Merge branch 'fec' of git://git.pengutronix.de/git/ukl/linux-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125 }
1126 EXPORT_SYMBOL(dev_load);
1127
1128 static int __dev_open(struct net_device *dev)
1129 {
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186 }
1187
1188 /**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200 int dev_open(struct net_device *dev)
1201 {
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224 }
1225 EXPORT_SYMBOL(dev_open);
1226
1227 static int __dev_close_many(struct list_head *head)
1228 {
1229 struct net_device *dev;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list, it
1244 * can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 }
1251
1252 dev_deactivate_many(head);
1253
1254 list_for_each_entry(dev, head, unreg_list) {
1255 const struct net_device_ops *ops = dev->netdev_ops;
1256
1257 /*
1258 * Call the device specific close. This cannot fail.
1259 * Only if device is UP
1260 *
1261 * We allow it to be called even after a DETACH hot-plug
1262 * event.
1263 */
1264 if (ops->ndo_stop)
1265 ops->ndo_stop(dev);
1266
1267 /*
1268 * Device is now down.
1269 */
1270
1271 dev->flags &= ~IFF_UP;
1272
1273 /*
1274 * Shutdown NET_DMA
1275 */
1276 net_dmaengine_put();
1277 }
1278
1279 return 0;
1280 }
1281
1282 static int __dev_close(struct net_device *dev)
1283 {
1284 int retval;
1285 LIST_HEAD(single);
1286
1287 list_add(&dev->unreg_list, &single);
1288 retval = __dev_close_many(&single);
1289 list_del(&single);
1290 return retval;
1291 }
1292
1293 static int dev_close_many(struct list_head *head)
1294 {
1295 struct net_device *dev, *tmp;
1296 LIST_HEAD(tmp_list);
1297
1298 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1299 if (!(dev->flags & IFF_UP))
1300 list_move(&dev->unreg_list, &tmp_list);
1301
1302 __dev_close_many(head);
1303
1304 /*
1305 * Tell people we are down
1306 */
1307 list_for_each_entry(dev, head, unreg_list) {
1308 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1309 call_netdevice_notifiers(NETDEV_DOWN, dev);
1310 }
1311
1312 /* rollback_registered_many needs the complete original list */
1313 list_splice(&tmp_list, head);
1314 return 0;
1315 }
1316
1317 /**
1318 * dev_close - shutdown an interface.
1319 * @dev: device to shutdown
1320 *
1321 * This function moves an active device into down state. A
1322 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1323 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1324 * chain.
1325 */
1326 int dev_close(struct net_device *dev)
1327 {
1328 LIST_HEAD(single);
1329
1330 list_add(&dev->unreg_list, &single);
1331 dev_close_many(&single);
1332 list_del(&single);
1333 return 0;
1334 }
1335 EXPORT_SYMBOL(dev_close);
1336
1337
1338 /**
1339 * dev_disable_lro - disable Large Receive Offload on a device
1340 * @dev: device
1341 *
1342 * Disable Large Receive Offload (LRO) on a net device. Must be
1343 * called under RTNL. This is needed if received packets may be
1344 * forwarded to another interface.
1345 */
1346 void dev_disable_lro(struct net_device *dev)
1347 {
1348 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1349 dev->ethtool_ops->set_flags) {
1350 u32 flags = dev->ethtool_ops->get_flags(dev);
1351 if (flags & ETH_FLAG_LRO) {
1352 flags &= ~ETH_FLAG_LRO;
1353 dev->ethtool_ops->set_flags(dev, flags);
1354 }
1355 }
1356 WARN_ON(dev->features & NETIF_F_LRO);
1357 }
1358 EXPORT_SYMBOL(dev_disable_lro);
1359
1360
1361 static int dev_boot_phase = 1;
1362
1363 /*
1364 * Device change register/unregister. These are not inline or static
1365 * as we export them to the world.
1366 */
1367
1368 /**
1369 * register_netdevice_notifier - register a network notifier block
1370 * @nb: notifier
1371 *
1372 * Register a notifier to be called when network device events occur.
1373 * The notifier passed is linked into the kernel structures and must
1374 * not be reused until it has been unregistered. A negative errno code
1375 * is returned on a failure.
1376 *
1377 * When registered all registration and up events are replayed
1378 * to the new notifier to allow device to have a race free
1379 * view of the network device list.
1380 */
1381
1382 int register_netdevice_notifier(struct notifier_block *nb)
1383 {
1384 struct net_device *dev;
1385 struct net_device *last;
1386 struct net *net;
1387 int err;
1388
1389 rtnl_lock();
1390 err = raw_notifier_chain_register(&netdev_chain, nb);
1391 if (err)
1392 goto unlock;
1393 if (dev_boot_phase)
1394 goto unlock;
1395 for_each_net(net) {
1396 for_each_netdev(net, dev) {
1397 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1398 err = notifier_to_errno(err);
1399 if (err)
1400 goto rollback;
1401
1402 if (!(dev->flags & IFF_UP))
1403 continue;
1404
1405 nb->notifier_call(nb, NETDEV_UP, dev);
1406 }
1407 }
1408
1409 unlock:
1410 rtnl_unlock();
1411 return err;
1412
1413 rollback:
1414 last = dev;
1415 for_each_net(net) {
1416 for_each_netdev(net, dev) {
1417 if (dev == last)
1418 break;
1419
1420 if (dev->flags & IFF_UP) {
1421 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1422 nb->notifier_call(nb, NETDEV_DOWN, dev);
1423 }
1424 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1425 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1426 }
1427 }
1428
1429 raw_notifier_chain_unregister(&netdev_chain, nb);
1430 goto unlock;
1431 }
1432 EXPORT_SYMBOL(register_netdevice_notifier);
1433
1434 /**
1435 * unregister_netdevice_notifier - unregister a network notifier block
1436 * @nb: notifier
1437 *
1438 * Unregister a notifier previously registered by
1439 * register_netdevice_notifier(). The notifier is unlinked into the
1440 * kernel structures and may then be reused. A negative errno code
1441 * is returned on a failure.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 int err;
1447
1448 rtnl_lock();
1449 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1450 rtnl_unlock();
1451 return err;
1452 }
1453 EXPORT_SYMBOL(unregister_netdevice_notifier);
1454
1455 /**
1456 * call_netdevice_notifiers - call all network notifier blocks
1457 * @val: value passed unmodified to notifier function
1458 * @dev: net_device pointer passed unmodified to notifier function
1459 *
1460 * Call all network notifier blocks. Parameters and return value
1461 * are as for raw_notifier_call_chain().
1462 */
1463
1464 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1465 {
1466 ASSERT_RTNL();
1467 return raw_notifier_call_chain(&netdev_chain, val, dev);
1468 }
1469
1470 /* When > 0 there are consumers of rx skb time stamps */
1471 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1472
1473 void net_enable_timestamp(void)
1474 {
1475 atomic_inc(&netstamp_needed);
1476 }
1477 EXPORT_SYMBOL(net_enable_timestamp);
1478
1479 void net_disable_timestamp(void)
1480 {
1481 atomic_dec(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_disable_timestamp);
1484
1485 static inline void net_timestamp_set(struct sk_buff *skb)
1486 {
1487 if (atomic_read(&netstamp_needed))
1488 __net_timestamp(skb);
1489 else
1490 skb->tstamp.tv64 = 0;
1491 }
1492
1493 static inline void net_timestamp_check(struct sk_buff *skb)
1494 {
1495 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1496 __net_timestamp(skb);
1497 }
1498
1499 /**
1500 * dev_forward_skb - loopback an skb to another netif
1501 *
1502 * @dev: destination network device
1503 * @skb: buffer to forward
1504 *
1505 * return values:
1506 * NET_RX_SUCCESS (no congestion)
1507 * NET_RX_DROP (packet was dropped, but freed)
1508 *
1509 * dev_forward_skb can be used for injecting an skb from the
1510 * start_xmit function of one device into the receive queue
1511 * of another device.
1512 *
1513 * The receiving device may be in another namespace, so
1514 * we have to clear all information in the skb that could
1515 * impact namespace isolation.
1516 */
1517 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1518 {
1519 skb_orphan(skb);
1520 nf_reset(skb);
1521
1522 if (unlikely(!(dev->flags & IFF_UP) ||
1523 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1524 atomic_long_inc(&dev->rx_dropped);
1525 kfree_skb(skb);
1526 return NET_RX_DROP;
1527 }
1528 skb_set_dev(skb, dev);
1529 skb->tstamp.tv64 = 0;
1530 skb->pkt_type = PACKET_HOST;
1531 skb->protocol = eth_type_trans(skb, dev);
1532 return netif_rx(skb);
1533 }
1534 EXPORT_SYMBOL_GPL(dev_forward_skb);
1535
1536 static inline int deliver_skb(struct sk_buff *skb,
1537 struct packet_type *pt_prev,
1538 struct net_device *orig_dev)
1539 {
1540 atomic_inc(&skb->users);
1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1542 }
1543
1544 /*
1545 * Support routine. Sends outgoing frames to any network
1546 * taps currently in use.
1547 */
1548
1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1550 {
1551 struct packet_type *ptype;
1552 struct sk_buff *skb2 = NULL;
1553 struct packet_type *pt_prev = NULL;
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1557 /* Never send packets back to the socket
1558 * they originated from - MvS (miquels@drinkel.ow.org)
1559 */
1560 if ((ptype->dev == dev || !ptype->dev) &&
1561 (ptype->af_packet_priv == NULL ||
1562 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1563 if (pt_prev) {
1564 deliver_skb(skb2, pt_prev, skb->dev);
1565 pt_prev = ptype;
1566 continue;
1567 }
1568
1569 skb2 = skb_clone(skb, GFP_ATOMIC);
1570 if (!skb2)
1571 break;
1572
1573 net_timestamp_set(skb2);
1574
1575 /* skb->nh should be correctly
1576 set by sender, so that the second statement is
1577 just protection against buggy protocols.
1578 */
1579 skb_reset_mac_header(skb2);
1580
1581 if (skb_network_header(skb2) < skb2->data ||
1582 skb2->network_header > skb2->tail) {
1583 if (net_ratelimit())
1584 printk(KERN_CRIT "protocol %04x is "
1585 "buggy, dev %s\n",
1586 ntohs(skb2->protocol),
1587 dev->name);
1588 skb_reset_network_header(skb2);
1589 }
1590
1591 skb2->transport_header = skb2->network_header;
1592 skb2->pkt_type = PACKET_OUTGOING;
1593 pt_prev = ptype;
1594 }
1595 }
1596 if (pt_prev)
1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1598 rcu_read_unlock();
1599 }
1600
1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1602 * @dev: Network device
1603 * @txq: number of queues available
1604 *
1605 * If real_num_tx_queues is changed the tc mappings may no longer be
1606 * valid. To resolve this verify the tc mapping remains valid and if
1607 * not NULL the mapping. With no priorities mapping to this
1608 * offset/count pair it will no longer be used. In the worst case TC0
1609 * is invalid nothing can be done so disable priority mappings. If is
1610 * expected that drivers will fix this mapping if they can before
1611 * calling netif_set_real_num_tx_queues.
1612 */
1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1614 {
1615 int i;
1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1617
1618 /* If TC0 is invalidated disable TC mapping */
1619 if (tc->offset + tc->count > txq) {
1620 pr_warning("Number of in use tx queues changed "
1621 "invalidating tc mappings. Priority "
1622 "traffic classification disabled!\n");
1623 dev->num_tc = 0;
1624 return;
1625 }
1626
1627 /* Invalidated prio to tc mappings set to TC0 */
1628 for (i = 1; i < TC_BITMASK + 1; i++) {
1629 int q = netdev_get_prio_tc_map(dev, i);
1630
1631 tc = &dev->tc_to_txq[q];
1632 if (tc->offset + tc->count > txq) {
1633 pr_warning("Number of in use tx queues "
1634 "changed. Priority %i to tc "
1635 "mapping %i is no longer valid "
1636 "setting map to 0\n",
1637 i, q);
1638 netdev_set_prio_tc_map(dev, i, 0);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1646 */
1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1648 {
1649 int rc;
1650
1651 if (txq < 1 || txq > dev->num_tx_queues)
1652 return -EINVAL;
1653
1654 if (dev->reg_state == NETREG_REGISTERED ||
1655 dev->reg_state == NETREG_UNREGISTERING) {
1656 ASSERT_RTNL();
1657
1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1659 txq);
1660 if (rc)
1661 return rc;
1662
1663 if (dev->num_tc)
1664 netif_setup_tc(dev, txq);
1665
1666 if (txq < dev->real_num_tx_queues)
1667 qdisc_reset_all_tx_gt(dev, txq);
1668 }
1669
1670 dev->real_num_tx_queues = txq;
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1674
1675 #ifdef CONFIG_RPS
1676 /**
1677 * netif_set_real_num_rx_queues - set actual number of RX queues used
1678 * @dev: Network device
1679 * @rxq: Actual number of RX queues
1680 *
1681 * This must be called either with the rtnl_lock held or before
1682 * registration of the net device. Returns 0 on success, or a
1683 * negative error code. If called before registration, it always
1684 * succeeds.
1685 */
1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1687 {
1688 int rc;
1689
1690 if (rxq < 1 || rxq > dev->num_rx_queues)
1691 return -EINVAL;
1692
1693 if (dev->reg_state == NETREG_REGISTERED) {
1694 ASSERT_RTNL();
1695
1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1697 rxq);
1698 if (rc)
1699 return rc;
1700 }
1701
1702 dev->real_num_rx_queues = rxq;
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1706 #endif
1707
1708 static inline void __netif_reschedule(struct Qdisc *q)
1709 {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 q->next_sched = NULL;
1716 *sd->output_queue_tailp = q;
1717 sd->output_queue_tailp = &q->next_sched;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1720 }
1721
1722 void __netif_schedule(struct Qdisc *q)
1723 {
1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1725 __netif_reschedule(q);
1726 }
1727 EXPORT_SYMBOL(__netif_schedule);
1728
1729 void dev_kfree_skb_irq(struct sk_buff *skb)
1730 {
1731 if (atomic_dec_and_test(&skb->users)) {
1732 struct softnet_data *sd;
1733 unsigned long flags;
1734
1735 local_irq_save(flags);
1736 sd = &__get_cpu_var(softnet_data);
1737 skb->next = sd->completion_queue;
1738 sd->completion_queue = skb;
1739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1740 local_irq_restore(flags);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_kfree_skb_irq);
1744
1745 void dev_kfree_skb_any(struct sk_buff *skb)
1746 {
1747 if (in_irq() || irqs_disabled())
1748 dev_kfree_skb_irq(skb);
1749 else
1750 dev_kfree_skb(skb);
1751 }
1752 EXPORT_SYMBOL(dev_kfree_skb_any);
1753
1754
1755 /**
1756 * netif_device_detach - mark device as removed
1757 * @dev: network device
1758 *
1759 * Mark device as removed from system and therefore no longer available.
1760 */
1761 void netif_device_detach(struct net_device *dev)
1762 {
1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1764 netif_running(dev)) {
1765 netif_tx_stop_all_queues(dev);
1766 }
1767 }
1768 EXPORT_SYMBOL(netif_device_detach);
1769
1770 /**
1771 * netif_device_attach - mark device as attached
1772 * @dev: network device
1773 *
1774 * Mark device as attached from system and restart if needed.
1775 */
1776 void netif_device_attach(struct net_device *dev)
1777 {
1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1779 netif_running(dev)) {
1780 netif_tx_wake_all_queues(dev);
1781 __netdev_watchdog_up(dev);
1782 }
1783 }
1784 EXPORT_SYMBOL(netif_device_attach);
1785
1786 /**
1787 * skb_dev_set -- assign a new device to a buffer
1788 * @skb: buffer for the new device
1789 * @dev: network device
1790 *
1791 * If an skb is owned by a device already, we have to reset
1792 * all data private to the namespace a device belongs to
1793 * before assigning it a new device.
1794 */
1795 #ifdef CONFIG_NET_NS
1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1797 {
1798 skb_dst_drop(skb);
1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1800 secpath_reset(skb);
1801 nf_reset(skb);
1802 skb_init_secmark(skb);
1803 skb->mark = 0;
1804 skb->priority = 0;
1805 skb->nf_trace = 0;
1806 skb->ipvs_property = 0;
1807 #ifdef CONFIG_NET_SCHED
1808 skb->tc_index = 0;
1809 #endif
1810 }
1811 skb->dev = dev;
1812 }
1813 EXPORT_SYMBOL(skb_set_dev);
1814 #endif /* CONFIG_NET_NS */
1815
1816 /*
1817 * Invalidate hardware checksum when packet is to be mangled, and
1818 * complete checksum manually on outgoing path.
1819 */
1820 int skb_checksum_help(struct sk_buff *skb)
1821 {
1822 __wsum csum;
1823 int ret = 0, offset;
1824
1825 if (skb->ip_summed == CHECKSUM_COMPLETE)
1826 goto out_set_summed;
1827
1828 if (unlikely(skb_shinfo(skb)->gso_size)) {
1829 /* Let GSO fix up the checksum. */
1830 goto out_set_summed;
1831 }
1832
1833 offset = skb_checksum_start_offset(skb);
1834 BUG_ON(offset >= skb_headlen(skb));
1835 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1836
1837 offset += skb->csum_offset;
1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1839
1840 if (skb_cloned(skb) &&
1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1843 if (ret)
1844 goto out;
1845 }
1846
1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1848 out_set_summed:
1849 skb->ip_summed = CHECKSUM_NONE;
1850 out:
1851 return ret;
1852 }
1853 EXPORT_SYMBOL(skb_checksum_help);
1854
1855 /**
1856 * skb_gso_segment - Perform segmentation on skb.
1857 * @skb: buffer to segment
1858 * @features: features for the output path (see dev->features)
1859 *
1860 * This function segments the given skb and returns a list of segments.
1861 *
1862 * It may return NULL if the skb requires no segmentation. This is
1863 * only possible when GSO is used for verifying header integrity.
1864 */
1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1866 {
1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1868 struct packet_type *ptype;
1869 __be16 type = skb->protocol;
1870 int vlan_depth = ETH_HLEN;
1871 int err;
1872
1873 while (type == htons(ETH_P_8021Q)) {
1874 struct vlan_hdr *vh;
1875
1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1877 return ERR_PTR(-EINVAL);
1878
1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1880 type = vh->h_vlan_encapsulated_proto;
1881 vlan_depth += VLAN_HLEN;
1882 }
1883
1884 skb_reset_mac_header(skb);
1885 skb->mac_len = skb->network_header - skb->mac_header;
1886 __skb_pull(skb, skb->mac_len);
1887
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 struct net_device *dev = skb->dev;
1890 struct ethtool_drvinfo info = {};
1891
1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1893 dev->ethtool_ops->get_drvinfo(dev, &info);
1894
1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1896 info.driver, dev ? dev->features : 0L,
1897 skb->sk ? skb->sk->sk_route_caps : 0L,
1898 skb->len, skb->data_len, skb->ip_summed);
1899
1900 if (skb_header_cloned(skb) &&
1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1902 return ERR_PTR(err);
1903 }
1904
1905 rcu_read_lock();
1906 list_for_each_entry_rcu(ptype,
1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1910 err = ptype->gso_send_check(skb);
1911 segs = ERR_PTR(err);
1912 if (err || skb_gso_ok(skb, features))
1913 break;
1914 __skb_push(skb, (skb->data -
1915 skb_network_header(skb)));
1916 }
1917 segs = ptype->gso_segment(skb, features);
1918 break;
1919 }
1920 }
1921 rcu_read_unlock();
1922
1923 __skb_push(skb, skb->data - skb_mac_header(skb));
1924
1925 return segs;
1926 }
1927 EXPORT_SYMBOL(skb_gso_segment);
1928
1929 /* Take action when hardware reception checksum errors are detected. */
1930 #ifdef CONFIG_BUG
1931 void netdev_rx_csum_fault(struct net_device *dev)
1932 {
1933 if (net_ratelimit()) {
1934 printk(KERN_ERR "%s: hw csum failure.\n",
1935 dev ? dev->name : "<unknown>");
1936 dump_stack();
1937 }
1938 }
1939 EXPORT_SYMBOL(netdev_rx_csum_fault);
1940 #endif
1941
1942 /* Actually, we should eliminate this check as soon as we know, that:
1943 * 1. IOMMU is present and allows to map all the memory.
1944 * 2. No high memory really exists on this machine.
1945 */
1946
1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1948 {
1949 #ifdef CONFIG_HIGHMEM
1950 int i;
1951 if (!(dev->features & NETIF_F_HIGHDMA)) {
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1953 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1954 return 1;
1955 }
1956
1957 if (PCI_DMA_BUS_IS_PHYS) {
1958 struct device *pdev = dev->dev.parent;
1959
1960 if (!pdev)
1961 return 0;
1962 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1963 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1964 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1965 return 1;
1966 }
1967 }
1968 #endif
1969 return 0;
1970 }
1971
1972 struct dev_gso_cb {
1973 void (*destructor)(struct sk_buff *skb);
1974 };
1975
1976 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1977
1978 static void dev_gso_skb_destructor(struct sk_buff *skb)
1979 {
1980 struct dev_gso_cb *cb;
1981
1982 do {
1983 struct sk_buff *nskb = skb->next;
1984
1985 skb->next = nskb->next;
1986 nskb->next = NULL;
1987 kfree_skb(nskb);
1988 } while (skb->next);
1989
1990 cb = DEV_GSO_CB(skb);
1991 if (cb->destructor)
1992 cb->destructor(skb);
1993 }
1994
1995 /**
1996 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1997 * @skb: buffer to segment
1998 * @features: device features as applicable to this skb
1999 *
2000 * This function segments the given skb and stores the list of segments
2001 * in skb->next.
2002 */
2003 static int dev_gso_segment(struct sk_buff *skb, int features)
2004 {
2005 struct sk_buff *segs;
2006
2007 segs = skb_gso_segment(skb, features);
2008
2009 /* Verifying header integrity only. */
2010 if (!segs)
2011 return 0;
2012
2013 if (IS_ERR(segs))
2014 return PTR_ERR(segs);
2015
2016 skb->next = segs;
2017 DEV_GSO_CB(skb)->destructor = skb->destructor;
2018 skb->destructor = dev_gso_skb_destructor;
2019
2020 return 0;
2021 }
2022
2023 /*
2024 * Try to orphan skb early, right before transmission by the device.
2025 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2026 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2027 */
2028 static inline void skb_orphan_try(struct sk_buff *skb)
2029 {
2030 struct sock *sk = skb->sk;
2031
2032 if (sk && !skb_shinfo(skb)->tx_flags) {
2033 /* skb_tx_hash() wont be able to get sk.
2034 * We copy sk_hash into skb->rxhash
2035 */
2036 if (!skb->rxhash)
2037 skb->rxhash = sk->sk_hash;
2038 skb_orphan(skb);
2039 }
2040 }
2041
2042 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2043 {
2044 return ((features & NETIF_F_GEN_CSUM) ||
2045 ((features & NETIF_F_V4_CSUM) &&
2046 protocol == htons(ETH_P_IP)) ||
2047 ((features & NETIF_F_V6_CSUM) &&
2048 protocol == htons(ETH_P_IPV6)) ||
2049 ((features & NETIF_F_FCOE_CRC) &&
2050 protocol == htons(ETH_P_FCOE)));
2051 }
2052
2053 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2054 {
2055 if (!can_checksum_protocol(features, protocol)) {
2056 features &= ~NETIF_F_ALL_CSUM;
2057 features &= ~NETIF_F_SG;
2058 } else if (illegal_highdma(skb->dev, skb)) {
2059 features &= ~NETIF_F_SG;
2060 }
2061
2062 return features;
2063 }
2064
2065 u32 netif_skb_features(struct sk_buff *skb)
2066 {
2067 __be16 protocol = skb->protocol;
2068 u32 features = skb->dev->features;
2069
2070 if (protocol == htons(ETH_P_8021Q)) {
2071 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2072 protocol = veh->h_vlan_encapsulated_proto;
2073 } else if (!vlan_tx_tag_present(skb)) {
2074 return harmonize_features(skb, protocol, features);
2075 }
2076
2077 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2078
2079 if (protocol != htons(ETH_P_8021Q)) {
2080 return harmonize_features(skb, protocol, features);
2081 } else {
2082 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2083 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2084 return harmonize_features(skb, protocol, features);
2085 }
2086 }
2087 EXPORT_SYMBOL(netif_skb_features);
2088
2089 /*
2090 * Returns true if either:
2091 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2092 * 2. skb is fragmented and the device does not support SG, or if
2093 * at least one of fragments is in highmem and device does not
2094 * support DMA from it.
2095 */
2096 static inline int skb_needs_linearize(struct sk_buff *skb,
2097 int features)
2098 {
2099 return skb_is_nonlinear(skb) &&
2100 ((skb_has_frag_list(skb) &&
2101 !(features & NETIF_F_FRAGLIST)) ||
2102 (skb_shinfo(skb)->nr_frags &&
2103 !(features & NETIF_F_SG)));
2104 }
2105
2106 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2107 struct netdev_queue *txq)
2108 {
2109 const struct net_device_ops *ops = dev->netdev_ops;
2110 int rc = NETDEV_TX_OK;
2111
2112 if (likely(!skb->next)) {
2113 u32 features;
2114
2115 /*
2116 * If device doesnt need skb->dst, release it right now while
2117 * its hot in this cpu cache
2118 */
2119 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2120 skb_dst_drop(skb);
2121
2122 if (!list_empty(&ptype_all))
2123 dev_queue_xmit_nit(skb, dev);
2124
2125 skb_orphan_try(skb);
2126
2127 features = netif_skb_features(skb);
2128
2129 if (vlan_tx_tag_present(skb) &&
2130 !(features & NETIF_F_HW_VLAN_TX)) {
2131 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2132 if (unlikely(!skb))
2133 goto out;
2134
2135 skb->vlan_tci = 0;
2136 }
2137
2138 if (netif_needs_gso(skb, features)) {
2139 if (unlikely(dev_gso_segment(skb, features)))
2140 goto out_kfree_skb;
2141 if (skb->next)
2142 goto gso;
2143 } else {
2144 if (skb_needs_linearize(skb, features) &&
2145 __skb_linearize(skb))
2146 goto out_kfree_skb;
2147
2148 /* If packet is not checksummed and device does not
2149 * support checksumming for this protocol, complete
2150 * checksumming here.
2151 */
2152 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2153 skb_set_transport_header(skb,
2154 skb_checksum_start_offset(skb));
2155 if (!(features & NETIF_F_ALL_CSUM) &&
2156 skb_checksum_help(skb))
2157 goto out_kfree_skb;
2158 }
2159 }
2160
2161 rc = ops->ndo_start_xmit(skb, dev);
2162 trace_net_dev_xmit(skb, rc);
2163 if (rc == NETDEV_TX_OK)
2164 txq_trans_update(txq);
2165 return rc;
2166 }
2167
2168 gso:
2169 do {
2170 struct sk_buff *nskb = skb->next;
2171
2172 skb->next = nskb->next;
2173 nskb->next = NULL;
2174
2175 /*
2176 * If device doesnt need nskb->dst, release it right now while
2177 * its hot in this cpu cache
2178 */
2179 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2180 skb_dst_drop(nskb);
2181
2182 rc = ops->ndo_start_xmit(nskb, dev);
2183 trace_net_dev_xmit(nskb, rc);
2184 if (unlikely(rc != NETDEV_TX_OK)) {
2185 if (rc & ~NETDEV_TX_MASK)
2186 goto out_kfree_gso_skb;
2187 nskb->next = skb->next;
2188 skb->next = nskb;
2189 return rc;
2190 }
2191 txq_trans_update(txq);
2192 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2193 return NETDEV_TX_BUSY;
2194 } while (skb->next);
2195
2196 out_kfree_gso_skb:
2197 if (likely(skb->next == NULL))
2198 skb->destructor = DEV_GSO_CB(skb)->destructor;
2199 out_kfree_skb:
2200 kfree_skb(skb);
2201 out:
2202 return rc;
2203 }
2204
2205 static u32 hashrnd __read_mostly;
2206
2207 /*
2208 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2209 * to be used as a distribution range.
2210 */
2211 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2212 unsigned int num_tx_queues)
2213 {
2214 u32 hash;
2215 u16 qoffset = 0;
2216 u16 qcount = num_tx_queues;
2217
2218 if (skb_rx_queue_recorded(skb)) {
2219 hash = skb_get_rx_queue(skb);
2220 while (unlikely(hash >= num_tx_queues))
2221 hash -= num_tx_queues;
2222 return hash;
2223 }
2224
2225 if (dev->num_tc) {
2226 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2227 qoffset = dev->tc_to_txq[tc].offset;
2228 qcount = dev->tc_to_txq[tc].count;
2229 }
2230
2231 if (skb->sk && skb->sk->sk_hash)
2232 hash = skb->sk->sk_hash;
2233 else
2234 hash = (__force u16) skb->protocol ^ skb->rxhash;
2235 hash = jhash_1word(hash, hashrnd);
2236
2237 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2238 }
2239 EXPORT_SYMBOL(__skb_tx_hash);
2240
2241 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2242 {
2243 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2244 if (net_ratelimit()) {
2245 pr_warning("%s selects TX queue %d, but "
2246 "real number of TX queues is %d\n",
2247 dev->name, queue_index, dev->real_num_tx_queues);
2248 }
2249 return 0;
2250 }
2251 return queue_index;
2252 }
2253
2254 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 #ifdef CONFIG_XPS
2257 struct xps_dev_maps *dev_maps;
2258 struct xps_map *map;
2259 int queue_index = -1;
2260
2261 rcu_read_lock();
2262 dev_maps = rcu_dereference(dev->xps_maps);
2263 if (dev_maps) {
2264 map = rcu_dereference(
2265 dev_maps->cpu_map[raw_smp_processor_id()]);
2266 if (map) {
2267 if (map->len == 1)
2268 queue_index = map->queues[0];
2269 else {
2270 u32 hash;
2271 if (skb->sk && skb->sk->sk_hash)
2272 hash = skb->sk->sk_hash;
2273 else
2274 hash = (__force u16) skb->protocol ^
2275 skb->rxhash;
2276 hash = jhash_1word(hash, hashrnd);
2277 queue_index = map->queues[
2278 ((u64)hash * map->len) >> 32];
2279 }
2280 if (unlikely(queue_index >= dev->real_num_tx_queues))
2281 queue_index = -1;
2282 }
2283 }
2284 rcu_read_unlock();
2285
2286 return queue_index;
2287 #else
2288 return -1;
2289 #endif
2290 }
2291
2292 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2293 struct sk_buff *skb)
2294 {
2295 int queue_index;
2296 const struct net_device_ops *ops = dev->netdev_ops;
2297
2298 if (dev->real_num_tx_queues == 1)
2299 queue_index = 0;
2300 else if (ops->ndo_select_queue) {
2301 queue_index = ops->ndo_select_queue(dev, skb);
2302 queue_index = dev_cap_txqueue(dev, queue_index);
2303 } else {
2304 struct sock *sk = skb->sk;
2305 queue_index = sk_tx_queue_get(sk);
2306
2307 if (queue_index < 0 || skb->ooo_okay ||
2308 queue_index >= dev->real_num_tx_queues) {
2309 int old_index = queue_index;
2310
2311 queue_index = get_xps_queue(dev, skb);
2312 if (queue_index < 0)
2313 queue_index = skb_tx_hash(dev, skb);
2314
2315 if (queue_index != old_index && sk) {
2316 struct dst_entry *dst =
2317 rcu_dereference_check(sk->sk_dst_cache, 1);
2318
2319 if (dst && skb_dst(skb) == dst)
2320 sk_tx_queue_set(sk, queue_index);
2321 }
2322 }
2323 }
2324
2325 skb_set_queue_mapping(skb, queue_index);
2326 return netdev_get_tx_queue(dev, queue_index);
2327 }
2328
2329 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2330 struct net_device *dev,
2331 struct netdev_queue *txq)
2332 {
2333 spinlock_t *root_lock = qdisc_lock(q);
2334 bool contended;
2335 int rc;
2336
2337 qdisc_skb_cb(skb)->pkt_len = skb->len;
2338 qdisc_calculate_pkt_len(skb, q);
2339 /*
2340 * Heuristic to force contended enqueues to serialize on a
2341 * separate lock before trying to get qdisc main lock.
2342 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2343 * and dequeue packets faster.
2344 */
2345 contended = qdisc_is_running(q);
2346 if (unlikely(contended))
2347 spin_lock(&q->busylock);
2348
2349 spin_lock(root_lock);
2350 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2351 kfree_skb(skb);
2352 rc = NET_XMIT_DROP;
2353 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2354 qdisc_run_begin(q)) {
2355 /*
2356 * This is a work-conserving queue; there are no old skbs
2357 * waiting to be sent out; and the qdisc is not running -
2358 * xmit the skb directly.
2359 */
2360 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2361 skb_dst_force(skb);
2362
2363 qdisc_bstats_update(q, skb);
2364
2365 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2366 if (unlikely(contended)) {
2367 spin_unlock(&q->busylock);
2368 contended = false;
2369 }
2370 __qdisc_run(q);
2371 } else
2372 qdisc_run_end(q);
2373
2374 rc = NET_XMIT_SUCCESS;
2375 } else {
2376 skb_dst_force(skb);
2377 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2378 if (qdisc_run_begin(q)) {
2379 if (unlikely(contended)) {
2380 spin_unlock(&q->busylock);
2381 contended = false;
2382 }
2383 __qdisc_run(q);
2384 }
2385 }
2386 spin_unlock(root_lock);
2387 if (unlikely(contended))
2388 spin_unlock(&q->busylock);
2389 return rc;
2390 }
2391
2392 static DEFINE_PER_CPU(int, xmit_recursion);
2393 #define RECURSION_LIMIT 10
2394
2395 /**
2396 * dev_queue_xmit - transmit a buffer
2397 * @skb: buffer to transmit
2398 *
2399 * Queue a buffer for transmission to a network device. The caller must
2400 * have set the device and priority and built the buffer before calling
2401 * this function. The function can be called from an interrupt.
2402 *
2403 * A negative errno code is returned on a failure. A success does not
2404 * guarantee the frame will be transmitted as it may be dropped due
2405 * to congestion or traffic shaping.
2406 *
2407 * -----------------------------------------------------------------------------------
2408 * I notice this method can also return errors from the queue disciplines,
2409 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2410 * be positive.
2411 *
2412 * Regardless of the return value, the skb is consumed, so it is currently
2413 * difficult to retry a send to this method. (You can bump the ref count
2414 * before sending to hold a reference for retry if you are careful.)
2415 *
2416 * When calling this method, interrupts MUST be enabled. This is because
2417 * the BH enable code must have IRQs enabled so that it will not deadlock.
2418 * --BLG
2419 */
2420 int dev_queue_xmit(struct sk_buff *skb)
2421 {
2422 struct net_device *dev = skb->dev;
2423 struct netdev_queue *txq;
2424 struct Qdisc *q;
2425 int rc = -ENOMEM;
2426
2427 /* Disable soft irqs for various locks below. Also
2428 * stops preemption for RCU.
2429 */
2430 rcu_read_lock_bh();
2431
2432 txq = dev_pick_tx(dev, skb);
2433 q = rcu_dereference_bh(txq->qdisc);
2434
2435 #ifdef CONFIG_NET_CLS_ACT
2436 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2437 #endif
2438 trace_net_dev_queue(skb);
2439 if (q->enqueue) {
2440 rc = __dev_xmit_skb(skb, q, dev, txq);
2441 goto out;
2442 }
2443
2444 /* The device has no queue. Common case for software devices:
2445 loopback, all the sorts of tunnels...
2446
2447 Really, it is unlikely that netif_tx_lock protection is necessary
2448 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2449 counters.)
2450 However, it is possible, that they rely on protection
2451 made by us here.
2452
2453 Check this and shot the lock. It is not prone from deadlocks.
2454 Either shot noqueue qdisc, it is even simpler 8)
2455 */
2456 if (dev->flags & IFF_UP) {
2457 int cpu = smp_processor_id(); /* ok because BHs are off */
2458
2459 if (txq->xmit_lock_owner != cpu) {
2460
2461 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2462 goto recursion_alert;
2463
2464 HARD_TX_LOCK(dev, txq, cpu);
2465
2466 if (!netif_tx_queue_stopped(txq)) {
2467 __this_cpu_inc(xmit_recursion);
2468 rc = dev_hard_start_xmit(skb, dev, txq);
2469 __this_cpu_dec(xmit_recursion);
2470 if (dev_xmit_complete(rc)) {
2471 HARD_TX_UNLOCK(dev, txq);
2472 goto out;
2473 }
2474 }
2475 HARD_TX_UNLOCK(dev, txq);
2476 if (net_ratelimit())
2477 printk(KERN_CRIT "Virtual device %s asks to "
2478 "queue packet!\n", dev->name);
2479 } else {
2480 /* Recursion is detected! It is possible,
2481 * unfortunately
2482 */
2483 recursion_alert:
2484 if (net_ratelimit())
2485 printk(KERN_CRIT "Dead loop on virtual device "
2486 "%s, fix it urgently!\n", dev->name);
2487 }
2488 }
2489
2490 rc = -ENETDOWN;
2491 rcu_read_unlock_bh();
2492
2493 kfree_skb(skb);
2494 return rc;
2495 out:
2496 rcu_read_unlock_bh();
2497 return rc;
2498 }
2499 EXPORT_SYMBOL(dev_queue_xmit);
2500
2501
2502 /*=======================================================================
2503 Receiver routines
2504 =======================================================================*/
2505
2506 int netdev_max_backlog __read_mostly = 1000;
2507 int netdev_tstamp_prequeue __read_mostly = 1;
2508 int netdev_budget __read_mostly = 300;
2509 int weight_p __read_mostly = 64; /* old backlog weight */
2510
2511 /* Called with irq disabled */
2512 static inline void ____napi_schedule(struct softnet_data *sd,
2513 struct napi_struct *napi)
2514 {
2515 list_add_tail(&napi->poll_list, &sd->poll_list);
2516 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2517 }
2518
2519 /*
2520 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2521 * and src/dst port numbers. Returns a non-zero hash number on success
2522 * and 0 on failure.
2523 */
2524 __u32 __skb_get_rxhash(struct sk_buff *skb)
2525 {
2526 int nhoff, hash = 0, poff;
2527 struct ipv6hdr *ip6;
2528 struct iphdr *ip;
2529 u8 ip_proto;
2530 u32 addr1, addr2, ihl;
2531 union {
2532 u32 v32;
2533 u16 v16[2];
2534 } ports;
2535
2536 nhoff = skb_network_offset(skb);
2537
2538 switch (skb->protocol) {
2539 case __constant_htons(ETH_P_IP):
2540 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2541 goto done;
2542
2543 ip = (struct iphdr *) (skb->data + nhoff);
2544 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2545 ip_proto = 0;
2546 else
2547 ip_proto = ip->protocol;
2548 addr1 = (__force u32) ip->saddr;
2549 addr2 = (__force u32) ip->daddr;
2550 ihl = ip->ihl;
2551 break;
2552 case __constant_htons(ETH_P_IPV6):
2553 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2554 goto done;
2555
2556 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2557 ip_proto = ip6->nexthdr;
2558 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2559 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2560 ihl = (40 >> 2);
2561 break;
2562 default:
2563 goto done;
2564 }
2565
2566 ports.v32 = 0;
2567 poff = proto_ports_offset(ip_proto);
2568 if (poff >= 0) {
2569 nhoff += ihl * 4 + poff;
2570 if (pskb_may_pull(skb, nhoff + 4)) {
2571 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2572 if (ports.v16[1] < ports.v16[0])
2573 swap(ports.v16[0], ports.v16[1]);
2574 }
2575 }
2576
2577 /* get a consistent hash (same value on both flow directions) */
2578 if (addr2 < addr1)
2579 swap(addr1, addr2);
2580
2581 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2582 if (!hash)
2583 hash = 1;
2584
2585 done:
2586 return hash;
2587 }
2588 EXPORT_SYMBOL(__skb_get_rxhash);
2589
2590 #ifdef CONFIG_RPS
2591
2592 /* One global table that all flow-based protocols share. */
2593 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2594 EXPORT_SYMBOL(rps_sock_flow_table);
2595
2596 static struct rps_dev_flow *
2597 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2598 struct rps_dev_flow *rflow, u16 next_cpu)
2599 {
2600 u16 tcpu;
2601
2602 tcpu = rflow->cpu = next_cpu;
2603 if (tcpu != RPS_NO_CPU) {
2604 #ifdef CONFIG_RFS_ACCEL
2605 struct netdev_rx_queue *rxqueue;
2606 struct rps_dev_flow_table *flow_table;
2607 struct rps_dev_flow *old_rflow;
2608 u32 flow_id;
2609 u16 rxq_index;
2610 int rc;
2611
2612 /* Should we steer this flow to a different hardware queue? */
2613 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap)
2614 goto out;
2615 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2616 if (rxq_index == skb_get_rx_queue(skb))
2617 goto out;
2618
2619 rxqueue = dev->_rx + rxq_index;
2620 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2621 if (!flow_table)
2622 goto out;
2623 flow_id = skb->rxhash & flow_table->mask;
2624 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2625 rxq_index, flow_id);
2626 if (rc < 0)
2627 goto out;
2628 old_rflow = rflow;
2629 rflow = &flow_table->flows[flow_id];
2630 rflow->cpu = next_cpu;
2631 rflow->filter = rc;
2632 if (old_rflow->filter == rflow->filter)
2633 old_rflow->filter = RPS_NO_FILTER;
2634 out:
2635 #endif
2636 rflow->last_qtail =
2637 per_cpu(softnet_data, tcpu).input_queue_head;
2638 }
2639
2640 return rflow;
2641 }
2642
2643 /*
2644 * get_rps_cpu is called from netif_receive_skb and returns the target
2645 * CPU from the RPS map of the receiving queue for a given skb.
2646 * rcu_read_lock must be held on entry.
2647 */
2648 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2649 struct rps_dev_flow **rflowp)
2650 {
2651 struct netdev_rx_queue *rxqueue;
2652 struct rps_map *map;
2653 struct rps_dev_flow_table *flow_table;
2654 struct rps_sock_flow_table *sock_flow_table;
2655 int cpu = -1;
2656 u16 tcpu;
2657
2658 if (skb_rx_queue_recorded(skb)) {
2659 u16 index = skb_get_rx_queue(skb);
2660 if (unlikely(index >= dev->real_num_rx_queues)) {
2661 WARN_ONCE(dev->real_num_rx_queues > 1,
2662 "%s received packet on queue %u, but number "
2663 "of RX queues is %u\n",
2664 dev->name, index, dev->real_num_rx_queues);
2665 goto done;
2666 }
2667 rxqueue = dev->_rx + index;
2668 } else
2669 rxqueue = dev->_rx;
2670
2671 map = rcu_dereference(rxqueue->rps_map);
2672 if (map) {
2673 if (map->len == 1 &&
2674 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2675 tcpu = map->cpus[0];
2676 if (cpu_online(tcpu))
2677 cpu = tcpu;
2678 goto done;
2679 }
2680 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2681 goto done;
2682 }
2683
2684 skb_reset_network_header(skb);
2685 if (!skb_get_rxhash(skb))
2686 goto done;
2687
2688 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2689 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2690 if (flow_table && sock_flow_table) {
2691 u16 next_cpu;
2692 struct rps_dev_flow *rflow;
2693
2694 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2695 tcpu = rflow->cpu;
2696
2697 next_cpu = sock_flow_table->ents[skb->rxhash &
2698 sock_flow_table->mask];
2699
2700 /*
2701 * If the desired CPU (where last recvmsg was done) is
2702 * different from current CPU (one in the rx-queue flow
2703 * table entry), switch if one of the following holds:
2704 * - Current CPU is unset (equal to RPS_NO_CPU).
2705 * - Current CPU is offline.
2706 * - The current CPU's queue tail has advanced beyond the
2707 * last packet that was enqueued using this table entry.
2708 * This guarantees that all previous packets for the flow
2709 * have been dequeued, thus preserving in order delivery.
2710 */
2711 if (unlikely(tcpu != next_cpu) &&
2712 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2713 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2714 rflow->last_qtail)) >= 0))
2715 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2716
2717 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2718 *rflowp = rflow;
2719 cpu = tcpu;
2720 goto done;
2721 }
2722 }
2723
2724 if (map) {
2725 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2726
2727 if (cpu_online(tcpu)) {
2728 cpu = tcpu;
2729 goto done;
2730 }
2731 }
2732
2733 done:
2734 return cpu;
2735 }
2736
2737 #ifdef CONFIG_RFS_ACCEL
2738
2739 /**
2740 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2741 * @dev: Device on which the filter was set
2742 * @rxq_index: RX queue index
2743 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2744 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2745 *
2746 * Drivers that implement ndo_rx_flow_steer() should periodically call
2747 * this function for each installed filter and remove the filters for
2748 * which it returns %true.
2749 */
2750 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2751 u32 flow_id, u16 filter_id)
2752 {
2753 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2754 struct rps_dev_flow_table *flow_table;
2755 struct rps_dev_flow *rflow;
2756 bool expire = true;
2757 int cpu;
2758
2759 rcu_read_lock();
2760 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2761 if (flow_table && flow_id <= flow_table->mask) {
2762 rflow = &flow_table->flows[flow_id];
2763 cpu = ACCESS_ONCE(rflow->cpu);
2764 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2765 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2766 rflow->last_qtail) <
2767 (int)(10 * flow_table->mask)))
2768 expire = false;
2769 }
2770 rcu_read_unlock();
2771 return expire;
2772 }
2773 EXPORT_SYMBOL(rps_may_expire_flow);
2774
2775 #endif /* CONFIG_RFS_ACCEL */
2776
2777 /* Called from hardirq (IPI) context */
2778 static void rps_trigger_softirq(void *data)
2779 {
2780 struct softnet_data *sd = data;
2781
2782 ____napi_schedule(sd, &sd->backlog);
2783 sd->received_rps++;
2784 }
2785
2786 #endif /* CONFIG_RPS */
2787
2788 /*
2789 * Check if this softnet_data structure is another cpu one
2790 * If yes, queue it to our IPI list and return 1
2791 * If no, return 0
2792 */
2793 static int rps_ipi_queued(struct softnet_data *sd)
2794 {
2795 #ifdef CONFIG_RPS
2796 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2797
2798 if (sd != mysd) {
2799 sd->rps_ipi_next = mysd->rps_ipi_list;
2800 mysd->rps_ipi_list = sd;
2801
2802 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2803 return 1;
2804 }
2805 #endif /* CONFIG_RPS */
2806 return 0;
2807 }
2808
2809 /*
2810 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2811 * queue (may be a remote CPU queue).
2812 */
2813 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2814 unsigned int *qtail)
2815 {
2816 struct softnet_data *sd;
2817 unsigned long flags;
2818
2819 sd = &per_cpu(softnet_data, cpu);
2820
2821 local_irq_save(flags);
2822
2823 rps_lock(sd);
2824 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2825 if (skb_queue_len(&sd->input_pkt_queue)) {
2826 enqueue:
2827 __skb_queue_tail(&sd->input_pkt_queue, skb);
2828 input_queue_tail_incr_save(sd, qtail);
2829 rps_unlock(sd);
2830 local_irq_restore(flags);
2831 return NET_RX_SUCCESS;
2832 }
2833
2834 /* Schedule NAPI for backlog device
2835 * We can use non atomic operation since we own the queue lock
2836 */
2837 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2838 if (!rps_ipi_queued(sd))
2839 ____napi_schedule(sd, &sd->backlog);
2840 }
2841 goto enqueue;
2842 }
2843
2844 sd->dropped++;
2845 rps_unlock(sd);
2846
2847 local_irq_restore(flags);
2848
2849 atomic_long_inc(&skb->dev->rx_dropped);
2850 kfree_skb(skb);
2851 return NET_RX_DROP;
2852 }
2853
2854 /**
2855 * netif_rx - post buffer to the network code
2856 * @skb: buffer to post
2857 *
2858 * This function receives a packet from a device driver and queues it for
2859 * the upper (protocol) levels to process. It always succeeds. The buffer
2860 * may be dropped during processing for congestion control or by the
2861 * protocol layers.
2862 *
2863 * return values:
2864 * NET_RX_SUCCESS (no congestion)
2865 * NET_RX_DROP (packet was dropped)
2866 *
2867 */
2868
2869 int netif_rx(struct sk_buff *skb)
2870 {
2871 int ret;
2872
2873 /* if netpoll wants it, pretend we never saw it */
2874 if (netpoll_rx(skb))
2875 return NET_RX_DROP;
2876
2877 if (netdev_tstamp_prequeue)
2878 net_timestamp_check(skb);
2879
2880 trace_netif_rx(skb);
2881 #ifdef CONFIG_RPS
2882 {
2883 struct rps_dev_flow voidflow, *rflow = &voidflow;
2884 int cpu;
2885
2886 preempt_disable();
2887 rcu_read_lock();
2888
2889 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2890 if (cpu < 0)
2891 cpu = smp_processor_id();
2892
2893 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2894
2895 rcu_read_unlock();
2896 preempt_enable();
2897 }
2898 #else
2899 {
2900 unsigned int qtail;
2901 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2902 put_cpu();
2903 }
2904 #endif
2905 return ret;
2906 }
2907 EXPORT_SYMBOL(netif_rx);
2908
2909 int netif_rx_ni(struct sk_buff *skb)
2910 {
2911 int err;
2912
2913 preempt_disable();
2914 err = netif_rx(skb);
2915 if (local_softirq_pending())
2916 do_softirq();
2917 preempt_enable();
2918
2919 return err;
2920 }
2921 EXPORT_SYMBOL(netif_rx_ni);
2922
2923 static void net_tx_action(struct softirq_action *h)
2924 {
2925 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2926
2927 if (sd->completion_queue) {
2928 struct sk_buff *clist;
2929
2930 local_irq_disable();
2931 clist = sd->completion_queue;
2932 sd->completion_queue = NULL;
2933 local_irq_enable();
2934
2935 while (clist) {
2936 struct sk_buff *skb = clist;
2937 clist = clist->next;
2938
2939 WARN_ON(atomic_read(&skb->users));
2940 trace_kfree_skb(skb, net_tx_action);
2941 __kfree_skb(skb);
2942 }
2943 }
2944
2945 if (sd->output_queue) {
2946 struct Qdisc *head;
2947
2948 local_irq_disable();
2949 head = sd->output_queue;
2950 sd->output_queue = NULL;
2951 sd->output_queue_tailp = &sd->output_queue;
2952 local_irq_enable();
2953
2954 while (head) {
2955 struct Qdisc *q = head;
2956 spinlock_t *root_lock;
2957
2958 head = head->next_sched;
2959
2960 root_lock = qdisc_lock(q);
2961 if (spin_trylock(root_lock)) {
2962 smp_mb__before_clear_bit();
2963 clear_bit(__QDISC_STATE_SCHED,
2964 &q->state);
2965 qdisc_run(q);
2966 spin_unlock(root_lock);
2967 } else {
2968 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2969 &q->state)) {
2970 __netif_reschedule(q);
2971 } else {
2972 smp_mb__before_clear_bit();
2973 clear_bit(__QDISC_STATE_SCHED,
2974 &q->state);
2975 }
2976 }
2977 }
2978 }
2979 }
2980
2981 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2982 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2983 /* This hook is defined here for ATM LANE */
2984 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2985 unsigned char *addr) __read_mostly;
2986 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2987 #endif
2988
2989 #ifdef CONFIG_NET_CLS_ACT
2990 /* TODO: Maybe we should just force sch_ingress to be compiled in
2991 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2992 * a compare and 2 stores extra right now if we dont have it on
2993 * but have CONFIG_NET_CLS_ACT
2994 * NOTE: This doesnt stop any functionality; if you dont have
2995 * the ingress scheduler, you just cant add policies on ingress.
2996 *
2997 */
2998 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2999 {
3000 struct net_device *dev = skb->dev;
3001 u32 ttl = G_TC_RTTL(skb->tc_verd);
3002 int result = TC_ACT_OK;
3003 struct Qdisc *q;
3004
3005 if (unlikely(MAX_RED_LOOP < ttl++)) {
3006 if (net_ratelimit())
3007 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3008 skb->skb_iif, dev->ifindex);
3009 return TC_ACT_SHOT;
3010 }
3011
3012 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3013 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3014
3015 q = rxq->qdisc;
3016 if (q != &noop_qdisc) {
3017 spin_lock(qdisc_lock(q));
3018 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3019 result = qdisc_enqueue_root(skb, q);
3020 spin_unlock(qdisc_lock(q));
3021 }
3022
3023 return result;
3024 }
3025
3026 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3027 struct packet_type **pt_prev,
3028 int *ret, struct net_device *orig_dev)
3029 {
3030 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3031
3032 if (!rxq || rxq->qdisc == &noop_qdisc)
3033 goto out;
3034
3035 if (*pt_prev) {
3036 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3037 *pt_prev = NULL;
3038 }
3039
3040 switch (ing_filter(skb, rxq)) {
3041 case TC_ACT_SHOT:
3042 case TC_ACT_STOLEN:
3043 kfree_skb(skb);
3044 return NULL;
3045 }
3046
3047 out:
3048 skb->tc_verd = 0;
3049 return skb;
3050 }
3051 #endif
3052
3053 /**
3054 * netdev_rx_handler_register - register receive handler
3055 * @dev: device to register a handler for
3056 * @rx_handler: receive handler to register
3057 * @rx_handler_data: data pointer that is used by rx handler
3058 *
3059 * Register a receive hander for a device. This handler will then be
3060 * called from __netif_receive_skb. A negative errno code is returned
3061 * on a failure.
3062 *
3063 * The caller must hold the rtnl_mutex.
3064 */
3065 int netdev_rx_handler_register(struct net_device *dev,
3066 rx_handler_func_t *rx_handler,
3067 void *rx_handler_data)
3068 {
3069 ASSERT_RTNL();
3070
3071 if (dev->rx_handler)
3072 return -EBUSY;
3073
3074 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3075 rcu_assign_pointer(dev->rx_handler, rx_handler);
3076
3077 return 0;
3078 }
3079 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3080
3081 /**
3082 * netdev_rx_handler_unregister - unregister receive handler
3083 * @dev: device to unregister a handler from
3084 *
3085 * Unregister a receive hander from a device.
3086 *
3087 * The caller must hold the rtnl_mutex.
3088 */
3089 void netdev_rx_handler_unregister(struct net_device *dev)
3090 {
3091
3092 ASSERT_RTNL();
3093 rcu_assign_pointer(dev->rx_handler, NULL);
3094 rcu_assign_pointer(dev->rx_handler_data, NULL);
3095 }
3096 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3097
3098 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
3099 struct net_device *master)
3100 {
3101 if (skb->pkt_type == PACKET_HOST) {
3102 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
3103
3104 memcpy(dest, master->dev_addr, ETH_ALEN);
3105 }
3106 }
3107
3108 /* On bonding slaves other than the currently active slave, suppress
3109 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
3110 * ARP on active-backup slaves with arp_validate enabled.
3111 */
3112 static int __skb_bond_should_drop(struct sk_buff *skb,
3113 struct net_device *master)
3114 {
3115 struct net_device *dev = skb->dev;
3116
3117 if (master->priv_flags & IFF_MASTER_ARPMON)
3118 dev->last_rx = jiffies;
3119
3120 if ((master->priv_flags & IFF_MASTER_ALB) &&
3121 (master->priv_flags & IFF_BRIDGE_PORT)) {
3122 /* Do address unmangle. The local destination address
3123 * will be always the one master has. Provides the right
3124 * functionality in a bridge.
3125 */
3126 skb_bond_set_mac_by_master(skb, master);
3127 }
3128
3129 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3130 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3131 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3132 return 0;
3133
3134 if (master->priv_flags & IFF_MASTER_ALB) {
3135 if (skb->pkt_type != PACKET_BROADCAST &&
3136 skb->pkt_type != PACKET_MULTICAST)
3137 return 0;
3138 }
3139 if (master->priv_flags & IFF_MASTER_8023AD &&
3140 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3141 return 0;
3142
3143 return 1;
3144 }
3145 return 0;
3146 }
3147
3148 static int __netif_receive_skb(struct sk_buff *skb)
3149 {
3150 struct packet_type *ptype, *pt_prev;
3151 rx_handler_func_t *rx_handler;
3152 struct net_device *orig_dev;
3153 struct net_device *null_or_orig;
3154 struct net_device *orig_or_bond;
3155 int ret = NET_RX_DROP;
3156 __be16 type;
3157
3158 if (!netdev_tstamp_prequeue)
3159 net_timestamp_check(skb);
3160
3161 trace_netif_receive_skb(skb);
3162
3163 /* if we've gotten here through NAPI, check netpoll */
3164 if (netpoll_receive_skb(skb))
3165 return NET_RX_DROP;
3166
3167 if (!skb->skb_iif)
3168 skb->skb_iif = skb->dev->ifindex;
3169
3170 /*
3171 * bonding note: skbs received on inactive slaves should only
3172 * be delivered to pkt handlers that are exact matches. Also
3173 * the deliver_no_wcard flag will be set. If packet handlers
3174 * are sensitive to duplicate packets these skbs will need to
3175 * be dropped at the handler.
3176 */
3177 null_or_orig = NULL;
3178 orig_dev = skb->dev;
3179 if (skb->deliver_no_wcard)
3180 null_or_orig = orig_dev;
3181 else if (netif_is_bond_slave(orig_dev)) {
3182 struct net_device *bond_master = ACCESS_ONCE(orig_dev->master);
3183
3184 if (likely(bond_master)) {
3185 if (__skb_bond_should_drop(skb, bond_master)) {
3186 skb->deliver_no_wcard = 1;
3187 /* deliver only exact match */
3188 null_or_orig = orig_dev;
3189 } else
3190 skb->dev = bond_master;
3191 }
3192 }
3193
3194 __this_cpu_inc(softnet_data.processed);
3195 skb_reset_network_header(skb);
3196 skb_reset_transport_header(skb);
3197 skb->mac_len = skb->network_header - skb->mac_header;
3198
3199 pt_prev = NULL;
3200
3201 rcu_read_lock();
3202
3203 #ifdef CONFIG_NET_CLS_ACT
3204 if (skb->tc_verd & TC_NCLS) {
3205 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3206 goto ncls;
3207 }
3208 #endif
3209
3210 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3211 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3212 ptype->dev == orig_dev) {
3213 if (pt_prev)
3214 ret = deliver_skb(skb, pt_prev, orig_dev);
3215 pt_prev = ptype;
3216 }
3217 }
3218
3219 #ifdef CONFIG_NET_CLS_ACT
3220 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3221 if (!skb)
3222 goto out;
3223 ncls:
3224 #endif
3225
3226 /* Handle special case of bridge or macvlan */
3227 rx_handler = rcu_dereference(skb->dev->rx_handler);
3228 if (rx_handler) {
3229 if (pt_prev) {
3230 ret = deliver_skb(skb, pt_prev, orig_dev);
3231 pt_prev = NULL;
3232 }
3233 skb = rx_handler(skb);
3234 if (!skb)
3235 goto out;
3236 }
3237
3238 if (vlan_tx_tag_present(skb)) {
3239 if (pt_prev) {
3240 ret = deliver_skb(skb, pt_prev, orig_dev);
3241 pt_prev = NULL;
3242 }
3243 if (vlan_hwaccel_do_receive(&skb)) {
3244 ret = __netif_receive_skb(skb);
3245 goto out;
3246 } else if (unlikely(!skb))
3247 goto out;
3248 }
3249
3250 /*
3251 * Make sure frames received on VLAN interfaces stacked on
3252 * bonding interfaces still make their way to any base bonding
3253 * device that may have registered for a specific ptype. The
3254 * handler may have to adjust skb->dev and orig_dev.
3255 */
3256 orig_or_bond = orig_dev;
3257 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3258 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3259 orig_or_bond = vlan_dev_real_dev(skb->dev);
3260 }
3261
3262 type = skb->protocol;
3263 list_for_each_entry_rcu(ptype,
3264 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3265 if (ptype->type == type && (ptype->dev == null_or_orig ||
3266 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3267 ptype->dev == orig_or_bond)) {
3268 if (pt_prev)
3269 ret = deliver_skb(skb, pt_prev, orig_dev);
3270 pt_prev = ptype;
3271 }
3272 }
3273
3274 if (pt_prev) {
3275 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3276 } else {
3277 atomic_long_inc(&skb->dev->rx_dropped);
3278 kfree_skb(skb);
3279 /* Jamal, now you will not able to escape explaining
3280 * me how you were going to use this. :-)
3281 */
3282 ret = NET_RX_DROP;
3283 }
3284
3285 out:
3286 rcu_read_unlock();
3287 return ret;
3288 }
3289
3290 /**
3291 * netif_receive_skb - process receive buffer from network
3292 * @skb: buffer to process
3293 *
3294 * netif_receive_skb() is the main receive data processing function.
3295 * It always succeeds. The buffer may be dropped during processing
3296 * for congestion control or by the protocol layers.
3297 *
3298 * This function may only be called from softirq context and interrupts
3299 * should be enabled.
3300 *
3301 * Return values (usually ignored):
3302 * NET_RX_SUCCESS: no congestion
3303 * NET_RX_DROP: packet was dropped
3304 */
3305 int netif_receive_skb(struct sk_buff *skb)
3306 {
3307 if (netdev_tstamp_prequeue)
3308 net_timestamp_check(skb);
3309
3310 if (skb_defer_rx_timestamp(skb))
3311 return NET_RX_SUCCESS;
3312
3313 #ifdef CONFIG_RPS
3314 {
3315 struct rps_dev_flow voidflow, *rflow = &voidflow;
3316 int cpu, ret;
3317
3318 rcu_read_lock();
3319
3320 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3321
3322 if (cpu >= 0) {
3323 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3324 rcu_read_unlock();
3325 } else {
3326 rcu_read_unlock();
3327 ret = __netif_receive_skb(skb);
3328 }
3329
3330 return ret;
3331 }
3332 #else
3333 return __netif_receive_skb(skb);
3334 #endif
3335 }
3336 EXPORT_SYMBOL(netif_receive_skb);
3337
3338 /* Network device is going away, flush any packets still pending
3339 * Called with irqs disabled.
3340 */
3341 static void flush_backlog(void *arg)
3342 {
3343 struct net_device *dev = arg;
3344 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3345 struct sk_buff *skb, *tmp;
3346
3347 rps_lock(sd);
3348 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3349 if (skb->dev == dev) {
3350 __skb_unlink(skb, &sd->input_pkt_queue);
3351 kfree_skb(skb);
3352 input_queue_head_incr(sd);
3353 }
3354 }
3355 rps_unlock(sd);
3356
3357 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3358 if (skb->dev == dev) {
3359 __skb_unlink(skb, &sd->process_queue);
3360 kfree_skb(skb);
3361 input_queue_head_incr(sd);
3362 }
3363 }
3364 }
3365
3366 static int napi_gro_complete(struct sk_buff *skb)
3367 {
3368 struct packet_type *ptype;
3369 __be16 type = skb->protocol;
3370 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3371 int err = -ENOENT;
3372
3373 if (NAPI_GRO_CB(skb)->count == 1) {
3374 skb_shinfo(skb)->gso_size = 0;
3375 goto out;
3376 }
3377
3378 rcu_read_lock();
3379 list_for_each_entry_rcu(ptype, head, list) {
3380 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3381 continue;
3382
3383 err = ptype->gro_complete(skb);
3384 break;
3385 }
3386 rcu_read_unlock();
3387
3388 if (err) {
3389 WARN_ON(&ptype->list == head);
3390 kfree_skb(skb);
3391 return NET_RX_SUCCESS;
3392 }
3393
3394 out:
3395 return netif_receive_skb(skb);
3396 }
3397
3398 inline void napi_gro_flush(struct napi_struct *napi)
3399 {
3400 struct sk_buff *skb, *next;
3401
3402 for (skb = napi->gro_list; skb; skb = next) {
3403 next = skb->next;
3404 skb->next = NULL;
3405 napi_gro_complete(skb);
3406 }
3407
3408 napi->gro_count = 0;
3409 napi->gro_list = NULL;
3410 }
3411 EXPORT_SYMBOL(napi_gro_flush);
3412
3413 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3414 {
3415 struct sk_buff **pp = NULL;
3416 struct packet_type *ptype;
3417 __be16 type = skb->protocol;
3418 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3419 int same_flow;
3420 int mac_len;
3421 enum gro_result ret;
3422
3423 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3424 goto normal;
3425
3426 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3427 goto normal;
3428
3429 rcu_read_lock();
3430 list_for_each_entry_rcu(ptype, head, list) {
3431 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3432 continue;
3433
3434 skb_set_network_header(skb, skb_gro_offset(skb));
3435 mac_len = skb->network_header - skb->mac_header;
3436 skb->mac_len = mac_len;
3437 NAPI_GRO_CB(skb)->same_flow = 0;
3438 NAPI_GRO_CB(skb)->flush = 0;
3439 NAPI_GRO_CB(skb)->free = 0;
3440
3441 pp = ptype->gro_receive(&napi->gro_list, skb);
3442 break;
3443 }
3444 rcu_read_unlock();
3445
3446 if (&ptype->list == head)
3447 goto normal;
3448
3449 same_flow = NAPI_GRO_CB(skb)->same_flow;
3450 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3451
3452 if (pp) {
3453 struct sk_buff *nskb = *pp;
3454
3455 *pp = nskb->next;
3456 nskb->next = NULL;
3457 napi_gro_complete(nskb);
3458 napi->gro_count--;
3459 }
3460
3461 if (same_flow)
3462 goto ok;
3463
3464 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3465 goto normal;
3466
3467 napi->gro_count++;
3468 NAPI_GRO_CB(skb)->count = 1;
3469 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3470 skb->next = napi->gro_list;
3471 napi->gro_list = skb;
3472 ret = GRO_HELD;
3473
3474 pull:
3475 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3476 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3477
3478 BUG_ON(skb->end - skb->tail < grow);
3479
3480 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3481
3482 skb->tail += grow;
3483 skb->data_len -= grow;
3484
3485 skb_shinfo(skb)->frags[0].page_offset += grow;
3486 skb_shinfo(skb)->frags[0].size -= grow;
3487
3488 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3489 put_page(skb_shinfo(skb)->frags[0].page);
3490 memmove(skb_shinfo(skb)->frags,
3491 skb_shinfo(skb)->frags + 1,
3492 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3493 }
3494 }
3495
3496 ok:
3497 return ret;
3498
3499 normal:
3500 ret = GRO_NORMAL;
3501 goto pull;
3502 }
3503 EXPORT_SYMBOL(dev_gro_receive);
3504
3505 static inline gro_result_t
3506 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3507 {
3508 struct sk_buff *p;
3509
3510 for (p = napi->gro_list; p; p = p->next) {
3511 unsigned long diffs;
3512
3513 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3514 diffs |= p->vlan_tci ^ skb->vlan_tci;
3515 diffs |= compare_ether_header(skb_mac_header(p),
3516 skb_gro_mac_header(skb));
3517 NAPI_GRO_CB(p)->same_flow = !diffs;
3518 NAPI_GRO_CB(p)->flush = 0;
3519 }
3520
3521 return dev_gro_receive(napi, skb);
3522 }
3523
3524 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3525 {
3526 switch (ret) {
3527 case GRO_NORMAL:
3528 if (netif_receive_skb(skb))
3529 ret = GRO_DROP;
3530 break;
3531
3532 case GRO_DROP:
3533 case GRO_MERGED_FREE:
3534 kfree_skb(skb);
3535 break;
3536
3537 case GRO_HELD:
3538 case GRO_MERGED:
3539 break;
3540 }
3541
3542 return ret;
3543 }
3544 EXPORT_SYMBOL(napi_skb_finish);
3545
3546 void skb_gro_reset_offset(struct sk_buff *skb)
3547 {
3548 NAPI_GRO_CB(skb)->data_offset = 0;
3549 NAPI_GRO_CB(skb)->frag0 = NULL;
3550 NAPI_GRO_CB(skb)->frag0_len = 0;
3551
3552 if (skb->mac_header == skb->tail &&
3553 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3554 NAPI_GRO_CB(skb)->frag0 =
3555 page_address(skb_shinfo(skb)->frags[0].page) +
3556 skb_shinfo(skb)->frags[0].page_offset;
3557 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3558 }
3559 }
3560 EXPORT_SYMBOL(skb_gro_reset_offset);
3561
3562 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3563 {
3564 skb_gro_reset_offset(skb);
3565
3566 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3567 }
3568 EXPORT_SYMBOL(napi_gro_receive);
3569
3570 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3571 {
3572 __skb_pull(skb, skb_headlen(skb));
3573 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3574 skb->vlan_tci = 0;
3575 skb->dev = napi->dev;
3576 skb->skb_iif = 0;
3577
3578 napi->skb = skb;
3579 }
3580
3581 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3582 {
3583 struct sk_buff *skb = napi->skb;
3584
3585 if (!skb) {
3586 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3587 if (skb)
3588 napi->skb = skb;
3589 }
3590 return skb;
3591 }
3592 EXPORT_SYMBOL(napi_get_frags);
3593
3594 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3595 gro_result_t ret)
3596 {
3597 switch (ret) {
3598 case GRO_NORMAL:
3599 case GRO_HELD:
3600 skb->protocol = eth_type_trans(skb, skb->dev);
3601
3602 if (ret == GRO_HELD)
3603 skb_gro_pull(skb, -ETH_HLEN);
3604 else if (netif_receive_skb(skb))
3605 ret = GRO_DROP;
3606 break;
3607
3608 case GRO_DROP:
3609 case GRO_MERGED_FREE:
3610 napi_reuse_skb(napi, skb);
3611 break;
3612
3613 case GRO_MERGED:
3614 break;
3615 }
3616
3617 return ret;
3618 }
3619 EXPORT_SYMBOL(napi_frags_finish);
3620
3621 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3622 {
3623 struct sk_buff *skb = napi->skb;
3624 struct ethhdr *eth;
3625 unsigned int hlen;
3626 unsigned int off;
3627
3628 napi->skb = NULL;
3629
3630 skb_reset_mac_header(skb);
3631 skb_gro_reset_offset(skb);
3632
3633 off = skb_gro_offset(skb);
3634 hlen = off + sizeof(*eth);
3635 eth = skb_gro_header_fast(skb, off);
3636 if (skb_gro_header_hard(skb, hlen)) {
3637 eth = skb_gro_header_slow(skb, hlen, off);
3638 if (unlikely(!eth)) {
3639 napi_reuse_skb(napi, skb);
3640 skb = NULL;
3641 goto out;
3642 }
3643 }
3644
3645 skb_gro_pull(skb, sizeof(*eth));
3646
3647 /*
3648 * This works because the only protocols we care about don't require
3649 * special handling. We'll fix it up properly at the end.
3650 */
3651 skb->protocol = eth->h_proto;
3652
3653 out:
3654 return skb;
3655 }
3656 EXPORT_SYMBOL(napi_frags_skb);
3657
3658 gro_result_t napi_gro_frags(struct napi_struct *napi)
3659 {
3660 struct sk_buff *skb = napi_frags_skb(napi);
3661
3662 if (!skb)
3663 return GRO_DROP;
3664
3665 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3666 }
3667 EXPORT_SYMBOL(napi_gro_frags);
3668
3669 /*
3670 * net_rps_action sends any pending IPI's for rps.
3671 * Note: called with local irq disabled, but exits with local irq enabled.
3672 */
3673 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3674 {
3675 #ifdef CONFIG_RPS
3676 struct softnet_data *remsd = sd->rps_ipi_list;
3677
3678 if (remsd) {
3679 sd->rps_ipi_list = NULL;
3680
3681 local_irq_enable();
3682
3683 /* Send pending IPI's to kick RPS processing on remote cpus. */
3684 while (remsd) {
3685 struct softnet_data *next = remsd->rps_ipi_next;
3686
3687 if (cpu_online(remsd->cpu))
3688 __smp_call_function_single(remsd->cpu,
3689 &remsd->csd, 0);
3690 remsd = next;
3691 }
3692 } else
3693 #endif
3694 local_irq_enable();
3695 }
3696
3697 static int process_backlog(struct napi_struct *napi, int quota)
3698 {
3699 int work = 0;
3700 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3701
3702 #ifdef CONFIG_RPS
3703 /* Check if we have pending ipi, its better to send them now,
3704 * not waiting net_rx_action() end.
3705 */
3706 if (sd->rps_ipi_list) {
3707 local_irq_disable();
3708 net_rps_action_and_irq_enable(sd);
3709 }
3710 #endif
3711 napi->weight = weight_p;
3712 local_irq_disable();
3713 while (work < quota) {
3714 struct sk_buff *skb;
3715 unsigned int qlen;
3716
3717 while ((skb = __skb_dequeue(&sd->process_queue))) {
3718 local_irq_enable();
3719 __netif_receive_skb(skb);
3720 local_irq_disable();
3721 input_queue_head_incr(sd);
3722 if (++work >= quota) {
3723 local_irq_enable();
3724 return work;
3725 }
3726 }
3727
3728 rps_lock(sd);
3729 qlen = skb_queue_len(&sd->input_pkt_queue);
3730 if (qlen)
3731 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3732 &sd->process_queue);
3733
3734 if (qlen < quota - work) {
3735 /*
3736 * Inline a custom version of __napi_complete().
3737 * only current cpu owns and manipulates this napi,
3738 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3739 * we can use a plain write instead of clear_bit(),
3740 * and we dont need an smp_mb() memory barrier.
3741 */
3742 list_del(&napi->poll_list);
3743 napi->state = 0;
3744
3745 quota = work + qlen;
3746 }
3747 rps_unlock(sd);
3748 }
3749 local_irq_enable();
3750
3751 return work;
3752 }
3753
3754 /**
3755 * __napi_schedule - schedule for receive
3756 * @n: entry to schedule
3757 *
3758 * The entry's receive function will be scheduled to run
3759 */
3760 void __napi_schedule(struct napi_struct *n)
3761 {
3762 unsigned long flags;
3763
3764 local_irq_save(flags);
3765 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3766 local_irq_restore(flags);
3767 }
3768 EXPORT_SYMBOL(__napi_schedule);
3769
3770 void __napi_complete(struct napi_struct *n)
3771 {
3772 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3773 BUG_ON(n->gro_list);
3774
3775 list_del(&n->poll_list);
3776 smp_mb__before_clear_bit();
3777 clear_bit(NAPI_STATE_SCHED, &n->state);
3778 }
3779 EXPORT_SYMBOL(__napi_complete);
3780
3781 void napi_complete(struct napi_struct *n)
3782 {
3783 unsigned long flags;
3784
3785 /*
3786 * don't let napi dequeue from the cpu poll list
3787 * just in case its running on a different cpu
3788 */
3789 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3790 return;
3791
3792 napi_gro_flush(n);
3793 local_irq_save(flags);
3794 __napi_complete(n);
3795 local_irq_restore(flags);
3796 }
3797 EXPORT_SYMBOL(napi_complete);
3798
3799 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3800 int (*poll)(struct napi_struct *, int), int weight)
3801 {
3802 INIT_LIST_HEAD(&napi->poll_list);
3803 napi->gro_count = 0;
3804 napi->gro_list = NULL;
3805 napi->skb = NULL;
3806 napi->poll = poll;
3807 napi->weight = weight;
3808 list_add(&napi->dev_list, &dev->napi_list);
3809 napi->dev = dev;
3810 #ifdef CONFIG_NETPOLL
3811 spin_lock_init(&napi->poll_lock);
3812 napi->poll_owner = -1;
3813 #endif
3814 set_bit(NAPI_STATE_SCHED, &napi->state);
3815 }
3816 EXPORT_SYMBOL(netif_napi_add);
3817
3818 void netif_napi_del(struct napi_struct *napi)
3819 {
3820 struct sk_buff *skb, *next;
3821
3822 list_del_init(&napi->dev_list);
3823 napi_free_frags(napi);
3824
3825 for (skb = napi->gro_list; skb; skb = next) {
3826 next = skb->next;
3827 skb->next = NULL;
3828 kfree_skb(skb);
3829 }
3830
3831 napi->gro_list = NULL;
3832 napi->gro_count = 0;
3833 }
3834 EXPORT_SYMBOL(netif_napi_del);
3835
3836 static void net_rx_action(struct softirq_action *h)
3837 {
3838 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3839 unsigned long time_limit = jiffies + 2;
3840 int budget = netdev_budget;
3841 void *have;
3842
3843 local_irq_disable();
3844
3845 while (!list_empty(&sd->poll_list)) {
3846 struct napi_struct *n;
3847 int work, weight;
3848
3849 /* If softirq window is exhuasted then punt.
3850 * Allow this to run for 2 jiffies since which will allow
3851 * an average latency of 1.5/HZ.
3852 */
3853 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3854 goto softnet_break;
3855
3856 local_irq_enable();
3857
3858 /* Even though interrupts have been re-enabled, this
3859 * access is safe because interrupts can only add new
3860 * entries to the tail of this list, and only ->poll()
3861 * calls can remove this head entry from the list.
3862 */
3863 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3864
3865 have = netpoll_poll_lock(n);
3866
3867 weight = n->weight;
3868
3869 /* This NAPI_STATE_SCHED test is for avoiding a race
3870 * with netpoll's poll_napi(). Only the entity which
3871 * obtains the lock and sees NAPI_STATE_SCHED set will
3872 * actually make the ->poll() call. Therefore we avoid
3873 * accidently calling ->poll() when NAPI is not scheduled.
3874 */
3875 work = 0;
3876 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3877 work = n->poll(n, weight);
3878 trace_napi_poll(n);
3879 }
3880
3881 WARN_ON_ONCE(work > weight);
3882
3883 budget -= work;
3884
3885 local_irq_disable();
3886
3887 /* Drivers must not modify the NAPI state if they
3888 * consume the entire weight. In such cases this code
3889 * still "owns" the NAPI instance and therefore can
3890 * move the instance around on the list at-will.
3891 */
3892 if (unlikely(work == weight)) {
3893 if (unlikely(napi_disable_pending(n))) {
3894 local_irq_enable();
3895 napi_complete(n);
3896 local_irq_disable();
3897 } else
3898 list_move_tail(&n->poll_list, &sd->poll_list);
3899 }
3900
3901 netpoll_poll_unlock(have);
3902 }
3903 out:
3904 net_rps_action_and_irq_enable(sd);
3905
3906 #ifdef CONFIG_NET_DMA
3907 /*
3908 * There may not be any more sk_buffs coming right now, so push
3909 * any pending DMA copies to hardware
3910 */
3911 dma_issue_pending_all();
3912 #endif
3913
3914 return;
3915
3916 softnet_break:
3917 sd->time_squeeze++;
3918 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3919 goto out;
3920 }
3921
3922 static gifconf_func_t *gifconf_list[NPROTO];
3923
3924 /**
3925 * register_gifconf - register a SIOCGIF handler
3926 * @family: Address family
3927 * @gifconf: Function handler
3928 *
3929 * Register protocol dependent address dumping routines. The handler
3930 * that is passed must not be freed or reused until it has been replaced
3931 * by another handler.
3932 */
3933 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3934 {
3935 if (family >= NPROTO)
3936 return -EINVAL;
3937 gifconf_list[family] = gifconf;
3938 return 0;
3939 }
3940 EXPORT_SYMBOL(register_gifconf);
3941
3942
3943 /*
3944 * Map an interface index to its name (SIOCGIFNAME)
3945 */
3946
3947 /*
3948 * We need this ioctl for efficient implementation of the
3949 * if_indextoname() function required by the IPv6 API. Without
3950 * it, we would have to search all the interfaces to find a
3951 * match. --pb
3952 */
3953
3954 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3955 {
3956 struct net_device *dev;
3957 struct ifreq ifr;
3958
3959 /*
3960 * Fetch the caller's info block.
3961 */
3962
3963 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3964 return -EFAULT;
3965
3966 rcu_read_lock();
3967 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3968 if (!dev) {
3969 rcu_read_unlock();
3970 return -ENODEV;
3971 }
3972
3973 strcpy(ifr.ifr_name, dev->name);
3974 rcu_read_unlock();
3975
3976 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3977 return -EFAULT;
3978 return 0;
3979 }
3980
3981 /*
3982 * Perform a SIOCGIFCONF call. This structure will change
3983 * size eventually, and there is nothing I can do about it.
3984 * Thus we will need a 'compatibility mode'.
3985 */
3986
3987 static int dev_ifconf(struct net *net, char __user *arg)
3988 {
3989 struct ifconf ifc;
3990 struct net_device *dev;
3991 char __user *pos;
3992 int len;
3993 int total;
3994 int i;
3995
3996 /*
3997 * Fetch the caller's info block.
3998 */
3999
4000 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4001 return -EFAULT;
4002
4003 pos = ifc.ifc_buf;
4004 len = ifc.ifc_len;
4005
4006 /*
4007 * Loop over the interfaces, and write an info block for each.
4008 */
4009
4010 total = 0;
4011 for_each_netdev(net, dev) {
4012 for (i = 0; i < NPROTO; i++) {
4013 if (gifconf_list[i]) {
4014 int done;
4015 if (!pos)
4016 done = gifconf_list[i](dev, NULL, 0);
4017 else
4018 done = gifconf_list[i](dev, pos + total,
4019 len - total);
4020 if (done < 0)
4021 return -EFAULT;
4022 total += done;
4023 }
4024 }
4025 }
4026
4027 /*
4028 * All done. Write the updated control block back to the caller.
4029 */
4030 ifc.ifc_len = total;
4031
4032 /*
4033 * Both BSD and Solaris return 0 here, so we do too.
4034 */
4035 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4036 }
4037
4038 #ifdef CONFIG_PROC_FS
4039 /*
4040 * This is invoked by the /proc filesystem handler to display a device
4041 * in detail.
4042 */
4043 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4044 __acquires(RCU)
4045 {
4046 struct net *net = seq_file_net(seq);
4047 loff_t off;
4048 struct net_device *dev;
4049
4050 rcu_read_lock();
4051 if (!*pos)
4052 return SEQ_START_TOKEN;
4053
4054 off = 1;
4055 for_each_netdev_rcu(net, dev)
4056 if (off++ == *pos)
4057 return dev;
4058
4059 return NULL;
4060 }
4061
4062 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4063 {
4064 struct net_device *dev = v;
4065
4066 if (v == SEQ_START_TOKEN)
4067 dev = first_net_device_rcu(seq_file_net(seq));
4068 else
4069 dev = next_net_device_rcu(dev);
4070
4071 ++*pos;
4072 return dev;
4073 }
4074
4075 void dev_seq_stop(struct seq_file *seq, void *v)
4076 __releases(RCU)
4077 {
4078 rcu_read_unlock();
4079 }
4080
4081 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4082 {
4083 struct rtnl_link_stats64 temp;
4084 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4085
4086 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4087 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4088 dev->name, stats->rx_bytes, stats->rx_packets,
4089 stats->rx_errors,
4090 stats->rx_dropped + stats->rx_missed_errors,
4091 stats->rx_fifo_errors,
4092 stats->rx_length_errors + stats->rx_over_errors +
4093 stats->rx_crc_errors + stats->rx_frame_errors,
4094 stats->rx_compressed, stats->multicast,
4095 stats->tx_bytes, stats->tx_packets,
4096 stats->tx_errors, stats->tx_dropped,
4097 stats->tx_fifo_errors, stats->collisions,
4098 stats->tx_carrier_errors +
4099 stats->tx_aborted_errors +
4100 stats->tx_window_errors +
4101 stats->tx_heartbeat_errors,
4102 stats->tx_compressed);
4103 }
4104
4105 /*
4106 * Called from the PROCfs module. This now uses the new arbitrary sized
4107 * /proc/net interface to create /proc/net/dev
4108 */
4109 static int dev_seq_show(struct seq_file *seq, void *v)
4110 {
4111 if (v == SEQ_START_TOKEN)
4112 seq_puts(seq, "Inter-| Receive "
4113 " | Transmit\n"
4114 " face |bytes packets errs drop fifo frame "
4115 "compressed multicast|bytes packets errs "
4116 "drop fifo colls carrier compressed\n");
4117 else
4118 dev_seq_printf_stats(seq, v);
4119 return 0;
4120 }
4121
4122 static struct softnet_data *softnet_get_online(loff_t *pos)
4123 {
4124 struct softnet_data *sd = NULL;
4125
4126 while (*pos < nr_cpu_ids)
4127 if (cpu_online(*pos)) {
4128 sd = &per_cpu(softnet_data, *pos);
4129 break;
4130 } else
4131 ++*pos;
4132 return sd;
4133 }
4134
4135 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4136 {
4137 return softnet_get_online(pos);
4138 }
4139
4140 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4141 {
4142 ++*pos;
4143 return softnet_get_online(pos);
4144 }
4145
4146 static void softnet_seq_stop(struct seq_file *seq, void *v)
4147 {
4148 }
4149
4150 static int softnet_seq_show(struct seq_file *seq, void *v)
4151 {
4152 struct softnet_data *sd = v;
4153
4154 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4155 sd->processed, sd->dropped, sd->time_squeeze, 0,
4156 0, 0, 0, 0, /* was fastroute */
4157 sd->cpu_collision, sd->received_rps);
4158 return 0;
4159 }
4160
4161 static const struct seq_operations dev_seq_ops = {
4162 .start = dev_seq_start,
4163 .next = dev_seq_next,
4164 .stop = dev_seq_stop,
4165 .show = dev_seq_show,
4166 };
4167
4168 static int dev_seq_open(struct inode *inode, struct file *file)
4169 {
4170 return seq_open_net(inode, file, &dev_seq_ops,
4171 sizeof(struct seq_net_private));
4172 }
4173
4174 static const struct file_operations dev_seq_fops = {
4175 .owner = THIS_MODULE,
4176 .open = dev_seq_open,
4177 .read = seq_read,
4178 .llseek = seq_lseek,
4179 .release = seq_release_net,
4180 };
4181
4182 static const struct seq_operations softnet_seq_ops = {
4183 .start = softnet_seq_start,
4184 .next = softnet_seq_next,
4185 .stop = softnet_seq_stop,
4186 .show = softnet_seq_show,
4187 };
4188
4189 static int softnet_seq_open(struct inode *inode, struct file *file)
4190 {
4191 return seq_open(file, &softnet_seq_ops);
4192 }
4193
4194 static const struct file_operations softnet_seq_fops = {
4195 .owner = THIS_MODULE,
4196 .open = softnet_seq_open,
4197 .read = seq_read,
4198 .llseek = seq_lseek,
4199 .release = seq_release,
4200 };
4201
4202 static void *ptype_get_idx(loff_t pos)
4203 {
4204 struct packet_type *pt = NULL;
4205 loff_t i = 0;
4206 int t;
4207
4208 list_for_each_entry_rcu(pt, &ptype_all, list) {
4209 if (i == pos)
4210 return pt;
4211 ++i;
4212 }
4213
4214 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4215 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4216 if (i == pos)
4217 return pt;
4218 ++i;
4219 }
4220 }
4221 return NULL;
4222 }
4223
4224 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4225 __acquires(RCU)
4226 {
4227 rcu_read_lock();
4228 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4229 }
4230
4231 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4232 {
4233 struct packet_type *pt;
4234 struct list_head *nxt;
4235 int hash;
4236
4237 ++*pos;
4238 if (v == SEQ_START_TOKEN)
4239 return ptype_get_idx(0);
4240
4241 pt = v;
4242 nxt = pt->list.next;
4243 if (pt->type == htons(ETH_P_ALL)) {
4244 if (nxt != &ptype_all)
4245 goto found;
4246 hash = 0;
4247 nxt = ptype_base[0].next;
4248 } else
4249 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4250
4251 while (nxt == &ptype_base[hash]) {
4252 if (++hash >= PTYPE_HASH_SIZE)
4253 return NULL;
4254 nxt = ptype_base[hash].next;
4255 }
4256 found:
4257 return list_entry(nxt, struct packet_type, list);
4258 }
4259
4260 static void ptype_seq_stop(struct seq_file *seq, void *v)
4261 __releases(RCU)
4262 {
4263 rcu_read_unlock();
4264 }
4265
4266 static int ptype_seq_show(struct seq_file *seq, void *v)
4267 {
4268 struct packet_type *pt = v;
4269
4270 if (v == SEQ_START_TOKEN)
4271 seq_puts(seq, "Type Device Function\n");
4272 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4273 if (pt->type == htons(ETH_P_ALL))
4274 seq_puts(seq, "ALL ");
4275 else
4276 seq_printf(seq, "%04x", ntohs(pt->type));
4277
4278 seq_printf(seq, " %-8s %pF\n",
4279 pt->dev ? pt->dev->name : "", pt->func);
4280 }
4281
4282 return 0;
4283 }
4284
4285 static const struct seq_operations ptype_seq_ops = {
4286 .start = ptype_seq_start,
4287 .next = ptype_seq_next,
4288 .stop = ptype_seq_stop,
4289 .show = ptype_seq_show,
4290 };
4291
4292 static int ptype_seq_open(struct inode *inode, struct file *file)
4293 {
4294 return seq_open_net(inode, file, &ptype_seq_ops,
4295 sizeof(struct seq_net_private));
4296 }
4297
4298 static const struct file_operations ptype_seq_fops = {
4299 .owner = THIS_MODULE,
4300 .open = ptype_seq_open,
4301 .read = seq_read,
4302 .llseek = seq_lseek,
4303 .release = seq_release_net,
4304 };
4305
4306
4307 static int __net_init dev_proc_net_init(struct net *net)
4308 {
4309 int rc = -ENOMEM;
4310
4311 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4312 goto out;
4313 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4314 goto out_dev;
4315 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4316 goto out_softnet;
4317
4318 if (wext_proc_init(net))
4319 goto out_ptype;
4320 rc = 0;
4321 out:
4322 return rc;
4323 out_ptype:
4324 proc_net_remove(net, "ptype");
4325 out_softnet:
4326 proc_net_remove(net, "softnet_stat");
4327 out_dev:
4328 proc_net_remove(net, "dev");
4329 goto out;
4330 }
4331
4332 static void __net_exit dev_proc_net_exit(struct net *net)
4333 {
4334 wext_proc_exit(net);
4335
4336 proc_net_remove(net, "ptype");
4337 proc_net_remove(net, "softnet_stat");
4338 proc_net_remove(net, "dev");
4339 }
4340
4341 static struct pernet_operations __net_initdata dev_proc_ops = {
4342 .init = dev_proc_net_init,
4343 .exit = dev_proc_net_exit,
4344 };
4345
4346 static int __init dev_proc_init(void)
4347 {
4348 return register_pernet_subsys(&dev_proc_ops);
4349 }
4350 #else
4351 #define dev_proc_init() 0
4352 #endif /* CONFIG_PROC_FS */
4353
4354
4355 /**
4356 * netdev_set_master - set up master pointer
4357 * @slave: slave device
4358 * @master: new master device
4359 *
4360 * Changes the master device of the slave. Pass %NULL to break the
4361 * bonding. The caller must hold the RTNL semaphore. On a failure
4362 * a negative errno code is returned. On success the reference counts
4363 * are adjusted and the function returns zero.
4364 */
4365 int netdev_set_master(struct net_device *slave, struct net_device *master)
4366 {
4367 struct net_device *old = slave->master;
4368
4369 ASSERT_RTNL();
4370
4371 if (master) {
4372 if (old)
4373 return -EBUSY;
4374 dev_hold(master);
4375 }
4376
4377 slave->master = master;
4378
4379 if (old) {
4380 synchronize_net();
4381 dev_put(old);
4382 }
4383 return 0;
4384 }
4385 EXPORT_SYMBOL(netdev_set_master);
4386
4387 /**
4388 * netdev_set_bond_master - set up bonding master/slave pair
4389 * @slave: slave device
4390 * @master: new master device
4391 *
4392 * Changes the master device of the slave. Pass %NULL to break the
4393 * bonding. The caller must hold the RTNL semaphore. On a failure
4394 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4395 * to the routing socket and the function returns zero.
4396 */
4397 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4398 {
4399 int err;
4400
4401 ASSERT_RTNL();
4402
4403 err = netdev_set_master(slave, master);
4404 if (err)
4405 return err;
4406 if (master)
4407 slave->flags |= IFF_SLAVE;
4408 else
4409 slave->flags &= ~IFF_SLAVE;
4410
4411 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4412 return 0;
4413 }
4414 EXPORT_SYMBOL(netdev_set_bond_master);
4415
4416 static void dev_change_rx_flags(struct net_device *dev, int flags)
4417 {
4418 const struct net_device_ops *ops = dev->netdev_ops;
4419
4420 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4421 ops->ndo_change_rx_flags(dev, flags);
4422 }
4423
4424 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4425 {
4426 unsigned short old_flags = dev->flags;
4427 uid_t uid;
4428 gid_t gid;
4429
4430 ASSERT_RTNL();
4431
4432 dev->flags |= IFF_PROMISC;
4433 dev->promiscuity += inc;
4434 if (dev->promiscuity == 0) {
4435 /*
4436 * Avoid overflow.
4437 * If inc causes overflow, untouch promisc and return error.
4438 */
4439 if (inc < 0)
4440 dev->flags &= ~IFF_PROMISC;
4441 else {
4442 dev->promiscuity -= inc;
4443 printk(KERN_WARNING "%s: promiscuity touches roof, "
4444 "set promiscuity failed, promiscuity feature "
4445 "of device might be broken.\n", dev->name);
4446 return -EOVERFLOW;
4447 }
4448 }
4449 if (dev->flags != old_flags) {
4450 printk(KERN_INFO "device %s %s promiscuous mode\n",
4451 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4452 "left");
4453 if (audit_enabled) {
4454 current_uid_gid(&uid, &gid);
4455 audit_log(current->audit_context, GFP_ATOMIC,
4456 AUDIT_ANOM_PROMISCUOUS,
4457 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4458 dev->name, (dev->flags & IFF_PROMISC),
4459 (old_flags & IFF_PROMISC),
4460 audit_get_loginuid(current),
4461 uid, gid,
4462 audit_get_sessionid(current));
4463 }
4464
4465 dev_change_rx_flags(dev, IFF_PROMISC);
4466 }
4467 return 0;
4468 }
4469
4470 /**
4471 * dev_set_promiscuity - update promiscuity count on a device
4472 * @dev: device
4473 * @inc: modifier
4474 *
4475 * Add or remove promiscuity from a device. While the count in the device
4476 * remains above zero the interface remains promiscuous. Once it hits zero
4477 * the device reverts back to normal filtering operation. A negative inc
4478 * value is used to drop promiscuity on the device.
4479 * Return 0 if successful or a negative errno code on error.
4480 */
4481 int dev_set_promiscuity(struct net_device *dev, int inc)
4482 {
4483 unsigned short old_flags = dev->flags;
4484 int err;
4485
4486 err = __dev_set_promiscuity(dev, inc);
4487 if (err < 0)
4488 return err;
4489 if (dev->flags != old_flags)
4490 dev_set_rx_mode(dev);
4491 return err;
4492 }
4493 EXPORT_SYMBOL(dev_set_promiscuity);
4494
4495 /**
4496 * dev_set_allmulti - update allmulti count on a device
4497 * @dev: device
4498 * @inc: modifier
4499 *
4500 * Add or remove reception of all multicast frames to a device. While the
4501 * count in the device remains above zero the interface remains listening
4502 * to all interfaces. Once it hits zero the device reverts back to normal
4503 * filtering operation. A negative @inc value is used to drop the counter
4504 * when releasing a resource needing all multicasts.
4505 * Return 0 if successful or a negative errno code on error.
4506 */
4507
4508 int dev_set_allmulti(struct net_device *dev, int inc)
4509 {
4510 unsigned short old_flags = dev->flags;
4511
4512 ASSERT_RTNL();
4513
4514 dev->flags |= IFF_ALLMULTI;
4515 dev->allmulti += inc;
4516 if (dev->allmulti == 0) {
4517 /*
4518 * Avoid overflow.
4519 * If inc causes overflow, untouch allmulti and return error.
4520 */
4521 if (inc < 0)
4522 dev->flags &= ~IFF_ALLMULTI;
4523 else {
4524 dev->allmulti -= inc;
4525 printk(KERN_WARNING "%s: allmulti touches roof, "
4526 "set allmulti failed, allmulti feature of "
4527 "device might be broken.\n", dev->name);
4528 return -EOVERFLOW;
4529 }
4530 }
4531 if (dev->flags ^ old_flags) {
4532 dev_change_rx_flags(dev, IFF_ALLMULTI);
4533 dev_set_rx_mode(dev);
4534 }
4535 return 0;
4536 }
4537 EXPORT_SYMBOL(dev_set_allmulti);
4538
4539 /*
4540 * Upload unicast and multicast address lists to device and
4541 * configure RX filtering. When the device doesn't support unicast
4542 * filtering it is put in promiscuous mode while unicast addresses
4543 * are present.
4544 */
4545 void __dev_set_rx_mode(struct net_device *dev)
4546 {
4547 const struct net_device_ops *ops = dev->netdev_ops;
4548
4549 /* dev_open will call this function so the list will stay sane. */
4550 if (!(dev->flags&IFF_UP))
4551 return;
4552
4553 if (!netif_device_present(dev))
4554 return;
4555
4556 if (ops->ndo_set_rx_mode)
4557 ops->ndo_set_rx_mode(dev);
4558 else {
4559 /* Unicast addresses changes may only happen under the rtnl,
4560 * therefore calling __dev_set_promiscuity here is safe.
4561 */
4562 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4563 __dev_set_promiscuity(dev, 1);
4564 dev->uc_promisc = 1;
4565 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4566 __dev_set_promiscuity(dev, -1);
4567 dev->uc_promisc = 0;
4568 }
4569
4570 if (ops->ndo_set_multicast_list)
4571 ops->ndo_set_multicast_list(dev);
4572 }
4573 }
4574
4575 void dev_set_rx_mode(struct net_device *dev)
4576 {
4577 netif_addr_lock_bh(dev);
4578 __dev_set_rx_mode(dev);
4579 netif_addr_unlock_bh(dev);
4580 }
4581
4582 /**
4583 * dev_get_flags - get flags reported to userspace
4584 * @dev: device
4585 *
4586 * Get the combination of flag bits exported through APIs to userspace.
4587 */
4588 unsigned dev_get_flags(const struct net_device *dev)
4589 {
4590 unsigned flags;
4591
4592 flags = (dev->flags & ~(IFF_PROMISC |
4593 IFF_ALLMULTI |
4594 IFF_RUNNING |
4595 IFF_LOWER_UP |
4596 IFF_DORMANT)) |
4597 (dev->gflags & (IFF_PROMISC |
4598 IFF_ALLMULTI));
4599
4600 if (netif_running(dev)) {
4601 if (netif_oper_up(dev))
4602 flags |= IFF_RUNNING;
4603 if (netif_carrier_ok(dev))
4604 flags |= IFF_LOWER_UP;
4605 if (netif_dormant(dev))
4606 flags |= IFF_DORMANT;
4607 }
4608
4609 return flags;
4610 }
4611 EXPORT_SYMBOL(dev_get_flags);
4612
4613 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4614 {
4615 int old_flags = dev->flags;
4616 int ret;
4617
4618 ASSERT_RTNL();
4619
4620 /*
4621 * Set the flags on our device.
4622 */
4623
4624 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4625 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4626 IFF_AUTOMEDIA)) |
4627 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4628 IFF_ALLMULTI));
4629
4630 /*
4631 * Load in the correct multicast list now the flags have changed.
4632 */
4633
4634 if ((old_flags ^ flags) & IFF_MULTICAST)
4635 dev_change_rx_flags(dev, IFF_MULTICAST);
4636
4637 dev_set_rx_mode(dev);
4638
4639 /*
4640 * Have we downed the interface. We handle IFF_UP ourselves
4641 * according to user attempts to set it, rather than blindly
4642 * setting it.
4643 */
4644
4645 ret = 0;
4646 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4647 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4648
4649 if (!ret)
4650 dev_set_rx_mode(dev);
4651 }
4652
4653 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4654 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4655
4656 dev->gflags ^= IFF_PROMISC;
4657 dev_set_promiscuity(dev, inc);
4658 }
4659
4660 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4661 is important. Some (broken) drivers set IFF_PROMISC, when
4662 IFF_ALLMULTI is requested not asking us and not reporting.
4663 */
4664 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4665 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4666
4667 dev->gflags ^= IFF_ALLMULTI;
4668 dev_set_allmulti(dev, inc);
4669 }
4670
4671 return ret;
4672 }
4673
4674 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4675 {
4676 unsigned int changes = dev->flags ^ old_flags;
4677
4678 if (changes & IFF_UP) {
4679 if (dev->flags & IFF_UP)
4680 call_netdevice_notifiers(NETDEV_UP, dev);
4681 else
4682 call_netdevice_notifiers(NETDEV_DOWN, dev);
4683 }
4684
4685 if (dev->flags & IFF_UP &&
4686 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4687 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4688 }
4689
4690 /**
4691 * dev_change_flags - change device settings
4692 * @dev: device
4693 * @flags: device state flags
4694 *
4695 * Change settings on device based state flags. The flags are
4696 * in the userspace exported format.
4697 */
4698 int dev_change_flags(struct net_device *dev, unsigned flags)
4699 {
4700 int ret, changes;
4701 int old_flags = dev->flags;
4702
4703 ret = __dev_change_flags(dev, flags);
4704 if (ret < 0)
4705 return ret;
4706
4707 changes = old_flags ^ dev->flags;
4708 if (changes)
4709 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4710
4711 __dev_notify_flags(dev, old_flags);
4712 return ret;
4713 }
4714 EXPORT_SYMBOL(dev_change_flags);
4715
4716 /**
4717 * dev_set_mtu - Change maximum transfer unit
4718 * @dev: device
4719 * @new_mtu: new transfer unit
4720 *
4721 * Change the maximum transfer size of the network device.
4722 */
4723 int dev_set_mtu(struct net_device *dev, int new_mtu)
4724 {
4725 const struct net_device_ops *ops = dev->netdev_ops;
4726 int err;
4727
4728 if (new_mtu == dev->mtu)
4729 return 0;
4730
4731 /* MTU must be positive. */
4732 if (new_mtu < 0)
4733 return -EINVAL;
4734
4735 if (!netif_device_present(dev))
4736 return -ENODEV;
4737
4738 err = 0;
4739 if (ops->ndo_change_mtu)
4740 err = ops->ndo_change_mtu(dev, new_mtu);
4741 else
4742 dev->mtu = new_mtu;
4743
4744 if (!err && dev->flags & IFF_UP)
4745 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4746 return err;
4747 }
4748 EXPORT_SYMBOL(dev_set_mtu);
4749
4750 /**
4751 * dev_set_group - Change group this device belongs to
4752 * @dev: device
4753 * @new_group: group this device should belong to
4754 */
4755 void dev_set_group(struct net_device *dev, int new_group)
4756 {
4757 dev->group = new_group;
4758 }
4759 EXPORT_SYMBOL(dev_set_group);
4760
4761 /**
4762 * dev_set_mac_address - Change Media Access Control Address
4763 * @dev: device
4764 * @sa: new address
4765 *
4766 * Change the hardware (MAC) address of the device
4767 */
4768 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4769 {
4770 const struct net_device_ops *ops = dev->netdev_ops;
4771 int err;
4772
4773 if (!ops->ndo_set_mac_address)
4774 return -EOPNOTSUPP;
4775 if (sa->sa_family != dev->type)
4776 return -EINVAL;
4777 if (!netif_device_present(dev))
4778 return -ENODEV;
4779 err = ops->ndo_set_mac_address(dev, sa);
4780 if (!err)
4781 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4782 return err;
4783 }
4784 EXPORT_SYMBOL(dev_set_mac_address);
4785
4786 /*
4787 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4788 */
4789 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4790 {
4791 int err;
4792 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4793
4794 if (!dev)
4795 return -ENODEV;
4796
4797 switch (cmd) {
4798 case SIOCGIFFLAGS: /* Get interface flags */
4799 ifr->ifr_flags = (short) dev_get_flags(dev);
4800 return 0;
4801
4802 case SIOCGIFMETRIC: /* Get the metric on the interface
4803 (currently unused) */
4804 ifr->ifr_metric = 0;
4805 return 0;
4806
4807 case SIOCGIFMTU: /* Get the MTU of a device */
4808 ifr->ifr_mtu = dev->mtu;
4809 return 0;
4810
4811 case SIOCGIFHWADDR:
4812 if (!dev->addr_len)
4813 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4814 else
4815 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4816 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4817 ifr->ifr_hwaddr.sa_family = dev->type;
4818 return 0;
4819
4820 case SIOCGIFSLAVE:
4821 err = -EINVAL;
4822 break;
4823
4824 case SIOCGIFMAP:
4825 ifr->ifr_map.mem_start = dev->mem_start;
4826 ifr->ifr_map.mem_end = dev->mem_end;
4827 ifr->ifr_map.base_addr = dev->base_addr;
4828 ifr->ifr_map.irq = dev->irq;
4829 ifr->ifr_map.dma = dev->dma;
4830 ifr->ifr_map.port = dev->if_port;
4831 return 0;
4832
4833 case SIOCGIFINDEX:
4834 ifr->ifr_ifindex = dev->ifindex;
4835 return 0;
4836
4837 case SIOCGIFTXQLEN:
4838 ifr->ifr_qlen = dev->tx_queue_len;
4839 return 0;
4840
4841 default:
4842 /* dev_ioctl() should ensure this case
4843 * is never reached
4844 */
4845 WARN_ON(1);
4846 err = -EINVAL;
4847 break;
4848
4849 }
4850 return err;
4851 }
4852
4853 /*
4854 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4855 */
4856 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4857 {
4858 int err;
4859 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4860 const struct net_device_ops *ops;
4861
4862 if (!dev)
4863 return -ENODEV;
4864
4865 ops = dev->netdev_ops;
4866
4867 switch (cmd) {
4868 case SIOCSIFFLAGS: /* Set interface flags */
4869 return dev_change_flags(dev, ifr->ifr_flags);
4870
4871 case SIOCSIFMETRIC: /* Set the metric on the interface
4872 (currently unused) */
4873 return -EOPNOTSUPP;
4874
4875 case SIOCSIFMTU: /* Set the MTU of a device */
4876 return dev_set_mtu(dev, ifr->ifr_mtu);
4877
4878 case SIOCSIFHWADDR:
4879 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4880
4881 case SIOCSIFHWBROADCAST:
4882 if (ifr->ifr_hwaddr.sa_family != dev->type)
4883 return -EINVAL;
4884 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4885 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4886 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4887 return 0;
4888
4889 case SIOCSIFMAP:
4890 if (ops->ndo_set_config) {
4891 if (!netif_device_present(dev))
4892 return -ENODEV;
4893 return ops->ndo_set_config(dev, &ifr->ifr_map);
4894 }
4895 return -EOPNOTSUPP;
4896
4897 case SIOCADDMULTI:
4898 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4899 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4900 return -EINVAL;
4901 if (!netif_device_present(dev))
4902 return -ENODEV;
4903 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4904
4905 case SIOCDELMULTI:
4906 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4907 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4908 return -EINVAL;
4909 if (!netif_device_present(dev))
4910 return -ENODEV;
4911 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4912
4913 case SIOCSIFTXQLEN:
4914 if (ifr->ifr_qlen < 0)
4915 return -EINVAL;
4916 dev->tx_queue_len = ifr->ifr_qlen;
4917 return 0;
4918
4919 case SIOCSIFNAME:
4920 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4921 return dev_change_name(dev, ifr->ifr_newname);
4922
4923 /*
4924 * Unknown or private ioctl
4925 */
4926 default:
4927 if ((cmd >= SIOCDEVPRIVATE &&
4928 cmd <= SIOCDEVPRIVATE + 15) ||
4929 cmd == SIOCBONDENSLAVE ||
4930 cmd == SIOCBONDRELEASE ||
4931 cmd == SIOCBONDSETHWADDR ||
4932 cmd == SIOCBONDSLAVEINFOQUERY ||
4933 cmd == SIOCBONDINFOQUERY ||
4934 cmd == SIOCBONDCHANGEACTIVE ||
4935 cmd == SIOCGMIIPHY ||
4936 cmd == SIOCGMIIREG ||
4937 cmd == SIOCSMIIREG ||
4938 cmd == SIOCBRADDIF ||
4939 cmd == SIOCBRDELIF ||
4940 cmd == SIOCSHWTSTAMP ||
4941 cmd == SIOCWANDEV) {
4942 err = -EOPNOTSUPP;
4943 if (ops->ndo_do_ioctl) {
4944 if (netif_device_present(dev))
4945 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4946 else
4947 err = -ENODEV;
4948 }
4949 } else
4950 err = -EINVAL;
4951
4952 }
4953 return err;
4954 }
4955
4956 /*
4957 * This function handles all "interface"-type I/O control requests. The actual
4958 * 'doing' part of this is dev_ifsioc above.
4959 */
4960
4961 /**
4962 * dev_ioctl - network device ioctl
4963 * @net: the applicable net namespace
4964 * @cmd: command to issue
4965 * @arg: pointer to a struct ifreq in user space
4966 *
4967 * Issue ioctl functions to devices. This is normally called by the
4968 * user space syscall interfaces but can sometimes be useful for
4969 * other purposes. The return value is the return from the syscall if
4970 * positive or a negative errno code on error.
4971 */
4972
4973 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4974 {
4975 struct ifreq ifr;
4976 int ret;
4977 char *colon;
4978
4979 /* One special case: SIOCGIFCONF takes ifconf argument
4980 and requires shared lock, because it sleeps writing
4981 to user space.
4982 */
4983
4984 if (cmd == SIOCGIFCONF) {
4985 rtnl_lock();
4986 ret = dev_ifconf(net, (char __user *) arg);
4987 rtnl_unlock();
4988 return ret;
4989 }
4990 if (cmd == SIOCGIFNAME)
4991 return dev_ifname(net, (struct ifreq __user *)arg);
4992
4993 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4994 return -EFAULT;
4995
4996 ifr.ifr_name[IFNAMSIZ-1] = 0;
4997
4998 colon = strchr(ifr.ifr_name, ':');
4999 if (colon)
5000 *colon = 0;
5001
5002 /*
5003 * See which interface the caller is talking about.
5004 */
5005
5006 switch (cmd) {
5007 /*
5008 * These ioctl calls:
5009 * - can be done by all.
5010 * - atomic and do not require locking.
5011 * - return a value
5012 */
5013 case SIOCGIFFLAGS:
5014 case SIOCGIFMETRIC:
5015 case SIOCGIFMTU:
5016 case SIOCGIFHWADDR:
5017 case SIOCGIFSLAVE:
5018 case SIOCGIFMAP:
5019 case SIOCGIFINDEX:
5020 case SIOCGIFTXQLEN:
5021 dev_load(net, ifr.ifr_name);
5022 rcu_read_lock();
5023 ret = dev_ifsioc_locked(net, &ifr, cmd);
5024 rcu_read_unlock();
5025 if (!ret) {
5026 if (colon)
5027 *colon = ':';
5028 if (copy_to_user(arg, &ifr,
5029 sizeof(struct ifreq)))
5030 ret = -EFAULT;
5031 }
5032 return ret;
5033
5034 case SIOCETHTOOL:
5035 dev_load(net, ifr.ifr_name);
5036 rtnl_lock();
5037 ret = dev_ethtool(net, &ifr);
5038 rtnl_unlock();
5039 if (!ret) {
5040 if (colon)
5041 *colon = ':';
5042 if (copy_to_user(arg, &ifr,
5043 sizeof(struct ifreq)))
5044 ret = -EFAULT;
5045 }
5046 return ret;
5047
5048 /*
5049 * These ioctl calls:
5050 * - require superuser power.
5051 * - require strict serialization.
5052 * - return a value
5053 */
5054 case SIOCGMIIPHY:
5055 case SIOCGMIIREG:
5056 case SIOCSIFNAME:
5057 if (!capable(CAP_NET_ADMIN))
5058 return -EPERM;
5059 dev_load(net, ifr.ifr_name);
5060 rtnl_lock();
5061 ret = dev_ifsioc(net, &ifr, cmd);
5062 rtnl_unlock();
5063 if (!ret) {
5064 if (colon)
5065 *colon = ':';
5066 if (copy_to_user(arg, &ifr,
5067 sizeof(struct ifreq)))
5068 ret = -EFAULT;
5069 }
5070 return ret;
5071
5072 /*
5073 * These ioctl calls:
5074 * - require superuser power.
5075 * - require strict serialization.
5076 * - do not return a value
5077 */
5078 case SIOCSIFFLAGS:
5079 case SIOCSIFMETRIC:
5080 case SIOCSIFMTU:
5081 case SIOCSIFMAP:
5082 case SIOCSIFHWADDR:
5083 case SIOCSIFSLAVE:
5084 case SIOCADDMULTI:
5085 case SIOCDELMULTI:
5086 case SIOCSIFHWBROADCAST:
5087 case SIOCSIFTXQLEN:
5088 case SIOCSMIIREG:
5089 case SIOCBONDENSLAVE:
5090 case SIOCBONDRELEASE:
5091 case SIOCBONDSETHWADDR:
5092 case SIOCBONDCHANGEACTIVE:
5093 case SIOCBRADDIF:
5094 case SIOCBRDELIF:
5095 case SIOCSHWTSTAMP:
5096 if (!capable(CAP_NET_ADMIN))
5097 return -EPERM;
5098 /* fall through */
5099 case SIOCBONDSLAVEINFOQUERY:
5100 case SIOCBONDINFOQUERY:
5101 dev_load(net, ifr.ifr_name);
5102 rtnl_lock();
5103 ret = dev_ifsioc(net, &ifr, cmd);
5104 rtnl_unlock();
5105 return ret;
5106
5107 case SIOCGIFMEM:
5108 /* Get the per device memory space. We can add this but
5109 * currently do not support it */
5110 case SIOCSIFMEM:
5111 /* Set the per device memory buffer space.
5112 * Not applicable in our case */
5113 case SIOCSIFLINK:
5114 return -EINVAL;
5115
5116 /*
5117 * Unknown or private ioctl.
5118 */
5119 default:
5120 if (cmd == SIOCWANDEV ||
5121 (cmd >= SIOCDEVPRIVATE &&
5122 cmd <= SIOCDEVPRIVATE + 15)) {
5123 dev_load(net, ifr.ifr_name);
5124 rtnl_lock();
5125 ret = dev_ifsioc(net, &ifr, cmd);
5126 rtnl_unlock();
5127 if (!ret && copy_to_user(arg, &ifr,
5128 sizeof(struct ifreq)))
5129 ret = -EFAULT;
5130 return ret;
5131 }
5132 /* Take care of Wireless Extensions */
5133 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5134 return wext_handle_ioctl(net, &ifr, cmd, arg);
5135 return -EINVAL;
5136 }
5137 }
5138
5139
5140 /**
5141 * dev_new_index - allocate an ifindex
5142 * @net: the applicable net namespace
5143 *
5144 * Returns a suitable unique value for a new device interface
5145 * number. The caller must hold the rtnl semaphore or the
5146 * dev_base_lock to be sure it remains unique.
5147 */
5148 static int dev_new_index(struct net *net)
5149 {
5150 static int ifindex;
5151 for (;;) {
5152 if (++ifindex <= 0)
5153 ifindex = 1;
5154 if (!__dev_get_by_index(net, ifindex))
5155 return ifindex;
5156 }
5157 }
5158
5159 /* Delayed registration/unregisteration */
5160 static LIST_HEAD(net_todo_list);
5161
5162 static void net_set_todo(struct net_device *dev)
5163 {
5164 list_add_tail(&dev->todo_list, &net_todo_list);
5165 }
5166
5167 static void rollback_registered_many(struct list_head *head)
5168 {
5169 struct net_device *dev, *tmp;
5170
5171 BUG_ON(dev_boot_phase);
5172 ASSERT_RTNL();
5173
5174 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5175 /* Some devices call without registering
5176 * for initialization unwind. Remove those
5177 * devices and proceed with the remaining.
5178 */
5179 if (dev->reg_state == NETREG_UNINITIALIZED) {
5180 pr_debug("unregister_netdevice: device %s/%p never "
5181 "was registered\n", dev->name, dev);
5182
5183 WARN_ON(1);
5184 list_del(&dev->unreg_list);
5185 continue;
5186 }
5187
5188 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5189 }
5190
5191 /* If device is running, close it first. */
5192 dev_close_many(head);
5193
5194 list_for_each_entry(dev, head, unreg_list) {
5195 /* And unlink it from device chain. */
5196 unlist_netdevice(dev);
5197
5198 dev->reg_state = NETREG_UNREGISTERING;
5199 }
5200
5201 synchronize_net();
5202
5203 list_for_each_entry(dev, head, unreg_list) {
5204 /* Shutdown queueing discipline. */
5205 dev_shutdown(dev);
5206
5207
5208 /* Notify protocols, that we are about to destroy
5209 this device. They should clean all the things.
5210 */
5211 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5212
5213 if (!dev->rtnl_link_ops ||
5214 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5215 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5216
5217 /*
5218 * Flush the unicast and multicast chains
5219 */
5220 dev_uc_flush(dev);
5221 dev_mc_flush(dev);
5222
5223 if (dev->netdev_ops->ndo_uninit)
5224 dev->netdev_ops->ndo_uninit(dev);
5225
5226 /* Notifier chain MUST detach us from master device. */
5227 WARN_ON(dev->master);
5228
5229 /* Remove entries from kobject tree */
5230 netdev_unregister_kobject(dev);
5231 }
5232
5233 /* Process any work delayed until the end of the batch */
5234 dev = list_first_entry(head, struct net_device, unreg_list);
5235 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5236
5237 rcu_barrier();
5238
5239 list_for_each_entry(dev, head, unreg_list)
5240 dev_put(dev);
5241 }
5242
5243 static void rollback_registered(struct net_device *dev)
5244 {
5245 LIST_HEAD(single);
5246
5247 list_add(&dev->unreg_list, &single);
5248 rollback_registered_many(&single);
5249 list_del(&single);
5250 }
5251
5252 u32 netdev_fix_features(struct net_device *dev, u32 features)
5253 {
5254 /* Fix illegal checksum combinations */
5255 if ((features & NETIF_F_HW_CSUM) &&
5256 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5257 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5258 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5259 }
5260
5261 if ((features & NETIF_F_NO_CSUM) &&
5262 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5263 netdev_info(dev, "mixed no checksumming and other settings.\n");
5264 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5265 }
5266
5267 /* Fix illegal SG+CSUM combinations. */
5268 if ((features & NETIF_F_SG) &&
5269 !(features & NETIF_F_ALL_CSUM)) {
5270 netdev_info(dev,
5271 "Dropping NETIF_F_SG since no checksum feature.\n");
5272 features &= ~NETIF_F_SG;
5273 }
5274
5275 /* TSO requires that SG is present as well. */
5276 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5277 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5278 features &= ~NETIF_F_TSO;
5279 }
5280
5281 /* Software GSO depends on SG. */
5282 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5283 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5284 features &= ~NETIF_F_GSO;
5285 }
5286
5287 /* UFO needs SG and checksumming */
5288 if (features & NETIF_F_UFO) {
5289 /* maybe split UFO into V4 and V6? */
5290 if (!((features & NETIF_F_GEN_CSUM) ||
5291 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5292 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5293 netdev_info(dev,
5294 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5295 features &= ~NETIF_F_UFO;
5296 }
5297
5298 if (!(features & NETIF_F_SG)) {
5299 netdev_info(dev,
5300 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5301 features &= ~NETIF_F_UFO;
5302 }
5303 }
5304
5305 return features;
5306 }
5307 EXPORT_SYMBOL(netdev_fix_features);
5308
5309 void netdev_update_features(struct net_device *dev)
5310 {
5311 u32 features;
5312 int err = 0;
5313
5314 features = netdev_get_wanted_features(dev);
5315
5316 if (dev->netdev_ops->ndo_fix_features)
5317 features = dev->netdev_ops->ndo_fix_features(dev, features);
5318
5319 /* driver might be less strict about feature dependencies */
5320 features = netdev_fix_features(dev, features);
5321
5322 if (dev->features == features)
5323 return;
5324
5325 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5326 dev->features, features);
5327
5328 if (dev->netdev_ops->ndo_set_features)
5329 err = dev->netdev_ops->ndo_set_features(dev, features);
5330
5331 if (!err)
5332 dev->features = features;
5333 else if (err < 0)
5334 netdev_err(dev,
5335 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5336 err, features, dev->features);
5337 }
5338 EXPORT_SYMBOL(netdev_update_features);
5339
5340 /**
5341 * netif_stacked_transfer_operstate - transfer operstate
5342 * @rootdev: the root or lower level device to transfer state from
5343 * @dev: the device to transfer operstate to
5344 *
5345 * Transfer operational state from root to device. This is normally
5346 * called when a stacking relationship exists between the root
5347 * device and the device(a leaf device).
5348 */
5349 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5350 struct net_device *dev)
5351 {
5352 if (rootdev->operstate == IF_OPER_DORMANT)
5353 netif_dormant_on(dev);
5354 else
5355 netif_dormant_off(dev);
5356
5357 if (netif_carrier_ok(rootdev)) {
5358 if (!netif_carrier_ok(dev))
5359 netif_carrier_on(dev);
5360 } else {
5361 if (netif_carrier_ok(dev))
5362 netif_carrier_off(dev);
5363 }
5364 }
5365 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5366
5367 #ifdef CONFIG_RPS
5368 static int netif_alloc_rx_queues(struct net_device *dev)
5369 {
5370 unsigned int i, count = dev->num_rx_queues;
5371 struct netdev_rx_queue *rx;
5372
5373 BUG_ON(count < 1);
5374
5375 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5376 if (!rx) {
5377 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5378 return -ENOMEM;
5379 }
5380 dev->_rx = rx;
5381
5382 for (i = 0; i < count; i++)
5383 rx[i].dev = dev;
5384 return 0;
5385 }
5386 #endif
5387
5388 static void netdev_init_one_queue(struct net_device *dev,
5389 struct netdev_queue *queue, void *_unused)
5390 {
5391 /* Initialize queue lock */
5392 spin_lock_init(&queue->_xmit_lock);
5393 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5394 queue->xmit_lock_owner = -1;
5395 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5396 queue->dev = dev;
5397 }
5398
5399 static int netif_alloc_netdev_queues(struct net_device *dev)
5400 {
5401 unsigned int count = dev->num_tx_queues;
5402 struct netdev_queue *tx;
5403
5404 BUG_ON(count < 1);
5405
5406 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5407 if (!tx) {
5408 pr_err("netdev: Unable to allocate %u tx queues.\n",
5409 count);
5410 return -ENOMEM;
5411 }
5412 dev->_tx = tx;
5413
5414 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5415 spin_lock_init(&dev->tx_global_lock);
5416
5417 return 0;
5418 }
5419
5420 /**
5421 * register_netdevice - register a network device
5422 * @dev: device to register
5423 *
5424 * Take a completed network device structure and add it to the kernel
5425 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5426 * chain. 0 is returned on success. A negative errno code is returned
5427 * on a failure to set up the device, or if the name is a duplicate.
5428 *
5429 * Callers must hold the rtnl semaphore. You may want
5430 * register_netdev() instead of this.
5431 *
5432 * BUGS:
5433 * The locking appears insufficient to guarantee two parallel registers
5434 * will not get the same name.
5435 */
5436
5437 int register_netdevice(struct net_device *dev)
5438 {
5439 int ret;
5440 struct net *net = dev_net(dev);
5441
5442 BUG_ON(dev_boot_phase);
5443 ASSERT_RTNL();
5444
5445 might_sleep();
5446
5447 /* When net_device's are persistent, this will be fatal. */
5448 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5449 BUG_ON(!net);
5450
5451 spin_lock_init(&dev->addr_list_lock);
5452 netdev_set_addr_lockdep_class(dev);
5453
5454 dev->iflink = -1;
5455
5456 /* Init, if this function is available */
5457 if (dev->netdev_ops->ndo_init) {
5458 ret = dev->netdev_ops->ndo_init(dev);
5459 if (ret) {
5460 if (ret > 0)
5461 ret = -EIO;
5462 goto out;
5463 }
5464 }
5465
5466 ret = dev_get_valid_name(dev, dev->name, 0);
5467 if (ret)
5468 goto err_uninit;
5469
5470 dev->ifindex = dev_new_index(net);
5471 if (dev->iflink == -1)
5472 dev->iflink = dev->ifindex;
5473
5474 /* Transfer changeable features to wanted_features and enable
5475 * software offloads (GSO and GRO).
5476 */
5477 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5478 dev->wanted_features = (dev->features & dev->hw_features)
5479 | NETIF_F_SOFT_FEATURES;
5480
5481 /* Avoid warning from netdev_fix_features() for GSO without SG */
5482 if (!(dev->wanted_features & NETIF_F_SG))
5483 dev->wanted_features &= ~NETIF_F_GSO;
5484
5485 netdev_update_features(dev);
5486
5487 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5488 * vlan_dev_init() will do the dev->features check, so these features
5489 * are enabled only if supported by underlying device.
5490 */
5491 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5492
5493 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5494 ret = notifier_to_errno(ret);
5495 if (ret)
5496 goto err_uninit;
5497
5498 ret = netdev_register_kobject(dev);
5499 if (ret)
5500 goto err_uninit;
5501 dev->reg_state = NETREG_REGISTERED;
5502
5503 /*
5504 * Default initial state at registry is that the
5505 * device is present.
5506 */
5507
5508 set_bit(__LINK_STATE_PRESENT, &dev->state);
5509
5510 dev_init_scheduler(dev);
5511 dev_hold(dev);
5512 list_netdevice(dev);
5513
5514 /* Notify protocols, that a new device appeared. */
5515 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5516 ret = notifier_to_errno(ret);
5517 if (ret) {
5518 rollback_registered(dev);
5519 dev->reg_state = NETREG_UNREGISTERED;
5520 }
5521 /*
5522 * Prevent userspace races by waiting until the network
5523 * device is fully setup before sending notifications.
5524 */
5525 if (!dev->rtnl_link_ops ||
5526 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5527 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5528
5529 out:
5530 return ret;
5531
5532 err_uninit:
5533 if (dev->netdev_ops->ndo_uninit)
5534 dev->netdev_ops->ndo_uninit(dev);
5535 goto out;
5536 }
5537 EXPORT_SYMBOL(register_netdevice);
5538
5539 /**
5540 * init_dummy_netdev - init a dummy network device for NAPI
5541 * @dev: device to init
5542 *
5543 * This takes a network device structure and initialize the minimum
5544 * amount of fields so it can be used to schedule NAPI polls without
5545 * registering a full blown interface. This is to be used by drivers
5546 * that need to tie several hardware interfaces to a single NAPI
5547 * poll scheduler due to HW limitations.
5548 */
5549 int init_dummy_netdev(struct net_device *dev)
5550 {
5551 /* Clear everything. Note we don't initialize spinlocks
5552 * are they aren't supposed to be taken by any of the
5553 * NAPI code and this dummy netdev is supposed to be
5554 * only ever used for NAPI polls
5555 */
5556 memset(dev, 0, sizeof(struct net_device));
5557
5558 /* make sure we BUG if trying to hit standard
5559 * register/unregister code path
5560 */
5561 dev->reg_state = NETREG_DUMMY;
5562
5563 /* NAPI wants this */
5564 INIT_LIST_HEAD(&dev->napi_list);
5565
5566 /* a dummy interface is started by default */
5567 set_bit(__LINK_STATE_PRESENT, &dev->state);
5568 set_bit(__LINK_STATE_START, &dev->state);
5569
5570 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5571 * because users of this 'device' dont need to change
5572 * its refcount.
5573 */
5574
5575 return 0;
5576 }
5577 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5578
5579
5580 /**
5581 * register_netdev - register a network device
5582 * @dev: device to register
5583 *
5584 * Take a completed network device structure and add it to the kernel
5585 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5586 * chain. 0 is returned on success. A negative errno code is returned
5587 * on a failure to set up the device, or if the name is a duplicate.
5588 *
5589 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5590 * and expands the device name if you passed a format string to
5591 * alloc_netdev.
5592 */
5593 int register_netdev(struct net_device *dev)
5594 {
5595 int err;
5596
5597 rtnl_lock();
5598
5599 /*
5600 * If the name is a format string the caller wants us to do a
5601 * name allocation.
5602 */
5603 if (strchr(dev->name, '%')) {
5604 err = dev_alloc_name(dev, dev->name);
5605 if (err < 0)
5606 goto out;
5607 }
5608
5609 err = register_netdevice(dev);
5610 out:
5611 rtnl_unlock();
5612 return err;
5613 }
5614 EXPORT_SYMBOL(register_netdev);
5615
5616 int netdev_refcnt_read(const struct net_device *dev)
5617 {
5618 int i, refcnt = 0;
5619
5620 for_each_possible_cpu(i)
5621 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5622 return refcnt;
5623 }
5624 EXPORT_SYMBOL(netdev_refcnt_read);
5625
5626 /*
5627 * netdev_wait_allrefs - wait until all references are gone.
5628 *
5629 * This is called when unregistering network devices.
5630 *
5631 * Any protocol or device that holds a reference should register
5632 * for netdevice notification, and cleanup and put back the
5633 * reference if they receive an UNREGISTER event.
5634 * We can get stuck here if buggy protocols don't correctly
5635 * call dev_put.
5636 */
5637 static void netdev_wait_allrefs(struct net_device *dev)
5638 {
5639 unsigned long rebroadcast_time, warning_time;
5640 int refcnt;
5641
5642 linkwatch_forget_dev(dev);
5643
5644 rebroadcast_time = warning_time = jiffies;
5645 refcnt = netdev_refcnt_read(dev);
5646
5647 while (refcnt != 0) {
5648 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5649 rtnl_lock();
5650
5651 /* Rebroadcast unregister notification */
5652 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5653 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5654 * should have already handle it the first time */
5655
5656 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5657 &dev->state)) {
5658 /* We must not have linkwatch events
5659 * pending on unregister. If this
5660 * happens, we simply run the queue
5661 * unscheduled, resulting in a noop
5662 * for this device.
5663 */
5664 linkwatch_run_queue();
5665 }
5666
5667 __rtnl_unlock();
5668
5669 rebroadcast_time = jiffies;
5670 }
5671
5672 msleep(250);
5673
5674 refcnt = netdev_refcnt_read(dev);
5675
5676 if (time_after(jiffies, warning_time + 10 * HZ)) {
5677 printk(KERN_EMERG "unregister_netdevice: "
5678 "waiting for %s to become free. Usage "
5679 "count = %d\n",
5680 dev->name, refcnt);
5681 warning_time = jiffies;
5682 }
5683 }
5684 }
5685
5686 /* The sequence is:
5687 *
5688 * rtnl_lock();
5689 * ...
5690 * register_netdevice(x1);
5691 * register_netdevice(x2);
5692 * ...
5693 * unregister_netdevice(y1);
5694 * unregister_netdevice(y2);
5695 * ...
5696 * rtnl_unlock();
5697 * free_netdev(y1);
5698 * free_netdev(y2);
5699 *
5700 * We are invoked by rtnl_unlock().
5701 * This allows us to deal with problems:
5702 * 1) We can delete sysfs objects which invoke hotplug
5703 * without deadlocking with linkwatch via keventd.
5704 * 2) Since we run with the RTNL semaphore not held, we can sleep
5705 * safely in order to wait for the netdev refcnt to drop to zero.
5706 *
5707 * We must not return until all unregister events added during
5708 * the interval the lock was held have been completed.
5709 */
5710 void netdev_run_todo(void)
5711 {
5712 struct list_head list;
5713
5714 /* Snapshot list, allow later requests */
5715 list_replace_init(&net_todo_list, &list);
5716
5717 __rtnl_unlock();
5718
5719 while (!list_empty(&list)) {
5720 struct net_device *dev
5721 = list_first_entry(&list, struct net_device, todo_list);
5722 list_del(&dev->todo_list);
5723
5724 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5725 printk(KERN_ERR "network todo '%s' but state %d\n",
5726 dev->name, dev->reg_state);
5727 dump_stack();
5728 continue;
5729 }
5730
5731 dev->reg_state = NETREG_UNREGISTERED;
5732
5733 on_each_cpu(flush_backlog, dev, 1);
5734
5735 netdev_wait_allrefs(dev);
5736
5737 /* paranoia */
5738 BUG_ON(netdev_refcnt_read(dev));
5739 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5740 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5741 WARN_ON(dev->dn_ptr);
5742
5743 if (dev->destructor)
5744 dev->destructor(dev);
5745
5746 /* Free network device */
5747 kobject_put(&dev->dev.kobj);
5748 }
5749 }
5750
5751 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5752 * fields in the same order, with only the type differing.
5753 */
5754 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5755 const struct net_device_stats *netdev_stats)
5756 {
5757 #if BITS_PER_LONG == 64
5758 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5759 memcpy(stats64, netdev_stats, sizeof(*stats64));
5760 #else
5761 size_t i, n = sizeof(*stats64) / sizeof(u64);
5762 const unsigned long *src = (const unsigned long *)netdev_stats;
5763 u64 *dst = (u64 *)stats64;
5764
5765 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5766 sizeof(*stats64) / sizeof(u64));
5767 for (i = 0; i < n; i++)
5768 dst[i] = src[i];
5769 #endif
5770 }
5771
5772 /**
5773 * dev_get_stats - get network device statistics
5774 * @dev: device to get statistics from
5775 * @storage: place to store stats
5776 *
5777 * Get network statistics from device. Return @storage.
5778 * The device driver may provide its own method by setting
5779 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5780 * otherwise the internal statistics structure is used.
5781 */
5782 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5783 struct rtnl_link_stats64 *storage)
5784 {
5785 const struct net_device_ops *ops = dev->netdev_ops;
5786
5787 if (ops->ndo_get_stats64) {
5788 memset(storage, 0, sizeof(*storage));
5789 ops->ndo_get_stats64(dev, storage);
5790 } else if (ops->ndo_get_stats) {
5791 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5792 } else {
5793 netdev_stats_to_stats64(storage, &dev->stats);
5794 }
5795 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5796 return storage;
5797 }
5798 EXPORT_SYMBOL(dev_get_stats);
5799
5800 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5801 {
5802 struct netdev_queue *queue = dev_ingress_queue(dev);
5803
5804 #ifdef CONFIG_NET_CLS_ACT
5805 if (queue)
5806 return queue;
5807 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5808 if (!queue)
5809 return NULL;
5810 netdev_init_one_queue(dev, queue, NULL);
5811 queue->qdisc = &noop_qdisc;
5812 queue->qdisc_sleeping = &noop_qdisc;
5813 rcu_assign_pointer(dev->ingress_queue, queue);
5814 #endif
5815 return queue;
5816 }
5817
5818 /**
5819 * alloc_netdev_mqs - allocate network device
5820 * @sizeof_priv: size of private data to allocate space for
5821 * @name: device name format string
5822 * @setup: callback to initialize device
5823 * @txqs: the number of TX subqueues to allocate
5824 * @rxqs: the number of RX subqueues to allocate
5825 *
5826 * Allocates a struct net_device with private data area for driver use
5827 * and performs basic initialization. Also allocates subquue structs
5828 * for each queue on the device.
5829 */
5830 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5831 void (*setup)(struct net_device *),
5832 unsigned int txqs, unsigned int rxqs)
5833 {
5834 struct net_device *dev;
5835 size_t alloc_size;
5836 struct net_device *p;
5837
5838 BUG_ON(strlen(name) >= sizeof(dev->name));
5839
5840 if (txqs < 1) {
5841 pr_err("alloc_netdev: Unable to allocate device "
5842 "with zero queues.\n");
5843 return NULL;
5844 }
5845
5846 #ifdef CONFIG_RPS
5847 if (rxqs < 1) {
5848 pr_err("alloc_netdev: Unable to allocate device "
5849 "with zero RX queues.\n");
5850 return NULL;
5851 }
5852 #endif
5853
5854 alloc_size = sizeof(struct net_device);
5855 if (sizeof_priv) {
5856 /* ensure 32-byte alignment of private area */
5857 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5858 alloc_size += sizeof_priv;
5859 }
5860 /* ensure 32-byte alignment of whole construct */
5861 alloc_size += NETDEV_ALIGN - 1;
5862
5863 p = kzalloc(alloc_size, GFP_KERNEL);
5864 if (!p) {
5865 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5866 return NULL;
5867 }
5868
5869 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5870 dev->padded = (char *)dev - (char *)p;
5871
5872 dev->pcpu_refcnt = alloc_percpu(int);
5873 if (!dev->pcpu_refcnt)
5874 goto free_p;
5875
5876 if (dev_addr_init(dev))
5877 goto free_pcpu;
5878
5879 dev_mc_init(dev);
5880 dev_uc_init(dev);
5881
5882 dev_net_set(dev, &init_net);
5883
5884 dev->gso_max_size = GSO_MAX_SIZE;
5885
5886 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5887 dev->ethtool_ntuple_list.count = 0;
5888 INIT_LIST_HEAD(&dev->napi_list);
5889 INIT_LIST_HEAD(&dev->unreg_list);
5890 INIT_LIST_HEAD(&dev->link_watch_list);
5891 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5892 setup(dev);
5893
5894 dev->num_tx_queues = txqs;
5895 dev->real_num_tx_queues = txqs;
5896 if (netif_alloc_netdev_queues(dev))
5897 goto free_all;
5898
5899 #ifdef CONFIG_RPS
5900 dev->num_rx_queues = rxqs;
5901 dev->real_num_rx_queues = rxqs;
5902 if (netif_alloc_rx_queues(dev))
5903 goto free_all;
5904 #endif
5905
5906 strcpy(dev->name, name);
5907 dev->group = INIT_NETDEV_GROUP;
5908 return dev;
5909
5910 free_all:
5911 free_netdev(dev);
5912 return NULL;
5913
5914 free_pcpu:
5915 free_percpu(dev->pcpu_refcnt);
5916 kfree(dev->_tx);
5917 #ifdef CONFIG_RPS
5918 kfree(dev->_rx);
5919 #endif
5920
5921 free_p:
5922 kfree(p);
5923 return NULL;
5924 }
5925 EXPORT_SYMBOL(alloc_netdev_mqs);
5926
5927 /**
5928 * free_netdev - free network device
5929 * @dev: device
5930 *
5931 * This function does the last stage of destroying an allocated device
5932 * interface. The reference to the device object is released.
5933 * If this is the last reference then it will be freed.
5934 */
5935 void free_netdev(struct net_device *dev)
5936 {
5937 struct napi_struct *p, *n;
5938
5939 release_net(dev_net(dev));
5940
5941 kfree(dev->_tx);
5942 #ifdef CONFIG_RPS
5943 kfree(dev->_rx);
5944 #endif
5945
5946 kfree(rcu_dereference_raw(dev->ingress_queue));
5947
5948 /* Flush device addresses */
5949 dev_addr_flush(dev);
5950
5951 /* Clear ethtool n-tuple list */
5952 ethtool_ntuple_flush(dev);
5953
5954 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5955 netif_napi_del(p);
5956
5957 free_percpu(dev->pcpu_refcnt);
5958 dev->pcpu_refcnt = NULL;
5959
5960 /* Compatibility with error handling in drivers */
5961 if (dev->reg_state == NETREG_UNINITIALIZED) {
5962 kfree((char *)dev - dev->padded);
5963 return;
5964 }
5965
5966 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5967 dev->reg_state = NETREG_RELEASED;
5968
5969 /* will free via device release */
5970 put_device(&dev->dev);
5971 }
5972 EXPORT_SYMBOL(free_netdev);
5973
5974 /**
5975 * synchronize_net - Synchronize with packet receive processing
5976 *
5977 * Wait for packets currently being received to be done.
5978 * Does not block later packets from starting.
5979 */
5980 void synchronize_net(void)
5981 {
5982 might_sleep();
5983 synchronize_rcu();
5984 }
5985 EXPORT_SYMBOL(synchronize_net);
5986
5987 /**
5988 * unregister_netdevice_queue - remove device from the kernel
5989 * @dev: device
5990 * @head: list
5991 *
5992 * This function shuts down a device interface and removes it
5993 * from the kernel tables.
5994 * If head not NULL, device is queued to be unregistered later.
5995 *
5996 * Callers must hold the rtnl semaphore. You may want
5997 * unregister_netdev() instead of this.
5998 */
5999
6000 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6001 {
6002 ASSERT_RTNL();
6003
6004 if (head) {
6005 list_move_tail(&dev->unreg_list, head);
6006 } else {
6007 rollback_registered(dev);
6008 /* Finish processing unregister after unlock */
6009 net_set_todo(dev);
6010 }
6011 }
6012 EXPORT_SYMBOL(unregister_netdevice_queue);
6013
6014 /**
6015 * unregister_netdevice_many - unregister many devices
6016 * @head: list of devices
6017 */
6018 void unregister_netdevice_many(struct list_head *head)
6019 {
6020 struct net_device *dev;
6021
6022 if (!list_empty(head)) {
6023 rollback_registered_many(head);
6024 list_for_each_entry(dev, head, unreg_list)
6025 net_set_todo(dev);
6026 }
6027 }
6028 EXPORT_SYMBOL(unregister_netdevice_many);
6029
6030 /**
6031 * unregister_netdev - remove device from the kernel
6032 * @dev: device
6033 *
6034 * This function shuts down a device interface and removes it
6035 * from the kernel tables.
6036 *
6037 * This is just a wrapper for unregister_netdevice that takes
6038 * the rtnl semaphore. In general you want to use this and not
6039 * unregister_netdevice.
6040 */
6041 void unregister_netdev(struct net_device *dev)
6042 {
6043 rtnl_lock();
6044 unregister_netdevice(dev);
6045 rtnl_unlock();
6046 }
6047 EXPORT_SYMBOL(unregister_netdev);
6048
6049 /**
6050 * dev_change_net_namespace - move device to different nethost namespace
6051 * @dev: device
6052 * @net: network namespace
6053 * @pat: If not NULL name pattern to try if the current device name
6054 * is already taken in the destination network namespace.
6055 *
6056 * This function shuts down a device interface and moves it
6057 * to a new network namespace. On success 0 is returned, on
6058 * a failure a netagive errno code is returned.
6059 *
6060 * Callers must hold the rtnl semaphore.
6061 */
6062
6063 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6064 {
6065 int err;
6066
6067 ASSERT_RTNL();
6068
6069 /* Don't allow namespace local devices to be moved. */
6070 err = -EINVAL;
6071 if (dev->features & NETIF_F_NETNS_LOCAL)
6072 goto out;
6073
6074 /* Ensure the device has been registrered */
6075 err = -EINVAL;
6076 if (dev->reg_state != NETREG_REGISTERED)
6077 goto out;
6078
6079 /* Get out if there is nothing todo */
6080 err = 0;
6081 if (net_eq(dev_net(dev), net))
6082 goto out;
6083
6084 /* Pick the destination device name, and ensure
6085 * we can use it in the destination network namespace.
6086 */
6087 err = -EEXIST;
6088 if (__dev_get_by_name(net, dev->name)) {
6089 /* We get here if we can't use the current device name */
6090 if (!pat)
6091 goto out;
6092 if (dev_get_valid_name(dev, pat, 1))
6093 goto out;
6094 }
6095
6096 /*
6097 * And now a mini version of register_netdevice unregister_netdevice.
6098 */
6099
6100 /* If device is running close it first. */
6101 dev_close(dev);
6102
6103 /* And unlink it from device chain */
6104 err = -ENODEV;
6105 unlist_netdevice(dev);
6106
6107 synchronize_net();
6108
6109 /* Shutdown queueing discipline. */
6110 dev_shutdown(dev);
6111
6112 /* Notify protocols, that we are about to destroy
6113 this device. They should clean all the things.
6114
6115 Note that dev->reg_state stays at NETREG_REGISTERED.
6116 This is wanted because this way 8021q and macvlan know
6117 the device is just moving and can keep their slaves up.
6118 */
6119 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6120 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6121
6122 /*
6123 * Flush the unicast and multicast chains
6124 */
6125 dev_uc_flush(dev);
6126 dev_mc_flush(dev);
6127
6128 /* Actually switch the network namespace */
6129 dev_net_set(dev, net);
6130
6131 /* If there is an ifindex conflict assign a new one */
6132 if (__dev_get_by_index(net, dev->ifindex)) {
6133 int iflink = (dev->iflink == dev->ifindex);
6134 dev->ifindex = dev_new_index(net);
6135 if (iflink)
6136 dev->iflink = dev->ifindex;
6137 }
6138
6139 /* Fixup kobjects */
6140 err = device_rename(&dev->dev, dev->name);
6141 WARN_ON(err);
6142
6143 /* Add the device back in the hashes */
6144 list_netdevice(dev);
6145
6146 /* Notify protocols, that a new device appeared. */
6147 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6148
6149 /*
6150 * Prevent userspace races by waiting until the network
6151 * device is fully setup before sending notifications.
6152 */
6153 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6154
6155 synchronize_net();
6156 err = 0;
6157 out:
6158 return err;
6159 }
6160 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6161
6162 static int dev_cpu_callback(struct notifier_block *nfb,
6163 unsigned long action,
6164 void *ocpu)
6165 {
6166 struct sk_buff **list_skb;
6167 struct sk_buff *skb;
6168 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6169 struct softnet_data *sd, *oldsd;
6170
6171 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6172 return NOTIFY_OK;
6173
6174 local_irq_disable();
6175 cpu = smp_processor_id();
6176 sd = &per_cpu(softnet_data, cpu);
6177 oldsd = &per_cpu(softnet_data, oldcpu);
6178
6179 /* Find end of our completion_queue. */
6180 list_skb = &sd->completion_queue;
6181 while (*list_skb)
6182 list_skb = &(*list_skb)->next;
6183 /* Append completion queue from offline CPU. */
6184 *list_skb = oldsd->completion_queue;
6185 oldsd->completion_queue = NULL;
6186
6187 /* Append output queue from offline CPU. */
6188 if (oldsd->output_queue) {
6189 *sd->output_queue_tailp = oldsd->output_queue;
6190 sd->output_queue_tailp = oldsd->output_queue_tailp;
6191 oldsd->output_queue = NULL;
6192 oldsd->output_queue_tailp = &oldsd->output_queue;
6193 }
6194
6195 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6196 local_irq_enable();
6197
6198 /* Process offline CPU's input_pkt_queue */
6199 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6200 netif_rx(skb);
6201 input_queue_head_incr(oldsd);
6202 }
6203 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6204 netif_rx(skb);
6205 input_queue_head_incr(oldsd);
6206 }
6207
6208 return NOTIFY_OK;
6209 }
6210
6211
6212 /**
6213 * netdev_increment_features - increment feature set by one
6214 * @all: current feature set
6215 * @one: new feature set
6216 * @mask: mask feature set
6217 *
6218 * Computes a new feature set after adding a device with feature set
6219 * @one to the master device with current feature set @all. Will not
6220 * enable anything that is off in @mask. Returns the new feature set.
6221 */
6222 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6223 {
6224 /* If device needs checksumming, downgrade to it. */
6225 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6226 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6227 else if (mask & NETIF_F_ALL_CSUM) {
6228 /* If one device supports v4/v6 checksumming, set for all. */
6229 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6230 !(all & NETIF_F_GEN_CSUM)) {
6231 all &= ~NETIF_F_ALL_CSUM;
6232 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6233 }
6234
6235 /* If one device supports hw checksumming, set for all. */
6236 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6237 all &= ~NETIF_F_ALL_CSUM;
6238 all |= NETIF_F_HW_CSUM;
6239 }
6240 }
6241
6242 one |= NETIF_F_ALL_CSUM;
6243
6244 one |= all & NETIF_F_ONE_FOR_ALL;
6245 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6246 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6247
6248 return all;
6249 }
6250 EXPORT_SYMBOL(netdev_increment_features);
6251
6252 static struct hlist_head *netdev_create_hash(void)
6253 {
6254 int i;
6255 struct hlist_head *hash;
6256
6257 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6258 if (hash != NULL)
6259 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6260 INIT_HLIST_HEAD(&hash[i]);
6261
6262 return hash;
6263 }
6264
6265 /* Initialize per network namespace state */
6266 static int __net_init netdev_init(struct net *net)
6267 {
6268 INIT_LIST_HEAD(&net->dev_base_head);
6269
6270 net->dev_name_head = netdev_create_hash();
6271 if (net->dev_name_head == NULL)
6272 goto err_name;
6273
6274 net->dev_index_head = netdev_create_hash();
6275 if (net->dev_index_head == NULL)
6276 goto err_idx;
6277
6278 return 0;
6279
6280 err_idx:
6281 kfree(net->dev_name_head);
6282 err_name:
6283 return -ENOMEM;
6284 }
6285
6286 /**
6287 * netdev_drivername - network driver for the device
6288 * @dev: network device
6289 * @buffer: buffer for resulting name
6290 * @len: size of buffer
6291 *
6292 * Determine network driver for device.
6293 */
6294 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6295 {
6296 const struct device_driver *driver;
6297 const struct device *parent;
6298
6299 if (len <= 0 || !buffer)
6300 return buffer;
6301 buffer[0] = 0;
6302
6303 parent = dev->dev.parent;
6304
6305 if (!parent)
6306 return buffer;
6307
6308 driver = parent->driver;
6309 if (driver && driver->name)
6310 strlcpy(buffer, driver->name, len);
6311 return buffer;
6312 }
6313
6314 static int __netdev_printk(const char *level, const struct net_device *dev,
6315 struct va_format *vaf)
6316 {
6317 int r;
6318
6319 if (dev && dev->dev.parent)
6320 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6321 netdev_name(dev), vaf);
6322 else if (dev)
6323 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6324 else
6325 r = printk("%s(NULL net_device): %pV", level, vaf);
6326
6327 return r;
6328 }
6329
6330 int netdev_printk(const char *level, const struct net_device *dev,
6331 const char *format, ...)
6332 {
6333 struct va_format vaf;
6334 va_list args;
6335 int r;
6336
6337 va_start(args, format);
6338
6339 vaf.fmt = format;
6340 vaf.va = &args;
6341
6342 r = __netdev_printk(level, dev, &vaf);
6343 va_end(args);
6344
6345 return r;
6346 }
6347 EXPORT_SYMBOL(netdev_printk);
6348
6349 #define define_netdev_printk_level(func, level) \
6350 int func(const struct net_device *dev, const char *fmt, ...) \
6351 { \
6352 int r; \
6353 struct va_format vaf; \
6354 va_list args; \
6355 \
6356 va_start(args, fmt); \
6357 \
6358 vaf.fmt = fmt; \
6359 vaf.va = &args; \
6360 \
6361 r = __netdev_printk(level, dev, &vaf); \
6362 va_end(args); \
6363 \
6364 return r; \
6365 } \
6366 EXPORT_SYMBOL(func);
6367
6368 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6369 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6370 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6371 define_netdev_printk_level(netdev_err, KERN_ERR);
6372 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6373 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6374 define_netdev_printk_level(netdev_info, KERN_INFO);
6375
6376 static void __net_exit netdev_exit(struct net *net)
6377 {
6378 kfree(net->dev_name_head);
6379 kfree(net->dev_index_head);
6380 }
6381
6382 static struct pernet_operations __net_initdata netdev_net_ops = {
6383 .init = netdev_init,
6384 .exit = netdev_exit,
6385 };
6386
6387 static void __net_exit default_device_exit(struct net *net)
6388 {
6389 struct net_device *dev, *aux;
6390 /*
6391 * Push all migratable network devices back to the
6392 * initial network namespace
6393 */
6394 rtnl_lock();
6395 for_each_netdev_safe(net, dev, aux) {
6396 int err;
6397 char fb_name[IFNAMSIZ];
6398
6399 /* Ignore unmoveable devices (i.e. loopback) */
6400 if (dev->features & NETIF_F_NETNS_LOCAL)
6401 continue;
6402
6403 /* Leave virtual devices for the generic cleanup */
6404 if (dev->rtnl_link_ops)
6405 continue;
6406
6407 /* Push remaing network devices to init_net */
6408 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6409 err = dev_change_net_namespace(dev, &init_net, fb_name);
6410 if (err) {
6411 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6412 __func__, dev->name, err);
6413 BUG();
6414 }
6415 }
6416 rtnl_unlock();
6417 }
6418
6419 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6420 {
6421 /* At exit all network devices most be removed from a network
6422 * namespace. Do this in the reverse order of registration.
6423 * Do this across as many network namespaces as possible to
6424 * improve batching efficiency.
6425 */
6426 struct net_device *dev;
6427 struct net *net;
6428 LIST_HEAD(dev_kill_list);
6429
6430 rtnl_lock();
6431 list_for_each_entry(net, net_list, exit_list) {
6432 for_each_netdev_reverse(net, dev) {
6433 if (dev->rtnl_link_ops)
6434 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6435 else
6436 unregister_netdevice_queue(dev, &dev_kill_list);
6437 }
6438 }
6439 unregister_netdevice_many(&dev_kill_list);
6440 list_del(&dev_kill_list);
6441 rtnl_unlock();
6442 }
6443
6444 static struct pernet_operations __net_initdata default_device_ops = {
6445 .exit = default_device_exit,
6446 .exit_batch = default_device_exit_batch,
6447 };
6448
6449 /*
6450 * Initialize the DEV module. At boot time this walks the device list and
6451 * unhooks any devices that fail to initialise (normally hardware not
6452 * present) and leaves us with a valid list of present and active devices.
6453 *
6454 */
6455
6456 /*
6457 * This is called single threaded during boot, so no need
6458 * to take the rtnl semaphore.
6459 */
6460 static int __init net_dev_init(void)
6461 {
6462 int i, rc = -ENOMEM;
6463
6464 BUG_ON(!dev_boot_phase);
6465
6466 if (dev_proc_init())
6467 goto out;
6468
6469 if (netdev_kobject_init())
6470 goto out;
6471
6472 INIT_LIST_HEAD(&ptype_all);
6473 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6474 INIT_LIST_HEAD(&ptype_base[i]);
6475
6476 if (register_pernet_subsys(&netdev_net_ops))
6477 goto out;
6478
6479 /*
6480 * Initialise the packet receive queues.
6481 */
6482
6483 for_each_possible_cpu(i) {
6484 struct softnet_data *sd = &per_cpu(softnet_data, i);
6485
6486 memset(sd, 0, sizeof(*sd));
6487 skb_queue_head_init(&sd->input_pkt_queue);
6488 skb_queue_head_init(&sd->process_queue);
6489 sd->completion_queue = NULL;
6490 INIT_LIST_HEAD(&sd->poll_list);
6491 sd->output_queue = NULL;
6492 sd->output_queue_tailp = &sd->output_queue;
6493 #ifdef CONFIG_RPS
6494 sd->csd.func = rps_trigger_softirq;
6495 sd->csd.info = sd;
6496 sd->csd.flags = 0;
6497 sd->cpu = i;
6498 #endif
6499
6500 sd->backlog.poll = process_backlog;
6501 sd->backlog.weight = weight_p;
6502 sd->backlog.gro_list = NULL;
6503 sd->backlog.gro_count = 0;
6504 }
6505
6506 dev_boot_phase = 0;
6507
6508 /* The loopback device is special if any other network devices
6509 * is present in a network namespace the loopback device must
6510 * be present. Since we now dynamically allocate and free the
6511 * loopback device ensure this invariant is maintained by
6512 * keeping the loopback device as the first device on the
6513 * list of network devices. Ensuring the loopback devices
6514 * is the first device that appears and the last network device
6515 * that disappears.
6516 */
6517 if (register_pernet_device(&loopback_net_ops))
6518 goto out;
6519
6520 if (register_pernet_device(&default_device_ops))
6521 goto out;
6522
6523 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6524 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6525
6526 hotcpu_notifier(dev_cpu_callback, 0);
6527 dst_init();
6528 dev_mcast_init();
6529 rc = 0;
6530 out:
6531 return rc;
6532 }
6533
6534 subsys_initcall(net_dev_init);
6535
6536 static int __init initialize_hashrnd(void)
6537 {
6538 get_random_bytes(&hashrnd, sizeof(hashrnd));
6539 return 0;
6540 }
6541
6542 late_initcall_sync(initialize_hashrnd);
6543
This page took 0.246487 seconds and 6 git commands to generate.