[NET]: Fix race when opening a proc file while a network namespace is exiting.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122
123 /*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly; /* Taps */
154
155 #ifdef CONFIG_NET_DMA
156 struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161 };
162
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167 static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171 };
172 #endif
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev->nd_net;
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 #ifdef CONFIG_SYSFS
253 extern int netdev_sysfs_init(void);
254 extern int netdev_register_sysfs(struct net_device *);
255 extern void netdev_unregister_sysfs(struct net_device *);
256 #else
257 #define netdev_sysfs_init() (0)
258 #define netdev_register_sysfs(dev) (0)
259 #define netdev_unregister_sysfs(dev) do { } while(0)
260 #endif
261
262 #ifdef CONFIG_DEBUG_LOCK_ALLOC
263 /*
264 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
265 * according to dev->type
266 */
267 static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
282 ARPHRD_NONE};
283
284 static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
299 "_xmit_NONE"};
300
301 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 #endif
329
330 /*******************************************************************************
331
332 Protocol management and registration routines
333
334 *******************************************************************************/
335
336 /*
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
339 * here.
340 *
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
349 * --ANK (980803)
350 */
351
352 /**
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
355 *
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
359 *
360 * This call does not sleep therefore it can not
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
363 */
364
365 void dev_add_pack(struct packet_type *pt)
366 {
367 int hash;
368
369 spin_lock_bh(&ptype_lock);
370 if (pt->type == htons(ETH_P_ALL))
371 list_add_rcu(&pt->list, &ptype_all);
372 else {
373 hash = ntohs(pt->type) & 15;
374 list_add_rcu(&pt->list, &ptype_base[hash]);
375 }
376 spin_unlock_bh(&ptype_lock);
377 }
378
379 /**
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
382 *
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
386 * returns.
387 *
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
391 */
392 void __dev_remove_pack(struct packet_type *pt)
393 {
394 struct list_head *head;
395 struct packet_type *pt1;
396
397 spin_lock_bh(&ptype_lock);
398
399 if (pt->type == htons(ETH_P_ALL))
400 head = &ptype_all;
401 else
402 head = &ptype_base[ntohs(pt->type) & 15];
403
404 list_for_each_entry(pt1, head, list) {
405 if (pt == pt1) {
406 list_del_rcu(&pt->list);
407 goto out;
408 }
409 }
410
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
412 out:
413 spin_unlock_bh(&ptype_lock);
414 }
415 /**
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * This call sleeps to guarantee that no CPU is looking at the packet
425 * type after return.
426 */
427 void dev_remove_pack(struct packet_type *pt)
428 {
429 __dev_remove_pack(pt);
430
431 synchronize_net();
432 }
433
434 /******************************************************************************
435
436 Device Boot-time Settings Routines
437
438 *******************************************************************************/
439
440 /* Boot time configuration table */
441 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
442
443 /**
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
447 *
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
450 * all netdevices.
451 */
452 static int netdev_boot_setup_add(char *name, struct ifmap *map)
453 {
454 struct netdev_boot_setup *s;
455 int i;
456
457 s = dev_boot_setup;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
461 strcpy(s[i].name, name);
462 memcpy(&s[i].map, map, sizeof(s[i].map));
463 break;
464 }
465 }
466
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
468 }
469
470 /**
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
473 *
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
478 */
479 int netdev_boot_setup_check(struct net_device *dev)
480 {
481 struct netdev_boot_setup *s = dev_boot_setup;
482 int i;
483
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
486 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
491 return 1;
492 }
493 }
494 return 0;
495 }
496
497
498 /**
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
502 *
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
507 */
508 unsigned long netdev_boot_base(const char *prefix, int unit)
509 {
510 const struct netdev_boot_setup *s = dev_boot_setup;
511 char name[IFNAMSIZ];
512 int i;
513
514 sprintf(name, "%s%d", prefix, unit);
515
516 /*
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
519 */
520 if (__dev_get_by_name(&init_net, name))
521 return 1;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
526 return 0;
527 }
528
529 /*
530 * Saves at boot time configured settings for any netdevice.
531 */
532 int __init netdev_boot_setup(char *str)
533 {
534 int ints[5];
535 struct ifmap map;
536
537 str = get_options(str, ARRAY_SIZE(ints), ints);
538 if (!str || !*str)
539 return 0;
540
541 /* Save settings */
542 memset(&map, 0, sizeof(map));
543 if (ints[0] > 0)
544 map.irq = ints[1];
545 if (ints[0] > 1)
546 map.base_addr = ints[2];
547 if (ints[0] > 2)
548 map.mem_start = ints[3];
549 if (ints[0] > 3)
550 map.mem_end = ints[4];
551
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
554 }
555
556 __setup("netdev=", netdev_boot_setup);
557
558 /*******************************************************************************
559
560 Device Interface Subroutines
561
562 *******************************************************************************/
563
564 /**
565 * __dev_get_by_name - find a device by its name
566 * @name: name to find
567 *
568 * Find an interface by name. Must be called under RTNL semaphore
569 * or @dev_base_lock. If the name is found a pointer to the device
570 * is returned. If the name is not found then %NULL is returned. The
571 * reference counters are not incremented so the caller must be
572 * careful with locks.
573 */
574
575 struct net_device *__dev_get_by_name(struct net *net, const char *name)
576 {
577 struct hlist_node *p;
578
579 hlist_for_each(p, dev_name_hash(net, name)) {
580 struct net_device *dev
581 = hlist_entry(p, struct net_device, name_hlist);
582 if (!strncmp(dev->name, name, IFNAMSIZ))
583 return dev;
584 }
585 return NULL;
586 }
587
588 /**
589 * dev_get_by_name - find a device by its name
590 * @name: name to find
591 *
592 * Find an interface by name. This can be called from any
593 * context and does its own locking. The returned handle has
594 * the usage count incremented and the caller must use dev_put() to
595 * release it when it is no longer needed. %NULL is returned if no
596 * matching device is found.
597 */
598
599 struct net_device *dev_get_by_name(struct net *net, const char *name)
600 {
601 struct net_device *dev;
602
603 read_lock(&dev_base_lock);
604 dev = __dev_get_by_name(net, name);
605 if (dev)
606 dev_hold(dev);
607 read_unlock(&dev_base_lock);
608 return dev;
609 }
610
611 /**
612 * __dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
644 */
645
646 struct net_device *dev_get_by_index(struct net *net, int ifindex)
647 {
648 struct net_device *dev;
649
650 read_lock(&dev_base_lock);
651 dev = __dev_get_by_index(net, ifindex);
652 if (dev)
653 dev_hold(dev);
654 read_unlock(&dev_base_lock);
655 return dev;
656 }
657
658 /**
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @type: media type of device
661 * @ha: hardware address
662 *
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
667 *
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
670 */
671
672 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
673 {
674 struct net_device *dev;
675
676 ASSERT_RTNL();
677
678 for_each_netdev(&init_net, dev)
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
681 return dev;
682
683 return NULL;
684 }
685
686 EXPORT_SYMBOL(dev_getbyhwaddr);
687
688 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
689 {
690 struct net_device *dev;
691
692 ASSERT_RTNL();
693 for_each_netdev(net, dev)
694 if (dev->type == type)
695 return dev;
696
697 return NULL;
698 }
699
700 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701
702 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
703 {
704 struct net_device *dev;
705
706 rtnl_lock();
707 dev = __dev_getfirstbyhwtype(net, type);
708 if (dev)
709 dev_hold(dev);
710 rtnl_unlock();
711 return dev;
712 }
713
714 EXPORT_SYMBOL(dev_getfirstbyhwtype);
715
716 /**
717 * dev_get_by_flags - find any device with given flags
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
720 *
721 * Search for any interface with the given flags. Returns NULL if a device
722 * is not found or a pointer to the device. The device returned has
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
725 */
726
727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
728 {
729 struct net_device *dev, *ret;
730
731 ret = NULL;
732 read_lock(&dev_base_lock);
733 for_each_netdev(net, dev) {
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
736 ret = dev;
737 break;
738 }
739 }
740 read_unlock(&dev_base_lock);
741 return ret;
742 }
743
744 /**
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
747 *
748 * Network device names need to be valid file names to
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
751 */
752 int dev_valid_name(const char *name)
753 {
754 if (*name == '\0')
755 return 0;
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
760
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
765 }
766 return 1;
767 }
768
769 /**
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
772 * @name: name format string
773 * @buf: scratch buffer and result name string
774 *
775 * Passed a format string - eg "lt%d" it will try and find a suitable
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
782 */
783
784 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
785 {
786 int i = 0;
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 long *inuse;
790 struct net_device *d;
791
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
794 /*
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
798 */
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
801
802 /* Use one page as a bit array of possible slots */
803 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
806
807 for_each_netdev(net, d) {
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
812
813 /* avoid cases where sscanf is not exact inverse of printf */
814 snprintf(buf, IFNAMSIZ, name, i);
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
817 }
818
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
821 }
822
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
825 return i;
826
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
830 */
831 return -ENFILE;
832 }
833
834 /**
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
838 *
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
846 */
847
848 int dev_alloc_name(struct net_device *dev, const char *name)
849 {
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
853
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
860 }
861
862
863 /**
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
867 *
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
870 */
871 int dev_change_name(struct net_device *dev, char *newname)
872 {
873 char oldname[IFNAMSIZ];
874 int err = 0;
875 int ret;
876 struct net *net;
877
878 ASSERT_RTNL();
879 BUG_ON(!dev->nd_net);
880
881 net = dev->nd_net;
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
884
885 if (!dev_valid_name(newname))
886 return -EINVAL;
887
888 memcpy(oldname, dev->name, IFNAMSIZ);
889
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
895 }
896 else if (__dev_get_by_name(net, newname))
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
900
901 rollback:
902 device_rename(&dev->dev, dev->name);
903
904 write_lock_bh(&dev_base_lock);
905 hlist_del(&dev->name_hlist);
906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 write_unlock_bh(&dev_base_lock);
908
909 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
911
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
921 }
922 }
923
924 return err;
925 }
926
927 /**
928 * netdev_features_change - device changes features
929 * @dev: device to cause notification
930 *
931 * Called to indicate a device has changed features.
932 */
933 void netdev_features_change(struct net_device *dev)
934 {
935 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
936 }
937 EXPORT_SYMBOL(netdev_features_change);
938
939 /**
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
942 *
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
946 */
947 void netdev_state_change(struct net_device *dev)
948 {
949 if (dev->flags & IFF_UP) {
950 raw_notifier_call_chain(&netdev_chain,
951 NETDEV_CHANGE, dev);
952 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 }
954 }
955
956 /**
957 * dev_load - load a network module
958 * @name: name of interface
959 *
960 * If a network interface is not present and the process has suitable
961 * privileges this function loads the module. If module loading is not
962 * available in this kernel then it becomes a nop.
963 */
964
965 void dev_load(struct net *net, const char *name)
966 {
967 struct net_device *dev;
968
969 read_lock(&dev_base_lock);
970 dev = __dev_get_by_name(net, name);
971 read_unlock(&dev_base_lock);
972
973 if (!dev && capable(CAP_SYS_MODULE))
974 request_module("%s", name);
975 }
976
977 static int default_rebuild_header(struct sk_buff *skb)
978 {
979 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
980 skb->dev ? skb->dev->name : "NULL!!!");
981 kfree_skb(skb);
982 return 1;
983 }
984
985 /**
986 * dev_open - prepare an interface for use.
987 * @dev: device to open
988 *
989 * Takes a device from down to up state. The device's private open
990 * function is invoked and then the multicast lists are loaded. Finally
991 * the device is moved into the up state and a %NETDEV_UP message is
992 * sent to the netdev notifier chain.
993 *
994 * Calling this function on an active interface is a nop. On a failure
995 * a negative errno code is returned.
996 */
997 int dev_open(struct net_device *dev)
998 {
999 int ret = 0;
1000
1001 /*
1002 * Is it already up?
1003 */
1004
1005 if (dev->flags & IFF_UP)
1006 return 0;
1007
1008 /*
1009 * Is it even present?
1010 */
1011 if (!netif_device_present(dev))
1012 return -ENODEV;
1013
1014 /*
1015 * Call device private open method
1016 */
1017 set_bit(__LINK_STATE_START, &dev->state);
1018 if (dev->open) {
1019 ret = dev->open(dev);
1020 if (ret)
1021 clear_bit(__LINK_STATE_START, &dev->state);
1022 }
1023
1024 /*
1025 * If it went open OK then:
1026 */
1027
1028 if (!ret) {
1029 /*
1030 * Set the flags.
1031 */
1032 dev->flags |= IFF_UP;
1033
1034 /*
1035 * Initialize multicasting status
1036 */
1037 dev_set_rx_mode(dev);
1038
1039 /*
1040 * Wakeup transmit queue engine
1041 */
1042 dev_activate(dev);
1043
1044 /*
1045 * ... and announce new interface.
1046 */
1047 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
1048 }
1049 return ret;
1050 }
1051
1052 /**
1053 * dev_close - shutdown an interface.
1054 * @dev: device to shutdown
1055 *
1056 * This function moves an active device into down state. A
1057 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1058 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1059 * chain.
1060 */
1061 int dev_close(struct net_device *dev)
1062 {
1063 might_sleep();
1064
1065 if (!(dev->flags & IFF_UP))
1066 return 0;
1067
1068 /*
1069 * Tell people we are going down, so that they can
1070 * prepare to death, when device is still operating.
1071 */
1072 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
1073
1074 dev_deactivate(dev);
1075
1076 clear_bit(__LINK_STATE_START, &dev->state);
1077
1078 /* Synchronize to scheduled poll. We cannot touch poll list,
1079 * it can be even on different cpu. So just clear netif_running().
1080 *
1081 * dev->stop() will invoke napi_disable() on all of it's
1082 * napi_struct instances on this device.
1083 */
1084 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1085
1086 /*
1087 * Call the device specific close. This cannot fail.
1088 * Only if device is UP
1089 *
1090 * We allow it to be called even after a DETACH hot-plug
1091 * event.
1092 */
1093 if (dev->stop)
1094 dev->stop(dev);
1095
1096 /*
1097 * Device is now down.
1098 */
1099
1100 dev->flags &= ~IFF_UP;
1101
1102 /*
1103 * Tell people we are down
1104 */
1105 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1106
1107 return 0;
1108 }
1109
1110
1111 static int dev_boot_phase = 1;
1112
1113 /*
1114 * Device change register/unregister. These are not inline or static
1115 * as we export them to the world.
1116 */
1117
1118 /**
1119 * register_netdevice_notifier - register a network notifier block
1120 * @nb: notifier
1121 *
1122 * Register a notifier to be called when network device events occur.
1123 * The notifier passed is linked into the kernel structures and must
1124 * not be reused until it has been unregistered. A negative errno code
1125 * is returned on a failure.
1126 *
1127 * When registered all registration and up events are replayed
1128 * to the new notifier to allow device to have a race free
1129 * view of the network device list.
1130 */
1131
1132 int register_netdevice_notifier(struct notifier_block *nb)
1133 {
1134 struct net_device *dev;
1135 struct net_device *last;
1136 struct net *net;
1137 int err;
1138
1139 rtnl_lock();
1140 err = raw_notifier_chain_register(&netdev_chain, nb);
1141 if (err)
1142 goto unlock;
1143 if (dev_boot_phase)
1144 goto unlock;
1145 for_each_net(net) {
1146 for_each_netdev(net, dev) {
1147 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1148 err = notifier_to_errno(err);
1149 if (err)
1150 goto rollback;
1151
1152 if (!(dev->flags & IFF_UP))
1153 continue;
1154
1155 nb->notifier_call(nb, NETDEV_UP, dev);
1156 }
1157 }
1158
1159 unlock:
1160 rtnl_unlock();
1161 return err;
1162
1163 rollback:
1164 last = dev;
1165 for_each_net(net) {
1166 for_each_netdev(net, dev) {
1167 if (dev == last)
1168 break;
1169
1170 if (dev->flags & IFF_UP) {
1171 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1172 nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 }
1174 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1175 }
1176 }
1177 goto unlock;
1178 }
1179
1180 /**
1181 * unregister_netdevice_notifier - unregister a network notifier block
1182 * @nb: notifier
1183 *
1184 * Unregister a notifier previously registered by
1185 * register_netdevice_notifier(). The notifier is unlinked into the
1186 * kernel structures and may then be reused. A negative errno code
1187 * is returned on a failure.
1188 */
1189
1190 int unregister_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 int err;
1193
1194 rtnl_lock();
1195 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1196 rtnl_unlock();
1197 return err;
1198 }
1199
1200 /**
1201 * call_netdevice_notifiers - call all network notifier blocks
1202 * @val: value passed unmodified to notifier function
1203 * @v: pointer passed unmodified to notifier function
1204 *
1205 * Call all network notifier blocks. Parameters and return value
1206 * are as for raw_notifier_call_chain().
1207 */
1208
1209 int call_netdevice_notifiers(unsigned long val, void *v)
1210 {
1211 return raw_notifier_call_chain(&netdev_chain, val, v);
1212 }
1213
1214 /* When > 0 there are consumers of rx skb time stamps */
1215 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1216
1217 void net_enable_timestamp(void)
1218 {
1219 atomic_inc(&netstamp_needed);
1220 }
1221
1222 void net_disable_timestamp(void)
1223 {
1224 atomic_dec(&netstamp_needed);
1225 }
1226
1227 static inline void net_timestamp(struct sk_buff *skb)
1228 {
1229 if (atomic_read(&netstamp_needed))
1230 __net_timestamp(skb);
1231 else
1232 skb->tstamp.tv64 = 0;
1233 }
1234
1235 /*
1236 * Support routine. Sends outgoing frames to any network
1237 * taps currently in use.
1238 */
1239
1240 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1241 {
1242 struct packet_type *ptype;
1243
1244 net_timestamp(skb);
1245
1246 rcu_read_lock();
1247 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1248 /* Never send packets back to the socket
1249 * they originated from - MvS (miquels@drinkel.ow.org)
1250 */
1251 if ((ptype->dev == dev || !ptype->dev) &&
1252 (ptype->af_packet_priv == NULL ||
1253 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1254 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1255 if (!skb2)
1256 break;
1257
1258 /* skb->nh should be correctly
1259 set by sender, so that the second statement is
1260 just protection against buggy protocols.
1261 */
1262 skb_reset_mac_header(skb2);
1263
1264 if (skb_network_header(skb2) < skb2->data ||
1265 skb2->network_header > skb2->tail) {
1266 if (net_ratelimit())
1267 printk(KERN_CRIT "protocol %04x is "
1268 "buggy, dev %s\n",
1269 skb2->protocol, dev->name);
1270 skb_reset_network_header(skb2);
1271 }
1272
1273 skb2->transport_header = skb2->network_header;
1274 skb2->pkt_type = PACKET_OUTGOING;
1275 ptype->func(skb2, skb->dev, ptype, skb->dev);
1276 }
1277 }
1278 rcu_read_unlock();
1279 }
1280
1281
1282 void __netif_schedule(struct net_device *dev)
1283 {
1284 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1285 unsigned long flags;
1286 struct softnet_data *sd;
1287
1288 local_irq_save(flags);
1289 sd = &__get_cpu_var(softnet_data);
1290 dev->next_sched = sd->output_queue;
1291 sd->output_queue = dev;
1292 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1293 local_irq_restore(flags);
1294 }
1295 }
1296 EXPORT_SYMBOL(__netif_schedule);
1297
1298 void dev_kfree_skb_irq(struct sk_buff *skb)
1299 {
1300 if (atomic_dec_and_test(&skb->users)) {
1301 struct softnet_data *sd;
1302 unsigned long flags;
1303
1304 local_irq_save(flags);
1305 sd = &__get_cpu_var(softnet_data);
1306 skb->next = sd->completion_queue;
1307 sd->completion_queue = skb;
1308 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1309 local_irq_restore(flags);
1310 }
1311 }
1312 EXPORT_SYMBOL(dev_kfree_skb_irq);
1313
1314 void dev_kfree_skb_any(struct sk_buff *skb)
1315 {
1316 if (in_irq() || irqs_disabled())
1317 dev_kfree_skb_irq(skb);
1318 else
1319 dev_kfree_skb(skb);
1320 }
1321 EXPORT_SYMBOL(dev_kfree_skb_any);
1322
1323
1324 /**
1325 * netif_device_detach - mark device as removed
1326 * @dev: network device
1327 *
1328 * Mark device as removed from system and therefore no longer available.
1329 */
1330 void netif_device_detach(struct net_device *dev)
1331 {
1332 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1333 netif_running(dev)) {
1334 netif_stop_queue(dev);
1335 }
1336 }
1337 EXPORT_SYMBOL(netif_device_detach);
1338
1339 /**
1340 * netif_device_attach - mark device as attached
1341 * @dev: network device
1342 *
1343 * Mark device as attached from system and restart if needed.
1344 */
1345 void netif_device_attach(struct net_device *dev)
1346 {
1347 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1348 netif_running(dev)) {
1349 netif_wake_queue(dev);
1350 __netdev_watchdog_up(dev);
1351 }
1352 }
1353 EXPORT_SYMBOL(netif_device_attach);
1354
1355
1356 /*
1357 * Invalidate hardware checksum when packet is to be mangled, and
1358 * complete checksum manually on outgoing path.
1359 */
1360 int skb_checksum_help(struct sk_buff *skb)
1361 {
1362 __wsum csum;
1363 int ret = 0, offset;
1364
1365 if (skb->ip_summed == CHECKSUM_COMPLETE)
1366 goto out_set_summed;
1367
1368 if (unlikely(skb_shinfo(skb)->gso_size)) {
1369 /* Let GSO fix up the checksum. */
1370 goto out_set_summed;
1371 }
1372
1373 if (skb_cloned(skb)) {
1374 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1375 if (ret)
1376 goto out;
1377 }
1378
1379 offset = skb->csum_start - skb_headroom(skb);
1380 BUG_ON(offset > (int)skb->len);
1381 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1382
1383 offset = skb_headlen(skb) - offset;
1384 BUG_ON(offset <= 0);
1385 BUG_ON(skb->csum_offset + 2 > offset);
1386
1387 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1388 csum_fold(csum);
1389 out_set_summed:
1390 skb->ip_summed = CHECKSUM_NONE;
1391 out:
1392 return ret;
1393 }
1394
1395 /**
1396 * skb_gso_segment - Perform segmentation on skb.
1397 * @skb: buffer to segment
1398 * @features: features for the output path (see dev->features)
1399 *
1400 * This function segments the given skb and returns a list of segments.
1401 *
1402 * It may return NULL if the skb requires no segmentation. This is
1403 * only possible when GSO is used for verifying header integrity.
1404 */
1405 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1406 {
1407 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1408 struct packet_type *ptype;
1409 __be16 type = skb->protocol;
1410 int err;
1411
1412 BUG_ON(skb_shinfo(skb)->frag_list);
1413
1414 skb_reset_mac_header(skb);
1415 skb->mac_len = skb->network_header - skb->mac_header;
1416 __skb_pull(skb, skb->mac_len);
1417
1418 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1419 if (skb_header_cloned(skb) &&
1420 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1421 return ERR_PTR(err);
1422 }
1423
1424 rcu_read_lock();
1425 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1426 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1427 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1428 err = ptype->gso_send_check(skb);
1429 segs = ERR_PTR(err);
1430 if (err || skb_gso_ok(skb, features))
1431 break;
1432 __skb_push(skb, (skb->data -
1433 skb_network_header(skb)));
1434 }
1435 segs = ptype->gso_segment(skb, features);
1436 break;
1437 }
1438 }
1439 rcu_read_unlock();
1440
1441 __skb_push(skb, skb->data - skb_mac_header(skb));
1442
1443 return segs;
1444 }
1445
1446 EXPORT_SYMBOL(skb_gso_segment);
1447
1448 /* Take action when hardware reception checksum errors are detected. */
1449 #ifdef CONFIG_BUG
1450 void netdev_rx_csum_fault(struct net_device *dev)
1451 {
1452 if (net_ratelimit()) {
1453 printk(KERN_ERR "%s: hw csum failure.\n",
1454 dev ? dev->name : "<unknown>");
1455 dump_stack();
1456 }
1457 }
1458 EXPORT_SYMBOL(netdev_rx_csum_fault);
1459 #endif
1460
1461 /* Actually, we should eliminate this check as soon as we know, that:
1462 * 1. IOMMU is present and allows to map all the memory.
1463 * 2. No high memory really exists on this machine.
1464 */
1465
1466 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1467 {
1468 #ifdef CONFIG_HIGHMEM
1469 int i;
1470
1471 if (dev->features & NETIF_F_HIGHDMA)
1472 return 0;
1473
1474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1475 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1476 return 1;
1477
1478 #endif
1479 return 0;
1480 }
1481
1482 struct dev_gso_cb {
1483 void (*destructor)(struct sk_buff *skb);
1484 };
1485
1486 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1487
1488 static void dev_gso_skb_destructor(struct sk_buff *skb)
1489 {
1490 struct dev_gso_cb *cb;
1491
1492 do {
1493 struct sk_buff *nskb = skb->next;
1494
1495 skb->next = nskb->next;
1496 nskb->next = NULL;
1497 kfree_skb(nskb);
1498 } while (skb->next);
1499
1500 cb = DEV_GSO_CB(skb);
1501 if (cb->destructor)
1502 cb->destructor(skb);
1503 }
1504
1505 /**
1506 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1507 * @skb: buffer to segment
1508 *
1509 * This function segments the given skb and stores the list of segments
1510 * in skb->next.
1511 */
1512 static int dev_gso_segment(struct sk_buff *skb)
1513 {
1514 struct net_device *dev = skb->dev;
1515 struct sk_buff *segs;
1516 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1517 NETIF_F_SG : 0);
1518
1519 segs = skb_gso_segment(skb, features);
1520
1521 /* Verifying header integrity only. */
1522 if (!segs)
1523 return 0;
1524
1525 if (unlikely(IS_ERR(segs)))
1526 return PTR_ERR(segs);
1527
1528 skb->next = segs;
1529 DEV_GSO_CB(skb)->destructor = skb->destructor;
1530 skb->destructor = dev_gso_skb_destructor;
1531
1532 return 0;
1533 }
1534
1535 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1536 {
1537 if (likely(!skb->next)) {
1538 if (!list_empty(&ptype_all))
1539 dev_queue_xmit_nit(skb, dev);
1540
1541 if (netif_needs_gso(dev, skb)) {
1542 if (unlikely(dev_gso_segment(skb)))
1543 goto out_kfree_skb;
1544 if (skb->next)
1545 goto gso;
1546 }
1547
1548 return dev->hard_start_xmit(skb, dev);
1549 }
1550
1551 gso:
1552 do {
1553 struct sk_buff *nskb = skb->next;
1554 int rc;
1555
1556 skb->next = nskb->next;
1557 nskb->next = NULL;
1558 rc = dev->hard_start_xmit(nskb, dev);
1559 if (unlikely(rc)) {
1560 nskb->next = skb->next;
1561 skb->next = nskb;
1562 return rc;
1563 }
1564 if (unlikely((netif_queue_stopped(dev) ||
1565 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1566 skb->next))
1567 return NETDEV_TX_BUSY;
1568 } while (skb->next);
1569
1570 skb->destructor = DEV_GSO_CB(skb)->destructor;
1571
1572 out_kfree_skb:
1573 kfree_skb(skb);
1574 return 0;
1575 }
1576
1577 #define HARD_TX_LOCK(dev, cpu) { \
1578 if ((dev->features & NETIF_F_LLTX) == 0) { \
1579 netif_tx_lock(dev); \
1580 } \
1581 }
1582
1583 #define HARD_TX_UNLOCK(dev) { \
1584 if ((dev->features & NETIF_F_LLTX) == 0) { \
1585 netif_tx_unlock(dev); \
1586 } \
1587 }
1588
1589 /**
1590 * dev_queue_xmit - transmit a buffer
1591 * @skb: buffer to transmit
1592 *
1593 * Queue a buffer for transmission to a network device. The caller must
1594 * have set the device and priority and built the buffer before calling
1595 * this function. The function can be called from an interrupt.
1596 *
1597 * A negative errno code is returned on a failure. A success does not
1598 * guarantee the frame will be transmitted as it may be dropped due
1599 * to congestion or traffic shaping.
1600 *
1601 * -----------------------------------------------------------------------------------
1602 * I notice this method can also return errors from the queue disciplines,
1603 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1604 * be positive.
1605 *
1606 * Regardless of the return value, the skb is consumed, so it is currently
1607 * difficult to retry a send to this method. (You can bump the ref count
1608 * before sending to hold a reference for retry if you are careful.)
1609 *
1610 * When calling this method, interrupts MUST be enabled. This is because
1611 * the BH enable code must have IRQs enabled so that it will not deadlock.
1612 * --BLG
1613 */
1614
1615 int dev_queue_xmit(struct sk_buff *skb)
1616 {
1617 struct net_device *dev = skb->dev;
1618 struct Qdisc *q;
1619 int rc = -ENOMEM;
1620
1621 /* GSO will handle the following emulations directly. */
1622 if (netif_needs_gso(dev, skb))
1623 goto gso;
1624
1625 if (skb_shinfo(skb)->frag_list &&
1626 !(dev->features & NETIF_F_FRAGLIST) &&
1627 __skb_linearize(skb))
1628 goto out_kfree_skb;
1629
1630 /* Fragmented skb is linearized if device does not support SG,
1631 * or if at least one of fragments is in highmem and device
1632 * does not support DMA from it.
1633 */
1634 if (skb_shinfo(skb)->nr_frags &&
1635 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1636 __skb_linearize(skb))
1637 goto out_kfree_skb;
1638
1639 /* If packet is not checksummed and device does not support
1640 * checksumming for this protocol, complete checksumming here.
1641 */
1642 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1643 skb_set_transport_header(skb, skb->csum_start -
1644 skb_headroom(skb));
1645
1646 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1647 !((dev->features & NETIF_F_IP_CSUM) &&
1648 skb->protocol == htons(ETH_P_IP)) &&
1649 !((dev->features & NETIF_F_IPV6_CSUM) &&
1650 skb->protocol == htons(ETH_P_IPV6)))
1651 if (skb_checksum_help(skb))
1652 goto out_kfree_skb;
1653 }
1654
1655 gso:
1656 spin_lock_prefetch(&dev->queue_lock);
1657
1658 /* Disable soft irqs for various locks below. Also
1659 * stops preemption for RCU.
1660 */
1661 rcu_read_lock_bh();
1662
1663 /* Updates of qdisc are serialized by queue_lock.
1664 * The struct Qdisc which is pointed to by qdisc is now a
1665 * rcu structure - it may be accessed without acquiring
1666 * a lock (but the structure may be stale.) The freeing of the
1667 * qdisc will be deferred until it's known that there are no
1668 * more references to it.
1669 *
1670 * If the qdisc has an enqueue function, we still need to
1671 * hold the queue_lock before calling it, since queue_lock
1672 * also serializes access to the device queue.
1673 */
1674
1675 q = rcu_dereference(dev->qdisc);
1676 #ifdef CONFIG_NET_CLS_ACT
1677 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1678 #endif
1679 if (q->enqueue) {
1680 /* Grab device queue */
1681 spin_lock(&dev->queue_lock);
1682 q = dev->qdisc;
1683 if (q->enqueue) {
1684 /* reset queue_mapping to zero */
1685 skb->queue_mapping = 0;
1686 rc = q->enqueue(skb, q);
1687 qdisc_run(dev);
1688 spin_unlock(&dev->queue_lock);
1689
1690 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1691 goto out;
1692 }
1693 spin_unlock(&dev->queue_lock);
1694 }
1695
1696 /* The device has no queue. Common case for software devices:
1697 loopback, all the sorts of tunnels...
1698
1699 Really, it is unlikely that netif_tx_lock protection is necessary
1700 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1701 counters.)
1702 However, it is possible, that they rely on protection
1703 made by us here.
1704
1705 Check this and shot the lock. It is not prone from deadlocks.
1706 Either shot noqueue qdisc, it is even simpler 8)
1707 */
1708 if (dev->flags & IFF_UP) {
1709 int cpu = smp_processor_id(); /* ok because BHs are off */
1710
1711 if (dev->xmit_lock_owner != cpu) {
1712
1713 HARD_TX_LOCK(dev, cpu);
1714
1715 if (!netif_queue_stopped(dev) &&
1716 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1717 rc = 0;
1718 if (!dev_hard_start_xmit(skb, dev)) {
1719 HARD_TX_UNLOCK(dev);
1720 goto out;
1721 }
1722 }
1723 HARD_TX_UNLOCK(dev);
1724 if (net_ratelimit())
1725 printk(KERN_CRIT "Virtual device %s asks to "
1726 "queue packet!\n", dev->name);
1727 } else {
1728 /* Recursion is detected! It is possible,
1729 * unfortunately */
1730 if (net_ratelimit())
1731 printk(KERN_CRIT "Dead loop on virtual device "
1732 "%s, fix it urgently!\n", dev->name);
1733 }
1734 }
1735
1736 rc = -ENETDOWN;
1737 rcu_read_unlock_bh();
1738
1739 out_kfree_skb:
1740 kfree_skb(skb);
1741 return rc;
1742 out:
1743 rcu_read_unlock_bh();
1744 return rc;
1745 }
1746
1747
1748 /*=======================================================================
1749 Receiver routines
1750 =======================================================================*/
1751
1752 int netdev_max_backlog __read_mostly = 1000;
1753 int netdev_budget __read_mostly = 300;
1754 int weight_p __read_mostly = 64; /* old backlog weight */
1755
1756 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1757
1758
1759 /**
1760 * netif_rx - post buffer to the network code
1761 * @skb: buffer to post
1762 *
1763 * This function receives a packet from a device driver and queues it for
1764 * the upper (protocol) levels to process. It always succeeds. The buffer
1765 * may be dropped during processing for congestion control or by the
1766 * protocol layers.
1767 *
1768 * return values:
1769 * NET_RX_SUCCESS (no congestion)
1770 * NET_RX_CN_LOW (low congestion)
1771 * NET_RX_CN_MOD (moderate congestion)
1772 * NET_RX_CN_HIGH (high congestion)
1773 * NET_RX_DROP (packet was dropped)
1774 *
1775 */
1776
1777 int netif_rx(struct sk_buff *skb)
1778 {
1779 struct softnet_data *queue;
1780 unsigned long flags;
1781
1782 /* if netpoll wants it, pretend we never saw it */
1783 if (netpoll_rx(skb))
1784 return NET_RX_DROP;
1785
1786 if (!skb->tstamp.tv64)
1787 net_timestamp(skb);
1788
1789 /*
1790 * The code is rearranged so that the path is the most
1791 * short when CPU is congested, but is still operating.
1792 */
1793 local_irq_save(flags);
1794 queue = &__get_cpu_var(softnet_data);
1795
1796 __get_cpu_var(netdev_rx_stat).total++;
1797 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1798 if (queue->input_pkt_queue.qlen) {
1799 enqueue:
1800 dev_hold(skb->dev);
1801 __skb_queue_tail(&queue->input_pkt_queue, skb);
1802 local_irq_restore(flags);
1803 return NET_RX_SUCCESS;
1804 }
1805
1806 napi_schedule(&queue->backlog);
1807 goto enqueue;
1808 }
1809
1810 __get_cpu_var(netdev_rx_stat).dropped++;
1811 local_irq_restore(flags);
1812
1813 kfree_skb(skb);
1814 return NET_RX_DROP;
1815 }
1816
1817 int netif_rx_ni(struct sk_buff *skb)
1818 {
1819 int err;
1820
1821 preempt_disable();
1822 err = netif_rx(skb);
1823 if (local_softirq_pending())
1824 do_softirq();
1825 preempt_enable();
1826
1827 return err;
1828 }
1829
1830 EXPORT_SYMBOL(netif_rx_ni);
1831
1832 static inline struct net_device *skb_bond(struct sk_buff *skb)
1833 {
1834 struct net_device *dev = skb->dev;
1835
1836 if (dev->master) {
1837 if (skb_bond_should_drop(skb)) {
1838 kfree_skb(skb);
1839 return NULL;
1840 }
1841 skb->dev = dev->master;
1842 }
1843
1844 return dev;
1845 }
1846
1847
1848 static void net_tx_action(struct softirq_action *h)
1849 {
1850 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1851
1852 if (sd->completion_queue) {
1853 struct sk_buff *clist;
1854
1855 local_irq_disable();
1856 clist = sd->completion_queue;
1857 sd->completion_queue = NULL;
1858 local_irq_enable();
1859
1860 while (clist) {
1861 struct sk_buff *skb = clist;
1862 clist = clist->next;
1863
1864 BUG_TRAP(!atomic_read(&skb->users));
1865 __kfree_skb(skb);
1866 }
1867 }
1868
1869 if (sd->output_queue) {
1870 struct net_device *head;
1871
1872 local_irq_disable();
1873 head = sd->output_queue;
1874 sd->output_queue = NULL;
1875 local_irq_enable();
1876
1877 while (head) {
1878 struct net_device *dev = head;
1879 head = head->next_sched;
1880
1881 smp_mb__before_clear_bit();
1882 clear_bit(__LINK_STATE_SCHED, &dev->state);
1883
1884 if (spin_trylock(&dev->queue_lock)) {
1885 qdisc_run(dev);
1886 spin_unlock(&dev->queue_lock);
1887 } else {
1888 netif_schedule(dev);
1889 }
1890 }
1891 }
1892 }
1893
1894 static inline int deliver_skb(struct sk_buff *skb,
1895 struct packet_type *pt_prev,
1896 struct net_device *orig_dev)
1897 {
1898 atomic_inc(&skb->users);
1899 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1900 }
1901
1902 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1903 /* These hooks defined here for ATM */
1904 struct net_bridge;
1905 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1906 unsigned char *addr);
1907 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1908
1909 /*
1910 * If bridge module is loaded call bridging hook.
1911 * returns NULL if packet was consumed.
1912 */
1913 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1914 struct sk_buff *skb) __read_mostly;
1915 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1916 struct packet_type **pt_prev, int *ret,
1917 struct net_device *orig_dev)
1918 {
1919 struct net_bridge_port *port;
1920
1921 if (skb->pkt_type == PACKET_LOOPBACK ||
1922 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1923 return skb;
1924
1925 if (*pt_prev) {
1926 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1927 *pt_prev = NULL;
1928 }
1929
1930 return br_handle_frame_hook(port, skb);
1931 }
1932 #else
1933 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1934 #endif
1935
1936 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1937 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1938 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1939
1940 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1941 struct packet_type **pt_prev,
1942 int *ret,
1943 struct net_device *orig_dev)
1944 {
1945 if (skb->dev->macvlan_port == NULL)
1946 return skb;
1947
1948 if (*pt_prev) {
1949 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1950 *pt_prev = NULL;
1951 }
1952 return macvlan_handle_frame_hook(skb);
1953 }
1954 #else
1955 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1956 #endif
1957
1958 #ifdef CONFIG_NET_CLS_ACT
1959 /* TODO: Maybe we should just force sch_ingress to be compiled in
1960 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1961 * a compare and 2 stores extra right now if we dont have it on
1962 * but have CONFIG_NET_CLS_ACT
1963 * NOTE: This doesnt stop any functionality; if you dont have
1964 * the ingress scheduler, you just cant add policies on ingress.
1965 *
1966 */
1967 static int ing_filter(struct sk_buff *skb)
1968 {
1969 struct Qdisc *q;
1970 struct net_device *dev = skb->dev;
1971 int result = TC_ACT_OK;
1972
1973 if (dev->qdisc_ingress) {
1974 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1975 if (MAX_RED_LOOP < ttl++) {
1976 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1977 skb->iif, skb->dev->ifindex);
1978 return TC_ACT_SHOT;
1979 }
1980
1981 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1982
1983 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1984
1985 spin_lock(&dev->ingress_lock);
1986 if ((q = dev->qdisc_ingress) != NULL)
1987 result = q->enqueue(skb, q);
1988 spin_unlock(&dev->ingress_lock);
1989
1990 }
1991
1992 return result;
1993 }
1994 #endif
1995
1996 int netif_receive_skb(struct sk_buff *skb)
1997 {
1998 struct packet_type *ptype, *pt_prev;
1999 struct net_device *orig_dev;
2000 int ret = NET_RX_DROP;
2001 __be16 type;
2002
2003 /* if we've gotten here through NAPI, check netpoll */
2004 if (netpoll_receive_skb(skb))
2005 return NET_RX_DROP;
2006
2007 if (!skb->tstamp.tv64)
2008 net_timestamp(skb);
2009
2010 if (!skb->iif)
2011 skb->iif = skb->dev->ifindex;
2012
2013 orig_dev = skb_bond(skb);
2014
2015 if (!orig_dev)
2016 return NET_RX_DROP;
2017
2018 __get_cpu_var(netdev_rx_stat).total++;
2019
2020 skb_reset_network_header(skb);
2021 skb_reset_transport_header(skb);
2022 skb->mac_len = skb->network_header - skb->mac_header;
2023
2024 pt_prev = NULL;
2025
2026 rcu_read_lock();
2027
2028 #ifdef CONFIG_NET_CLS_ACT
2029 if (skb->tc_verd & TC_NCLS) {
2030 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2031 goto ncls;
2032 }
2033 #endif
2034
2035 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2036 if (!ptype->dev || ptype->dev == skb->dev) {
2037 if (pt_prev)
2038 ret = deliver_skb(skb, pt_prev, orig_dev);
2039 pt_prev = ptype;
2040 }
2041 }
2042
2043 #ifdef CONFIG_NET_CLS_ACT
2044 if (pt_prev) {
2045 ret = deliver_skb(skb, pt_prev, orig_dev);
2046 pt_prev = NULL; /* noone else should process this after*/
2047 } else {
2048 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2049 }
2050
2051 ret = ing_filter(skb);
2052
2053 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
2054 kfree_skb(skb);
2055 goto out;
2056 }
2057
2058 skb->tc_verd = 0;
2059 ncls:
2060 #endif
2061
2062 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2063 if (!skb)
2064 goto out;
2065 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2066 if (!skb)
2067 goto out;
2068
2069 type = skb->protocol;
2070 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2071 if (ptype->type == type &&
2072 (!ptype->dev || ptype->dev == skb->dev)) {
2073 if (pt_prev)
2074 ret = deliver_skb(skb, pt_prev, orig_dev);
2075 pt_prev = ptype;
2076 }
2077 }
2078
2079 if (pt_prev) {
2080 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2081 } else {
2082 kfree_skb(skb);
2083 /* Jamal, now you will not able to escape explaining
2084 * me how you were going to use this. :-)
2085 */
2086 ret = NET_RX_DROP;
2087 }
2088
2089 out:
2090 rcu_read_unlock();
2091 return ret;
2092 }
2093
2094 static int process_backlog(struct napi_struct *napi, int quota)
2095 {
2096 int work = 0;
2097 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2098 unsigned long start_time = jiffies;
2099
2100 napi->weight = weight_p;
2101 do {
2102 struct sk_buff *skb;
2103 struct net_device *dev;
2104
2105 local_irq_disable();
2106 skb = __skb_dequeue(&queue->input_pkt_queue);
2107 if (!skb) {
2108 __napi_complete(napi);
2109 local_irq_enable();
2110 break;
2111 }
2112
2113 local_irq_enable();
2114
2115 dev = skb->dev;
2116
2117 netif_receive_skb(skb);
2118
2119 dev_put(dev);
2120 } while (++work < quota && jiffies == start_time);
2121
2122 return work;
2123 }
2124
2125 /**
2126 * __napi_schedule - schedule for receive
2127 * @napi: entry to schedule
2128 *
2129 * The entry's receive function will be scheduled to run
2130 */
2131 void fastcall __napi_schedule(struct napi_struct *n)
2132 {
2133 unsigned long flags;
2134
2135 local_irq_save(flags);
2136 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2137 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2138 local_irq_restore(flags);
2139 }
2140 EXPORT_SYMBOL(__napi_schedule);
2141
2142
2143 static void net_rx_action(struct softirq_action *h)
2144 {
2145 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2146 unsigned long start_time = jiffies;
2147 int budget = netdev_budget;
2148 void *have;
2149
2150 local_irq_disable();
2151
2152 while (!list_empty(list)) {
2153 struct napi_struct *n;
2154 int work, weight;
2155
2156 /* If softirq window is exhuasted then punt.
2157 *
2158 * Note that this is a slight policy change from the
2159 * previous NAPI code, which would allow up to 2
2160 * jiffies to pass before breaking out. The test
2161 * used to be "jiffies - start_time > 1".
2162 */
2163 if (unlikely(budget <= 0 || jiffies != start_time))
2164 goto softnet_break;
2165
2166 local_irq_enable();
2167
2168 /* Even though interrupts have been re-enabled, this
2169 * access is safe because interrupts can only add new
2170 * entries to the tail of this list, and only ->poll()
2171 * calls can remove this head entry from the list.
2172 */
2173 n = list_entry(list->next, struct napi_struct, poll_list);
2174
2175 have = netpoll_poll_lock(n);
2176
2177 weight = n->weight;
2178
2179 work = n->poll(n, weight);
2180
2181 WARN_ON_ONCE(work > weight);
2182
2183 budget -= work;
2184
2185 local_irq_disable();
2186
2187 /* Drivers must not modify the NAPI state if they
2188 * consume the entire weight. In such cases this code
2189 * still "owns" the NAPI instance and therefore can
2190 * move the instance around on the list at-will.
2191 */
2192 if (unlikely(work == weight))
2193 list_move_tail(&n->poll_list, list);
2194
2195 netpoll_poll_unlock(have);
2196 }
2197 out:
2198 local_irq_enable();
2199
2200 #ifdef CONFIG_NET_DMA
2201 /*
2202 * There may not be any more sk_buffs coming right now, so push
2203 * any pending DMA copies to hardware
2204 */
2205 if (!cpus_empty(net_dma.channel_mask)) {
2206 int chan_idx;
2207 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2208 struct dma_chan *chan = net_dma.channels[chan_idx];
2209 if (chan)
2210 dma_async_memcpy_issue_pending(chan);
2211 }
2212 }
2213 #endif
2214
2215 return;
2216
2217 softnet_break:
2218 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2219 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2220 goto out;
2221 }
2222
2223 static gifconf_func_t * gifconf_list [NPROTO];
2224
2225 /**
2226 * register_gifconf - register a SIOCGIF handler
2227 * @family: Address family
2228 * @gifconf: Function handler
2229 *
2230 * Register protocol dependent address dumping routines. The handler
2231 * that is passed must not be freed or reused until it has been replaced
2232 * by another handler.
2233 */
2234 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2235 {
2236 if (family >= NPROTO)
2237 return -EINVAL;
2238 gifconf_list[family] = gifconf;
2239 return 0;
2240 }
2241
2242
2243 /*
2244 * Map an interface index to its name (SIOCGIFNAME)
2245 */
2246
2247 /*
2248 * We need this ioctl for efficient implementation of the
2249 * if_indextoname() function required by the IPv6 API. Without
2250 * it, we would have to search all the interfaces to find a
2251 * match. --pb
2252 */
2253
2254 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2255 {
2256 struct net_device *dev;
2257 struct ifreq ifr;
2258
2259 /*
2260 * Fetch the caller's info block.
2261 */
2262
2263 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2264 return -EFAULT;
2265
2266 read_lock(&dev_base_lock);
2267 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2268 if (!dev) {
2269 read_unlock(&dev_base_lock);
2270 return -ENODEV;
2271 }
2272
2273 strcpy(ifr.ifr_name, dev->name);
2274 read_unlock(&dev_base_lock);
2275
2276 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2277 return -EFAULT;
2278 return 0;
2279 }
2280
2281 /*
2282 * Perform a SIOCGIFCONF call. This structure will change
2283 * size eventually, and there is nothing I can do about it.
2284 * Thus we will need a 'compatibility mode'.
2285 */
2286
2287 static int dev_ifconf(struct net *net, char __user *arg)
2288 {
2289 struct ifconf ifc;
2290 struct net_device *dev;
2291 char __user *pos;
2292 int len;
2293 int total;
2294 int i;
2295
2296 /*
2297 * Fetch the caller's info block.
2298 */
2299
2300 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2301 return -EFAULT;
2302
2303 pos = ifc.ifc_buf;
2304 len = ifc.ifc_len;
2305
2306 /*
2307 * Loop over the interfaces, and write an info block for each.
2308 */
2309
2310 total = 0;
2311 for_each_netdev(net, dev) {
2312 for (i = 0; i < NPROTO; i++) {
2313 if (gifconf_list[i]) {
2314 int done;
2315 if (!pos)
2316 done = gifconf_list[i](dev, NULL, 0);
2317 else
2318 done = gifconf_list[i](dev, pos + total,
2319 len - total);
2320 if (done < 0)
2321 return -EFAULT;
2322 total += done;
2323 }
2324 }
2325 }
2326
2327 /*
2328 * All done. Write the updated control block back to the caller.
2329 */
2330 ifc.ifc_len = total;
2331
2332 /*
2333 * Both BSD and Solaris return 0 here, so we do too.
2334 */
2335 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2336 }
2337
2338 #ifdef CONFIG_PROC_FS
2339 /*
2340 * This is invoked by the /proc filesystem handler to display a device
2341 * in detail.
2342 */
2343 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2344 {
2345 struct net *net = seq->private;
2346 loff_t off;
2347 struct net_device *dev;
2348
2349 read_lock(&dev_base_lock);
2350 if (!*pos)
2351 return SEQ_START_TOKEN;
2352
2353 off = 1;
2354 for_each_netdev(net, dev)
2355 if (off++ == *pos)
2356 return dev;
2357
2358 return NULL;
2359 }
2360
2361 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2362 {
2363 struct net *net = seq->private;
2364 ++*pos;
2365 return v == SEQ_START_TOKEN ?
2366 first_net_device(net) : next_net_device((struct net_device *)v);
2367 }
2368
2369 void dev_seq_stop(struct seq_file *seq, void *v)
2370 {
2371 read_unlock(&dev_base_lock);
2372 }
2373
2374 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2375 {
2376 struct net_device_stats *stats = dev->get_stats(dev);
2377
2378 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2379 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2380 dev->name, stats->rx_bytes, stats->rx_packets,
2381 stats->rx_errors,
2382 stats->rx_dropped + stats->rx_missed_errors,
2383 stats->rx_fifo_errors,
2384 stats->rx_length_errors + stats->rx_over_errors +
2385 stats->rx_crc_errors + stats->rx_frame_errors,
2386 stats->rx_compressed, stats->multicast,
2387 stats->tx_bytes, stats->tx_packets,
2388 stats->tx_errors, stats->tx_dropped,
2389 stats->tx_fifo_errors, stats->collisions,
2390 stats->tx_carrier_errors +
2391 stats->tx_aborted_errors +
2392 stats->tx_window_errors +
2393 stats->tx_heartbeat_errors,
2394 stats->tx_compressed);
2395 }
2396
2397 /*
2398 * Called from the PROCfs module. This now uses the new arbitrary sized
2399 * /proc/net interface to create /proc/net/dev
2400 */
2401 static int dev_seq_show(struct seq_file *seq, void *v)
2402 {
2403 if (v == SEQ_START_TOKEN)
2404 seq_puts(seq, "Inter-| Receive "
2405 " | Transmit\n"
2406 " face |bytes packets errs drop fifo frame "
2407 "compressed multicast|bytes packets errs "
2408 "drop fifo colls carrier compressed\n");
2409 else
2410 dev_seq_printf_stats(seq, v);
2411 return 0;
2412 }
2413
2414 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2415 {
2416 struct netif_rx_stats *rc = NULL;
2417
2418 while (*pos < NR_CPUS)
2419 if (cpu_online(*pos)) {
2420 rc = &per_cpu(netdev_rx_stat, *pos);
2421 break;
2422 } else
2423 ++*pos;
2424 return rc;
2425 }
2426
2427 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2428 {
2429 return softnet_get_online(pos);
2430 }
2431
2432 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2433 {
2434 ++*pos;
2435 return softnet_get_online(pos);
2436 }
2437
2438 static void softnet_seq_stop(struct seq_file *seq, void *v)
2439 {
2440 }
2441
2442 static int softnet_seq_show(struct seq_file *seq, void *v)
2443 {
2444 struct netif_rx_stats *s = v;
2445
2446 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2447 s->total, s->dropped, s->time_squeeze, 0,
2448 0, 0, 0, 0, /* was fastroute */
2449 s->cpu_collision );
2450 return 0;
2451 }
2452
2453 static const struct seq_operations dev_seq_ops = {
2454 .start = dev_seq_start,
2455 .next = dev_seq_next,
2456 .stop = dev_seq_stop,
2457 .show = dev_seq_show,
2458 };
2459
2460 static int dev_seq_open(struct inode *inode, struct file *file)
2461 {
2462 struct seq_file *seq;
2463 int res;
2464 res = seq_open(file, &dev_seq_ops);
2465 if (!res) {
2466 seq = file->private_data;
2467 seq->private = get_proc_net(inode);
2468 if (!seq->private) {
2469 seq_release(inode, file);
2470 res = -ENXIO;
2471 }
2472 }
2473 return res;
2474 }
2475
2476 static int dev_seq_release(struct inode *inode, struct file *file)
2477 {
2478 struct seq_file *seq = file->private_data;
2479 struct net *net = seq->private;
2480 put_net(net);
2481 return seq_release(inode, file);
2482 }
2483
2484 static const struct file_operations dev_seq_fops = {
2485 .owner = THIS_MODULE,
2486 .open = dev_seq_open,
2487 .read = seq_read,
2488 .llseek = seq_lseek,
2489 .release = dev_seq_release,
2490 };
2491
2492 static const struct seq_operations softnet_seq_ops = {
2493 .start = softnet_seq_start,
2494 .next = softnet_seq_next,
2495 .stop = softnet_seq_stop,
2496 .show = softnet_seq_show,
2497 };
2498
2499 static int softnet_seq_open(struct inode *inode, struct file *file)
2500 {
2501 return seq_open(file, &softnet_seq_ops);
2502 }
2503
2504 static const struct file_operations softnet_seq_fops = {
2505 .owner = THIS_MODULE,
2506 .open = softnet_seq_open,
2507 .read = seq_read,
2508 .llseek = seq_lseek,
2509 .release = seq_release,
2510 };
2511
2512 static void *ptype_get_idx(loff_t pos)
2513 {
2514 struct packet_type *pt = NULL;
2515 loff_t i = 0;
2516 int t;
2517
2518 list_for_each_entry_rcu(pt, &ptype_all, list) {
2519 if (i == pos)
2520 return pt;
2521 ++i;
2522 }
2523
2524 for (t = 0; t < 16; t++) {
2525 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2526 if (i == pos)
2527 return pt;
2528 ++i;
2529 }
2530 }
2531 return NULL;
2532 }
2533
2534 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2535 {
2536 rcu_read_lock();
2537 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2538 }
2539
2540 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2541 {
2542 struct packet_type *pt;
2543 struct list_head *nxt;
2544 int hash;
2545
2546 ++*pos;
2547 if (v == SEQ_START_TOKEN)
2548 return ptype_get_idx(0);
2549
2550 pt = v;
2551 nxt = pt->list.next;
2552 if (pt->type == htons(ETH_P_ALL)) {
2553 if (nxt != &ptype_all)
2554 goto found;
2555 hash = 0;
2556 nxt = ptype_base[0].next;
2557 } else
2558 hash = ntohs(pt->type) & 15;
2559
2560 while (nxt == &ptype_base[hash]) {
2561 if (++hash >= 16)
2562 return NULL;
2563 nxt = ptype_base[hash].next;
2564 }
2565 found:
2566 return list_entry(nxt, struct packet_type, list);
2567 }
2568
2569 static void ptype_seq_stop(struct seq_file *seq, void *v)
2570 {
2571 rcu_read_unlock();
2572 }
2573
2574 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2575 {
2576 #ifdef CONFIG_KALLSYMS
2577 unsigned long offset = 0, symsize;
2578 const char *symname;
2579 char *modname;
2580 char namebuf[128];
2581
2582 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2583 &modname, namebuf);
2584
2585 if (symname) {
2586 char *delim = ":";
2587
2588 if (!modname)
2589 modname = delim = "";
2590 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2591 symname, offset);
2592 return;
2593 }
2594 #endif
2595
2596 seq_printf(seq, "[%p]", sym);
2597 }
2598
2599 static int ptype_seq_show(struct seq_file *seq, void *v)
2600 {
2601 struct packet_type *pt = v;
2602
2603 if (v == SEQ_START_TOKEN)
2604 seq_puts(seq, "Type Device Function\n");
2605 else {
2606 if (pt->type == htons(ETH_P_ALL))
2607 seq_puts(seq, "ALL ");
2608 else
2609 seq_printf(seq, "%04x", ntohs(pt->type));
2610
2611 seq_printf(seq, " %-8s ",
2612 pt->dev ? pt->dev->name : "");
2613 ptype_seq_decode(seq, pt->func);
2614 seq_putc(seq, '\n');
2615 }
2616
2617 return 0;
2618 }
2619
2620 static const struct seq_operations ptype_seq_ops = {
2621 .start = ptype_seq_start,
2622 .next = ptype_seq_next,
2623 .stop = ptype_seq_stop,
2624 .show = ptype_seq_show,
2625 };
2626
2627 static int ptype_seq_open(struct inode *inode, struct file *file)
2628 {
2629 return seq_open(file, &ptype_seq_ops);
2630 }
2631
2632 static const struct file_operations ptype_seq_fops = {
2633 .owner = THIS_MODULE,
2634 .open = ptype_seq_open,
2635 .read = seq_read,
2636 .llseek = seq_lseek,
2637 .release = seq_release,
2638 };
2639
2640
2641 static int dev_proc_net_init(struct net *net)
2642 {
2643 int rc = -ENOMEM;
2644
2645 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2646 goto out;
2647 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2648 goto out_dev;
2649 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2650 goto out_softnet;
2651
2652 if (wext_proc_init(net))
2653 goto out_ptype;
2654 rc = 0;
2655 out:
2656 return rc;
2657 out_ptype:
2658 proc_net_remove(net, "ptype");
2659 out_softnet:
2660 proc_net_remove(net, "softnet_stat");
2661 out_dev:
2662 proc_net_remove(net, "dev");
2663 goto out;
2664 }
2665
2666 static void dev_proc_net_exit(struct net *net)
2667 {
2668 wext_proc_exit(net);
2669
2670 proc_net_remove(net, "ptype");
2671 proc_net_remove(net, "softnet_stat");
2672 proc_net_remove(net, "dev");
2673 }
2674
2675 static struct pernet_operations dev_proc_ops = {
2676 .init = dev_proc_net_init,
2677 .exit = dev_proc_net_exit,
2678 };
2679
2680 static int __init dev_proc_init(void)
2681 {
2682 return register_pernet_subsys(&dev_proc_ops);
2683 }
2684 #else
2685 #define dev_proc_init() 0
2686 #endif /* CONFIG_PROC_FS */
2687
2688
2689 /**
2690 * netdev_set_master - set up master/slave pair
2691 * @slave: slave device
2692 * @master: new master device
2693 *
2694 * Changes the master device of the slave. Pass %NULL to break the
2695 * bonding. The caller must hold the RTNL semaphore. On a failure
2696 * a negative errno code is returned. On success the reference counts
2697 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2698 * function returns zero.
2699 */
2700 int netdev_set_master(struct net_device *slave, struct net_device *master)
2701 {
2702 struct net_device *old = slave->master;
2703
2704 ASSERT_RTNL();
2705
2706 if (master) {
2707 if (old)
2708 return -EBUSY;
2709 dev_hold(master);
2710 }
2711
2712 slave->master = master;
2713
2714 synchronize_net();
2715
2716 if (old)
2717 dev_put(old);
2718
2719 if (master)
2720 slave->flags |= IFF_SLAVE;
2721 else
2722 slave->flags &= ~IFF_SLAVE;
2723
2724 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2725 return 0;
2726 }
2727
2728 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2729 {
2730 unsigned short old_flags = dev->flags;
2731
2732 ASSERT_RTNL();
2733
2734 if ((dev->promiscuity += inc) == 0)
2735 dev->flags &= ~IFF_PROMISC;
2736 else
2737 dev->flags |= IFF_PROMISC;
2738 if (dev->flags != old_flags) {
2739 printk(KERN_INFO "device %s %s promiscuous mode\n",
2740 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2741 "left");
2742 audit_log(current->audit_context, GFP_ATOMIC,
2743 AUDIT_ANOM_PROMISCUOUS,
2744 "dev=%s prom=%d old_prom=%d auid=%u",
2745 dev->name, (dev->flags & IFF_PROMISC),
2746 (old_flags & IFF_PROMISC),
2747 audit_get_loginuid(current->audit_context));
2748
2749 if (dev->change_rx_flags)
2750 dev->change_rx_flags(dev, IFF_PROMISC);
2751 }
2752 }
2753
2754 /**
2755 * dev_set_promiscuity - update promiscuity count on a device
2756 * @dev: device
2757 * @inc: modifier
2758 *
2759 * Add or remove promiscuity from a device. While the count in the device
2760 * remains above zero the interface remains promiscuous. Once it hits zero
2761 * the device reverts back to normal filtering operation. A negative inc
2762 * value is used to drop promiscuity on the device.
2763 */
2764 void dev_set_promiscuity(struct net_device *dev, int inc)
2765 {
2766 unsigned short old_flags = dev->flags;
2767
2768 __dev_set_promiscuity(dev, inc);
2769 if (dev->flags != old_flags)
2770 dev_set_rx_mode(dev);
2771 }
2772
2773 /**
2774 * dev_set_allmulti - update allmulti count on a device
2775 * @dev: device
2776 * @inc: modifier
2777 *
2778 * Add or remove reception of all multicast frames to a device. While the
2779 * count in the device remains above zero the interface remains listening
2780 * to all interfaces. Once it hits zero the device reverts back to normal
2781 * filtering operation. A negative @inc value is used to drop the counter
2782 * when releasing a resource needing all multicasts.
2783 */
2784
2785 void dev_set_allmulti(struct net_device *dev, int inc)
2786 {
2787 unsigned short old_flags = dev->flags;
2788
2789 ASSERT_RTNL();
2790
2791 dev->flags |= IFF_ALLMULTI;
2792 if ((dev->allmulti += inc) == 0)
2793 dev->flags &= ~IFF_ALLMULTI;
2794 if (dev->flags ^ old_flags) {
2795 if (dev->change_rx_flags)
2796 dev->change_rx_flags(dev, IFF_ALLMULTI);
2797 dev_set_rx_mode(dev);
2798 }
2799 }
2800
2801 /*
2802 * Upload unicast and multicast address lists to device and
2803 * configure RX filtering. When the device doesn't support unicast
2804 * filtering it is put in promiscous mode while unicast addresses
2805 * are present.
2806 */
2807 void __dev_set_rx_mode(struct net_device *dev)
2808 {
2809 /* dev_open will call this function so the list will stay sane. */
2810 if (!(dev->flags&IFF_UP))
2811 return;
2812
2813 if (!netif_device_present(dev))
2814 return;
2815
2816 if (dev->set_rx_mode)
2817 dev->set_rx_mode(dev);
2818 else {
2819 /* Unicast addresses changes may only happen under the rtnl,
2820 * therefore calling __dev_set_promiscuity here is safe.
2821 */
2822 if (dev->uc_count > 0 && !dev->uc_promisc) {
2823 __dev_set_promiscuity(dev, 1);
2824 dev->uc_promisc = 1;
2825 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2826 __dev_set_promiscuity(dev, -1);
2827 dev->uc_promisc = 0;
2828 }
2829
2830 if (dev->set_multicast_list)
2831 dev->set_multicast_list(dev);
2832 }
2833 }
2834
2835 void dev_set_rx_mode(struct net_device *dev)
2836 {
2837 netif_tx_lock_bh(dev);
2838 __dev_set_rx_mode(dev);
2839 netif_tx_unlock_bh(dev);
2840 }
2841
2842 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2843 void *addr, int alen, int glbl)
2844 {
2845 struct dev_addr_list *da;
2846
2847 for (; (da = *list) != NULL; list = &da->next) {
2848 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2849 alen == da->da_addrlen) {
2850 if (glbl) {
2851 int old_glbl = da->da_gusers;
2852 da->da_gusers = 0;
2853 if (old_glbl == 0)
2854 break;
2855 }
2856 if (--da->da_users)
2857 return 0;
2858
2859 *list = da->next;
2860 kfree(da);
2861 (*count)--;
2862 return 0;
2863 }
2864 }
2865 return -ENOENT;
2866 }
2867
2868 int __dev_addr_add(struct dev_addr_list **list, int *count,
2869 void *addr, int alen, int glbl)
2870 {
2871 struct dev_addr_list *da;
2872
2873 for (da = *list; da != NULL; da = da->next) {
2874 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2875 da->da_addrlen == alen) {
2876 if (glbl) {
2877 int old_glbl = da->da_gusers;
2878 da->da_gusers = 1;
2879 if (old_glbl)
2880 return 0;
2881 }
2882 da->da_users++;
2883 return 0;
2884 }
2885 }
2886
2887 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2888 if (da == NULL)
2889 return -ENOMEM;
2890 memcpy(da->da_addr, addr, alen);
2891 da->da_addrlen = alen;
2892 da->da_users = 1;
2893 da->da_gusers = glbl ? 1 : 0;
2894 da->next = *list;
2895 *list = da;
2896 (*count)++;
2897 return 0;
2898 }
2899
2900 /**
2901 * dev_unicast_delete - Release secondary unicast address.
2902 * @dev: device
2903 * @addr: address to delete
2904 * @alen: length of @addr
2905 *
2906 * Release reference to a secondary unicast address and remove it
2907 * from the device if the reference count drops to zero.
2908 *
2909 * The caller must hold the rtnl_mutex.
2910 */
2911 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2912 {
2913 int err;
2914
2915 ASSERT_RTNL();
2916
2917 netif_tx_lock_bh(dev);
2918 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2919 if (!err)
2920 __dev_set_rx_mode(dev);
2921 netif_tx_unlock_bh(dev);
2922 return err;
2923 }
2924 EXPORT_SYMBOL(dev_unicast_delete);
2925
2926 /**
2927 * dev_unicast_add - add a secondary unicast address
2928 * @dev: device
2929 * @addr: address to delete
2930 * @alen: length of @addr
2931 *
2932 * Add a secondary unicast address to the device or increase
2933 * the reference count if it already exists.
2934 *
2935 * The caller must hold the rtnl_mutex.
2936 */
2937 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2938 {
2939 int err;
2940
2941 ASSERT_RTNL();
2942
2943 netif_tx_lock_bh(dev);
2944 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2945 if (!err)
2946 __dev_set_rx_mode(dev);
2947 netif_tx_unlock_bh(dev);
2948 return err;
2949 }
2950 EXPORT_SYMBOL(dev_unicast_add);
2951
2952 static void __dev_addr_discard(struct dev_addr_list **list)
2953 {
2954 struct dev_addr_list *tmp;
2955
2956 while (*list != NULL) {
2957 tmp = *list;
2958 *list = tmp->next;
2959 if (tmp->da_users > tmp->da_gusers)
2960 printk("__dev_addr_discard: address leakage! "
2961 "da_users=%d\n", tmp->da_users);
2962 kfree(tmp);
2963 }
2964 }
2965
2966 static void dev_addr_discard(struct net_device *dev)
2967 {
2968 netif_tx_lock_bh(dev);
2969
2970 __dev_addr_discard(&dev->uc_list);
2971 dev->uc_count = 0;
2972
2973 __dev_addr_discard(&dev->mc_list);
2974 dev->mc_count = 0;
2975
2976 netif_tx_unlock_bh(dev);
2977 }
2978
2979 unsigned dev_get_flags(const struct net_device *dev)
2980 {
2981 unsigned flags;
2982
2983 flags = (dev->flags & ~(IFF_PROMISC |
2984 IFF_ALLMULTI |
2985 IFF_RUNNING |
2986 IFF_LOWER_UP |
2987 IFF_DORMANT)) |
2988 (dev->gflags & (IFF_PROMISC |
2989 IFF_ALLMULTI));
2990
2991 if (netif_running(dev)) {
2992 if (netif_oper_up(dev))
2993 flags |= IFF_RUNNING;
2994 if (netif_carrier_ok(dev))
2995 flags |= IFF_LOWER_UP;
2996 if (netif_dormant(dev))
2997 flags |= IFF_DORMANT;
2998 }
2999
3000 return flags;
3001 }
3002
3003 int dev_change_flags(struct net_device *dev, unsigned flags)
3004 {
3005 int ret, changes;
3006 int old_flags = dev->flags;
3007
3008 ASSERT_RTNL();
3009
3010 /*
3011 * Set the flags on our device.
3012 */
3013
3014 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3015 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3016 IFF_AUTOMEDIA)) |
3017 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3018 IFF_ALLMULTI));
3019
3020 /*
3021 * Load in the correct multicast list now the flags have changed.
3022 */
3023
3024 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3025 dev->change_rx_flags(dev, IFF_MULTICAST);
3026
3027 dev_set_rx_mode(dev);
3028
3029 /*
3030 * Have we downed the interface. We handle IFF_UP ourselves
3031 * according to user attempts to set it, rather than blindly
3032 * setting it.
3033 */
3034
3035 ret = 0;
3036 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3037 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3038
3039 if (!ret)
3040 dev_set_rx_mode(dev);
3041 }
3042
3043 if (dev->flags & IFF_UP &&
3044 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3045 IFF_VOLATILE)))
3046 raw_notifier_call_chain(&netdev_chain,
3047 NETDEV_CHANGE, dev);
3048
3049 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3050 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3051 dev->gflags ^= IFF_PROMISC;
3052 dev_set_promiscuity(dev, inc);
3053 }
3054
3055 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3056 is important. Some (broken) drivers set IFF_PROMISC, when
3057 IFF_ALLMULTI is requested not asking us and not reporting.
3058 */
3059 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3060 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3061 dev->gflags ^= IFF_ALLMULTI;
3062 dev_set_allmulti(dev, inc);
3063 }
3064
3065 /* Exclude state transition flags, already notified */
3066 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3067 if (changes)
3068 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3069
3070 return ret;
3071 }
3072
3073 int dev_set_mtu(struct net_device *dev, int new_mtu)
3074 {
3075 int err;
3076
3077 if (new_mtu == dev->mtu)
3078 return 0;
3079
3080 /* MTU must be positive. */
3081 if (new_mtu < 0)
3082 return -EINVAL;
3083
3084 if (!netif_device_present(dev))
3085 return -ENODEV;
3086
3087 err = 0;
3088 if (dev->change_mtu)
3089 err = dev->change_mtu(dev, new_mtu);
3090 else
3091 dev->mtu = new_mtu;
3092 if (!err && dev->flags & IFF_UP)
3093 raw_notifier_call_chain(&netdev_chain,
3094 NETDEV_CHANGEMTU, dev);
3095 return err;
3096 }
3097
3098 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3099 {
3100 int err;
3101
3102 if (!dev->set_mac_address)
3103 return -EOPNOTSUPP;
3104 if (sa->sa_family != dev->type)
3105 return -EINVAL;
3106 if (!netif_device_present(dev))
3107 return -ENODEV;
3108 err = dev->set_mac_address(dev, sa);
3109 if (!err)
3110 raw_notifier_call_chain(&netdev_chain,
3111 NETDEV_CHANGEADDR, dev);
3112 return err;
3113 }
3114
3115 /*
3116 * Perform the SIOCxIFxxx calls.
3117 */
3118 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3119 {
3120 int err;
3121 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3122
3123 if (!dev)
3124 return -ENODEV;
3125
3126 switch (cmd) {
3127 case SIOCGIFFLAGS: /* Get interface flags */
3128 ifr->ifr_flags = dev_get_flags(dev);
3129 return 0;
3130
3131 case SIOCSIFFLAGS: /* Set interface flags */
3132 return dev_change_flags(dev, ifr->ifr_flags);
3133
3134 case SIOCGIFMETRIC: /* Get the metric on the interface
3135 (currently unused) */
3136 ifr->ifr_metric = 0;
3137 return 0;
3138
3139 case SIOCSIFMETRIC: /* Set the metric on the interface
3140 (currently unused) */
3141 return -EOPNOTSUPP;
3142
3143 case SIOCGIFMTU: /* Get the MTU of a device */
3144 ifr->ifr_mtu = dev->mtu;
3145 return 0;
3146
3147 case SIOCSIFMTU: /* Set the MTU of a device */
3148 return dev_set_mtu(dev, ifr->ifr_mtu);
3149
3150 case SIOCGIFHWADDR:
3151 if (!dev->addr_len)
3152 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3153 else
3154 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3155 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3156 ifr->ifr_hwaddr.sa_family = dev->type;
3157 return 0;
3158
3159 case SIOCSIFHWADDR:
3160 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3161
3162 case SIOCSIFHWBROADCAST:
3163 if (ifr->ifr_hwaddr.sa_family != dev->type)
3164 return -EINVAL;
3165 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3166 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3167 raw_notifier_call_chain(&netdev_chain,
3168 NETDEV_CHANGEADDR, dev);
3169 return 0;
3170
3171 case SIOCGIFMAP:
3172 ifr->ifr_map.mem_start = dev->mem_start;
3173 ifr->ifr_map.mem_end = dev->mem_end;
3174 ifr->ifr_map.base_addr = dev->base_addr;
3175 ifr->ifr_map.irq = dev->irq;
3176 ifr->ifr_map.dma = dev->dma;
3177 ifr->ifr_map.port = dev->if_port;
3178 return 0;
3179
3180 case SIOCSIFMAP:
3181 if (dev->set_config) {
3182 if (!netif_device_present(dev))
3183 return -ENODEV;
3184 return dev->set_config(dev, &ifr->ifr_map);
3185 }
3186 return -EOPNOTSUPP;
3187
3188 case SIOCADDMULTI:
3189 if (!dev->set_multicast_list ||
3190 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3191 return -EINVAL;
3192 if (!netif_device_present(dev))
3193 return -ENODEV;
3194 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3195 dev->addr_len, 1);
3196
3197 case SIOCDELMULTI:
3198 if (!dev->set_multicast_list ||
3199 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3200 return -EINVAL;
3201 if (!netif_device_present(dev))
3202 return -ENODEV;
3203 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3204 dev->addr_len, 1);
3205
3206 case SIOCGIFINDEX:
3207 ifr->ifr_ifindex = dev->ifindex;
3208 return 0;
3209
3210 case SIOCGIFTXQLEN:
3211 ifr->ifr_qlen = dev->tx_queue_len;
3212 return 0;
3213
3214 case SIOCSIFTXQLEN:
3215 if (ifr->ifr_qlen < 0)
3216 return -EINVAL;
3217 dev->tx_queue_len = ifr->ifr_qlen;
3218 return 0;
3219
3220 case SIOCSIFNAME:
3221 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3222 return dev_change_name(dev, ifr->ifr_newname);
3223
3224 /*
3225 * Unknown or private ioctl
3226 */
3227
3228 default:
3229 if ((cmd >= SIOCDEVPRIVATE &&
3230 cmd <= SIOCDEVPRIVATE + 15) ||
3231 cmd == SIOCBONDENSLAVE ||
3232 cmd == SIOCBONDRELEASE ||
3233 cmd == SIOCBONDSETHWADDR ||
3234 cmd == SIOCBONDSLAVEINFOQUERY ||
3235 cmd == SIOCBONDINFOQUERY ||
3236 cmd == SIOCBONDCHANGEACTIVE ||
3237 cmd == SIOCGMIIPHY ||
3238 cmd == SIOCGMIIREG ||
3239 cmd == SIOCSMIIREG ||
3240 cmd == SIOCBRADDIF ||
3241 cmd == SIOCBRDELIF ||
3242 cmd == SIOCWANDEV) {
3243 err = -EOPNOTSUPP;
3244 if (dev->do_ioctl) {
3245 if (netif_device_present(dev))
3246 err = dev->do_ioctl(dev, ifr,
3247 cmd);
3248 else
3249 err = -ENODEV;
3250 }
3251 } else
3252 err = -EINVAL;
3253
3254 }
3255 return err;
3256 }
3257
3258 /*
3259 * This function handles all "interface"-type I/O control requests. The actual
3260 * 'doing' part of this is dev_ifsioc above.
3261 */
3262
3263 /**
3264 * dev_ioctl - network device ioctl
3265 * @cmd: command to issue
3266 * @arg: pointer to a struct ifreq in user space
3267 *
3268 * Issue ioctl functions to devices. This is normally called by the
3269 * user space syscall interfaces but can sometimes be useful for
3270 * other purposes. The return value is the return from the syscall if
3271 * positive or a negative errno code on error.
3272 */
3273
3274 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3275 {
3276 struct ifreq ifr;
3277 int ret;
3278 char *colon;
3279
3280 /* One special case: SIOCGIFCONF takes ifconf argument
3281 and requires shared lock, because it sleeps writing
3282 to user space.
3283 */
3284
3285 if (cmd == SIOCGIFCONF) {
3286 rtnl_lock();
3287 ret = dev_ifconf(net, (char __user *) arg);
3288 rtnl_unlock();
3289 return ret;
3290 }
3291 if (cmd == SIOCGIFNAME)
3292 return dev_ifname(net, (struct ifreq __user *)arg);
3293
3294 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3295 return -EFAULT;
3296
3297 ifr.ifr_name[IFNAMSIZ-1] = 0;
3298
3299 colon = strchr(ifr.ifr_name, ':');
3300 if (colon)
3301 *colon = 0;
3302
3303 /*
3304 * See which interface the caller is talking about.
3305 */
3306
3307 switch (cmd) {
3308 /*
3309 * These ioctl calls:
3310 * - can be done by all.
3311 * - atomic and do not require locking.
3312 * - return a value
3313 */
3314 case SIOCGIFFLAGS:
3315 case SIOCGIFMETRIC:
3316 case SIOCGIFMTU:
3317 case SIOCGIFHWADDR:
3318 case SIOCGIFSLAVE:
3319 case SIOCGIFMAP:
3320 case SIOCGIFINDEX:
3321 case SIOCGIFTXQLEN:
3322 dev_load(net, ifr.ifr_name);
3323 read_lock(&dev_base_lock);
3324 ret = dev_ifsioc(net, &ifr, cmd);
3325 read_unlock(&dev_base_lock);
3326 if (!ret) {
3327 if (colon)
3328 *colon = ':';
3329 if (copy_to_user(arg, &ifr,
3330 sizeof(struct ifreq)))
3331 ret = -EFAULT;
3332 }
3333 return ret;
3334
3335 case SIOCETHTOOL:
3336 dev_load(net, ifr.ifr_name);
3337 rtnl_lock();
3338 ret = dev_ethtool(net, &ifr);
3339 rtnl_unlock();
3340 if (!ret) {
3341 if (colon)
3342 *colon = ':';
3343 if (copy_to_user(arg, &ifr,
3344 sizeof(struct ifreq)))
3345 ret = -EFAULT;
3346 }
3347 return ret;
3348
3349 /*
3350 * These ioctl calls:
3351 * - require superuser power.
3352 * - require strict serialization.
3353 * - return a value
3354 */
3355 case SIOCGMIIPHY:
3356 case SIOCGMIIREG:
3357 case SIOCSIFNAME:
3358 if (!capable(CAP_NET_ADMIN))
3359 return -EPERM;
3360 dev_load(net, ifr.ifr_name);
3361 rtnl_lock();
3362 ret = dev_ifsioc(net, &ifr, cmd);
3363 rtnl_unlock();
3364 if (!ret) {
3365 if (colon)
3366 *colon = ':';
3367 if (copy_to_user(arg, &ifr,
3368 sizeof(struct ifreq)))
3369 ret = -EFAULT;
3370 }
3371 return ret;
3372
3373 /*
3374 * These ioctl calls:
3375 * - require superuser power.
3376 * - require strict serialization.
3377 * - do not return a value
3378 */
3379 case SIOCSIFFLAGS:
3380 case SIOCSIFMETRIC:
3381 case SIOCSIFMTU:
3382 case SIOCSIFMAP:
3383 case SIOCSIFHWADDR:
3384 case SIOCSIFSLAVE:
3385 case SIOCADDMULTI:
3386 case SIOCDELMULTI:
3387 case SIOCSIFHWBROADCAST:
3388 case SIOCSIFTXQLEN:
3389 case SIOCSMIIREG:
3390 case SIOCBONDENSLAVE:
3391 case SIOCBONDRELEASE:
3392 case SIOCBONDSETHWADDR:
3393 case SIOCBONDCHANGEACTIVE:
3394 case SIOCBRADDIF:
3395 case SIOCBRDELIF:
3396 if (!capable(CAP_NET_ADMIN))
3397 return -EPERM;
3398 /* fall through */
3399 case SIOCBONDSLAVEINFOQUERY:
3400 case SIOCBONDINFOQUERY:
3401 dev_load(net, ifr.ifr_name);
3402 rtnl_lock();
3403 ret = dev_ifsioc(net, &ifr, cmd);
3404 rtnl_unlock();
3405 return ret;
3406
3407 case SIOCGIFMEM:
3408 /* Get the per device memory space. We can add this but
3409 * currently do not support it */
3410 case SIOCSIFMEM:
3411 /* Set the per device memory buffer space.
3412 * Not applicable in our case */
3413 case SIOCSIFLINK:
3414 return -EINVAL;
3415
3416 /*
3417 * Unknown or private ioctl.
3418 */
3419 default:
3420 if (cmd == SIOCWANDEV ||
3421 (cmd >= SIOCDEVPRIVATE &&
3422 cmd <= SIOCDEVPRIVATE + 15)) {
3423 dev_load(net, ifr.ifr_name);
3424 rtnl_lock();
3425 ret = dev_ifsioc(net, &ifr, cmd);
3426 rtnl_unlock();
3427 if (!ret && copy_to_user(arg, &ifr,
3428 sizeof(struct ifreq)))
3429 ret = -EFAULT;
3430 return ret;
3431 }
3432 /* Take care of Wireless Extensions */
3433 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3434 return wext_handle_ioctl(net, &ifr, cmd, arg);
3435 return -EINVAL;
3436 }
3437 }
3438
3439
3440 /**
3441 * dev_new_index - allocate an ifindex
3442 *
3443 * Returns a suitable unique value for a new device interface
3444 * number. The caller must hold the rtnl semaphore or the
3445 * dev_base_lock to be sure it remains unique.
3446 */
3447 static int dev_new_index(struct net *net)
3448 {
3449 static int ifindex;
3450 for (;;) {
3451 if (++ifindex <= 0)
3452 ifindex = 1;
3453 if (!__dev_get_by_index(net, ifindex))
3454 return ifindex;
3455 }
3456 }
3457
3458 /* Delayed registration/unregisteration */
3459 static DEFINE_SPINLOCK(net_todo_list_lock);
3460 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3461
3462 static void net_set_todo(struct net_device *dev)
3463 {
3464 spin_lock(&net_todo_list_lock);
3465 list_add_tail(&dev->todo_list, &net_todo_list);
3466 spin_unlock(&net_todo_list_lock);
3467 }
3468
3469 /**
3470 * register_netdevice - register a network device
3471 * @dev: device to register
3472 *
3473 * Take a completed network device structure and add it to the kernel
3474 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3475 * chain. 0 is returned on success. A negative errno code is returned
3476 * on a failure to set up the device, or if the name is a duplicate.
3477 *
3478 * Callers must hold the rtnl semaphore. You may want
3479 * register_netdev() instead of this.
3480 *
3481 * BUGS:
3482 * The locking appears insufficient to guarantee two parallel registers
3483 * will not get the same name.
3484 */
3485
3486 int register_netdevice(struct net_device *dev)
3487 {
3488 struct hlist_head *head;
3489 struct hlist_node *p;
3490 int ret;
3491 struct net *net;
3492
3493 BUG_ON(dev_boot_phase);
3494 ASSERT_RTNL();
3495
3496 might_sleep();
3497
3498 /* When net_device's are persistent, this will be fatal. */
3499 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3500 BUG_ON(!dev->nd_net);
3501 net = dev->nd_net;
3502
3503 spin_lock_init(&dev->queue_lock);
3504 spin_lock_init(&dev->_xmit_lock);
3505 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3506 dev->xmit_lock_owner = -1;
3507 spin_lock_init(&dev->ingress_lock);
3508
3509 dev->iflink = -1;
3510
3511 /* Init, if this function is available */
3512 if (dev->init) {
3513 ret = dev->init(dev);
3514 if (ret) {
3515 if (ret > 0)
3516 ret = -EIO;
3517 goto out;
3518 }
3519 }
3520
3521 if (!dev_valid_name(dev->name)) {
3522 ret = -EINVAL;
3523 goto err_uninit;
3524 }
3525
3526 dev->ifindex = dev_new_index(net);
3527 if (dev->iflink == -1)
3528 dev->iflink = dev->ifindex;
3529
3530 /* Check for existence of name */
3531 head = dev_name_hash(net, dev->name);
3532 hlist_for_each(p, head) {
3533 struct net_device *d
3534 = hlist_entry(p, struct net_device, name_hlist);
3535 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3536 ret = -EEXIST;
3537 goto err_uninit;
3538 }
3539 }
3540
3541 /* Fix illegal checksum combinations */
3542 if ((dev->features & NETIF_F_HW_CSUM) &&
3543 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3544 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3545 dev->name);
3546 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3547 }
3548
3549 if ((dev->features & NETIF_F_NO_CSUM) &&
3550 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3551 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3552 dev->name);
3553 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3554 }
3555
3556
3557 /* Fix illegal SG+CSUM combinations. */
3558 if ((dev->features & NETIF_F_SG) &&
3559 !(dev->features & NETIF_F_ALL_CSUM)) {
3560 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3561 dev->name);
3562 dev->features &= ~NETIF_F_SG;
3563 }
3564
3565 /* TSO requires that SG is present as well. */
3566 if ((dev->features & NETIF_F_TSO) &&
3567 !(dev->features & NETIF_F_SG)) {
3568 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3569 dev->name);
3570 dev->features &= ~NETIF_F_TSO;
3571 }
3572 if (dev->features & NETIF_F_UFO) {
3573 if (!(dev->features & NETIF_F_HW_CSUM)) {
3574 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3575 "NETIF_F_HW_CSUM feature.\n",
3576 dev->name);
3577 dev->features &= ~NETIF_F_UFO;
3578 }
3579 if (!(dev->features & NETIF_F_SG)) {
3580 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3581 "NETIF_F_SG feature.\n",
3582 dev->name);
3583 dev->features &= ~NETIF_F_UFO;
3584 }
3585 }
3586
3587 /*
3588 * nil rebuild_header routine,
3589 * that should be never called and used as just bug trap.
3590 */
3591
3592 if (!dev->rebuild_header)
3593 dev->rebuild_header = default_rebuild_header;
3594
3595 ret = netdev_register_sysfs(dev);
3596 if (ret)
3597 goto err_uninit;
3598 dev->reg_state = NETREG_REGISTERED;
3599
3600 /*
3601 * Default initial state at registry is that the
3602 * device is present.
3603 */
3604
3605 set_bit(__LINK_STATE_PRESENT, &dev->state);
3606
3607 dev_init_scheduler(dev);
3608 dev_hold(dev);
3609 list_netdevice(dev);
3610
3611 /* Notify protocols, that a new device appeared. */
3612 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3613 ret = notifier_to_errno(ret);
3614 if (ret)
3615 unregister_netdevice(dev);
3616
3617 out:
3618 return ret;
3619
3620 err_uninit:
3621 if (dev->uninit)
3622 dev->uninit(dev);
3623 goto out;
3624 }
3625
3626 /**
3627 * register_netdev - register a network device
3628 * @dev: device to register
3629 *
3630 * Take a completed network device structure and add it to the kernel
3631 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3632 * chain. 0 is returned on success. A negative errno code is returned
3633 * on a failure to set up the device, or if the name is a duplicate.
3634 *
3635 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3636 * and expands the device name if you passed a format string to
3637 * alloc_netdev.
3638 */
3639 int register_netdev(struct net_device *dev)
3640 {
3641 int err;
3642
3643 rtnl_lock();
3644
3645 /*
3646 * If the name is a format string the caller wants us to do a
3647 * name allocation.
3648 */
3649 if (strchr(dev->name, '%')) {
3650 err = dev_alloc_name(dev, dev->name);
3651 if (err < 0)
3652 goto out;
3653 }
3654
3655 err = register_netdevice(dev);
3656 out:
3657 rtnl_unlock();
3658 return err;
3659 }
3660 EXPORT_SYMBOL(register_netdev);
3661
3662 /*
3663 * netdev_wait_allrefs - wait until all references are gone.
3664 *
3665 * This is called when unregistering network devices.
3666 *
3667 * Any protocol or device that holds a reference should register
3668 * for netdevice notification, and cleanup and put back the
3669 * reference if they receive an UNREGISTER event.
3670 * We can get stuck here if buggy protocols don't correctly
3671 * call dev_put.
3672 */
3673 static void netdev_wait_allrefs(struct net_device *dev)
3674 {
3675 unsigned long rebroadcast_time, warning_time;
3676
3677 rebroadcast_time = warning_time = jiffies;
3678 while (atomic_read(&dev->refcnt) != 0) {
3679 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3680 rtnl_lock();
3681
3682 /* Rebroadcast unregister notification */
3683 raw_notifier_call_chain(&netdev_chain,
3684 NETDEV_UNREGISTER, dev);
3685
3686 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3687 &dev->state)) {
3688 /* We must not have linkwatch events
3689 * pending on unregister. If this
3690 * happens, we simply run the queue
3691 * unscheduled, resulting in a noop
3692 * for this device.
3693 */
3694 linkwatch_run_queue();
3695 }
3696
3697 __rtnl_unlock();
3698
3699 rebroadcast_time = jiffies;
3700 }
3701
3702 msleep(250);
3703
3704 if (time_after(jiffies, warning_time + 10 * HZ)) {
3705 printk(KERN_EMERG "unregister_netdevice: "
3706 "waiting for %s to become free. Usage "
3707 "count = %d\n",
3708 dev->name, atomic_read(&dev->refcnt));
3709 warning_time = jiffies;
3710 }
3711 }
3712 }
3713
3714 /* The sequence is:
3715 *
3716 * rtnl_lock();
3717 * ...
3718 * register_netdevice(x1);
3719 * register_netdevice(x2);
3720 * ...
3721 * unregister_netdevice(y1);
3722 * unregister_netdevice(y2);
3723 * ...
3724 * rtnl_unlock();
3725 * free_netdev(y1);
3726 * free_netdev(y2);
3727 *
3728 * We are invoked by rtnl_unlock() after it drops the semaphore.
3729 * This allows us to deal with problems:
3730 * 1) We can delete sysfs objects which invoke hotplug
3731 * without deadlocking with linkwatch via keventd.
3732 * 2) Since we run with the RTNL semaphore not held, we can sleep
3733 * safely in order to wait for the netdev refcnt to drop to zero.
3734 */
3735 static DEFINE_MUTEX(net_todo_run_mutex);
3736 void netdev_run_todo(void)
3737 {
3738 struct list_head list;
3739
3740 /* Need to guard against multiple cpu's getting out of order. */
3741 mutex_lock(&net_todo_run_mutex);
3742
3743 /* Not safe to do outside the semaphore. We must not return
3744 * until all unregister events invoked by the local processor
3745 * have been completed (either by this todo run, or one on
3746 * another cpu).
3747 */
3748 if (list_empty(&net_todo_list))
3749 goto out;
3750
3751 /* Snapshot list, allow later requests */
3752 spin_lock(&net_todo_list_lock);
3753 list_replace_init(&net_todo_list, &list);
3754 spin_unlock(&net_todo_list_lock);
3755
3756 while (!list_empty(&list)) {
3757 struct net_device *dev
3758 = list_entry(list.next, struct net_device, todo_list);
3759 list_del(&dev->todo_list);
3760
3761 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3762 printk(KERN_ERR "network todo '%s' but state %d\n",
3763 dev->name, dev->reg_state);
3764 dump_stack();
3765 continue;
3766 }
3767
3768 dev->reg_state = NETREG_UNREGISTERED;
3769
3770 netdev_wait_allrefs(dev);
3771
3772 /* paranoia */
3773 BUG_ON(atomic_read(&dev->refcnt));
3774 BUG_TRAP(!dev->ip_ptr);
3775 BUG_TRAP(!dev->ip6_ptr);
3776 BUG_TRAP(!dev->dn_ptr);
3777
3778 if (dev->destructor)
3779 dev->destructor(dev);
3780
3781 /* Free network device */
3782 kobject_put(&dev->dev.kobj);
3783 }
3784
3785 out:
3786 mutex_unlock(&net_todo_run_mutex);
3787 }
3788
3789 static struct net_device_stats *internal_stats(struct net_device *dev)
3790 {
3791 return &dev->stats;
3792 }
3793
3794 /**
3795 * alloc_netdev_mq - allocate network device
3796 * @sizeof_priv: size of private data to allocate space for
3797 * @name: device name format string
3798 * @setup: callback to initialize device
3799 * @queue_count: the number of subqueues to allocate
3800 *
3801 * Allocates a struct net_device with private data area for driver use
3802 * and performs basic initialization. Also allocates subquue structs
3803 * for each queue on the device at the end of the netdevice.
3804 */
3805 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3806 void (*setup)(struct net_device *), unsigned int queue_count)
3807 {
3808 void *p;
3809 struct net_device *dev;
3810 int alloc_size;
3811
3812 BUG_ON(strlen(name) >= sizeof(dev->name));
3813
3814 /* ensure 32-byte alignment of both the device and private area */
3815 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3816 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3817 ~NETDEV_ALIGN_CONST;
3818 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3819
3820 p = kzalloc(alloc_size, GFP_KERNEL);
3821 if (!p) {
3822 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3823 return NULL;
3824 }
3825
3826 dev = (struct net_device *)
3827 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3828 dev->padded = (char *)dev - (char *)p;
3829 dev->nd_net = &init_net;
3830
3831 if (sizeof_priv) {
3832 dev->priv = ((char *)dev +
3833 ((sizeof(struct net_device) +
3834 (sizeof(struct net_device_subqueue) *
3835 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3836 & ~NETDEV_ALIGN_CONST));
3837 }
3838
3839 dev->egress_subqueue_count = queue_count;
3840
3841 dev->get_stats = internal_stats;
3842 netpoll_netdev_init(dev);
3843 setup(dev);
3844 strcpy(dev->name, name);
3845 return dev;
3846 }
3847 EXPORT_SYMBOL(alloc_netdev_mq);
3848
3849 /**
3850 * free_netdev - free network device
3851 * @dev: device
3852 *
3853 * This function does the last stage of destroying an allocated device
3854 * interface. The reference to the device object is released.
3855 * If this is the last reference then it will be freed.
3856 */
3857 void free_netdev(struct net_device *dev)
3858 {
3859 #ifdef CONFIG_SYSFS
3860 /* Compatibility with error handling in drivers */
3861 if (dev->reg_state == NETREG_UNINITIALIZED) {
3862 kfree((char *)dev - dev->padded);
3863 return;
3864 }
3865
3866 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3867 dev->reg_state = NETREG_RELEASED;
3868
3869 /* will free via device release */
3870 put_device(&dev->dev);
3871 #else
3872 kfree((char *)dev - dev->padded);
3873 #endif
3874 }
3875
3876 /* Synchronize with packet receive processing. */
3877 void synchronize_net(void)
3878 {
3879 might_sleep();
3880 synchronize_rcu();
3881 }
3882
3883 /**
3884 * unregister_netdevice - remove device from the kernel
3885 * @dev: device
3886 *
3887 * This function shuts down a device interface and removes it
3888 * from the kernel tables. On success 0 is returned, on a failure
3889 * a negative errno code is returned.
3890 *
3891 * Callers must hold the rtnl semaphore. You may want
3892 * unregister_netdev() instead of this.
3893 */
3894
3895 void unregister_netdevice(struct net_device *dev)
3896 {
3897 BUG_ON(dev_boot_phase);
3898 ASSERT_RTNL();
3899
3900 /* Some devices call without registering for initialization unwind. */
3901 if (dev->reg_state == NETREG_UNINITIALIZED) {
3902 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3903 "was registered\n", dev->name, dev);
3904
3905 WARN_ON(1);
3906 return;
3907 }
3908
3909 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3910
3911 /* If device is running, close it first. */
3912 if (dev->flags & IFF_UP)
3913 dev_close(dev);
3914
3915 /* And unlink it from device chain. */
3916 unlist_netdevice(dev);
3917
3918 dev->reg_state = NETREG_UNREGISTERING;
3919
3920 synchronize_net();
3921
3922 /* Shutdown queueing discipline. */
3923 dev_shutdown(dev);
3924
3925
3926 /* Notify protocols, that we are about to destroy
3927 this device. They should clean all the things.
3928 */
3929 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3930
3931 /*
3932 * Flush the unicast and multicast chains
3933 */
3934 dev_addr_discard(dev);
3935
3936 if (dev->uninit)
3937 dev->uninit(dev);
3938
3939 /* Notifier chain MUST detach us from master device. */
3940 BUG_TRAP(!dev->master);
3941
3942 /* Remove entries from sysfs */
3943 netdev_unregister_sysfs(dev);
3944
3945 /* Finish processing unregister after unlock */
3946 net_set_todo(dev);
3947
3948 synchronize_net();
3949
3950 dev_put(dev);
3951 }
3952
3953 /**
3954 * unregister_netdev - remove device from the kernel
3955 * @dev: device
3956 *
3957 * This function shuts down a device interface and removes it
3958 * from the kernel tables. On success 0 is returned, on a failure
3959 * a negative errno code is returned.
3960 *
3961 * This is just a wrapper for unregister_netdevice that takes
3962 * the rtnl semaphore. In general you want to use this and not
3963 * unregister_netdevice.
3964 */
3965 void unregister_netdev(struct net_device *dev)
3966 {
3967 rtnl_lock();
3968 unregister_netdevice(dev);
3969 rtnl_unlock();
3970 }
3971
3972 EXPORT_SYMBOL(unregister_netdev);
3973
3974 /**
3975 * dev_change_net_namespace - move device to different nethost namespace
3976 * @dev: device
3977 * @net: network namespace
3978 * @pat: If not NULL name pattern to try if the current device name
3979 * is already taken in the destination network namespace.
3980 *
3981 * This function shuts down a device interface and moves it
3982 * to a new network namespace. On success 0 is returned, on
3983 * a failure a netagive errno code is returned.
3984 *
3985 * Callers must hold the rtnl semaphore.
3986 */
3987
3988 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3989 {
3990 char buf[IFNAMSIZ];
3991 const char *destname;
3992 int err;
3993
3994 ASSERT_RTNL();
3995
3996 /* Don't allow namespace local devices to be moved. */
3997 err = -EINVAL;
3998 if (dev->features & NETIF_F_NETNS_LOCAL)
3999 goto out;
4000
4001 /* Ensure the device has been registrered */
4002 err = -EINVAL;
4003 if (dev->reg_state != NETREG_REGISTERED)
4004 goto out;
4005
4006 /* Get out if there is nothing todo */
4007 err = 0;
4008 if (dev->nd_net == net)
4009 goto out;
4010
4011 /* Pick the destination device name, and ensure
4012 * we can use it in the destination network namespace.
4013 */
4014 err = -EEXIST;
4015 destname = dev->name;
4016 if (__dev_get_by_name(net, destname)) {
4017 /* We get here if we can't use the current device name */
4018 if (!pat)
4019 goto out;
4020 if (!dev_valid_name(pat))
4021 goto out;
4022 if (strchr(pat, '%')) {
4023 if (__dev_alloc_name(net, pat, buf) < 0)
4024 goto out;
4025 destname = buf;
4026 } else
4027 destname = pat;
4028 if (__dev_get_by_name(net, destname))
4029 goto out;
4030 }
4031
4032 /*
4033 * And now a mini version of register_netdevice unregister_netdevice.
4034 */
4035
4036 /* If device is running close it first. */
4037 if (dev->flags & IFF_UP)
4038 dev_close(dev);
4039
4040 /* And unlink it from device chain */
4041 err = -ENODEV;
4042 unlist_netdevice(dev);
4043
4044 synchronize_net();
4045
4046 /* Shutdown queueing discipline. */
4047 dev_shutdown(dev);
4048
4049 /* Notify protocols, that we are about to destroy
4050 this device. They should clean all the things.
4051 */
4052 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4053
4054 /*
4055 * Flush the unicast and multicast chains
4056 */
4057 dev_addr_discard(dev);
4058
4059 /* Actually switch the network namespace */
4060 dev->nd_net = net;
4061
4062 /* Assign the new device name */
4063 if (destname != dev->name)
4064 strcpy(dev->name, destname);
4065
4066 /* If there is an ifindex conflict assign a new one */
4067 if (__dev_get_by_index(net, dev->ifindex)) {
4068 int iflink = (dev->iflink == dev->ifindex);
4069 dev->ifindex = dev_new_index(net);
4070 if (iflink)
4071 dev->iflink = dev->ifindex;
4072 }
4073
4074 /* Fixup sysfs */
4075 err = device_rename(&dev->dev, dev->name);
4076 BUG_ON(err);
4077
4078 /* Add the device back in the hashes */
4079 list_netdevice(dev);
4080
4081 /* Notify protocols, that a new device appeared. */
4082 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4083
4084 synchronize_net();
4085 err = 0;
4086 out:
4087 return err;
4088 }
4089
4090 static int dev_cpu_callback(struct notifier_block *nfb,
4091 unsigned long action,
4092 void *ocpu)
4093 {
4094 struct sk_buff **list_skb;
4095 struct net_device **list_net;
4096 struct sk_buff *skb;
4097 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4098 struct softnet_data *sd, *oldsd;
4099
4100 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4101 return NOTIFY_OK;
4102
4103 local_irq_disable();
4104 cpu = smp_processor_id();
4105 sd = &per_cpu(softnet_data, cpu);
4106 oldsd = &per_cpu(softnet_data, oldcpu);
4107
4108 /* Find end of our completion_queue. */
4109 list_skb = &sd->completion_queue;
4110 while (*list_skb)
4111 list_skb = &(*list_skb)->next;
4112 /* Append completion queue from offline CPU. */
4113 *list_skb = oldsd->completion_queue;
4114 oldsd->completion_queue = NULL;
4115
4116 /* Find end of our output_queue. */
4117 list_net = &sd->output_queue;
4118 while (*list_net)
4119 list_net = &(*list_net)->next_sched;
4120 /* Append output queue from offline CPU. */
4121 *list_net = oldsd->output_queue;
4122 oldsd->output_queue = NULL;
4123
4124 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4125 local_irq_enable();
4126
4127 /* Process offline CPU's input_pkt_queue */
4128 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4129 netif_rx(skb);
4130
4131 return NOTIFY_OK;
4132 }
4133
4134 #ifdef CONFIG_NET_DMA
4135 /**
4136 * net_dma_rebalance - try to maintain one DMA channel per CPU
4137 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4138 *
4139 * This is called when the number of channels allocated to the net_dma client
4140 * changes. The net_dma client tries to have one DMA channel per CPU.
4141 */
4142
4143 static void net_dma_rebalance(struct net_dma *net_dma)
4144 {
4145 unsigned int cpu, i, n, chan_idx;
4146 struct dma_chan *chan;
4147
4148 if (cpus_empty(net_dma->channel_mask)) {
4149 for_each_online_cpu(cpu)
4150 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4151 return;
4152 }
4153
4154 i = 0;
4155 cpu = first_cpu(cpu_online_map);
4156
4157 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4158 chan = net_dma->channels[chan_idx];
4159
4160 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4161 + (i < (num_online_cpus() %
4162 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4163
4164 while(n) {
4165 per_cpu(softnet_data, cpu).net_dma = chan;
4166 cpu = next_cpu(cpu, cpu_online_map);
4167 n--;
4168 }
4169 i++;
4170 }
4171 }
4172
4173 /**
4174 * netdev_dma_event - event callback for the net_dma_client
4175 * @client: should always be net_dma_client
4176 * @chan: DMA channel for the event
4177 * @state: DMA state to be handled
4178 */
4179 static enum dma_state_client
4180 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4181 enum dma_state state)
4182 {
4183 int i, found = 0, pos = -1;
4184 struct net_dma *net_dma =
4185 container_of(client, struct net_dma, client);
4186 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4187
4188 spin_lock(&net_dma->lock);
4189 switch (state) {
4190 case DMA_RESOURCE_AVAILABLE:
4191 for (i = 0; i < NR_CPUS; i++)
4192 if (net_dma->channels[i] == chan) {
4193 found = 1;
4194 break;
4195 } else if (net_dma->channels[i] == NULL && pos < 0)
4196 pos = i;
4197
4198 if (!found && pos >= 0) {
4199 ack = DMA_ACK;
4200 net_dma->channels[pos] = chan;
4201 cpu_set(pos, net_dma->channel_mask);
4202 net_dma_rebalance(net_dma);
4203 }
4204 break;
4205 case DMA_RESOURCE_REMOVED:
4206 for (i = 0; i < NR_CPUS; i++)
4207 if (net_dma->channels[i] == chan) {
4208 found = 1;
4209 pos = i;
4210 break;
4211 }
4212
4213 if (found) {
4214 ack = DMA_ACK;
4215 cpu_clear(pos, net_dma->channel_mask);
4216 net_dma->channels[i] = NULL;
4217 net_dma_rebalance(net_dma);
4218 }
4219 break;
4220 default:
4221 break;
4222 }
4223 spin_unlock(&net_dma->lock);
4224
4225 return ack;
4226 }
4227
4228 /**
4229 * netdev_dma_regiser - register the networking subsystem as a DMA client
4230 */
4231 static int __init netdev_dma_register(void)
4232 {
4233 spin_lock_init(&net_dma.lock);
4234 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4235 dma_async_client_register(&net_dma.client);
4236 dma_async_client_chan_request(&net_dma.client);
4237 return 0;
4238 }
4239
4240 #else
4241 static int __init netdev_dma_register(void) { return -ENODEV; }
4242 #endif /* CONFIG_NET_DMA */
4243
4244 /**
4245 * netdev_compute_feature - compute conjunction of two feature sets
4246 * @all: first feature set
4247 * @one: second feature set
4248 *
4249 * Computes a new feature set after adding a device with feature set
4250 * @one to the master device with current feature set @all. Returns
4251 * the new feature set.
4252 */
4253 int netdev_compute_features(unsigned long all, unsigned long one)
4254 {
4255 /* if device needs checksumming, downgrade to hw checksumming */
4256 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4257 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4258
4259 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4260 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4261 all ^= NETIF_F_HW_CSUM
4262 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4263
4264 if (one & NETIF_F_GSO)
4265 one |= NETIF_F_GSO_SOFTWARE;
4266 one |= NETIF_F_GSO;
4267
4268 /* If even one device supports robust GSO, enable it for all. */
4269 if (one & NETIF_F_GSO_ROBUST)
4270 all |= NETIF_F_GSO_ROBUST;
4271
4272 all &= one | NETIF_F_LLTX;
4273
4274 if (!(all & NETIF_F_ALL_CSUM))
4275 all &= ~NETIF_F_SG;
4276 if (!(all & NETIF_F_SG))
4277 all &= ~NETIF_F_GSO_MASK;
4278
4279 return all;
4280 }
4281 EXPORT_SYMBOL(netdev_compute_features);
4282
4283 /* Initialize per network namespace state */
4284 static int netdev_init(struct net *net)
4285 {
4286 int i;
4287 INIT_LIST_HEAD(&net->dev_base_head);
4288 rwlock_init(&dev_base_lock);
4289
4290 net->dev_name_head = kmalloc(
4291 sizeof(*net->dev_name_head)*NETDEV_HASHENTRIES, GFP_KERNEL);
4292 if (!net->dev_name_head)
4293 return -ENOMEM;
4294
4295 net->dev_index_head = kmalloc(
4296 sizeof(*net->dev_index_head)*NETDEV_HASHENTRIES, GFP_KERNEL);
4297 if (!net->dev_index_head) {
4298 kfree(net->dev_name_head);
4299 return -ENOMEM;
4300 }
4301
4302 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4303 INIT_HLIST_HEAD(&net->dev_name_head[i]);
4304
4305 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4306 INIT_HLIST_HEAD(&net->dev_index_head[i]);
4307
4308 return 0;
4309 }
4310
4311 static void netdev_exit(struct net *net)
4312 {
4313 kfree(net->dev_name_head);
4314 kfree(net->dev_index_head);
4315 }
4316
4317 static struct pernet_operations netdev_net_ops = {
4318 .init = netdev_init,
4319 .exit = netdev_exit,
4320 };
4321
4322 static void default_device_exit(struct net *net)
4323 {
4324 struct net_device *dev, *next;
4325 /*
4326 * Push all migratable of the network devices back to the
4327 * initial network namespace
4328 */
4329 rtnl_lock();
4330 for_each_netdev_safe(net, dev, next) {
4331 int err;
4332
4333 /* Ignore unmoveable devices (i.e. loopback) */
4334 if (dev->features & NETIF_F_NETNS_LOCAL)
4335 continue;
4336
4337 /* Push remaing network devices to init_net */
4338 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4339 if (err) {
4340 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4341 __func__, dev->name, err);
4342 unregister_netdevice(dev);
4343 }
4344 }
4345 rtnl_unlock();
4346 }
4347
4348 static struct pernet_operations default_device_ops = {
4349 .exit = default_device_exit,
4350 };
4351
4352 /*
4353 * Initialize the DEV module. At boot time this walks the device list and
4354 * unhooks any devices that fail to initialise (normally hardware not
4355 * present) and leaves us with a valid list of present and active devices.
4356 *
4357 */
4358
4359 /*
4360 * This is called single threaded during boot, so no need
4361 * to take the rtnl semaphore.
4362 */
4363 static int __init net_dev_init(void)
4364 {
4365 int i, rc = -ENOMEM;
4366
4367 BUG_ON(!dev_boot_phase);
4368
4369 if (dev_proc_init())
4370 goto out;
4371
4372 if (netdev_sysfs_init())
4373 goto out;
4374
4375 INIT_LIST_HEAD(&ptype_all);
4376 for (i = 0; i < 16; i++)
4377 INIT_LIST_HEAD(&ptype_base[i]);
4378
4379 if (register_pernet_subsys(&netdev_net_ops))
4380 goto out;
4381
4382 if (register_pernet_device(&default_device_ops))
4383 goto out;
4384
4385 /*
4386 * Initialise the packet receive queues.
4387 */
4388
4389 for_each_possible_cpu(i) {
4390 struct softnet_data *queue;
4391
4392 queue = &per_cpu(softnet_data, i);
4393 skb_queue_head_init(&queue->input_pkt_queue);
4394 queue->completion_queue = NULL;
4395 INIT_LIST_HEAD(&queue->poll_list);
4396
4397 queue->backlog.poll = process_backlog;
4398 queue->backlog.weight = weight_p;
4399 }
4400
4401 netdev_dma_register();
4402
4403 dev_boot_phase = 0;
4404
4405 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4406 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4407
4408 hotcpu_notifier(dev_cpu_callback, 0);
4409 dst_init();
4410 dev_mcast_init();
4411 rc = 0;
4412 out:
4413 return rc;
4414 }
4415
4416 subsys_initcall(net_dev_init);
4417
4418 EXPORT_SYMBOL(__dev_get_by_index);
4419 EXPORT_SYMBOL(__dev_get_by_name);
4420 EXPORT_SYMBOL(__dev_remove_pack);
4421 EXPORT_SYMBOL(dev_valid_name);
4422 EXPORT_SYMBOL(dev_add_pack);
4423 EXPORT_SYMBOL(dev_alloc_name);
4424 EXPORT_SYMBOL(dev_close);
4425 EXPORT_SYMBOL(dev_get_by_flags);
4426 EXPORT_SYMBOL(dev_get_by_index);
4427 EXPORT_SYMBOL(dev_get_by_name);
4428 EXPORT_SYMBOL(dev_open);
4429 EXPORT_SYMBOL(dev_queue_xmit);
4430 EXPORT_SYMBOL(dev_remove_pack);
4431 EXPORT_SYMBOL(dev_set_allmulti);
4432 EXPORT_SYMBOL(dev_set_promiscuity);
4433 EXPORT_SYMBOL(dev_change_flags);
4434 EXPORT_SYMBOL(dev_set_mtu);
4435 EXPORT_SYMBOL(dev_set_mac_address);
4436 EXPORT_SYMBOL(free_netdev);
4437 EXPORT_SYMBOL(netdev_boot_setup_check);
4438 EXPORT_SYMBOL(netdev_set_master);
4439 EXPORT_SYMBOL(netdev_state_change);
4440 EXPORT_SYMBOL(netif_receive_skb);
4441 EXPORT_SYMBOL(netif_rx);
4442 EXPORT_SYMBOL(register_gifconf);
4443 EXPORT_SYMBOL(register_netdevice);
4444 EXPORT_SYMBOL(register_netdevice_notifier);
4445 EXPORT_SYMBOL(skb_checksum_help);
4446 EXPORT_SYMBOL(synchronize_net);
4447 EXPORT_SYMBOL(unregister_netdevice);
4448 EXPORT_SYMBOL(unregister_netdevice_notifier);
4449 EXPORT_SYMBOL(net_enable_timestamp);
4450 EXPORT_SYMBOL(net_disable_timestamp);
4451 EXPORT_SYMBOL(dev_get_flags);
4452
4453 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4454 EXPORT_SYMBOL(br_handle_frame_hook);
4455 EXPORT_SYMBOL(br_fdb_get_hook);
4456 EXPORT_SYMBOL(br_fdb_put_hook);
4457 #endif
4458
4459 #ifdef CONFIG_KMOD
4460 EXPORT_SYMBOL(dev_load);
4461 #endif
4462
4463 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.294252 seconds and 6 git commands to generate.