net: clear skb->priority when forwarding to another netns
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
509 }
510
511 /**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 __dev_remove_offload(po);
526
527 synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533 Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625 }
626
627 /*
628 * Saves at boot time configured settings for any netdevice.
629 */
630 int __init netdev_boot_setup(char *str)
631 {
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658 Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663 * __dev_get_by_name - find a device by its name
664 * @net: the applicable net namespace
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
678
679 hlist_for_each_entry(dev, head, name_hlist)
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
682
683 return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686
687 /**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
704 hlist_for_each_entry_rcu(dev, head, name_hlist)
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712 /**
713 * dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
730 if (dev)
731 dev_hold(dev);
732 rcu_read_unlock();
733 return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736
737 /**
738 * __dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
753
754 hlist_for_each_entry(dev, head, index_hlist)
755 if (dev->ifindex == ifindex)
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761
762 /**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
778 hlist_for_each_entry_rcu(dev, head, index_hlist)
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787 /**
788 * dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
804 if (dev)
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810
811 /**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 struct net_device *dev;
824 unsigned int seq;
825
826 retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843 }
844
845 /**
846 * dev_getbyhwaddr_rcu - find a device by its hardware address
847 * @net: the applicable net namespace
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
854 * The returned device has not had its ref count increased
855 * and the caller must therefore be careful about locking
856 *
857 */
858
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
861 {
862 struct net_device *dev;
863
864 for_each_netdev_rcu(net, dev)
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
867 return dev;
868
869 return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 struct net_device *dev;
876
877 ASSERT_RTNL();
878 for_each_netdev(net, dev)
879 if (dev->type == type)
880 return dev;
881
882 return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 struct net_device *dev, *ret = NULL;
889
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902 /**
903 * __dev_get_by_flags - find any device with given flags
904 * @net: the applicable net namespace
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
909 * is not found or a pointer to the device. Must be called inside
910 * rtnl_lock(), and result refcount is unchanged.
911 */
912
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
915 {
916 struct net_device *dev, *ret;
917
918 ASSERT_RTNL();
919
920 ret = NULL;
921 for_each_netdev(net, dev) {
922 if (((dev->flags ^ if_flags) & mask) == 0) {
923 ret = dev;
924 break;
925 }
926 }
927 return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930
931 /**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
938 */
939 bool dev_valid_name(const char *name)
940 {
941 if (*name == '\0')
942 return false;
943 if (strlen(name) >= IFNAMSIZ)
944 return false;
945 if (!strcmp(name, ".") || !strcmp(name, ".."))
946 return false;
947
948 while (*name) {
949 if (*name == '/' || *name == ':' || isspace(*name))
950 return false;
951 name++;
952 }
953 return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956
957 /**
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
960 * @name: name format string
961 * @buf: scratch buffer and result name string
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
970 */
971
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 int i = 0;
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
977 unsigned long *inuse;
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 if (!inuse)
993 return -ENOMEM;
994
995 for_each_netdev(net, d) {
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
1013 if (!__dev_get_by_name(net, buf))
1014 return i;
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021 }
1022
1023 /**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051
1052 static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
1055 {
1056 char buf[IFNAMSIZ];
1057 int ret;
1058
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063 }
1064
1065 static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068 {
1069 BUG_ON(!net);
1070
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1074 if (strchr(name, '%'))
1075 return dev_alloc_name_ns(net, dev, name);
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 unsigned char old_assign_type;
1095 char oldname[IFNAMSIZ];
1096 int err = 0;
1097 int ret;
1098 struct net *net;
1099
1100 ASSERT_RTNL();
1101 BUG_ON(!dev_net(dev));
1102
1103 net = dev_net(dev);
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
1107 write_seqcount_begin(&devnet_rename_seq);
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 write_seqcount_end(&devnet_rename_seq);
1111 return 0;
1112 }
1113
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116 err = dev_get_valid_name(net, dev, newname);
1117 if (err < 0) {
1118 write_seqcount_end(&devnet_rename_seq);
1119 return err;
1120 }
1121
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
1128 rollback:
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
1132 dev->name_assign_type = old_assign_type;
1133 write_seqcount_end(&devnet_rename_seq);
1134 return ret;
1135 }
1136
1137 write_seqcount_end(&devnet_rename_seq);
1138
1139 netdev_adjacent_rename_links(dev, oldname);
1140
1141 write_lock_bh(&dev_base_lock);
1142 hlist_del_rcu(&dev->name_hlist);
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 write_unlock_bh(&dev_base_lock);
1150
1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
1157 err = ret;
1158 write_seqcount_begin(&devnet_rename_seq);
1159 memcpy(dev->name, oldname, IFNAMSIZ);
1160 memcpy(oldname, newname, IFNAMSIZ);
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
1163 goto rollback;
1164 } else {
1165 pr_err("%s: name change rollback failed: %d\n",
1166 dev->name, ret);
1167 }
1168 }
1169
1170 return err;
1171 }
1172
1173 /**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
1177 * @len: limit of bytes to copy from info
1178 *
1179 * Set ifalias for a device,
1180 */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 char *new_ifalias;
1184
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
1190 if (!len) {
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
1193 return 0;
1194 }
1195
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
1198 return -ENOMEM;
1199 dev->ifalias = new_ifalias;
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203 }
1204
1205
1206 /**
1207 * netdev_features_change - device changes features
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217
1218 /**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 if (dev->flags & IFF_UP) {
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 }
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238
1239 /**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 const struct net_device_ops *ops = dev->netdev_ops;
1260 int ret;
1261
1262 ASSERT_RTNL();
1263
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
1271 netpoll_poll_disable(dev);
1272
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1278 set_bit(__LINK_STATE_START, &dev->state);
1279
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
1282
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1285
1286 netpoll_poll_enable(dev);
1287
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1291 dev->flags |= IFF_UP;
1292 dev_set_rx_mode(dev);
1293 dev_activate(dev);
1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1295 }
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1303 *
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1311 */
1312 int dev_open(struct net_device *dev)
1313 {
1314 int ret;
1315
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 struct net_device *dev;
1333
1334 ASSERT_RTNL();
1335 might_sleep();
1336
1337 list_for_each_entry(dev, head, close_list) {
1338 /* Temporarily disable netpoll until the interface is down */
1339 netpoll_poll_disable(dev);
1340
1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
1351 smp_mb__after_atomic(); /* Commit netif_running(). */
1352 }
1353
1354 dev_deactivate_many(head);
1355
1356 list_for_each_entry(dev, head, close_list) {
1357 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
1369 dev->flags &= ~IFF_UP;
1370 netpoll_poll_enable(dev);
1371 }
1372
1373 return 0;
1374 }
1375
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 int retval;
1379 LIST_HEAD(single);
1380
1381 list_add(&dev->close_list, &single);
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
1384
1385 return retval;
1386 }
1387
1388 int dev_close_many(struct list_head *head, bool unlink)
1389 {
1390 struct net_device *dev, *tmp;
1391
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
1394 if (!(dev->flags & IFF_UP))
1395 list_del_init(&dev->close_list);
1396
1397 __dev_close_many(head);
1398
1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 if (unlink)
1403 list_del_init(&dev->close_list);
1404 }
1405
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close_many);
1409
1410 /**
1411 * dev_close - shutdown an interface.
1412 * @dev: device to shutdown
1413 *
1414 * This function moves an active device into down state. A
1415 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1416 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1417 * chain.
1418 */
1419 int dev_close(struct net_device *dev)
1420 {
1421 if (dev->flags & IFF_UP) {
1422 LIST_HEAD(single);
1423
1424 list_add(&dev->close_list, &single);
1425 dev_close_many(&single, true);
1426 list_del(&single);
1427 }
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close);
1431
1432
1433 /**
1434 * dev_disable_lro - disable Large Receive Offload on a device
1435 * @dev: device
1436 *
1437 * Disable Large Receive Offload (LRO) on a net device. Must be
1438 * called under RTNL. This is needed if received packets may be
1439 * forwarded to another interface.
1440 */
1441 void dev_disable_lro(struct net_device *dev)
1442 {
1443 struct net_device *lower_dev;
1444 struct list_head *iter;
1445
1446 dev->wanted_features &= ~NETIF_F_LRO;
1447 netdev_update_features(dev);
1448
1449 if (unlikely(dev->features & NETIF_F_LRO))
1450 netdev_WARN(dev, "failed to disable LRO!\n");
1451
1452 netdev_for_each_lower_dev(dev, lower_dev, iter)
1453 dev_disable_lro(lower_dev);
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->priority = 0;
1700 skb->protocol = eth_type_trans(skb, dev);
1701 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
1715 * NET_RX_DROP (packet was dropped, but freed)
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734 {
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1742 struct packet_type **pt,
1743 struct net_device *dev, __be16 type,
1744 struct list_head *ptype_list)
1745 {
1746 struct packet_type *ptype, *pt_prev = *pt;
1747
1748 list_for_each_entry_rcu(ptype, ptype_list, list) {
1749 if (ptype->type != type)
1750 continue;
1751 if (pt_prev)
1752 deliver_skb(skb, pt_prev, dev);
1753 pt_prev = ptype;
1754 }
1755 *pt = pt_prev;
1756 }
1757
1758 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1759 {
1760 if (!ptype->af_packet_priv || !skb->sk)
1761 return false;
1762
1763 if (ptype->id_match)
1764 return ptype->id_match(ptype, skb->sk);
1765 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1766 return true;
1767
1768 return false;
1769 }
1770
1771 /*
1772 * Support routine. Sends outgoing frames to any network
1773 * taps currently in use.
1774 */
1775
1776 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1777 {
1778 struct packet_type *ptype;
1779 struct sk_buff *skb2 = NULL;
1780 struct packet_type *pt_prev = NULL;
1781 struct list_head *ptype_list = &ptype_all;
1782
1783 rcu_read_lock();
1784 again:
1785 list_for_each_entry_rcu(ptype, ptype_list, list) {
1786 /* Never send packets back to the socket
1787 * they originated from - MvS (miquels@drinkel.ow.org)
1788 */
1789 if (skb_loop_sk(ptype, skb))
1790 continue;
1791
1792 if (pt_prev) {
1793 deliver_skb(skb2, pt_prev, skb->dev);
1794 pt_prev = ptype;
1795 continue;
1796 }
1797
1798 /* need to clone skb, done only once */
1799 skb2 = skb_clone(skb, GFP_ATOMIC);
1800 if (!skb2)
1801 goto out_unlock;
1802
1803 net_timestamp_set(skb2);
1804
1805 /* skb->nh should be correctly
1806 * set by sender, so that the second statement is
1807 * just protection against buggy protocols.
1808 */
1809 skb_reset_mac_header(skb2);
1810
1811 if (skb_network_header(skb2) < skb2->data ||
1812 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1813 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1814 ntohs(skb2->protocol),
1815 dev->name);
1816 skb_reset_network_header(skb2);
1817 }
1818
1819 skb2->transport_header = skb2->network_header;
1820 skb2->pkt_type = PACKET_OUTGOING;
1821 pt_prev = ptype;
1822 }
1823
1824 if (ptype_list == &ptype_all) {
1825 ptype_list = &dev->ptype_all;
1826 goto again;
1827 }
1828 out_unlock:
1829 if (pt_prev)
1830 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1831 rcu_read_unlock();
1832 }
1833
1834 /**
1835 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1836 * @dev: Network device
1837 * @txq: number of queues available
1838 *
1839 * If real_num_tx_queues is changed the tc mappings may no longer be
1840 * valid. To resolve this verify the tc mapping remains valid and if
1841 * not NULL the mapping. With no priorities mapping to this
1842 * offset/count pair it will no longer be used. In the worst case TC0
1843 * is invalid nothing can be done so disable priority mappings. If is
1844 * expected that drivers will fix this mapping if they can before
1845 * calling netif_set_real_num_tx_queues.
1846 */
1847 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1848 {
1849 int i;
1850 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1851
1852 /* If TC0 is invalidated disable TC mapping */
1853 if (tc->offset + tc->count > txq) {
1854 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1855 dev->num_tc = 0;
1856 return;
1857 }
1858
1859 /* Invalidated prio to tc mappings set to TC0 */
1860 for (i = 1; i < TC_BITMASK + 1; i++) {
1861 int q = netdev_get_prio_tc_map(dev, i);
1862
1863 tc = &dev->tc_to_txq[q];
1864 if (tc->offset + tc->count > txq) {
1865 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1866 i, q);
1867 netdev_set_prio_tc_map(dev, i, 0);
1868 }
1869 }
1870 }
1871
1872 #ifdef CONFIG_XPS
1873 static DEFINE_MUTEX(xps_map_mutex);
1874 #define xmap_dereference(P) \
1875 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1876
1877 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1878 int cpu, u16 index)
1879 {
1880 struct xps_map *map = NULL;
1881 int pos;
1882
1883 if (dev_maps)
1884 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1885
1886 for (pos = 0; map && pos < map->len; pos++) {
1887 if (map->queues[pos] == index) {
1888 if (map->len > 1) {
1889 map->queues[pos] = map->queues[--map->len];
1890 } else {
1891 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1892 kfree_rcu(map, rcu);
1893 map = NULL;
1894 }
1895 break;
1896 }
1897 }
1898
1899 return map;
1900 }
1901
1902 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1903 {
1904 struct xps_dev_maps *dev_maps;
1905 int cpu, i;
1906 bool active = false;
1907
1908 mutex_lock(&xps_map_mutex);
1909 dev_maps = xmap_dereference(dev->xps_maps);
1910
1911 if (!dev_maps)
1912 goto out_no_maps;
1913
1914 for_each_possible_cpu(cpu) {
1915 for (i = index; i < dev->num_tx_queues; i++) {
1916 if (!remove_xps_queue(dev_maps, cpu, i))
1917 break;
1918 }
1919 if (i == dev->num_tx_queues)
1920 active = true;
1921 }
1922
1923 if (!active) {
1924 RCU_INIT_POINTER(dev->xps_maps, NULL);
1925 kfree_rcu(dev_maps, rcu);
1926 }
1927
1928 for (i = index; i < dev->num_tx_queues; i++)
1929 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1930 NUMA_NO_NODE);
1931
1932 out_no_maps:
1933 mutex_unlock(&xps_map_mutex);
1934 }
1935
1936 static struct xps_map *expand_xps_map(struct xps_map *map,
1937 int cpu, u16 index)
1938 {
1939 struct xps_map *new_map;
1940 int alloc_len = XPS_MIN_MAP_ALLOC;
1941 int i, pos;
1942
1943 for (pos = 0; map && pos < map->len; pos++) {
1944 if (map->queues[pos] != index)
1945 continue;
1946 return map;
1947 }
1948
1949 /* Need to add queue to this CPU's existing map */
1950 if (map) {
1951 if (pos < map->alloc_len)
1952 return map;
1953
1954 alloc_len = map->alloc_len * 2;
1955 }
1956
1957 /* Need to allocate new map to store queue on this CPU's map */
1958 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1959 cpu_to_node(cpu));
1960 if (!new_map)
1961 return NULL;
1962
1963 for (i = 0; i < pos; i++)
1964 new_map->queues[i] = map->queues[i];
1965 new_map->alloc_len = alloc_len;
1966 new_map->len = pos;
1967
1968 return new_map;
1969 }
1970
1971 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1972 u16 index)
1973 {
1974 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1975 struct xps_map *map, *new_map;
1976 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1977 int cpu, numa_node_id = -2;
1978 bool active = false;
1979
1980 mutex_lock(&xps_map_mutex);
1981
1982 dev_maps = xmap_dereference(dev->xps_maps);
1983
1984 /* allocate memory for queue storage */
1985 for_each_online_cpu(cpu) {
1986 if (!cpumask_test_cpu(cpu, mask))
1987 continue;
1988
1989 if (!new_dev_maps)
1990 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1991 if (!new_dev_maps) {
1992 mutex_unlock(&xps_map_mutex);
1993 return -ENOMEM;
1994 }
1995
1996 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1997 NULL;
1998
1999 map = expand_xps_map(map, cpu, index);
2000 if (!map)
2001 goto error;
2002
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 if (!new_dev_maps)
2007 goto out_no_new_maps;
2008
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2011 /* add queue to CPU maps */
2012 int pos = 0;
2013
2014 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2015 while ((pos < map->len) && (map->queues[pos] != index))
2016 pos++;
2017
2018 if (pos == map->len)
2019 map->queues[map->len++] = index;
2020 #ifdef CONFIG_NUMA
2021 if (numa_node_id == -2)
2022 numa_node_id = cpu_to_node(cpu);
2023 else if (numa_node_id != cpu_to_node(cpu))
2024 numa_node_id = -1;
2025 #endif
2026 } else if (dev_maps) {
2027 /* fill in the new device map from the old device map */
2028 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2029 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2030 }
2031
2032 }
2033
2034 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2035
2036 /* Cleanup old maps */
2037 if (dev_maps) {
2038 for_each_possible_cpu(cpu) {
2039 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2040 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2041 if (map && map != new_map)
2042 kfree_rcu(map, rcu);
2043 }
2044
2045 kfree_rcu(dev_maps, rcu);
2046 }
2047
2048 dev_maps = new_dev_maps;
2049 active = true;
2050
2051 out_no_new_maps:
2052 /* update Tx queue numa node */
2053 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2054 (numa_node_id >= 0) ? numa_node_id :
2055 NUMA_NO_NODE);
2056
2057 if (!dev_maps)
2058 goto out_no_maps;
2059
2060 /* removes queue from unused CPUs */
2061 for_each_possible_cpu(cpu) {
2062 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2063 continue;
2064
2065 if (remove_xps_queue(dev_maps, cpu, index))
2066 active = true;
2067 }
2068
2069 /* free map if not active */
2070 if (!active) {
2071 RCU_INIT_POINTER(dev->xps_maps, NULL);
2072 kfree_rcu(dev_maps, rcu);
2073 }
2074
2075 out_no_maps:
2076 mutex_unlock(&xps_map_mutex);
2077
2078 return 0;
2079 error:
2080 /* remove any maps that we added */
2081 for_each_possible_cpu(cpu) {
2082 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2083 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2084 NULL;
2085 if (new_map && new_map != map)
2086 kfree(new_map);
2087 }
2088
2089 mutex_unlock(&xps_map_mutex);
2090
2091 kfree(new_dev_maps);
2092 return -ENOMEM;
2093 }
2094 EXPORT_SYMBOL(netif_set_xps_queue);
2095
2096 #endif
2097 /*
2098 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2099 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2100 */
2101 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2102 {
2103 int rc;
2104
2105 if (txq < 1 || txq > dev->num_tx_queues)
2106 return -EINVAL;
2107
2108 if (dev->reg_state == NETREG_REGISTERED ||
2109 dev->reg_state == NETREG_UNREGISTERING) {
2110 ASSERT_RTNL();
2111
2112 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2113 txq);
2114 if (rc)
2115 return rc;
2116
2117 if (dev->num_tc)
2118 netif_setup_tc(dev, txq);
2119
2120 if (txq < dev->real_num_tx_queues) {
2121 qdisc_reset_all_tx_gt(dev, txq);
2122 #ifdef CONFIG_XPS
2123 netif_reset_xps_queues_gt(dev, txq);
2124 #endif
2125 }
2126 }
2127
2128 dev->real_num_tx_queues = txq;
2129 return 0;
2130 }
2131 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2132
2133 #ifdef CONFIG_SYSFS
2134 /**
2135 * netif_set_real_num_rx_queues - set actual number of RX queues used
2136 * @dev: Network device
2137 * @rxq: Actual number of RX queues
2138 *
2139 * This must be called either with the rtnl_lock held or before
2140 * registration of the net device. Returns 0 on success, or a
2141 * negative error code. If called before registration, it always
2142 * succeeds.
2143 */
2144 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2145 {
2146 int rc;
2147
2148 if (rxq < 1 || rxq > dev->num_rx_queues)
2149 return -EINVAL;
2150
2151 if (dev->reg_state == NETREG_REGISTERED) {
2152 ASSERT_RTNL();
2153
2154 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2155 rxq);
2156 if (rc)
2157 return rc;
2158 }
2159
2160 dev->real_num_rx_queues = rxq;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2164 #endif
2165
2166 /**
2167 * netif_get_num_default_rss_queues - default number of RSS queues
2168 *
2169 * This routine should set an upper limit on the number of RSS queues
2170 * used by default by multiqueue devices.
2171 */
2172 int netif_get_num_default_rss_queues(void)
2173 {
2174 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2175 }
2176 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2177
2178 static inline void __netif_reschedule(struct Qdisc *q)
2179 {
2180 struct softnet_data *sd;
2181 unsigned long flags;
2182
2183 local_irq_save(flags);
2184 sd = this_cpu_ptr(&softnet_data);
2185 q->next_sched = NULL;
2186 *sd->output_queue_tailp = q;
2187 sd->output_queue_tailp = &q->next_sched;
2188 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2189 local_irq_restore(flags);
2190 }
2191
2192 void __netif_schedule(struct Qdisc *q)
2193 {
2194 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2195 __netif_reschedule(q);
2196 }
2197 EXPORT_SYMBOL(__netif_schedule);
2198
2199 struct dev_kfree_skb_cb {
2200 enum skb_free_reason reason;
2201 };
2202
2203 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2204 {
2205 return (struct dev_kfree_skb_cb *)skb->cb;
2206 }
2207
2208 void netif_schedule_queue(struct netdev_queue *txq)
2209 {
2210 rcu_read_lock();
2211 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2212 struct Qdisc *q = rcu_dereference(txq->qdisc);
2213
2214 __netif_schedule(q);
2215 }
2216 rcu_read_unlock();
2217 }
2218 EXPORT_SYMBOL(netif_schedule_queue);
2219
2220 /**
2221 * netif_wake_subqueue - allow sending packets on subqueue
2222 * @dev: network device
2223 * @queue_index: sub queue index
2224 *
2225 * Resume individual transmit queue of a device with multiple transmit queues.
2226 */
2227 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2228 {
2229 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2230
2231 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2232 struct Qdisc *q;
2233
2234 rcu_read_lock();
2235 q = rcu_dereference(txq->qdisc);
2236 __netif_schedule(q);
2237 rcu_read_unlock();
2238 }
2239 }
2240 EXPORT_SYMBOL(netif_wake_subqueue);
2241
2242 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2243 {
2244 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2245 struct Qdisc *q;
2246
2247 rcu_read_lock();
2248 q = rcu_dereference(dev_queue->qdisc);
2249 __netif_schedule(q);
2250 rcu_read_unlock();
2251 }
2252 }
2253 EXPORT_SYMBOL(netif_tx_wake_queue);
2254
2255 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2256 {
2257 unsigned long flags;
2258
2259 if (likely(atomic_read(&skb->users) == 1)) {
2260 smp_rmb();
2261 atomic_set(&skb->users, 0);
2262 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2263 return;
2264 }
2265 get_kfree_skb_cb(skb)->reason = reason;
2266 local_irq_save(flags);
2267 skb->next = __this_cpu_read(softnet_data.completion_queue);
2268 __this_cpu_write(softnet_data.completion_queue, skb);
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2273
2274 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2275 {
2276 if (in_irq() || irqs_disabled())
2277 __dev_kfree_skb_irq(skb, reason);
2278 else
2279 dev_kfree_skb(skb);
2280 }
2281 EXPORT_SYMBOL(__dev_kfree_skb_any);
2282
2283
2284 /**
2285 * netif_device_detach - mark device as removed
2286 * @dev: network device
2287 *
2288 * Mark device as removed from system and therefore no longer available.
2289 */
2290 void netif_device_detach(struct net_device *dev)
2291 {
2292 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2293 netif_running(dev)) {
2294 netif_tx_stop_all_queues(dev);
2295 }
2296 }
2297 EXPORT_SYMBOL(netif_device_detach);
2298
2299 /**
2300 * netif_device_attach - mark device as attached
2301 * @dev: network device
2302 *
2303 * Mark device as attached from system and restart if needed.
2304 */
2305 void netif_device_attach(struct net_device *dev)
2306 {
2307 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2308 netif_running(dev)) {
2309 netif_tx_wake_all_queues(dev);
2310 __netdev_watchdog_up(dev);
2311 }
2312 }
2313 EXPORT_SYMBOL(netif_device_attach);
2314
2315 static void skb_warn_bad_offload(const struct sk_buff *skb)
2316 {
2317 static const netdev_features_t null_features = 0;
2318 struct net_device *dev = skb->dev;
2319 const char *driver = "";
2320
2321 if (!net_ratelimit())
2322 return;
2323
2324 if (dev && dev->dev.parent)
2325 driver = dev_driver_string(dev->dev.parent);
2326
2327 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2328 "gso_type=%d ip_summed=%d\n",
2329 driver, dev ? &dev->features : &null_features,
2330 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2331 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2332 skb_shinfo(skb)->gso_type, skb->ip_summed);
2333 }
2334
2335 /*
2336 * Invalidate hardware checksum when packet is to be mangled, and
2337 * complete checksum manually on outgoing path.
2338 */
2339 int skb_checksum_help(struct sk_buff *skb)
2340 {
2341 __wsum csum;
2342 int ret = 0, offset;
2343
2344 if (skb->ip_summed == CHECKSUM_COMPLETE)
2345 goto out_set_summed;
2346
2347 if (unlikely(skb_shinfo(skb)->gso_size)) {
2348 skb_warn_bad_offload(skb);
2349 return -EINVAL;
2350 }
2351
2352 /* Before computing a checksum, we should make sure no frag could
2353 * be modified by an external entity : checksum could be wrong.
2354 */
2355 if (skb_has_shared_frag(skb)) {
2356 ret = __skb_linearize(skb);
2357 if (ret)
2358 goto out;
2359 }
2360
2361 offset = skb_checksum_start_offset(skb);
2362 BUG_ON(offset >= skb_headlen(skb));
2363 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2364
2365 offset += skb->csum_offset;
2366 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2367
2368 if (skb_cloned(skb) &&
2369 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2370 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2371 if (ret)
2372 goto out;
2373 }
2374
2375 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2376 out_set_summed:
2377 skb->ip_summed = CHECKSUM_NONE;
2378 out:
2379 return ret;
2380 }
2381 EXPORT_SYMBOL(skb_checksum_help);
2382
2383 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2384 {
2385 __be16 type = skb->protocol;
2386
2387 /* Tunnel gso handlers can set protocol to ethernet. */
2388 if (type == htons(ETH_P_TEB)) {
2389 struct ethhdr *eth;
2390
2391 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2392 return 0;
2393
2394 eth = (struct ethhdr *)skb_mac_header(skb);
2395 type = eth->h_proto;
2396 }
2397
2398 return __vlan_get_protocol(skb, type, depth);
2399 }
2400
2401 /**
2402 * skb_mac_gso_segment - mac layer segmentation handler.
2403 * @skb: buffer to segment
2404 * @features: features for the output path (see dev->features)
2405 */
2406 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2407 netdev_features_t features)
2408 {
2409 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2410 struct packet_offload *ptype;
2411 int vlan_depth = skb->mac_len;
2412 __be16 type = skb_network_protocol(skb, &vlan_depth);
2413
2414 if (unlikely(!type))
2415 return ERR_PTR(-EINVAL);
2416
2417 __skb_pull(skb, vlan_depth);
2418
2419 rcu_read_lock();
2420 list_for_each_entry_rcu(ptype, &offload_base, list) {
2421 if (ptype->type == type && ptype->callbacks.gso_segment) {
2422 segs = ptype->callbacks.gso_segment(skb, features);
2423 break;
2424 }
2425 }
2426 rcu_read_unlock();
2427
2428 __skb_push(skb, skb->data - skb_mac_header(skb));
2429
2430 return segs;
2431 }
2432 EXPORT_SYMBOL(skb_mac_gso_segment);
2433
2434
2435 /* openvswitch calls this on rx path, so we need a different check.
2436 */
2437 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2438 {
2439 if (tx_path)
2440 return skb->ip_summed != CHECKSUM_PARTIAL;
2441 else
2442 return skb->ip_summed == CHECKSUM_NONE;
2443 }
2444
2445 /**
2446 * __skb_gso_segment - Perform segmentation on skb.
2447 * @skb: buffer to segment
2448 * @features: features for the output path (see dev->features)
2449 * @tx_path: whether it is called in TX path
2450 *
2451 * This function segments the given skb and returns a list of segments.
2452 *
2453 * It may return NULL if the skb requires no segmentation. This is
2454 * only possible when GSO is used for verifying header integrity.
2455 */
2456 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2457 netdev_features_t features, bool tx_path)
2458 {
2459 if (unlikely(skb_needs_check(skb, tx_path))) {
2460 int err;
2461
2462 skb_warn_bad_offload(skb);
2463
2464 err = skb_cow_head(skb, 0);
2465 if (err < 0)
2466 return ERR_PTR(err);
2467 }
2468
2469 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2470 SKB_GSO_CB(skb)->encap_level = 0;
2471
2472 skb_reset_mac_header(skb);
2473 skb_reset_mac_len(skb);
2474
2475 return skb_mac_gso_segment(skb, features);
2476 }
2477 EXPORT_SYMBOL(__skb_gso_segment);
2478
2479 /* Take action when hardware reception checksum errors are detected. */
2480 #ifdef CONFIG_BUG
2481 void netdev_rx_csum_fault(struct net_device *dev)
2482 {
2483 if (net_ratelimit()) {
2484 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2485 dump_stack();
2486 }
2487 }
2488 EXPORT_SYMBOL(netdev_rx_csum_fault);
2489 #endif
2490
2491 /* Actually, we should eliminate this check as soon as we know, that:
2492 * 1. IOMMU is present and allows to map all the memory.
2493 * 2. No high memory really exists on this machine.
2494 */
2495
2496 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2497 {
2498 #ifdef CONFIG_HIGHMEM
2499 int i;
2500 if (!(dev->features & NETIF_F_HIGHDMA)) {
2501 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2502 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2503 if (PageHighMem(skb_frag_page(frag)))
2504 return 1;
2505 }
2506 }
2507
2508 if (PCI_DMA_BUS_IS_PHYS) {
2509 struct device *pdev = dev->dev.parent;
2510
2511 if (!pdev)
2512 return 0;
2513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2515 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2516 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2517 return 1;
2518 }
2519 }
2520 #endif
2521 return 0;
2522 }
2523
2524 /* If MPLS offload request, verify we are testing hardware MPLS features
2525 * instead of standard features for the netdev.
2526 */
2527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2529 netdev_features_t features,
2530 __be16 type)
2531 {
2532 if (eth_p_mpls(type))
2533 features &= skb->dev->mpls_features;
2534
2535 return features;
2536 }
2537 #else
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541 {
2542 return features;
2543 }
2544 #endif
2545
2546 static netdev_features_t harmonize_features(struct sk_buff *skb,
2547 netdev_features_t features)
2548 {
2549 int tmp;
2550 __be16 type;
2551
2552 type = skb_network_protocol(skb, &tmp);
2553 features = net_mpls_features(skb, features, type);
2554
2555 if (skb->ip_summed != CHECKSUM_NONE &&
2556 !can_checksum_protocol(features, type)) {
2557 features &= ~NETIF_F_ALL_CSUM;
2558 } else if (illegal_highdma(skb->dev, skb)) {
2559 features &= ~NETIF_F_SG;
2560 }
2561
2562 return features;
2563 }
2564
2565 netdev_features_t netif_skb_features(struct sk_buff *skb)
2566 {
2567 struct net_device *dev = skb->dev;
2568 netdev_features_t features = dev->features;
2569 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2570 __be16 protocol = skb->protocol;
2571
2572 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2573 features &= ~NETIF_F_GSO_MASK;
2574
2575 /* If encapsulation offload request, verify we are testing
2576 * hardware encapsulation features instead of standard
2577 * features for the netdev
2578 */
2579 if (skb->encapsulation)
2580 features &= dev->hw_enc_features;
2581
2582 if (!skb_vlan_tag_present(skb)) {
2583 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2584 protocol == htons(ETH_P_8021AD))) {
2585 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2586 protocol = veh->h_vlan_encapsulated_proto;
2587 } else {
2588 goto finalize;
2589 }
2590 }
2591
2592 features = netdev_intersect_features(features,
2593 dev->vlan_features |
2594 NETIF_F_HW_VLAN_CTAG_TX |
2595 NETIF_F_HW_VLAN_STAG_TX);
2596
2597 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2598 features = netdev_intersect_features(features,
2599 NETIF_F_SG |
2600 NETIF_F_HIGHDMA |
2601 NETIF_F_FRAGLIST |
2602 NETIF_F_GEN_CSUM |
2603 NETIF_F_HW_VLAN_CTAG_TX |
2604 NETIF_F_HW_VLAN_STAG_TX);
2605
2606 finalize:
2607 if (dev->netdev_ops->ndo_features_check)
2608 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2609 features);
2610
2611 return harmonize_features(skb, features);
2612 }
2613 EXPORT_SYMBOL(netif_skb_features);
2614
2615 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2616 struct netdev_queue *txq, bool more)
2617 {
2618 unsigned int len;
2619 int rc;
2620
2621 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2622 dev_queue_xmit_nit(skb, dev);
2623
2624 len = skb->len;
2625 trace_net_dev_start_xmit(skb, dev);
2626 rc = netdev_start_xmit(skb, dev, txq, more);
2627 trace_net_dev_xmit(skb, rc, dev, len);
2628
2629 return rc;
2630 }
2631
2632 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2633 struct netdev_queue *txq, int *ret)
2634 {
2635 struct sk_buff *skb = first;
2636 int rc = NETDEV_TX_OK;
2637
2638 while (skb) {
2639 struct sk_buff *next = skb->next;
2640
2641 skb->next = NULL;
2642 rc = xmit_one(skb, dev, txq, next != NULL);
2643 if (unlikely(!dev_xmit_complete(rc))) {
2644 skb->next = next;
2645 goto out;
2646 }
2647
2648 skb = next;
2649 if (netif_xmit_stopped(txq) && skb) {
2650 rc = NETDEV_TX_BUSY;
2651 break;
2652 }
2653 }
2654
2655 out:
2656 *ret = rc;
2657 return skb;
2658 }
2659
2660 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2661 netdev_features_t features)
2662 {
2663 if (skb_vlan_tag_present(skb) &&
2664 !vlan_hw_offload_capable(features, skb->vlan_proto))
2665 skb = __vlan_hwaccel_push_inside(skb);
2666 return skb;
2667 }
2668
2669 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2670 {
2671 netdev_features_t features;
2672
2673 if (skb->next)
2674 return skb;
2675
2676 features = netif_skb_features(skb);
2677 skb = validate_xmit_vlan(skb, features);
2678 if (unlikely(!skb))
2679 goto out_null;
2680
2681 if (netif_needs_gso(dev, skb, features)) {
2682 struct sk_buff *segs;
2683
2684 segs = skb_gso_segment(skb, features);
2685 if (IS_ERR(segs)) {
2686 goto out_kfree_skb;
2687 } else if (segs) {
2688 consume_skb(skb);
2689 skb = segs;
2690 }
2691 } else {
2692 if (skb_needs_linearize(skb, features) &&
2693 __skb_linearize(skb))
2694 goto out_kfree_skb;
2695
2696 /* If packet is not checksummed and device does not
2697 * support checksumming for this protocol, complete
2698 * checksumming here.
2699 */
2700 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2701 if (skb->encapsulation)
2702 skb_set_inner_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 else
2705 skb_set_transport_header(skb,
2706 skb_checksum_start_offset(skb));
2707 if (!(features & NETIF_F_ALL_CSUM) &&
2708 skb_checksum_help(skb))
2709 goto out_kfree_skb;
2710 }
2711 }
2712
2713 return skb;
2714
2715 out_kfree_skb:
2716 kfree_skb(skb);
2717 out_null:
2718 return NULL;
2719 }
2720
2721 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2722 {
2723 struct sk_buff *next, *head = NULL, *tail;
2724
2725 for (; skb != NULL; skb = next) {
2726 next = skb->next;
2727 skb->next = NULL;
2728
2729 /* in case skb wont be segmented, point to itself */
2730 skb->prev = skb;
2731
2732 skb = validate_xmit_skb(skb, dev);
2733 if (!skb)
2734 continue;
2735
2736 if (!head)
2737 head = skb;
2738 else
2739 tail->next = skb;
2740 /* If skb was segmented, skb->prev points to
2741 * the last segment. If not, it still contains skb.
2742 */
2743 tail = skb->prev;
2744 }
2745 return head;
2746 }
2747
2748 static void qdisc_pkt_len_init(struct sk_buff *skb)
2749 {
2750 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2751
2752 qdisc_skb_cb(skb)->pkt_len = skb->len;
2753
2754 /* To get more precise estimation of bytes sent on wire,
2755 * we add to pkt_len the headers size of all segments
2756 */
2757 if (shinfo->gso_size) {
2758 unsigned int hdr_len;
2759 u16 gso_segs = shinfo->gso_segs;
2760
2761 /* mac layer + network layer */
2762 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2763
2764 /* + transport layer */
2765 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2766 hdr_len += tcp_hdrlen(skb);
2767 else
2768 hdr_len += sizeof(struct udphdr);
2769
2770 if (shinfo->gso_type & SKB_GSO_DODGY)
2771 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2772 shinfo->gso_size);
2773
2774 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2775 }
2776 }
2777
2778 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2779 struct net_device *dev,
2780 struct netdev_queue *txq)
2781 {
2782 spinlock_t *root_lock = qdisc_lock(q);
2783 bool contended;
2784 int rc;
2785
2786 qdisc_pkt_len_init(skb);
2787 qdisc_calculate_pkt_len(skb, q);
2788 /*
2789 * Heuristic to force contended enqueues to serialize on a
2790 * separate lock before trying to get qdisc main lock.
2791 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2792 * often and dequeue packets faster.
2793 */
2794 contended = qdisc_is_running(q);
2795 if (unlikely(contended))
2796 spin_lock(&q->busylock);
2797
2798 spin_lock(root_lock);
2799 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2800 kfree_skb(skb);
2801 rc = NET_XMIT_DROP;
2802 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2803 qdisc_run_begin(q)) {
2804 /*
2805 * This is a work-conserving queue; there are no old skbs
2806 * waiting to be sent out; and the qdisc is not running -
2807 * xmit the skb directly.
2808 */
2809
2810 qdisc_bstats_update(q, skb);
2811
2812 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2813 if (unlikely(contended)) {
2814 spin_unlock(&q->busylock);
2815 contended = false;
2816 }
2817 __qdisc_run(q);
2818 } else
2819 qdisc_run_end(q);
2820
2821 rc = NET_XMIT_SUCCESS;
2822 } else {
2823 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2824 if (qdisc_run_begin(q)) {
2825 if (unlikely(contended)) {
2826 spin_unlock(&q->busylock);
2827 contended = false;
2828 }
2829 __qdisc_run(q);
2830 }
2831 }
2832 spin_unlock(root_lock);
2833 if (unlikely(contended))
2834 spin_unlock(&q->busylock);
2835 return rc;
2836 }
2837
2838 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2839 static void skb_update_prio(struct sk_buff *skb)
2840 {
2841 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2842
2843 if (!skb->priority && skb->sk && map) {
2844 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2845
2846 if (prioidx < map->priomap_len)
2847 skb->priority = map->priomap[prioidx];
2848 }
2849 }
2850 #else
2851 #define skb_update_prio(skb)
2852 #endif
2853
2854 static DEFINE_PER_CPU(int, xmit_recursion);
2855 #define RECURSION_LIMIT 10
2856
2857 /**
2858 * dev_loopback_xmit - loop back @skb
2859 * @skb: buffer to transmit
2860 */
2861 int dev_loopback_xmit(struct sk_buff *skb)
2862 {
2863 skb_reset_mac_header(skb);
2864 __skb_pull(skb, skb_network_offset(skb));
2865 skb->pkt_type = PACKET_LOOPBACK;
2866 skb->ip_summed = CHECKSUM_UNNECESSARY;
2867 WARN_ON(!skb_dst(skb));
2868 skb_dst_force(skb);
2869 netif_rx_ni(skb);
2870 return 0;
2871 }
2872 EXPORT_SYMBOL(dev_loopback_xmit);
2873
2874 /**
2875 * __dev_queue_xmit - transmit a buffer
2876 * @skb: buffer to transmit
2877 * @accel_priv: private data used for L2 forwarding offload
2878 *
2879 * Queue a buffer for transmission to a network device. The caller must
2880 * have set the device and priority and built the buffer before calling
2881 * this function. The function can be called from an interrupt.
2882 *
2883 * A negative errno code is returned on a failure. A success does not
2884 * guarantee the frame will be transmitted as it may be dropped due
2885 * to congestion or traffic shaping.
2886 *
2887 * -----------------------------------------------------------------------------------
2888 * I notice this method can also return errors from the queue disciplines,
2889 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2890 * be positive.
2891 *
2892 * Regardless of the return value, the skb is consumed, so it is currently
2893 * difficult to retry a send to this method. (You can bump the ref count
2894 * before sending to hold a reference for retry if you are careful.)
2895 *
2896 * When calling this method, interrupts MUST be enabled. This is because
2897 * the BH enable code must have IRQs enabled so that it will not deadlock.
2898 * --BLG
2899 */
2900 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2901 {
2902 struct net_device *dev = skb->dev;
2903 struct netdev_queue *txq;
2904 struct Qdisc *q;
2905 int rc = -ENOMEM;
2906
2907 skb_reset_mac_header(skb);
2908
2909 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2910 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2911
2912 /* Disable soft irqs for various locks below. Also
2913 * stops preemption for RCU.
2914 */
2915 rcu_read_lock_bh();
2916
2917 skb_update_prio(skb);
2918
2919 /* If device/qdisc don't need skb->dst, release it right now while
2920 * its hot in this cpu cache.
2921 */
2922 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2923 skb_dst_drop(skb);
2924 else
2925 skb_dst_force(skb);
2926
2927 txq = netdev_pick_tx(dev, skb, accel_priv);
2928 q = rcu_dereference_bh(txq->qdisc);
2929
2930 #ifdef CONFIG_NET_CLS_ACT
2931 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2932 #endif
2933 trace_net_dev_queue(skb);
2934 if (q->enqueue) {
2935 rc = __dev_xmit_skb(skb, q, dev, txq);
2936 goto out;
2937 }
2938
2939 /* The device has no queue. Common case for software devices:
2940 loopback, all the sorts of tunnels...
2941
2942 Really, it is unlikely that netif_tx_lock protection is necessary
2943 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2944 counters.)
2945 However, it is possible, that they rely on protection
2946 made by us here.
2947
2948 Check this and shot the lock. It is not prone from deadlocks.
2949 Either shot noqueue qdisc, it is even simpler 8)
2950 */
2951 if (dev->flags & IFF_UP) {
2952 int cpu = smp_processor_id(); /* ok because BHs are off */
2953
2954 if (txq->xmit_lock_owner != cpu) {
2955
2956 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2957 goto recursion_alert;
2958
2959 skb = validate_xmit_skb(skb, dev);
2960 if (!skb)
2961 goto drop;
2962
2963 HARD_TX_LOCK(dev, txq, cpu);
2964
2965 if (!netif_xmit_stopped(txq)) {
2966 __this_cpu_inc(xmit_recursion);
2967 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2968 __this_cpu_dec(xmit_recursion);
2969 if (dev_xmit_complete(rc)) {
2970 HARD_TX_UNLOCK(dev, txq);
2971 goto out;
2972 }
2973 }
2974 HARD_TX_UNLOCK(dev, txq);
2975 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2976 dev->name);
2977 } else {
2978 /* Recursion is detected! It is possible,
2979 * unfortunately
2980 */
2981 recursion_alert:
2982 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2983 dev->name);
2984 }
2985 }
2986
2987 rc = -ENETDOWN;
2988 drop:
2989 rcu_read_unlock_bh();
2990
2991 atomic_long_inc(&dev->tx_dropped);
2992 kfree_skb_list(skb);
2993 return rc;
2994 out:
2995 rcu_read_unlock_bh();
2996 return rc;
2997 }
2998
2999 int dev_queue_xmit(struct sk_buff *skb)
3000 {
3001 return __dev_queue_xmit(skb, NULL);
3002 }
3003 EXPORT_SYMBOL(dev_queue_xmit);
3004
3005 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3006 {
3007 return __dev_queue_xmit(skb, accel_priv);
3008 }
3009 EXPORT_SYMBOL(dev_queue_xmit_accel);
3010
3011
3012 /*=======================================================================
3013 Receiver routines
3014 =======================================================================*/
3015
3016 int netdev_max_backlog __read_mostly = 1000;
3017 EXPORT_SYMBOL(netdev_max_backlog);
3018
3019 int netdev_tstamp_prequeue __read_mostly = 1;
3020 int netdev_budget __read_mostly = 300;
3021 int weight_p __read_mostly = 64; /* old backlog weight */
3022
3023 /* Called with irq disabled */
3024 static inline void ____napi_schedule(struct softnet_data *sd,
3025 struct napi_struct *napi)
3026 {
3027 list_add_tail(&napi->poll_list, &sd->poll_list);
3028 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3029 }
3030
3031 #ifdef CONFIG_RPS
3032
3033 /* One global table that all flow-based protocols share. */
3034 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3035 EXPORT_SYMBOL(rps_sock_flow_table);
3036 u32 rps_cpu_mask __read_mostly;
3037 EXPORT_SYMBOL(rps_cpu_mask);
3038
3039 struct static_key rps_needed __read_mostly;
3040
3041 static struct rps_dev_flow *
3042 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3043 struct rps_dev_flow *rflow, u16 next_cpu)
3044 {
3045 if (next_cpu != RPS_NO_CPU) {
3046 #ifdef CONFIG_RFS_ACCEL
3047 struct netdev_rx_queue *rxqueue;
3048 struct rps_dev_flow_table *flow_table;
3049 struct rps_dev_flow *old_rflow;
3050 u32 flow_id;
3051 u16 rxq_index;
3052 int rc;
3053
3054 /* Should we steer this flow to a different hardware queue? */
3055 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3056 !(dev->features & NETIF_F_NTUPLE))
3057 goto out;
3058 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3059 if (rxq_index == skb_get_rx_queue(skb))
3060 goto out;
3061
3062 rxqueue = dev->_rx + rxq_index;
3063 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3064 if (!flow_table)
3065 goto out;
3066 flow_id = skb_get_hash(skb) & flow_table->mask;
3067 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3068 rxq_index, flow_id);
3069 if (rc < 0)
3070 goto out;
3071 old_rflow = rflow;
3072 rflow = &flow_table->flows[flow_id];
3073 rflow->filter = rc;
3074 if (old_rflow->filter == rflow->filter)
3075 old_rflow->filter = RPS_NO_FILTER;
3076 out:
3077 #endif
3078 rflow->last_qtail =
3079 per_cpu(softnet_data, next_cpu).input_queue_head;
3080 }
3081
3082 rflow->cpu = next_cpu;
3083 return rflow;
3084 }
3085
3086 /*
3087 * get_rps_cpu is called from netif_receive_skb and returns the target
3088 * CPU from the RPS map of the receiving queue for a given skb.
3089 * rcu_read_lock must be held on entry.
3090 */
3091 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3092 struct rps_dev_flow **rflowp)
3093 {
3094 const struct rps_sock_flow_table *sock_flow_table;
3095 struct netdev_rx_queue *rxqueue = dev->_rx;
3096 struct rps_dev_flow_table *flow_table;
3097 struct rps_map *map;
3098 int cpu = -1;
3099 u32 tcpu;
3100 u32 hash;
3101
3102 if (skb_rx_queue_recorded(skb)) {
3103 u16 index = skb_get_rx_queue(skb);
3104
3105 if (unlikely(index >= dev->real_num_rx_queues)) {
3106 WARN_ONCE(dev->real_num_rx_queues > 1,
3107 "%s received packet on queue %u, but number "
3108 "of RX queues is %u\n",
3109 dev->name, index, dev->real_num_rx_queues);
3110 goto done;
3111 }
3112 rxqueue += index;
3113 }
3114
3115 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3116
3117 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3118 map = rcu_dereference(rxqueue->rps_map);
3119 if (!flow_table && !map)
3120 goto done;
3121
3122 skb_reset_network_header(skb);
3123 hash = skb_get_hash(skb);
3124 if (!hash)
3125 goto done;
3126
3127 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3128 if (flow_table && sock_flow_table) {
3129 struct rps_dev_flow *rflow;
3130 u32 next_cpu;
3131 u32 ident;
3132
3133 /* First check into global flow table if there is a match */
3134 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3135 if ((ident ^ hash) & ~rps_cpu_mask)
3136 goto try_rps;
3137
3138 next_cpu = ident & rps_cpu_mask;
3139
3140 /* OK, now we know there is a match,
3141 * we can look at the local (per receive queue) flow table
3142 */
3143 rflow = &flow_table->flows[hash & flow_table->mask];
3144 tcpu = rflow->cpu;
3145
3146 /*
3147 * If the desired CPU (where last recvmsg was done) is
3148 * different from current CPU (one in the rx-queue flow
3149 * table entry), switch if one of the following holds:
3150 * - Current CPU is unset (equal to RPS_NO_CPU).
3151 * - Current CPU is offline.
3152 * - The current CPU's queue tail has advanced beyond the
3153 * last packet that was enqueued using this table entry.
3154 * This guarantees that all previous packets for the flow
3155 * have been dequeued, thus preserving in order delivery.
3156 */
3157 if (unlikely(tcpu != next_cpu) &&
3158 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3159 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3160 rflow->last_qtail)) >= 0)) {
3161 tcpu = next_cpu;
3162 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3163 }
3164
3165 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3166 *rflowp = rflow;
3167 cpu = tcpu;
3168 goto done;
3169 }
3170 }
3171
3172 try_rps:
3173
3174 if (map) {
3175 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3176 if (cpu_online(tcpu)) {
3177 cpu = tcpu;
3178 goto done;
3179 }
3180 }
3181
3182 done:
3183 return cpu;
3184 }
3185
3186 #ifdef CONFIG_RFS_ACCEL
3187
3188 /**
3189 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3190 * @dev: Device on which the filter was set
3191 * @rxq_index: RX queue index
3192 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3193 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3194 *
3195 * Drivers that implement ndo_rx_flow_steer() should periodically call
3196 * this function for each installed filter and remove the filters for
3197 * which it returns %true.
3198 */
3199 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3200 u32 flow_id, u16 filter_id)
3201 {
3202 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3203 struct rps_dev_flow_table *flow_table;
3204 struct rps_dev_flow *rflow;
3205 bool expire = true;
3206 int cpu;
3207
3208 rcu_read_lock();
3209 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3210 if (flow_table && flow_id <= flow_table->mask) {
3211 rflow = &flow_table->flows[flow_id];
3212 cpu = ACCESS_ONCE(rflow->cpu);
3213 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3214 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3215 rflow->last_qtail) <
3216 (int)(10 * flow_table->mask)))
3217 expire = false;
3218 }
3219 rcu_read_unlock();
3220 return expire;
3221 }
3222 EXPORT_SYMBOL(rps_may_expire_flow);
3223
3224 #endif /* CONFIG_RFS_ACCEL */
3225
3226 /* Called from hardirq (IPI) context */
3227 static void rps_trigger_softirq(void *data)
3228 {
3229 struct softnet_data *sd = data;
3230
3231 ____napi_schedule(sd, &sd->backlog);
3232 sd->received_rps++;
3233 }
3234
3235 #endif /* CONFIG_RPS */
3236
3237 /*
3238 * Check if this softnet_data structure is another cpu one
3239 * If yes, queue it to our IPI list and return 1
3240 * If no, return 0
3241 */
3242 static int rps_ipi_queued(struct softnet_data *sd)
3243 {
3244 #ifdef CONFIG_RPS
3245 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3246
3247 if (sd != mysd) {
3248 sd->rps_ipi_next = mysd->rps_ipi_list;
3249 mysd->rps_ipi_list = sd;
3250
3251 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3252 return 1;
3253 }
3254 #endif /* CONFIG_RPS */
3255 return 0;
3256 }
3257
3258 #ifdef CONFIG_NET_FLOW_LIMIT
3259 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3260 #endif
3261
3262 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3263 {
3264 #ifdef CONFIG_NET_FLOW_LIMIT
3265 struct sd_flow_limit *fl;
3266 struct softnet_data *sd;
3267 unsigned int old_flow, new_flow;
3268
3269 if (qlen < (netdev_max_backlog >> 1))
3270 return false;
3271
3272 sd = this_cpu_ptr(&softnet_data);
3273
3274 rcu_read_lock();
3275 fl = rcu_dereference(sd->flow_limit);
3276 if (fl) {
3277 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3278 old_flow = fl->history[fl->history_head];
3279 fl->history[fl->history_head] = new_flow;
3280
3281 fl->history_head++;
3282 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3283
3284 if (likely(fl->buckets[old_flow]))
3285 fl->buckets[old_flow]--;
3286
3287 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3288 fl->count++;
3289 rcu_read_unlock();
3290 return true;
3291 }
3292 }
3293 rcu_read_unlock();
3294 #endif
3295 return false;
3296 }
3297
3298 /*
3299 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3300 * queue (may be a remote CPU queue).
3301 */
3302 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3303 unsigned int *qtail)
3304 {
3305 struct softnet_data *sd;
3306 unsigned long flags;
3307 unsigned int qlen;
3308
3309 sd = &per_cpu(softnet_data, cpu);
3310
3311 local_irq_save(flags);
3312
3313 rps_lock(sd);
3314 qlen = skb_queue_len(&sd->input_pkt_queue);
3315 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3316 if (qlen) {
3317 enqueue:
3318 __skb_queue_tail(&sd->input_pkt_queue, skb);
3319 input_queue_tail_incr_save(sd, qtail);
3320 rps_unlock(sd);
3321 local_irq_restore(flags);
3322 return NET_RX_SUCCESS;
3323 }
3324
3325 /* Schedule NAPI for backlog device
3326 * We can use non atomic operation since we own the queue lock
3327 */
3328 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3329 if (!rps_ipi_queued(sd))
3330 ____napi_schedule(sd, &sd->backlog);
3331 }
3332 goto enqueue;
3333 }
3334
3335 sd->dropped++;
3336 rps_unlock(sd);
3337
3338 local_irq_restore(flags);
3339
3340 atomic_long_inc(&skb->dev->rx_dropped);
3341 kfree_skb(skb);
3342 return NET_RX_DROP;
3343 }
3344
3345 static int netif_rx_internal(struct sk_buff *skb)
3346 {
3347 int ret;
3348
3349 net_timestamp_check(netdev_tstamp_prequeue, skb);
3350
3351 trace_netif_rx(skb);
3352 #ifdef CONFIG_RPS
3353 if (static_key_false(&rps_needed)) {
3354 struct rps_dev_flow voidflow, *rflow = &voidflow;
3355 int cpu;
3356
3357 preempt_disable();
3358 rcu_read_lock();
3359
3360 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3361 if (cpu < 0)
3362 cpu = smp_processor_id();
3363
3364 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3365
3366 rcu_read_unlock();
3367 preempt_enable();
3368 } else
3369 #endif
3370 {
3371 unsigned int qtail;
3372 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3373 put_cpu();
3374 }
3375 return ret;
3376 }
3377
3378 /**
3379 * netif_rx - post buffer to the network code
3380 * @skb: buffer to post
3381 *
3382 * This function receives a packet from a device driver and queues it for
3383 * the upper (protocol) levels to process. It always succeeds. The buffer
3384 * may be dropped during processing for congestion control or by the
3385 * protocol layers.
3386 *
3387 * return values:
3388 * NET_RX_SUCCESS (no congestion)
3389 * NET_RX_DROP (packet was dropped)
3390 *
3391 */
3392
3393 int netif_rx(struct sk_buff *skb)
3394 {
3395 trace_netif_rx_entry(skb);
3396
3397 return netif_rx_internal(skb);
3398 }
3399 EXPORT_SYMBOL(netif_rx);
3400
3401 int netif_rx_ni(struct sk_buff *skb)
3402 {
3403 int err;
3404
3405 trace_netif_rx_ni_entry(skb);
3406
3407 preempt_disable();
3408 err = netif_rx_internal(skb);
3409 if (local_softirq_pending())
3410 do_softirq();
3411 preempt_enable();
3412
3413 return err;
3414 }
3415 EXPORT_SYMBOL(netif_rx_ni);
3416
3417 static void net_tx_action(struct softirq_action *h)
3418 {
3419 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3420
3421 if (sd->completion_queue) {
3422 struct sk_buff *clist;
3423
3424 local_irq_disable();
3425 clist = sd->completion_queue;
3426 sd->completion_queue = NULL;
3427 local_irq_enable();
3428
3429 while (clist) {
3430 struct sk_buff *skb = clist;
3431 clist = clist->next;
3432
3433 WARN_ON(atomic_read(&skb->users));
3434 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3435 trace_consume_skb(skb);
3436 else
3437 trace_kfree_skb(skb, net_tx_action);
3438 __kfree_skb(skb);
3439 }
3440 }
3441
3442 if (sd->output_queue) {
3443 struct Qdisc *head;
3444
3445 local_irq_disable();
3446 head = sd->output_queue;
3447 sd->output_queue = NULL;
3448 sd->output_queue_tailp = &sd->output_queue;
3449 local_irq_enable();
3450
3451 while (head) {
3452 struct Qdisc *q = head;
3453 spinlock_t *root_lock;
3454
3455 head = head->next_sched;
3456
3457 root_lock = qdisc_lock(q);
3458 if (spin_trylock(root_lock)) {
3459 smp_mb__before_atomic();
3460 clear_bit(__QDISC_STATE_SCHED,
3461 &q->state);
3462 qdisc_run(q);
3463 spin_unlock(root_lock);
3464 } else {
3465 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3466 &q->state)) {
3467 __netif_reschedule(q);
3468 } else {
3469 smp_mb__before_atomic();
3470 clear_bit(__QDISC_STATE_SCHED,
3471 &q->state);
3472 }
3473 }
3474 }
3475 }
3476 }
3477
3478 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3479 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3480 /* This hook is defined here for ATM LANE */
3481 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3482 unsigned char *addr) __read_mostly;
3483 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3484 #endif
3485
3486 #ifdef CONFIG_NET_CLS_ACT
3487 /* TODO: Maybe we should just force sch_ingress to be compiled in
3488 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3489 * a compare and 2 stores extra right now if we dont have it on
3490 * but have CONFIG_NET_CLS_ACT
3491 * NOTE: This doesn't stop any functionality; if you dont have
3492 * the ingress scheduler, you just can't add policies on ingress.
3493 *
3494 */
3495 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3496 {
3497 struct net_device *dev = skb->dev;
3498 u32 ttl = G_TC_RTTL(skb->tc_verd);
3499 int result = TC_ACT_OK;
3500 struct Qdisc *q;
3501
3502 if (unlikely(MAX_RED_LOOP < ttl++)) {
3503 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3504 skb->skb_iif, dev->ifindex);
3505 return TC_ACT_SHOT;
3506 }
3507
3508 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3509 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3510
3511 q = rcu_dereference(rxq->qdisc);
3512 if (q != &noop_qdisc) {
3513 spin_lock(qdisc_lock(q));
3514 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3515 result = qdisc_enqueue_root(skb, q);
3516 spin_unlock(qdisc_lock(q));
3517 }
3518
3519 return result;
3520 }
3521
3522 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3523 struct packet_type **pt_prev,
3524 int *ret, struct net_device *orig_dev)
3525 {
3526 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3527
3528 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3529 goto out;
3530
3531 if (*pt_prev) {
3532 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3533 *pt_prev = NULL;
3534 }
3535
3536 switch (ing_filter(skb, rxq)) {
3537 case TC_ACT_SHOT:
3538 case TC_ACT_STOLEN:
3539 kfree_skb(skb);
3540 return NULL;
3541 }
3542
3543 out:
3544 skb->tc_verd = 0;
3545 return skb;
3546 }
3547 #endif
3548
3549 /**
3550 * netdev_rx_handler_register - register receive handler
3551 * @dev: device to register a handler for
3552 * @rx_handler: receive handler to register
3553 * @rx_handler_data: data pointer that is used by rx handler
3554 *
3555 * Register a receive handler for a device. This handler will then be
3556 * called from __netif_receive_skb. A negative errno code is returned
3557 * on a failure.
3558 *
3559 * The caller must hold the rtnl_mutex.
3560 *
3561 * For a general description of rx_handler, see enum rx_handler_result.
3562 */
3563 int netdev_rx_handler_register(struct net_device *dev,
3564 rx_handler_func_t *rx_handler,
3565 void *rx_handler_data)
3566 {
3567 ASSERT_RTNL();
3568
3569 if (dev->rx_handler)
3570 return -EBUSY;
3571
3572 /* Note: rx_handler_data must be set before rx_handler */
3573 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3574 rcu_assign_pointer(dev->rx_handler, rx_handler);
3575
3576 return 0;
3577 }
3578 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3579
3580 /**
3581 * netdev_rx_handler_unregister - unregister receive handler
3582 * @dev: device to unregister a handler from
3583 *
3584 * Unregister a receive handler from a device.
3585 *
3586 * The caller must hold the rtnl_mutex.
3587 */
3588 void netdev_rx_handler_unregister(struct net_device *dev)
3589 {
3590
3591 ASSERT_RTNL();
3592 RCU_INIT_POINTER(dev->rx_handler, NULL);
3593 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3594 * section has a guarantee to see a non NULL rx_handler_data
3595 * as well.
3596 */
3597 synchronize_net();
3598 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3599 }
3600 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3601
3602 /*
3603 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3604 * the special handling of PFMEMALLOC skbs.
3605 */
3606 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3607 {
3608 switch (skb->protocol) {
3609 case htons(ETH_P_ARP):
3610 case htons(ETH_P_IP):
3611 case htons(ETH_P_IPV6):
3612 case htons(ETH_P_8021Q):
3613 case htons(ETH_P_8021AD):
3614 return true;
3615 default:
3616 return false;
3617 }
3618 }
3619
3620 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3621 {
3622 struct packet_type *ptype, *pt_prev;
3623 rx_handler_func_t *rx_handler;
3624 struct net_device *orig_dev;
3625 bool deliver_exact = false;
3626 int ret = NET_RX_DROP;
3627 __be16 type;
3628
3629 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3630
3631 trace_netif_receive_skb(skb);
3632
3633 orig_dev = skb->dev;
3634
3635 skb_reset_network_header(skb);
3636 if (!skb_transport_header_was_set(skb))
3637 skb_reset_transport_header(skb);
3638 skb_reset_mac_len(skb);
3639
3640 pt_prev = NULL;
3641
3642 rcu_read_lock();
3643
3644 another_round:
3645 skb->skb_iif = skb->dev->ifindex;
3646
3647 __this_cpu_inc(softnet_data.processed);
3648
3649 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3650 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3651 skb = skb_vlan_untag(skb);
3652 if (unlikely(!skb))
3653 goto unlock;
3654 }
3655
3656 #ifdef CONFIG_NET_CLS_ACT
3657 if (skb->tc_verd & TC_NCLS) {
3658 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3659 goto ncls;
3660 }
3661 #endif
3662
3663 if (pfmemalloc)
3664 goto skip_taps;
3665
3666 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3667 if (pt_prev)
3668 ret = deliver_skb(skb, pt_prev, orig_dev);
3669 pt_prev = ptype;
3670 }
3671
3672 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3673 if (pt_prev)
3674 ret = deliver_skb(skb, pt_prev, orig_dev);
3675 pt_prev = ptype;
3676 }
3677
3678 skip_taps:
3679 #ifdef CONFIG_NET_CLS_ACT
3680 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3681 if (!skb)
3682 goto unlock;
3683 ncls:
3684 #endif
3685
3686 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3687 goto drop;
3688
3689 if (skb_vlan_tag_present(skb)) {
3690 if (pt_prev) {
3691 ret = deliver_skb(skb, pt_prev, orig_dev);
3692 pt_prev = NULL;
3693 }
3694 if (vlan_do_receive(&skb))
3695 goto another_round;
3696 else if (unlikely(!skb))
3697 goto unlock;
3698 }
3699
3700 rx_handler = rcu_dereference(skb->dev->rx_handler);
3701 if (rx_handler) {
3702 if (pt_prev) {
3703 ret = deliver_skb(skb, pt_prev, orig_dev);
3704 pt_prev = NULL;
3705 }
3706 switch (rx_handler(&skb)) {
3707 case RX_HANDLER_CONSUMED:
3708 ret = NET_RX_SUCCESS;
3709 goto unlock;
3710 case RX_HANDLER_ANOTHER:
3711 goto another_round;
3712 case RX_HANDLER_EXACT:
3713 deliver_exact = true;
3714 case RX_HANDLER_PASS:
3715 break;
3716 default:
3717 BUG();
3718 }
3719 }
3720
3721 if (unlikely(skb_vlan_tag_present(skb))) {
3722 if (skb_vlan_tag_get_id(skb))
3723 skb->pkt_type = PACKET_OTHERHOST;
3724 /* Note: we might in the future use prio bits
3725 * and set skb->priority like in vlan_do_receive()
3726 * For the time being, just ignore Priority Code Point
3727 */
3728 skb->vlan_tci = 0;
3729 }
3730
3731 type = skb->protocol;
3732
3733 /* deliver only exact match when indicated */
3734 if (likely(!deliver_exact)) {
3735 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3736 &ptype_base[ntohs(type) &
3737 PTYPE_HASH_MASK]);
3738 }
3739
3740 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3741 &orig_dev->ptype_specific);
3742
3743 if (unlikely(skb->dev != orig_dev)) {
3744 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3745 &skb->dev->ptype_specific);
3746 }
3747
3748 if (pt_prev) {
3749 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3750 goto drop;
3751 else
3752 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3753 } else {
3754 drop:
3755 atomic_long_inc(&skb->dev->rx_dropped);
3756 kfree_skb(skb);
3757 /* Jamal, now you will not able to escape explaining
3758 * me how you were going to use this. :-)
3759 */
3760 ret = NET_RX_DROP;
3761 }
3762
3763 unlock:
3764 rcu_read_unlock();
3765 return ret;
3766 }
3767
3768 static int __netif_receive_skb(struct sk_buff *skb)
3769 {
3770 int ret;
3771
3772 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3773 unsigned long pflags = current->flags;
3774
3775 /*
3776 * PFMEMALLOC skbs are special, they should
3777 * - be delivered to SOCK_MEMALLOC sockets only
3778 * - stay away from userspace
3779 * - have bounded memory usage
3780 *
3781 * Use PF_MEMALLOC as this saves us from propagating the allocation
3782 * context down to all allocation sites.
3783 */
3784 current->flags |= PF_MEMALLOC;
3785 ret = __netif_receive_skb_core(skb, true);
3786 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3787 } else
3788 ret = __netif_receive_skb_core(skb, false);
3789
3790 return ret;
3791 }
3792
3793 static int netif_receive_skb_internal(struct sk_buff *skb)
3794 {
3795 net_timestamp_check(netdev_tstamp_prequeue, skb);
3796
3797 if (skb_defer_rx_timestamp(skb))
3798 return NET_RX_SUCCESS;
3799
3800 #ifdef CONFIG_RPS
3801 if (static_key_false(&rps_needed)) {
3802 struct rps_dev_flow voidflow, *rflow = &voidflow;
3803 int cpu, ret;
3804
3805 rcu_read_lock();
3806
3807 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3808
3809 if (cpu >= 0) {
3810 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3811 rcu_read_unlock();
3812 return ret;
3813 }
3814 rcu_read_unlock();
3815 }
3816 #endif
3817 return __netif_receive_skb(skb);
3818 }
3819
3820 /**
3821 * netif_receive_skb - process receive buffer from network
3822 * @skb: buffer to process
3823 *
3824 * netif_receive_skb() is the main receive data processing function.
3825 * It always succeeds. The buffer may be dropped during processing
3826 * for congestion control or by the protocol layers.
3827 *
3828 * This function may only be called from softirq context and interrupts
3829 * should be enabled.
3830 *
3831 * Return values (usually ignored):
3832 * NET_RX_SUCCESS: no congestion
3833 * NET_RX_DROP: packet was dropped
3834 */
3835 int netif_receive_skb(struct sk_buff *skb)
3836 {
3837 trace_netif_receive_skb_entry(skb);
3838
3839 return netif_receive_skb_internal(skb);
3840 }
3841 EXPORT_SYMBOL(netif_receive_skb);
3842
3843 /* Network device is going away, flush any packets still pending
3844 * Called with irqs disabled.
3845 */
3846 static void flush_backlog(void *arg)
3847 {
3848 struct net_device *dev = arg;
3849 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3850 struct sk_buff *skb, *tmp;
3851
3852 rps_lock(sd);
3853 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3854 if (skb->dev == dev) {
3855 __skb_unlink(skb, &sd->input_pkt_queue);
3856 kfree_skb(skb);
3857 input_queue_head_incr(sd);
3858 }
3859 }
3860 rps_unlock(sd);
3861
3862 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3863 if (skb->dev == dev) {
3864 __skb_unlink(skb, &sd->process_queue);
3865 kfree_skb(skb);
3866 input_queue_head_incr(sd);
3867 }
3868 }
3869 }
3870
3871 static int napi_gro_complete(struct sk_buff *skb)
3872 {
3873 struct packet_offload *ptype;
3874 __be16 type = skb->protocol;
3875 struct list_head *head = &offload_base;
3876 int err = -ENOENT;
3877
3878 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3879
3880 if (NAPI_GRO_CB(skb)->count == 1) {
3881 skb_shinfo(skb)->gso_size = 0;
3882 goto out;
3883 }
3884
3885 rcu_read_lock();
3886 list_for_each_entry_rcu(ptype, head, list) {
3887 if (ptype->type != type || !ptype->callbacks.gro_complete)
3888 continue;
3889
3890 err = ptype->callbacks.gro_complete(skb, 0);
3891 break;
3892 }
3893 rcu_read_unlock();
3894
3895 if (err) {
3896 WARN_ON(&ptype->list == head);
3897 kfree_skb(skb);
3898 return NET_RX_SUCCESS;
3899 }
3900
3901 out:
3902 return netif_receive_skb_internal(skb);
3903 }
3904
3905 /* napi->gro_list contains packets ordered by age.
3906 * youngest packets at the head of it.
3907 * Complete skbs in reverse order to reduce latencies.
3908 */
3909 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3910 {
3911 struct sk_buff *skb, *prev = NULL;
3912
3913 /* scan list and build reverse chain */
3914 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3915 skb->prev = prev;
3916 prev = skb;
3917 }
3918
3919 for (skb = prev; skb; skb = prev) {
3920 skb->next = NULL;
3921
3922 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3923 return;
3924
3925 prev = skb->prev;
3926 napi_gro_complete(skb);
3927 napi->gro_count--;
3928 }
3929
3930 napi->gro_list = NULL;
3931 }
3932 EXPORT_SYMBOL(napi_gro_flush);
3933
3934 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3935 {
3936 struct sk_buff *p;
3937 unsigned int maclen = skb->dev->hard_header_len;
3938 u32 hash = skb_get_hash_raw(skb);
3939
3940 for (p = napi->gro_list; p; p = p->next) {
3941 unsigned long diffs;
3942
3943 NAPI_GRO_CB(p)->flush = 0;
3944
3945 if (hash != skb_get_hash_raw(p)) {
3946 NAPI_GRO_CB(p)->same_flow = 0;
3947 continue;
3948 }
3949
3950 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3951 diffs |= p->vlan_tci ^ skb->vlan_tci;
3952 if (maclen == ETH_HLEN)
3953 diffs |= compare_ether_header(skb_mac_header(p),
3954 skb_mac_header(skb));
3955 else if (!diffs)
3956 diffs = memcmp(skb_mac_header(p),
3957 skb_mac_header(skb),
3958 maclen);
3959 NAPI_GRO_CB(p)->same_flow = !diffs;
3960 }
3961 }
3962
3963 static void skb_gro_reset_offset(struct sk_buff *skb)
3964 {
3965 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3966 const skb_frag_t *frag0 = &pinfo->frags[0];
3967
3968 NAPI_GRO_CB(skb)->data_offset = 0;
3969 NAPI_GRO_CB(skb)->frag0 = NULL;
3970 NAPI_GRO_CB(skb)->frag0_len = 0;
3971
3972 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3973 pinfo->nr_frags &&
3974 !PageHighMem(skb_frag_page(frag0))) {
3975 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3976 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3977 }
3978 }
3979
3980 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3981 {
3982 struct skb_shared_info *pinfo = skb_shinfo(skb);
3983
3984 BUG_ON(skb->end - skb->tail < grow);
3985
3986 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3987
3988 skb->data_len -= grow;
3989 skb->tail += grow;
3990
3991 pinfo->frags[0].page_offset += grow;
3992 skb_frag_size_sub(&pinfo->frags[0], grow);
3993
3994 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3995 skb_frag_unref(skb, 0);
3996 memmove(pinfo->frags, pinfo->frags + 1,
3997 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3998 }
3999 }
4000
4001 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4002 {
4003 struct sk_buff **pp = NULL;
4004 struct packet_offload *ptype;
4005 __be16 type = skb->protocol;
4006 struct list_head *head = &offload_base;
4007 int same_flow;
4008 enum gro_result ret;
4009 int grow;
4010
4011 if (!(skb->dev->features & NETIF_F_GRO))
4012 goto normal;
4013
4014 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4015 goto normal;
4016
4017 gro_list_prepare(napi, skb);
4018
4019 rcu_read_lock();
4020 list_for_each_entry_rcu(ptype, head, list) {
4021 if (ptype->type != type || !ptype->callbacks.gro_receive)
4022 continue;
4023
4024 skb_set_network_header(skb, skb_gro_offset(skb));
4025 skb_reset_mac_len(skb);
4026 NAPI_GRO_CB(skb)->same_flow = 0;
4027 NAPI_GRO_CB(skb)->flush = 0;
4028 NAPI_GRO_CB(skb)->free = 0;
4029 NAPI_GRO_CB(skb)->udp_mark = 0;
4030 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4031
4032 /* Setup for GRO checksum validation */
4033 switch (skb->ip_summed) {
4034 case CHECKSUM_COMPLETE:
4035 NAPI_GRO_CB(skb)->csum = skb->csum;
4036 NAPI_GRO_CB(skb)->csum_valid = 1;
4037 NAPI_GRO_CB(skb)->csum_cnt = 0;
4038 break;
4039 case CHECKSUM_UNNECESSARY:
4040 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4041 NAPI_GRO_CB(skb)->csum_valid = 0;
4042 break;
4043 default:
4044 NAPI_GRO_CB(skb)->csum_cnt = 0;
4045 NAPI_GRO_CB(skb)->csum_valid = 0;
4046 }
4047
4048 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4049 break;
4050 }
4051 rcu_read_unlock();
4052
4053 if (&ptype->list == head)
4054 goto normal;
4055
4056 same_flow = NAPI_GRO_CB(skb)->same_flow;
4057 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4058
4059 if (pp) {
4060 struct sk_buff *nskb = *pp;
4061
4062 *pp = nskb->next;
4063 nskb->next = NULL;
4064 napi_gro_complete(nskb);
4065 napi->gro_count--;
4066 }
4067
4068 if (same_flow)
4069 goto ok;
4070
4071 if (NAPI_GRO_CB(skb)->flush)
4072 goto normal;
4073
4074 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4075 struct sk_buff *nskb = napi->gro_list;
4076
4077 /* locate the end of the list to select the 'oldest' flow */
4078 while (nskb->next) {
4079 pp = &nskb->next;
4080 nskb = *pp;
4081 }
4082 *pp = NULL;
4083 nskb->next = NULL;
4084 napi_gro_complete(nskb);
4085 } else {
4086 napi->gro_count++;
4087 }
4088 NAPI_GRO_CB(skb)->count = 1;
4089 NAPI_GRO_CB(skb)->age = jiffies;
4090 NAPI_GRO_CB(skb)->last = skb;
4091 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4092 skb->next = napi->gro_list;
4093 napi->gro_list = skb;
4094 ret = GRO_HELD;
4095
4096 pull:
4097 grow = skb_gro_offset(skb) - skb_headlen(skb);
4098 if (grow > 0)
4099 gro_pull_from_frag0(skb, grow);
4100 ok:
4101 return ret;
4102
4103 normal:
4104 ret = GRO_NORMAL;
4105 goto pull;
4106 }
4107
4108 struct packet_offload *gro_find_receive_by_type(__be16 type)
4109 {
4110 struct list_head *offload_head = &offload_base;
4111 struct packet_offload *ptype;
4112
4113 list_for_each_entry_rcu(ptype, offload_head, list) {
4114 if (ptype->type != type || !ptype->callbacks.gro_receive)
4115 continue;
4116 return ptype;
4117 }
4118 return NULL;
4119 }
4120 EXPORT_SYMBOL(gro_find_receive_by_type);
4121
4122 struct packet_offload *gro_find_complete_by_type(__be16 type)
4123 {
4124 struct list_head *offload_head = &offload_base;
4125 struct packet_offload *ptype;
4126
4127 list_for_each_entry_rcu(ptype, offload_head, list) {
4128 if (ptype->type != type || !ptype->callbacks.gro_complete)
4129 continue;
4130 return ptype;
4131 }
4132 return NULL;
4133 }
4134 EXPORT_SYMBOL(gro_find_complete_by_type);
4135
4136 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4137 {
4138 switch (ret) {
4139 case GRO_NORMAL:
4140 if (netif_receive_skb_internal(skb))
4141 ret = GRO_DROP;
4142 break;
4143
4144 case GRO_DROP:
4145 kfree_skb(skb);
4146 break;
4147
4148 case GRO_MERGED_FREE:
4149 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4150 kmem_cache_free(skbuff_head_cache, skb);
4151 else
4152 __kfree_skb(skb);
4153 break;
4154
4155 case GRO_HELD:
4156 case GRO_MERGED:
4157 break;
4158 }
4159
4160 return ret;
4161 }
4162
4163 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4164 {
4165 trace_napi_gro_receive_entry(skb);
4166
4167 skb_gro_reset_offset(skb);
4168
4169 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4170 }
4171 EXPORT_SYMBOL(napi_gro_receive);
4172
4173 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4174 {
4175 if (unlikely(skb->pfmemalloc)) {
4176 consume_skb(skb);
4177 return;
4178 }
4179 __skb_pull(skb, skb_headlen(skb));
4180 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4181 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4182 skb->vlan_tci = 0;
4183 skb->dev = napi->dev;
4184 skb->skb_iif = 0;
4185 skb->encapsulation = 0;
4186 skb_shinfo(skb)->gso_type = 0;
4187 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4188
4189 napi->skb = skb;
4190 }
4191
4192 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4193 {
4194 struct sk_buff *skb = napi->skb;
4195
4196 if (!skb) {
4197 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4198 napi->skb = skb;
4199 }
4200 return skb;
4201 }
4202 EXPORT_SYMBOL(napi_get_frags);
4203
4204 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4205 struct sk_buff *skb,
4206 gro_result_t ret)
4207 {
4208 switch (ret) {
4209 case GRO_NORMAL:
4210 case GRO_HELD:
4211 __skb_push(skb, ETH_HLEN);
4212 skb->protocol = eth_type_trans(skb, skb->dev);
4213 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4214 ret = GRO_DROP;
4215 break;
4216
4217 case GRO_DROP:
4218 case GRO_MERGED_FREE:
4219 napi_reuse_skb(napi, skb);
4220 break;
4221
4222 case GRO_MERGED:
4223 break;
4224 }
4225
4226 return ret;
4227 }
4228
4229 /* Upper GRO stack assumes network header starts at gro_offset=0
4230 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4231 * We copy ethernet header into skb->data to have a common layout.
4232 */
4233 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4234 {
4235 struct sk_buff *skb = napi->skb;
4236 const struct ethhdr *eth;
4237 unsigned int hlen = sizeof(*eth);
4238
4239 napi->skb = NULL;
4240
4241 skb_reset_mac_header(skb);
4242 skb_gro_reset_offset(skb);
4243
4244 eth = skb_gro_header_fast(skb, 0);
4245 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4246 eth = skb_gro_header_slow(skb, hlen, 0);
4247 if (unlikely(!eth)) {
4248 napi_reuse_skb(napi, skb);
4249 return NULL;
4250 }
4251 } else {
4252 gro_pull_from_frag0(skb, hlen);
4253 NAPI_GRO_CB(skb)->frag0 += hlen;
4254 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4255 }
4256 __skb_pull(skb, hlen);
4257
4258 /*
4259 * This works because the only protocols we care about don't require
4260 * special handling.
4261 * We'll fix it up properly in napi_frags_finish()
4262 */
4263 skb->protocol = eth->h_proto;
4264
4265 return skb;
4266 }
4267
4268 gro_result_t napi_gro_frags(struct napi_struct *napi)
4269 {
4270 struct sk_buff *skb = napi_frags_skb(napi);
4271
4272 if (!skb)
4273 return GRO_DROP;
4274
4275 trace_napi_gro_frags_entry(skb);
4276
4277 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4278 }
4279 EXPORT_SYMBOL(napi_gro_frags);
4280
4281 /* Compute the checksum from gro_offset and return the folded value
4282 * after adding in any pseudo checksum.
4283 */
4284 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4285 {
4286 __wsum wsum;
4287 __sum16 sum;
4288
4289 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4290
4291 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4292 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4293 if (likely(!sum)) {
4294 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4295 !skb->csum_complete_sw)
4296 netdev_rx_csum_fault(skb->dev);
4297 }
4298
4299 NAPI_GRO_CB(skb)->csum = wsum;
4300 NAPI_GRO_CB(skb)->csum_valid = 1;
4301
4302 return sum;
4303 }
4304 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4305
4306 /*
4307 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4308 * Note: called with local irq disabled, but exits with local irq enabled.
4309 */
4310 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4311 {
4312 #ifdef CONFIG_RPS
4313 struct softnet_data *remsd = sd->rps_ipi_list;
4314
4315 if (remsd) {
4316 sd->rps_ipi_list = NULL;
4317
4318 local_irq_enable();
4319
4320 /* Send pending IPI's to kick RPS processing on remote cpus. */
4321 while (remsd) {
4322 struct softnet_data *next = remsd->rps_ipi_next;
4323
4324 if (cpu_online(remsd->cpu))
4325 smp_call_function_single_async(remsd->cpu,
4326 &remsd->csd);
4327 remsd = next;
4328 }
4329 } else
4330 #endif
4331 local_irq_enable();
4332 }
4333
4334 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4335 {
4336 #ifdef CONFIG_RPS
4337 return sd->rps_ipi_list != NULL;
4338 #else
4339 return false;
4340 #endif
4341 }
4342
4343 static int process_backlog(struct napi_struct *napi, int quota)
4344 {
4345 int work = 0;
4346 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4347
4348 /* Check if we have pending ipi, its better to send them now,
4349 * not waiting net_rx_action() end.
4350 */
4351 if (sd_has_rps_ipi_waiting(sd)) {
4352 local_irq_disable();
4353 net_rps_action_and_irq_enable(sd);
4354 }
4355
4356 napi->weight = weight_p;
4357 local_irq_disable();
4358 while (1) {
4359 struct sk_buff *skb;
4360
4361 while ((skb = __skb_dequeue(&sd->process_queue))) {
4362 local_irq_enable();
4363 __netif_receive_skb(skb);
4364 local_irq_disable();
4365 input_queue_head_incr(sd);
4366 if (++work >= quota) {
4367 local_irq_enable();
4368 return work;
4369 }
4370 }
4371
4372 rps_lock(sd);
4373 if (skb_queue_empty(&sd->input_pkt_queue)) {
4374 /*
4375 * Inline a custom version of __napi_complete().
4376 * only current cpu owns and manipulates this napi,
4377 * and NAPI_STATE_SCHED is the only possible flag set
4378 * on backlog.
4379 * We can use a plain write instead of clear_bit(),
4380 * and we dont need an smp_mb() memory barrier.
4381 */
4382 napi->state = 0;
4383 rps_unlock(sd);
4384
4385 break;
4386 }
4387
4388 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4389 &sd->process_queue);
4390 rps_unlock(sd);
4391 }
4392 local_irq_enable();
4393
4394 return work;
4395 }
4396
4397 /**
4398 * __napi_schedule - schedule for receive
4399 * @n: entry to schedule
4400 *
4401 * The entry's receive function will be scheduled to run.
4402 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4403 */
4404 void __napi_schedule(struct napi_struct *n)
4405 {
4406 unsigned long flags;
4407
4408 local_irq_save(flags);
4409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4410 local_irq_restore(flags);
4411 }
4412 EXPORT_SYMBOL(__napi_schedule);
4413
4414 /**
4415 * __napi_schedule_irqoff - schedule for receive
4416 * @n: entry to schedule
4417 *
4418 * Variant of __napi_schedule() assuming hard irqs are masked
4419 */
4420 void __napi_schedule_irqoff(struct napi_struct *n)
4421 {
4422 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4423 }
4424 EXPORT_SYMBOL(__napi_schedule_irqoff);
4425
4426 void __napi_complete(struct napi_struct *n)
4427 {
4428 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4429
4430 list_del_init(&n->poll_list);
4431 smp_mb__before_atomic();
4432 clear_bit(NAPI_STATE_SCHED, &n->state);
4433 }
4434 EXPORT_SYMBOL(__napi_complete);
4435
4436 void napi_complete_done(struct napi_struct *n, int work_done)
4437 {
4438 unsigned long flags;
4439
4440 /*
4441 * don't let napi dequeue from the cpu poll list
4442 * just in case its running on a different cpu
4443 */
4444 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4445 return;
4446
4447 if (n->gro_list) {
4448 unsigned long timeout = 0;
4449
4450 if (work_done)
4451 timeout = n->dev->gro_flush_timeout;
4452
4453 if (timeout)
4454 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4455 HRTIMER_MODE_REL_PINNED);
4456 else
4457 napi_gro_flush(n, false);
4458 }
4459 if (likely(list_empty(&n->poll_list))) {
4460 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4461 } else {
4462 /* If n->poll_list is not empty, we need to mask irqs */
4463 local_irq_save(flags);
4464 __napi_complete(n);
4465 local_irq_restore(flags);
4466 }
4467 }
4468 EXPORT_SYMBOL(napi_complete_done);
4469
4470 /* must be called under rcu_read_lock(), as we dont take a reference */
4471 struct napi_struct *napi_by_id(unsigned int napi_id)
4472 {
4473 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4474 struct napi_struct *napi;
4475
4476 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4477 if (napi->napi_id == napi_id)
4478 return napi;
4479
4480 return NULL;
4481 }
4482 EXPORT_SYMBOL_GPL(napi_by_id);
4483
4484 void napi_hash_add(struct napi_struct *napi)
4485 {
4486 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4487
4488 spin_lock(&napi_hash_lock);
4489
4490 /* 0 is not a valid id, we also skip an id that is taken
4491 * we expect both events to be extremely rare
4492 */
4493 napi->napi_id = 0;
4494 while (!napi->napi_id) {
4495 napi->napi_id = ++napi_gen_id;
4496 if (napi_by_id(napi->napi_id))
4497 napi->napi_id = 0;
4498 }
4499
4500 hlist_add_head_rcu(&napi->napi_hash_node,
4501 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4502
4503 spin_unlock(&napi_hash_lock);
4504 }
4505 }
4506 EXPORT_SYMBOL_GPL(napi_hash_add);
4507
4508 /* Warning : caller is responsible to make sure rcu grace period
4509 * is respected before freeing memory containing @napi
4510 */
4511 void napi_hash_del(struct napi_struct *napi)
4512 {
4513 spin_lock(&napi_hash_lock);
4514
4515 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4516 hlist_del_rcu(&napi->napi_hash_node);
4517
4518 spin_unlock(&napi_hash_lock);
4519 }
4520 EXPORT_SYMBOL_GPL(napi_hash_del);
4521
4522 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4523 {
4524 struct napi_struct *napi;
4525
4526 napi = container_of(timer, struct napi_struct, timer);
4527 if (napi->gro_list)
4528 napi_schedule(napi);
4529
4530 return HRTIMER_NORESTART;
4531 }
4532
4533 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4534 int (*poll)(struct napi_struct *, int), int weight)
4535 {
4536 INIT_LIST_HEAD(&napi->poll_list);
4537 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4538 napi->timer.function = napi_watchdog;
4539 napi->gro_count = 0;
4540 napi->gro_list = NULL;
4541 napi->skb = NULL;
4542 napi->poll = poll;
4543 if (weight > NAPI_POLL_WEIGHT)
4544 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4545 weight, dev->name);
4546 napi->weight = weight;
4547 list_add(&napi->dev_list, &dev->napi_list);
4548 napi->dev = dev;
4549 #ifdef CONFIG_NETPOLL
4550 spin_lock_init(&napi->poll_lock);
4551 napi->poll_owner = -1;
4552 #endif
4553 set_bit(NAPI_STATE_SCHED, &napi->state);
4554 }
4555 EXPORT_SYMBOL(netif_napi_add);
4556
4557 void napi_disable(struct napi_struct *n)
4558 {
4559 might_sleep();
4560 set_bit(NAPI_STATE_DISABLE, &n->state);
4561
4562 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4563 msleep(1);
4564
4565 hrtimer_cancel(&n->timer);
4566
4567 clear_bit(NAPI_STATE_DISABLE, &n->state);
4568 }
4569 EXPORT_SYMBOL(napi_disable);
4570
4571 void netif_napi_del(struct napi_struct *napi)
4572 {
4573 list_del_init(&napi->dev_list);
4574 napi_free_frags(napi);
4575
4576 kfree_skb_list(napi->gro_list);
4577 napi->gro_list = NULL;
4578 napi->gro_count = 0;
4579 }
4580 EXPORT_SYMBOL(netif_napi_del);
4581
4582 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4583 {
4584 void *have;
4585 int work, weight;
4586
4587 list_del_init(&n->poll_list);
4588
4589 have = netpoll_poll_lock(n);
4590
4591 weight = n->weight;
4592
4593 /* This NAPI_STATE_SCHED test is for avoiding a race
4594 * with netpoll's poll_napi(). Only the entity which
4595 * obtains the lock and sees NAPI_STATE_SCHED set will
4596 * actually make the ->poll() call. Therefore we avoid
4597 * accidentally calling ->poll() when NAPI is not scheduled.
4598 */
4599 work = 0;
4600 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4601 work = n->poll(n, weight);
4602 trace_napi_poll(n);
4603 }
4604
4605 WARN_ON_ONCE(work > weight);
4606
4607 if (likely(work < weight))
4608 goto out_unlock;
4609
4610 /* Drivers must not modify the NAPI state if they
4611 * consume the entire weight. In such cases this code
4612 * still "owns" the NAPI instance and therefore can
4613 * move the instance around on the list at-will.
4614 */
4615 if (unlikely(napi_disable_pending(n))) {
4616 napi_complete(n);
4617 goto out_unlock;
4618 }
4619
4620 if (n->gro_list) {
4621 /* flush too old packets
4622 * If HZ < 1000, flush all packets.
4623 */
4624 napi_gro_flush(n, HZ >= 1000);
4625 }
4626
4627 /* Some drivers may have called napi_schedule
4628 * prior to exhausting their budget.
4629 */
4630 if (unlikely(!list_empty(&n->poll_list))) {
4631 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4632 n->dev ? n->dev->name : "backlog");
4633 goto out_unlock;
4634 }
4635
4636 list_add_tail(&n->poll_list, repoll);
4637
4638 out_unlock:
4639 netpoll_poll_unlock(have);
4640
4641 return work;
4642 }
4643
4644 static void net_rx_action(struct softirq_action *h)
4645 {
4646 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4647 unsigned long time_limit = jiffies + 2;
4648 int budget = netdev_budget;
4649 LIST_HEAD(list);
4650 LIST_HEAD(repoll);
4651
4652 local_irq_disable();
4653 list_splice_init(&sd->poll_list, &list);
4654 local_irq_enable();
4655
4656 for (;;) {
4657 struct napi_struct *n;
4658
4659 if (list_empty(&list)) {
4660 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4661 return;
4662 break;
4663 }
4664
4665 n = list_first_entry(&list, struct napi_struct, poll_list);
4666 budget -= napi_poll(n, &repoll);
4667
4668 /* If softirq window is exhausted then punt.
4669 * Allow this to run for 2 jiffies since which will allow
4670 * an average latency of 1.5/HZ.
4671 */
4672 if (unlikely(budget <= 0 ||
4673 time_after_eq(jiffies, time_limit))) {
4674 sd->time_squeeze++;
4675 break;
4676 }
4677 }
4678
4679 local_irq_disable();
4680
4681 list_splice_tail_init(&sd->poll_list, &list);
4682 list_splice_tail(&repoll, &list);
4683 list_splice(&list, &sd->poll_list);
4684 if (!list_empty(&sd->poll_list))
4685 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686
4687 net_rps_action_and_irq_enable(sd);
4688 }
4689
4690 struct netdev_adjacent {
4691 struct net_device *dev;
4692
4693 /* upper master flag, there can only be one master device per list */
4694 bool master;
4695
4696 /* counter for the number of times this device was added to us */
4697 u16 ref_nr;
4698
4699 /* private field for the users */
4700 void *private;
4701
4702 struct list_head list;
4703 struct rcu_head rcu;
4704 };
4705
4706 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4707 struct net_device *adj_dev,
4708 struct list_head *adj_list)
4709 {
4710 struct netdev_adjacent *adj;
4711
4712 list_for_each_entry(adj, adj_list, list) {
4713 if (adj->dev == adj_dev)
4714 return adj;
4715 }
4716 return NULL;
4717 }
4718
4719 /**
4720 * netdev_has_upper_dev - Check if device is linked to an upper device
4721 * @dev: device
4722 * @upper_dev: upper device to check
4723 *
4724 * Find out if a device is linked to specified upper device and return true
4725 * in case it is. Note that this checks only immediate upper device,
4726 * not through a complete stack of devices. The caller must hold the RTNL lock.
4727 */
4728 bool netdev_has_upper_dev(struct net_device *dev,
4729 struct net_device *upper_dev)
4730 {
4731 ASSERT_RTNL();
4732
4733 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4734 }
4735 EXPORT_SYMBOL(netdev_has_upper_dev);
4736
4737 /**
4738 * netdev_has_any_upper_dev - Check if device is linked to some device
4739 * @dev: device
4740 *
4741 * Find out if a device is linked to an upper device and return true in case
4742 * it is. The caller must hold the RTNL lock.
4743 */
4744 static bool netdev_has_any_upper_dev(struct net_device *dev)
4745 {
4746 ASSERT_RTNL();
4747
4748 return !list_empty(&dev->all_adj_list.upper);
4749 }
4750
4751 /**
4752 * netdev_master_upper_dev_get - Get master upper device
4753 * @dev: device
4754 *
4755 * Find a master upper device and return pointer to it or NULL in case
4756 * it's not there. The caller must hold the RTNL lock.
4757 */
4758 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4759 {
4760 struct netdev_adjacent *upper;
4761
4762 ASSERT_RTNL();
4763
4764 if (list_empty(&dev->adj_list.upper))
4765 return NULL;
4766
4767 upper = list_first_entry(&dev->adj_list.upper,
4768 struct netdev_adjacent, list);
4769 if (likely(upper->master))
4770 return upper->dev;
4771 return NULL;
4772 }
4773 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4774
4775 void *netdev_adjacent_get_private(struct list_head *adj_list)
4776 {
4777 struct netdev_adjacent *adj;
4778
4779 adj = list_entry(adj_list, struct netdev_adjacent, list);
4780
4781 return adj->private;
4782 }
4783 EXPORT_SYMBOL(netdev_adjacent_get_private);
4784
4785 /**
4786 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4787 * @dev: device
4788 * @iter: list_head ** of the current position
4789 *
4790 * Gets the next device from the dev's upper list, starting from iter
4791 * position. The caller must hold RCU read lock.
4792 */
4793 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4794 struct list_head **iter)
4795 {
4796 struct netdev_adjacent *upper;
4797
4798 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4799
4800 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4801
4802 if (&upper->list == &dev->adj_list.upper)
4803 return NULL;
4804
4805 *iter = &upper->list;
4806
4807 return upper->dev;
4808 }
4809 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4810
4811 /**
4812 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4813 * @dev: device
4814 * @iter: list_head ** of the current position
4815 *
4816 * Gets the next device from the dev's upper list, starting from iter
4817 * position. The caller must hold RCU read lock.
4818 */
4819 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4820 struct list_head **iter)
4821 {
4822 struct netdev_adjacent *upper;
4823
4824 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4825
4826 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4827
4828 if (&upper->list == &dev->all_adj_list.upper)
4829 return NULL;
4830
4831 *iter = &upper->list;
4832
4833 return upper->dev;
4834 }
4835 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4836
4837 /**
4838 * netdev_lower_get_next_private - Get the next ->private from the
4839 * lower neighbour list
4840 * @dev: device
4841 * @iter: list_head ** of the current position
4842 *
4843 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4844 * list, starting from iter position. The caller must hold either hold the
4845 * RTNL lock or its own locking that guarantees that the neighbour lower
4846 * list will remain unchainged.
4847 */
4848 void *netdev_lower_get_next_private(struct net_device *dev,
4849 struct list_head **iter)
4850 {
4851 struct netdev_adjacent *lower;
4852
4853 lower = list_entry(*iter, struct netdev_adjacent, list);
4854
4855 if (&lower->list == &dev->adj_list.lower)
4856 return NULL;
4857
4858 *iter = lower->list.next;
4859
4860 return lower->private;
4861 }
4862 EXPORT_SYMBOL(netdev_lower_get_next_private);
4863
4864 /**
4865 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4866 * lower neighbour list, RCU
4867 * variant
4868 * @dev: device
4869 * @iter: list_head ** of the current position
4870 *
4871 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4872 * list, starting from iter position. The caller must hold RCU read lock.
4873 */
4874 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4875 struct list_head **iter)
4876 {
4877 struct netdev_adjacent *lower;
4878
4879 WARN_ON_ONCE(!rcu_read_lock_held());
4880
4881 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4882
4883 if (&lower->list == &dev->adj_list.lower)
4884 return NULL;
4885
4886 *iter = &lower->list;
4887
4888 return lower->private;
4889 }
4890 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4891
4892 /**
4893 * netdev_lower_get_next - Get the next device from the lower neighbour
4894 * list
4895 * @dev: device
4896 * @iter: list_head ** of the current position
4897 *
4898 * Gets the next netdev_adjacent from the dev's lower neighbour
4899 * list, starting from iter position. The caller must hold RTNL lock or
4900 * its own locking that guarantees that the neighbour lower
4901 * list will remain unchainged.
4902 */
4903 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4904 {
4905 struct netdev_adjacent *lower;
4906
4907 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4908
4909 if (&lower->list == &dev->adj_list.lower)
4910 return NULL;
4911
4912 *iter = &lower->list;
4913
4914 return lower->dev;
4915 }
4916 EXPORT_SYMBOL(netdev_lower_get_next);
4917
4918 /**
4919 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4920 * lower neighbour list, RCU
4921 * variant
4922 * @dev: device
4923 *
4924 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4925 * list. The caller must hold RCU read lock.
4926 */
4927 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4928 {
4929 struct netdev_adjacent *lower;
4930
4931 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4932 struct netdev_adjacent, list);
4933 if (lower)
4934 return lower->private;
4935 return NULL;
4936 }
4937 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4938
4939 /**
4940 * netdev_master_upper_dev_get_rcu - Get master upper device
4941 * @dev: device
4942 *
4943 * Find a master upper device and return pointer to it or NULL in case
4944 * it's not there. The caller must hold the RCU read lock.
4945 */
4946 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4947 {
4948 struct netdev_adjacent *upper;
4949
4950 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4951 struct netdev_adjacent, list);
4952 if (upper && likely(upper->master))
4953 return upper->dev;
4954 return NULL;
4955 }
4956 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4957
4958 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4959 struct net_device *adj_dev,
4960 struct list_head *dev_list)
4961 {
4962 char linkname[IFNAMSIZ+7];
4963 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4964 "upper_%s" : "lower_%s", adj_dev->name);
4965 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4966 linkname);
4967 }
4968 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4969 char *name,
4970 struct list_head *dev_list)
4971 {
4972 char linkname[IFNAMSIZ+7];
4973 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4974 "upper_%s" : "lower_%s", name);
4975 sysfs_remove_link(&(dev->dev.kobj), linkname);
4976 }
4977
4978 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4979 struct net_device *adj_dev,
4980 struct list_head *dev_list)
4981 {
4982 return (dev_list == &dev->adj_list.upper ||
4983 dev_list == &dev->adj_list.lower) &&
4984 net_eq(dev_net(dev), dev_net(adj_dev));
4985 }
4986
4987 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4988 struct net_device *adj_dev,
4989 struct list_head *dev_list,
4990 void *private, bool master)
4991 {
4992 struct netdev_adjacent *adj;
4993 int ret;
4994
4995 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4996
4997 if (adj) {
4998 adj->ref_nr++;
4999 return 0;
5000 }
5001
5002 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5003 if (!adj)
5004 return -ENOMEM;
5005
5006 adj->dev = adj_dev;
5007 adj->master = master;
5008 adj->ref_nr = 1;
5009 adj->private = private;
5010 dev_hold(adj_dev);
5011
5012 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5013 adj_dev->name, dev->name, adj_dev->name);
5014
5015 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5016 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5017 if (ret)
5018 goto free_adj;
5019 }
5020
5021 /* Ensure that master link is always the first item in list. */
5022 if (master) {
5023 ret = sysfs_create_link(&(dev->dev.kobj),
5024 &(adj_dev->dev.kobj), "master");
5025 if (ret)
5026 goto remove_symlinks;
5027
5028 list_add_rcu(&adj->list, dev_list);
5029 } else {
5030 list_add_tail_rcu(&adj->list, dev_list);
5031 }
5032
5033 return 0;
5034
5035 remove_symlinks:
5036 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5037 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5038 free_adj:
5039 kfree(adj);
5040 dev_put(adj_dev);
5041
5042 return ret;
5043 }
5044
5045 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5046 struct net_device *adj_dev,
5047 struct list_head *dev_list)
5048 {
5049 struct netdev_adjacent *adj;
5050
5051 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5052
5053 if (!adj) {
5054 pr_err("tried to remove device %s from %s\n",
5055 dev->name, adj_dev->name);
5056 BUG();
5057 }
5058
5059 if (adj->ref_nr > 1) {
5060 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5061 adj->ref_nr-1);
5062 adj->ref_nr--;
5063 return;
5064 }
5065
5066 if (adj->master)
5067 sysfs_remove_link(&(dev->dev.kobj), "master");
5068
5069 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5070 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5071
5072 list_del_rcu(&adj->list);
5073 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5074 adj_dev->name, dev->name, adj_dev->name);
5075 dev_put(adj_dev);
5076 kfree_rcu(adj, rcu);
5077 }
5078
5079 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5080 struct net_device *upper_dev,
5081 struct list_head *up_list,
5082 struct list_head *down_list,
5083 void *private, bool master)
5084 {
5085 int ret;
5086
5087 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5088 master);
5089 if (ret)
5090 return ret;
5091
5092 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5093 false);
5094 if (ret) {
5095 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5096 return ret;
5097 }
5098
5099 return 0;
5100 }
5101
5102 static int __netdev_adjacent_dev_link(struct net_device *dev,
5103 struct net_device *upper_dev)
5104 {
5105 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5106 &dev->all_adj_list.upper,
5107 &upper_dev->all_adj_list.lower,
5108 NULL, false);
5109 }
5110
5111 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5112 struct net_device *upper_dev,
5113 struct list_head *up_list,
5114 struct list_head *down_list)
5115 {
5116 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5117 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5118 }
5119
5120 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5121 struct net_device *upper_dev)
5122 {
5123 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5124 &dev->all_adj_list.upper,
5125 &upper_dev->all_adj_list.lower);
5126 }
5127
5128 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5129 struct net_device *upper_dev,
5130 void *private, bool master)
5131 {
5132 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5133
5134 if (ret)
5135 return ret;
5136
5137 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5138 &dev->adj_list.upper,
5139 &upper_dev->adj_list.lower,
5140 private, master);
5141 if (ret) {
5142 __netdev_adjacent_dev_unlink(dev, upper_dev);
5143 return ret;
5144 }
5145
5146 return 0;
5147 }
5148
5149 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5150 struct net_device *upper_dev)
5151 {
5152 __netdev_adjacent_dev_unlink(dev, upper_dev);
5153 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5154 &dev->adj_list.upper,
5155 &upper_dev->adj_list.lower);
5156 }
5157
5158 static int __netdev_upper_dev_link(struct net_device *dev,
5159 struct net_device *upper_dev, bool master,
5160 void *private)
5161 {
5162 struct netdev_adjacent *i, *j, *to_i, *to_j;
5163 int ret = 0;
5164
5165 ASSERT_RTNL();
5166
5167 if (dev == upper_dev)
5168 return -EBUSY;
5169
5170 /* To prevent loops, check if dev is not upper device to upper_dev. */
5171 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5172 return -EBUSY;
5173
5174 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5175 return -EEXIST;
5176
5177 if (master && netdev_master_upper_dev_get(dev))
5178 return -EBUSY;
5179
5180 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5181 master);
5182 if (ret)
5183 return ret;
5184
5185 /* Now that we linked these devs, make all the upper_dev's
5186 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5187 * versa, and don't forget the devices itself. All of these
5188 * links are non-neighbours.
5189 */
5190 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5191 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5192 pr_debug("Interlinking %s with %s, non-neighbour\n",
5193 i->dev->name, j->dev->name);
5194 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5195 if (ret)
5196 goto rollback_mesh;
5197 }
5198 }
5199
5200 /* add dev to every upper_dev's upper device */
5201 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5202 pr_debug("linking %s's upper device %s with %s\n",
5203 upper_dev->name, i->dev->name, dev->name);
5204 ret = __netdev_adjacent_dev_link(dev, i->dev);
5205 if (ret)
5206 goto rollback_upper_mesh;
5207 }
5208
5209 /* add upper_dev to every dev's lower device */
5210 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5211 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5212 i->dev->name, upper_dev->name);
5213 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5214 if (ret)
5215 goto rollback_lower_mesh;
5216 }
5217
5218 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5219 return 0;
5220
5221 rollback_lower_mesh:
5222 to_i = i;
5223 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5224 if (i == to_i)
5225 break;
5226 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5227 }
5228
5229 i = NULL;
5230
5231 rollback_upper_mesh:
5232 to_i = i;
5233 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5234 if (i == to_i)
5235 break;
5236 __netdev_adjacent_dev_unlink(dev, i->dev);
5237 }
5238
5239 i = j = NULL;
5240
5241 rollback_mesh:
5242 to_i = i;
5243 to_j = j;
5244 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5245 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5246 if (i == to_i && j == to_j)
5247 break;
5248 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5249 }
5250 if (i == to_i)
5251 break;
5252 }
5253
5254 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5255
5256 return ret;
5257 }
5258
5259 /**
5260 * netdev_upper_dev_link - Add a link to the upper device
5261 * @dev: device
5262 * @upper_dev: new upper device
5263 *
5264 * Adds a link to device which is upper to this one. The caller must hold
5265 * the RTNL lock. On a failure a negative errno code is returned.
5266 * On success the reference counts are adjusted and the function
5267 * returns zero.
5268 */
5269 int netdev_upper_dev_link(struct net_device *dev,
5270 struct net_device *upper_dev)
5271 {
5272 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5273 }
5274 EXPORT_SYMBOL(netdev_upper_dev_link);
5275
5276 /**
5277 * netdev_master_upper_dev_link - Add a master link to the upper device
5278 * @dev: device
5279 * @upper_dev: new upper device
5280 *
5281 * Adds a link to device which is upper to this one. In this case, only
5282 * one master upper device can be linked, although other non-master devices
5283 * might be linked as well. The caller must hold the RTNL lock.
5284 * On a failure a negative errno code is returned. On success the reference
5285 * counts are adjusted and the function returns zero.
5286 */
5287 int netdev_master_upper_dev_link(struct net_device *dev,
5288 struct net_device *upper_dev)
5289 {
5290 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5291 }
5292 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5293
5294 int netdev_master_upper_dev_link_private(struct net_device *dev,
5295 struct net_device *upper_dev,
5296 void *private)
5297 {
5298 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5299 }
5300 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5301
5302 /**
5303 * netdev_upper_dev_unlink - Removes a link to upper device
5304 * @dev: device
5305 * @upper_dev: new upper device
5306 *
5307 * Removes a link to device which is upper to this one. The caller must hold
5308 * the RTNL lock.
5309 */
5310 void netdev_upper_dev_unlink(struct net_device *dev,
5311 struct net_device *upper_dev)
5312 {
5313 struct netdev_adjacent *i, *j;
5314 ASSERT_RTNL();
5315
5316 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5317
5318 /* Here is the tricky part. We must remove all dev's lower
5319 * devices from all upper_dev's upper devices and vice
5320 * versa, to maintain the graph relationship.
5321 */
5322 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5323 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5324 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5325
5326 /* remove also the devices itself from lower/upper device
5327 * list
5328 */
5329 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5330 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5331
5332 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5333 __netdev_adjacent_dev_unlink(dev, i->dev);
5334
5335 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5336 }
5337 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5338
5339 /**
5340 * netdev_bonding_info_change - Dispatch event about slave change
5341 * @dev: device
5342 * @bonding_info: info to dispatch
5343 *
5344 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5345 * The caller must hold the RTNL lock.
5346 */
5347 void netdev_bonding_info_change(struct net_device *dev,
5348 struct netdev_bonding_info *bonding_info)
5349 {
5350 struct netdev_notifier_bonding_info info;
5351
5352 memcpy(&info.bonding_info, bonding_info,
5353 sizeof(struct netdev_bonding_info));
5354 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5355 &info.info);
5356 }
5357 EXPORT_SYMBOL(netdev_bonding_info_change);
5358
5359 static void netdev_adjacent_add_links(struct net_device *dev)
5360 {
5361 struct netdev_adjacent *iter;
5362
5363 struct net *net = dev_net(dev);
5364
5365 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5366 if (!net_eq(net,dev_net(iter->dev)))
5367 continue;
5368 netdev_adjacent_sysfs_add(iter->dev, dev,
5369 &iter->dev->adj_list.lower);
5370 netdev_adjacent_sysfs_add(dev, iter->dev,
5371 &dev->adj_list.upper);
5372 }
5373
5374 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5375 if (!net_eq(net,dev_net(iter->dev)))
5376 continue;
5377 netdev_adjacent_sysfs_add(iter->dev, dev,
5378 &iter->dev->adj_list.upper);
5379 netdev_adjacent_sysfs_add(dev, iter->dev,
5380 &dev->adj_list.lower);
5381 }
5382 }
5383
5384 static void netdev_adjacent_del_links(struct net_device *dev)
5385 {
5386 struct netdev_adjacent *iter;
5387
5388 struct net *net = dev_net(dev);
5389
5390 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5391 if (!net_eq(net,dev_net(iter->dev)))
5392 continue;
5393 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5394 &iter->dev->adj_list.lower);
5395 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5396 &dev->adj_list.upper);
5397 }
5398
5399 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5400 if (!net_eq(net,dev_net(iter->dev)))
5401 continue;
5402 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5403 &iter->dev->adj_list.upper);
5404 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5405 &dev->adj_list.lower);
5406 }
5407 }
5408
5409 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5410 {
5411 struct netdev_adjacent *iter;
5412
5413 struct net *net = dev_net(dev);
5414
5415 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5416 if (!net_eq(net,dev_net(iter->dev)))
5417 continue;
5418 netdev_adjacent_sysfs_del(iter->dev, oldname,
5419 &iter->dev->adj_list.lower);
5420 netdev_adjacent_sysfs_add(iter->dev, dev,
5421 &iter->dev->adj_list.lower);
5422 }
5423
5424 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5425 if (!net_eq(net,dev_net(iter->dev)))
5426 continue;
5427 netdev_adjacent_sysfs_del(iter->dev, oldname,
5428 &iter->dev->adj_list.upper);
5429 netdev_adjacent_sysfs_add(iter->dev, dev,
5430 &iter->dev->adj_list.upper);
5431 }
5432 }
5433
5434 void *netdev_lower_dev_get_private(struct net_device *dev,
5435 struct net_device *lower_dev)
5436 {
5437 struct netdev_adjacent *lower;
5438
5439 if (!lower_dev)
5440 return NULL;
5441 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5442 if (!lower)
5443 return NULL;
5444
5445 return lower->private;
5446 }
5447 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5448
5449
5450 int dev_get_nest_level(struct net_device *dev,
5451 bool (*type_check)(struct net_device *dev))
5452 {
5453 struct net_device *lower = NULL;
5454 struct list_head *iter;
5455 int max_nest = -1;
5456 int nest;
5457
5458 ASSERT_RTNL();
5459
5460 netdev_for_each_lower_dev(dev, lower, iter) {
5461 nest = dev_get_nest_level(lower, type_check);
5462 if (max_nest < nest)
5463 max_nest = nest;
5464 }
5465
5466 if (type_check(dev))
5467 max_nest++;
5468
5469 return max_nest;
5470 }
5471 EXPORT_SYMBOL(dev_get_nest_level);
5472
5473 static void dev_change_rx_flags(struct net_device *dev, int flags)
5474 {
5475 const struct net_device_ops *ops = dev->netdev_ops;
5476
5477 if (ops->ndo_change_rx_flags)
5478 ops->ndo_change_rx_flags(dev, flags);
5479 }
5480
5481 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5482 {
5483 unsigned int old_flags = dev->flags;
5484 kuid_t uid;
5485 kgid_t gid;
5486
5487 ASSERT_RTNL();
5488
5489 dev->flags |= IFF_PROMISC;
5490 dev->promiscuity += inc;
5491 if (dev->promiscuity == 0) {
5492 /*
5493 * Avoid overflow.
5494 * If inc causes overflow, untouch promisc and return error.
5495 */
5496 if (inc < 0)
5497 dev->flags &= ~IFF_PROMISC;
5498 else {
5499 dev->promiscuity -= inc;
5500 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5501 dev->name);
5502 return -EOVERFLOW;
5503 }
5504 }
5505 if (dev->flags != old_flags) {
5506 pr_info("device %s %s promiscuous mode\n",
5507 dev->name,
5508 dev->flags & IFF_PROMISC ? "entered" : "left");
5509 if (audit_enabled) {
5510 current_uid_gid(&uid, &gid);
5511 audit_log(current->audit_context, GFP_ATOMIC,
5512 AUDIT_ANOM_PROMISCUOUS,
5513 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5514 dev->name, (dev->flags & IFF_PROMISC),
5515 (old_flags & IFF_PROMISC),
5516 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5517 from_kuid(&init_user_ns, uid),
5518 from_kgid(&init_user_ns, gid),
5519 audit_get_sessionid(current));
5520 }
5521
5522 dev_change_rx_flags(dev, IFF_PROMISC);
5523 }
5524 if (notify)
5525 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5526 return 0;
5527 }
5528
5529 /**
5530 * dev_set_promiscuity - update promiscuity count on a device
5531 * @dev: device
5532 * @inc: modifier
5533 *
5534 * Add or remove promiscuity from a device. While the count in the device
5535 * remains above zero the interface remains promiscuous. Once it hits zero
5536 * the device reverts back to normal filtering operation. A negative inc
5537 * value is used to drop promiscuity on the device.
5538 * Return 0 if successful or a negative errno code on error.
5539 */
5540 int dev_set_promiscuity(struct net_device *dev, int inc)
5541 {
5542 unsigned int old_flags = dev->flags;
5543 int err;
5544
5545 err = __dev_set_promiscuity(dev, inc, true);
5546 if (err < 0)
5547 return err;
5548 if (dev->flags != old_flags)
5549 dev_set_rx_mode(dev);
5550 return err;
5551 }
5552 EXPORT_SYMBOL(dev_set_promiscuity);
5553
5554 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5555 {
5556 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5557
5558 ASSERT_RTNL();
5559
5560 dev->flags |= IFF_ALLMULTI;
5561 dev->allmulti += inc;
5562 if (dev->allmulti == 0) {
5563 /*
5564 * Avoid overflow.
5565 * If inc causes overflow, untouch allmulti and return error.
5566 */
5567 if (inc < 0)
5568 dev->flags &= ~IFF_ALLMULTI;
5569 else {
5570 dev->allmulti -= inc;
5571 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5572 dev->name);
5573 return -EOVERFLOW;
5574 }
5575 }
5576 if (dev->flags ^ old_flags) {
5577 dev_change_rx_flags(dev, IFF_ALLMULTI);
5578 dev_set_rx_mode(dev);
5579 if (notify)
5580 __dev_notify_flags(dev, old_flags,
5581 dev->gflags ^ old_gflags);
5582 }
5583 return 0;
5584 }
5585
5586 /**
5587 * dev_set_allmulti - update allmulti count on a device
5588 * @dev: device
5589 * @inc: modifier
5590 *
5591 * Add or remove reception of all multicast frames to a device. While the
5592 * count in the device remains above zero the interface remains listening
5593 * to all interfaces. Once it hits zero the device reverts back to normal
5594 * filtering operation. A negative @inc value is used to drop the counter
5595 * when releasing a resource needing all multicasts.
5596 * Return 0 if successful or a negative errno code on error.
5597 */
5598
5599 int dev_set_allmulti(struct net_device *dev, int inc)
5600 {
5601 return __dev_set_allmulti(dev, inc, true);
5602 }
5603 EXPORT_SYMBOL(dev_set_allmulti);
5604
5605 /*
5606 * Upload unicast and multicast address lists to device and
5607 * configure RX filtering. When the device doesn't support unicast
5608 * filtering it is put in promiscuous mode while unicast addresses
5609 * are present.
5610 */
5611 void __dev_set_rx_mode(struct net_device *dev)
5612 {
5613 const struct net_device_ops *ops = dev->netdev_ops;
5614
5615 /* dev_open will call this function so the list will stay sane. */
5616 if (!(dev->flags&IFF_UP))
5617 return;
5618
5619 if (!netif_device_present(dev))
5620 return;
5621
5622 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5623 /* Unicast addresses changes may only happen under the rtnl,
5624 * therefore calling __dev_set_promiscuity here is safe.
5625 */
5626 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5627 __dev_set_promiscuity(dev, 1, false);
5628 dev->uc_promisc = true;
5629 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5630 __dev_set_promiscuity(dev, -1, false);
5631 dev->uc_promisc = false;
5632 }
5633 }
5634
5635 if (ops->ndo_set_rx_mode)
5636 ops->ndo_set_rx_mode(dev);
5637 }
5638
5639 void dev_set_rx_mode(struct net_device *dev)
5640 {
5641 netif_addr_lock_bh(dev);
5642 __dev_set_rx_mode(dev);
5643 netif_addr_unlock_bh(dev);
5644 }
5645
5646 /**
5647 * dev_get_flags - get flags reported to userspace
5648 * @dev: device
5649 *
5650 * Get the combination of flag bits exported through APIs to userspace.
5651 */
5652 unsigned int dev_get_flags(const struct net_device *dev)
5653 {
5654 unsigned int flags;
5655
5656 flags = (dev->flags & ~(IFF_PROMISC |
5657 IFF_ALLMULTI |
5658 IFF_RUNNING |
5659 IFF_LOWER_UP |
5660 IFF_DORMANT)) |
5661 (dev->gflags & (IFF_PROMISC |
5662 IFF_ALLMULTI));
5663
5664 if (netif_running(dev)) {
5665 if (netif_oper_up(dev))
5666 flags |= IFF_RUNNING;
5667 if (netif_carrier_ok(dev))
5668 flags |= IFF_LOWER_UP;
5669 if (netif_dormant(dev))
5670 flags |= IFF_DORMANT;
5671 }
5672
5673 return flags;
5674 }
5675 EXPORT_SYMBOL(dev_get_flags);
5676
5677 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5678 {
5679 unsigned int old_flags = dev->flags;
5680 int ret;
5681
5682 ASSERT_RTNL();
5683
5684 /*
5685 * Set the flags on our device.
5686 */
5687
5688 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5689 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5690 IFF_AUTOMEDIA)) |
5691 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5692 IFF_ALLMULTI));
5693
5694 /*
5695 * Load in the correct multicast list now the flags have changed.
5696 */
5697
5698 if ((old_flags ^ flags) & IFF_MULTICAST)
5699 dev_change_rx_flags(dev, IFF_MULTICAST);
5700
5701 dev_set_rx_mode(dev);
5702
5703 /*
5704 * Have we downed the interface. We handle IFF_UP ourselves
5705 * according to user attempts to set it, rather than blindly
5706 * setting it.
5707 */
5708
5709 ret = 0;
5710 if ((old_flags ^ flags) & IFF_UP)
5711 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5712
5713 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5714 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5715 unsigned int old_flags = dev->flags;
5716
5717 dev->gflags ^= IFF_PROMISC;
5718
5719 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5720 if (dev->flags != old_flags)
5721 dev_set_rx_mode(dev);
5722 }
5723
5724 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5725 is important. Some (broken) drivers set IFF_PROMISC, when
5726 IFF_ALLMULTI is requested not asking us and not reporting.
5727 */
5728 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5729 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5730
5731 dev->gflags ^= IFF_ALLMULTI;
5732 __dev_set_allmulti(dev, inc, false);
5733 }
5734
5735 return ret;
5736 }
5737
5738 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5739 unsigned int gchanges)
5740 {
5741 unsigned int changes = dev->flags ^ old_flags;
5742
5743 if (gchanges)
5744 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5745
5746 if (changes & IFF_UP) {
5747 if (dev->flags & IFF_UP)
5748 call_netdevice_notifiers(NETDEV_UP, dev);
5749 else
5750 call_netdevice_notifiers(NETDEV_DOWN, dev);
5751 }
5752
5753 if (dev->flags & IFF_UP &&
5754 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5755 struct netdev_notifier_change_info change_info;
5756
5757 change_info.flags_changed = changes;
5758 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5759 &change_info.info);
5760 }
5761 }
5762
5763 /**
5764 * dev_change_flags - change device settings
5765 * @dev: device
5766 * @flags: device state flags
5767 *
5768 * Change settings on device based state flags. The flags are
5769 * in the userspace exported format.
5770 */
5771 int dev_change_flags(struct net_device *dev, unsigned int flags)
5772 {
5773 int ret;
5774 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5775
5776 ret = __dev_change_flags(dev, flags);
5777 if (ret < 0)
5778 return ret;
5779
5780 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5781 __dev_notify_flags(dev, old_flags, changes);
5782 return ret;
5783 }
5784 EXPORT_SYMBOL(dev_change_flags);
5785
5786 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5787 {
5788 const struct net_device_ops *ops = dev->netdev_ops;
5789
5790 if (ops->ndo_change_mtu)
5791 return ops->ndo_change_mtu(dev, new_mtu);
5792
5793 dev->mtu = new_mtu;
5794 return 0;
5795 }
5796
5797 /**
5798 * dev_set_mtu - Change maximum transfer unit
5799 * @dev: device
5800 * @new_mtu: new transfer unit
5801 *
5802 * Change the maximum transfer size of the network device.
5803 */
5804 int dev_set_mtu(struct net_device *dev, int new_mtu)
5805 {
5806 int err, orig_mtu;
5807
5808 if (new_mtu == dev->mtu)
5809 return 0;
5810
5811 /* MTU must be positive. */
5812 if (new_mtu < 0)
5813 return -EINVAL;
5814
5815 if (!netif_device_present(dev))
5816 return -ENODEV;
5817
5818 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5819 err = notifier_to_errno(err);
5820 if (err)
5821 return err;
5822
5823 orig_mtu = dev->mtu;
5824 err = __dev_set_mtu(dev, new_mtu);
5825
5826 if (!err) {
5827 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5828 err = notifier_to_errno(err);
5829 if (err) {
5830 /* setting mtu back and notifying everyone again,
5831 * so that they have a chance to revert changes.
5832 */
5833 __dev_set_mtu(dev, orig_mtu);
5834 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5835 }
5836 }
5837 return err;
5838 }
5839 EXPORT_SYMBOL(dev_set_mtu);
5840
5841 /**
5842 * dev_set_group - Change group this device belongs to
5843 * @dev: device
5844 * @new_group: group this device should belong to
5845 */
5846 void dev_set_group(struct net_device *dev, int new_group)
5847 {
5848 dev->group = new_group;
5849 }
5850 EXPORT_SYMBOL(dev_set_group);
5851
5852 /**
5853 * dev_set_mac_address - Change Media Access Control Address
5854 * @dev: device
5855 * @sa: new address
5856 *
5857 * Change the hardware (MAC) address of the device
5858 */
5859 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5860 {
5861 const struct net_device_ops *ops = dev->netdev_ops;
5862 int err;
5863
5864 if (!ops->ndo_set_mac_address)
5865 return -EOPNOTSUPP;
5866 if (sa->sa_family != dev->type)
5867 return -EINVAL;
5868 if (!netif_device_present(dev))
5869 return -ENODEV;
5870 err = ops->ndo_set_mac_address(dev, sa);
5871 if (err)
5872 return err;
5873 dev->addr_assign_type = NET_ADDR_SET;
5874 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5875 add_device_randomness(dev->dev_addr, dev->addr_len);
5876 return 0;
5877 }
5878 EXPORT_SYMBOL(dev_set_mac_address);
5879
5880 /**
5881 * dev_change_carrier - Change device carrier
5882 * @dev: device
5883 * @new_carrier: new value
5884 *
5885 * Change device carrier
5886 */
5887 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5888 {
5889 const struct net_device_ops *ops = dev->netdev_ops;
5890
5891 if (!ops->ndo_change_carrier)
5892 return -EOPNOTSUPP;
5893 if (!netif_device_present(dev))
5894 return -ENODEV;
5895 return ops->ndo_change_carrier(dev, new_carrier);
5896 }
5897 EXPORT_SYMBOL(dev_change_carrier);
5898
5899 /**
5900 * dev_get_phys_port_id - Get device physical port ID
5901 * @dev: device
5902 * @ppid: port ID
5903 *
5904 * Get device physical port ID
5905 */
5906 int dev_get_phys_port_id(struct net_device *dev,
5907 struct netdev_phys_item_id *ppid)
5908 {
5909 const struct net_device_ops *ops = dev->netdev_ops;
5910
5911 if (!ops->ndo_get_phys_port_id)
5912 return -EOPNOTSUPP;
5913 return ops->ndo_get_phys_port_id(dev, ppid);
5914 }
5915 EXPORT_SYMBOL(dev_get_phys_port_id);
5916
5917 /**
5918 * dev_get_phys_port_name - Get device physical port name
5919 * @dev: device
5920 * @name: port name
5921 *
5922 * Get device physical port name
5923 */
5924 int dev_get_phys_port_name(struct net_device *dev,
5925 char *name, size_t len)
5926 {
5927 const struct net_device_ops *ops = dev->netdev_ops;
5928
5929 if (!ops->ndo_get_phys_port_name)
5930 return -EOPNOTSUPP;
5931 return ops->ndo_get_phys_port_name(dev, name, len);
5932 }
5933 EXPORT_SYMBOL(dev_get_phys_port_name);
5934
5935 /**
5936 * dev_new_index - allocate an ifindex
5937 * @net: the applicable net namespace
5938 *
5939 * Returns a suitable unique value for a new device interface
5940 * number. The caller must hold the rtnl semaphore or the
5941 * dev_base_lock to be sure it remains unique.
5942 */
5943 static int dev_new_index(struct net *net)
5944 {
5945 int ifindex = net->ifindex;
5946 for (;;) {
5947 if (++ifindex <= 0)
5948 ifindex = 1;
5949 if (!__dev_get_by_index(net, ifindex))
5950 return net->ifindex = ifindex;
5951 }
5952 }
5953
5954 /* Delayed registration/unregisteration */
5955 static LIST_HEAD(net_todo_list);
5956 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5957
5958 static void net_set_todo(struct net_device *dev)
5959 {
5960 list_add_tail(&dev->todo_list, &net_todo_list);
5961 dev_net(dev)->dev_unreg_count++;
5962 }
5963
5964 static void rollback_registered_many(struct list_head *head)
5965 {
5966 struct net_device *dev, *tmp;
5967 LIST_HEAD(close_head);
5968
5969 BUG_ON(dev_boot_phase);
5970 ASSERT_RTNL();
5971
5972 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5973 /* Some devices call without registering
5974 * for initialization unwind. Remove those
5975 * devices and proceed with the remaining.
5976 */
5977 if (dev->reg_state == NETREG_UNINITIALIZED) {
5978 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5979 dev->name, dev);
5980
5981 WARN_ON(1);
5982 list_del(&dev->unreg_list);
5983 continue;
5984 }
5985 dev->dismantle = true;
5986 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5987 }
5988
5989 /* If device is running, close it first. */
5990 list_for_each_entry(dev, head, unreg_list)
5991 list_add_tail(&dev->close_list, &close_head);
5992 dev_close_many(&close_head, true);
5993
5994 list_for_each_entry(dev, head, unreg_list) {
5995 /* And unlink it from device chain. */
5996 unlist_netdevice(dev);
5997
5998 dev->reg_state = NETREG_UNREGISTERING;
5999 }
6000
6001 synchronize_net();
6002
6003 list_for_each_entry(dev, head, unreg_list) {
6004 struct sk_buff *skb = NULL;
6005
6006 /* Shutdown queueing discipline. */
6007 dev_shutdown(dev);
6008
6009
6010 /* Notify protocols, that we are about to destroy
6011 this device. They should clean all the things.
6012 */
6013 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6014
6015 if (!dev->rtnl_link_ops ||
6016 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6017 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6018 GFP_KERNEL);
6019
6020 /*
6021 * Flush the unicast and multicast chains
6022 */
6023 dev_uc_flush(dev);
6024 dev_mc_flush(dev);
6025
6026 if (dev->netdev_ops->ndo_uninit)
6027 dev->netdev_ops->ndo_uninit(dev);
6028
6029 if (skb)
6030 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6031
6032 /* Notifier chain MUST detach us all upper devices. */
6033 WARN_ON(netdev_has_any_upper_dev(dev));
6034
6035 /* Remove entries from kobject tree */
6036 netdev_unregister_kobject(dev);
6037 #ifdef CONFIG_XPS
6038 /* Remove XPS queueing entries */
6039 netif_reset_xps_queues_gt(dev, 0);
6040 #endif
6041 }
6042
6043 synchronize_net();
6044
6045 list_for_each_entry(dev, head, unreg_list)
6046 dev_put(dev);
6047 }
6048
6049 static void rollback_registered(struct net_device *dev)
6050 {
6051 LIST_HEAD(single);
6052
6053 list_add(&dev->unreg_list, &single);
6054 rollback_registered_many(&single);
6055 list_del(&single);
6056 }
6057
6058 static netdev_features_t netdev_fix_features(struct net_device *dev,
6059 netdev_features_t features)
6060 {
6061 /* Fix illegal checksum combinations */
6062 if ((features & NETIF_F_HW_CSUM) &&
6063 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6064 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6065 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6066 }
6067
6068 /* TSO requires that SG is present as well. */
6069 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6070 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6071 features &= ~NETIF_F_ALL_TSO;
6072 }
6073
6074 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6075 !(features & NETIF_F_IP_CSUM)) {
6076 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6077 features &= ~NETIF_F_TSO;
6078 features &= ~NETIF_F_TSO_ECN;
6079 }
6080
6081 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6082 !(features & NETIF_F_IPV6_CSUM)) {
6083 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6084 features &= ~NETIF_F_TSO6;
6085 }
6086
6087 /* TSO ECN requires that TSO is present as well. */
6088 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6089 features &= ~NETIF_F_TSO_ECN;
6090
6091 /* Software GSO depends on SG. */
6092 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6093 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6094 features &= ~NETIF_F_GSO;
6095 }
6096
6097 /* UFO needs SG and checksumming */
6098 if (features & NETIF_F_UFO) {
6099 /* maybe split UFO into V4 and V6? */
6100 if (!((features & NETIF_F_GEN_CSUM) ||
6101 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6102 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6103 netdev_dbg(dev,
6104 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6105 features &= ~NETIF_F_UFO;
6106 }
6107
6108 if (!(features & NETIF_F_SG)) {
6109 netdev_dbg(dev,
6110 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6111 features &= ~NETIF_F_UFO;
6112 }
6113 }
6114
6115 #ifdef CONFIG_NET_RX_BUSY_POLL
6116 if (dev->netdev_ops->ndo_busy_poll)
6117 features |= NETIF_F_BUSY_POLL;
6118 else
6119 #endif
6120 features &= ~NETIF_F_BUSY_POLL;
6121
6122 return features;
6123 }
6124
6125 int __netdev_update_features(struct net_device *dev)
6126 {
6127 netdev_features_t features;
6128 int err = 0;
6129
6130 ASSERT_RTNL();
6131
6132 features = netdev_get_wanted_features(dev);
6133
6134 if (dev->netdev_ops->ndo_fix_features)
6135 features = dev->netdev_ops->ndo_fix_features(dev, features);
6136
6137 /* driver might be less strict about feature dependencies */
6138 features = netdev_fix_features(dev, features);
6139
6140 if (dev->features == features)
6141 return 0;
6142
6143 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6144 &dev->features, &features);
6145
6146 if (dev->netdev_ops->ndo_set_features)
6147 err = dev->netdev_ops->ndo_set_features(dev, features);
6148
6149 if (unlikely(err < 0)) {
6150 netdev_err(dev,
6151 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6152 err, &features, &dev->features);
6153 return -1;
6154 }
6155
6156 if (!err)
6157 dev->features = features;
6158
6159 return 1;
6160 }
6161
6162 /**
6163 * netdev_update_features - recalculate device features
6164 * @dev: the device to check
6165 *
6166 * Recalculate dev->features set and send notifications if it
6167 * has changed. Should be called after driver or hardware dependent
6168 * conditions might have changed that influence the features.
6169 */
6170 void netdev_update_features(struct net_device *dev)
6171 {
6172 if (__netdev_update_features(dev))
6173 netdev_features_change(dev);
6174 }
6175 EXPORT_SYMBOL(netdev_update_features);
6176
6177 /**
6178 * netdev_change_features - recalculate device features
6179 * @dev: the device to check
6180 *
6181 * Recalculate dev->features set and send notifications even
6182 * if they have not changed. Should be called instead of
6183 * netdev_update_features() if also dev->vlan_features might
6184 * have changed to allow the changes to be propagated to stacked
6185 * VLAN devices.
6186 */
6187 void netdev_change_features(struct net_device *dev)
6188 {
6189 __netdev_update_features(dev);
6190 netdev_features_change(dev);
6191 }
6192 EXPORT_SYMBOL(netdev_change_features);
6193
6194 /**
6195 * netif_stacked_transfer_operstate - transfer operstate
6196 * @rootdev: the root or lower level device to transfer state from
6197 * @dev: the device to transfer operstate to
6198 *
6199 * Transfer operational state from root to device. This is normally
6200 * called when a stacking relationship exists between the root
6201 * device and the device(a leaf device).
6202 */
6203 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6204 struct net_device *dev)
6205 {
6206 if (rootdev->operstate == IF_OPER_DORMANT)
6207 netif_dormant_on(dev);
6208 else
6209 netif_dormant_off(dev);
6210
6211 if (netif_carrier_ok(rootdev)) {
6212 if (!netif_carrier_ok(dev))
6213 netif_carrier_on(dev);
6214 } else {
6215 if (netif_carrier_ok(dev))
6216 netif_carrier_off(dev);
6217 }
6218 }
6219 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6220
6221 #ifdef CONFIG_SYSFS
6222 static int netif_alloc_rx_queues(struct net_device *dev)
6223 {
6224 unsigned int i, count = dev->num_rx_queues;
6225 struct netdev_rx_queue *rx;
6226 size_t sz = count * sizeof(*rx);
6227
6228 BUG_ON(count < 1);
6229
6230 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6231 if (!rx) {
6232 rx = vzalloc(sz);
6233 if (!rx)
6234 return -ENOMEM;
6235 }
6236 dev->_rx = rx;
6237
6238 for (i = 0; i < count; i++)
6239 rx[i].dev = dev;
6240 return 0;
6241 }
6242 #endif
6243
6244 static void netdev_init_one_queue(struct net_device *dev,
6245 struct netdev_queue *queue, void *_unused)
6246 {
6247 /* Initialize queue lock */
6248 spin_lock_init(&queue->_xmit_lock);
6249 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6250 queue->xmit_lock_owner = -1;
6251 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6252 queue->dev = dev;
6253 #ifdef CONFIG_BQL
6254 dql_init(&queue->dql, HZ);
6255 #endif
6256 }
6257
6258 static void netif_free_tx_queues(struct net_device *dev)
6259 {
6260 kvfree(dev->_tx);
6261 }
6262
6263 static int netif_alloc_netdev_queues(struct net_device *dev)
6264 {
6265 unsigned int count = dev->num_tx_queues;
6266 struct netdev_queue *tx;
6267 size_t sz = count * sizeof(*tx);
6268
6269 BUG_ON(count < 1 || count > 0xffff);
6270
6271 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6272 if (!tx) {
6273 tx = vzalloc(sz);
6274 if (!tx)
6275 return -ENOMEM;
6276 }
6277 dev->_tx = tx;
6278
6279 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6280 spin_lock_init(&dev->tx_global_lock);
6281
6282 return 0;
6283 }
6284
6285 /**
6286 * register_netdevice - register a network device
6287 * @dev: device to register
6288 *
6289 * Take a completed network device structure and add it to the kernel
6290 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6291 * chain. 0 is returned on success. A negative errno code is returned
6292 * on a failure to set up the device, or if the name is a duplicate.
6293 *
6294 * Callers must hold the rtnl semaphore. You may want
6295 * register_netdev() instead of this.
6296 *
6297 * BUGS:
6298 * The locking appears insufficient to guarantee two parallel registers
6299 * will not get the same name.
6300 */
6301
6302 int register_netdevice(struct net_device *dev)
6303 {
6304 int ret;
6305 struct net *net = dev_net(dev);
6306
6307 BUG_ON(dev_boot_phase);
6308 ASSERT_RTNL();
6309
6310 might_sleep();
6311
6312 /* When net_device's are persistent, this will be fatal. */
6313 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6314 BUG_ON(!net);
6315
6316 spin_lock_init(&dev->addr_list_lock);
6317 netdev_set_addr_lockdep_class(dev);
6318
6319 dev->iflink = -1;
6320
6321 ret = dev_get_valid_name(net, dev, dev->name);
6322 if (ret < 0)
6323 goto out;
6324
6325 /* Init, if this function is available */
6326 if (dev->netdev_ops->ndo_init) {
6327 ret = dev->netdev_ops->ndo_init(dev);
6328 if (ret) {
6329 if (ret > 0)
6330 ret = -EIO;
6331 goto out;
6332 }
6333 }
6334
6335 if (((dev->hw_features | dev->features) &
6336 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6337 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6338 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6339 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6340 ret = -EINVAL;
6341 goto err_uninit;
6342 }
6343
6344 ret = -EBUSY;
6345 if (!dev->ifindex)
6346 dev->ifindex = dev_new_index(net);
6347 else if (__dev_get_by_index(net, dev->ifindex))
6348 goto err_uninit;
6349
6350 if (dev->iflink == -1)
6351 dev->iflink = dev->ifindex;
6352
6353 /* Transfer changeable features to wanted_features and enable
6354 * software offloads (GSO and GRO).
6355 */
6356 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6357 dev->features |= NETIF_F_SOFT_FEATURES;
6358 dev->wanted_features = dev->features & dev->hw_features;
6359
6360 if (!(dev->flags & IFF_LOOPBACK)) {
6361 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6362 }
6363
6364 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6365 */
6366 dev->vlan_features |= NETIF_F_HIGHDMA;
6367
6368 /* Make NETIF_F_SG inheritable to tunnel devices.
6369 */
6370 dev->hw_enc_features |= NETIF_F_SG;
6371
6372 /* Make NETIF_F_SG inheritable to MPLS.
6373 */
6374 dev->mpls_features |= NETIF_F_SG;
6375
6376 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6377 ret = notifier_to_errno(ret);
6378 if (ret)
6379 goto err_uninit;
6380
6381 ret = netdev_register_kobject(dev);
6382 if (ret)
6383 goto err_uninit;
6384 dev->reg_state = NETREG_REGISTERED;
6385
6386 __netdev_update_features(dev);
6387
6388 /*
6389 * Default initial state at registry is that the
6390 * device is present.
6391 */
6392
6393 set_bit(__LINK_STATE_PRESENT, &dev->state);
6394
6395 linkwatch_init_dev(dev);
6396
6397 dev_init_scheduler(dev);
6398 dev_hold(dev);
6399 list_netdevice(dev);
6400 add_device_randomness(dev->dev_addr, dev->addr_len);
6401
6402 /* If the device has permanent device address, driver should
6403 * set dev_addr and also addr_assign_type should be set to
6404 * NET_ADDR_PERM (default value).
6405 */
6406 if (dev->addr_assign_type == NET_ADDR_PERM)
6407 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6408
6409 /* Notify protocols, that a new device appeared. */
6410 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6411 ret = notifier_to_errno(ret);
6412 if (ret) {
6413 rollback_registered(dev);
6414 dev->reg_state = NETREG_UNREGISTERED;
6415 }
6416 /*
6417 * Prevent userspace races by waiting until the network
6418 * device is fully setup before sending notifications.
6419 */
6420 if (!dev->rtnl_link_ops ||
6421 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6422 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6423
6424 out:
6425 return ret;
6426
6427 err_uninit:
6428 if (dev->netdev_ops->ndo_uninit)
6429 dev->netdev_ops->ndo_uninit(dev);
6430 goto out;
6431 }
6432 EXPORT_SYMBOL(register_netdevice);
6433
6434 /**
6435 * init_dummy_netdev - init a dummy network device for NAPI
6436 * @dev: device to init
6437 *
6438 * This takes a network device structure and initialize the minimum
6439 * amount of fields so it can be used to schedule NAPI polls without
6440 * registering a full blown interface. This is to be used by drivers
6441 * that need to tie several hardware interfaces to a single NAPI
6442 * poll scheduler due to HW limitations.
6443 */
6444 int init_dummy_netdev(struct net_device *dev)
6445 {
6446 /* Clear everything. Note we don't initialize spinlocks
6447 * are they aren't supposed to be taken by any of the
6448 * NAPI code and this dummy netdev is supposed to be
6449 * only ever used for NAPI polls
6450 */
6451 memset(dev, 0, sizeof(struct net_device));
6452
6453 /* make sure we BUG if trying to hit standard
6454 * register/unregister code path
6455 */
6456 dev->reg_state = NETREG_DUMMY;
6457
6458 /* NAPI wants this */
6459 INIT_LIST_HEAD(&dev->napi_list);
6460
6461 /* a dummy interface is started by default */
6462 set_bit(__LINK_STATE_PRESENT, &dev->state);
6463 set_bit(__LINK_STATE_START, &dev->state);
6464
6465 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6466 * because users of this 'device' dont need to change
6467 * its refcount.
6468 */
6469
6470 return 0;
6471 }
6472 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6473
6474
6475 /**
6476 * register_netdev - register a network device
6477 * @dev: device to register
6478 *
6479 * Take a completed network device structure and add it to the kernel
6480 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6481 * chain. 0 is returned on success. A negative errno code is returned
6482 * on a failure to set up the device, or if the name is a duplicate.
6483 *
6484 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6485 * and expands the device name if you passed a format string to
6486 * alloc_netdev.
6487 */
6488 int register_netdev(struct net_device *dev)
6489 {
6490 int err;
6491
6492 rtnl_lock();
6493 err = register_netdevice(dev);
6494 rtnl_unlock();
6495 return err;
6496 }
6497 EXPORT_SYMBOL(register_netdev);
6498
6499 int netdev_refcnt_read(const struct net_device *dev)
6500 {
6501 int i, refcnt = 0;
6502
6503 for_each_possible_cpu(i)
6504 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6505 return refcnt;
6506 }
6507 EXPORT_SYMBOL(netdev_refcnt_read);
6508
6509 /**
6510 * netdev_wait_allrefs - wait until all references are gone.
6511 * @dev: target net_device
6512 *
6513 * This is called when unregistering network devices.
6514 *
6515 * Any protocol or device that holds a reference should register
6516 * for netdevice notification, and cleanup and put back the
6517 * reference if they receive an UNREGISTER event.
6518 * We can get stuck here if buggy protocols don't correctly
6519 * call dev_put.
6520 */
6521 static void netdev_wait_allrefs(struct net_device *dev)
6522 {
6523 unsigned long rebroadcast_time, warning_time;
6524 int refcnt;
6525
6526 linkwatch_forget_dev(dev);
6527
6528 rebroadcast_time = warning_time = jiffies;
6529 refcnt = netdev_refcnt_read(dev);
6530
6531 while (refcnt != 0) {
6532 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6533 rtnl_lock();
6534
6535 /* Rebroadcast unregister notification */
6536 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6537
6538 __rtnl_unlock();
6539 rcu_barrier();
6540 rtnl_lock();
6541
6542 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6543 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6544 &dev->state)) {
6545 /* We must not have linkwatch events
6546 * pending on unregister. If this
6547 * happens, we simply run the queue
6548 * unscheduled, resulting in a noop
6549 * for this device.
6550 */
6551 linkwatch_run_queue();
6552 }
6553
6554 __rtnl_unlock();
6555
6556 rebroadcast_time = jiffies;
6557 }
6558
6559 msleep(250);
6560
6561 refcnt = netdev_refcnt_read(dev);
6562
6563 if (time_after(jiffies, warning_time + 10 * HZ)) {
6564 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6565 dev->name, refcnt);
6566 warning_time = jiffies;
6567 }
6568 }
6569 }
6570
6571 /* The sequence is:
6572 *
6573 * rtnl_lock();
6574 * ...
6575 * register_netdevice(x1);
6576 * register_netdevice(x2);
6577 * ...
6578 * unregister_netdevice(y1);
6579 * unregister_netdevice(y2);
6580 * ...
6581 * rtnl_unlock();
6582 * free_netdev(y1);
6583 * free_netdev(y2);
6584 *
6585 * We are invoked by rtnl_unlock().
6586 * This allows us to deal with problems:
6587 * 1) We can delete sysfs objects which invoke hotplug
6588 * without deadlocking with linkwatch via keventd.
6589 * 2) Since we run with the RTNL semaphore not held, we can sleep
6590 * safely in order to wait for the netdev refcnt to drop to zero.
6591 *
6592 * We must not return until all unregister events added during
6593 * the interval the lock was held have been completed.
6594 */
6595 void netdev_run_todo(void)
6596 {
6597 struct list_head list;
6598
6599 /* Snapshot list, allow later requests */
6600 list_replace_init(&net_todo_list, &list);
6601
6602 __rtnl_unlock();
6603
6604
6605 /* Wait for rcu callbacks to finish before next phase */
6606 if (!list_empty(&list))
6607 rcu_barrier();
6608
6609 while (!list_empty(&list)) {
6610 struct net_device *dev
6611 = list_first_entry(&list, struct net_device, todo_list);
6612 list_del(&dev->todo_list);
6613
6614 rtnl_lock();
6615 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6616 __rtnl_unlock();
6617
6618 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6619 pr_err("network todo '%s' but state %d\n",
6620 dev->name, dev->reg_state);
6621 dump_stack();
6622 continue;
6623 }
6624
6625 dev->reg_state = NETREG_UNREGISTERED;
6626
6627 on_each_cpu(flush_backlog, dev, 1);
6628
6629 netdev_wait_allrefs(dev);
6630
6631 /* paranoia */
6632 BUG_ON(netdev_refcnt_read(dev));
6633 BUG_ON(!list_empty(&dev->ptype_all));
6634 BUG_ON(!list_empty(&dev->ptype_specific));
6635 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6636 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6637 WARN_ON(dev->dn_ptr);
6638
6639 if (dev->destructor)
6640 dev->destructor(dev);
6641
6642 /* Report a network device has been unregistered */
6643 rtnl_lock();
6644 dev_net(dev)->dev_unreg_count--;
6645 __rtnl_unlock();
6646 wake_up(&netdev_unregistering_wq);
6647
6648 /* Free network device */
6649 kobject_put(&dev->dev.kobj);
6650 }
6651 }
6652
6653 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6654 * fields in the same order, with only the type differing.
6655 */
6656 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6657 const struct net_device_stats *netdev_stats)
6658 {
6659 #if BITS_PER_LONG == 64
6660 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6661 memcpy(stats64, netdev_stats, sizeof(*stats64));
6662 #else
6663 size_t i, n = sizeof(*stats64) / sizeof(u64);
6664 const unsigned long *src = (const unsigned long *)netdev_stats;
6665 u64 *dst = (u64 *)stats64;
6666
6667 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6668 sizeof(*stats64) / sizeof(u64));
6669 for (i = 0; i < n; i++)
6670 dst[i] = src[i];
6671 #endif
6672 }
6673 EXPORT_SYMBOL(netdev_stats_to_stats64);
6674
6675 /**
6676 * dev_get_stats - get network device statistics
6677 * @dev: device to get statistics from
6678 * @storage: place to store stats
6679 *
6680 * Get network statistics from device. Return @storage.
6681 * The device driver may provide its own method by setting
6682 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6683 * otherwise the internal statistics structure is used.
6684 */
6685 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6686 struct rtnl_link_stats64 *storage)
6687 {
6688 const struct net_device_ops *ops = dev->netdev_ops;
6689
6690 if (ops->ndo_get_stats64) {
6691 memset(storage, 0, sizeof(*storage));
6692 ops->ndo_get_stats64(dev, storage);
6693 } else if (ops->ndo_get_stats) {
6694 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6695 } else {
6696 netdev_stats_to_stats64(storage, &dev->stats);
6697 }
6698 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6699 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6700 return storage;
6701 }
6702 EXPORT_SYMBOL(dev_get_stats);
6703
6704 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6705 {
6706 struct netdev_queue *queue = dev_ingress_queue(dev);
6707
6708 #ifdef CONFIG_NET_CLS_ACT
6709 if (queue)
6710 return queue;
6711 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6712 if (!queue)
6713 return NULL;
6714 netdev_init_one_queue(dev, queue, NULL);
6715 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6716 queue->qdisc_sleeping = &noop_qdisc;
6717 rcu_assign_pointer(dev->ingress_queue, queue);
6718 #endif
6719 return queue;
6720 }
6721
6722 static const struct ethtool_ops default_ethtool_ops;
6723
6724 void netdev_set_default_ethtool_ops(struct net_device *dev,
6725 const struct ethtool_ops *ops)
6726 {
6727 if (dev->ethtool_ops == &default_ethtool_ops)
6728 dev->ethtool_ops = ops;
6729 }
6730 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6731
6732 void netdev_freemem(struct net_device *dev)
6733 {
6734 char *addr = (char *)dev - dev->padded;
6735
6736 kvfree(addr);
6737 }
6738
6739 /**
6740 * alloc_netdev_mqs - allocate network device
6741 * @sizeof_priv: size of private data to allocate space for
6742 * @name: device name format string
6743 * @name_assign_type: origin of device name
6744 * @setup: callback to initialize device
6745 * @txqs: the number of TX subqueues to allocate
6746 * @rxqs: the number of RX subqueues to allocate
6747 *
6748 * Allocates a struct net_device with private data area for driver use
6749 * and performs basic initialization. Also allocates subqueue structs
6750 * for each queue on the device.
6751 */
6752 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6753 unsigned char name_assign_type,
6754 void (*setup)(struct net_device *),
6755 unsigned int txqs, unsigned int rxqs)
6756 {
6757 struct net_device *dev;
6758 size_t alloc_size;
6759 struct net_device *p;
6760
6761 BUG_ON(strlen(name) >= sizeof(dev->name));
6762
6763 if (txqs < 1) {
6764 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6765 return NULL;
6766 }
6767
6768 #ifdef CONFIG_SYSFS
6769 if (rxqs < 1) {
6770 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6771 return NULL;
6772 }
6773 #endif
6774
6775 alloc_size = sizeof(struct net_device);
6776 if (sizeof_priv) {
6777 /* ensure 32-byte alignment of private area */
6778 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6779 alloc_size += sizeof_priv;
6780 }
6781 /* ensure 32-byte alignment of whole construct */
6782 alloc_size += NETDEV_ALIGN - 1;
6783
6784 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6785 if (!p)
6786 p = vzalloc(alloc_size);
6787 if (!p)
6788 return NULL;
6789
6790 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6791 dev->padded = (char *)dev - (char *)p;
6792
6793 dev->pcpu_refcnt = alloc_percpu(int);
6794 if (!dev->pcpu_refcnt)
6795 goto free_dev;
6796
6797 if (dev_addr_init(dev))
6798 goto free_pcpu;
6799
6800 dev_mc_init(dev);
6801 dev_uc_init(dev);
6802
6803 dev_net_set(dev, &init_net);
6804
6805 dev->gso_max_size = GSO_MAX_SIZE;
6806 dev->gso_max_segs = GSO_MAX_SEGS;
6807 dev->gso_min_segs = 0;
6808
6809 INIT_LIST_HEAD(&dev->napi_list);
6810 INIT_LIST_HEAD(&dev->unreg_list);
6811 INIT_LIST_HEAD(&dev->close_list);
6812 INIT_LIST_HEAD(&dev->link_watch_list);
6813 INIT_LIST_HEAD(&dev->adj_list.upper);
6814 INIT_LIST_HEAD(&dev->adj_list.lower);
6815 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6816 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6817 INIT_LIST_HEAD(&dev->ptype_all);
6818 INIT_LIST_HEAD(&dev->ptype_specific);
6819 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6820 setup(dev);
6821
6822 dev->num_tx_queues = txqs;
6823 dev->real_num_tx_queues = txqs;
6824 if (netif_alloc_netdev_queues(dev))
6825 goto free_all;
6826
6827 #ifdef CONFIG_SYSFS
6828 dev->num_rx_queues = rxqs;
6829 dev->real_num_rx_queues = rxqs;
6830 if (netif_alloc_rx_queues(dev))
6831 goto free_all;
6832 #endif
6833
6834 strcpy(dev->name, name);
6835 dev->name_assign_type = name_assign_type;
6836 dev->group = INIT_NETDEV_GROUP;
6837 if (!dev->ethtool_ops)
6838 dev->ethtool_ops = &default_ethtool_ops;
6839 return dev;
6840
6841 free_all:
6842 free_netdev(dev);
6843 return NULL;
6844
6845 free_pcpu:
6846 free_percpu(dev->pcpu_refcnt);
6847 free_dev:
6848 netdev_freemem(dev);
6849 return NULL;
6850 }
6851 EXPORT_SYMBOL(alloc_netdev_mqs);
6852
6853 /**
6854 * free_netdev - free network device
6855 * @dev: device
6856 *
6857 * This function does the last stage of destroying an allocated device
6858 * interface. The reference to the device object is released.
6859 * If this is the last reference then it will be freed.
6860 */
6861 void free_netdev(struct net_device *dev)
6862 {
6863 struct napi_struct *p, *n;
6864
6865 netif_free_tx_queues(dev);
6866 #ifdef CONFIG_SYSFS
6867 kvfree(dev->_rx);
6868 #endif
6869
6870 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6871
6872 /* Flush device addresses */
6873 dev_addr_flush(dev);
6874
6875 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6876 netif_napi_del(p);
6877
6878 free_percpu(dev->pcpu_refcnt);
6879 dev->pcpu_refcnt = NULL;
6880
6881 /* Compatibility with error handling in drivers */
6882 if (dev->reg_state == NETREG_UNINITIALIZED) {
6883 netdev_freemem(dev);
6884 return;
6885 }
6886
6887 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6888 dev->reg_state = NETREG_RELEASED;
6889
6890 /* will free via device release */
6891 put_device(&dev->dev);
6892 }
6893 EXPORT_SYMBOL(free_netdev);
6894
6895 /**
6896 * synchronize_net - Synchronize with packet receive processing
6897 *
6898 * Wait for packets currently being received to be done.
6899 * Does not block later packets from starting.
6900 */
6901 void synchronize_net(void)
6902 {
6903 might_sleep();
6904 if (rtnl_is_locked())
6905 synchronize_rcu_expedited();
6906 else
6907 synchronize_rcu();
6908 }
6909 EXPORT_SYMBOL(synchronize_net);
6910
6911 /**
6912 * unregister_netdevice_queue - remove device from the kernel
6913 * @dev: device
6914 * @head: list
6915 *
6916 * This function shuts down a device interface and removes it
6917 * from the kernel tables.
6918 * If head not NULL, device is queued to be unregistered later.
6919 *
6920 * Callers must hold the rtnl semaphore. You may want
6921 * unregister_netdev() instead of this.
6922 */
6923
6924 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6925 {
6926 ASSERT_RTNL();
6927
6928 if (head) {
6929 list_move_tail(&dev->unreg_list, head);
6930 } else {
6931 rollback_registered(dev);
6932 /* Finish processing unregister after unlock */
6933 net_set_todo(dev);
6934 }
6935 }
6936 EXPORT_SYMBOL(unregister_netdevice_queue);
6937
6938 /**
6939 * unregister_netdevice_many - unregister many devices
6940 * @head: list of devices
6941 *
6942 * Note: As most callers use a stack allocated list_head,
6943 * we force a list_del() to make sure stack wont be corrupted later.
6944 */
6945 void unregister_netdevice_many(struct list_head *head)
6946 {
6947 struct net_device *dev;
6948
6949 if (!list_empty(head)) {
6950 rollback_registered_many(head);
6951 list_for_each_entry(dev, head, unreg_list)
6952 net_set_todo(dev);
6953 list_del(head);
6954 }
6955 }
6956 EXPORT_SYMBOL(unregister_netdevice_many);
6957
6958 /**
6959 * unregister_netdev - remove device from the kernel
6960 * @dev: device
6961 *
6962 * This function shuts down a device interface and removes it
6963 * from the kernel tables.
6964 *
6965 * This is just a wrapper for unregister_netdevice that takes
6966 * the rtnl semaphore. In general you want to use this and not
6967 * unregister_netdevice.
6968 */
6969 void unregister_netdev(struct net_device *dev)
6970 {
6971 rtnl_lock();
6972 unregister_netdevice(dev);
6973 rtnl_unlock();
6974 }
6975 EXPORT_SYMBOL(unregister_netdev);
6976
6977 /**
6978 * dev_change_net_namespace - move device to different nethost namespace
6979 * @dev: device
6980 * @net: network namespace
6981 * @pat: If not NULL name pattern to try if the current device name
6982 * is already taken in the destination network namespace.
6983 *
6984 * This function shuts down a device interface and moves it
6985 * to a new network namespace. On success 0 is returned, on
6986 * a failure a netagive errno code is returned.
6987 *
6988 * Callers must hold the rtnl semaphore.
6989 */
6990
6991 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6992 {
6993 int err;
6994
6995 ASSERT_RTNL();
6996
6997 /* Don't allow namespace local devices to be moved. */
6998 err = -EINVAL;
6999 if (dev->features & NETIF_F_NETNS_LOCAL)
7000 goto out;
7001
7002 /* Ensure the device has been registrered */
7003 if (dev->reg_state != NETREG_REGISTERED)
7004 goto out;
7005
7006 /* Get out if there is nothing todo */
7007 err = 0;
7008 if (net_eq(dev_net(dev), net))
7009 goto out;
7010
7011 /* Pick the destination device name, and ensure
7012 * we can use it in the destination network namespace.
7013 */
7014 err = -EEXIST;
7015 if (__dev_get_by_name(net, dev->name)) {
7016 /* We get here if we can't use the current device name */
7017 if (!pat)
7018 goto out;
7019 if (dev_get_valid_name(net, dev, pat) < 0)
7020 goto out;
7021 }
7022
7023 /*
7024 * And now a mini version of register_netdevice unregister_netdevice.
7025 */
7026
7027 /* If device is running close it first. */
7028 dev_close(dev);
7029
7030 /* And unlink it from device chain */
7031 err = -ENODEV;
7032 unlist_netdevice(dev);
7033
7034 synchronize_net();
7035
7036 /* Shutdown queueing discipline. */
7037 dev_shutdown(dev);
7038
7039 /* Notify protocols, that we are about to destroy
7040 this device. They should clean all the things.
7041
7042 Note that dev->reg_state stays at NETREG_REGISTERED.
7043 This is wanted because this way 8021q and macvlan know
7044 the device is just moving and can keep their slaves up.
7045 */
7046 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7047 rcu_barrier();
7048 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7049 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7050
7051 /*
7052 * Flush the unicast and multicast chains
7053 */
7054 dev_uc_flush(dev);
7055 dev_mc_flush(dev);
7056
7057 /* Send a netdev-removed uevent to the old namespace */
7058 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7059 netdev_adjacent_del_links(dev);
7060
7061 /* Actually switch the network namespace */
7062 dev_net_set(dev, net);
7063
7064 /* If there is an ifindex conflict assign a new one */
7065 if (__dev_get_by_index(net, dev->ifindex)) {
7066 int iflink = (dev->iflink == dev->ifindex);
7067 dev->ifindex = dev_new_index(net);
7068 if (iflink)
7069 dev->iflink = dev->ifindex;
7070 }
7071
7072 /* Send a netdev-add uevent to the new namespace */
7073 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7074 netdev_adjacent_add_links(dev);
7075
7076 /* Fixup kobjects */
7077 err = device_rename(&dev->dev, dev->name);
7078 WARN_ON(err);
7079
7080 /* Add the device back in the hashes */
7081 list_netdevice(dev);
7082
7083 /* Notify protocols, that a new device appeared. */
7084 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7085
7086 /*
7087 * Prevent userspace races by waiting until the network
7088 * device is fully setup before sending notifications.
7089 */
7090 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7091
7092 synchronize_net();
7093 err = 0;
7094 out:
7095 return err;
7096 }
7097 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7098
7099 static int dev_cpu_callback(struct notifier_block *nfb,
7100 unsigned long action,
7101 void *ocpu)
7102 {
7103 struct sk_buff **list_skb;
7104 struct sk_buff *skb;
7105 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7106 struct softnet_data *sd, *oldsd;
7107
7108 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7109 return NOTIFY_OK;
7110
7111 local_irq_disable();
7112 cpu = smp_processor_id();
7113 sd = &per_cpu(softnet_data, cpu);
7114 oldsd = &per_cpu(softnet_data, oldcpu);
7115
7116 /* Find end of our completion_queue. */
7117 list_skb = &sd->completion_queue;
7118 while (*list_skb)
7119 list_skb = &(*list_skb)->next;
7120 /* Append completion queue from offline CPU. */
7121 *list_skb = oldsd->completion_queue;
7122 oldsd->completion_queue = NULL;
7123
7124 /* Append output queue from offline CPU. */
7125 if (oldsd->output_queue) {
7126 *sd->output_queue_tailp = oldsd->output_queue;
7127 sd->output_queue_tailp = oldsd->output_queue_tailp;
7128 oldsd->output_queue = NULL;
7129 oldsd->output_queue_tailp = &oldsd->output_queue;
7130 }
7131 /* Append NAPI poll list from offline CPU, with one exception :
7132 * process_backlog() must be called by cpu owning percpu backlog.
7133 * We properly handle process_queue & input_pkt_queue later.
7134 */
7135 while (!list_empty(&oldsd->poll_list)) {
7136 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7137 struct napi_struct,
7138 poll_list);
7139
7140 list_del_init(&napi->poll_list);
7141 if (napi->poll == process_backlog)
7142 napi->state = 0;
7143 else
7144 ____napi_schedule(sd, napi);
7145 }
7146
7147 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7148 local_irq_enable();
7149
7150 /* Process offline CPU's input_pkt_queue */
7151 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7152 netif_rx_ni(skb);
7153 input_queue_head_incr(oldsd);
7154 }
7155 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7156 netif_rx_ni(skb);
7157 input_queue_head_incr(oldsd);
7158 }
7159
7160 return NOTIFY_OK;
7161 }
7162
7163
7164 /**
7165 * netdev_increment_features - increment feature set by one
7166 * @all: current feature set
7167 * @one: new feature set
7168 * @mask: mask feature set
7169 *
7170 * Computes a new feature set after adding a device with feature set
7171 * @one to the master device with current feature set @all. Will not
7172 * enable anything that is off in @mask. Returns the new feature set.
7173 */
7174 netdev_features_t netdev_increment_features(netdev_features_t all,
7175 netdev_features_t one, netdev_features_t mask)
7176 {
7177 if (mask & NETIF_F_GEN_CSUM)
7178 mask |= NETIF_F_ALL_CSUM;
7179 mask |= NETIF_F_VLAN_CHALLENGED;
7180
7181 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7182 all &= one | ~NETIF_F_ALL_FOR_ALL;
7183
7184 /* If one device supports hw checksumming, set for all. */
7185 if (all & NETIF_F_GEN_CSUM)
7186 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7187
7188 return all;
7189 }
7190 EXPORT_SYMBOL(netdev_increment_features);
7191
7192 static struct hlist_head * __net_init netdev_create_hash(void)
7193 {
7194 int i;
7195 struct hlist_head *hash;
7196
7197 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7198 if (hash != NULL)
7199 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7200 INIT_HLIST_HEAD(&hash[i]);
7201
7202 return hash;
7203 }
7204
7205 /* Initialize per network namespace state */
7206 static int __net_init netdev_init(struct net *net)
7207 {
7208 if (net != &init_net)
7209 INIT_LIST_HEAD(&net->dev_base_head);
7210
7211 net->dev_name_head = netdev_create_hash();
7212 if (net->dev_name_head == NULL)
7213 goto err_name;
7214
7215 net->dev_index_head = netdev_create_hash();
7216 if (net->dev_index_head == NULL)
7217 goto err_idx;
7218
7219 return 0;
7220
7221 err_idx:
7222 kfree(net->dev_name_head);
7223 err_name:
7224 return -ENOMEM;
7225 }
7226
7227 /**
7228 * netdev_drivername - network driver for the device
7229 * @dev: network device
7230 *
7231 * Determine network driver for device.
7232 */
7233 const char *netdev_drivername(const struct net_device *dev)
7234 {
7235 const struct device_driver *driver;
7236 const struct device *parent;
7237 const char *empty = "";
7238
7239 parent = dev->dev.parent;
7240 if (!parent)
7241 return empty;
7242
7243 driver = parent->driver;
7244 if (driver && driver->name)
7245 return driver->name;
7246 return empty;
7247 }
7248
7249 static void __netdev_printk(const char *level, const struct net_device *dev,
7250 struct va_format *vaf)
7251 {
7252 if (dev && dev->dev.parent) {
7253 dev_printk_emit(level[1] - '0',
7254 dev->dev.parent,
7255 "%s %s %s%s: %pV",
7256 dev_driver_string(dev->dev.parent),
7257 dev_name(dev->dev.parent),
7258 netdev_name(dev), netdev_reg_state(dev),
7259 vaf);
7260 } else if (dev) {
7261 printk("%s%s%s: %pV",
7262 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7263 } else {
7264 printk("%s(NULL net_device): %pV", level, vaf);
7265 }
7266 }
7267
7268 void netdev_printk(const char *level, const struct net_device *dev,
7269 const char *format, ...)
7270 {
7271 struct va_format vaf;
7272 va_list args;
7273
7274 va_start(args, format);
7275
7276 vaf.fmt = format;
7277 vaf.va = &args;
7278
7279 __netdev_printk(level, dev, &vaf);
7280
7281 va_end(args);
7282 }
7283 EXPORT_SYMBOL(netdev_printk);
7284
7285 #define define_netdev_printk_level(func, level) \
7286 void func(const struct net_device *dev, const char *fmt, ...) \
7287 { \
7288 struct va_format vaf; \
7289 va_list args; \
7290 \
7291 va_start(args, fmt); \
7292 \
7293 vaf.fmt = fmt; \
7294 vaf.va = &args; \
7295 \
7296 __netdev_printk(level, dev, &vaf); \
7297 \
7298 va_end(args); \
7299 } \
7300 EXPORT_SYMBOL(func);
7301
7302 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7303 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7304 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7305 define_netdev_printk_level(netdev_err, KERN_ERR);
7306 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7307 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7308 define_netdev_printk_level(netdev_info, KERN_INFO);
7309
7310 static void __net_exit netdev_exit(struct net *net)
7311 {
7312 kfree(net->dev_name_head);
7313 kfree(net->dev_index_head);
7314 }
7315
7316 static struct pernet_operations __net_initdata netdev_net_ops = {
7317 .init = netdev_init,
7318 .exit = netdev_exit,
7319 };
7320
7321 static void __net_exit default_device_exit(struct net *net)
7322 {
7323 struct net_device *dev, *aux;
7324 /*
7325 * Push all migratable network devices back to the
7326 * initial network namespace
7327 */
7328 rtnl_lock();
7329 for_each_netdev_safe(net, dev, aux) {
7330 int err;
7331 char fb_name[IFNAMSIZ];
7332
7333 /* Ignore unmoveable devices (i.e. loopback) */
7334 if (dev->features & NETIF_F_NETNS_LOCAL)
7335 continue;
7336
7337 /* Leave virtual devices for the generic cleanup */
7338 if (dev->rtnl_link_ops)
7339 continue;
7340
7341 /* Push remaining network devices to init_net */
7342 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7343 err = dev_change_net_namespace(dev, &init_net, fb_name);
7344 if (err) {
7345 pr_emerg("%s: failed to move %s to init_net: %d\n",
7346 __func__, dev->name, err);
7347 BUG();
7348 }
7349 }
7350 rtnl_unlock();
7351 }
7352
7353 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7354 {
7355 /* Return with the rtnl_lock held when there are no network
7356 * devices unregistering in any network namespace in net_list.
7357 */
7358 struct net *net;
7359 bool unregistering;
7360 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7361
7362 add_wait_queue(&netdev_unregistering_wq, &wait);
7363 for (;;) {
7364 unregistering = false;
7365 rtnl_lock();
7366 list_for_each_entry(net, net_list, exit_list) {
7367 if (net->dev_unreg_count > 0) {
7368 unregistering = true;
7369 break;
7370 }
7371 }
7372 if (!unregistering)
7373 break;
7374 __rtnl_unlock();
7375
7376 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7377 }
7378 remove_wait_queue(&netdev_unregistering_wq, &wait);
7379 }
7380
7381 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7382 {
7383 /* At exit all network devices most be removed from a network
7384 * namespace. Do this in the reverse order of registration.
7385 * Do this across as many network namespaces as possible to
7386 * improve batching efficiency.
7387 */
7388 struct net_device *dev;
7389 struct net *net;
7390 LIST_HEAD(dev_kill_list);
7391
7392 /* To prevent network device cleanup code from dereferencing
7393 * loopback devices or network devices that have been freed
7394 * wait here for all pending unregistrations to complete,
7395 * before unregistring the loopback device and allowing the
7396 * network namespace be freed.
7397 *
7398 * The netdev todo list containing all network devices
7399 * unregistrations that happen in default_device_exit_batch
7400 * will run in the rtnl_unlock() at the end of
7401 * default_device_exit_batch.
7402 */
7403 rtnl_lock_unregistering(net_list);
7404 list_for_each_entry(net, net_list, exit_list) {
7405 for_each_netdev_reverse(net, dev) {
7406 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7407 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7408 else
7409 unregister_netdevice_queue(dev, &dev_kill_list);
7410 }
7411 }
7412 unregister_netdevice_many(&dev_kill_list);
7413 rtnl_unlock();
7414 }
7415
7416 static struct pernet_operations __net_initdata default_device_ops = {
7417 .exit = default_device_exit,
7418 .exit_batch = default_device_exit_batch,
7419 };
7420
7421 /*
7422 * Initialize the DEV module. At boot time this walks the device list and
7423 * unhooks any devices that fail to initialise (normally hardware not
7424 * present) and leaves us with a valid list of present and active devices.
7425 *
7426 */
7427
7428 /*
7429 * This is called single threaded during boot, so no need
7430 * to take the rtnl semaphore.
7431 */
7432 static int __init net_dev_init(void)
7433 {
7434 int i, rc = -ENOMEM;
7435
7436 BUG_ON(!dev_boot_phase);
7437
7438 if (dev_proc_init())
7439 goto out;
7440
7441 if (netdev_kobject_init())
7442 goto out;
7443
7444 INIT_LIST_HEAD(&ptype_all);
7445 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7446 INIT_LIST_HEAD(&ptype_base[i]);
7447
7448 INIT_LIST_HEAD(&offload_base);
7449
7450 if (register_pernet_subsys(&netdev_net_ops))
7451 goto out;
7452
7453 /*
7454 * Initialise the packet receive queues.
7455 */
7456
7457 for_each_possible_cpu(i) {
7458 struct softnet_data *sd = &per_cpu(softnet_data, i);
7459
7460 skb_queue_head_init(&sd->input_pkt_queue);
7461 skb_queue_head_init(&sd->process_queue);
7462 INIT_LIST_HEAD(&sd->poll_list);
7463 sd->output_queue_tailp = &sd->output_queue;
7464 #ifdef CONFIG_RPS
7465 sd->csd.func = rps_trigger_softirq;
7466 sd->csd.info = sd;
7467 sd->cpu = i;
7468 #endif
7469
7470 sd->backlog.poll = process_backlog;
7471 sd->backlog.weight = weight_p;
7472 }
7473
7474 dev_boot_phase = 0;
7475
7476 /* The loopback device is special if any other network devices
7477 * is present in a network namespace the loopback device must
7478 * be present. Since we now dynamically allocate and free the
7479 * loopback device ensure this invariant is maintained by
7480 * keeping the loopback device as the first device on the
7481 * list of network devices. Ensuring the loopback devices
7482 * is the first device that appears and the last network device
7483 * that disappears.
7484 */
7485 if (register_pernet_device(&loopback_net_ops))
7486 goto out;
7487
7488 if (register_pernet_device(&default_device_ops))
7489 goto out;
7490
7491 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7492 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7493
7494 hotcpu_notifier(dev_cpu_callback, 0);
7495 dst_init();
7496 rc = 0;
7497 out:
7498 return rc;
7499 }
7500
7501 subsys_initcall(net_dev_init);
This page took 0.264222 seconds and 6 git commands to generate.