int err;
1925
1926 while (type == htons(ETH_P_8021Q)) {
1927 struct vlan_hdr *vh;
1928
1929 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1930 return ERR_PTR(-EINVAL);
1931
1932 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1933 type = vh->h_vlan_encapsulated_proto;
1934 vlan_depth += VLAN_HLEN;
1935 }
1936
1937 skb_reset_mac_header(skb);
1938 skb->mac_len = skb->network_header - skb->mac_header;
1939 __skb_pull(skb, skb->mac_len);
1940
1941 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1942 struct net_device *dev = skb->dev;
1943 struct ethtool_drvinfo info = {};
1944
1945 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1946 dev->ethtool_ops->get_drvinfo(dev, &info);
1947
1948 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d ip_summed=%d\n",
1949 info.driver, dev ? &dev->features : NULL,
1950 skb->sk ? &skb->sk->sk_route_caps : NULL,
1951 skb->len, skb->data_len, skb->ip_summed);
1952
1953 if (skb_header_cloned(skb) &&
1954 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1955 return ERR_PTR(err);
1956 }
1957
1958 rcu_read_lock();
1959 list_for_each_entry_rcu(ptype,
1960 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1961 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1962 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1963 err = ptype->gso_send_check(skb);
1964 segs = ERR_PTR(err);
1965 if (err || skb_gso_ok(skb, features))
1966 break;
1967 __skb_push(skb, (skb->data -
1968 skb_network_header(skb)));
1969 }
1970 segs = ptype->gso_segment(skb, features);
1971 break;
1972 }
1973 }
1974 rcu_read_unlock();
1975
1976 __skb_push(skb, skb->data - skb_mac_header(skb));
1977
1978 return segs;
1979 }
1980 EXPORT_SYMBOL(skb_gso_segment);
1981
1982 /* Take action when hardware reception checksum errors are detected. */
1983 #ifdef CONFIG_BUG
1984 void netdev_rx_csum_fault(struct net_device *dev)
1985 {
1986 if (net_ratelimit()) {
1987 printk(KERN_ERR "%s: hw csum failure.\n",
1988 dev ? dev->name : "<unknown>");
1989 dump_stack();
1990 }
1991 }
1992 EXPORT_SYMBOL(netdev_rx_csum_fault);
1993 #endif
1994
1995 /* Actually, we should eliminate this check as soon as we know, that:
1996 * 1. IOMMU is present and allows to map all the memory.
1997 * 2. No high memory really exists on this machine.
1998 */
1999
2000 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2001 {
2002 #ifdef CONFIG_HIGHMEM
2003 int i;
2004 if (!(dev->features & NETIF_F_HIGHDMA)) {
2005 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2006 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2007 if (PageHighMem(skb_frag_page(frag)))
2008 return 1;
2009 }
2010 }
2011
2012 if (PCI_DMA_BUS_IS_PHYS) {
2013 struct device *pdev = dev->dev.parent;
2014
2015 if (!pdev)
2016 return 0;
2017 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2018 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2019 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2020 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2021 return 1;
2022 }
2023 }
2024 #endif
2025 return 0;
2026 }
2027
2028 struct dev_gso_cb {
2029 void (*destructor)(struct sk_buff *skb);
2030 };
2031
2032 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2033
2034 static void dev_gso_skb_destructor(struct sk_buff *skb)
2035 {
2036 struct dev_gso_cb *cb;
2037
2038 do {
2039 struct sk_buff *nskb = skb->next;
2040
2041 skb->next = nskb->next;
2042 nskb->next = NULL;
2043 kfree_skb(nskb);
2044 } while (skb->next);
2045
2046 cb = DEV_GSO_CB(skb);
2047 if (cb->destructor)
2048 cb->destructor(skb);
2049 }
2050
2051 /**
2052 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2053 * @skb: buffer to segment
2054 * @features: device features as applicable to this skb
2055 *
2056 * This function segments the given skb and stores the list of segments
2057 * in skb->next.
2058 */
2059 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2060 {
2061 struct sk_buff *segs;
2062
2063 segs = skb_gso_segment(skb, features);
2064
2065 /* Verifying header integrity only. */
2066 if (!segs)
2067 return 0;
2068
2069 if (IS_ERR(segs))
2070 return PTR_ERR(segs);
2071
2072 skb->next = segs;
2073 DEV_GSO_CB(skb)->destructor = skb->destructor;
2074 skb->destructor = dev_gso_skb_destructor;
2075
2076 return 0;
2077 }
2078
2079 /*
2080 * Try to orphan skb early, right before transmission by the device.
2081 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2082 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2083 */
2084 static inline void skb_orphan_try(struct sk_buff *skb)
2085 {
2086 struct sock *sk = skb->sk;
2087
2088 if (sk && !skb_shinfo(skb)->tx_flags) {
2089 /* skb_tx_hash() wont be able to get sk.
2090 * We copy sk_hash into skb->rxhash
2091 */
2092 if (!skb->rxhash)
2093 skb->rxhash = sk->sk_hash;
2094 skb_orphan(skb);
2095 }
2096 }
2097
2098 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2099 {
2100 return ((features & NETIF_F_GEN_CSUM) ||
2101 ((features & NETIF_F_V4_CSUM) &&
2102 protocol == htons(ETH_P_IP)) ||
2103 ((features & NETIF_F_V6_CSUM) &&
2104 protocol == htons(ETH_P_IPV6)) ||
2105 ((features & NETIF_F_FCOE_CRC) &&
2106 protocol == htons(ETH_P_FCOE)));
2107 }
2108
2109 static netdev_features_t harmonize_features(struct sk_buff *skb,
2110 __be16 protocol, netdev_features_t features)
2111 {
2112 if (!can_checksum_protocol(features, protocol)) {
2113 features &= ~NETIF_F_ALL_CSUM;
2114 features &= ~NETIF_F_SG;
2115 } else if (illegal_highdma(skb->dev, skb)) {
2116 features &= ~NETIF_F_SG;
2117 }
2118
2119 return features;
2120 }
2121
2122 netdev_features_t netif_skb_features(struct sk_buff *skb)
2123 {
2124 __be16 protocol = skb->protocol;
2125 netdev_features_t features = skb->dev->features;
2126
2127 if (protocol == htons(ETH_P_8021Q)) {
2128 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2129 protocol = veh->h_vlan_encapsulated_proto;
2130 } else if (!vlan_tx_tag_present(skb)) {
2131 return harmonize_features(skb, protocol, features);
2132 }
2133
2134 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2135
2136 if (protocol != htons(ETH_P_8021Q)) {
2137 return harmonize_features(skb, protocol, features);
2138 } else {
2139 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2140 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2141 return harmonize_features(skb, protocol, features);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_skb_features);
2145
2146 /*
2147 * Returns true if either:
2148 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2149 * 2. skb is fragmented and the device does not support SG, or if
2150 * at least one of fragments is in highmem and device does not
2151 * support DMA from it.
2152 */
2153 static inline int skb_needs_linearize(struct sk_buff *skb,
2154 int features)
2155 {
2156 return skb_is_nonlinear(skb) &&
2157 ((skb_has_frag_list(skb) &&
2158 !(features & NETIF_F_FRAGLIST)) ||
2159 (skb_shinfo(skb)->nr_frags &&
2160 !(features & NETIF_F_SG)));
2161 }
2162
2163 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2164 struct netdev_queue *txq)
2165 {
2166 const struct net_device_ops *ops = dev->netdev_ops;
2167 int rc = NETDEV_TX_OK;
2168 unsigned int skb_len;
2169
2170 if (likely(!skb->next)) {
2171 netdev_features_t features;
2172
2173 /*
2174 * If device doesn't need skb->dst, release it right now while
2175 * its hot in this cpu cache
2176 */
2177 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2178 skb_dst_drop(skb);
2179
2180 if (!list_empty(&ptype_all))
2181 dev_queue_xmit_nit(skb, dev);
2182
2183 skb_orphan_try(skb);
2184
2185 features = netif_skb_features(skb);
2186
2187 if (vlan_tx_tag_present(skb) &&
2188 !(features & NETIF_F_HW_VLAN_TX)) {
2189 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2190 if (unlikely(!skb))
2191 goto out;
2192
2193 skb->vlan_tci = 0;
2194 }
2195
2196 if (netif_needs_gso(skb, features)) {
2197 if (unlikely(dev_gso_segment(skb, features)))
2198 goto out_kfree_skb;
2199 if (skb->next)
2200 goto gso;
2201 } else {
2202 if (skb_needs_linearize(skb, features) &&
2203 __skb_linearize(skb))
2204 goto out_kfree_skb;
2205
2206 /* If packet is not checksummed and device does not
2207 * support checksumming for this protocol, complete
2208 * checksumming here.
2209 */
2210 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2211 skb_set_transport_header(skb,
2212 skb_checksum_start_offset(skb));
2213 if (!(features & NETIF_F_ALL_CSUM) &&
2214 skb_checksum_help(skb))
2215 goto out_kfree_skb;
2216 }
2217 }
2218
2219 skb_len = skb->len;
2220 rc = ops->ndo_start_xmit(skb, dev);
2221 trace_net_dev_xmit(skb, rc, dev, skb_len);
2222 if (rc == NETDEV_TX_OK)
2223 txq_trans_update(txq);
2224 return rc;
2225 }
2226
2227 gso:
2228 do {
2229 struct sk_buff *nskb = skb->next;
2230
2231 skb->next = nskb->next;
2232 nskb->next = NULL;
2233
2234 /*
2235 * If device doesn't need nskb->dst, release it right now while
2236 * its hot in this cpu cache
2237 */
2238 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2239 skb_dst_drop(nskb);
2240
2241 skb_len = nskb->len;
2242 rc = ops->ndo_start_xmit(nskb, dev);
2243 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2244 if (unlikely(rc != NETDEV_TX_OK)) {
2245 if (rc & ~NETDEV_TX_MASK)
2246 goto out_kfree_gso_skb;
2247 nskb->next = skb->next;
2248 skb->next = nskb;
2249 return rc;
2250 }
2251 txq_trans_update(txq);
2252 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2253 return NETDEV_TX_BUSY;
2254 } while (skb->next);
2255
2256 out_kfree_gso_skb:
2257 if (likely(skb->next == NULL))
2258 skb->destructor = DEV_GSO_CB(skb)->destructor;
2259 out_kfree_skb:
2260 kfree_skb(skb);
2261 out:
2262 return rc;
2263 }
2264
2265 static u32 hashrnd __read_mostly;
2266
2267 /*
2268 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2269 * to be used as a distribution range.
2270 */
2271 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2272 unsigned int num_tx_queues)
2273 {
2274 u32 hash;
2275 u16 qoffset = 0;
2276 u16 qcount = num_tx_queues;
2277
2278 if (skb_rx_queue_recorded(skb)) {
2279 hash = skb_get_rx_queue(skb);
2280 while (unlikely(hash >= num_tx_queues))
2281 hash -= num_tx_queues;
2282 return hash;
2283 }
2284
2285 if (dev->num_tc) {
2286 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2287 qoffset = dev->tc_to_txq[tc].offset;
2288 qcount = dev->tc_to_txq[tc].count;
2289 }
2290
2291 if (skb->sk && skb->sk->sk_hash)
2292 hash = skb->sk->sk_hash;
2293 else
2294 hash = (__force u16) skb->protocol ^ skb->rxhash;
2295 hash = jhash_1word(hash, hashrnd);
2296
2297 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2298 }
2299 EXPORT_SYMBOL(__skb_tx_hash);
2300
2301 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2302 {
2303 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2304 if (net_ratelimit()) {
2305 pr_warning("%s selects TX queue %d, but "
2306 "real number of TX queues is %d\n",
2307 dev->name, queue_index, dev->real_num_tx_queues);
2308 }
2309 return 0;
2310 }
2311 return queue_index;
2312 }
2313
2314 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2315 {
2316 #ifdef CONFIG_XPS
2317 struct xps_dev_maps *dev_maps;
2318 struct xps_map *map;
2319 int queue_index = -1;
2320
2321 rcu_read_lock();
2322 dev_maps = rcu_dereference(dev->xps_maps);
2323 if (dev_maps) {
2324 map = rcu_dereference(
2325 dev_maps->cpu_map[raw_smp_processor_id()]);
2326 if (map) {
2327 if (map->len == 1)
2328 queue_index = map->queues[0];
2329 else {
2330 u32 hash;
2331 if (skb->sk && skb->sk->sk_hash)
2332 hash = skb->sk->sk_hash;
2333 else
2334 hash = (__force u16) skb->protocol ^
2335 skb->rxhash;
2336 hash = jhash_1word(hash, hashrnd);
2337 queue_index = map->queues[
2338 ((u64)hash * map->len) >> 32];
2339 }
2340 if (unlikely(queue_index >= dev->real_num_tx_queues))
2341 queue_index = -1;
2342 }
2343 }
2344 rcu_read_unlock();
2345
2346 return queue_index;
2347 #else
2348 return -1;
2349 #endif
2350 }
2351
2352 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2353 struct sk_buff *skb)
2354 {
2355 int queue_index;
2356 const struct net_device_ops *ops = dev->netdev_ops;
2357
2358 if (dev->real_num_tx_queues == 1)
2359 queue_index = 0;
2360 else if (ops->ndo_select_queue) {
2361 queue_index = ops->ndo_select_queue(dev, skb);
2362 queue_index = dev_cap_txqueue(dev, queue_index);
2363 } else {
2364 struct sock *sk = skb->sk;
2365 queue_index = sk_tx_queue_get(sk);
2366
2367 if (queue_index < 0 || skb->ooo_okay ||
2368 queue_index >= dev->real_num_tx_queues) {
2369 int old_index = queue_index;
2370
2371 queue_index = get_xps_queue(dev, skb);
2372 if (queue_index < 0)
2373 queue_index = skb_tx_hash(dev, skb);
2374
2375 if (queue_index != old_index && sk) {
2376 struct dst_entry *dst =
2377 rcu_dereference_check(sk->sk_dst_cache, 1);
2378
2379 if (dst && skb_dst(skb) == dst)
2380 sk_tx_queue_set(sk, queue_index);
2381 }
2382 }
2383 }
2384
2385 skb_set_queue_mapping(skb, queue_index);
2386 return netdev_get_tx_queue(dev, queue_index);
2387 }
2388
2389 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2390 struct net_device *dev,
2391 struct netdev_queue *txq)
2392 {
2393 spinlock_t *root_lock = qdisc_lock(q);
2394 bool contended;
2395 int rc;
2396
2397 qdisc_skb_cb(skb)->pkt_len = skb->len;
2398 qdisc_calculate_pkt_len(skb, q);
2399 /*
2400 * Heuristic to force contended enqueues to serialize on a
2401 * separate lock before trying to get qdisc main lock.
2402 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2403 * and dequeue packets faster.
2404 */
2405 contended = qdisc_is_running(q);
2406 if (unlikely(contended))
2407 spin_lock(&q->busylock);
2408
2409 spin_lock(root_lock);
2410 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2411 kfree_skb(skb);
2412 rc = NET_XMIT_DROP;
2413 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2414 qdisc_run_begin(q)) {
2415 /*
2416 * This is a work-conserving queue; there are no old skbs
2417 * waiting to be sent out; and the qdisc is not running -
2418 * xmit the skb directly.
2419 */
2420 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2421 skb_dst_force(skb);
2422
2423 qdisc_bstats_update(q, skb);
2424
2425 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2426 if (unlikely(contended)) {
2427 spin_unlock(&q->busylock);
2428 contended = false;
2429 }
2430 __qdisc_run(q);
2431 } else
2432 qdisc_run_end(q);
2433
2434 rc = NET_XMIT_SUCCESS;
2435 } else {
2436 skb_dst_force(skb);
2437 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2438 if (qdisc_run_begin(q)) {
2439 if (unlikely(contended)) {
2440 spin_unlock(&q->busylock);
2441 contended = false;
2442 }
2443 __qdisc_run(q);
2444 }
2445 }
2446 spin_unlock(root_lock);
2447 if (unlikely(contended))
2448 spin_unlock(&q->busylock);
2449 return rc;
2450 }
2451
2452 static DEFINE_PER_CPU(int, xmit_recursion);
2453 #define RECURSION_LIMIT 10
2454
2455 /**
2456 * dev_queue_xmit - transmit a buffer
2457 * @skb: buffer to transmit
2458 *
2459 * Queue a buffer for transmission to a network device. The caller must
2460 * have set the device and priority and built the buffer before calling
2461 * this function. The function can be called from an interrupt.
2462 *
2463 * A negative errno code is returned on a failure. A success does not
2464 * guarantee the frame will be transmitted as it may be dropped due
2465 * to congestion or traffic shaping.
2466 *
2467 * -----------------------------------------------------------------------------------
2468 * I notice this method can also return errors from the queue disciplines,
2469 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2470 * be positive.
2471 *
2472 * Regardless of the return value, the skb is consumed, so it is currently
2473 * difficult to retry a send to this method. (You can bump the ref count
2474 * before sending to hold a reference for retry if you are careful.)
2475 *
2476 * When calling this method, interrupts MUST be enabled. This is because
2477 * the BH enable code must have IRQs enabled so that it will not deadlock.
2478 * --BLG
2479 */
2480 int dev_queue_xmit(struct sk_buff *skb)
2481 {
2482 struct net_device *dev = skb->dev;
2483 struct netdev_queue *txq;
2484 struct Qdisc *q;
2485 int rc = -ENOMEM;
2486
2487 /* Disable soft irqs for various locks below. Also
2488 * stops preemption for RCU.
2489 */
2490 rcu_read_lock_bh();
2491
2492 txq = dev_pick_tx(dev, skb);
2493 q = rcu_dereference_bh(txq->qdisc);
2494
2495 #ifdef CONFIG_NET_CLS_ACT
2496 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2497 #endif
2498 trace_net_dev_queue(skb);
2499 if (q->enqueue) {
2500 rc = __dev_xmit_skb(skb, q, dev, txq);
2501 goto out;
2502 }
2503
2504 /* The device has no queue. Common case for software devices:
2505 loopback, all the sorts of tunnels...
2506
2507 Really, it is unlikely that netif_tx_lock protection is necessary
2508 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2509 counters.)
2510 However, it is possible, that they rely on protection
2511 made by us here.
2512
2513 Check this and shot the lock. It is not prone from deadlocks.
2514 Either shot noqueue qdisc, it is even simpler 8)
2515 */
2516 if (dev->flags & IFF_UP) {
2517 int cpu = smp_processor_id(); /* ok because BHs are off */
2518
2519 if (txq->xmit_lock_owner != cpu) {
2520
2521 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2522 goto recursion_alert;
2523
2524 HARD_TX_LOCK(dev, txq, cpu);
2525
2526 if (!netif_tx_queue_stopped(txq)) {
2527 __this_cpu_inc(xmit_recursion);
2528 rc = dev_hard_start_xmit(skb, dev, txq);
2529 __this_cpu_dec(xmit_recursion);
2530 if (dev_xmit_complete(rc)) {
2531 HARD_TX_UNLOCK(dev, txq);
2532 goto out;
2533 }
2534 }
2535 HARD_TX_UNLOCK(dev, txq);
2536 if (net_ratelimit())
2537 printk(KERN_CRIT "Virtual device %s asks to "
2538 "queue packet!\n", dev->name);
2539 } else {
2540 /* Recursion is detected! It is possible,
2541 * unfortunately
2542 */
2543 recursion_alert:
2544 if (net_ratelimit())
2545 printk(KERN_CRIT "Dead loop on virtual device "
2546 "%s, fix it urgently!\n", dev->name);
2547 }
2548 }
2549
2550 rc = -ENETDOWN;
2551 rcu_read_unlock_bh();
2552
2553 kfree_skb(skb);
2554 return rc;
2555 out:
2556 rcu_read_unlock_bh();
2557 return rc;
2558 }
2559 EXPORT_SYMBOL(dev_queue_xmit);
2560
2561
2562 /*=======================================================================
2563 Receiver routines
2564 =======================================================================*/
2565
2566 int netdev_max_backlog __read_mostly = 1000;
2567 int netdev_tstamp_prequeue __read_mostly = 1;
2568 int netdev_budget __read_mostly = 300;
2569 int weight_p __read_mostly = 64; /* old backlog weight */
2570
2571 /* Called with irq disabled */
2572 static inline void ____napi_schedule(struct softnet_data *sd,
2573 struct napi_struct *napi)
2574 {
2575 list_add_tail(&napi->poll_list, &sd->poll_list);
2576 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2577 }
2578
2579 /*
2580 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2581 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2582 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2583 * if hash is a canonical 4-tuple hash over transport ports.
2584 */
2585 void __skb_get_rxhash(struct sk_buff *skb)
2586 {
2587 int nhoff, hash = 0, poff;
2588 const struct ipv6hdr *ip6;
2589 const struct iphdr *ip;
2590 const struct vlan_hdr *vlan;
2591 u8 ip_proto;
2592 u32 addr1, addr2;
2593 u16 proto;
2594 union {
2595 u32 v32;
2596 u16 v16[2];
2597 } ports;
2598
2599 nhoff = skb_network_offset(skb);
2600 proto = skb->protocol;
2601
2602 again:
2603 switch (proto) {
2604 case __constant_htons(ETH_P_IP):
2605 ip:
2606 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2607 goto done;
2608
2609 ip = (const struct iphdr *) (skb->data + nhoff);
2610 if (ip_is_fragment(ip))
2611 ip_proto = 0;
2612 else
2613 ip_proto = ip->protocol;
2614 addr1 = (__force u32) ip->saddr;
2615 addr2 = (__force u32) ip->daddr;
2616 nhoff += ip->ihl * 4;
2617 break;
2618 case __constant_htons(ETH_P_IPV6):
2619 ipv6:
2620 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2621 goto done;
2622
2623 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2624 ip_proto = ip6->nexthdr;
2625 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2626 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2627 nhoff += 40;
2628 break;
2629 case __constant_htons(ETH_P_8021Q):
2630 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff))
2631 goto done;
2632 vlan = (const struct vlan_hdr *) (skb->data + nhoff);
2633 proto = vlan->h_vlan_encapsulated_proto;
2634 nhoff += sizeof(*vlan);
2635 goto again;
2636 case __constant_htons(ETH_P_PPP_SES):
2637 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff))
2638 goto done;
2639 proto = *((__be16 *) (skb->data + nhoff +
2640 sizeof(struct pppoe_hdr)));
2641 nhoff += PPPOE_SES_HLEN;
2642 switch (proto) {
2643 case __constant_htons(PPP_IP):
2644 goto ip;
2645 case __constant_htons(PPP_IPV6):
2646 goto ipv6;
2647 default:
2648 goto done;
2649 }
2650 default:
2651 goto done;
2652 }
2653
2654 switch (ip_proto) {
2655 case IPPROTO_GRE:
2656 if (pskb_may_pull(skb, nhoff + 16)) {
2657 u8 *h = skb->data + nhoff;
2658 __be16 flags = *(__be16 *)h;
2659
2660 /*
2661 * Only look inside GRE if version zero and no
2662 * routing
2663 */
2664 if (!(flags & (GRE_VERSION|GRE_ROUTING))) {
2665 proto = *(__be16 *)(h + 2);
2666 nhoff += 4;
2667 if (flags & GRE_CSUM)
2668 nhoff += 4;
2669 if (flags & GRE_KEY)
2670 nhoff += 4;
2671 if (flags & GRE_SEQ)
2672 nhoff += 4;
2673 goto again;
2674 }
2675 }
2676 break;
2677 case IPPROTO_IPIP:
2678 goto again;
2679 default:
2680 break;
2681 }
2682
2683 ports.v32 = 0;
2684 poff = proto_ports_offset(ip_proto);
2685 if (poff >= 0) {
2686 nhoff += poff;
2687 if (pskb_may_pull(skb, nhoff + 4)) {
2688 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2689 if (ports.v16[1] < ports.v16[0])
2690 swap(ports.v16[0], ports.v16[1]);
2691 skb->l4_rxhash = 1;
2692 }
2693 }
2694
2695 /* get a consistent hash (same value on both flow directions) */
2696 if (addr2 < addr1)
2697 swap(addr1, addr2);
2698
2699 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2700 if (!hash)
2701 hash = 1;
2702
2703 done:
2704 skb->rxhash = hash;
2705 }
2706 EXPORT_SYMBOL(__skb_get_rxhash);
2707
2708 #ifdef CONFIG_RPS
2709
2710 /* One global table that all flow-based protocols share. */
2711 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2712 EXPORT_SYMBOL(rps_sock_flow_table);
2713
2714 struct jump_label_key rps_needed __read_mostly;
2715
2716 static struct rps_dev_flow *
2717 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2718 struct rps_dev_flow *rflow, u16 next_cpu)
2719 {
2720 if (next_cpu != RPS_NO_CPU) {
2721 #ifdef CONFIG_RFS_ACCEL
2722 struct netdev_rx_queue *rxqueue;
2723 struct rps_dev_flow_table *flow_table;
2724 struct rps_dev_flow *old_rflow;
2725 u32 flow_id;
2726 u16 rxq_index;
2727 int rc;
2728
2729 /* Should we steer this flow to a different hardware queue? */
2730 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2731 !(dev->features & NETIF_F_NTUPLE))
2732 goto out;
2733 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2734 if (rxq_index == skb_get_rx_queue(skb))
2735 goto out;
2736
2737 rxqueue = dev->_rx + rxq_index;
2738 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2739 if (!flow_table)
2740 goto out;
2741 flow_id = skb->rxhash & flow_table->mask;
2742 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2743 rxq_index, flow_id);
2744 if (rc < 0)
2745 goto out;
2746 old_rflow = rflow;
2747 rflow = &flow_table->flows[flow_id];
2748 rflow->filter = rc;
2749 if (old_rflow->filter == rflow->filter)
2750 old_rflow->filter = RPS_NO_FILTER;
2751 out:
2752 #endif
2753 rflow->last_qtail =
2754 per_cpu(softnet_data, next_cpu).input_queue_head;
2755 }
2756
2757 rflow->cpu = next_cpu;
2758 return rflow;
2759 }
2760
2761 /*
2762 * get_rps_cpu is called from netif_receive_skb and returns the target
2763 * CPU from the RPS map of the receiving queue for a given skb.
2764 * rcu_read_lock must be held on entry.
2765 */
2766 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2767 struct rps_dev_flow **rflowp)
2768 {
2769 struct netdev_rx_queue *rxqueue;
2770 struct rps_map *map;
2771 struct rps_dev_flow_table *flow_table;
2772 struct rps_sock_flow_table *sock_flow_table;
2773 int cpu = -1;
2774 u16 tcpu;
2775
2776 if (skb_rx_queue_recorded(skb)) {
2777 u16 index = skb_get_rx_queue(skb);
2778 if (unlikely(index >= dev->real_num_rx_queues)) {
2779 WARN_ONCE(dev->real_num_rx_queues > 1,
2780 "%s received packet on queue %u, but number "
2781 "of RX queues is %u\n",
2782 dev->name, index, dev->real_num_rx_queues);
2783 goto done;
2784 }
2785 rxqueue = dev->_rx + index;
2786 } else
2787 rxqueue = dev->_rx;
2788
2789 map = rcu_dereference(rxqueue->rps_map);
2790 if (map) {
2791 if (map->len == 1 &&
2792 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2793 tcpu = map->cpus[0];
2794 if (cpu_online(tcpu))
2795 cpu = tcpu;
2796 goto done;
2797 }
2798 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2799 goto done;
2800 }
2801
2802 skb_reset_network_header(skb);
2803 if (!skb_get_rxhash(skb))
2804 goto done;
2805
2806 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2807 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2808 if (flow_table && sock_flow_table) {
2809 u16 next_cpu;
2810 struct rps_dev_flow *rflow;
2811
2812 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2813 tcpu = rflow->cpu;
2814
2815 next_cpu = sock_flow_table->ents[skb->rxhash &
2816 sock_flow_table->mask];
2817
2818 /*
2819 * If the desired CPU (where last recvmsg was done) is
2820 * different from current CPU (one in the rx-queue flow
2821 * table entry), switch if one of the following holds:
2822 * - Current CPU is unset (equal to RPS_NO_CPU).
2823 * - Current CPU is offline.
2824 * - The current CPU's queue tail has advanced beyond the
2825 * last packet that was enqueued using this table entry.
2826 * This guarantees that all previous packets for the flow
2827 * have been dequeued, thus preserving in order delivery.
2828 */
2829 if (unlikely(tcpu != next_cpu) &&
2830 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2831 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2832 rflow->last_qtail)) >= 0))
2833 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2834
2835 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2836 *rflowp = rflow;
2837 cpu = tcpu;
2838 goto done;
2839 }
2840 }
2841
2842 if (map) {
2843 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2844
2845 if (cpu_online(tcpu)) {
2846 cpu = tcpu;
2847 goto done;
2848 }
2849 }
2850
2851 done:
2852 return cpu;
2853 }
2854
2855 #ifdef CONFIG_RFS_ACCEL
2856
2857 /**
2858 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2859 * @dev: Device on which the filter was set
2860 * @rxq_index: RX queue index
2861 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2862 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2863 *
2864 * Drivers that implement ndo_rx_flow_steer() should periodically call
2865 * this function for each installed filter and remove the filters for
2866 * which it returns %true.
2867 */
2868 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2869 u32 flow_id, u16 filter_id)
2870 {
2871 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2872 struct rps_dev_flow_table *flow_table;
2873 struct rps_dev_flow *rflow;
2874 bool expire = true;
2875 int cpu;
2876
2877 rcu_read_lock();
2878 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2879 if (flow_table && flow_id <= flow_table->mask) {
2880 rflow = &flow_table->flows[flow_id];
2881 cpu = ACCESS_ONCE(rflow->cpu);
2882 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2883 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2884 rflow->last_qtail) <
2885 (int)(10 * flow_table->mask)))
2886 expire = false;
2887 }
2888 rcu_read_unlock();
2889 return expire;
2890 }
2891 EXPORT_SYMBOL(rps_may_expire_flow);
2892
2893 #endif /* CONFIG_RFS_ACCEL */
2894
2895 /* Called from hardirq (IPI) context */
2896 static void rps_trigger_softirq(void *data)
2897 {
2898 struct softnet_data *sd = data;
2899
2900 ____napi_schedule(sd, &sd->backlog);
2901 sd->received_rps++;
2902 }
2903
2904 #endif /* CONFIG_RPS */
2905
2906 /*
2907 * Check if this softnet_data structure is another cpu one
2908 * If yes, queue it to our IPI list and return 1
2909 * If no, return 0
2910 */
2911 static int rps_ipi_queued(struct softnet_data *sd)
2912 {
2913 #ifdef CONFIG_RPS
2914 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2915
2916 if (sd != mysd) {
2917 sd->rps_ipi_next = mysd->rps_ipi_list;
2918 mysd->rps_ipi_list = sd;
2919
2920 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2921 return 1;
2922 }
2923 #endif /* CONFIG_RPS */
2924 return 0;
2925 }
2926
2927 /*
2928 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2929 * queue (may be a remote CPU queue).
2930 */
2931 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2932 unsigned int *qtail)
2933 {
2934 struct softnet_data *sd;
2935 unsigned long flags;
2936
2937 sd = &per_cpu(softnet_data, cpu);
2938
2939 local_irq_save(flags);
2940
2941 rps_lock(sd);
2942 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2943 if (skb_queue_len(&sd->input_pkt_queue)) {
2944 enqueue:
2945 __skb_queue_tail(&sd->input_pkt_queue, skb);
2946 input_queue_tail_incr_save(sd, qtail);
2947 rps_unlock(sd);
2948 local_irq_restore(flags);
2949 return NET_RX_SUCCESS;
2950 }
2951
2952 /* Schedule NAPI for backlog device
2953 * We can use non atomic operation since we own the queue lock
2954 */
2955 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2956 if (!rps_ipi_queued(sd))
2957 ____napi_schedule(sd, &sd->backlog);
2958 }
2959 goto enqueue;
2960 }
2961
2962 sd->dropped++;
2963 rps_unlock(sd);
2964
2965 local_irq_restore(flags);
2966
2967 atomic_long_inc(&skb->dev->rx_dropped);
2968 kfree_skb(skb);
2969 return NET_RX_DROP;
2970 }
2971
2972 /**
2973 * netif_rx - post buffer to the network code
2974 * @skb: buffer to post
2975 *
2976 * This function receives a packet from a device driver and queues it for
2977 * the upper (protocol) levels to process. It always succeeds. The buffer
2978 * may be dropped during processing for congestion control or by the
2979 * protocol layers.
2980 *
2981 * return values:
2982 * NET_RX_SUCCESS (no congestion)
2983 * NET_RX_DROP (packet was dropped)
2984 *
2985 */
2986
2987 int netif_rx(struct sk_buff *skb)
2988 {
2989 int ret;
2990
2991 /* if netpoll wants it, pretend we never saw it */
2992 if (netpoll_rx(skb))
2993 return NET_RX_DROP;
2994
2995 net_timestamp_check(netdev_tstamp_prequeue, skb);
2996
2997 trace_netif_rx(skb);
2998 #ifdef CONFIG_RPS
2999 if (static_branch(&rps_needed)) {
3000 struct rps_dev_flow voidflow, *rflow = &voidflow;
3001 int cpu;
3002
3003 preempt_disable();
3004 rcu_read_lock();
3005
3006 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3007 if (cpu < 0)
3008 cpu = smp_processor_id();
3009
3010 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3011
3012 rcu_read_unlock();
3013 preempt_enable();
3014 } else
3015 #endif
3016 {
3017 unsigned int qtail;
3018 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3019 put_cpu();
3020 }
3021 return ret;
3022 }
3023 EXPORT_SYMBOL(netif_rx);
3024
3025 int netif_rx_ni(struct sk_buff *skb)
3026 {
3027 int err;
3028
3029 preempt_disable();
3030 err = netif_rx(skb);
3031 if (local_softirq_pending())
3032 do_softirq();
3033 preempt_enable();
3034
3035 return err;
3036 }
3037 EXPORT_SYMBOL(netif_rx_ni);
3038
3039 static void net_tx_action(struct softirq_action *h)
3040 {
3041 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3042
3043 if (sd->completion_queue) {
3044 struct sk_buff *clist;
3045
3046 local_irq_disable();
3047 clist = sd->completion_queue;
3048 sd->completion_queue = NULL;
3049 local_irq_enable();
3050
3051 while (clist) {
3052 struct sk_buff *skb = clist;
3053 clist = clist->next;
3054
3055 WARN_ON(atomic_read(&skb->users));
3056 trace_kfree_skb(skb, net_tx_action);
3057 __kfree_skb(skb);
3058 }
3059 }
3060
3061 if (sd->output_queue) {
3062 struct Qdisc *head;
3063
3064 local_irq_disable();
3065 head = sd->output_queue;
3066 sd->output_queue = NULL;
3067 sd->output_queue_tailp = &sd->output_queue;
3068 local_irq_enable();
3069
3070 while (head) {
3071 struct Qdisc *q = head;
3072 spinlock_t *root_lock;
3073
3074 head = head->next_sched;
3075
3076 root_lock = qdisc_lock(q);
3077 if (spin_trylock(root_lock)) {
3078 smp_mb__before_clear_bit();
3079 clear_bit(__QDISC_STATE_SCHED,
3080 &q->state);
3081 qdisc_run(q);
3082 spin_unlock(root_lock);
3083 } else {
3084 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3085 &q->state)) {
3086 __netif_reschedule(q);
3087 } else {
3088 smp_mb__before_clear_bit();
3089 clear_bit(__QDISC_STATE_SCHED,
3090 &q->state);
3091 }
3092 }
3093 }
3094 }
3095 }
3096
3097 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3098 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3099 /* This hook is defined here for ATM LANE */
3100 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3101 unsigned char *addr) __read_mostly;
3102 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3103 #endif
3104
3105 #ifdef CONFIG_NET_CLS_ACT
3106 /* TODO: Maybe we should just force sch_ingress to be compiled in
3107 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3108 * a compare and 2 stores extra right now if we dont have it on
3109 * but have CONFIG_NET_CLS_ACT
3110 * NOTE: This doesn't stop any functionality; if you dont have
3111 * the ingress scheduler, you just can't add policies on ingress.
3112 *
3113 */
3114 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3115 {
3116 struct net_device *dev = skb->dev;
3117 u32 ttl = G_TC_RTTL(skb->tc_verd);
3118 int result = TC_ACT_OK;
3119 struct Qdisc *q;
3120
3121 if (unlikely(MAX_RED_LOOP < ttl++)) {
3122 if (net_ratelimit())
3123 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3124 skb->skb_iif, dev->ifindex);
3125 return TC_ACT_SHOT;
3126 }
3127
3128 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3129 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3130
3131 q = rxq->qdisc;
3132 if (q != &noop_qdisc) {
3133 spin_lock(qdisc_lock(q));
3134 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3135 result = qdisc_enqueue_root(skb, q);
3136 spin_unlock(qdisc_lock(q));
3137 }
3138
3139 return result;
3140 }
3141
3142 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3143 struct packet_type **pt_prev,
3144 int *ret, struct net_device *orig_dev)
3145 {
3146 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3147
3148 if (!rxq || rxq->qdisc == &noop_qdisc)
3149 goto out;
3150
3151 if (*pt_prev) {
3152 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3153 *pt_prev = NULL;
3154 }
3155
3156 switch (ing_filter(skb, rxq)) {
3157 case TC_ACT_SHOT:
3158 case TC_ACT_STOLEN:
3159 kfree_skb(skb);
3160 return NULL;
3161 }
3162
3163 out:
3164 skb->tc_verd = 0;
3165 return skb;
3166 }
3167 #endif
3168
3169 /**
3170 * netdev_rx_handler_register - register receive handler
3171 * @dev: device to register a handler for
3172 * @rx_handler: receive handler to register
3173 * @rx_handler_data: data pointer that is used by rx handler
3174 *
3175 * Register a receive hander for a device. This handler will then be
3176 * called from __netif_receive_skb. A negative errno code is returned
3177 * on a failure.
3178 *
3179 * The caller must hold the rtnl_mutex.
3180 *
3181 * For a general description of rx_handler, see enum rx_handler_result.
3182 */
3183 int netdev_rx_handler_register(struct net_device *dev,
3184 rx_handler_func_t *rx_handler,
3185 void *rx_handler_data)
3186 {
3187 ASSERT_RTNL();
3188
3189 if (dev->rx_handler)
3190 return -EBUSY;
3191
3192 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3193 rcu_assign_pointer(dev->rx_handler, rx_handler);
3194
3195 return 0;
3196 }
3197 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3198
3199 /**
3200 * netdev_rx_handler_unregister - unregister receive handler
3201 * @dev: device to unregister a handler from
3202 *
3203 * Unregister a receive hander from a device.
3204 *
3205 * The caller must hold the rtnl_mutex.
3206 */
3207 void netdev_rx_handler_unregister(struct net_device *dev)
3208 {
3209
3210 ASSERT_RTNL();
3211 RCU_INIT_POINTER(dev->rx_handler, NULL);
3212 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3213 }
3214 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3215
3216 static int __netif_receive_skb(struct sk_buff *skb)
3217 {
3218 struct packet_type *ptype, *pt_prev;
3219 rx_handler_func_t *rx_handler;
3220 struct net_device *orig_dev;
3221 struct net_device *null_or_dev;
3222 bool deliver_exact = false;
3223 int ret = NET_RX_DROP;
3224 __be16 type;
3225
3226 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3227
3228 trace_netif_receive_skb(skb);
3229
3230 /* if we've gotten here through NAPI, check netpoll */
3231 if (netpoll_receive_skb(skb))
3232 return NET_RX_DROP;
3233
3234 if (!skb->skb_iif)
3235 skb->skb_iif = skb->dev->ifindex;
3236 orig_dev = skb->dev;
3237
3238 skb_reset_network_header(skb);
3239 skb_reset_transport_header(skb);
3240 skb_reset_mac_len(skb);
3241
3242 pt_prev = NULL;
3243
3244 rcu_read_lock();
3245
3246 another_round:
3247
3248 __this_cpu_inc(softnet_data.processed);
3249
3250 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3251 skb = vlan_untag(skb);
3252 if (unlikely(!skb))
3253 goto out;
3254 }
3255
3256 #ifdef CONFIG_NET_CLS_ACT
3257 if (skb->tc_verd & TC_NCLS) {
3258 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3259 goto ncls;
3260 }
3261 #endif
3262
3263 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3264 if (!ptype->dev || ptype->dev == skb->dev) {
3265 if (pt_prev)
3266 ret = deliver_skb(skb, pt_prev, orig_dev);
3267 pt_prev = ptype;
3268 }
3269 }
3270
3271 #ifdef CONFIG_NET_CLS_ACT
3272 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3273 if (!skb)
3274 goto out;
3275 ncls:
3276 #endif
3277
3278 rx_handler = rcu_dereference(skb->dev->rx_handler);
3279 if (vlan_tx_tag_present(skb)) {
3280 if (pt_prev) {
3281 ret = deliver_skb(skb, pt_prev, orig_dev);
3282 pt_prev = NULL;
3283 }
3284 if (vlan_do_receive(&skb, !rx_handler))
3285 goto another_round;
3286 else if (unlikely(!skb))
3287 goto out;
3288 }
3289
3290 if (rx_handler) {
3291 if (pt_prev) {
3292 ret = deliver_skb(skb, pt_prev, orig_dev);
3293 pt_prev = NULL;
3294 }
3295 switch (rx_handler(&skb)) {
3296 case RX_HANDLER_CONSUMED:
3297 goto out;
3298 case RX_HANDLER_ANOTHER:
3299 goto another_round;
3300 case RX_HANDLER_EXACT:
3301 deliver_exact = true;
3302 case RX_HANDLER_PASS:
3303 break;
3304 default:
3305 BUG();
3306 }
3307 }
3308
3309 /* deliver only exact match when indicated */
3310 null_or_dev = deliver_exact ? skb->dev : NULL;
3311
3312 type = skb->protocol;
3313 list_for_each_entry_rcu(ptype,
3314 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3315 if (ptype->type == type &&
3316 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3317 ptype->dev == orig_dev)) {
3318 if (pt_prev)
3319 ret = deliver_skb(skb, pt_prev, orig_dev);
3320 pt_prev = ptype;
3321 }
3322 }
3323
3324 if (pt_prev) {
3325 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3326 } else {
3327 atomic_long_inc(&skb->dev->rx_dropped);
3328 kfree_skb(skb);
3329 /* Jamal, now you will not able to escape explaining
3330 * me how you were going to use this. :-)
3331 */
3332 ret = NET_RX_DROP;
3333 }
3334
3335 out:
3336 rcu_read_unlock();
3337 return ret;
3338 }
3339
3340 /**
3341 * netif_receive_skb - process receive buffer from network
3342 * @skb: buffer to process
3343 *
3344 * netif_receive_skb() is the main receive data processing function.
3345 * It always succeeds. The buffer may be dropped during processing
3346 * for congestion control or by the protocol layers.
3347 *
3348 * This function may only be called from softirq context and interrupts
3349 * should be enabled.
3350 *
3351 * Return values (usually ignored):
3352 * NET_RX_SUCCESS: no congestion
3353 * NET_RX_DROP: packet was dropped
3354 */
3355 int netif_receive_skb(struct sk_buff *skb)
3356 {
3357 net_timestamp_check(netdev_tstamp_prequeue, skb);
3358
3359 if (skb_defer_rx_timestamp(skb))
3360 return NET_RX_SUCCESS;
3361
3362 #ifdef CONFIG_RPS
3363 if (static_branch(&rps_needed)) {
3364 struct rps_dev_flow voidflow, *rflow = &voidflow;
3365 int cpu, ret;
3366
3367 rcu_read_lock();
3368
3369 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3370
3371 if (cpu >= 0) {
3372 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3373 rcu_read_unlock();
3374 return ret;
3375 }
3376 rcu_read_unlock();
3377 }
3378 #endif
3379 return __netif_receive_skb(skb);
3380 }
3381 EXPORT_SYMBOL(netif_receive_skb);
3382
3383 /* Network device is going away, flush any packets still pending
3384 * Called with irqs disabled.
3385 */
3386 static void flush_backlog(void *arg)
3387 {
3388 struct net_device *dev = arg;
3389 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3390 struct sk_buff *skb, *tmp;
3391
3392 rps_lock(sd);
3393 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3394 if (skb->dev == dev) {
3395 __skb_unlink(skb, &sd->input_pkt_queue);
3396 kfree_skb(skb);
3397 input_queue_head_incr(sd);
3398 }
3399 }
3400 rps_unlock(sd);
3401
3402 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3403 if (skb->dev == dev) {
3404 __skb_unlink(skb, &sd->process_queue);
3405 kfree_skb(skb);
3406 input_queue_head_incr(sd);
3407 }
3408 }
3409 }
3410
3411 static int napi_gro_complete(struct sk_buff *skb)
3412 {
3413 struct packet_type *ptype;
3414 __be16 type = skb->protocol;
3415 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3416 int err = -ENOENT;
3417
3418 if (NAPI_GRO_CB(skb)->count == 1) {
3419 skb_shinfo(skb)->gso_size = 0;
3420 goto out;
3421 }
3422
3423 rcu_read_lock();
3424 list_for_each_entry_rcu(ptype, head, list) {
3425 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3426 continue;
3427
3428 err = ptype->gro_complete(skb);
3429 break;
3430 }
3431 rcu_read_unlock();
3432
3433 if (err) {
3434 WARN_ON(&ptype->list == head);
3435 kfree_skb(skb);
3436 return NET_RX_SUCCESS;
3437 }
3438
3439 out:
3440 return netif_receive_skb(skb);
3441 }
3442
3443 inline void napi_gro_flush(struct napi_struct *napi)
3444 {
3445 struct sk_buff *skb, *next;
3446
3447 for (skb = napi->gro_list; skb; skb = next) {
3448 next = skb->next;
3449 skb->next = NULL;
3450 napi_gro_complete(skb);
3451 }
3452
3453 napi->gro_count = 0;
3454 napi->gro_list = NULL;
3455 }
3456 EXPORT_SYMBOL(napi_gro_flush);
3457
3458 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3459 {
3460 struct sk_buff **pp = NULL;
3461 struct packet_type *ptype;
3462 __be16 type = skb->protocol;
3463 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3464 int same_flow;
3465 int mac_len;
3466 enum gro_result ret;
3467
3468 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3469 goto normal;
3470
3471 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3472 goto normal;
3473
3474 rcu_read_lock();
3475 list_for_each_entry_rcu(ptype, head, list) {
3476 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3477 continue;
3478
3479 skb_set_network_header(skb, skb_gro_offset(skb));
3480 mac_len = skb->network_header - skb->mac_header;
3481 skb->mac_len = mac_len;
3482 NAPI_GRO_CB(skb)->same_flow = 0;
3483 NAPI_GRO_CB(skb)->flush = 0;
3484 NAPI_GRO_CB(skb)->free = 0;
3485
3486 pp = ptype->gro_receive(&napi->gro_list, skb);
3487 break;
3488 }
3489 rcu_read_unlock();
3490
3491 if (&ptype->list == head)
3492 goto normal;
3493
3494 same_flow = NAPI_GRO_CB(skb)->same_flow;
3495 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3496
3497 if (pp) {
3498 struct sk_buff *nskb = *pp;
3499
3500 *pp = nskb->next;
3501 nskb->next = NULL;
3502 napi_gro_complete(nskb);
3503 napi->gro_count--;
3504 }
3505
3506 if (same_flow)
3507 goto ok;
3508
3509 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3510 goto normal;
3511
3512 napi->gro_count++;
3513 NAPI_GRO_CB(skb)->count = 1;
3514 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3515 skb->next = napi->gro_list;
3516 napi->gro_list = skb;
3517 ret = GRO_HELD;
3518
3519 pull:
3520 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3521 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3522
3523 BUG_ON(skb->end - skb->tail < grow);
3524
3525 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3526
3527 skb->tail += grow;
3528 skb->data_len -= grow;
3529
3530 skb_shinfo(skb)->frags[0].page_offset += grow;
3531 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3532
3533 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3534 skb_frag_unref(skb, 0);
3535 memmove(skb_shinfo(skb)->frags,
3536 skb_shinfo(skb)->frags + 1,
3537 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3538 }
3539 }
3540
3541 ok:
3542 return ret;
3543
3544 normal:
3545 ret = GRO_NORMAL;
3546 goto pull;
3547 }
3548 EXPORT_SYMBOL(dev_gro_receive);
3549
3550 static inline gro_result_t
3551 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3552 {
3553 struct sk_buff *p;
3554
3555 for (p = napi->gro_list; p; p = p->next) {
3556 unsigned long diffs;
3557
3558 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3559 diffs |= p->vlan_tci ^ skb->vlan_tci;
3560 diffs |= compare_ether_header(skb_mac_header(p),
3561 skb_gro_mac_header(skb));
3562 NAPI_GRO_CB(p)->same_flow = !diffs;
3563 NAPI_GRO_CB(p)->flush = 0;
3564 }
3565
3566 return dev_gro_receive(napi, skb);
3567 }
3568
3569 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3570 {
3571 switch (ret) {
3572 case GRO_NORMAL:
3573 if (netif_receive_skb(skb))
3574 ret = GRO_DROP;
3575 break;
3576
3577 case GRO_DROP:
3578 case GRO_MERGED_FREE:
3579 kfree_skb(skb);
3580 break;
3581
3582 case GRO_HELD:
3583 case GRO_MERGED:
3584 break;
3585 }
3586
3587 return ret;
3588 }
3589 EXPORT_SYMBOL(napi_skb_finish);
3590
3591 void skb_gro_reset_offset(struct sk_buff *skb)
3592 {
3593 NAPI_GRO_CB(skb)->data_offset = 0;
3594 NAPI_GRO_CB(skb)->frag0 = NULL;
3595 NAPI_GRO_CB(skb)->frag0_len = 0;
3596
3597 if (skb->mac_header == skb->tail &&
3598 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3599 NAPI_GRO_CB(skb)->frag0 =
3600 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3601 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3602 }
3603 }
3604 EXPORT_SYMBOL(skb_gro_reset_offset);
3605
3606 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3607 {
3608 skb_gro_reset_offset(skb);
3609
3610 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3611 }
3612 EXPORT_SYMBOL(napi_gro_receive);
3613
3614 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3615 {
3616 __skb_pull(skb, skb_headlen(skb));
3617 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3618 skb->vlan_tci = 0;
3619 skb->dev = napi->dev;
3620 skb->skb_iif = 0;
3621
3622 napi->skb = skb;
3623 }
3624
3625 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3626 {
3627 struct sk_buff *skb = napi->skb;
3628
3629 if (!skb) {
3630 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3631 if (skb)
3632 napi->skb = skb;
3633 }
3634 return skb;
3635 }
3636 EXPORT_SYMBOL(napi_get_frags);
3637
3638 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3639 gro_result_t ret)
3640 {
3641 switch (ret) {
3642 case GRO_NORMAL:
3643 case GRO_HELD:
3644 skb->protocol = eth_type_trans(skb, skb->dev);
3645
3646 if (ret == GRO_HELD)
3647 skb_gro_pull(skb, -ETH_HLEN);
3648 else if (netif_receive_skb(skb))
3649 ret = GRO_DROP;
3650 break;
3651
3652 case GRO_DROP:
3653 case GRO_MERGED_FREE:
3654 napi_reuse_skb(napi, skb);
3655 break;
3656
3657 case GRO_MERGED:
3658 break;
3659 }
3660
3661 return ret;
3662 }
3663 EXPORT_SYMBOL(napi_frags_finish);
3664
3665 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3666 {
3667 struct sk_buff *skb = napi->skb;
3668 struct ethhdr *eth;
3669 unsigned int hlen;
3670 unsigned int off;
3671
3672 napi->skb = NULL;
3673
3674 skb_reset_mac_header(skb);
3675 skb_gro_reset_offset(skb);
3676
3677 off = skb_gro_offset(skb);
3678 hlen = off + sizeof(*eth);
3679 eth = skb_gro_header_fast(skb, off);
3680 if (skb_gro_header_hard(skb, hlen)) {
3681 eth = skb_gro_header_slow(skb, hlen, off);
3682 if (unlikely(!eth)) {
3683 napi_reuse_skb(napi, skb);
3684 skb = NULL;
3685 goto out;
3686 }
3687 }
3688
3689 skb_gro_pull(skb, sizeof(*eth));
3690
3691 /*
3692 * This works because the only protocols we care about don't require
3693 * special handling. We'll fix it up properly at the end.
3694 */
3695 skb->protocol = eth->h_proto;
3696
3697 out:
3698 return skb;
3699 }
3700 EXPORT_SYMBOL(napi_frags_skb);
3701
3702 gro_result_t napi_gro_frags(struct napi_struct *napi)
3703 {
3704 struct sk_buff *skb = napi_frags_skb(napi);
3705
3706 if (!skb)
3707 return GRO_DROP;
3708
3709 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3710 }
3711 EXPORT_SYMBOL(napi_gro_frags);
3712
3713 /*
3714 * net_rps_action sends any pending IPI's for rps.
3715 * Note: called with local irq disabled, but exits with local irq enabled.
3716 */
3717 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3718 {
3719 #ifdef CONFIG_RPS
3720 struct softnet_data *remsd = sd->rps_ipi_list;
3721
3722 if (remsd) {
3723 sd->rps_ipi_list = NULL;
3724
3725 local_irq_enable();
3726
3727 /* Send pending IPI's to kick RPS processing on remote cpus. */
3728 while (remsd) {
3729 struct softnet_data *next = remsd->rps_ipi_next;
3730
3731 if (cpu_online(remsd->cpu))
3732 __smp_call_function_single(remsd->cpu,
3733 &remsd->csd, 0);
3734 remsd = next;
3735 }
3736 } else
3737 #endif
3738 local_irq_enable();
3739 }
3740
3741 static int process_backlog(struct napi_struct *napi, int quota)
3742 {
3743 int work = 0;
3744 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3745
3746 #ifdef CONFIG_RPS
3747 /* Check if we have pending ipi, its better to send them now,
3748 * not waiting net_rx_action() end.
3749 */
3750 if (sd->rps_ipi_list) {
3751 local_irq_disable();
3752 net_rps_action_and_irq_enable(sd);
3753 }
3754 #endif
3755 napi->weight = weight_p;
3756 local_irq_disable();
3757 while (work < quota) {
3758 struct sk_buff *skb;
3759 unsigned int qlen;
3760
3761 while ((skb = __skb_dequeue(&sd->process_queue))) {
3762 local_irq_enable();
3763 __netif_receive_skb(skb);
3764 local_irq_disable();
3765 input_queue_head_incr(sd);
3766 if (++work >= quota) {
3767 local_irq_enable();
3768 return work;
3769 }
3770 }
3771
3772 rps_lock(sd);
3773 qlen = skb_queue_len(&sd->input_pkt_queue);
3774 if (qlen)
3775 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3776 &sd->process_queue);
3777
3778 if (qlen < quota - work) {
3779 /*
3780 * Inline a custom version of __napi_complete().
3781 * only current cpu owns and manipulates this napi,
3782 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3783 * we can use a plain write instead of clear_bit(),
3784 * and we dont need an smp_mb() memory barrier.
3785 */
3786 list_del(&napi->poll_list);
3787 napi->state = 0;
3788
3789 quota = work + qlen;
3790 }
3791 rps_unlock(sd);
3792 }
3793 local_irq_enable();
3794
3795 return work;
3796 }
3797
3798 /**
3799 * __napi_schedule - schedule for receive
3800 * @n: entry to schedule
3801 *
3802 * The entry's receive function will be scheduled to run
3803 */
3804 void __napi_schedule(struct napi_struct *n)
3805 {
3806 unsigned long flags;
3807
3808 local_irq_save(flags);
3809 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3810 local_irq_restore(flags);
3811 }
3812 EXPORT_SYMBOL(__napi_schedule);
3813
3814 void __napi_complete(struct napi_struct *n)
3815 {
3816 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3817 BUG_ON(n->gro_list);
3818
3819 list_del(&n->poll_list);
3820 smp_mb__before_clear_bit();
3821 clear_bit(NAPI_STATE_SCHED, &n->state);
3822 }
3823 EXPORT_SYMBOL(__napi_complete);
3824
3825 void napi_complete(struct napi_struct *n)
3826 {
3827 unsigned long flags;
3828
3829 /*
3830 * don't let napi dequeue from the cpu poll list
3831 * just in case its running on a different cpu
3832 */
3833 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3834 return;
3835
3836 napi_gro_flush(n);
3837 local_irq_save(flags);
3838 __napi_complete(n);
3839 local_irq_restore(flags);
3840 }
3841 EXPORT_SYMBOL(napi_complete);
3842
3843 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3844 int (*poll)(struct napi_struct *, int), int weight)
3845 {
3846 INIT_LIST_HEAD(&napi->poll_list);
3847 napi->gro_count = 0;
3848 napi->gro_list = NULL;
3849 napi->skb = NULL;
3850 napi->poll = poll;
3851 napi->weight = weight;
3852 list_add(&napi->dev_list, &dev->napi_list);
3853 napi->dev = dev;
3854 #ifdef CONFIG_NETPOLL
3855 spin_lock_init(&napi->poll_lock);
3856 napi->poll_owner = -1;
3857 #endif
3858 set_bit(NAPI_STATE_SCHED, &napi->state);
3859 }
3860 EXPORT_SYMBOL(netif_napi_add);
3861
3862 void netif_napi_del(struct napi_struct *napi)
3863 {
3864 struct sk_buff *skb, *next;
3865
3866 list_del_init(&napi->dev_list);
3867 napi_free_frags(napi);
3868
3869 for (skb = napi->gro_list; skb; skb = next) {
3870 next = skb->next;
3871 skb->next = NULL;
3872 kfree_skb(skb);
3873 }
3874
3875 napi->gro_list = NULL;
3876 napi->gro_count = 0;
3877 }
3878 EXPORT_SYMBOL(netif_napi_del);
3879
3880 static void net_rx_action(struct softirq_action *h)
3881 {
3882 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3883 unsigned long time_limit = jiffies + 2;
3884 int budget = netdev_budget;
3885 void *have;
3886
3887 local_irq_disable();
3888
3889 while (!list_empty(&sd->poll_list)) {
3890 struct napi_struct *n;
3891 int work, weight;
3892
3893 /* If softirq window is exhuasted then punt.
3894 * Allow this to run for 2 jiffies since which will allow
3895 * an average latency of 1.5/HZ.
3896 */
3897 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3898 goto softnet_break;
3899
3900 local_irq_enable();
3901
3902 /* Even though interrupts have been re-enabled, this
3903 * access is safe because interrupts can only add new
3904 * entries to the tail of this list, and only ->poll()
3905 * calls can remove this head entry from the list.
3906 */
3907 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3908
3909 have = netpoll_poll_lock(n);
3910
3911 weight = n->weight;
3912
3913 /* This NAPI_STATE_SCHED test is for avoiding a race
3914 * with netpoll's poll_napi(). Only the entity which
3915 * obtains the lock and sees NAPI_STATE_SCHED set will
3916 * actually make the ->poll() call. Therefore we avoid
3917 * accidentally calling ->poll() when NAPI is not scheduled.
3918 */
3919 work = 0;
3920 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3921 work = n->poll(n, weight);
3922 trace_napi_poll(n);
3923 }
3924
3925 WARN_ON_ONCE(work > weight);
3926
3927 budget -= work;
3928
3929 local_irq_disable();
3930
3931 /* Drivers must not modify the NAPI state if they
3932 * consume the entire weight. In such cases this code
3933 * still "owns" the NAPI instance and therefore can
3934 * move the instance around on the list at-will.
3935 */
3936 if (unlikely(work == weight)) {
3937 if (unlikely(napi_disable_pending(n))) {
3938 local_irq_enable();
3939 napi_complete(n);
3940 local_irq_disable();
3941 } else
3942 list_move_tail(&n->poll_list, &sd->poll_list);
3943 }
3944
3945 netpoll_poll_unlock(have);
3946 }
3947 out:
3948 net_rps_action_and_irq_enable(sd);
3949
3950 #ifdef CONFIG_NET_DMA
3951 /*
3952 * There may not be any more sk_buffs coming right now, so push
3953 * any pending DMA copies to hardware
3954 */
3955 dma_issue_pending_all();
3956 #endif
3957
3958 return;
3959
3960 softnet_break:
3961 sd->time_squeeze++;
3962 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3963 goto out;
3964 }
3965
3966 static gifconf_func_t *gifconf_list[NPROTO];
3967
3968 /**
3969 * register_gifconf - register a SIOCGIF handler
3970 * @family: Address family
3971 * @gifconf: Function handler
3972 *
3973 * Register protocol dependent address dumping routines. The handler
3974 * that is passed must not be freed or reused until it has been replaced
3975 * by another handler.
3976 */
3977 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3978 {
3979 if (family >= NPROTO)
3980 return -EINVAL;
3981 gifconf_list[family] = gifconf;
3982 return 0;
3983 }
3984 EXPORT_SYMBOL(register_gifconf);
3985
3986
3987 /*
3988 * Map an interface index to its name (SIOCGIFNAME)
3989 */
3990
3991 /*
3992 * We need this ioctl for efficient implementation of the
3993 * if_indextoname() function required by the IPv6 API. Without
3994 * it, we would have to search all the interfaces to find a
3995 * match. --pb
3996 */
3997
3998 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3999 {
4000 struct net_device *dev;
4001 struct ifreq ifr;
4002
4003 /*
4004 * Fetch the caller's info block.
4005 */
4006
4007 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4008 return -EFAULT;
4009
4010 rcu_read_lock();
4011 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4012 if (!dev) {
4013 rcu_read_unlock();
4014 return -ENODEV;
4015 }
4016
4017 strcpy(ifr.ifr_name, dev->name);
4018 rcu_read_unlock();
4019
4020 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4021 return -EFAULT;
4022 return 0;
4023 }
4024
4025 /*
4026 * Perform a SIOCGIFCONF call. This structure will change
4027 * size eventually, and there is nothing I can do about it.
4028 * Thus we will need a 'compatibility mode'.
4029 */
4030
4031 static int dev_ifconf(struct net *net, char __user *arg)
4032 {
4033 struct ifconf ifc;
4034 struct net_device *dev;
4035 char __user *pos;
4036 int len;
4037 int total;
4038 int i;
4039
4040 /*
4041 * Fetch the caller's info block.
4042 */
4043
4044 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4045 return -EFAULT;
4046
4047 pos = ifc.ifc_buf;
4048 len = ifc.ifc_len;
4049
4050 /*
4051 * Loop over the interfaces, and write an info block for each.
4052 */
4053
4054 total = 0;
4055 for_each_netdev(net, dev) {
4056 for (i = 0; i < NPROTO; i++) {
4057 if (gifconf_list[i]) {
4058 int done;
4059 if (!pos)
4060 done = gifconf_list[i](dev, NULL, 0);
4061 else
4062 done = gifconf_list[i](dev, pos + total,
4063 len - total);
4064 if (done < 0)
4065 return -EFAULT;
4066 total += done;
4067 }
4068 }
4069 }
4070
4071 /*
4072 * All done. Write the updated control block back to the caller.
4073 */
4074 ifc.ifc_len = total;
4075
4076 /*
4077 * Both BSD and Solaris return 0 here, so we do too.
4078 */
4079 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4080 }
4081
4082 #ifdef CONFIG_PROC_FS
4083
4084 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4085
4086 struct dev_iter_state {
4087 struct seq_net_private p;
4088 unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4089 };
4090
4091 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4092 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4093 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4094
4095 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4096 {
4097 struct dev_iter_state *state = seq->private;
4098 struct net *net = seq_file_net(seq);
4099 struct net_device *dev;
4100 struct hlist_node *p;
4101 struct hlist_head *h;
4102 unsigned int count, bucket, offset;
4103
4104 bucket = get_bucket(state->pos);
4105 offset = get_offset(state->pos);
4106 h = &net->dev_name_head[bucket];
4107 count = 0;
4108 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4109 if (count++ == offset) {
4110 state->pos = set_bucket_offset(bucket, count);
4111 return dev;
4112 }
4113 }
4114
4115 return NULL;
4116 }
4117
4118 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4119 {
4120 struct dev_iter_state *state = seq->private;
4121 struct net_device *dev;
4122 unsigned int bucket;
4123
4124 bucket = get_bucket(state->pos);
4125 do {
4126 dev = dev_from_same_bucket(seq);
4127 if (dev)
4128 return dev;
4129
4130 bucket++;
4131 state->pos = set_bucket_offset(bucket, 0);
4132 } while (bucket < NETDEV_HASHENTRIES);
4133
4134 return NULL;
4135 }
4136
4137 /*
4138 * This is invoked by the /proc filesystem handler to display a device
4139 * in detail.
4140 */
4141 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4142 __acquires(RCU)
4143 {
4144 struct dev_iter_state *state = seq->private;
4145
4146 rcu_read_lock();
4147 if (!*pos)
4148 return SEQ_START_TOKEN;
4149
4150 /* check for end of the hash */
4151 if (state->pos == 0 && *pos > 1)
4152 return NULL;
4153
4154 return dev_from_new_bucket(seq);
4155 }
4156
4157 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4158 {
4159 struct net_device *dev;
4160
4161 ++*pos;
4162
4163 if (v == SEQ_START_TOKEN)
4164 return dev_from_new_bucket(seq);
4165
4166 dev = dev_from_same_bucket(seq);
4167 if (dev)
4168 return dev;
4169
4170 return dev_from_new_bucket(seq);
4171 }
4172
4173 void dev_seq_stop(struct seq_file *seq, void *v)
4174 __releases(RCU)
4175 {
4176 rcu_read_unlock();
4177 }
4178
4179 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4180 {
4181 struct rtnl_link_stats64 temp;
4182 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4183
4184 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4185 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4186 dev->name, stats->rx_bytes, stats->rx_packets,
4187 stats->rx_errors,
4188 stats->rx_dropped + stats->rx_missed_errors,
4189 stats->rx_fifo_errors,
4190 stats->rx_length_errors + stats->rx_over_errors +
4191 stats->rx_crc_errors + stats->rx_frame_errors,
4192 stats->rx_compressed, stats->multicast,
4193 stats->tx_bytes, stats->tx_packets,
4194 stats->tx_errors, stats->tx_dropped,
4195 stats->tx_fifo_errors, stats->collisions,
4196 stats->tx_carrier_errors +
4197 stats->tx_aborted_errors +
4198 stats->tx_window_errors +
4199 stats->tx_heartbeat_errors,
4200 stats->tx_compressed);
4201 }
4202
4203 /*
4204 * Called from the PROCfs module. This now uses the new arbitrary sized
4205 * /proc/net interface to create /proc/net/dev
4206 */
4207 static int dev_seq_show(struct seq_file *seq, void *v)
4208 {
4209 if (v == SEQ_START_TOKEN)
4210 seq_puts(seq, "Inter-| Receive "
4211 " | Transmit\n"
4212 " face |bytes packets errs drop fifo frame "
4213 "compressed multicast|bytes packets errs "
4214 "drop fifo colls carrier compressed\n");
4215 else
4216 dev_seq_printf_stats(seq, v);
4217 return 0;
4218 }
4219
4220 static struct softnet_data *softnet_get_online(loff_t *pos)
4221 {
4222 struct softnet_data *sd = NULL;
4223
4224 while (*pos < nr_cpu_ids)
4225 if (cpu_online(*pos)) {
4226 sd = &per_cpu(softnet_data, *pos);
4227 break;
4228 } else
4229 ++*pos;
4230 return sd;
4231 }
4232
4233 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4234 {
4235 return softnet_get_online(pos);
4236 }
4237
4238 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4239 {
4240 ++*pos;
4241 return softnet_get_online(pos);
4242 }
4243
4244 static void softnet_seq_stop(struct seq_file *seq, void *v)
4245 {
4246 }
4247
4248 static int softnet_seq_show(struct seq_file *seq, void *v)
4249 {
4250 struct softnet_data *sd = v;
4251
4252 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4253 sd->processed, sd->dropped, sd->time_squeeze, 0,
4254 0, 0, 0, 0, /* was fastroute */
4255 sd->cpu_collision, sd->received_rps);
4256 return 0;
4257 }
4258
4259 static const struct seq_operations dev_seq_ops = {
4260 .start = dev_seq_start,
4261 .next = dev_seq_next,
4262 .stop = dev_seq_stop,
4263 .show = dev_seq_show,
4264 };
4265
4266 static int dev_seq_open(struct inode *inode, struct file *file)
4267 {
4268 return seq_open_net(inode, file, &dev_seq_ops,
4269 sizeof(struct dev_iter_state));
4270 }
4271
4272 static const struct file_operations dev_seq_fops = {
4273 .owner = THIS_MODULE,
4274 .open = dev_seq_open,
4275 .read = seq_read,
4276 .llseek = seq_lseek,
4277 .release = seq_release_net,
4278 };
4279
4280 static const struct seq_operations softnet_seq_ops = {
4281 .start = softnet_seq_start,
4282 .next = softnet_seq_next,
4283 .stop = softnet_seq_stop,
4284 .show = softnet_seq_show,
4285 };
4286
4287 static int softnet_seq_open(struct inode *inode, struct file *file)
4288 {
4289 return seq_open(file, &softnet_seq_ops);
4290 }
4291
4292 static const struct file_operations softnet_seq_fops = {
4293 .owner = THIS_MODULE,
4294 .open = softnet_seq_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = seq_release,
4298 };
4299
4300 static void *ptype_get_idx(loff_t pos)
4301 {
4302 struct packet_type *pt = NULL;
4303 loff_t i = 0;
4304 int t;
4305
4306 list_for_each_entry_rcu(pt, &ptype_all, list) {
4307 if (i == pos)
4308 return pt;
4309 ++i;
4310 }
4311
4312 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4313 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4314 if (i == pos)
4315 return pt;
4316 ++i;
4317 }
4318 }
4319 return NULL;
4320 }
4321
4322 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4323 __acquires(RCU)
4324 {
4325 rcu_read_lock();
4326 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4327 }
4328
4329 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4330 {
4331 struct packet_type *pt;
4332 struct list_head *nxt;
4333 int hash;
4334
4335 ++*pos;
4336 if (v == SEQ_START_TOKEN)
4337 return ptype_get_idx(0);
4338
4339 pt = v;
4340 nxt = pt->list.next;
4341 if (pt->type == htons(ETH_P_ALL)) {
4342 if (nxt != &ptype_all)
4343 goto found;
4344 hash = 0;
4345 nxt = ptype_base[0].next;
4346 } else
4347 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4348
4349 while (nxt == &ptype_base[hash]) {
4350 if (++hash >= PTYPE_HASH_SIZE)
4351 return NULL;
4352 nxt = ptype_base[hash].next;
4353 }
4354 found:
4355 return list_entry(nxt, struct packet_type, list);
4356 }
4357
4358 static void ptype_seq_stop(struct seq_file *seq, void *v)
4359 __releases(RCU)
4360 {
4361 rcu_read_unlock();
4362 }
4363
4364 static int ptype_seq_show(struct seq_file *seq, void *v)
4365 {
4366 struct packet_type *pt = v;
4367
4368 if (v == SEQ_START_TOKEN)
4369 seq_puts(seq, "Type Device Function\n");
4370 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4371 if (pt->type == htons(ETH_P_ALL))
4372 seq_puts(seq, "ALL ");
4373 else
4374 seq_printf(seq, "%04x", ntohs(pt->type));
4375
4376 seq_printf(seq, " %-8s %pF\n",
4377 pt->dev ? pt->dev->name : "", pt->func);
4378 }
4379
4380 return 0;
4381 }
4382
4383 static const struct seq_operations ptype_seq_ops = {
4384 .start = ptype_seq_start,
4385 .next = ptype_seq_next,
4386 .stop = ptype_seq_stop,
4387 .show = ptype_seq_show,
4388 };
4389
4390 static int ptype_seq_open(struct inode *inode, struct file *file)
4391 {
4392 return seq_open_net(inode, file, &ptype_seq_ops,
4393 sizeof(struct seq_net_private));
4394 }
4395
4396 static const struct file_operations ptype_seq_fops = {
4397 .owner = THIS_MODULE,
4398 .open = ptype_seq_open,
4399 .read = seq_read,
4400 .llseek = seq_lseek,
4401 .release = seq_release_net,
4402 };
4403
4404
4405 static int __net_init dev_proc_net_init(struct net *net)
4406 {
4407 int rc = -ENOMEM;
4408
4409 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4410 goto out;
4411 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4412 goto out_dev;
4413 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4414 goto out_softnet;
4415
4416 if (wext_proc_init(net))
4417 goto out_ptype;
4418 rc = 0;
4419 out:
4420 return rc;
4421 out_ptype:
4422 proc_net_remove(net, "ptype");
4423 out_softnet:
4424 proc_net_remove(net, "softnet_stat");
4425 out_dev:
4426 proc_net_remove(net, "dev");
4427 goto out;
4428 }
4429
4430 static void __net_exit dev_proc_net_exit(struct net *net)
4431 {
4432 wext_proc_exit(net);
4433
4434 proc_net_remove(net, "ptype");
4435 proc_net_remove(net, "softnet_stat");
4436 proc_net_remove(net, "dev");
4437 }
4438
4439 static struct pernet_operations __net_initdata dev_proc_ops = {
4440 .init = dev_proc_net_init,
4441 .exit = dev_proc_net_exit,
4442 };
4443
4444 static int __init dev_proc_init(void)
4445 {
4446 return register_pernet_subsys(&dev_proc_ops);
4447 }
4448 #else
4449 #define dev_proc_init() 0
4450 #endif /* CONFIG_PROC_FS */
4451
4452
4453 /**
4454 * netdev_set_master - set up master pointer
4455 * @slave: slave device
4456 * @master: new master device
4457 *
4458 * Changes the master device of the slave. Pass %NULL to break the
4459 * bonding. The caller must hold the RTNL semaphore. On a failure
4460 * a negative errno code is returned. On success the reference counts
4461 * are adjusted and the function returns zero.
4462 */
4463 int netdev_set_master(struct net_device *slave, struct net_device *master)
4464 {
4465 struct net_device *old = slave->master;
4466
4467 ASSERT_RTNL();
4468
4469 if (master) {
4470 if (old)
4471 return -EBUSY;
4472 dev_hold(master);
4473 }
4474
4475 slave->master = master;
4476
4477 if (old)
4478 dev_put(old);
4479 return 0;
4480 }
4481 EXPORT_SYMBOL(netdev_set_master);
4482
4483 /**
4484 * netdev_set_bond_master - set up bonding master/slave pair
4485 * @slave: slave device
4486 * @master: new master device
4487 *
4488 * Changes the master device of the slave. Pass %NULL to break the
4489 * bonding. The caller must hold the RTNL semaphore. On a failure
4490 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4491 * to the routing socket and the function returns zero.
4492 */
4493 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4494 {
4495 int err;
4496
4497 ASSERT_RTNL();
4498
4499 err = netdev_set_master(slave, master);
4500 if (err)
4501 return err;
4502 if (master)
4503 slave->flags |= IFF_SLAVE;
4504 else
4505 slave->flags &= ~IFF_SLAVE;
4506
4507 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4508 return 0;
4509 }
4510 EXPORT_SYMBOL(netdev_set_bond_master);
4511
4512 static void dev_change_rx_flags(struct net_device *dev, int flags)
4513 {
4514 const struct net_device_ops *ops = dev->netdev_ops;
4515
4516 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4517 ops->ndo_change_rx_flags(dev, flags);
4518 }
4519
4520 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4521 {
4522 unsigned short old_flags = dev->flags;
4523 uid_t uid;
4524 gid_t gid;
4525
4526 ASSERT_RTNL();
4527
4528 dev->flags |= IFF_PROMISC;
4529 dev->promiscuity += inc;
4530 if (dev->promiscuity == 0) {
4531 /*
4532 * Avoid overflow.
4533 * If inc causes overflow, untouch promisc and return error.
4534 */
4535 if (inc < 0)
4536 dev->flags &= ~IFF_PROMISC;
4537 else {
4538 dev->promiscuity -= inc;
4539 printk(KERN_WARNING "%s: promiscuity touches roof, "
4540 "set promiscuity failed, promiscuity feature "
4541 "of device might be broken.\n", dev->name);
4542 return -EOVERFLOW;
4543 }
4544 }
4545 if (dev->flags != old_flags) {
4546 printk(KERN_INFO "device %s %s promiscuous mode\n",
4547 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4548 "left");
4549 if (audit_enabled) {
4550 current_uid_gid(&uid, &gid);
4551 audit_log(current->audit_context, GFP_ATOMIC,
4552 AUDIT_ANOM_PROMISCUOUS,
4553 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4554 dev->name, (dev->flags & IFF_PROMISC),
4555 (old_flags & IFF_PROMISC),
4556 audit_get_loginuid(current),
4557 uid, gid,
4558 audit_get_sessionid(current));
4559 }
4560
4561 dev_change_rx_flags(dev, IFF_PROMISC);
4562 }
4563 return 0;
4564 }
4565
4566 /**
4567 * dev_set_promiscuity - update promiscuity count on a device
4568 * @dev: device
4569 * @inc: modifier
4570 *
4571 * Add or remove promiscuity from a device. While the count in the device
4572 * remains above zero the interface remains promiscuous. Once it hits zero
4573 * the device reverts back to normal filtering operation. A negative inc
4574 * value is used to drop promiscuity on the device.
4575 * Return 0 if successful or a negative errno code on error.
4576 */
4577 int dev_set_promiscuity(struct net_device *dev, int inc)
4578 {
4579 unsigned short old_flags = dev->flags;
4580 int err;
4581
4582 err = __dev_set_promiscuity(dev, inc);
4583 if (err < 0)
4584 return err;
4585 if (dev->flags != old_flags)
4586 dev_set_rx_mode(dev);
4587 return err;
4588 }
4589 EXPORT_SYMBOL(dev_set_promiscuity);
4590
4591 /**
4592 * dev_set_allmulti - update allmulti count on a device
4593 * @dev: device
4594 * @inc: modifier
4595 *
4596 * Add or remove reception of all multicast frames to a device. While the
4597 * count in the device remains above zero the interface remains listening
4598 * to all interfaces. Once it hits zero the device reverts back to normal
4599 * filtering operation. A negative @inc value is used to drop the counter
4600 * when releasing a resource needing all multicasts.
4601 * Return 0 if successful or a negative errno code on error.
4602 */
4603
4604 int dev_set_allmulti(struct net_device *dev, int inc)
4605 {
4606 unsigned short old_flags = dev->flags;
4607
4608 ASSERT_RTNL();
4609
4610 dev->flags |= IFF_ALLMULTI;
4611 dev->allmulti += inc;
4612 if (dev->allmulti == 0) {
4613 /*
4614 * Avoid overflow.
4615 * If inc causes overflow, untouch allmulti and return error.
4616 */
4617 if (inc < 0)
4618 dev->flags &= ~IFF_ALLMULTI;
4619 else {
4620 dev->allmulti -= inc;
4621 printk(KERN_WARNING "%s: allmulti touches roof, "
4622 "set allmulti failed, allmulti feature of "
4623 "device might be broken.\n", dev->name);
4624 return -EOVERFLOW;
4625 }
4626 }
4627 if (dev->flags ^ old_flags) {
4628 dev_change_rx_flags(dev, IFF_ALLMULTI);
4629 dev_set_rx_mode(dev);
4630 }
4631 return 0;
4632 }
4633 EXPORT_SYMBOL(dev_set_allmulti);
4634
4635 /*
4636 * Upload unicast and multicast address lists to device and
4637 * configure RX filtering. When the device doesn't support unicast
4638 * filtering it is put in promiscuous mode while unicast addresses
4639 * are present.
4640 */
4641 void __dev_set_rx_mode(struct net_device *dev)
4642 {
4643 const struct net_device_ops *ops = dev->netdev_ops;
4644
4645 /* dev_open will call this function so the list will stay sane. */
4646 if (!(dev->flags&IFF_UP))
4647 return;
4648
4649 if (!netif_device_present(dev))
4650 return;
4651
4652 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4653 /* Unicast addresses changes may only happen under the rtnl,
4654 * therefore calling __dev_set_promiscuity here is safe.
4655 */
4656 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4657 __dev_set_promiscuity(dev, 1);
4658 dev->uc_promisc = true;
4659 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4660 __dev_set_promiscuity(dev, -1);
4661 dev->uc_promisc = false;
4662 }
4663 }
4664
4665 if (ops->ndo_set_rx_mode)
4666 ops->ndo_set_rx_mode(dev);
4667 }
4668
4669 void dev_set_rx_mode(struct net_device *dev)
4670 {
4671 netif_addr_lock_bh(dev);
4672 __dev_set_rx_mode(dev);
4673 netif_addr_unlock_bh(dev);
4674 }
4675
4676 /**
4677 * dev_get_flags - get flags reported to userspace
4678 * @dev: device
4679 *
4680 * Get the combination of flag bits exported through APIs to userspace.
4681 */
4682 unsigned dev_get_flags(const struct net_device *dev)
4683 {
4684 unsigned flags;
4685
4686 flags = (dev->flags & ~(IFF_PROMISC |
4687 IFF_ALLMULTI |
4688 IFF_RUNNING |
4689 IFF_LOWER_UP |
4690 IFF_DORMANT)) |
4691 (dev->gflags & (IFF_PROMISC |
4692 IFF_ALLMULTI));
4693
4694 if (netif_running(dev)) {
4695 if (netif_oper_up(dev))
4696 flags |= IFF_RUNNING;
4697 if (netif_carrier_ok(dev))
4698 flags |= IFF_LOWER_UP;
4699 if (netif_dormant(dev))
4700 flags |= IFF_DORMANT;
4701 }
4702
4703 return flags;
4704 }
4705 EXPORT_SYMBOL(dev_get_flags);
4706
4707 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4708 {
4709 int old_flags = dev->flags;
4710 int ret;
4711
4712 ASSERT_RTNL();
4713
4714 /*
4715 * Set the flags on our device.
4716 */
4717
4718 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4719 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4720 IFF_AUTOMEDIA)) |
4721 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4722 IFF_ALLMULTI));
4723
4724 /*
4725 * Load in the correct multicast list now the flags have changed.
4726 */
4727
4728 if ((old_flags ^ flags) & IFF_MULTICAST)
4729 dev_change_rx_flags(dev, IFF_MULTICAST);
4730
4731 dev_set_rx_mode(dev);
4732
4733 /*
4734 * Have we downed the interface. We handle IFF_UP ourselves
4735 * according to user attempts to set it, rather than blindly
4736 * setting it.
4737 */
4738
4739 ret = 0;
4740 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4741 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4742
4743 if (!ret)
4744 dev_set_rx_mode(dev);
4745 }
4746
4747 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4748 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4749
4750 dev->gflags ^= IFF_PROMISC;
4751 dev_set_promiscuity(dev, inc);
4752 }
4753
4754 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4755 is important. Some (broken) drivers set IFF_PROMISC, when
4756 IFF_ALLMULTI is requested not asking us and not reporting.
4757 */
4758 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4759 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4760
4761 dev->gflags ^= IFF_ALLMULTI;
4762 dev_set_allmulti(dev, inc);
4763 }
4764
4765 return ret;
4766 }
4767
4768 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4769 {
4770 unsigned int changes = dev->flags ^ old_flags;
4771
4772 if (changes & IFF_UP) {
4773 if (dev->flags & IFF_UP)
4774 call_netdevice_notifiers(NETDEV_UP, dev);
4775 else
4776 call_netdevice_notifiers(NETDEV_DOWN, dev);
4777 }
4778
4779 if (dev->flags & IFF_UP &&
4780 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4781 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4782 }
4783
4784 /**
4785 * dev_change_flags - change device settings
4786 * @dev: device
4787 * @flags: device state flags
4788 *
4789 * Change settings on device based state flags. The flags are
4790 * in the userspace exported format.
4791 */
4792 int dev_change_flags(struct net_device *dev, unsigned flags)
4793 {
4794 int ret, changes;
4795 int old_flags = dev->flags;
4796
4797 ret = __dev_change_flags(dev, flags);
4798 if (ret < 0)
4799 return ret;
4800
4801 changes = old_flags ^ dev->flags;
4802 if (changes)
4803 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4804
4805 __dev_notify_flags(dev, old_flags);
4806 return ret;
4807 }
4808 EXPORT_SYMBOL(dev_change_flags);
4809
4810 /**
4811 * dev_set_mtu - Change maximum transfer unit
4812 * @dev: device
4813 * @new_mtu: new transfer unit
4814 *
4815 * Change the maximum transfer size of the network device.
4816 */
4817 int dev_set_mtu(struct net_device *dev, int new_mtu)
4818 {
4819 const struct net_device_ops *ops = dev->netdev_ops;
4820 int err;
4821
4822 if (new_mtu == dev->mtu)
4823 return 0;
4824
4825 /* MTU must be positive. */
4826 if (new_mtu < 0)
4827 return -EINVAL;
4828
4829 if (!netif_device_present(dev))
4830 return -ENODEV;
4831
4832 err = 0;
4833 if (ops->ndo_change_mtu)
4834 err = ops->ndo_change_mtu(dev, new_mtu);
4835 else
4836 dev->mtu = new_mtu;
4837
4838 if (!err && dev->flags & IFF_UP)
4839 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4840 return err;
4841 }
4842 EXPORT_SYMBOL(dev_set_mtu);
4843
4844 /**
4845 * dev_set_group - Change group this device belongs to
4846 * @dev: device
4847 * @new_group: group this device should belong to
4848 */
4849 void dev_set_group(struct net_device *dev, int new_group)
4850 {
4851 dev->group = new_group;
4852 }
4853 EXPORT_SYMBOL(dev_set_group);
4854
4855 /**
4856 * dev_set_mac_address - Change Media Access Control Address
4857 * @dev: device
4858 * @sa: new address
4859 *
4860 * Change the hardware (MAC) address of the device
4861 */
4862 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4863 {
4864 const struct net_device_ops *ops = dev->netdev_ops;
4865 int err;
4866
4867 if (!ops->ndo_set_mac_address)
4868 return -EOPNOTSUPP;
4869 if (sa->sa_family != dev->type)
4870 return -EINVAL;
4871 if (!netif_device_present(dev))
4872 return -ENODEV;
4873 err = ops->ndo_set_mac_address(dev, sa);
4874 if (!err)
4875 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4876 return err;
4877 }
4878 EXPORT_SYMBOL(dev_set_mac_address);
4879
4880 /*
4881 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4882 */
4883 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4884 {
4885 int err;
4886 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4887
4888 if (!dev)
4889 return -ENODEV;
4890
4891 switch (cmd) {
4892 case SIOCGIFFLAGS: /* Get interface flags */
4893 ifr->ifr_flags = (short) dev_get_flags(dev);
4894 return 0;
4895
4896 case SIOCGIFMETRIC: /* Get the metric on the interface
4897 (currently unused) */
4898 ifr->ifr_metric = 0;
4899 return 0;
4900
4901 case SIOCGIFMTU: /* Get the MTU of a device */
4902 ifr->ifr_mtu = dev->mtu;
4903 return 0;
4904
4905 case SIOCGIFHWADDR:
4906 if (!dev->addr_len)
4907 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4908 else
4909 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4910 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4911 ifr->ifr_hwaddr.sa_family = dev->type;
4912 return 0;
4913
4914 case SIOCGIFSLAVE:
4915 err = -EINVAL;
4916 break;
4917
4918 case SIOCGIFMAP:
4919 ifr->ifr_map.mem_start = dev->mem_start;
4920 ifr->ifr_map.mem_end = dev->mem_end;
4921 ifr->ifr_map.base_addr = dev->base_addr;
4922 ifr->ifr_map.irq = dev->irq;
4923 ifr->ifr_map.dma = dev->dma;
4924 ifr->ifr_map.port = dev->if_port;
4925 return 0;
4926
4927 case SIOCGIFINDEX:
4928 ifr->ifr_ifindex = dev->ifindex;
4929 return 0;
4930
4931 case SIOCGIFTXQLEN:
4932 ifr->ifr_qlen = dev->tx_queue_len;
4933 return 0;
4934
4935 default:
4936 /* dev_ioctl() should ensure this case
4937 * is never reached
4938 */
4939 WARN_ON(1);
4940 err = -ENOTTY;
4941 break;
4942
4943 }
4944 return err;
4945 }
4946
4947 /*
4948 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4949 */
4950 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4951 {
4952 int err;
4953 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4954 const struct net_device_ops *ops;
4955
4956 if (!dev)
4957 return -ENODEV;
4958
4959 ops = dev->netdev_ops;
4960
4961 switch (cmd) {
4962 case SIOCSIFFLAGS: /* Set interface flags */
4963 return dev_change_flags(dev, ifr->ifr_flags);
4964
4965 case SIOCSIFMETRIC: /* Set the metric on the interface
4966 (currently unused) */
4967 return -EOPNOTSUPP;
4968
4969 case SIOCSIFMTU: /* Set the MTU of a device */
4970 return dev_set_mtu(dev, ifr->ifr_mtu);
4971
4972 case SIOCSIFHWADDR:
4973 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4974
4975 case SIOCSIFHWBROADCAST:
4976 if (ifr->ifr_hwaddr.sa_family != dev->type)
4977 return -EINVAL;
4978 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4979 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4980 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4981 return 0;
4982
4983 case SIOCSIFMAP:
4984 if (ops->ndo_set_config) {
4985 if (!netif_device_present(dev))
4986 return -ENODEV;
4987 return ops->ndo_set_config(dev, &ifr->ifr_map);
4988 }
4989 return -EOPNOTSUPP;
4990
4991 case SIOCADDMULTI:
4992 if (!ops->ndo_set_rx_mode ||
4993 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4994 return -EINVAL;
4995 if (!netif_device_present(dev))
4996 return -ENODEV;
4997 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4998
4999 case SIOCDELMULTI:
5000 if (!ops->ndo_set_rx_mode ||
5001 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5002 return -EINVAL;
5003 if (!netif_device_present(dev))
5004 return -ENODEV;
5005 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5006
5007 case SIOCSIFTXQLEN:
5008 if (ifr->ifr_qlen < 0)
5009 return -EINVAL;
5010 dev->tx_queue_len = ifr->ifr_qlen;
5011 return 0;
5012
5013 case SIOCSIFNAME:
5014 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5015 return dev_change_name(dev, ifr->ifr_newname);
5016
5017 case SIOCSHWTSTAMP:
5018 err = net_hwtstamp_validate(ifr);
5019 if (err)
5020 return err;
5021 /* fall through */
5022
5023 /*
5024 * Unknown or private ioctl
5025 */
5026 default:
5027 if ((cmd >= SIOCDEVPRIVATE &&
5028 cmd <= SIOCDEVPRIVATE + 15) ||
5029 cmd == SIOCBONDENSLAVE ||
5030 cmd == SIOCBONDRELEASE ||
5031 cmd == SIOCBONDSETHWADDR ||
5032 cmd == SIOCBONDSLAVEINFOQUERY ||
5033 cmd == SIOCBONDINFOQUERY ||
5034 cmd == SIOCBONDCHANGEACTIVE ||
5035 cmd == SIOCGMIIPHY ||
5036 cmd == SIOCGMIIREG ||
5037 cmd == SIOCSMIIREG ||
5038 cmd == SIOCBRADDIF ||
5039 cmd == SIOCBRDELIF ||
5040 cmd == SIOCSHWTSTAMP ||
5041 cmd == SIOCWANDEV) {
5042 err = -EOPNOTSUPP;
5043 if (ops->ndo_do_ioctl) {
5044 if (netif_device_present(dev))
5045 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5046 else
5047 err = -ENODEV;
5048 }
5049 } else
5050 err = -EINVAL;
5051
5052 }
5053 return err;
5054 }
5055
5056 /*
5057 * This function handles all "interface"-type I/O control requests. The actual
5058 * 'doing' part of this is dev_ifsioc above.
5059 */
5060
5061 /**
5062 * dev_ioctl - network device ioctl
5063 * @net: the applicable net namespace
5064 * @cmd: command to issue
5065 * @arg: pointer to a struct ifreq in user space
5066 *
5067 * Issue ioctl functions to devices. This is normally called by the
5068 * user space syscall interfaces but can sometimes be useful for
5069 * other purposes. The return value is the return from the syscall if
5070 * positive or a negative errno code on error.
5071 */
5072
5073 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5074 {
5075 struct ifreq ifr;
5076 int ret;
5077 char *colon;
5078
5079 /* One special case: SIOCGIFCONF takes ifconf argument
5080 and requires shared lock, because it sleeps writing
5081 to user space.
5082 */
5083
5084 if (cmd == SIOCGIFCONF) {
5085 rtnl_lock();
5086 ret = dev_ifconf(net, (char __user *) arg);
5087 rtnl_unlock();
5088 return ret;
5089 }
5090 if (cmd == SIOCGIFNAME)
5091 return dev_ifname(net, (struct ifreq __user *)arg);
5092
5093 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5094 return -EFAULT;
5095
5096 ifr.ifr_name[IFNAMSIZ-1] = 0;
5097
5098 colon = strchr(ifr.ifr_name, ':');
5099 if (colon)
5100 *colon = 0;
5101
5102 /*
5103 * See which interface the caller is talking about.
5104 */
5105
5106 switch (cmd) {
5107 /*
5108 * These ioctl calls:
5109 * - can be done by all.
5110 * - atomic and do not require locking.
5111 * - return a value
5112 */
5113 case SIOCGIFFLAGS:
5114 case SIOCGIFMETRIC:
5115 case SIOCGIFMTU:
5116 case SIOCGIFHWADDR:
5117 case SIOCGIFSLAVE:
5118 case SIOCGIFMAP:
5119 case SIOCGIFINDEX:
5120 case SIOCGIFTXQLEN:
5121 dev_load(net, ifr.ifr_name);
5122 rcu_read_lock();
5123 ret = dev_ifsioc_locked(net, &ifr, cmd);
5124 rcu_read_unlock();
5125 if (!ret) {
5126 if (colon)
5127 *colon = ':';
5128 if (copy_to_user(arg, &ifr,
5129 sizeof(struct ifreq)))
5130 ret = -EFAULT;
5131 }
5132 return ret;
5133
5134 case SIOCETHTOOL:
5135 dev_load(net, ifr.ifr_name);
5136 rtnl_lock();
5137 ret = dev_ethtool(net, &ifr);
5138 rtnl_unlock();
5139 if (!ret) {
5140 if (colon)
5141 *colon = ':';
5142 if (copy_to_user(arg, &ifr,
5143 sizeof(struct ifreq)))
5144 ret = -EFAULT;
5145 }
5146 return ret;
5147
5148 /*
5149 * These ioctl calls:
5150 * - require superuser power.
5151 * - require strict serialization.
5152 * - return a value
5153 */
5154 case SIOCGMIIPHY:
5155 case SIOCGMIIREG:
5156 case SIOCSIFNAME:
5157 if (!capable(CAP_NET_ADMIN))
5158 return -EPERM;
5159 dev_load(net, ifr.ifr_name);
5160 rtnl_lock();
5161 ret = dev_ifsioc(net, &ifr, cmd);
5162 rtnl_unlock();
5163 if (!ret) {
5164 if (colon)
5165 *colon = ':';
5166 if (copy_to_user(arg, &ifr,
5167 sizeof(struct ifreq)))
5168 ret = -EFAULT;
5169 }
5170 return ret;
5171
5172 /*
5173 * These ioctl calls:
5174 * - require superuser power.
5175 * - require strict serialization.
5176 * - do not return a value
5177 */
5178 case SIOCSIFFLAGS:
5179 case SIOCSIFMETRIC:
5180 case SIOCSIFMTU:
5181 case SIOCSIFMAP:
5182 case SIOCSIFHWADDR:
5183 case SIOCSIFSLAVE:
5184 case SIOCADDMULTI:
5185 case SIOCDELMULTI:
5186 case SIOCSIFHWBROADCAST:
5187 case SIOCSIFTXQLEN:
5188 case SIOCSMIIREG:
5189 case SIOCBONDENSLAVE:
5190 case SIOCBONDRELEASE:
5191 case SIOCBONDSETHWADDR:
5192 case SIOCBONDCHANGEACTIVE:
5193 case SIOCBRADDIF:
5194 case SIOCBRDELIF:
5195 case SIOCSHWTSTAMP:
5196 if (!capable(CAP_NET_ADMIN))
5197 return -EPERM;
5198 /* fall through */
5199 case SIOCBONDSLAVEINFOQUERY:
5200 case SIOCBONDINFOQUERY:
5201 dev_load(net, ifr.ifr_name);
5202 rtnl_lock();
5203 ret = dev_ifsioc(net, &ifr, cmd);
5204 rtnl_unlock();
5205 return ret;
5206
5207 case SIOCGIFMEM:
5208 /* Get the per device memory space. We can add this but
5209 * currently do not support it */
5210 case SIOCSIFMEM:
5211 /* Set the per device memory buffer space.
5212 * Not applicable in our case */
5213 case SIOCSIFLINK:
5214 return -ENOTTY;
5215
5216 /*
5217 * Unknown or private ioctl.
5218 */
5219 default:
5220 if (cmd == SIOCWANDEV ||
5221 (cmd >= SIOCDEVPRIVATE &&
5222 cmd <= SIOCDEVPRIVATE + 15)) {
5223 dev_load(net, ifr.ifr_name);
5224 rtnl_lock();
5225 ret = dev_ifsioc(net, &ifr, cmd);
5226 rtnl_unlock();
5227 if (!ret && copy_to_user(arg, &ifr,
5228 sizeof(struct ifreq)))
5229 ret = -EFAULT;
5230 return ret;
5231 }
5232 /* Take care of Wireless Extensions */
5233 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5234 return wext_handle_ioctl(net, &ifr, cmd, arg);
5235 return -ENOTTY;
5236 }
5237 }
5238
5239
5240 /**
5241 * dev_new_index - allocate an ifindex
5242 * @net: the applicable net namespace
5243 *
5244 * Returns a suitable unique value for a new device interface
5245 * number. The caller must hold the rtnl semaphore or the
5246 * dev_base_lock to be sure it remains unique.
5247 */
5248 static int dev_new_index(struct net *net)
5249 {
5250 static int ifindex;
5251 for (;;) {
5252 if (++ifindex <= 0)
5253 ifindex = 1;
5254 if (!__dev_get_by_index(net, ifindex))
5255 return ifindex;
5256 }
5257 }
5258
5259 /* Delayed registration/unregisteration */
5260 static LIST_HEAD(net_todo_list);
5261
5262 static void net_set_todo(struct net_device *dev)
5263 {
5264 list_add_tail(&dev->todo_list, &net_todo_list);
5265 }
5266
5267 static void rollback_registered_many(struct list_head *head)
5268 {
5269 struct net_device *dev, *tmp;
5270
5271 BUG_ON(dev_boot_phase);
5272 ASSERT_RTNL();
5273
5274 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5275 /* Some devices call without registering
5276 * for initialization unwind. Remove those
5277 * devices and proceed with the remaining.
5278 */
5279 if (dev->reg_state == NETREG_UNINITIALIZED) {
5280 pr_debug("unregister_netdevice: device %s/%p never "
5281 "was registered\n", dev->name, dev);
5282
5283 WARN_ON(1);
5284 list_del(&dev->unreg_list);
5285 continue;
5286 }
5287 dev->dismantle = true;
5288 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5289 }
5290
5291 /* If device is running, close it first. */
5292 dev_close_many(head);
5293
5294 list_for_each_entry(dev, head, unreg_list) {
5295 /* And unlink it from device chain. */
5296 unlist_netdevice(dev);
5297
5298 dev->reg_state = NETREG_UNREGISTERING;
5299 }
5300
5301 synchronize_net();
5302
5303 list_for_each_entry(dev, head, unreg_list) {
5304 /* Shutdown queueing discipline. */
5305 dev_shutdown(dev);
5306
5307
5308 /* Notify protocols, that we are about to destroy
5309 this device. They should clean all the things.
5310 */
5311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5312
5313 if (!dev->rtnl_link_ops ||
5314 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5315 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5316
5317 /*
5318 * Flush the unicast and multicast chains
5319 */
5320 dev_uc_flush(dev);
5321 dev_mc_flush(dev);
5322
5323 if (dev->netdev_ops->ndo_uninit)
5324 dev->netdev_ops->ndo_uninit(dev);
5325
5326 /* Notifier chain MUST detach us from master device. */
5327 WARN_ON(dev->master);
5328
5329 /* Remove entries from kobject tree */
5330 netdev_unregister_kobject(dev);
5331 }
5332
5333 /* Process any work delayed until the end of the batch */
5334 dev = list_first_entry(head, struct net_device, unreg_list);
5335 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5336
5337 synchronize_net();
5338
5339 list_for_each_entry(dev, head, unreg_list)
5340 dev_put(dev);
5341 }
5342
5343 static void rollback_registered(struct net_device *dev)
5344 {
5345 LIST_HEAD(single);
5346
5347 list_add(&dev->unreg_list, &single);
5348 rollback_registered_many(&single);
5349 list_del(&single);
5350 }
5351
5352 static netdev_features_t netdev_fix_features(struct net_device *dev,
5353 netdev_features_t features)
5354 {
5355 /* Fix illegal checksum combinations */
5356 if ((features & NETIF_F_HW_CSUM) &&
5357 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5358 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5359 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5360 }
5361
5362 /* Fix illegal SG+CSUM combinations. */
5363 if ((features & NETIF_F_SG) &&
5364 !(features & NETIF_F_ALL_CSUM)) {
5365 netdev_dbg(dev,
5366 "Dropping NETIF_F_SG since no checksum feature.\n");
5367 features &= ~NETIF_F_SG;
5368 }
5369
5370 /* TSO requires that SG is present as well. */
5371 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5372 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5373 features &= ~NETIF_F_ALL_TSO;
5374 }
5375
5376 /* TSO ECN requires that TSO is present as well. */
5377 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5378 features &= ~NETIF_F_TSO_ECN;
5379
5380 /* Software GSO depends on SG. */
5381 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5382 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5383 features &= ~NETIF_F_GSO;
5384 }
5385
5386 /* UFO needs SG and checksumming */
5387 if (features & NETIF_F_UFO) {
5388 /* maybe split UFO into V4 and V6? */
5389 if (!((features & NETIF_F_GEN_CSUM) ||
5390 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5391 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5392 netdev_dbg(dev,
5393 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5394 features &= ~NETIF_F_UFO;
5395 }
5396
5397 if (!(features & NETIF_F_SG)) {
5398 netdev_dbg(dev,
5399 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5400 features &= ~NETIF_F_UFO;
5401 }
5402 }
5403
5404 return features;
5405 }
5406
5407 int __netdev_update_features(struct net_device *dev)
5408 {
5409 netdev_features_t features;
5410 int err = 0;
5411
5412 ASSERT_RTNL();
5413
5414 features = netdev_get_wanted_features(dev);
5415
5416 if (dev->netdev_ops->ndo_fix_features)
5417 features = dev->netdev_ops->ndo_fix_features(dev, features);
5418
5419 /* driver might be less strict about feature dependencies */
5420 features = netdev_fix_features(dev, features);
5421
5422 if (dev->features == features)
5423 return 0;
5424
5425 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5426 &dev->features, &features);
5427
5428 if (dev->netdev_ops->ndo_set_features)
5429 err = dev->netdev_ops->ndo_set_features(dev, features);
5430
5431 if (unlikely(err < 0)) {
5432 netdev_err(dev,
5433 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5434 err, &features, &dev->features);
5435 return -1;
5436 }
5437
5438 if (!err)
5439 dev->features = features;
5440
5441 return 1;
5442 }
5443
5444 /**
5445 * netdev_update_features - recalculate device features
5446 * @dev: the device to check
5447 *
5448 * Recalculate dev->features set and send notifications if it
5449 * has changed. Should be called after driver or hardware dependent
5450 * conditions might have changed that influence the features.
5451 */
5452 void netdev_update_features(struct net_device *dev)
5453 {
5454 if (__netdev_update_features(dev))
5455 netdev_features_change(dev);
5456 }
5457 EXPORT_SYMBOL(netdev_update_features);
5458
5459 /**
5460 * netdev_change_features - recalculate device features
5461 * @dev: the device to check
5462 *
5463 * Recalculate dev->features set and send notifications even
5464 * if they have not changed. Should be called instead of
5465 * netdev_update_features() if also dev->vlan_features might
5466 * have changed to allow the changes to be propagated to stacked
5467 * VLAN devices.
5468 */
5469 void netdev_change_features(struct net_device *dev)
5470 {
5471 __netdev_update_features(dev);
5472 netdev_features_change(dev);
5473 }
5474 EXPORT_SYMBOL(netdev_change_features);
5475
5476 /**
5477 * netif_stacked_transfer_operstate - transfer operstate
5478 * @rootdev: the root or lower level device to transfer state from
5479 * @dev: the device to transfer operstate to
5480 *
5481 * Transfer operational state from root to device. This is normally
5482 * called when a stacking relationship exists between the root
5483 * device and the device(a leaf device).
5484 */
5485 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5486 struct net_device *dev)
5487 {
5488 if (rootdev->operstate == IF_OPER_DORMANT)
5489 netif_dormant_on(dev);
5490 else
5491 netif_dormant_off(dev);
5492
5493 if (netif_carrier_ok(rootdev)) {
5494 if (!netif_carrier_ok(dev))
5495 netif_carrier_on(dev);
5496 } else {
5497 if (netif_carrier_ok(dev))
5498 netif_carrier_off(dev);
5499 }
5500 }
5501 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5502
5503 #ifdef CONFIG_RPS
5504 static int netif_alloc_rx_queues(struct net_device *dev)
5505 {
5506 unsigned int i, count = dev->num_rx_queues;
5507 struct netdev_rx_queue *rx;
5508
5509 BUG_ON(count < 1);
5510
5511 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5512 if (!rx) {
5513 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5514 return -ENOMEM;
5515 }
5516 dev->_rx = rx;
5517
5518 for (i = 0; i < count; i++)
5519 rx[i].dev = dev;
5520 return 0;
5521 }
5522 #endif
5523
5524 static void netdev_init_one_queue(struct net_device *dev,
5525 struct netdev_queue *queue, void *_unused)
5526 {
5527 /* Initialize queue lock */
5528 spin_lock_init(&queue->_xmit_lock);
5529 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5530 queue->xmit_lock_owner = -1;
5531 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5532 queue->dev = dev;
5533 }
5534
5535 static int netif_alloc_netdev_queues(struct net_device *dev)
5536 {
5537 unsigned int count = dev->num_tx_queues;
5538 struct netdev_queue *tx;
5539
5540 BUG_ON(count < 1);
5541
5542 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5543 if (!tx) {
5544 pr_err("netdev: Unable to allocate %u tx queues.\n",
5545 count);
5546 return -ENOMEM;
5547 }
5548 dev->_tx = tx;
5549
5550 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5551 spin_lock_init(&dev->tx_global_lock);
5552
5553 return 0;
5554 }
5555
5556 /**
5557 * register_netdevice - register a network device
5558 * @dev: device to register
5559 *
5560 * Take a completed network device structure and add it to the kernel
5561 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5562 * chain. 0 is returned on success. A negative errno code is returned
5563 * on a failure to set up the device, or if the name is a duplicate.
5564 *
5565 * Callers must hold the rtnl semaphore. You may want
5566 * register_netdev() instead of this.
5567 *
5568 * BUGS:
5569 * The locking appears insufficient to guarantee two parallel registers
5570 * will not get the same name.
5571 */
5572
5573 int register_netdevice(struct net_device *dev)
5574 {
5575 int ret;
5576 struct net *net = dev_net(dev);
5577
5578 BUG_ON(dev_boot_phase);
5579 ASSERT_RTNL();
5580
5581 might_sleep();
5582
5583 /* When net_device's are persistent, this will be fatal. */
5584 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5585 BUG_ON(!net);
5586
5587 spin_lock_init(&dev->addr_list_lock);
5588 netdev_set_addr_lockdep_class(dev);
5589
5590 dev->iflink = -1;
5591
5592 ret = dev_get_valid_name(dev, dev->name);
5593 if (ret < 0)
5594 goto out;
5595
5596 /* Init, if this function is available */
5597 if (dev->netdev_ops->ndo_init) {
5598 ret = dev->netdev_ops->ndo_init(dev);
5599 if (ret) {
5600 if (ret > 0)
5601 ret = -EIO;
5602 goto out;
5603 }
5604 }
5605
5606 dev->ifindex = dev_new_index(net);
5607 if (dev->iflink == -1)
5608 dev->iflink = dev->ifindex;
5609
5610 /* Transfer changeable features to wanted_features and enable
5611 * software offloads (GSO and GRO).
5612 */
5613 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5614 dev->features |= NETIF_F_SOFT_FEATURES;
5615 dev->wanted_features = dev->features & dev->hw_features;
5616
5617 /* Turn on no cache copy if HW is doing checksum */
5618 if (!(dev->flags & IFF_LOOPBACK)) {
5619 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5620 if (dev->features & NETIF_F_ALL_CSUM) {
5621 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5622 dev->features |= NETIF_F_NOCACHE_COPY;
5623 }
5624 }
5625
5626 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5627 */
5628 dev->vlan_features |= NETIF_F_HIGHDMA;
5629
5630 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5631 ret = notifier_to_errno(ret);
5632 if (ret)
5633 goto err_uninit;
5634
5635 ret = netdev_register_kobject(dev);
5636 if (ret)
5637 goto err_uninit;
5638 dev->reg_state = NETREG_REGISTERED;
5639
5640 __netdev_update_features(dev);
5641
5642 /*
5643 * Default initial state at registry is that the
5644 * device is present.
5645 */
5646
5647 set_bit(__LINK_STATE_PRESENT, &dev->state);
5648
5649 dev_init_scheduler(dev);
5650 dev_hold(dev);
5651 list_netdevice(dev);
5652
5653 /* Notify protocols, that a new device appeared. */
5654 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5655 ret = notifier_to_errno(ret);
5656 if (ret) {
5657 rollback_registered(dev);
5658 dev->reg_state = NETREG_UNREGISTERED;
5659 }
5660 /*
5661 * Prevent userspace races by waiting until the network
5662 * device is fully setup before sending notifications.
5663 */
5664 if (!dev->rtnl_link_ops ||
5665 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5666 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5667
5668 out:
5669 return ret;
5670
5671 err_uninit:
5672 if (dev->netdev_ops->ndo_uninit)
5673 dev->netdev_ops->ndo_uninit(dev);
5674 goto out;
5675 }
5676 EXPORT_SYMBOL(register_netdevice);
5677
5678 /**
5679 * init_dummy_netdev - init a dummy network device for NAPI
5680 * @dev: device to init
5681 *
5682 * This takes a network device structure and initialize the minimum
5683 * amount of fields so it can be used to schedule NAPI polls without
5684 * registering a full blown interface. This is to be used by drivers
5685 * that need to tie several hardware interfaces to a single NAPI
5686 * poll scheduler due to HW limitations.
5687 */
5688 int init_dummy_netdev(struct net_device *dev)
5689 {
5690 /* Clear everything. Note we don't initialize spinlocks
5691 * are they aren't supposed to be taken by any of the
5692 * NAPI code and this dummy netdev is supposed to be
5693 * only ever used for NAPI polls
5694 */
5695 memset(dev, 0, sizeof(struct net_device));
5696
5697 /* make sure we BUG if trying to hit standard
5698 * register/unregister code path
5699 */
5700 dev->reg_state = NETREG_DUMMY;
5701
5702 /* NAPI wants this */
5703 INIT_LIST_HEAD(&dev->napi_list);
5704
5705 /* a dummy interface is started by default */
5706 set_bit(__LINK_STATE_PRESENT, &dev->state);
5707 set_bit(__LINK_STATE_START, &dev->state);
5708
5709 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5710 * because users of this 'device' dont need to change
5711 * its refcount.
5712 */
5713
5714 return 0;
5715 }
5716 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5717
5718
5719 /**
5720 * register_netdev - register a network device
5721 * @dev: device to register
5722 *
5723 * Take a completed network device structure and add it to the kernel
5724 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5725 * chain. 0 is returned on success. A negative errno code is returned
5726 * on a failure to set up the device, or if the name is a duplicate.
5727 *
5728 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5729 * and expands the device name if you passed a format string to
5730 * alloc_netdev.
5731 */
5732 int register_netdev(struct net_device *dev)
5733 {
5734 int err;
5735
5736 rtnl_lock();
5737 err = register_netdevice(dev);
5738 rtnl_unlock();
5739 return err;
5740 }
5741 EXPORT_SYMBOL(register_netdev);
5742
5743 int netdev_refcnt_read(const struct net_device *dev)
5744 {
5745 int i, refcnt = 0;
5746
5747 for_each_possible_cpu(i)
5748 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5749 return refcnt;
5750 }
5751 EXPORT_SYMBOL(netdev_refcnt_read);
5752
5753 /*
5754 * netdev_wait_allrefs - wait until all references are gone.
5755 *
5756 * This is called when unregistering network devices.
5757 *
5758 * Any protocol or device that holds a reference should register
5759 * for netdevice notification, and cleanup and put back the
5760 * reference if they receive an UNREGISTER event.
5761 * We can get stuck here if buggy protocols don't correctly
5762 * call dev_put.
5763 */
5764 static void netdev_wait_allrefs(struct net_device *dev)
5765 {
5766 unsigned long rebroadcast_time, warning_time;
5767 int refcnt;
5768
5769 linkwatch_forget_dev(dev);
5770
5771 rebroadcast_time = warning_time = jiffies;
5772 refcnt = netdev_refcnt_read(dev);
5773
5774 while (refcnt != 0) {
5775 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5776 rtnl_lock();
5777
5778 /* Rebroadcast unregister notification */
5779 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5780 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5781 * should have already handle it the first time */
5782
5783 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5784 &dev->state)) {
5785 /* We must not have linkwatch events
5786 * pending on unregister. If this
5787 * happens, we simply run the queue
5788 * unscheduled, resulting in a noop
5789 * for this device.
5790 */
5791 linkwatch_run_queue();
5792 }
5793
5794 __rtnl_unlock();
5795
5796 rebroadcast_time = jiffies;
5797 }
5798
5799 msleep(250);
5800
5801 refcnt = netdev_refcnt_read(dev);
5802
5803 if (time_after(jiffies, warning_time + 10 * HZ)) {
5804 printk(KERN_EMERG "unregister_netdevice: "
5805 "waiting for %s to become free. Usage "
5806 "count = %d\n",
5807 dev->name, refcnt);
5808 warning_time = jiffies;
5809 }
5810 }
5811 }
5812
5813 /* The sequence is:
5814 *
5815 * rtnl_lock();
5816 * ...
5817 * register_netdevice(x1);
5818 * register_netdevice(x2);
5819 * ...
5820 * unregister_netdevice(y1);
5821 * unregister_netdevice(y2);
5822 * ...
5823 * rtnl_unlock();
5824 * free_netdev(y1);
5825 * free_netdev(y2);
5826 *
5827 * We are invoked by rtnl_unlock().
5828 * This allows us to deal with problems:
5829 * 1) We can delete sysfs objects which invoke hotplug
5830 * without deadlocking with linkwatch via keventd.
5831 * 2) Since we run with the RTNL semaphore not held, we can sleep
5832 * safely in order to wait for the netdev refcnt to drop to zero.
5833 *
5834 * We must not return until all unregister events added during
5835 * the interval the lock was held have been completed.
5836 */
5837 void netdev_run_todo(void)
5838 {
5839 struct list_head list;
5840
5841 /* Snapshot list, allow later requests */
5842 list_replace_init(&net_todo_list, &list);
5843
5844 __rtnl_unlock();
5845
5846 /* Wait for rcu callbacks to finish before attempting to drain
5847 * the device list. This usually avoids a 250ms wait.
5848 */
5849 if (!list_empty(&list))
5850 rcu_barrier();
5851
5852 while (!list_empty(&list)) {
5853 struct net_device *dev
5854 = list_first_entry(&list, struct net_device, todo_list);
5855 list_del(&dev->todo_list);
5856
5857 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5858 printk(KERN_ERR "network todo '%s' but state %d\n",
5859 dev->name, dev->reg_state);
5860 dump_stack();
5861 continue;
5862 }
5863
5864 dev->reg_state = NETREG_UNREGISTERED;
5865
5866 on_each_cpu(flush_backlog, dev, 1);
5867
5868 netdev_wait_allrefs(dev);
5869
5870 /* paranoia */
5871 BUG_ON(netdev_refcnt_read(dev));
5872 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5873 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5874 WARN_ON(dev->dn_ptr);
5875
5876 if (dev->destructor)
5877 dev->destructor(dev);
5878
5879 /* Free network device */
5880 kobject_put(&dev->dev.kobj);
5881 }
5882 }
5883
5884 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5885 * fields in the same order, with only the type differing.
5886 */
5887 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5888 const struct net_device_stats *netdev_stats)
5889 {
5890 #if BITS_PER_LONG == 64
5891 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5892 memcpy(stats64, netdev_stats, sizeof(*stats64));
5893 #else
5894 size_t i, n = sizeof(*stats64) / sizeof(u64);
5895 const unsigned long *src = (const unsigned long *)netdev_stats;
5896 u64 *dst = (u64 *)stats64;
5897
5898 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5899 sizeof(*stats64) / sizeof(u64));
5900 for (i = 0; i < n; i++)
5901 dst[i] = src[i];
5902 #endif
5903 }
5904
5905 /**
5906 * dev_get_stats - get network device statistics
5907 * @dev: device to get statistics from
5908 * @storage: place to store stats
5909 *
5910 * Get network statistics from device. Return @storage.
5911 * The device driver may provide its own method by setting
5912 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5913 * otherwise the internal statistics structure is used.
5914 */
5915 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5916 struct rtnl_link_stats64 *storage)
5917 {
5918 const struct net_device_ops *ops = dev->netdev_ops;
5919
5920 if (ops->ndo_get_stats64) {
5921 memset(storage, 0, sizeof(*storage));
5922 ops->ndo_get_stats64(dev, storage);
5923 } else if (ops->ndo_get_stats) {
5924 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5925 } else {
5926 netdev_stats_to_stats64(storage, &dev->stats);
5927 }
5928 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5929 return storage;
5930 }
5931 EXPORT_SYMBOL(dev_get_stats);
5932
5933 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5934 {
5935 struct netdev_queue *queue = dev_ingress_queue(dev);
5936
5937 #ifdef CONFIG_NET_CLS_ACT
5938 if (queue)
5939 return queue;
5940 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5941 if (!queue)
5942 return NULL;
5943 netdev_init_one_queue(dev, queue, NULL);
5944 queue->qdisc = &noop_qdisc;
5945 queue->qdisc_sleeping = &noop_qdisc;
5946 rcu_assign_pointer(dev->ingress_queue, queue);
5947 #endif
5948 return queue;
5949 }
5950
5951 /**
5952 * alloc_netdev_mqs - allocate network device
5953 * @sizeof_priv: size of private data to allocate space for
5954 * @name: device name format string
5955 * @setup: callback to initialize device
5956 * @txqs: the number of TX subqueues to allocate
5957 * @rxqs: the number of RX subqueues to allocate
5958 *
5959 * Allocates a struct net_device with private data area for driver use
5960 * and performs basic initialization. Also allocates subquue structs
5961 * for each queue on the device.
5962 */
5963 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5964 void (*setup)(struct net_device *),
5965 unsigned int txqs, unsigned int rxqs)
5966 {
5967 struct net_device *dev;
5968 size_t alloc_size;
5969 struct net_device *p;
5970
5971 BUG_ON(strlen(name) >= sizeof(dev->name));
5972
5973 if (txqs < 1) {
5974 pr_err("alloc_netdev: Unable to allocate device "
5975 "with zero queues.\n");
5976 return NULL;
5977 }
5978
5979 #ifdef CONFIG_RPS
5980 if (rxqs < 1) {
5981 pr_err("alloc_netdev: Unable to allocate device "
5982 "with zero RX queues.\n");
5983 return NULL;
5984 }
5985 #endif
5986
5987 alloc_size = sizeof(struct net_device);
5988 if (sizeof_priv) {
5989 /* ensure 32-byte alignment of private area */
5990 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5991 alloc_size += sizeof_priv;
5992 }
5993 /* ensure 32-byte alignment of whole construct */
5994 alloc_size += NETDEV_ALIGN - 1;
5995
5996 p = kzalloc(alloc_size, GFP_KERNEL);
5997 if (!p) {
5998 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5999 return NULL;
6000 }
6001
6002 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6003 dev->padded = (char *)dev - (char *)p;
6004
6005 dev->pcpu_refcnt = alloc_percpu(int);
6006 if (!dev->pcpu_refcnt)
6007 goto free_p;
6008
6009 if (dev_addr_init(dev))
6010 goto free_pcpu;
6011
6012 dev_mc_init(dev);
6013 dev_uc_init(dev);
6014
6015 dev_net_set(dev, &init_net);
6016
6017 dev->gso_max_size = GSO_MAX_SIZE;
6018
6019 INIT_LIST_HEAD(&dev->napi_list);
6020 INIT_LIST_HEAD(&dev->unreg_list);
6021 INIT_LIST_HEAD(&dev->link_watch_list);
6022 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6023 setup(dev);
6024
6025 dev->num_tx_queues = txqs;
6026 dev->real_num_tx_queues = txqs;
6027 if (netif_alloc_netdev_queues(dev))
6028 goto free_all;
6029
6030 #ifdef CONFIG_RPS
6031 dev->num_rx_queues = rxqs;
6032 dev->real_num_rx_queues = rxqs;
6033 if (netif_alloc_rx_queues(dev))
6034 goto free_all;
6035 #endif
6036
6037 strcpy(dev->name, name);
6038 dev->group = INIT_NETDEV_GROUP;
6039 return dev;
6040
6041 free_all:
6042 free_netdev(dev);
6043 return NULL;
6044
6045 free_pcpu:
6046 free_percpu(dev->pcpu_refcnt);
6047 kfree(dev->_tx);
6048 #ifdef CONFIG_RPS
6049 kfree(dev->_rx);
6050 #endif
6051
6052 free_p:
6053 kfree(p);
6054 return NULL;
6055 }
6056 EXPORT_SYMBOL(alloc_netdev_mqs);
6057
6058 /**
6059 * free_netdev - free network device
6060 * @dev: device
6061 *
6062 * This function does the last stage of destroying an allocated device
6063 * interface. The reference to the device object is released.
6064 * If this is the last reference then it will be freed.
6065 */
6066 void free_netdev(struct net_device *dev)
6067 {
6068 struct napi_struct *p, *n;
6069
6070 release_net(dev_net(dev));
6071
6072 kfree(dev->_tx);
6073 #ifdef CONFIG_RPS
6074 kfree(dev->_rx);
6075 #endif
6076
6077 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6078
6079 /* Flush device addresses */
6080 dev_addr_flush(dev);
6081
6082 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6083 netif_napi_del(p);
6084
6085 free_percpu(dev->pcpu_refcnt);
6086 dev->pcpu_refcnt = NULL;
6087
6088 /* Compatibility with error handling in drivers */
6089 if (dev->reg_state == NETREG_UNINITIALIZED) {
6090 kfree((char *)dev - dev->padded);
6091 return;
6092 }
6093
6094 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6095 dev->reg_state = NETREG_RELEASED;
6096
6097 /* will free via device release */
6098 put_device(&dev->dev);
6099 }
6100 EXPORT_SYMBOL(free_netdev);
6101
6102 /**
6103 * synchronize_net - Synchronize with packet receive processing
6104 *
6105 * Wait for packets currently being received to be done.
6106 * Does not block later packets from starting.
6107 */
6108 void synchronize_net(void)
6109 {
6110 might_sleep();
6111 if (rtnl_is_locked())
6112 synchronize_rcu_expedited();
6113 else
6114 synchronize_rcu();
6115 }
6116 EXPORT_SYMBOL(synchronize_net);
6117
6118 /**
6119 * unregister_netdevice_queue - remove device from the kernel
6120 * @dev: device
6121 * @head: list
6122 *
6123 * This function shuts down a device interface and removes it
6124 * from the kernel tables.
6125 * If head not NULL, device is queued to be unregistered later.
6126 *
6127 * Callers must hold the rtnl semaphore. You may want
6128 * unregister_netdev() instead of this.
6129 */
6130
6131 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6132 {
6133 ASSERT_RTNL();
6134
6135 if (head) {
6136 list_move_tail(&dev->unreg_list, head);
6137 } else {
6138 rollback_registered(dev);
6139 /* Finish processing unregister after unlock */
6140 net_set_todo(dev);
6141 }
6142 }
6143 EXPORT_SYMBOL(unregister_netdevice_queue);
6144
6145 /**
6146 * unregister_netdevice_many - unregister many devices
6147 * @head: list of devices
6148 */
6149 void unregister_netdevice_many(struct list_head *head)
6150 {
6151 struct net_device *dev;
6152
6153 if (!list_empty(head)) {
6154 rollback_registered_many(head);
6155 list_for_each_entry(dev, head, unreg_list)
6156 net_set_todo(dev);
6157 }
6158 }
6159 EXPORT_SYMBOL(unregister_netdevice_many);
6160
6161 /**
6162 * unregister_netdev - remove device from the kernel
6163 * @dev: device
6164 *
6165 * This function shuts down a device interface and removes it
6166 * from the kernel tables.
6167 *
6168 * This is just a wrapper for unregister_netdevice that takes
6169 * the rtnl semaphore. In general you want to use this and not
6170 * unregister_netdevice.
6171 */
6172 void unregister_netdev(struct net_device *dev)
6173 {
6174 rtnl_lock();
6175 unregister_netdevice(dev);
6176 rtnl_unlock();
6177 }
6178 EXPORT_SYMBOL(unregister_netdev);
6179
6180 /**
6181 * dev_change_net_namespace - move device to different nethost namespace
6182 * @dev: device
6183 * @net: network namespace
6184 * @pat: If not NULL name pattern to try if the current device name
6185 * is already taken in the destination network namespace.
6186 *
6187 * This function shuts down a device interface and moves it
6188 * to a new network namespace. On success 0 is returned, on
6189 * a failure a netagive errno code is returned.
6190 *
6191 * Callers must hold the rtnl semaphore.
6192 */
6193
6194 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6195 {
6196 int err;
6197
6198 ASSERT_RTNL();
6199
6200 /* Don't allow namespace local devices to be moved. */
6201 err = -EINVAL;
6202 if (dev->features & NETIF_F_NETNS_LOCAL)
6203 goto out;
6204
6205 /* Ensure the device has been registrered */
6206 err = -EINVAL;
6207 if (dev->reg_state != NETREG_REGISTERED)
6208 goto out;
6209
6210 /* Get out if there is nothing todo */
6211 err = 0;
6212 if (net_eq(dev_net(dev), net))
6213 goto out;
6214
6215 /* Pick the destination device name, and ensure
6216 * we can use it in the destination network namespace.
6217 */
6218 err = -EEXIST;
6219 if (__dev_get_by_name(net, dev->name)) {
6220 /* We get here if we can't use the current device name */
6221 if (!pat)
6222 goto out;
6223 if (dev_get_valid_name(dev, pat) < 0)
6224 goto out;
6225 }
6226
6227 /*
6228 * And now a mini version of register_netdevice unregister_netdevice.
6229 */
6230
6231 /* If device is running close it first. */
6232 dev_close(dev);
6233
6234 /* And unlink it from device chain */
6235 err = -ENODEV;
6236 unlist_netdevice(dev);
6237
6238 synchronize_net();
6239
6240 /* Shutdown queueing discipline. */
6241 dev_shutdown(dev);
6242
6243 /* Notify protocols, that we are about to destroy
6244 this device. They should clean all the things.
6245
6246 Note that dev->reg_state stays at NETREG_REGISTERED.
6247 This is wanted because this way 8021q and macvlan know
6248 the device is just moving and can keep their slaves up.
6249 */
6250 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6251 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6252 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6253
6254 /*
6255 * Flush the unicast and multicast chains
6256 */
6257 dev_uc_flush(dev);
6258 dev_mc_flush(dev);
6259
6260 /* Actually switch the network namespace */
6261 dev_net_set(dev, net);
6262
6263 /* If there is an ifindex conflict assign a new one */
6264 if (__dev_get_by_index(net, dev->ifindex)) {
6265 int iflink = (dev->iflink == dev->ifindex);
6266 dev->ifindex = dev_new_index(net);
6267 if (iflink)
6268 dev->iflink = dev->ifindex;
6269 }
6270
6271 /* Fixup kobjects */
6272 err = device_rename(&dev->dev, dev->name);
6273 WARN_ON(err);
6274
6275 /* Add the device back in the hashes */
6276 list_netdevice(dev);
6277
6278 /* Notify protocols, that a new device appeared. */
6279 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6280
6281 /*
6282 * Prevent userspace races by waiting until the network
6283 * device is fully setup before sending notifications.
6284 */
6285 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6286
6287 synchronize_net();
6288 err = 0;
6289 out:
6290 return err;
6291 }
6292 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6293
6294 static int dev_cpu_callback(struct notifier_block *nfb,
6295 unsigned long action,
6296 void *ocpu)
6297 {
6298 struct sk_buff **list_skb;
6299 struct sk_buff *skb;
6300 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6301 struct softnet_data *sd, *oldsd;
6302
6303 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6304 return NOTIFY_OK;
6305
6306 local_irq_disable();
6307 cpu = smp_processor_id();
6308 sd = &per_cpu(softnet_data, cpu);
6309 oldsd = &per_cpu(softnet_data, oldcpu);
6310
6311 /* Find end of our completion_queue. */
6312 list_skb = &sd->completion_queue;
6313 while (*list_skb)
6314 list_skb = &(*list_skb)->next;
6315 /* Append completion queue from offline CPU. */
6316 *list_skb = oldsd->completion_queue;
6317 oldsd->completion_queue = NULL;
6318
6319 /* Append output queue from offline CPU. */
6320 if (oldsd->output_queue) {
6321 *sd->output_queue_tailp = oldsd->output_queue;
6322 sd->output_queue_tailp = oldsd->output_queue_tailp;
6323 oldsd->output_queue = NULL;
6324 oldsd->output_queue_tailp = &oldsd->output_queue;
6325 }
6326 /* Append NAPI poll list from offline CPU. */
6327 if (!list_empty(&oldsd->poll_list)) {
6328 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6329 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6330 }
6331
6332 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6333 local_irq_enable();
6334
6335 /* Process offline CPU's input_pkt_queue */
6336 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6337 netif_rx(skb);
6338 input_queue_head_incr(oldsd);
6339 }
6340 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6341 netif_rx(skb);
6342 input_queue_head_incr(oldsd);
6343 }
6344
6345 return NOTIFY_OK;
6346 }
6347
6348
6349 /**
6350 * netdev_increment_features - increment feature set by one
6351 * @all: current feature set
6352 * @one: new feature set
6353 * @mask: mask feature set
6354 *
6355 * Computes a new feature set after adding a device with feature set
6356 * @one to the master device with current feature set @all. Will not
6357 * enable anything that is off in @mask. Returns the new feature set.
6358 */
6359 netdev_features_t netdev_increment_features(netdev_features_t all,
6360 netdev_features_t one, netdev_features_t mask)
6361 {
6362 if (mask & NETIF_F_GEN_CSUM)
6363 mask |= NETIF_F_ALL_CSUM;
6364 mask |= NETIF_F_VLAN_CHALLENGED;
6365
6366 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6367 all &= one | ~NETIF_F_ALL_FOR_ALL;
6368
6369 /* If one device supports hw checksumming, set for all. */
6370 if (all & NETIF_F_GEN_CSUM)
6371 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6372
6373 return all;
6374 }
6375 EXPORT_SYMBOL(netdev_increment_features);
6376
6377 static struct hlist_head *netdev_create_hash(void)
6378 {
6379 int i;
6380 struct hlist_head *hash;
6381
6382 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6383 if (hash != NULL)
6384 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6385 INIT_HLIST_HEAD(&hash[i]);
6386
6387 return hash;
6388 }
6389
6390 /* Initialize per network namespace state */
6391 static int __net_init netdev_init(struct net *net)
6392 {
6393 INIT_LIST_HEAD(&net->dev_base_head);
6394
6395 net->dev_name_head = netdev_create_hash();
6396 if (net->dev_name_head == NULL)
6397 goto err_name;
6398
6399 net->dev_index_head = netdev_create_hash();
6400 if (net->dev_index_head == NULL)
6401 goto err_idx;
6402
6403 return 0;
6404
6405 err_idx:
6406 kfree(net->dev_name_head);
6407 err_name:
6408 return -ENOMEM;
6409 }
6410
6411 /**
6412 * netdev_drivername - network driver for the device
6413 * @dev: network device
6414 *
6415 * Determine network driver for device.
6416 */
6417 const char *netdev_drivername(const struct net_device *dev)
6418 {
6419 const struct device_driver *driver;
6420 const struct device *parent;
6421 const char *empty = "";
6422
6423 parent = dev->dev.parent;
6424 if (!parent)
6425 return empty;
6426
6427 driver = parent->driver;
6428 if (driver && driver->name)
6429 return driver->name;
6430 return empty;
6431 }
6432
6433 int __netdev_printk(const char *level, const struct net_device *dev,
6434 struct va_format *vaf)
6435 {
6436 int r;
6437
6438 if (dev && dev->dev.parent)
6439 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6440 netdev_name(dev), vaf);
6441 else if (dev)
6442 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6443 else
6444 r = printk("%s(NULL net_device): %pV", level, vaf);
6445
6446 return r;
6447 }
6448 EXPORT_SYMBOL(__netdev_printk);
6449
6450 int netdev_printk(const char *level, const struct net_device *dev,
6451 const char *format, ...)
6452 {
6453 struct va_format vaf;
6454 va_list args;
6455 int r;
6456
6457 va_start(args, format);
6458
6459 vaf.fmt = format;
6460 vaf.va = &args;
6461
6462 r = __netdev_printk(level, dev, &vaf);
6463 va_end(args);
6464
6465 return r;
6466 }
6467 EXPORT_SYMBOL(netdev_printk);
6468
6469 #define define_netdev_printk_level(func, level) \
6470 int func(const struct net_device *dev, const char *fmt, ...) \
6471 { \
6472 int r; \
6473 struct va_format vaf; \
6474 va_list args; \
6475 \
6476 va_start(args, fmt); \
6477 \
6478 vaf.fmt = fmt; \
6479 vaf.va = &args; \
6480 \
6481 r = __netdev_printk(level, dev, &vaf); \
6482 va_end(args); \
6483 \
6484 return r; \
6485 } \
6486 EXPORT_SYMBOL(func);
6487
6488 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6489 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6490 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6491 define_netdev_printk_level(netdev_err, KERN_ERR);
6492 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6493 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6494 define_netdev_printk_level(netdev_info, KERN_INFO);
6495
6496 static void __net_exit netdev_exit(struct net *net)
6497 {
6498 kfree(net->dev_name_head);
6499 kfree(net->dev_index_head);
6500 }
6501
6502 static struct pernet_operations __net_initdata netdev_net_ops = {
6503 .init = netdev_init,
6504 .exit = netdev_exit,
6505 };
6506
6507 static void __net_exit default_device_exit(struct net *net)
6508 {
6509 struct net_device *dev, *aux;
6510 /*
6511 * Push all migratable network devices back to the
6512 * initial network namespace
6513 */
6514 rtnl_lock();
6515 for_each_netdev_safe(net, dev, aux) {
6516 int err;
6517 char fb_name[IFNAMSIZ];
6518
6519 /* Ignore unmoveable devices (i.e. loopback) */
6520 if (dev->features & NETIF_F_NETNS_LOCAL)
6521 continue;
6522
6523 /* Leave virtual devices for the generic cleanup */
6524 if (dev->rtnl_link_ops)
6525 continue;
6526
6527 /* Push remaining network devices to init_net */
6528 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6529 err = dev_change_net_namespace(dev, &init_net, fb_name);
6530 if (err) {
6531 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6532 __func__, dev->name, err);
6533 BUG();
6534 }
6535 }
6536 rtnl_unlock();
6537 }
6538
6539 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6540 {
6541 /* At exit all network devices most be removed from a network
6542 * namespace. Do this in the reverse order of registration.
6543 * Do this across as many network namespaces as possible to
6544 * improve batching efficiency.
6545 */
6546 struct net_device *dev;
6547 struct net *net;
6548 LIST_HEAD(dev_kill_list);
6549
6550 rtnl_lock();
6551 list_for_each_entry(net, net_list, exit_list) {
6552 for_each_netdev_reverse(net, dev) {
6553 if (dev->rtnl_link_ops)
6554 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6555 else
6556 unregister_netdevice_queue(dev, &dev_kill_list);
6557 }
6558 }
6559 unregister_netdevice_many(&dev_kill_list);
6560 list_del(&dev_kill_list);
6561 rtnl_unlock();
6562 }
6563
6564 static struct pernet_operations __net_initdata default_device_ops = {
6565 .exit = default_device_exit,
6566 .exit_batch = default_device_exit_batch,
6567 };
6568
6569 /*
6570 * Initialize the DEV module. At boot time this walks the device list and
6571 * unhooks any devices that fail to initialise (normally hardware not
6572 * present) and leaves us with a valid list of present and active devices.
6573 *
6574 */
6575
6576 /*
6577 * This is called single threaded during boot, so no need
6578 * to take the rtnl semaphore.
6579 */
6580 static int __init net_dev_init(void)
6581 {
6582 int i, rc = -ENOMEM;
6583
6584 BUG_ON(!dev_boot_phase);
6585
6586 if (dev_proc_init())
6587 goto out;
6588
6589 if (netdev_kobject_init())
6590 goto out;
6591
6592 INIT_LIST_HEAD(&ptype_all);
6593 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6594 INIT_LIST_HEAD(&ptype_base[i]);
6595
6596 if (register_pernet_subsys(&netdev_net_ops))
6597 goto out;
6598
6599 /*
6600 * Initialise the packet receive queues.
6601 */
6602
6603 for_each_possible_cpu(i) {
6604 struct softnet_data *sd = &per_cpu(softnet_data, i);
6605
6606 memset(sd, 0, sizeof(*sd));
6607 skb_queue_head_init(&sd->input_pkt_queue);
6608 skb_queue_head_init(&sd->process_queue);
6609 sd->completion_queue = NULL;
6610 INIT_LIST_HEAD(&sd->poll_list);
6611 sd->output_queue = NULL;
6612 sd->output_queue_tailp = &sd->output_queue;
6613 #ifdef CONFIG_RPS
6614 sd->csd.func = rps_trigger_softirq;
6615 sd->csd.info = sd;
6616 sd->csd.flags = 0;
6617 sd->cpu = i;
6618 #endif
6619
6620 sd->backlog.poll = process_backlog;
6621 sd->backlog.weight = weight_p;
6622 sd->backlog.gro_list = NULL;
6623 sd->backlog.gro_count = 0;
6624 }
6625
6626 dev_boot_phase = 0;
6627
6628 /* The loopback device is special if any other network devices
6629 * is present in a network namespace the loopback device must
6630 * be present. Since we now dynamically allocate and free the
6631 * loopback device ensure this invariant is maintained by
6632 * keeping the loopback device as the first device on the
6633 * list of network devices. Ensuring the loopback devices
6634 * is the first device that appears and the last network device
6635 * that disappears.
6636 */
6637 if (register_pernet_device(&loopback_net_ops))
6638 goto out;
6639
6640 if (register_pernet_device(&default_device_ops))
6641 goto out;
6642
6643 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6644 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6645
6646 hotcpu_notifier(dev_cpu_callback, 0);
6647 dst_init();
6648 dev_mcast_init();
6649 rc = 0;
6650 out:
6651 return rc;
6652 }
6653
6654 subsys_initcall(net_dev_init);
6655
6656 static int __init initialize_hashrnd(void)
6657 {
6658 get_random_bytes(&hashrnd, sizeof(hashrnd));
6659 return 0;
6660 }
6661
6662 late_initcall_sync(initialize_hashrnd);
6663
This page took 0.245175 seconds and 4 git commands to generate.