netns: fix unbalanced spin_lock on error
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly; /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 struct net_device *dev,
157 struct netdev_notifier_info *info);
158
159 /*
160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161 * semaphore.
162 *
163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164 *
165 * Writers must hold the rtnl semaphore while they loop through the
166 * dev_base_head list, and hold dev_base_lock for writing when they do the
167 * actual updates. This allows pure readers to access the list even
168 * while a writer is preparing to update it.
169 *
170 * To put it another way, dev_base_lock is held for writing only to
171 * protect against pure readers; the rtnl semaphore provides the
172 * protection against other writers.
173 *
174 * See, for example usages, register_netdevice() and
175 * unregister_netdevice(), which must be called with the rtnl
176 * semaphore held.
177 */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 struct net *net = dev_net(dev);
224
225 ASSERT_RTNL();
226
227 write_lock_bh(&dev_base_lock);
228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 hlist_add_head_rcu(&dev->index_hlist,
231 dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233
234 dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238 * caller must respect a RCU grace period before freeing/reusing dev
239 */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 ASSERT_RTNL();
243
244 /* Unlink dev from the device chain */
245 write_lock_bh(&dev_base_lock);
246 list_del_rcu(&dev->dev_list);
247 hlist_del_rcu(&dev->name_hlist);
248 hlist_del_rcu(&dev->index_hlist);
249 write_unlock_bh(&dev_base_lock);
250
251 dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273 static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 int i;
313
314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 if (netdev_lock_type[i] == dev_type)
316 return i;
317 /* the last key is used by default */
318 return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 int i;
325
326 i = netdev_lock_pos(dev_type);
327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 int i;
334
335 i = netdev_lock_pos(dev->type);
336 lockdep_set_class_and_name(&dev->addr_list_lock,
337 &netdev_addr_lock_key[i],
338 netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357 * Add a protocol ID to the list. Now that the input handler is
358 * smarter we can dispense with all the messy stuff that used to be
359 * here.
360 *
361 * BEWARE!!! Protocol handlers, mangling input packets,
362 * MUST BE last in hash buckets and checking protocol handlers
363 * MUST start from promiscuous ptype_all chain in net_bh.
364 * It is true now, do not change it.
365 * Explanation follows: if protocol handler, mangling packet, will
366 * be the first on list, it is not able to sense, that packet
367 * is cloned and should be copied-on-write, so that it will
368 * change it and subsequent readers will get broken packet.
369 * --ANK (980803)
370 */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 if (pt->type == htons(ETH_P_ALL))
375 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 else
377 return pt->dev ? &pt->dev->ptype_specific :
378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382 * dev_add_pack - add packet handler
383 * @pt: packet type declaration
384 *
385 * Add a protocol handler to the networking stack. The passed &packet_type
386 * is linked into kernel lists and may not be freed until it has been
387 * removed from the kernel lists.
388 *
389 * This call does not sleep therefore it can not
390 * guarantee all CPU's that are in middle of receiving packets
391 * will see the new packet type (until the next received packet).
392 */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396 struct list_head *head = ptype_head(pt);
397
398 spin_lock(&ptype_lock);
399 list_add_rcu(&pt->list, head);
400 spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head = ptype_head(pt);
420 struct packet_type *pt1;
421
422 spin_lock(&ptype_lock);
423
424 list_for_each_entry(pt1, head, list) {
425 if (pt == pt1) {
426 list_del_rcu(&pt->list);
427 goto out;
428 }
429 }
430
431 pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438 * dev_remove_pack - remove packet handler
439 * @pt: packet type declaration
440 *
441 * Remove a protocol handler that was previously added to the kernel
442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
443 * from the kernel lists and can be freed or reused once this function
444 * returns.
445 *
446 * This call sleeps to guarantee that no CPU is looking at the packet
447 * type after return.
448 */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 __dev_remove_pack(pt);
452
453 synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459 * dev_add_offload - register offload handlers
460 * @po: protocol offload declaration
461 *
462 * Add protocol offload handlers to the networking stack. The passed
463 * &proto_offload is linked into kernel lists and may not be freed until
464 * it has been removed from the kernel lists.
465 *
466 * This call does not sleep therefore it can not
467 * guarantee all CPU's that are in middle of receiving packets
468 * will see the new offload handlers (until the next received packet).
469 */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 struct list_head *head = &offload_base;
473
474 spin_lock(&offload_lock);
475 list_add_rcu(&po->list, head);
476 spin_unlock(&offload_lock);
477 }
478 EXPORT_SYMBOL(dev_add_offload);
479
480 /**
481 * __dev_remove_offload - remove offload handler
482 * @po: packet offload declaration
483 *
484 * Remove a protocol offload handler that was previously added to the
485 * kernel offload handlers by dev_add_offload(). The passed &offload_type
486 * is removed from the kernel lists and can be freed or reused once this
487 * function returns.
488 *
489 * The packet type might still be in use by receivers
490 * and must not be freed until after all the CPU's have gone
491 * through a quiescent state.
492 */
493 static void __dev_remove_offload(struct packet_offload *po)
494 {
495 struct list_head *head = &offload_base;
496 struct packet_offload *po1;
497
498 spin_lock(&offload_lock);
499
500 list_for_each_entry(po1, head, list) {
501 if (po == po1) {
502 list_del_rcu(&po->list);
503 goto out;
504 }
505 }
506
507 pr_warn("dev_remove_offload: %p not found\n", po);
508 out:
509 spin_unlock(&offload_lock);
510 }
511
512 /**
513 * dev_remove_offload - remove packet offload handler
514 * @po: packet offload declaration
515 *
516 * Remove a packet offload handler that was previously added to the kernel
517 * offload handlers by dev_add_offload(). The passed &offload_type is
518 * removed from the kernel lists and can be freed or reused once this
519 * function returns.
520 *
521 * This call sleeps to guarantee that no CPU is looking at the packet
522 * type after return.
523 */
524 void dev_remove_offload(struct packet_offload *po)
525 {
526 __dev_remove_offload(po);
527
528 synchronize_net();
529 }
530 EXPORT_SYMBOL(dev_remove_offload);
531
532 /******************************************************************************
533
534 Device Boot-time Settings Routines
535
536 *******************************************************************************/
537
538 /* Boot time configuration table */
539 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
540
541 /**
542 * netdev_boot_setup_add - add new setup entry
543 * @name: name of the device
544 * @map: configured settings for the device
545 *
546 * Adds new setup entry to the dev_boot_setup list. The function
547 * returns 0 on error and 1 on success. This is a generic routine to
548 * all netdevices.
549 */
550 static int netdev_boot_setup_add(char *name, struct ifmap *map)
551 {
552 struct netdev_boot_setup *s;
553 int i;
554
555 s = dev_boot_setup;
556 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
557 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
558 memset(s[i].name, 0, sizeof(s[i].name));
559 strlcpy(s[i].name, name, IFNAMSIZ);
560 memcpy(&s[i].map, map, sizeof(s[i].map));
561 break;
562 }
563 }
564
565 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
566 }
567
568 /**
569 * netdev_boot_setup_check - check boot time settings
570 * @dev: the netdevice
571 *
572 * Check boot time settings for the device.
573 * The found settings are set for the device to be used
574 * later in the device probing.
575 * Returns 0 if no settings found, 1 if they are.
576 */
577 int netdev_boot_setup_check(struct net_device *dev)
578 {
579 struct netdev_boot_setup *s = dev_boot_setup;
580 int i;
581
582 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
583 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
584 !strcmp(dev->name, s[i].name)) {
585 dev->irq = s[i].map.irq;
586 dev->base_addr = s[i].map.base_addr;
587 dev->mem_start = s[i].map.mem_start;
588 dev->mem_end = s[i].map.mem_end;
589 return 1;
590 }
591 }
592 return 0;
593 }
594 EXPORT_SYMBOL(netdev_boot_setup_check);
595
596
597 /**
598 * netdev_boot_base - get address from boot time settings
599 * @prefix: prefix for network device
600 * @unit: id for network device
601 *
602 * Check boot time settings for the base address of device.
603 * The found settings are set for the device to be used
604 * later in the device probing.
605 * Returns 0 if no settings found.
606 */
607 unsigned long netdev_boot_base(const char *prefix, int unit)
608 {
609 const struct netdev_boot_setup *s = dev_boot_setup;
610 char name[IFNAMSIZ];
611 int i;
612
613 sprintf(name, "%s%d", prefix, unit);
614
615 /*
616 * If device already registered then return base of 1
617 * to indicate not to probe for this interface
618 */
619 if (__dev_get_by_name(&init_net, name))
620 return 1;
621
622 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
623 if (!strcmp(name, s[i].name))
624 return s[i].map.base_addr;
625 return 0;
626 }
627
628 /*
629 * Saves at boot time configured settings for any netdevice.
630 */
631 int __init netdev_boot_setup(char *str)
632 {
633 int ints[5];
634 struct ifmap map;
635
636 str = get_options(str, ARRAY_SIZE(ints), ints);
637 if (!str || !*str)
638 return 0;
639
640 /* Save settings */
641 memset(&map, 0, sizeof(map));
642 if (ints[0] > 0)
643 map.irq = ints[1];
644 if (ints[0] > 1)
645 map.base_addr = ints[2];
646 if (ints[0] > 2)
647 map.mem_start = ints[3];
648 if (ints[0] > 3)
649 map.mem_end = ints[4];
650
651 /* Add new entry to the list */
652 return netdev_boot_setup_add(str, &map);
653 }
654
655 __setup("netdev=", netdev_boot_setup);
656
657 /*******************************************************************************
658
659 Device Interface Subroutines
660
661 *******************************************************************************/
662
663 /**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 /* If dev->rtnl_link_ops is set, it's a virtual interface. */
677 if (dev->rtnl_link_ops)
678 return 0;
679
680 return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685 * __dev_get_by_name - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name. Must be called under RTNL semaphore
690 * or @dev_base_lock. If the name is found a pointer to the device
691 * is returned. If the name is not found then %NULL is returned. The
692 * reference counters are not incremented so the caller must be
693 * careful with locks.
694 */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710 * dev_get_by_name_rcu - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name.
715 * If the name is found a pointer to the device is returned.
716 * If the name is not found then %NULL is returned.
717 * The reference counters are not incremented so the caller must be
718 * careful with locks. The caller must hold RCU lock.
719 */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724 struct hlist_head *head = dev_name_hash(net, name);
725
726 hlist_for_each_entry_rcu(dev, head, name_hlist)
727 if (!strncmp(dev->name, name, IFNAMSIZ))
728 return dev;
729
730 return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735 * dev_get_by_name - find a device by its name
736 * @net: the applicable net namespace
737 * @name: name to find
738 *
739 * Find an interface by name. This can be called from any
740 * context and does its own locking. The returned handle has
741 * the usage count incremented and the caller must use dev_put() to
742 * release it when it is no longer needed. %NULL is returned if no
743 * matching device is found.
744 */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 struct net_device *dev;
749
750 rcu_read_lock();
751 dev = dev_get_by_name_rcu(net, name);
752 if (dev)
753 dev_hold(dev);
754 rcu_read_unlock();
755 return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760 * __dev_get_by_index - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold either the RTNL semaphore
768 * or @dev_base_lock.
769 */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 struct net_device *dev;
774 struct hlist_head *head = dev_index_hash(net, ifindex);
775
776 hlist_for_each_entry(dev, head, index_hlist)
777 if (dev->ifindex == ifindex)
778 return dev;
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785 * dev_get_by_index_rcu - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns %NULL if the device
790 * is not found or a pointer to the device. The device has not
791 * had its reference counter increased so the caller must be careful
792 * about locking. The caller must hold RCU lock.
793 */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798 struct hlist_head *head = dev_index_hash(net, ifindex);
799
800 hlist_for_each_entry_rcu(dev, head, index_hlist)
801 if (dev->ifindex == ifindex)
802 return dev;
803
804 return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810 * dev_get_by_index - find a device by its ifindex
811 * @net: the applicable net namespace
812 * @ifindex: index of device
813 *
814 * Search for an interface by index. Returns NULL if the device
815 * is not found or a pointer to the device. The device returned has
816 * had a reference added and the pointer is safe until the user calls
817 * dev_put to indicate they have finished with it.
818 */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 struct net_device *dev;
823
824 rcu_read_lock();
825 dev = dev_get_by_index_rcu(net, ifindex);
826 if (dev)
827 dev_hold(dev);
828 rcu_read_unlock();
829 return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834 * netdev_get_name - get a netdevice name, knowing its ifindex.
835 * @net: network namespace
836 * @name: a pointer to the buffer where the name will be stored.
837 * @ifindex: the ifindex of the interface to get the name from.
838 *
839 * The use of raw_seqcount_begin() and cond_resched() before
840 * retrying is required as we want to give the writers a chance
841 * to complete when CONFIG_PREEMPT is not set.
842 */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 struct net_device *dev;
846 unsigned int seq;
847
848 retry:
849 seq = raw_seqcount_begin(&devnet_rename_seq);
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 if (!dev) {
853 rcu_read_unlock();
854 return -ENODEV;
855 }
856
857 strcpy(name, dev->name);
858 rcu_read_unlock();
859 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 cond_resched();
861 goto retry;
862 }
863
864 return 0;
865 }
866
867 /**
868 * dev_getbyhwaddr_rcu - find a device by its hardware address
869 * @net: the applicable net namespace
870 * @type: media type of device
871 * @ha: hardware address
872 *
873 * Search for an interface by MAC address. Returns NULL if the device
874 * is not found or a pointer to the device.
875 * The caller must hold RCU or RTNL.
876 * The returned device has not had its ref count increased
877 * and the caller must therefore be careful about locking
878 *
879 */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 const char *ha)
883 {
884 struct net_device *dev;
885
886 for_each_netdev_rcu(net, dev)
887 if (dev->type == type &&
888 !memcmp(dev->dev_addr, ha, dev->addr_len))
889 return dev;
890
891 return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 struct net_device *dev;
898
899 ASSERT_RTNL();
900 for_each_netdev(net, dev)
901 if (dev->type == type)
902 return dev;
903
904 return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 struct net_device *dev, *ret = NULL;
911
912 rcu_read_lock();
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type) {
915 dev_hold(dev);
916 ret = dev;
917 break;
918 }
919 rcu_read_unlock();
920 return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925 * __dev_get_by_flags - find any device with given flags
926 * @net: the applicable net namespace
927 * @if_flags: IFF_* values
928 * @mask: bitmask of bits in if_flags to check
929 *
930 * Search for any interface with the given flags. Returns NULL if a device
931 * is not found or a pointer to the device. Must be called inside
932 * rtnl_lock(), and result refcount is unchanged.
933 */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 unsigned short mask)
937 {
938 struct net_device *dev, *ret;
939
940 ASSERT_RTNL();
941
942 ret = NULL;
943 for_each_netdev(net, dev) {
944 if (((dev->flags ^ if_flags) & mask) == 0) {
945 ret = dev;
946 break;
947 }
948 }
949 return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954 * dev_valid_name - check if name is okay for network device
955 * @name: name string
956 *
957 * Network device names need to be valid file names to
958 * to allow sysfs to work. We also disallow any kind of
959 * whitespace.
960 */
961 bool dev_valid_name(const char *name)
962 {
963 if (*name == '\0')
964 return false;
965 if (strlen(name) >= IFNAMSIZ)
966 return false;
967 if (!strcmp(name, ".") || !strcmp(name, ".."))
968 return false;
969
970 while (*name) {
971 if (*name == '/' || *name == ':' || isspace(*name))
972 return false;
973 name++;
974 }
975 return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980 * __dev_alloc_name - allocate a name for a device
981 * @net: network namespace to allocate the device name in
982 * @name: name format string
983 * @buf: scratch buffer and result name string
984 *
985 * Passed a format string - eg "lt%d" it will try and find a suitable
986 * id. It scans list of devices to build up a free map, then chooses
987 * the first empty slot. The caller must hold the dev_base or rtnl lock
988 * while allocating the name and adding the device in order to avoid
989 * duplicates.
990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991 * Returns the number of the unit assigned or a negative errno code.
992 */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 int i = 0;
997 const char *p;
998 const int max_netdevices = 8*PAGE_SIZE;
999 unsigned long *inuse;
1000 struct net_device *d;
1001
1002 p = strnchr(name, IFNAMSIZ-1, '%');
1003 if (p) {
1004 /*
1005 * Verify the string as this thing may have come from
1006 * the user. There must be either one "%d" and no other "%"
1007 * characters.
1008 */
1009 if (p[1] != 'd' || strchr(p + 2, '%'))
1010 return -EINVAL;
1011
1012 /* Use one page as a bit array of possible slots */
1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 if (!inuse)
1015 return -ENOMEM;
1016
1017 for_each_netdev(net, d) {
1018 if (!sscanf(d->name, name, &i))
1019 continue;
1020 if (i < 0 || i >= max_netdevices)
1021 continue;
1022
1023 /* avoid cases where sscanf is not exact inverse of printf */
1024 snprintf(buf, IFNAMSIZ, name, i);
1025 if (!strncmp(buf, d->name, IFNAMSIZ))
1026 set_bit(i, inuse);
1027 }
1028
1029 i = find_first_zero_bit(inuse, max_netdevices);
1030 free_page((unsigned long) inuse);
1031 }
1032
1033 if (buf != name)
1034 snprintf(buf, IFNAMSIZ, name, i);
1035 if (!__dev_get_by_name(net, buf))
1036 return i;
1037
1038 /* It is possible to run out of possible slots
1039 * when the name is long and there isn't enough space left
1040 * for the digits, or if all bits are used.
1041 */
1042 return -ENFILE;
1043 }
1044
1045 /**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 char buf[IFNAMSIZ];
1062 struct net *net;
1063 int ret;
1064
1065 BUG_ON(!dev_net(dev));
1066 net = dev_net(dev);
1067 ret = __dev_alloc_name(net, name, buf);
1068 if (ret >= 0)
1069 strlcpy(dev->name, buf, IFNAMSIZ);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075 struct net_device *dev,
1076 const char *name)
1077 {
1078 char buf[IFNAMSIZ];
1079 int ret;
1080
1081 ret = __dev_alloc_name(net, name, buf);
1082 if (ret >= 0)
1083 strlcpy(dev->name, buf, IFNAMSIZ);
1084 return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088 struct net_device *dev,
1089 const char *name)
1090 {
1091 BUG_ON(!net);
1092
1093 if (!dev_valid_name(name))
1094 return -EINVAL;
1095
1096 if (strchr(name, '%'))
1097 return dev_alloc_name_ns(net, dev, name);
1098 else if (__dev_get_by_name(net, name))
1099 return -EEXIST;
1100 else if (dev->name != name)
1101 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103 return 0;
1104 }
1105
1106 /**
1107 * dev_change_name - change name of a device
1108 * @dev: device
1109 * @newname: name (or format string) must be at least IFNAMSIZ
1110 *
1111 * Change name of a device, can pass format strings "eth%d".
1112 * for wildcarding.
1113 */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 unsigned char old_assign_type;
1117 char oldname[IFNAMSIZ];
1118 int err = 0;
1119 int ret;
1120 struct net *net;
1121
1122 ASSERT_RTNL();
1123 BUG_ON(!dev_net(dev));
1124
1125 net = dev_net(dev);
1126 if (dev->flags & IFF_UP)
1127 return -EBUSY;
1128
1129 write_seqcount_begin(&devnet_rename_seq);
1130
1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 write_seqcount_end(&devnet_rename_seq);
1133 return 0;
1134 }
1135
1136 memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138 err = dev_get_valid_name(net, dev, newname);
1139 if (err < 0) {
1140 write_seqcount_end(&devnet_rename_seq);
1141 return err;
1142 }
1143
1144 if (oldname[0] && !strchr(oldname, '%'))
1145 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147 old_assign_type = dev->name_assign_type;
1148 dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151 ret = device_rename(&dev->dev, dev->name);
1152 if (ret) {
1153 memcpy(dev->name, oldname, IFNAMSIZ);
1154 dev->name_assign_type = old_assign_type;
1155 write_seqcount_end(&devnet_rename_seq);
1156 return ret;
1157 }
1158
1159 write_seqcount_end(&devnet_rename_seq);
1160
1161 netdev_adjacent_rename_links(dev, oldname);
1162
1163 write_lock_bh(&dev_base_lock);
1164 hlist_del_rcu(&dev->name_hlist);
1165 write_unlock_bh(&dev_base_lock);
1166
1167 synchronize_rcu();
1168
1169 write_lock_bh(&dev_base_lock);
1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 write_unlock_bh(&dev_base_lock);
1172
1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 ret = notifier_to_errno(ret);
1175
1176 if (ret) {
1177 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178 if (err >= 0) {
1179 err = ret;
1180 write_seqcount_begin(&devnet_rename_seq);
1181 memcpy(dev->name, oldname, IFNAMSIZ);
1182 memcpy(oldname, newname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 old_assign_type = NET_NAME_RENAMED;
1185 goto rollback;
1186 } else {
1187 pr_err("%s: name change rollback failed: %d\n",
1188 dev->name, ret);
1189 }
1190 }
1191
1192 return err;
1193 }
1194
1195 /**
1196 * dev_set_alias - change ifalias of a device
1197 * @dev: device
1198 * @alias: name up to IFALIASZ
1199 * @len: limit of bytes to copy from info
1200 *
1201 * Set ifalias for a device,
1202 */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 char *new_ifalias;
1206
1207 ASSERT_RTNL();
1208
1209 if (len >= IFALIASZ)
1210 return -EINVAL;
1211
1212 if (!len) {
1213 kfree(dev->ifalias);
1214 dev->ifalias = NULL;
1215 return 0;
1216 }
1217
1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 if (!new_ifalias)
1220 return -ENOMEM;
1221 dev->ifalias = new_ifalias;
1222
1223 strlcpy(dev->ifalias, alias, len+1);
1224 return len;
1225 }
1226
1227
1228 /**
1229 * netdev_features_change - device changes features
1230 * @dev: device to cause notification
1231 *
1232 * Called to indicate a device has changed features.
1233 */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241 * netdev_state_change - device changes state
1242 * @dev: device to cause notification
1243 *
1244 * Called to indicate a device has changed state. This function calls
1245 * the notifier chains for netdev_chain and sends a NEWLINK message
1246 * to the routing socket.
1247 */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 if (dev->flags & IFF_UP) {
1251 struct netdev_notifier_change_info change_info;
1252
1253 change_info.flags_changed = 0;
1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 &change_info.info);
1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262 * netdev_notify_peers - notify network peers about existence of @dev
1263 * @dev: network device
1264 *
1265 * Generate traffic such that interested network peers are aware of
1266 * @dev, such as by generating a gratuitous ARP. This may be used when
1267 * a device wants to inform the rest of the network about some sort of
1268 * reconfiguration such as a failover event or virtual machine
1269 * migration.
1270 */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 rtnl_lock();
1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 const struct net_device_ops *ops = dev->netdev_ops;
1282 int ret;
1283
1284 ASSERT_RTNL();
1285
1286 if (!netif_device_present(dev))
1287 return -ENODEV;
1288
1289 /* Block netpoll from trying to do any rx path servicing.
1290 * If we don't do this there is a chance ndo_poll_controller
1291 * or ndo_poll may be running while we open the device
1292 */
1293 netpoll_poll_disable(dev);
1294
1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 ret = notifier_to_errno(ret);
1297 if (ret)
1298 return ret;
1299
1300 set_bit(__LINK_STATE_START, &dev->state);
1301
1302 if (ops->ndo_validate_addr)
1303 ret = ops->ndo_validate_addr(dev);
1304
1305 if (!ret && ops->ndo_open)
1306 ret = ops->ndo_open(dev);
1307
1308 netpoll_poll_enable(dev);
1309
1310 if (ret)
1311 clear_bit(__LINK_STATE_START, &dev->state);
1312 else {
1313 dev->flags |= IFF_UP;
1314 dev_set_rx_mode(dev);
1315 dev_activate(dev);
1316 add_device_randomness(dev->dev_addr, dev->addr_len);
1317 }
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * dev_open - prepare an interface for use.
1324 * @dev: device to open
1325 *
1326 * Takes a device from down to up state. The device's private open
1327 * function is invoked and then the multicast lists are loaded. Finally
1328 * the device is moved into the up state and a %NETDEV_UP message is
1329 * sent to the netdev notifier chain.
1330 *
1331 * Calling this function on an active interface is a nop. On a failure
1332 * a negative errno code is returned.
1333 */
1334 int dev_open(struct net_device *dev)
1335 {
1336 int ret;
1337
1338 if (dev->flags & IFF_UP)
1339 return 0;
1340
1341 ret = __dev_open(dev);
1342 if (ret < 0)
1343 return ret;
1344
1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 struct net_device *dev;
1355
1356 ASSERT_RTNL();
1357 might_sleep();
1358
1359 list_for_each_entry(dev, head, close_list) {
1360 /* Temporarily disable netpoll until the interface is down */
1361 netpoll_poll_disable(dev);
1362
1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368 * can be even on different cpu. So just clear netif_running().
1369 *
1370 * dev->stop() will invoke napi_disable() on all of it's
1371 * napi_struct instances on this device.
1372 */
1373 smp_mb__after_atomic(); /* Commit netif_running(). */
1374 }
1375
1376 dev_deactivate_many(head);
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381 /*
1382 * Call the device specific close. This cannot fail.
1383 * Only if device is UP
1384 *
1385 * We allow it to be called even after a DETACH hot-plug
1386 * event.
1387 */
1388 if (ops->ndo_stop)
1389 ops->ndo_stop(dev);
1390
1391 dev->flags &= ~IFF_UP;
1392 netpoll_poll_enable(dev);
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 int retval;
1401 LIST_HEAD(single);
1402
1403 list_add(&dev->close_list, &single);
1404 retval = __dev_close_many(&single);
1405 list_del(&single);
1406
1407 return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 struct net_device *dev, *tmp;
1413
1414 /* Remove the devices that don't need to be closed */
1415 list_for_each_entry_safe(dev, tmp, head, close_list)
1416 if (!(dev->flags & IFF_UP))
1417 list_del_init(&dev->close_list);
1418
1419 __dev_close_many(head);
1420
1421 list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 if (unlink)
1425 list_del_init(&dev->close_list);
1426 }
1427
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433 * dev_close - shutdown an interface.
1434 * @dev: device to shutdown
1435 *
1436 * This function moves an active device into down state. A
1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439 * chain.
1440 */
1441 int dev_close(struct net_device *dev)
1442 {
1443 if (dev->flags & IFF_UP) {
1444 LIST_HEAD(single);
1445
1446 list_add(&dev->close_list, &single);
1447 dev_close_many(&single, true);
1448 list_del(&single);
1449 }
1450 return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456 * dev_disable_lro - disable Large Receive Offload on a device
1457 * @dev: device
1458 *
1459 * Disable Large Receive Offload (LRO) on a net device. Must be
1460 * called under RTNL. This is needed if received packets may be
1461 * forwarded to another interface.
1462 */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 struct net_device *lower_dev;
1466 struct list_head *iter;
1467
1468 dev->wanted_features &= ~NETIF_F_LRO;
1469 netdev_update_features(dev);
1470
1471 if (unlikely(dev->features & NETIF_F_LRO))
1472 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474 netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 struct net_device *dev)
1481 {
1482 struct netdev_notifier_info info;
1483
1484 netdev_notifier_info_init(&info, dev);
1485 return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491 * register_netdevice_notifier - register a network notifier block
1492 * @nb: notifier
1493 *
1494 * Register a notifier to be called when network device events occur.
1495 * The notifier passed is linked into the kernel structures and must
1496 * not be reused until it has been unregistered. A negative errno code
1497 * is returned on a failure.
1498 *
1499 * When registered all registration and up events are replayed
1500 * to the new notifier to allow device to have a race free
1501 * view of the network device list.
1502 */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 struct net_device *dev;
1507 struct net_device *last;
1508 struct net *net;
1509 int err;
1510
1511 rtnl_lock();
1512 err = raw_notifier_chain_register(&netdev_chain, nb);
1513 if (err)
1514 goto unlock;
1515 if (dev_boot_phase)
1516 goto unlock;
1517 for_each_net(net) {
1518 for_each_netdev(net, dev) {
1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 err = notifier_to_errno(err);
1521 if (err)
1522 goto rollback;
1523
1524 if (!(dev->flags & IFF_UP))
1525 continue;
1526
1527 call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 }
1529 }
1530
1531 unlock:
1532 rtnl_unlock();
1533 return err;
1534
1535 rollback:
1536 last = dev;
1537 for_each_net(net) {
1538 for_each_netdev(net, dev) {
1539 if (dev == last)
1540 goto outroll;
1541
1542 if (dev->flags & IFF_UP) {
1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 dev);
1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 }
1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 }
1549 }
1550
1551 outroll:
1552 raw_notifier_chain_unregister(&netdev_chain, nb);
1553 goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558 * unregister_netdevice_notifier - unregister a network notifier block
1559 * @nb: notifier
1560 *
1561 * Unregister a notifier previously registered by
1562 * register_netdevice_notifier(). The notifier is unlinked into the
1563 * kernel structures and may then be reused. A negative errno code
1564 * is returned on a failure.
1565 *
1566 * After unregistering unregister and down device events are synthesized
1567 * for all devices on the device list to the removed notifier to remove
1568 * the need for special case cleanup code.
1569 */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 struct net_device *dev;
1574 struct net *net;
1575 int err;
1576
1577 rtnl_lock();
1578 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 if (err)
1580 goto unlock;
1581
1582 for_each_net(net) {
1583 for_each_netdev(net, dev) {
1584 if (dev->flags & IFF_UP) {
1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 dev);
1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 }
1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 }
1591 }
1592 unlock:
1593 rtnl_unlock();
1594 return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599 * call_netdevice_notifiers_info - call all network notifier blocks
1600 * @val: value passed unmodified to notifier function
1601 * @dev: net_device pointer passed unmodified to notifier function
1602 * @info: notifier information data
1603 *
1604 * Call all network notifier blocks. Parameters and return value
1605 * are as for raw_notifier_call_chain().
1606 */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 struct net_device *dev,
1610 struct netdev_notifier_info *info)
1611 {
1612 ASSERT_RTNL();
1613 netdev_notifier_info_init(info, dev);
1614 return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618 * call_netdevice_notifiers - call all network notifier blocks
1619 * @val: value passed unmodified to notifier function
1620 * @dev: net_device pointer passed unmodified to notifier function
1621 *
1622 * Call all network notifier blocks. Parameters and return value
1623 * are as for raw_notifier_call_chain().
1624 */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 struct netdev_notifier_info info;
1629
1630 return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639 static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645 static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653 * If net_disable_timestamp() is called from irq context, defer the
1654 * static_key_slow_dec() calls.
1655 */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664 if (deferred) {
1665 while (--deferred)
1666 static_key_slow_dec(&netstamp_needed);
1667 return;
1668 }
1669 #endif
1670 static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 if (in_interrupt()) {
1678 atomic_inc(&netstamp_needed_deferred);
1679 return;
1680 }
1681 #endif
1682 static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 skb->tstamp.tv64 = 0;
1689 if (static_key_false(&netstamp_needed))
1690 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB) \
1694 if (static_key_false(&netstamp_needed)) { \
1695 if ((COND) && !(SKB)->tstamp.tv64) \
1696 __net_timestamp(SKB); \
1697 } \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 unsigned int len;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return false;
1705
1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 if (skb->len <= len)
1708 return true;
1709
1710 /* if TSO is enabled, we don't care about the length as the packet
1711 * could be forwarded without being segmented before
1712 */
1713 if (skb_is_gso(skb))
1714 return true;
1715
1716 return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1723 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1724 atomic_long_inc(&dev->rx_dropped);
1725 kfree_skb(skb);
1726 return NET_RX_DROP;
1727 }
1728 }
1729
1730 if (unlikely(!is_skb_forwardable(dev, skb))) {
1731 atomic_long_inc(&dev->rx_dropped);
1732 kfree_skb(skb);
1733 return NET_RX_DROP;
1734 }
1735
1736 skb_scrub_packet(skb, true);
1737 skb->priority = 0;
1738 skb->protocol = eth_type_trans(skb, dev);
1739 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1740
1741 return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1744
1745 /**
1746 * dev_forward_skb - loopback an skb to another netif
1747 *
1748 * @dev: destination network device
1749 * @skb: buffer to forward
1750 *
1751 * return values:
1752 * NET_RX_SUCCESS (no congestion)
1753 * NET_RX_DROP (packet was dropped, but freed)
1754 *
1755 * dev_forward_skb can be used for injecting an skb from the
1756 * start_xmit function of one device into the receive queue
1757 * of another device.
1758 *
1759 * The receiving device may be in another namespace, so
1760 * we have to clear all information in the skb that could
1761 * impact namespace isolation.
1762 */
1763 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1764 {
1765 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1766 }
1767 EXPORT_SYMBOL_GPL(dev_forward_skb);
1768
1769 static inline int deliver_skb(struct sk_buff *skb,
1770 struct packet_type *pt_prev,
1771 struct net_device *orig_dev)
1772 {
1773 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1774 return -ENOMEM;
1775 atomic_inc(&skb->users);
1776 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1777 }
1778
1779 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1780 struct packet_type **pt,
1781 struct net_device *orig_dev,
1782 __be16 type,
1783 struct list_head *ptype_list)
1784 {
1785 struct packet_type *ptype, *pt_prev = *pt;
1786
1787 list_for_each_entry_rcu(ptype, ptype_list, list) {
1788 if (ptype->type != type)
1789 continue;
1790 if (pt_prev)
1791 deliver_skb(skb, pt_prev, orig_dev);
1792 pt_prev = ptype;
1793 }
1794 *pt = pt_prev;
1795 }
1796
1797 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1798 {
1799 if (!ptype->af_packet_priv || !skb->sk)
1800 return false;
1801
1802 if (ptype->id_match)
1803 return ptype->id_match(ptype, skb->sk);
1804 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1805 return true;
1806
1807 return false;
1808 }
1809
1810 /*
1811 * Support routine. Sends outgoing frames to any network
1812 * taps currently in use.
1813 */
1814
1815 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1816 {
1817 struct packet_type *ptype;
1818 struct sk_buff *skb2 = NULL;
1819 struct packet_type *pt_prev = NULL;
1820 struct list_head *ptype_list = &ptype_all;
1821
1822 rcu_read_lock();
1823 again:
1824 list_for_each_entry_rcu(ptype, ptype_list, list) {
1825 /* Never send packets back to the socket
1826 * they originated from - MvS (miquels@drinkel.ow.org)
1827 */
1828 if (skb_loop_sk(ptype, skb))
1829 continue;
1830
1831 if (pt_prev) {
1832 deliver_skb(skb2, pt_prev, skb->dev);
1833 pt_prev = ptype;
1834 continue;
1835 }
1836
1837 /* need to clone skb, done only once */
1838 skb2 = skb_clone(skb, GFP_ATOMIC);
1839 if (!skb2)
1840 goto out_unlock;
1841
1842 net_timestamp_set(skb2);
1843
1844 /* skb->nh should be correctly
1845 * set by sender, so that the second statement is
1846 * just protection against buggy protocols.
1847 */
1848 skb_reset_mac_header(skb2);
1849
1850 if (skb_network_header(skb2) < skb2->data ||
1851 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1852 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1853 ntohs(skb2->protocol),
1854 dev->name);
1855 skb_reset_network_header(skb2);
1856 }
1857
1858 skb2->transport_header = skb2->network_header;
1859 skb2->pkt_type = PACKET_OUTGOING;
1860 pt_prev = ptype;
1861 }
1862
1863 if (ptype_list == &ptype_all) {
1864 ptype_list = &dev->ptype_all;
1865 goto again;
1866 }
1867 out_unlock:
1868 if (pt_prev)
1869 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1870 rcu_read_unlock();
1871 }
1872
1873 /**
1874 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1875 * @dev: Network device
1876 * @txq: number of queues available
1877 *
1878 * If real_num_tx_queues is changed the tc mappings may no longer be
1879 * valid. To resolve this verify the tc mapping remains valid and if
1880 * not NULL the mapping. With no priorities mapping to this
1881 * offset/count pair it will no longer be used. In the worst case TC0
1882 * is invalid nothing can be done so disable priority mappings. If is
1883 * expected that drivers will fix this mapping if they can before
1884 * calling netif_set_real_num_tx_queues.
1885 */
1886 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1887 {
1888 int i;
1889 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1890
1891 /* If TC0 is invalidated disable TC mapping */
1892 if (tc->offset + tc->count > txq) {
1893 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1894 dev->num_tc = 0;
1895 return;
1896 }
1897
1898 /* Invalidated prio to tc mappings set to TC0 */
1899 for (i = 1; i < TC_BITMASK + 1; i++) {
1900 int q = netdev_get_prio_tc_map(dev, i);
1901
1902 tc = &dev->tc_to_txq[q];
1903 if (tc->offset + tc->count > txq) {
1904 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1905 i, q);
1906 netdev_set_prio_tc_map(dev, i, 0);
1907 }
1908 }
1909 }
1910
1911 #ifdef CONFIG_XPS
1912 static DEFINE_MUTEX(xps_map_mutex);
1913 #define xmap_dereference(P) \
1914 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1915
1916 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1917 int cpu, u16 index)
1918 {
1919 struct xps_map *map = NULL;
1920 int pos;
1921
1922 if (dev_maps)
1923 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1924
1925 for (pos = 0; map && pos < map->len; pos++) {
1926 if (map->queues[pos] == index) {
1927 if (map->len > 1) {
1928 map->queues[pos] = map->queues[--map->len];
1929 } else {
1930 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1931 kfree_rcu(map, rcu);
1932 map = NULL;
1933 }
1934 break;
1935 }
1936 }
1937
1938 return map;
1939 }
1940
1941 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1942 {
1943 struct xps_dev_maps *dev_maps;
1944 int cpu, i;
1945 bool active = false;
1946
1947 mutex_lock(&xps_map_mutex);
1948 dev_maps = xmap_dereference(dev->xps_maps);
1949
1950 if (!dev_maps)
1951 goto out_no_maps;
1952
1953 for_each_possible_cpu(cpu) {
1954 for (i = index; i < dev->num_tx_queues; i++) {
1955 if (!remove_xps_queue(dev_maps, cpu, i))
1956 break;
1957 }
1958 if (i == dev->num_tx_queues)
1959 active = true;
1960 }
1961
1962 if (!active) {
1963 RCU_INIT_POINTER(dev->xps_maps, NULL);
1964 kfree_rcu(dev_maps, rcu);
1965 }
1966
1967 for (i = index; i < dev->num_tx_queues; i++)
1968 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1969 NUMA_NO_NODE);
1970
1971 out_no_maps:
1972 mutex_unlock(&xps_map_mutex);
1973 }
1974
1975 static struct xps_map *expand_xps_map(struct xps_map *map,
1976 int cpu, u16 index)
1977 {
1978 struct xps_map *new_map;
1979 int alloc_len = XPS_MIN_MAP_ALLOC;
1980 int i, pos;
1981
1982 for (pos = 0; map && pos < map->len; pos++) {
1983 if (map->queues[pos] != index)
1984 continue;
1985 return map;
1986 }
1987
1988 /* Need to add queue to this CPU's existing map */
1989 if (map) {
1990 if (pos < map->alloc_len)
1991 return map;
1992
1993 alloc_len = map->alloc_len * 2;
1994 }
1995
1996 /* Need to allocate new map to store queue on this CPU's map */
1997 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1998 cpu_to_node(cpu));
1999 if (!new_map)
2000 return NULL;
2001
2002 for (i = 0; i < pos; i++)
2003 new_map->queues[i] = map->queues[i];
2004 new_map->alloc_len = alloc_len;
2005 new_map->len = pos;
2006
2007 return new_map;
2008 }
2009
2010 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2011 u16 index)
2012 {
2013 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2014 struct xps_map *map, *new_map;
2015 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2016 int cpu, numa_node_id = -2;
2017 bool active = false;
2018
2019 mutex_lock(&xps_map_mutex);
2020
2021 dev_maps = xmap_dereference(dev->xps_maps);
2022
2023 /* allocate memory for queue storage */
2024 for_each_online_cpu(cpu) {
2025 if (!cpumask_test_cpu(cpu, mask))
2026 continue;
2027
2028 if (!new_dev_maps)
2029 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2030 if (!new_dev_maps) {
2031 mutex_unlock(&xps_map_mutex);
2032 return -ENOMEM;
2033 }
2034
2035 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2036 NULL;
2037
2038 map = expand_xps_map(map, cpu, index);
2039 if (!map)
2040 goto error;
2041
2042 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2043 }
2044
2045 if (!new_dev_maps)
2046 goto out_no_new_maps;
2047
2048 for_each_possible_cpu(cpu) {
2049 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2050 /* add queue to CPU maps */
2051 int pos = 0;
2052
2053 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2054 while ((pos < map->len) && (map->queues[pos] != index))
2055 pos++;
2056
2057 if (pos == map->len)
2058 map->queues[map->len++] = index;
2059 #ifdef CONFIG_NUMA
2060 if (numa_node_id == -2)
2061 numa_node_id = cpu_to_node(cpu);
2062 else if (numa_node_id != cpu_to_node(cpu))
2063 numa_node_id = -1;
2064 #endif
2065 } else if (dev_maps) {
2066 /* fill in the new device map from the old device map */
2067 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2068 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2069 }
2070
2071 }
2072
2073 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2074
2075 /* Cleanup old maps */
2076 if (dev_maps) {
2077 for_each_possible_cpu(cpu) {
2078 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2079 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2080 if (map && map != new_map)
2081 kfree_rcu(map, rcu);
2082 }
2083
2084 kfree_rcu(dev_maps, rcu);
2085 }
2086
2087 dev_maps = new_dev_maps;
2088 active = true;
2089
2090 out_no_new_maps:
2091 /* update Tx queue numa node */
2092 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2093 (numa_node_id >= 0) ? numa_node_id :
2094 NUMA_NO_NODE);
2095
2096 if (!dev_maps)
2097 goto out_no_maps;
2098
2099 /* removes queue from unused CPUs */
2100 for_each_possible_cpu(cpu) {
2101 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2102 continue;
2103
2104 if (remove_xps_queue(dev_maps, cpu, index))
2105 active = true;
2106 }
2107
2108 /* free map if not active */
2109 if (!active) {
2110 RCU_INIT_POINTER(dev->xps_maps, NULL);
2111 kfree_rcu(dev_maps, rcu);
2112 }
2113
2114 out_no_maps:
2115 mutex_unlock(&xps_map_mutex);
2116
2117 return 0;
2118 error:
2119 /* remove any maps that we added */
2120 for_each_possible_cpu(cpu) {
2121 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2123 NULL;
2124 if (new_map && new_map != map)
2125 kfree(new_map);
2126 }
2127
2128 mutex_unlock(&xps_map_mutex);
2129
2130 kfree(new_dev_maps);
2131 return -ENOMEM;
2132 }
2133 EXPORT_SYMBOL(netif_set_xps_queue);
2134
2135 #endif
2136 /*
2137 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2138 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2139 */
2140 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2141 {
2142 int rc;
2143
2144 if (txq < 1 || txq > dev->num_tx_queues)
2145 return -EINVAL;
2146
2147 if (dev->reg_state == NETREG_REGISTERED ||
2148 dev->reg_state == NETREG_UNREGISTERING) {
2149 ASSERT_RTNL();
2150
2151 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2152 txq);
2153 if (rc)
2154 return rc;
2155
2156 if (dev->num_tc)
2157 netif_setup_tc(dev, txq);
2158
2159 if (txq < dev->real_num_tx_queues) {
2160 qdisc_reset_all_tx_gt(dev, txq);
2161 #ifdef CONFIG_XPS
2162 netif_reset_xps_queues_gt(dev, txq);
2163 #endif
2164 }
2165 }
2166
2167 dev->real_num_tx_queues = txq;
2168 return 0;
2169 }
2170 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2171
2172 #ifdef CONFIG_SYSFS
2173 /**
2174 * netif_set_real_num_rx_queues - set actual number of RX queues used
2175 * @dev: Network device
2176 * @rxq: Actual number of RX queues
2177 *
2178 * This must be called either with the rtnl_lock held or before
2179 * registration of the net device. Returns 0 on success, or a
2180 * negative error code. If called before registration, it always
2181 * succeeds.
2182 */
2183 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2184 {
2185 int rc;
2186
2187 if (rxq < 1 || rxq > dev->num_rx_queues)
2188 return -EINVAL;
2189
2190 if (dev->reg_state == NETREG_REGISTERED) {
2191 ASSERT_RTNL();
2192
2193 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2194 rxq);
2195 if (rc)
2196 return rc;
2197 }
2198
2199 dev->real_num_rx_queues = rxq;
2200 return 0;
2201 }
2202 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2203 #endif
2204
2205 /**
2206 * netif_get_num_default_rss_queues - default number of RSS queues
2207 *
2208 * This routine should set an upper limit on the number of RSS queues
2209 * used by default by multiqueue devices.
2210 */
2211 int netif_get_num_default_rss_queues(void)
2212 {
2213 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2214 }
2215 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2216
2217 static inline void __netif_reschedule(struct Qdisc *q)
2218 {
2219 struct softnet_data *sd;
2220 unsigned long flags;
2221
2222 local_irq_save(flags);
2223 sd = this_cpu_ptr(&softnet_data);
2224 q->next_sched = NULL;
2225 *sd->output_queue_tailp = q;
2226 sd->output_queue_tailp = &q->next_sched;
2227 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2228 local_irq_restore(flags);
2229 }
2230
2231 void __netif_schedule(struct Qdisc *q)
2232 {
2233 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2234 __netif_reschedule(q);
2235 }
2236 EXPORT_SYMBOL(__netif_schedule);
2237
2238 struct dev_kfree_skb_cb {
2239 enum skb_free_reason reason;
2240 };
2241
2242 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2243 {
2244 return (struct dev_kfree_skb_cb *)skb->cb;
2245 }
2246
2247 void netif_schedule_queue(struct netdev_queue *txq)
2248 {
2249 rcu_read_lock();
2250 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2251 struct Qdisc *q = rcu_dereference(txq->qdisc);
2252
2253 __netif_schedule(q);
2254 }
2255 rcu_read_unlock();
2256 }
2257 EXPORT_SYMBOL(netif_schedule_queue);
2258
2259 /**
2260 * netif_wake_subqueue - allow sending packets on subqueue
2261 * @dev: network device
2262 * @queue_index: sub queue index
2263 *
2264 * Resume individual transmit queue of a device with multiple transmit queues.
2265 */
2266 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2267 {
2268 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2269
2270 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2271 struct Qdisc *q;
2272
2273 rcu_read_lock();
2274 q = rcu_dereference(txq->qdisc);
2275 __netif_schedule(q);
2276 rcu_read_unlock();
2277 }
2278 }
2279 EXPORT_SYMBOL(netif_wake_subqueue);
2280
2281 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2282 {
2283 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2284 struct Qdisc *q;
2285
2286 rcu_read_lock();
2287 q = rcu_dereference(dev_queue->qdisc);
2288 __netif_schedule(q);
2289 rcu_read_unlock();
2290 }
2291 }
2292 EXPORT_SYMBOL(netif_tx_wake_queue);
2293
2294 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2295 {
2296 unsigned long flags;
2297
2298 if (likely(atomic_read(&skb->users) == 1)) {
2299 smp_rmb();
2300 atomic_set(&skb->users, 0);
2301 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2302 return;
2303 }
2304 get_kfree_skb_cb(skb)->reason = reason;
2305 local_irq_save(flags);
2306 skb->next = __this_cpu_read(softnet_data.completion_queue);
2307 __this_cpu_write(softnet_data.completion_queue, skb);
2308 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2309 local_irq_restore(flags);
2310 }
2311 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2312
2313 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2314 {
2315 if (in_irq() || irqs_disabled())
2316 __dev_kfree_skb_irq(skb, reason);
2317 else
2318 dev_kfree_skb(skb);
2319 }
2320 EXPORT_SYMBOL(__dev_kfree_skb_any);
2321
2322
2323 /**
2324 * netif_device_detach - mark device as removed
2325 * @dev: network device
2326 *
2327 * Mark device as removed from system and therefore no longer available.
2328 */
2329 void netif_device_detach(struct net_device *dev)
2330 {
2331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2332 netif_running(dev)) {
2333 netif_tx_stop_all_queues(dev);
2334 }
2335 }
2336 EXPORT_SYMBOL(netif_device_detach);
2337
2338 /**
2339 * netif_device_attach - mark device as attached
2340 * @dev: network device
2341 *
2342 * Mark device as attached from system and restart if needed.
2343 */
2344 void netif_device_attach(struct net_device *dev)
2345 {
2346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2347 netif_running(dev)) {
2348 netif_tx_wake_all_queues(dev);
2349 __netdev_watchdog_up(dev);
2350 }
2351 }
2352 EXPORT_SYMBOL(netif_device_attach);
2353
2354 /*
2355 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2356 * to be used as a distribution range.
2357 */
2358 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2359 unsigned int num_tx_queues)
2360 {
2361 u32 hash;
2362 u16 qoffset = 0;
2363 u16 qcount = num_tx_queues;
2364
2365 if (skb_rx_queue_recorded(skb)) {
2366 hash = skb_get_rx_queue(skb);
2367 while (unlikely(hash >= num_tx_queues))
2368 hash -= num_tx_queues;
2369 return hash;
2370 }
2371
2372 if (dev->num_tc) {
2373 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2374 qoffset = dev->tc_to_txq[tc].offset;
2375 qcount = dev->tc_to_txq[tc].count;
2376 }
2377
2378 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2379 }
2380 EXPORT_SYMBOL(__skb_tx_hash);
2381
2382 static void skb_warn_bad_offload(const struct sk_buff *skb)
2383 {
2384 static const netdev_features_t null_features = 0;
2385 struct net_device *dev = skb->dev;
2386 const char *driver = "";
2387
2388 if (!net_ratelimit())
2389 return;
2390
2391 if (dev && dev->dev.parent)
2392 driver = dev_driver_string(dev->dev.parent);
2393
2394 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2395 "gso_type=%d ip_summed=%d\n",
2396 driver, dev ? &dev->features : &null_features,
2397 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2398 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2399 skb_shinfo(skb)->gso_type, skb->ip_summed);
2400 }
2401
2402 /*
2403 * Invalidate hardware checksum when packet is to be mangled, and
2404 * complete checksum manually on outgoing path.
2405 */
2406 int skb_checksum_help(struct sk_buff *skb)
2407 {
2408 __wsum csum;
2409 int ret = 0, offset;
2410
2411 if (skb->ip_summed == CHECKSUM_COMPLETE)
2412 goto out_set_summed;
2413
2414 if (unlikely(skb_shinfo(skb)->gso_size)) {
2415 skb_warn_bad_offload(skb);
2416 return -EINVAL;
2417 }
2418
2419 /* Before computing a checksum, we should make sure no frag could
2420 * be modified by an external entity : checksum could be wrong.
2421 */
2422 if (skb_has_shared_frag(skb)) {
2423 ret = __skb_linearize(skb);
2424 if (ret)
2425 goto out;
2426 }
2427
2428 offset = skb_checksum_start_offset(skb);
2429 BUG_ON(offset >= skb_headlen(skb));
2430 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2431
2432 offset += skb->csum_offset;
2433 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2434
2435 if (skb_cloned(skb) &&
2436 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2437 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2438 if (ret)
2439 goto out;
2440 }
2441
2442 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2443 out_set_summed:
2444 skb->ip_summed = CHECKSUM_NONE;
2445 out:
2446 return ret;
2447 }
2448 EXPORT_SYMBOL(skb_checksum_help);
2449
2450 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2451 {
2452 __be16 type = skb->protocol;
2453
2454 /* Tunnel gso handlers can set protocol to ethernet. */
2455 if (type == htons(ETH_P_TEB)) {
2456 struct ethhdr *eth;
2457
2458 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2459 return 0;
2460
2461 eth = (struct ethhdr *)skb_mac_header(skb);
2462 type = eth->h_proto;
2463 }
2464
2465 return __vlan_get_protocol(skb, type, depth);
2466 }
2467
2468 /**
2469 * skb_mac_gso_segment - mac layer segmentation handler.
2470 * @skb: buffer to segment
2471 * @features: features for the output path (see dev->features)
2472 */
2473 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2474 netdev_features_t features)
2475 {
2476 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2477 struct packet_offload *ptype;
2478 int vlan_depth = skb->mac_len;
2479 __be16 type = skb_network_protocol(skb, &vlan_depth);
2480
2481 if (unlikely(!type))
2482 return ERR_PTR(-EINVAL);
2483
2484 __skb_pull(skb, vlan_depth);
2485
2486 rcu_read_lock();
2487 list_for_each_entry_rcu(ptype, &offload_base, list) {
2488 if (ptype->type == type && ptype->callbacks.gso_segment) {
2489 segs = ptype->callbacks.gso_segment(skb, features);
2490 break;
2491 }
2492 }
2493 rcu_read_unlock();
2494
2495 __skb_push(skb, skb->data - skb_mac_header(skb));
2496
2497 return segs;
2498 }
2499 EXPORT_SYMBOL(skb_mac_gso_segment);
2500
2501
2502 /* openvswitch calls this on rx path, so we need a different check.
2503 */
2504 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2505 {
2506 if (tx_path)
2507 return skb->ip_summed != CHECKSUM_PARTIAL;
2508 else
2509 return skb->ip_summed == CHECKSUM_NONE;
2510 }
2511
2512 /**
2513 * __skb_gso_segment - Perform segmentation on skb.
2514 * @skb: buffer to segment
2515 * @features: features for the output path (see dev->features)
2516 * @tx_path: whether it is called in TX path
2517 *
2518 * This function segments the given skb and returns a list of segments.
2519 *
2520 * It may return NULL if the skb requires no segmentation. This is
2521 * only possible when GSO is used for verifying header integrity.
2522 */
2523 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2524 netdev_features_t features, bool tx_path)
2525 {
2526 if (unlikely(skb_needs_check(skb, tx_path))) {
2527 int err;
2528
2529 skb_warn_bad_offload(skb);
2530
2531 err = skb_cow_head(skb, 0);
2532 if (err < 0)
2533 return ERR_PTR(err);
2534 }
2535
2536 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2537 SKB_GSO_CB(skb)->encap_level = 0;
2538
2539 skb_reset_mac_header(skb);
2540 skb_reset_mac_len(skb);
2541
2542 return skb_mac_gso_segment(skb, features);
2543 }
2544 EXPORT_SYMBOL(__skb_gso_segment);
2545
2546 /* Take action when hardware reception checksum errors are detected. */
2547 #ifdef CONFIG_BUG
2548 void netdev_rx_csum_fault(struct net_device *dev)
2549 {
2550 if (net_ratelimit()) {
2551 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2552 dump_stack();
2553 }
2554 }
2555 EXPORT_SYMBOL(netdev_rx_csum_fault);
2556 #endif
2557
2558 /* Actually, we should eliminate this check as soon as we know, that:
2559 * 1. IOMMU is present and allows to map all the memory.
2560 * 2. No high memory really exists on this machine.
2561 */
2562
2563 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2564 {
2565 #ifdef CONFIG_HIGHMEM
2566 int i;
2567 if (!(dev->features & NETIF_F_HIGHDMA)) {
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2570 if (PageHighMem(skb_frag_page(frag)))
2571 return 1;
2572 }
2573 }
2574
2575 if (PCI_DMA_BUS_IS_PHYS) {
2576 struct device *pdev = dev->dev.parent;
2577
2578 if (!pdev)
2579 return 0;
2580 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2583 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2584 return 1;
2585 }
2586 }
2587 #endif
2588 return 0;
2589 }
2590
2591 /* If MPLS offload request, verify we are testing hardware MPLS features
2592 * instead of standard features for the netdev.
2593 */
2594 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2595 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2596 netdev_features_t features,
2597 __be16 type)
2598 {
2599 if (eth_p_mpls(type))
2600 features &= skb->dev->mpls_features;
2601
2602 return features;
2603 }
2604 #else
2605 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2606 netdev_features_t features,
2607 __be16 type)
2608 {
2609 return features;
2610 }
2611 #endif
2612
2613 static netdev_features_t harmonize_features(struct sk_buff *skb,
2614 netdev_features_t features)
2615 {
2616 int tmp;
2617 __be16 type;
2618
2619 type = skb_network_protocol(skb, &tmp);
2620 features = net_mpls_features(skb, features, type);
2621
2622 if (skb->ip_summed != CHECKSUM_NONE &&
2623 !can_checksum_protocol(features, type)) {
2624 features &= ~NETIF_F_ALL_CSUM;
2625 } else if (illegal_highdma(skb->dev, skb)) {
2626 features &= ~NETIF_F_SG;
2627 }
2628
2629 return features;
2630 }
2631
2632 netdev_features_t passthru_features_check(struct sk_buff *skb,
2633 struct net_device *dev,
2634 netdev_features_t features)
2635 {
2636 return features;
2637 }
2638 EXPORT_SYMBOL(passthru_features_check);
2639
2640 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2641 struct net_device *dev,
2642 netdev_features_t features)
2643 {
2644 return vlan_features_check(skb, features);
2645 }
2646
2647 netdev_features_t netif_skb_features(struct sk_buff *skb)
2648 {
2649 struct net_device *dev = skb->dev;
2650 netdev_features_t features = dev->features;
2651 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2652
2653 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2654 features &= ~NETIF_F_GSO_MASK;
2655
2656 /* If encapsulation offload request, verify we are testing
2657 * hardware encapsulation features instead of standard
2658 * features for the netdev
2659 */
2660 if (skb->encapsulation)
2661 features &= dev->hw_enc_features;
2662
2663 if (skb_vlan_tagged(skb))
2664 features = netdev_intersect_features(features,
2665 dev->vlan_features |
2666 NETIF_F_HW_VLAN_CTAG_TX |
2667 NETIF_F_HW_VLAN_STAG_TX);
2668
2669 if (dev->netdev_ops->ndo_features_check)
2670 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2671 features);
2672 else
2673 features &= dflt_features_check(skb, dev, features);
2674
2675 return harmonize_features(skb, features);
2676 }
2677 EXPORT_SYMBOL(netif_skb_features);
2678
2679 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2680 struct netdev_queue *txq, bool more)
2681 {
2682 unsigned int len;
2683 int rc;
2684
2685 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2686 dev_queue_xmit_nit(skb, dev);
2687
2688 len = skb->len;
2689 trace_net_dev_start_xmit(skb, dev);
2690 rc = netdev_start_xmit(skb, dev, txq, more);
2691 trace_net_dev_xmit(skb, rc, dev, len);
2692
2693 return rc;
2694 }
2695
2696 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2697 struct netdev_queue *txq, int *ret)
2698 {
2699 struct sk_buff *skb = first;
2700 int rc = NETDEV_TX_OK;
2701
2702 while (skb) {
2703 struct sk_buff *next = skb->next;
2704
2705 skb->next = NULL;
2706 rc = xmit_one(skb, dev, txq, next != NULL);
2707 if (unlikely(!dev_xmit_complete(rc))) {
2708 skb->next = next;
2709 goto out;
2710 }
2711
2712 skb = next;
2713 if (netif_xmit_stopped(txq) && skb) {
2714 rc = NETDEV_TX_BUSY;
2715 break;
2716 }
2717 }
2718
2719 out:
2720 *ret = rc;
2721 return skb;
2722 }
2723
2724 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2725 netdev_features_t features)
2726 {
2727 if (skb_vlan_tag_present(skb) &&
2728 !vlan_hw_offload_capable(features, skb->vlan_proto))
2729 skb = __vlan_hwaccel_push_inside(skb);
2730 return skb;
2731 }
2732
2733 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2734 {
2735 netdev_features_t features;
2736
2737 if (skb->next)
2738 return skb;
2739
2740 features = netif_skb_features(skb);
2741 skb = validate_xmit_vlan(skb, features);
2742 if (unlikely(!skb))
2743 goto out_null;
2744
2745 if (netif_needs_gso(skb, features)) {
2746 struct sk_buff *segs;
2747
2748 segs = skb_gso_segment(skb, features);
2749 if (IS_ERR(segs)) {
2750 goto out_kfree_skb;
2751 } else if (segs) {
2752 consume_skb(skb);
2753 skb = segs;
2754 }
2755 } else {
2756 if (skb_needs_linearize(skb, features) &&
2757 __skb_linearize(skb))
2758 goto out_kfree_skb;
2759
2760 /* If packet is not checksummed and device does not
2761 * support checksumming for this protocol, complete
2762 * checksumming here.
2763 */
2764 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2765 if (skb->encapsulation)
2766 skb_set_inner_transport_header(skb,
2767 skb_checksum_start_offset(skb));
2768 else
2769 skb_set_transport_header(skb,
2770 skb_checksum_start_offset(skb));
2771 if (!(features & NETIF_F_ALL_CSUM) &&
2772 skb_checksum_help(skb))
2773 goto out_kfree_skb;
2774 }
2775 }
2776
2777 return skb;
2778
2779 out_kfree_skb:
2780 kfree_skb(skb);
2781 out_null:
2782 return NULL;
2783 }
2784
2785 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2786 {
2787 struct sk_buff *next, *head = NULL, *tail;
2788
2789 for (; skb != NULL; skb = next) {
2790 next = skb->next;
2791 skb->next = NULL;
2792
2793 /* in case skb wont be segmented, point to itself */
2794 skb->prev = skb;
2795
2796 skb = validate_xmit_skb(skb, dev);
2797 if (!skb)
2798 continue;
2799
2800 if (!head)
2801 head = skb;
2802 else
2803 tail->next = skb;
2804 /* If skb was segmented, skb->prev points to
2805 * the last segment. If not, it still contains skb.
2806 */
2807 tail = skb->prev;
2808 }
2809 return head;
2810 }
2811
2812 static void qdisc_pkt_len_init(struct sk_buff *skb)
2813 {
2814 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2815
2816 qdisc_skb_cb(skb)->pkt_len = skb->len;
2817
2818 /* To get more precise estimation of bytes sent on wire,
2819 * we add to pkt_len the headers size of all segments
2820 */
2821 if (shinfo->gso_size) {
2822 unsigned int hdr_len;
2823 u16 gso_segs = shinfo->gso_segs;
2824
2825 /* mac layer + network layer */
2826 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2827
2828 /* + transport layer */
2829 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2830 hdr_len += tcp_hdrlen(skb);
2831 else
2832 hdr_len += sizeof(struct udphdr);
2833
2834 if (shinfo->gso_type & SKB_GSO_DODGY)
2835 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2836 shinfo->gso_size);
2837
2838 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2839 }
2840 }
2841
2842 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2843 struct net_device *dev,
2844 struct netdev_queue *txq)
2845 {
2846 spinlock_t *root_lock = qdisc_lock(q);
2847 bool contended;
2848 int rc;
2849
2850 qdisc_pkt_len_init(skb);
2851 qdisc_calculate_pkt_len(skb, q);
2852 /*
2853 * Heuristic to force contended enqueues to serialize on a
2854 * separate lock before trying to get qdisc main lock.
2855 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2856 * often and dequeue packets faster.
2857 */
2858 contended = qdisc_is_running(q);
2859 if (unlikely(contended))
2860 spin_lock(&q->busylock);
2861
2862 spin_lock(root_lock);
2863 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2864 kfree_skb(skb);
2865 rc = NET_XMIT_DROP;
2866 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2867 qdisc_run_begin(q)) {
2868 /*
2869 * This is a work-conserving queue; there are no old skbs
2870 * waiting to be sent out; and the qdisc is not running -
2871 * xmit the skb directly.
2872 */
2873
2874 qdisc_bstats_update(q, skb);
2875
2876 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2877 if (unlikely(contended)) {
2878 spin_unlock(&q->busylock);
2879 contended = false;
2880 }
2881 __qdisc_run(q);
2882 } else
2883 qdisc_run_end(q);
2884
2885 rc = NET_XMIT_SUCCESS;
2886 } else {
2887 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2888 if (qdisc_run_begin(q)) {
2889 if (unlikely(contended)) {
2890 spin_unlock(&q->busylock);
2891 contended = false;
2892 }
2893 __qdisc_run(q);
2894 }
2895 }
2896 spin_unlock(root_lock);
2897 if (unlikely(contended))
2898 spin_unlock(&q->busylock);
2899 return rc;
2900 }
2901
2902 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2903 static void skb_update_prio(struct sk_buff *skb)
2904 {
2905 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2906
2907 if (!skb->priority && skb->sk && map) {
2908 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2909
2910 if (prioidx < map->priomap_len)
2911 skb->priority = map->priomap[prioidx];
2912 }
2913 }
2914 #else
2915 #define skb_update_prio(skb)
2916 #endif
2917
2918 DEFINE_PER_CPU(int, xmit_recursion);
2919 EXPORT_SYMBOL(xmit_recursion);
2920
2921 #define RECURSION_LIMIT 10
2922
2923 /**
2924 * dev_loopback_xmit - loop back @skb
2925 * @skb: buffer to transmit
2926 */
2927 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2928 {
2929 skb_reset_mac_header(skb);
2930 __skb_pull(skb, skb_network_offset(skb));
2931 skb->pkt_type = PACKET_LOOPBACK;
2932 skb->ip_summed = CHECKSUM_UNNECESSARY;
2933 WARN_ON(!skb_dst(skb));
2934 skb_dst_force(skb);
2935 netif_rx_ni(skb);
2936 return 0;
2937 }
2938 EXPORT_SYMBOL(dev_loopback_xmit);
2939
2940 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2941 {
2942 #ifdef CONFIG_XPS
2943 struct xps_dev_maps *dev_maps;
2944 struct xps_map *map;
2945 int queue_index = -1;
2946
2947 rcu_read_lock();
2948 dev_maps = rcu_dereference(dev->xps_maps);
2949 if (dev_maps) {
2950 map = rcu_dereference(
2951 dev_maps->cpu_map[skb->sender_cpu - 1]);
2952 if (map) {
2953 if (map->len == 1)
2954 queue_index = map->queues[0];
2955 else
2956 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2957 map->len)];
2958 if (unlikely(queue_index >= dev->real_num_tx_queues))
2959 queue_index = -1;
2960 }
2961 }
2962 rcu_read_unlock();
2963
2964 return queue_index;
2965 #else
2966 return -1;
2967 #endif
2968 }
2969
2970 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2971 {
2972 struct sock *sk = skb->sk;
2973 int queue_index = sk_tx_queue_get(sk);
2974
2975 if (queue_index < 0 || skb->ooo_okay ||
2976 queue_index >= dev->real_num_tx_queues) {
2977 int new_index = get_xps_queue(dev, skb);
2978 if (new_index < 0)
2979 new_index = skb_tx_hash(dev, skb);
2980
2981 if (queue_index != new_index && sk &&
2982 rcu_access_pointer(sk->sk_dst_cache))
2983 sk_tx_queue_set(sk, new_index);
2984
2985 queue_index = new_index;
2986 }
2987
2988 return queue_index;
2989 }
2990
2991 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2992 struct sk_buff *skb,
2993 void *accel_priv)
2994 {
2995 int queue_index = 0;
2996
2997 #ifdef CONFIG_XPS
2998 if (skb->sender_cpu == 0)
2999 skb->sender_cpu = raw_smp_processor_id() + 1;
3000 #endif
3001
3002 if (dev->real_num_tx_queues != 1) {
3003 const struct net_device_ops *ops = dev->netdev_ops;
3004 if (ops->ndo_select_queue)
3005 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3006 __netdev_pick_tx);
3007 else
3008 queue_index = __netdev_pick_tx(dev, skb);
3009
3010 if (!accel_priv)
3011 queue_index = netdev_cap_txqueue(dev, queue_index);
3012 }
3013
3014 skb_set_queue_mapping(skb, queue_index);
3015 return netdev_get_tx_queue(dev, queue_index);
3016 }
3017
3018 /**
3019 * __dev_queue_xmit - transmit a buffer
3020 * @skb: buffer to transmit
3021 * @accel_priv: private data used for L2 forwarding offload
3022 *
3023 * Queue a buffer for transmission to a network device. The caller must
3024 * have set the device and priority and built the buffer before calling
3025 * this function. The function can be called from an interrupt.
3026 *
3027 * A negative errno code is returned on a failure. A success does not
3028 * guarantee the frame will be transmitted as it may be dropped due
3029 * to congestion or traffic shaping.
3030 *
3031 * -----------------------------------------------------------------------------------
3032 * I notice this method can also return errors from the queue disciplines,
3033 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3034 * be positive.
3035 *
3036 * Regardless of the return value, the skb is consumed, so it is currently
3037 * difficult to retry a send to this method. (You can bump the ref count
3038 * before sending to hold a reference for retry if you are careful.)
3039 *
3040 * When calling this method, interrupts MUST be enabled. This is because
3041 * the BH enable code must have IRQs enabled so that it will not deadlock.
3042 * --BLG
3043 */
3044 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3045 {
3046 struct net_device *dev = skb->dev;
3047 struct netdev_queue *txq;
3048 struct Qdisc *q;
3049 int rc = -ENOMEM;
3050
3051 skb_reset_mac_header(skb);
3052
3053 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3054 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3055
3056 /* Disable soft irqs for various locks below. Also
3057 * stops preemption for RCU.
3058 */
3059 rcu_read_lock_bh();
3060
3061 skb_update_prio(skb);
3062
3063 /* If device/qdisc don't need skb->dst, release it right now while
3064 * its hot in this cpu cache.
3065 */
3066 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3067 skb_dst_drop(skb);
3068 else
3069 skb_dst_force(skb);
3070
3071 txq = netdev_pick_tx(dev, skb, accel_priv);
3072 q = rcu_dereference_bh(txq->qdisc);
3073
3074 #ifdef CONFIG_NET_CLS_ACT
3075 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3076 #endif
3077 trace_net_dev_queue(skb);
3078 if (q->enqueue) {
3079 rc = __dev_xmit_skb(skb, q, dev, txq);
3080 goto out;
3081 }
3082
3083 /* The device has no queue. Common case for software devices:
3084 loopback, all the sorts of tunnels...
3085
3086 Really, it is unlikely that netif_tx_lock protection is necessary
3087 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3088 counters.)
3089 However, it is possible, that they rely on protection
3090 made by us here.
3091
3092 Check this and shot the lock. It is not prone from deadlocks.
3093 Either shot noqueue qdisc, it is even simpler 8)
3094 */
3095 if (dev->flags & IFF_UP) {
3096 int cpu = smp_processor_id(); /* ok because BHs are off */
3097
3098 if (txq->xmit_lock_owner != cpu) {
3099
3100 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3101 goto recursion_alert;
3102
3103 skb = validate_xmit_skb(skb, dev);
3104 if (!skb)
3105 goto drop;
3106
3107 HARD_TX_LOCK(dev, txq, cpu);
3108
3109 if (!netif_xmit_stopped(txq)) {
3110 __this_cpu_inc(xmit_recursion);
3111 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3112 __this_cpu_dec(xmit_recursion);
3113 if (dev_xmit_complete(rc)) {
3114 HARD_TX_UNLOCK(dev, txq);
3115 goto out;
3116 }
3117 }
3118 HARD_TX_UNLOCK(dev, txq);
3119 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3120 dev->name);
3121 } else {
3122 /* Recursion is detected! It is possible,
3123 * unfortunately
3124 */
3125 recursion_alert:
3126 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3127 dev->name);
3128 }
3129 }
3130
3131 rc = -ENETDOWN;
3132 drop:
3133 rcu_read_unlock_bh();
3134
3135 atomic_long_inc(&dev->tx_dropped);
3136 kfree_skb_list(skb);
3137 return rc;
3138 out:
3139 rcu_read_unlock_bh();
3140 return rc;
3141 }
3142
3143 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3144 {
3145 return __dev_queue_xmit(skb, NULL);
3146 }
3147 EXPORT_SYMBOL(dev_queue_xmit_sk);
3148
3149 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3150 {
3151 return __dev_queue_xmit(skb, accel_priv);
3152 }
3153 EXPORT_SYMBOL(dev_queue_xmit_accel);
3154
3155
3156 /*=======================================================================
3157 Receiver routines
3158 =======================================================================*/
3159
3160 int netdev_max_backlog __read_mostly = 1000;
3161 EXPORT_SYMBOL(netdev_max_backlog);
3162
3163 int netdev_tstamp_prequeue __read_mostly = 1;
3164 int netdev_budget __read_mostly = 300;
3165 int weight_p __read_mostly = 64; /* old backlog weight */
3166
3167 /* Called with irq disabled */
3168 static inline void ____napi_schedule(struct softnet_data *sd,
3169 struct napi_struct *napi)
3170 {
3171 list_add_tail(&napi->poll_list, &sd->poll_list);
3172 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3173 }
3174
3175 #ifdef CONFIG_RPS
3176
3177 /* One global table that all flow-based protocols share. */
3178 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3179 EXPORT_SYMBOL(rps_sock_flow_table);
3180 u32 rps_cpu_mask __read_mostly;
3181 EXPORT_SYMBOL(rps_cpu_mask);
3182
3183 struct static_key rps_needed __read_mostly;
3184
3185 static struct rps_dev_flow *
3186 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3187 struct rps_dev_flow *rflow, u16 next_cpu)
3188 {
3189 if (next_cpu < nr_cpu_ids) {
3190 #ifdef CONFIG_RFS_ACCEL
3191 struct netdev_rx_queue *rxqueue;
3192 struct rps_dev_flow_table *flow_table;
3193 struct rps_dev_flow *old_rflow;
3194 u32 flow_id;
3195 u16 rxq_index;
3196 int rc;
3197
3198 /* Should we steer this flow to a different hardware queue? */
3199 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3200 !(dev->features & NETIF_F_NTUPLE))
3201 goto out;
3202 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3203 if (rxq_index == skb_get_rx_queue(skb))
3204 goto out;
3205
3206 rxqueue = dev->_rx + rxq_index;
3207 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3208 if (!flow_table)
3209 goto out;
3210 flow_id = skb_get_hash(skb) & flow_table->mask;
3211 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3212 rxq_index, flow_id);
3213 if (rc < 0)
3214 goto out;
3215 old_rflow = rflow;
3216 rflow = &flow_table->flows[flow_id];
3217 rflow->filter = rc;
3218 if (old_rflow->filter == rflow->filter)
3219 old_rflow->filter = RPS_NO_FILTER;
3220 out:
3221 #endif
3222 rflow->last_qtail =
3223 per_cpu(softnet_data, next_cpu).input_queue_head;
3224 }
3225
3226 rflow->cpu = next_cpu;
3227 return rflow;
3228 }
3229
3230 /*
3231 * get_rps_cpu is called from netif_receive_skb and returns the target
3232 * CPU from the RPS map of the receiving queue for a given skb.
3233 * rcu_read_lock must be held on entry.
3234 */
3235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3236 struct rps_dev_flow **rflowp)
3237 {
3238 const struct rps_sock_flow_table *sock_flow_table;
3239 struct netdev_rx_queue *rxqueue = dev->_rx;
3240 struct rps_dev_flow_table *flow_table;
3241 struct rps_map *map;
3242 int cpu = -1;
3243 u32 tcpu;
3244 u32 hash;
3245
3246 if (skb_rx_queue_recorded(skb)) {
3247 u16 index = skb_get_rx_queue(skb);
3248
3249 if (unlikely(index >= dev->real_num_rx_queues)) {
3250 WARN_ONCE(dev->real_num_rx_queues > 1,
3251 "%s received packet on queue %u, but number "
3252 "of RX queues is %u\n",
3253 dev->name, index, dev->real_num_rx_queues);
3254 goto done;
3255 }
3256 rxqueue += index;
3257 }
3258
3259 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3260
3261 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3262 map = rcu_dereference(rxqueue->rps_map);
3263 if (!flow_table && !map)
3264 goto done;
3265
3266 skb_reset_network_header(skb);
3267 hash = skb_get_hash(skb);
3268 if (!hash)
3269 goto done;
3270
3271 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3272 if (flow_table && sock_flow_table) {
3273 struct rps_dev_flow *rflow;
3274 u32 next_cpu;
3275 u32 ident;
3276
3277 /* First check into global flow table if there is a match */
3278 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3279 if ((ident ^ hash) & ~rps_cpu_mask)
3280 goto try_rps;
3281
3282 next_cpu = ident & rps_cpu_mask;
3283
3284 /* OK, now we know there is a match,
3285 * we can look at the local (per receive queue) flow table
3286 */
3287 rflow = &flow_table->flows[hash & flow_table->mask];
3288 tcpu = rflow->cpu;
3289
3290 /*
3291 * If the desired CPU (where last recvmsg was done) is
3292 * different from current CPU (one in the rx-queue flow
3293 * table entry), switch if one of the following holds:
3294 * - Current CPU is unset (>= nr_cpu_ids).
3295 * - Current CPU is offline.
3296 * - The current CPU's queue tail has advanced beyond the
3297 * last packet that was enqueued using this table entry.
3298 * This guarantees that all previous packets for the flow
3299 * have been dequeued, thus preserving in order delivery.
3300 */
3301 if (unlikely(tcpu != next_cpu) &&
3302 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3303 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3304 rflow->last_qtail)) >= 0)) {
3305 tcpu = next_cpu;
3306 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3307 }
3308
3309 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3310 *rflowp = rflow;
3311 cpu = tcpu;
3312 goto done;
3313 }
3314 }
3315
3316 try_rps:
3317
3318 if (map) {
3319 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3320 if (cpu_online(tcpu)) {
3321 cpu = tcpu;
3322 goto done;
3323 }
3324 }
3325
3326 done:
3327 return cpu;
3328 }
3329
3330 #ifdef CONFIG_RFS_ACCEL
3331
3332 /**
3333 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3334 * @dev: Device on which the filter was set
3335 * @rxq_index: RX queue index
3336 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3337 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3338 *
3339 * Drivers that implement ndo_rx_flow_steer() should periodically call
3340 * this function for each installed filter and remove the filters for
3341 * which it returns %true.
3342 */
3343 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3344 u32 flow_id, u16 filter_id)
3345 {
3346 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3347 struct rps_dev_flow_table *flow_table;
3348 struct rps_dev_flow *rflow;
3349 bool expire = true;
3350 unsigned int cpu;
3351
3352 rcu_read_lock();
3353 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3354 if (flow_table && flow_id <= flow_table->mask) {
3355 rflow = &flow_table->flows[flow_id];
3356 cpu = ACCESS_ONCE(rflow->cpu);
3357 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3358 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3359 rflow->last_qtail) <
3360 (int)(10 * flow_table->mask)))
3361 expire = false;
3362 }
3363 rcu_read_unlock();
3364 return expire;
3365 }
3366 EXPORT_SYMBOL(rps_may_expire_flow);
3367
3368 #endif /* CONFIG_RFS_ACCEL */
3369
3370 /* Called from hardirq (IPI) context */
3371 static void rps_trigger_softirq(void *data)
3372 {
3373 struct softnet_data *sd = data;
3374
3375 ____napi_schedule(sd, &sd->backlog);
3376 sd->received_rps++;
3377 }
3378
3379 #endif /* CONFIG_RPS */
3380
3381 /*
3382 * Check if this softnet_data structure is another cpu one
3383 * If yes, queue it to our IPI list and return 1
3384 * If no, return 0
3385 */
3386 static int rps_ipi_queued(struct softnet_data *sd)
3387 {
3388 #ifdef CONFIG_RPS
3389 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3390
3391 if (sd != mysd) {
3392 sd->rps_ipi_next = mysd->rps_ipi_list;
3393 mysd->rps_ipi_list = sd;
3394
3395 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3396 return 1;
3397 }
3398 #endif /* CONFIG_RPS */
3399 return 0;
3400 }
3401
3402 #ifdef CONFIG_NET_FLOW_LIMIT
3403 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3404 #endif
3405
3406 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3407 {
3408 #ifdef CONFIG_NET_FLOW_LIMIT
3409 struct sd_flow_limit *fl;
3410 struct softnet_data *sd;
3411 unsigned int old_flow, new_flow;
3412
3413 if (qlen < (netdev_max_backlog >> 1))
3414 return false;
3415
3416 sd = this_cpu_ptr(&softnet_data);
3417
3418 rcu_read_lock();
3419 fl = rcu_dereference(sd->flow_limit);
3420 if (fl) {
3421 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3422 old_flow = fl->history[fl->history_head];
3423 fl->history[fl->history_head] = new_flow;
3424
3425 fl->history_head++;
3426 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3427
3428 if (likely(fl->buckets[old_flow]))
3429 fl->buckets[old_flow]--;
3430
3431 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3432 fl->count++;
3433 rcu_read_unlock();
3434 return true;
3435 }
3436 }
3437 rcu_read_unlock();
3438 #endif
3439 return false;
3440 }
3441
3442 /*
3443 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3444 * queue (may be a remote CPU queue).
3445 */
3446 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3447 unsigned int *qtail)
3448 {
3449 struct softnet_data *sd;
3450 unsigned long flags;
3451 unsigned int qlen;
3452
3453 sd = &per_cpu(softnet_data, cpu);
3454
3455 local_irq_save(flags);
3456
3457 rps_lock(sd);
3458 qlen = skb_queue_len(&sd->input_pkt_queue);
3459 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3460 if (qlen) {
3461 enqueue:
3462 __skb_queue_tail(&sd->input_pkt_queue, skb);
3463 input_queue_tail_incr_save(sd, qtail);
3464 rps_unlock(sd);
3465 local_irq_restore(flags);
3466 return NET_RX_SUCCESS;
3467 }
3468
3469 /* Schedule NAPI for backlog device
3470 * We can use non atomic operation since we own the queue lock
3471 */
3472 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3473 if (!rps_ipi_queued(sd))
3474 ____napi_schedule(sd, &sd->backlog);
3475 }
3476 goto enqueue;
3477 }
3478
3479 sd->dropped++;
3480 rps_unlock(sd);
3481
3482 local_irq_restore(flags);
3483
3484 atomic_long_inc(&skb->dev->rx_dropped);
3485 kfree_skb(skb);
3486 return NET_RX_DROP;
3487 }
3488
3489 static int netif_rx_internal(struct sk_buff *skb)
3490 {
3491 int ret;
3492
3493 net_timestamp_check(netdev_tstamp_prequeue, skb);
3494
3495 trace_netif_rx(skb);
3496 #ifdef CONFIG_RPS
3497 if (static_key_false(&rps_needed)) {
3498 struct rps_dev_flow voidflow, *rflow = &voidflow;
3499 int cpu;
3500
3501 preempt_disable();
3502 rcu_read_lock();
3503
3504 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3505 if (cpu < 0)
3506 cpu = smp_processor_id();
3507
3508 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3509
3510 rcu_read_unlock();
3511 preempt_enable();
3512 } else
3513 #endif
3514 {
3515 unsigned int qtail;
3516 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3517 put_cpu();
3518 }
3519 return ret;
3520 }
3521
3522 /**
3523 * netif_rx - post buffer to the network code
3524 * @skb: buffer to post
3525 *
3526 * This function receives a packet from a device driver and queues it for
3527 * the upper (protocol) levels to process. It always succeeds. The buffer
3528 * may be dropped during processing for congestion control or by the
3529 * protocol layers.
3530 *
3531 * return values:
3532 * NET_RX_SUCCESS (no congestion)
3533 * NET_RX_DROP (packet was dropped)
3534 *
3535 */
3536
3537 int netif_rx(struct sk_buff *skb)
3538 {
3539 trace_netif_rx_entry(skb);
3540
3541 return netif_rx_internal(skb);
3542 }
3543 EXPORT_SYMBOL(netif_rx);
3544
3545 int netif_rx_ni(struct sk_buff *skb)
3546 {
3547 int err;
3548
3549 trace_netif_rx_ni_entry(skb);
3550
3551 preempt_disable();
3552 err = netif_rx_internal(skb);
3553 if (local_softirq_pending())
3554 do_softirq();
3555 preempt_enable();
3556
3557 return err;
3558 }
3559 EXPORT_SYMBOL(netif_rx_ni);
3560
3561 static void net_tx_action(struct softirq_action *h)
3562 {
3563 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3564
3565 if (sd->completion_queue) {
3566 struct sk_buff *clist;
3567
3568 local_irq_disable();
3569 clist = sd->completion_queue;
3570 sd->completion_queue = NULL;
3571 local_irq_enable();
3572
3573 while (clist) {
3574 struct sk_buff *skb = clist;
3575 clist = clist->next;
3576
3577 WARN_ON(atomic_read(&skb->users));
3578 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3579 trace_consume_skb(skb);
3580 else
3581 trace_kfree_skb(skb, net_tx_action);
3582 __kfree_skb(skb);
3583 }
3584 }
3585
3586 if (sd->output_queue) {
3587 struct Qdisc *head;
3588
3589 local_irq_disable();
3590 head = sd->output_queue;
3591 sd->output_queue = NULL;
3592 sd->output_queue_tailp = &sd->output_queue;
3593 local_irq_enable();
3594
3595 while (head) {
3596 struct Qdisc *q = head;
3597 spinlock_t *root_lock;
3598
3599 head = head->next_sched;
3600
3601 root_lock = qdisc_lock(q);
3602 if (spin_trylock(root_lock)) {
3603 smp_mb__before_atomic();
3604 clear_bit(__QDISC_STATE_SCHED,
3605 &q->state);
3606 qdisc_run(q);
3607 spin_unlock(root_lock);
3608 } else {
3609 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3610 &q->state)) {
3611 __netif_reschedule(q);
3612 } else {
3613 smp_mb__before_atomic();
3614 clear_bit(__QDISC_STATE_SCHED,
3615 &q->state);
3616 }
3617 }
3618 }
3619 }
3620 }
3621
3622 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3623 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3624 /* This hook is defined here for ATM LANE */
3625 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3626 unsigned char *addr) __read_mostly;
3627 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3628 #endif
3629
3630 #ifdef CONFIG_NET_CLS_ACT
3631 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3632 struct packet_type **pt_prev,
3633 int *ret, struct net_device *orig_dev)
3634 {
3635 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3636 struct tcf_result cl_res;
3637
3638 /* If there's at least one ingress present somewhere (so
3639 * we get here via enabled static key), remaining devices
3640 * that are not configured with an ingress qdisc will bail
3641 * out here.
3642 */
3643 if (!cl)
3644 return skb;
3645 if (*pt_prev) {
3646 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3647 *pt_prev = NULL;
3648 }
3649
3650 qdisc_bstats_update_cpu(cl->q, skb);
3651 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3652
3653 switch (tc_classify(skb, cl, &cl_res)) {
3654 case TC_ACT_OK:
3655 case TC_ACT_RECLASSIFY:
3656 skb->tc_index = TC_H_MIN(cl_res.classid);
3657 break;
3658 case TC_ACT_SHOT:
3659 qdisc_qstats_drop_cpu(cl->q);
3660 case TC_ACT_STOLEN:
3661 case TC_ACT_QUEUED:
3662 kfree_skb(skb);
3663 return NULL;
3664 default:
3665 break;
3666 }
3667
3668 return skb;
3669 }
3670 #else
3671 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3672 struct packet_type **pt_prev,
3673 int *ret, struct net_device *orig_dev)
3674 {
3675 return skb;
3676 }
3677 #endif
3678
3679 /**
3680 * netdev_rx_handler_register - register receive handler
3681 * @dev: device to register a handler for
3682 * @rx_handler: receive handler to register
3683 * @rx_handler_data: data pointer that is used by rx handler
3684 *
3685 * Register a receive handler for a device. This handler will then be
3686 * called from __netif_receive_skb. A negative errno code is returned
3687 * on a failure.
3688 *
3689 * The caller must hold the rtnl_mutex.
3690 *
3691 * For a general description of rx_handler, see enum rx_handler_result.
3692 */
3693 int netdev_rx_handler_register(struct net_device *dev,
3694 rx_handler_func_t *rx_handler,
3695 void *rx_handler_data)
3696 {
3697 ASSERT_RTNL();
3698
3699 if (dev->rx_handler)
3700 return -EBUSY;
3701
3702 /* Note: rx_handler_data must be set before rx_handler */
3703 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3704 rcu_assign_pointer(dev->rx_handler, rx_handler);
3705
3706 return 0;
3707 }
3708 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3709
3710 /**
3711 * netdev_rx_handler_unregister - unregister receive handler
3712 * @dev: device to unregister a handler from
3713 *
3714 * Unregister a receive handler from a device.
3715 *
3716 * The caller must hold the rtnl_mutex.
3717 */
3718 void netdev_rx_handler_unregister(struct net_device *dev)
3719 {
3720
3721 ASSERT_RTNL();
3722 RCU_INIT_POINTER(dev->rx_handler, NULL);
3723 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3724 * section has a guarantee to see a non NULL rx_handler_data
3725 * as well.
3726 */
3727 synchronize_net();
3728 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3729 }
3730 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3731
3732 /*
3733 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3734 * the special handling of PFMEMALLOC skbs.
3735 */
3736 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3737 {
3738 switch (skb->protocol) {
3739 case htons(ETH_P_ARP):
3740 case htons(ETH_P_IP):
3741 case htons(ETH_P_IPV6):
3742 case htons(ETH_P_8021Q):
3743 case htons(ETH_P_8021AD):
3744 return true;
3745 default:
3746 return false;
3747 }
3748 }
3749
3750 #ifdef CONFIG_NETFILTER_INGRESS
3751 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3752 int *ret, struct net_device *orig_dev)
3753 {
3754 if (nf_hook_ingress_active(skb)) {
3755 if (*pt_prev) {
3756 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3757 *pt_prev = NULL;
3758 }
3759
3760 return nf_hook_ingress(skb);
3761 }
3762 return 0;
3763 }
3764 #else
3765 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3766 int *ret, struct net_device *orig_dev)
3767 {
3768 return 0;
3769 }
3770 #endif
3771
3772 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3773 {
3774 struct packet_type *ptype, *pt_prev;
3775 rx_handler_func_t *rx_handler;
3776 struct net_device *orig_dev;
3777 bool deliver_exact = false;
3778 int ret = NET_RX_DROP;
3779 __be16 type;
3780
3781 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3782
3783 trace_netif_receive_skb(skb);
3784
3785 orig_dev = skb->dev;
3786
3787 skb_reset_network_header(skb);
3788 if (!skb_transport_header_was_set(skb))
3789 skb_reset_transport_header(skb);
3790 skb_reset_mac_len(skb);
3791
3792 pt_prev = NULL;
3793
3794 rcu_read_lock();
3795
3796 another_round:
3797 skb->skb_iif = skb->dev->ifindex;
3798
3799 __this_cpu_inc(softnet_data.processed);
3800
3801 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3802 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3803 skb = skb_vlan_untag(skb);
3804 if (unlikely(!skb))
3805 goto unlock;
3806 }
3807
3808 #ifdef CONFIG_NET_CLS_ACT
3809 if (skb->tc_verd & TC_NCLS) {
3810 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3811 goto ncls;
3812 }
3813 #endif
3814
3815 if (pfmemalloc)
3816 goto skip_taps;
3817
3818 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3819 if (pt_prev)
3820 ret = deliver_skb(skb, pt_prev, orig_dev);
3821 pt_prev = ptype;
3822 }
3823
3824 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3825 if (pt_prev)
3826 ret = deliver_skb(skb, pt_prev, orig_dev);
3827 pt_prev = ptype;
3828 }
3829
3830 skip_taps:
3831 #ifdef CONFIG_NET_INGRESS
3832 if (static_key_false(&ingress_needed)) {
3833 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3834 if (!skb)
3835 goto unlock;
3836
3837 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3838 goto unlock;
3839 }
3840 #endif
3841 #ifdef CONFIG_NET_CLS_ACT
3842 skb->tc_verd = 0;
3843 ncls:
3844 #endif
3845 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3846 goto drop;
3847
3848 if (skb_vlan_tag_present(skb)) {
3849 if (pt_prev) {
3850 ret = deliver_skb(skb, pt_prev, orig_dev);
3851 pt_prev = NULL;
3852 }
3853 if (vlan_do_receive(&skb))
3854 goto another_round;
3855 else if (unlikely(!skb))
3856 goto unlock;
3857 }
3858
3859 rx_handler = rcu_dereference(skb->dev->rx_handler);
3860 if (rx_handler) {
3861 if (pt_prev) {
3862 ret = deliver_skb(skb, pt_prev, orig_dev);
3863 pt_prev = NULL;
3864 }
3865 switch (rx_handler(&skb)) {
3866 case RX_HANDLER_CONSUMED:
3867 ret = NET_RX_SUCCESS;
3868 goto unlock;
3869 case RX_HANDLER_ANOTHER:
3870 goto another_round;
3871 case RX_HANDLER_EXACT:
3872 deliver_exact = true;
3873 case RX_HANDLER_PASS:
3874 break;
3875 default:
3876 BUG();
3877 }
3878 }
3879
3880 if (unlikely(skb_vlan_tag_present(skb))) {
3881 if (skb_vlan_tag_get_id(skb))
3882 skb->pkt_type = PACKET_OTHERHOST;
3883 /* Note: we might in the future use prio bits
3884 * and set skb->priority like in vlan_do_receive()
3885 * For the time being, just ignore Priority Code Point
3886 */
3887 skb->vlan_tci = 0;
3888 }
3889
3890 type = skb->protocol;
3891
3892 /* deliver only exact match when indicated */
3893 if (likely(!deliver_exact)) {
3894 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3895 &ptype_base[ntohs(type) &
3896 PTYPE_HASH_MASK]);
3897 }
3898
3899 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3900 &orig_dev->ptype_specific);
3901
3902 if (unlikely(skb->dev != orig_dev)) {
3903 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3904 &skb->dev->ptype_specific);
3905 }
3906
3907 if (pt_prev) {
3908 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3909 goto drop;
3910 else
3911 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3912 } else {
3913 drop:
3914 atomic_long_inc(&skb->dev->rx_dropped);
3915 kfree_skb(skb);
3916 /* Jamal, now you will not able to escape explaining
3917 * me how you were going to use this. :-)
3918 */
3919 ret = NET_RX_DROP;
3920 }
3921
3922 unlock:
3923 rcu_read_unlock();
3924 return ret;
3925 }
3926
3927 static int __netif_receive_skb(struct sk_buff *skb)
3928 {
3929 int ret;
3930
3931 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3932 unsigned long pflags = current->flags;
3933
3934 /*
3935 * PFMEMALLOC skbs are special, they should
3936 * - be delivered to SOCK_MEMALLOC sockets only
3937 * - stay away from userspace
3938 * - have bounded memory usage
3939 *
3940 * Use PF_MEMALLOC as this saves us from propagating the allocation
3941 * context down to all allocation sites.
3942 */
3943 current->flags |= PF_MEMALLOC;
3944 ret = __netif_receive_skb_core(skb, true);
3945 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3946 } else
3947 ret = __netif_receive_skb_core(skb, false);
3948
3949 return ret;
3950 }
3951
3952 static int netif_receive_skb_internal(struct sk_buff *skb)
3953 {
3954 net_timestamp_check(netdev_tstamp_prequeue, skb);
3955
3956 if (skb_defer_rx_timestamp(skb))
3957 return NET_RX_SUCCESS;
3958
3959 #ifdef CONFIG_RPS
3960 if (static_key_false(&rps_needed)) {
3961 struct rps_dev_flow voidflow, *rflow = &voidflow;
3962 int cpu, ret;
3963
3964 rcu_read_lock();
3965
3966 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3967
3968 if (cpu >= 0) {
3969 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3970 rcu_read_unlock();
3971 return ret;
3972 }
3973 rcu_read_unlock();
3974 }
3975 #endif
3976 return __netif_receive_skb(skb);
3977 }
3978
3979 /**
3980 * netif_receive_skb - process receive buffer from network
3981 * @skb: buffer to process
3982 *
3983 * netif_receive_skb() is the main receive data processing function.
3984 * It always succeeds. The buffer may be dropped during processing
3985 * for congestion control or by the protocol layers.
3986 *
3987 * This function may only be called from softirq context and interrupts
3988 * should be enabled.
3989 *
3990 * Return values (usually ignored):
3991 * NET_RX_SUCCESS: no congestion
3992 * NET_RX_DROP: packet was dropped
3993 */
3994 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3995 {
3996 trace_netif_receive_skb_entry(skb);
3997
3998 return netif_receive_skb_internal(skb);
3999 }
4000 EXPORT_SYMBOL(netif_receive_skb_sk);
4001
4002 /* Network device is going away, flush any packets still pending
4003 * Called with irqs disabled.
4004 */
4005 static void flush_backlog(void *arg)
4006 {
4007 struct net_device *dev = arg;
4008 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4009 struct sk_buff *skb, *tmp;
4010
4011 rps_lock(sd);
4012 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4013 if (skb->dev == dev) {
4014 __skb_unlink(skb, &sd->input_pkt_queue);
4015 kfree_skb(skb);
4016 input_queue_head_incr(sd);
4017 }
4018 }
4019 rps_unlock(sd);
4020
4021 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4022 if (skb->dev == dev) {
4023 __skb_unlink(skb, &sd->process_queue);
4024 kfree_skb(skb);
4025 input_queue_head_incr(sd);
4026 }
4027 }
4028 }
4029
4030 static int napi_gro_complete(struct sk_buff *skb)
4031 {
4032 struct packet_offload *ptype;
4033 __be16 type = skb->protocol;
4034 struct list_head *head = &offload_base;
4035 int err = -ENOENT;
4036
4037 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4038
4039 if (NAPI_GRO_CB(skb)->count == 1) {
4040 skb_shinfo(skb)->gso_size = 0;
4041 goto out;
4042 }
4043
4044 rcu_read_lock();
4045 list_for_each_entry_rcu(ptype, head, list) {
4046 if (ptype->type != type || !ptype->callbacks.gro_complete)
4047 continue;
4048
4049 err = ptype->callbacks.gro_complete(skb, 0);
4050 break;
4051 }
4052 rcu_read_unlock();
4053
4054 if (err) {
4055 WARN_ON(&ptype->list == head);
4056 kfree_skb(skb);
4057 return NET_RX_SUCCESS;
4058 }
4059
4060 out:
4061 return netif_receive_skb_internal(skb);
4062 }
4063
4064 /* napi->gro_list contains packets ordered by age.
4065 * youngest packets at the head of it.
4066 * Complete skbs in reverse order to reduce latencies.
4067 */
4068 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4069 {
4070 struct sk_buff *skb, *prev = NULL;
4071
4072 /* scan list and build reverse chain */
4073 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4074 skb->prev = prev;
4075 prev = skb;
4076 }
4077
4078 for (skb = prev; skb; skb = prev) {
4079 skb->next = NULL;
4080
4081 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4082 return;
4083
4084 prev = skb->prev;
4085 napi_gro_complete(skb);
4086 napi->gro_count--;
4087 }
4088
4089 napi->gro_list = NULL;
4090 }
4091 EXPORT_SYMBOL(napi_gro_flush);
4092
4093 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4094 {
4095 struct sk_buff *p;
4096 unsigned int maclen = skb->dev->hard_header_len;
4097 u32 hash = skb_get_hash_raw(skb);
4098
4099 for (p = napi->gro_list; p; p = p->next) {
4100 unsigned long diffs;
4101
4102 NAPI_GRO_CB(p)->flush = 0;
4103
4104 if (hash != skb_get_hash_raw(p)) {
4105 NAPI_GRO_CB(p)->same_flow = 0;
4106 continue;
4107 }
4108
4109 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4110 diffs |= p->vlan_tci ^ skb->vlan_tci;
4111 if (maclen == ETH_HLEN)
4112 diffs |= compare_ether_header(skb_mac_header(p),
4113 skb_mac_header(skb));
4114 else if (!diffs)
4115 diffs = memcmp(skb_mac_header(p),
4116 skb_mac_header(skb),
4117 maclen);
4118 NAPI_GRO_CB(p)->same_flow = !diffs;
4119 }
4120 }
4121
4122 static void skb_gro_reset_offset(struct sk_buff *skb)
4123 {
4124 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4125 const skb_frag_t *frag0 = &pinfo->frags[0];
4126
4127 NAPI_GRO_CB(skb)->data_offset = 0;
4128 NAPI_GRO_CB(skb)->frag0 = NULL;
4129 NAPI_GRO_CB(skb)->frag0_len = 0;
4130
4131 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4132 pinfo->nr_frags &&
4133 !PageHighMem(skb_frag_page(frag0))) {
4134 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4135 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4136 }
4137 }
4138
4139 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4140 {
4141 struct skb_shared_info *pinfo = skb_shinfo(skb);
4142
4143 BUG_ON(skb->end - skb->tail < grow);
4144
4145 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4146
4147 skb->data_len -= grow;
4148 skb->tail += grow;
4149
4150 pinfo->frags[0].page_offset += grow;
4151 skb_frag_size_sub(&pinfo->frags[0], grow);
4152
4153 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4154 skb_frag_unref(skb, 0);
4155 memmove(pinfo->frags, pinfo->frags + 1,
4156 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4157 }
4158 }
4159
4160 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162 struct sk_buff **pp = NULL;
4163 struct packet_offload *ptype;
4164 __be16 type = skb->protocol;
4165 struct list_head *head = &offload_base;
4166 int same_flow;
4167 enum gro_result ret;
4168 int grow;
4169
4170 if (!(skb->dev->features & NETIF_F_GRO))
4171 goto normal;
4172
4173 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4174 goto normal;
4175
4176 gro_list_prepare(napi, skb);
4177
4178 rcu_read_lock();
4179 list_for_each_entry_rcu(ptype, head, list) {
4180 if (ptype->type != type || !ptype->callbacks.gro_receive)
4181 continue;
4182
4183 skb_set_network_header(skb, skb_gro_offset(skb));
4184 skb_reset_mac_len(skb);
4185 NAPI_GRO_CB(skb)->same_flow = 0;
4186 NAPI_GRO_CB(skb)->flush = 0;
4187 NAPI_GRO_CB(skb)->free = 0;
4188 NAPI_GRO_CB(skb)->udp_mark = 0;
4189 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4190
4191 /* Setup for GRO checksum validation */
4192 switch (skb->ip_summed) {
4193 case CHECKSUM_COMPLETE:
4194 NAPI_GRO_CB(skb)->csum = skb->csum;
4195 NAPI_GRO_CB(skb)->csum_valid = 1;
4196 NAPI_GRO_CB(skb)->csum_cnt = 0;
4197 break;
4198 case CHECKSUM_UNNECESSARY:
4199 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4200 NAPI_GRO_CB(skb)->csum_valid = 0;
4201 break;
4202 default:
4203 NAPI_GRO_CB(skb)->csum_cnt = 0;
4204 NAPI_GRO_CB(skb)->csum_valid = 0;
4205 }
4206
4207 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4208 break;
4209 }
4210 rcu_read_unlock();
4211
4212 if (&ptype->list == head)
4213 goto normal;
4214
4215 same_flow = NAPI_GRO_CB(skb)->same_flow;
4216 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4217
4218 if (pp) {
4219 struct sk_buff *nskb = *pp;
4220
4221 *pp = nskb->next;
4222 nskb->next = NULL;
4223 napi_gro_complete(nskb);
4224 napi->gro_count--;
4225 }
4226
4227 if (same_flow)
4228 goto ok;
4229
4230 if (NAPI_GRO_CB(skb)->flush)
4231 goto normal;
4232
4233 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4234 struct sk_buff *nskb = napi->gro_list;
4235
4236 /* locate the end of the list to select the 'oldest' flow */
4237 while (nskb->next) {
4238 pp = &nskb->next;
4239 nskb = *pp;
4240 }
4241 *pp = NULL;
4242 nskb->next = NULL;
4243 napi_gro_complete(nskb);
4244 } else {
4245 napi->gro_count++;
4246 }
4247 NAPI_GRO_CB(skb)->count = 1;
4248 NAPI_GRO_CB(skb)->age = jiffies;
4249 NAPI_GRO_CB(skb)->last = skb;
4250 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4251 skb->next = napi->gro_list;
4252 napi->gro_list = skb;
4253 ret = GRO_HELD;
4254
4255 pull:
4256 grow = skb_gro_offset(skb) - skb_headlen(skb);
4257 if (grow > 0)
4258 gro_pull_from_frag0(skb, grow);
4259 ok:
4260 return ret;
4261
4262 normal:
4263 ret = GRO_NORMAL;
4264 goto pull;
4265 }
4266
4267 struct packet_offload *gro_find_receive_by_type(__be16 type)
4268 {
4269 struct list_head *offload_head = &offload_base;
4270 struct packet_offload *ptype;
4271
4272 list_for_each_entry_rcu(ptype, offload_head, list) {
4273 if (ptype->type != type || !ptype->callbacks.gro_receive)
4274 continue;
4275 return ptype;
4276 }
4277 return NULL;
4278 }
4279 EXPORT_SYMBOL(gro_find_receive_by_type);
4280
4281 struct packet_offload *gro_find_complete_by_type(__be16 type)
4282 {
4283 struct list_head *offload_head = &offload_base;
4284 struct packet_offload *ptype;
4285
4286 list_for_each_entry_rcu(ptype, offload_head, list) {
4287 if (ptype->type != type || !ptype->callbacks.gro_complete)
4288 continue;
4289 return ptype;
4290 }
4291 return NULL;
4292 }
4293 EXPORT_SYMBOL(gro_find_complete_by_type);
4294
4295 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4296 {
4297 switch (ret) {
4298 case GRO_NORMAL:
4299 if (netif_receive_skb_internal(skb))
4300 ret = GRO_DROP;
4301 break;
4302
4303 case GRO_DROP:
4304 kfree_skb(skb);
4305 break;
4306
4307 case GRO_MERGED_FREE:
4308 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4309 kmem_cache_free(skbuff_head_cache, skb);
4310 else
4311 __kfree_skb(skb);
4312 break;
4313
4314 case GRO_HELD:
4315 case GRO_MERGED:
4316 break;
4317 }
4318
4319 return ret;
4320 }
4321
4322 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4323 {
4324 trace_napi_gro_receive_entry(skb);
4325
4326 skb_gro_reset_offset(skb);
4327
4328 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4329 }
4330 EXPORT_SYMBOL(napi_gro_receive);
4331
4332 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4333 {
4334 if (unlikely(skb->pfmemalloc)) {
4335 consume_skb(skb);
4336 return;
4337 }
4338 __skb_pull(skb, skb_headlen(skb));
4339 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4340 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4341 skb->vlan_tci = 0;
4342 skb->dev = napi->dev;
4343 skb->skb_iif = 0;
4344 skb->encapsulation = 0;
4345 skb_shinfo(skb)->gso_type = 0;
4346 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4347
4348 napi->skb = skb;
4349 }
4350
4351 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4352 {
4353 struct sk_buff *skb = napi->skb;
4354
4355 if (!skb) {
4356 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4357 napi->skb = skb;
4358 }
4359 return skb;
4360 }
4361 EXPORT_SYMBOL(napi_get_frags);
4362
4363 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4364 struct sk_buff *skb,
4365 gro_result_t ret)
4366 {
4367 switch (ret) {
4368 case GRO_NORMAL:
4369 case GRO_HELD:
4370 __skb_push(skb, ETH_HLEN);
4371 skb->protocol = eth_type_trans(skb, skb->dev);
4372 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4373 ret = GRO_DROP;
4374 break;
4375
4376 case GRO_DROP:
4377 case GRO_MERGED_FREE:
4378 napi_reuse_skb(napi, skb);
4379 break;
4380
4381 case GRO_MERGED:
4382 break;
4383 }
4384
4385 return ret;
4386 }
4387
4388 /* Upper GRO stack assumes network header starts at gro_offset=0
4389 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4390 * We copy ethernet header into skb->data to have a common layout.
4391 */
4392 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4393 {
4394 struct sk_buff *skb = napi->skb;
4395 const struct ethhdr *eth;
4396 unsigned int hlen = sizeof(*eth);
4397
4398 napi->skb = NULL;
4399
4400 skb_reset_mac_header(skb);
4401 skb_gro_reset_offset(skb);
4402
4403 eth = skb_gro_header_fast(skb, 0);
4404 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4405 eth = skb_gro_header_slow(skb, hlen, 0);
4406 if (unlikely(!eth)) {
4407 napi_reuse_skb(napi, skb);
4408 return NULL;
4409 }
4410 } else {
4411 gro_pull_from_frag0(skb, hlen);
4412 NAPI_GRO_CB(skb)->frag0 += hlen;
4413 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4414 }
4415 __skb_pull(skb, hlen);
4416
4417 /*
4418 * This works because the only protocols we care about don't require
4419 * special handling.
4420 * We'll fix it up properly in napi_frags_finish()
4421 */
4422 skb->protocol = eth->h_proto;
4423
4424 return skb;
4425 }
4426
4427 gro_result_t napi_gro_frags(struct napi_struct *napi)
4428 {
4429 struct sk_buff *skb = napi_frags_skb(napi);
4430
4431 if (!skb)
4432 return GRO_DROP;
4433
4434 trace_napi_gro_frags_entry(skb);
4435
4436 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4437 }
4438 EXPORT_SYMBOL(napi_gro_frags);
4439
4440 /* Compute the checksum from gro_offset and return the folded value
4441 * after adding in any pseudo checksum.
4442 */
4443 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4444 {
4445 __wsum wsum;
4446 __sum16 sum;
4447
4448 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4449
4450 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4451 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4452 if (likely(!sum)) {
4453 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4454 !skb->csum_complete_sw)
4455 netdev_rx_csum_fault(skb->dev);
4456 }
4457
4458 NAPI_GRO_CB(skb)->csum = wsum;
4459 NAPI_GRO_CB(skb)->csum_valid = 1;
4460
4461 return sum;
4462 }
4463 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4464
4465 /*
4466 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4467 * Note: called with local irq disabled, but exits with local irq enabled.
4468 */
4469 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4470 {
4471 #ifdef CONFIG_RPS
4472 struct softnet_data *remsd = sd->rps_ipi_list;
4473
4474 if (remsd) {
4475 sd->rps_ipi_list = NULL;
4476
4477 local_irq_enable();
4478
4479 /* Send pending IPI's to kick RPS processing on remote cpus. */
4480 while (remsd) {
4481 struct softnet_data *next = remsd->rps_ipi_next;
4482
4483 if (cpu_online(remsd->cpu))
4484 smp_call_function_single_async(remsd->cpu,
4485 &remsd->csd);
4486 remsd = next;
4487 }
4488 } else
4489 #endif
4490 local_irq_enable();
4491 }
4492
4493 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4494 {
4495 #ifdef CONFIG_RPS
4496 return sd->rps_ipi_list != NULL;
4497 #else
4498 return false;
4499 #endif
4500 }
4501
4502 static int process_backlog(struct napi_struct *napi, int quota)
4503 {
4504 int work = 0;
4505 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4506
4507 /* Check if we have pending ipi, its better to send them now,
4508 * not waiting net_rx_action() end.
4509 */
4510 if (sd_has_rps_ipi_waiting(sd)) {
4511 local_irq_disable();
4512 net_rps_action_and_irq_enable(sd);
4513 }
4514
4515 napi->weight = weight_p;
4516 local_irq_disable();
4517 while (1) {
4518 struct sk_buff *skb;
4519
4520 while ((skb = __skb_dequeue(&sd->process_queue))) {
4521 local_irq_enable();
4522 __netif_receive_skb(skb);
4523 local_irq_disable();
4524 input_queue_head_incr(sd);
4525 if (++work >= quota) {
4526 local_irq_enable();
4527 return work;
4528 }
4529 }
4530
4531 rps_lock(sd);
4532 if (skb_queue_empty(&sd->input_pkt_queue)) {
4533 /*
4534 * Inline a custom version of __napi_complete().
4535 * only current cpu owns and manipulates this napi,
4536 * and NAPI_STATE_SCHED is the only possible flag set
4537 * on backlog.
4538 * We can use a plain write instead of clear_bit(),
4539 * and we dont need an smp_mb() memory barrier.
4540 */
4541 napi->state = 0;
4542 rps_unlock(sd);
4543
4544 break;
4545 }
4546
4547 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4548 &sd->process_queue);
4549 rps_unlock(sd);
4550 }
4551 local_irq_enable();
4552
4553 return work;
4554 }
4555
4556 /**
4557 * __napi_schedule - schedule for receive
4558 * @n: entry to schedule
4559 *
4560 * The entry's receive function will be scheduled to run.
4561 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4562 */
4563 void __napi_schedule(struct napi_struct *n)
4564 {
4565 unsigned long flags;
4566
4567 local_irq_save(flags);
4568 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4569 local_irq_restore(flags);
4570 }
4571 EXPORT_SYMBOL(__napi_schedule);
4572
4573 /**
4574 * __napi_schedule_irqoff - schedule for receive
4575 * @n: entry to schedule
4576 *
4577 * Variant of __napi_schedule() assuming hard irqs are masked
4578 */
4579 void __napi_schedule_irqoff(struct napi_struct *n)
4580 {
4581 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4582 }
4583 EXPORT_SYMBOL(__napi_schedule_irqoff);
4584
4585 void __napi_complete(struct napi_struct *n)
4586 {
4587 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4588
4589 list_del_init(&n->poll_list);
4590 smp_mb__before_atomic();
4591 clear_bit(NAPI_STATE_SCHED, &n->state);
4592 }
4593 EXPORT_SYMBOL(__napi_complete);
4594
4595 void napi_complete_done(struct napi_struct *n, int work_done)
4596 {
4597 unsigned long flags;
4598
4599 /*
4600 * don't let napi dequeue from the cpu poll list
4601 * just in case its running on a different cpu
4602 */
4603 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4604 return;
4605
4606 if (n->gro_list) {
4607 unsigned long timeout = 0;
4608
4609 if (work_done)
4610 timeout = n->dev->gro_flush_timeout;
4611
4612 if (timeout)
4613 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4614 HRTIMER_MODE_REL_PINNED);
4615 else
4616 napi_gro_flush(n, false);
4617 }
4618 if (likely(list_empty(&n->poll_list))) {
4619 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4620 } else {
4621 /* If n->poll_list is not empty, we need to mask irqs */
4622 local_irq_save(flags);
4623 __napi_complete(n);
4624 local_irq_restore(flags);
4625 }
4626 }
4627 EXPORT_SYMBOL(napi_complete_done);
4628
4629 /* must be called under rcu_read_lock(), as we dont take a reference */
4630 struct napi_struct *napi_by_id(unsigned int napi_id)
4631 {
4632 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4633 struct napi_struct *napi;
4634
4635 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4636 if (napi->napi_id == napi_id)
4637 return napi;
4638
4639 return NULL;
4640 }
4641 EXPORT_SYMBOL_GPL(napi_by_id);
4642
4643 void napi_hash_add(struct napi_struct *napi)
4644 {
4645 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4646
4647 spin_lock(&napi_hash_lock);
4648
4649 /* 0 is not a valid id, we also skip an id that is taken
4650 * we expect both events to be extremely rare
4651 */
4652 napi->napi_id = 0;
4653 while (!napi->napi_id) {
4654 napi->napi_id = ++napi_gen_id;
4655 if (napi_by_id(napi->napi_id))
4656 napi->napi_id = 0;
4657 }
4658
4659 hlist_add_head_rcu(&napi->napi_hash_node,
4660 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4661
4662 spin_unlock(&napi_hash_lock);
4663 }
4664 }
4665 EXPORT_SYMBOL_GPL(napi_hash_add);
4666
4667 /* Warning : caller is responsible to make sure rcu grace period
4668 * is respected before freeing memory containing @napi
4669 */
4670 void napi_hash_del(struct napi_struct *napi)
4671 {
4672 spin_lock(&napi_hash_lock);
4673
4674 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4675 hlist_del_rcu(&napi->napi_hash_node);
4676
4677 spin_unlock(&napi_hash_lock);
4678 }
4679 EXPORT_SYMBOL_GPL(napi_hash_del);
4680
4681 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4682 {
4683 struct napi_struct *napi;
4684
4685 napi = container_of(timer, struct napi_struct, timer);
4686 if (napi->gro_list)
4687 napi_schedule(napi);
4688
4689 return HRTIMER_NORESTART;
4690 }
4691
4692 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4693 int (*poll)(struct napi_struct *, int), int weight)
4694 {
4695 INIT_LIST_HEAD(&napi->poll_list);
4696 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4697 napi->timer.function = napi_watchdog;
4698 napi->gro_count = 0;
4699 napi->gro_list = NULL;
4700 napi->skb = NULL;
4701 napi->poll = poll;
4702 if (weight > NAPI_POLL_WEIGHT)
4703 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4704 weight, dev->name);
4705 napi->weight = weight;
4706 list_add(&napi->dev_list, &dev->napi_list);
4707 napi->dev = dev;
4708 #ifdef CONFIG_NETPOLL
4709 spin_lock_init(&napi->poll_lock);
4710 napi->poll_owner = -1;
4711 #endif
4712 set_bit(NAPI_STATE_SCHED, &napi->state);
4713 }
4714 EXPORT_SYMBOL(netif_napi_add);
4715
4716 void napi_disable(struct napi_struct *n)
4717 {
4718 might_sleep();
4719 set_bit(NAPI_STATE_DISABLE, &n->state);
4720
4721 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4722 msleep(1);
4723
4724 hrtimer_cancel(&n->timer);
4725
4726 clear_bit(NAPI_STATE_DISABLE, &n->state);
4727 }
4728 EXPORT_SYMBOL(napi_disable);
4729
4730 void netif_napi_del(struct napi_struct *napi)
4731 {
4732 list_del_init(&napi->dev_list);
4733 napi_free_frags(napi);
4734
4735 kfree_skb_list(napi->gro_list);
4736 napi->gro_list = NULL;
4737 napi->gro_count = 0;
4738 }
4739 EXPORT_SYMBOL(netif_napi_del);
4740
4741 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4742 {
4743 void *have;
4744 int work, weight;
4745
4746 list_del_init(&n->poll_list);
4747
4748 have = netpoll_poll_lock(n);
4749
4750 weight = n->weight;
4751
4752 /* This NAPI_STATE_SCHED test is for avoiding a race
4753 * with netpoll's poll_napi(). Only the entity which
4754 * obtains the lock and sees NAPI_STATE_SCHED set will
4755 * actually make the ->poll() call. Therefore we avoid
4756 * accidentally calling ->poll() when NAPI is not scheduled.
4757 */
4758 work = 0;
4759 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4760 work = n->poll(n, weight);
4761 trace_napi_poll(n);
4762 }
4763
4764 WARN_ON_ONCE(work > weight);
4765
4766 if (likely(work < weight))
4767 goto out_unlock;
4768
4769 /* Drivers must not modify the NAPI state if they
4770 * consume the entire weight. In such cases this code
4771 * still "owns" the NAPI instance and therefore can
4772 * move the instance around on the list at-will.
4773 */
4774 if (unlikely(napi_disable_pending(n))) {
4775 napi_complete(n);
4776 goto out_unlock;
4777 }
4778
4779 if (n->gro_list) {
4780 /* flush too old packets
4781 * If HZ < 1000, flush all packets.
4782 */
4783 napi_gro_flush(n, HZ >= 1000);
4784 }
4785
4786 /* Some drivers may have called napi_schedule
4787 * prior to exhausting their budget.
4788 */
4789 if (unlikely(!list_empty(&n->poll_list))) {
4790 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4791 n->dev ? n->dev->name : "backlog");
4792 goto out_unlock;
4793 }
4794
4795 list_add_tail(&n->poll_list, repoll);
4796
4797 out_unlock:
4798 netpoll_poll_unlock(have);
4799
4800 return work;
4801 }
4802
4803 static void net_rx_action(struct softirq_action *h)
4804 {
4805 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4806 unsigned long time_limit = jiffies + 2;
4807 int budget = netdev_budget;
4808 LIST_HEAD(list);
4809 LIST_HEAD(repoll);
4810
4811 local_irq_disable();
4812 list_splice_init(&sd->poll_list, &list);
4813 local_irq_enable();
4814
4815 for (;;) {
4816 struct napi_struct *n;
4817
4818 if (list_empty(&list)) {
4819 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4820 return;
4821 break;
4822 }
4823
4824 n = list_first_entry(&list, struct napi_struct, poll_list);
4825 budget -= napi_poll(n, &repoll);
4826
4827 /* If softirq window is exhausted then punt.
4828 * Allow this to run for 2 jiffies since which will allow
4829 * an average latency of 1.5/HZ.
4830 */
4831 if (unlikely(budget <= 0 ||
4832 time_after_eq(jiffies, time_limit))) {
4833 sd->time_squeeze++;
4834 break;
4835 }
4836 }
4837
4838 local_irq_disable();
4839
4840 list_splice_tail_init(&sd->poll_list, &list);
4841 list_splice_tail(&repoll, &list);
4842 list_splice(&list, &sd->poll_list);
4843 if (!list_empty(&sd->poll_list))
4844 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4845
4846 net_rps_action_and_irq_enable(sd);
4847 }
4848
4849 struct netdev_adjacent {
4850 struct net_device *dev;
4851
4852 /* upper master flag, there can only be one master device per list */
4853 bool master;
4854
4855 /* counter for the number of times this device was added to us */
4856 u16 ref_nr;
4857
4858 /* private field for the users */
4859 void *private;
4860
4861 struct list_head list;
4862 struct rcu_head rcu;
4863 };
4864
4865 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4866 struct net_device *adj_dev,
4867 struct list_head *adj_list)
4868 {
4869 struct netdev_adjacent *adj;
4870
4871 list_for_each_entry(adj, adj_list, list) {
4872 if (adj->dev == adj_dev)
4873 return adj;
4874 }
4875 return NULL;
4876 }
4877
4878 /**
4879 * netdev_has_upper_dev - Check if device is linked to an upper device
4880 * @dev: device
4881 * @upper_dev: upper device to check
4882 *
4883 * Find out if a device is linked to specified upper device and return true
4884 * in case it is. Note that this checks only immediate upper device,
4885 * not through a complete stack of devices. The caller must hold the RTNL lock.
4886 */
4887 bool netdev_has_upper_dev(struct net_device *dev,
4888 struct net_device *upper_dev)
4889 {
4890 ASSERT_RTNL();
4891
4892 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4893 }
4894 EXPORT_SYMBOL(netdev_has_upper_dev);
4895
4896 /**
4897 * netdev_has_any_upper_dev - Check if device is linked to some device
4898 * @dev: device
4899 *
4900 * Find out if a device is linked to an upper device and return true in case
4901 * it is. The caller must hold the RTNL lock.
4902 */
4903 static bool netdev_has_any_upper_dev(struct net_device *dev)
4904 {
4905 ASSERT_RTNL();
4906
4907 return !list_empty(&dev->all_adj_list.upper);
4908 }
4909
4910 /**
4911 * netdev_master_upper_dev_get - Get master upper device
4912 * @dev: device
4913 *
4914 * Find a master upper device and return pointer to it or NULL in case
4915 * it's not there. The caller must hold the RTNL lock.
4916 */
4917 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4918 {
4919 struct netdev_adjacent *upper;
4920
4921 ASSERT_RTNL();
4922
4923 if (list_empty(&dev->adj_list.upper))
4924 return NULL;
4925
4926 upper = list_first_entry(&dev->adj_list.upper,
4927 struct netdev_adjacent, list);
4928 if (likely(upper->master))
4929 return upper->dev;
4930 return NULL;
4931 }
4932 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4933
4934 void *netdev_adjacent_get_private(struct list_head *adj_list)
4935 {
4936 struct netdev_adjacent *adj;
4937
4938 adj = list_entry(adj_list, struct netdev_adjacent, list);
4939
4940 return adj->private;
4941 }
4942 EXPORT_SYMBOL(netdev_adjacent_get_private);
4943
4944 /**
4945 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4946 * @dev: device
4947 * @iter: list_head ** of the current position
4948 *
4949 * Gets the next device from the dev's upper list, starting from iter
4950 * position. The caller must hold RCU read lock.
4951 */
4952 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4953 struct list_head **iter)
4954 {
4955 struct netdev_adjacent *upper;
4956
4957 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4958
4959 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4960
4961 if (&upper->list == &dev->adj_list.upper)
4962 return NULL;
4963
4964 *iter = &upper->list;
4965
4966 return upper->dev;
4967 }
4968 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4969
4970 /**
4971 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4972 * @dev: device
4973 * @iter: list_head ** of the current position
4974 *
4975 * Gets the next device from the dev's upper list, starting from iter
4976 * position. The caller must hold RCU read lock.
4977 */
4978 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4979 struct list_head **iter)
4980 {
4981 struct netdev_adjacent *upper;
4982
4983 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4984
4985 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4986
4987 if (&upper->list == &dev->all_adj_list.upper)
4988 return NULL;
4989
4990 *iter = &upper->list;
4991
4992 return upper->dev;
4993 }
4994 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4995
4996 /**
4997 * netdev_lower_get_next_private - Get the next ->private from the
4998 * lower neighbour list
4999 * @dev: device
5000 * @iter: list_head ** of the current position
5001 *
5002 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5003 * list, starting from iter position. The caller must hold either hold the
5004 * RTNL lock or its own locking that guarantees that the neighbour lower
5005 * list will remain unchainged.
5006 */
5007 void *netdev_lower_get_next_private(struct net_device *dev,
5008 struct list_head **iter)
5009 {
5010 struct netdev_adjacent *lower;
5011
5012 lower = list_entry(*iter, struct netdev_adjacent, list);
5013
5014 if (&lower->list == &dev->adj_list.lower)
5015 return NULL;
5016
5017 *iter = lower->list.next;
5018
5019 return lower->private;
5020 }
5021 EXPORT_SYMBOL(netdev_lower_get_next_private);
5022
5023 /**
5024 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5025 * lower neighbour list, RCU
5026 * variant
5027 * @dev: device
5028 * @iter: list_head ** of the current position
5029 *
5030 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5031 * list, starting from iter position. The caller must hold RCU read lock.
5032 */
5033 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5034 struct list_head **iter)
5035 {
5036 struct netdev_adjacent *lower;
5037
5038 WARN_ON_ONCE(!rcu_read_lock_held());
5039
5040 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5041
5042 if (&lower->list == &dev->adj_list.lower)
5043 return NULL;
5044
5045 *iter = &lower->list;
5046
5047 return lower->private;
5048 }
5049 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5050
5051 /**
5052 * netdev_lower_get_next - Get the next device from the lower neighbour
5053 * list
5054 * @dev: device
5055 * @iter: list_head ** of the current position
5056 *
5057 * Gets the next netdev_adjacent from the dev's lower neighbour
5058 * list, starting from iter position. The caller must hold RTNL lock or
5059 * its own locking that guarantees that the neighbour lower
5060 * list will remain unchainged.
5061 */
5062 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5063 {
5064 struct netdev_adjacent *lower;
5065
5066 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5067
5068 if (&lower->list == &dev->adj_list.lower)
5069 return NULL;
5070
5071 *iter = &lower->list;
5072
5073 return lower->dev;
5074 }
5075 EXPORT_SYMBOL(netdev_lower_get_next);
5076
5077 /**
5078 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5079 * lower neighbour list, RCU
5080 * variant
5081 * @dev: device
5082 *
5083 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5084 * list. The caller must hold RCU read lock.
5085 */
5086 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5087 {
5088 struct netdev_adjacent *lower;
5089
5090 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5091 struct netdev_adjacent, list);
5092 if (lower)
5093 return lower->private;
5094 return NULL;
5095 }
5096 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5097
5098 /**
5099 * netdev_master_upper_dev_get_rcu - Get master upper device
5100 * @dev: device
5101 *
5102 * Find a master upper device and return pointer to it or NULL in case
5103 * it's not there. The caller must hold the RCU read lock.
5104 */
5105 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5106 {
5107 struct netdev_adjacent *upper;
5108
5109 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5110 struct netdev_adjacent, list);
5111 if (upper && likely(upper->master))
5112 return upper->dev;
5113 return NULL;
5114 }
5115 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5116
5117 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5118 struct net_device *adj_dev,
5119 struct list_head *dev_list)
5120 {
5121 char linkname[IFNAMSIZ+7];
5122 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5123 "upper_%s" : "lower_%s", adj_dev->name);
5124 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5125 linkname);
5126 }
5127 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5128 char *name,
5129 struct list_head *dev_list)
5130 {
5131 char linkname[IFNAMSIZ+7];
5132 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5133 "upper_%s" : "lower_%s", name);
5134 sysfs_remove_link(&(dev->dev.kobj), linkname);
5135 }
5136
5137 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5138 struct net_device *adj_dev,
5139 struct list_head *dev_list)
5140 {
5141 return (dev_list == &dev->adj_list.upper ||
5142 dev_list == &dev->adj_list.lower) &&
5143 net_eq(dev_net(dev), dev_net(adj_dev));
5144 }
5145
5146 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5147 struct net_device *adj_dev,
5148 struct list_head *dev_list,
5149 void *private, bool master)
5150 {
5151 struct netdev_adjacent *adj;
5152 int ret;
5153
5154 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5155
5156 if (adj) {
5157 adj->ref_nr++;
5158 return 0;
5159 }
5160
5161 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5162 if (!adj)
5163 return -ENOMEM;
5164
5165 adj->dev = adj_dev;
5166 adj->master = master;
5167 adj->ref_nr = 1;
5168 adj->private = private;
5169 dev_hold(adj_dev);
5170
5171 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5172 adj_dev->name, dev->name, adj_dev->name);
5173
5174 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5175 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5176 if (ret)
5177 goto free_adj;
5178 }
5179
5180 /* Ensure that master link is always the first item in list. */
5181 if (master) {
5182 ret = sysfs_create_link(&(dev->dev.kobj),
5183 &(adj_dev->dev.kobj), "master");
5184 if (ret)
5185 goto remove_symlinks;
5186
5187 list_add_rcu(&adj->list, dev_list);
5188 } else {
5189 list_add_tail_rcu(&adj->list, dev_list);
5190 }
5191
5192 return 0;
5193
5194 remove_symlinks:
5195 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5196 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5197 free_adj:
5198 kfree(adj);
5199 dev_put(adj_dev);
5200
5201 return ret;
5202 }
5203
5204 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5205 struct net_device *adj_dev,
5206 struct list_head *dev_list)
5207 {
5208 struct netdev_adjacent *adj;
5209
5210 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5211
5212 if (!adj) {
5213 pr_err("tried to remove device %s from %s\n",
5214 dev->name, adj_dev->name);
5215 BUG();
5216 }
5217
5218 if (adj->ref_nr > 1) {
5219 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5220 adj->ref_nr-1);
5221 adj->ref_nr--;
5222 return;
5223 }
5224
5225 if (adj->master)
5226 sysfs_remove_link(&(dev->dev.kobj), "master");
5227
5228 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5229 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5230
5231 list_del_rcu(&adj->list);
5232 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5233 adj_dev->name, dev->name, adj_dev->name);
5234 dev_put(adj_dev);
5235 kfree_rcu(adj, rcu);
5236 }
5237
5238 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5239 struct net_device *upper_dev,
5240 struct list_head *up_list,
5241 struct list_head *down_list,
5242 void *private, bool master)
5243 {
5244 int ret;
5245
5246 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5247 master);
5248 if (ret)
5249 return ret;
5250
5251 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5252 false);
5253 if (ret) {
5254 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5255 return ret;
5256 }
5257
5258 return 0;
5259 }
5260
5261 static int __netdev_adjacent_dev_link(struct net_device *dev,
5262 struct net_device *upper_dev)
5263 {
5264 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5265 &dev->all_adj_list.upper,
5266 &upper_dev->all_adj_list.lower,
5267 NULL, false);
5268 }
5269
5270 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5271 struct net_device *upper_dev,
5272 struct list_head *up_list,
5273 struct list_head *down_list)
5274 {
5275 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5276 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5277 }
5278
5279 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5280 struct net_device *upper_dev)
5281 {
5282 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5283 &dev->all_adj_list.upper,
5284 &upper_dev->all_adj_list.lower);
5285 }
5286
5287 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5288 struct net_device *upper_dev,
5289 void *private, bool master)
5290 {
5291 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5292
5293 if (ret)
5294 return ret;
5295
5296 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5297 &dev->adj_list.upper,
5298 &upper_dev->adj_list.lower,
5299 private, master);
5300 if (ret) {
5301 __netdev_adjacent_dev_unlink(dev, upper_dev);
5302 return ret;
5303 }
5304
5305 return 0;
5306 }
5307
5308 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5309 struct net_device *upper_dev)
5310 {
5311 __netdev_adjacent_dev_unlink(dev, upper_dev);
5312 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5313 &dev->adj_list.upper,
5314 &upper_dev->adj_list.lower);
5315 }
5316
5317 static int __netdev_upper_dev_link(struct net_device *dev,
5318 struct net_device *upper_dev, bool master,
5319 void *private)
5320 {
5321 struct netdev_adjacent *i, *j, *to_i, *to_j;
5322 int ret = 0;
5323
5324 ASSERT_RTNL();
5325
5326 if (dev == upper_dev)
5327 return -EBUSY;
5328
5329 /* To prevent loops, check if dev is not upper device to upper_dev. */
5330 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5331 return -EBUSY;
5332
5333 if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5334 return -EEXIST;
5335
5336 if (master && netdev_master_upper_dev_get(dev))
5337 return -EBUSY;
5338
5339 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5340 master);
5341 if (ret)
5342 return ret;
5343
5344 /* Now that we linked these devs, make all the upper_dev's
5345 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5346 * versa, and don't forget the devices itself. All of these
5347 * links are non-neighbours.
5348 */
5349 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5350 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5351 pr_debug("Interlinking %s with %s, non-neighbour\n",
5352 i->dev->name, j->dev->name);
5353 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5354 if (ret)
5355 goto rollback_mesh;
5356 }
5357 }
5358
5359 /* add dev to every upper_dev's upper device */
5360 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5361 pr_debug("linking %s's upper device %s with %s\n",
5362 upper_dev->name, i->dev->name, dev->name);
5363 ret = __netdev_adjacent_dev_link(dev, i->dev);
5364 if (ret)
5365 goto rollback_upper_mesh;
5366 }
5367
5368 /* add upper_dev to every dev's lower device */
5369 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5370 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5371 i->dev->name, upper_dev->name);
5372 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5373 if (ret)
5374 goto rollback_lower_mesh;
5375 }
5376
5377 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5378 return 0;
5379
5380 rollback_lower_mesh:
5381 to_i = i;
5382 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5383 if (i == to_i)
5384 break;
5385 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5386 }
5387
5388 i = NULL;
5389
5390 rollback_upper_mesh:
5391 to_i = i;
5392 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5393 if (i == to_i)
5394 break;
5395 __netdev_adjacent_dev_unlink(dev, i->dev);
5396 }
5397
5398 i = j = NULL;
5399
5400 rollback_mesh:
5401 to_i = i;
5402 to_j = j;
5403 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5404 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5405 if (i == to_i && j == to_j)
5406 break;
5407 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5408 }
5409 if (i == to_i)
5410 break;
5411 }
5412
5413 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5414
5415 return ret;
5416 }
5417
5418 /**
5419 * netdev_upper_dev_link - Add a link to the upper device
5420 * @dev: device
5421 * @upper_dev: new upper device
5422 *
5423 * Adds a link to device which is upper to this one. The caller must hold
5424 * the RTNL lock. On a failure a negative errno code is returned.
5425 * On success the reference counts are adjusted and the function
5426 * returns zero.
5427 */
5428 int netdev_upper_dev_link(struct net_device *dev,
5429 struct net_device *upper_dev)
5430 {
5431 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5432 }
5433 EXPORT_SYMBOL(netdev_upper_dev_link);
5434
5435 /**
5436 * netdev_master_upper_dev_link - Add a master link to the upper device
5437 * @dev: device
5438 * @upper_dev: new upper device
5439 *
5440 * Adds a link to device which is upper to this one. In this case, only
5441 * one master upper device can be linked, although other non-master devices
5442 * might be linked as well. The caller must hold the RTNL lock.
5443 * On a failure a negative errno code is returned. On success the reference
5444 * counts are adjusted and the function returns zero.
5445 */
5446 int netdev_master_upper_dev_link(struct net_device *dev,
5447 struct net_device *upper_dev)
5448 {
5449 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5450 }
5451 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5452
5453 int netdev_master_upper_dev_link_private(struct net_device *dev,
5454 struct net_device *upper_dev,
5455 void *private)
5456 {
5457 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5458 }
5459 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5460
5461 /**
5462 * netdev_upper_dev_unlink - Removes a link to upper device
5463 * @dev: device
5464 * @upper_dev: new upper device
5465 *
5466 * Removes a link to device which is upper to this one. The caller must hold
5467 * the RTNL lock.
5468 */
5469 void netdev_upper_dev_unlink(struct net_device *dev,
5470 struct net_device *upper_dev)
5471 {
5472 struct netdev_adjacent *i, *j;
5473 ASSERT_RTNL();
5474
5475 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5476
5477 /* Here is the tricky part. We must remove all dev's lower
5478 * devices from all upper_dev's upper devices and vice
5479 * versa, to maintain the graph relationship.
5480 */
5481 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5482 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5483 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5484
5485 /* remove also the devices itself from lower/upper device
5486 * list
5487 */
5488 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5489 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5490
5491 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5492 __netdev_adjacent_dev_unlink(dev, i->dev);
5493
5494 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5495 }
5496 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5497
5498 /**
5499 * netdev_bonding_info_change - Dispatch event about slave change
5500 * @dev: device
5501 * @bonding_info: info to dispatch
5502 *
5503 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5504 * The caller must hold the RTNL lock.
5505 */
5506 void netdev_bonding_info_change(struct net_device *dev,
5507 struct netdev_bonding_info *bonding_info)
5508 {
5509 struct netdev_notifier_bonding_info info;
5510
5511 memcpy(&info.bonding_info, bonding_info,
5512 sizeof(struct netdev_bonding_info));
5513 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5514 &info.info);
5515 }
5516 EXPORT_SYMBOL(netdev_bonding_info_change);
5517
5518 static void netdev_adjacent_add_links(struct net_device *dev)
5519 {
5520 struct netdev_adjacent *iter;
5521
5522 struct net *net = dev_net(dev);
5523
5524 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5525 if (!net_eq(net,dev_net(iter->dev)))
5526 continue;
5527 netdev_adjacent_sysfs_add(iter->dev, dev,
5528 &iter->dev->adj_list.lower);
5529 netdev_adjacent_sysfs_add(dev, iter->dev,
5530 &dev->adj_list.upper);
5531 }
5532
5533 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5534 if (!net_eq(net,dev_net(iter->dev)))
5535 continue;
5536 netdev_adjacent_sysfs_add(iter->dev, dev,
5537 &iter->dev->adj_list.upper);
5538 netdev_adjacent_sysfs_add(dev, iter->dev,
5539 &dev->adj_list.lower);
5540 }
5541 }
5542
5543 static void netdev_adjacent_del_links(struct net_device *dev)
5544 {
5545 struct netdev_adjacent *iter;
5546
5547 struct net *net = dev_net(dev);
5548
5549 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5550 if (!net_eq(net,dev_net(iter->dev)))
5551 continue;
5552 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5553 &iter->dev->adj_list.lower);
5554 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5555 &dev->adj_list.upper);
5556 }
5557
5558 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5559 if (!net_eq(net,dev_net(iter->dev)))
5560 continue;
5561 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5562 &iter->dev->adj_list.upper);
5563 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5564 &dev->adj_list.lower);
5565 }
5566 }
5567
5568 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5569 {
5570 struct netdev_adjacent *iter;
5571
5572 struct net *net = dev_net(dev);
5573
5574 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5575 if (!net_eq(net,dev_net(iter->dev)))
5576 continue;
5577 netdev_adjacent_sysfs_del(iter->dev, oldname,
5578 &iter->dev->adj_list.lower);
5579 netdev_adjacent_sysfs_add(iter->dev, dev,
5580 &iter->dev->adj_list.lower);
5581 }
5582
5583 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5584 if (!net_eq(net,dev_net(iter->dev)))
5585 continue;
5586 netdev_adjacent_sysfs_del(iter->dev, oldname,
5587 &iter->dev->adj_list.upper);
5588 netdev_adjacent_sysfs_add(iter->dev, dev,
5589 &iter->dev->adj_list.upper);
5590 }
5591 }
5592
5593 void *netdev_lower_dev_get_private(struct net_device *dev,
5594 struct net_device *lower_dev)
5595 {
5596 struct netdev_adjacent *lower;
5597
5598 if (!lower_dev)
5599 return NULL;
5600 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5601 if (!lower)
5602 return NULL;
5603
5604 return lower->private;
5605 }
5606 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5607
5608
5609 int dev_get_nest_level(struct net_device *dev,
5610 bool (*type_check)(struct net_device *dev))
5611 {
5612 struct net_device *lower = NULL;
5613 struct list_head *iter;
5614 int max_nest = -1;
5615 int nest;
5616
5617 ASSERT_RTNL();
5618
5619 netdev_for_each_lower_dev(dev, lower, iter) {
5620 nest = dev_get_nest_level(lower, type_check);
5621 if (max_nest < nest)
5622 max_nest = nest;
5623 }
5624
5625 if (type_check(dev))
5626 max_nest++;
5627
5628 return max_nest;
5629 }
5630 EXPORT_SYMBOL(dev_get_nest_level);
5631
5632 static void dev_change_rx_flags(struct net_device *dev, int flags)
5633 {
5634 const struct net_device_ops *ops = dev->netdev_ops;
5635
5636 if (ops->ndo_change_rx_flags)
5637 ops->ndo_change_rx_flags(dev, flags);
5638 }
5639
5640 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5641 {
5642 unsigned int old_flags = dev->flags;
5643 kuid_t uid;
5644 kgid_t gid;
5645
5646 ASSERT_RTNL();
5647
5648 dev->flags |= IFF_PROMISC;
5649 dev->promiscuity += inc;
5650 if (dev->promiscuity == 0) {
5651 /*
5652 * Avoid overflow.
5653 * If inc causes overflow, untouch promisc and return error.
5654 */
5655 if (inc < 0)
5656 dev->flags &= ~IFF_PROMISC;
5657 else {
5658 dev->promiscuity -= inc;
5659 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5660 dev->name);
5661 return -EOVERFLOW;
5662 }
5663 }
5664 if (dev->flags != old_flags) {
5665 pr_info("device %s %s promiscuous mode\n",
5666 dev->name,
5667 dev->flags & IFF_PROMISC ? "entered" : "left");
5668 if (audit_enabled) {
5669 current_uid_gid(&uid, &gid);
5670 audit_log(current->audit_context, GFP_ATOMIC,
5671 AUDIT_ANOM_PROMISCUOUS,
5672 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5673 dev->name, (dev->flags & IFF_PROMISC),
5674 (old_flags & IFF_PROMISC),
5675 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5676 from_kuid(&init_user_ns, uid),
5677 from_kgid(&init_user_ns, gid),
5678 audit_get_sessionid(current));
5679 }
5680
5681 dev_change_rx_flags(dev, IFF_PROMISC);
5682 }
5683 if (notify)
5684 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5685 return 0;
5686 }
5687
5688 /**
5689 * dev_set_promiscuity - update promiscuity count on a device
5690 * @dev: device
5691 * @inc: modifier
5692 *
5693 * Add or remove promiscuity from a device. While the count in the device
5694 * remains above zero the interface remains promiscuous. Once it hits zero
5695 * the device reverts back to normal filtering operation. A negative inc
5696 * value is used to drop promiscuity on the device.
5697 * Return 0 if successful or a negative errno code on error.
5698 */
5699 int dev_set_promiscuity(struct net_device *dev, int inc)
5700 {
5701 unsigned int old_flags = dev->flags;
5702 int err;
5703
5704 err = __dev_set_promiscuity(dev, inc, true);
5705 if (err < 0)
5706 return err;
5707 if (dev->flags != old_flags)
5708 dev_set_rx_mode(dev);
5709 return err;
5710 }
5711 EXPORT_SYMBOL(dev_set_promiscuity);
5712
5713 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5714 {
5715 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5716
5717 ASSERT_RTNL();
5718
5719 dev->flags |= IFF_ALLMULTI;
5720 dev->allmulti += inc;
5721 if (dev->allmulti == 0) {
5722 /*
5723 * Avoid overflow.
5724 * If inc causes overflow, untouch allmulti and return error.
5725 */
5726 if (inc < 0)
5727 dev->flags &= ~IFF_ALLMULTI;
5728 else {
5729 dev->allmulti -= inc;
5730 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5731 dev->name);
5732 return -EOVERFLOW;
5733 }
5734 }
5735 if (dev->flags ^ old_flags) {
5736 dev_change_rx_flags(dev, IFF_ALLMULTI);
5737 dev_set_rx_mode(dev);
5738 if (notify)
5739 __dev_notify_flags(dev, old_flags,
5740 dev->gflags ^ old_gflags);
5741 }
5742 return 0;
5743 }
5744
5745 /**
5746 * dev_set_allmulti - update allmulti count on a device
5747 * @dev: device
5748 * @inc: modifier
5749 *
5750 * Add or remove reception of all multicast frames to a device. While the
5751 * count in the device remains above zero the interface remains listening
5752 * to all interfaces. Once it hits zero the device reverts back to normal
5753 * filtering operation. A negative @inc value is used to drop the counter
5754 * when releasing a resource needing all multicasts.
5755 * Return 0 if successful or a negative errno code on error.
5756 */
5757
5758 int dev_set_allmulti(struct net_device *dev, int inc)
5759 {
5760 return __dev_set_allmulti(dev, inc, true);
5761 }
5762 EXPORT_SYMBOL(dev_set_allmulti);
5763
5764 /*
5765 * Upload unicast and multicast address lists to device and
5766 * configure RX filtering. When the device doesn't support unicast
5767 * filtering it is put in promiscuous mode while unicast addresses
5768 * are present.
5769 */
5770 void __dev_set_rx_mode(struct net_device *dev)
5771 {
5772 const struct net_device_ops *ops = dev->netdev_ops;
5773
5774 /* dev_open will call this function so the list will stay sane. */
5775 if (!(dev->flags&IFF_UP))
5776 return;
5777
5778 if (!netif_device_present(dev))
5779 return;
5780
5781 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5782 /* Unicast addresses changes may only happen under the rtnl,
5783 * therefore calling __dev_set_promiscuity here is safe.
5784 */
5785 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5786 __dev_set_promiscuity(dev, 1, false);
5787 dev->uc_promisc = true;
5788 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5789 __dev_set_promiscuity(dev, -1, false);
5790 dev->uc_promisc = false;
5791 }
5792 }
5793
5794 if (ops->ndo_set_rx_mode)
5795 ops->ndo_set_rx_mode(dev);
5796 }
5797
5798 void dev_set_rx_mode(struct net_device *dev)
5799 {
5800 netif_addr_lock_bh(dev);
5801 __dev_set_rx_mode(dev);
5802 netif_addr_unlock_bh(dev);
5803 }
5804
5805 /**
5806 * dev_get_flags - get flags reported to userspace
5807 * @dev: device
5808 *
5809 * Get the combination of flag bits exported through APIs to userspace.
5810 */
5811 unsigned int dev_get_flags(const struct net_device *dev)
5812 {
5813 unsigned int flags;
5814
5815 flags = (dev->flags & ~(IFF_PROMISC |
5816 IFF_ALLMULTI |
5817 IFF_RUNNING |
5818 IFF_LOWER_UP |
5819 IFF_DORMANT)) |
5820 (dev->gflags & (IFF_PROMISC |
5821 IFF_ALLMULTI));
5822
5823 if (netif_running(dev)) {
5824 if (netif_oper_up(dev))
5825 flags |= IFF_RUNNING;
5826 if (netif_carrier_ok(dev))
5827 flags |= IFF_LOWER_UP;
5828 if (netif_dormant(dev))
5829 flags |= IFF_DORMANT;
5830 }
5831
5832 return flags;
5833 }
5834 EXPORT_SYMBOL(dev_get_flags);
5835
5836 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5837 {
5838 unsigned int old_flags = dev->flags;
5839 int ret;
5840
5841 ASSERT_RTNL();
5842
5843 /*
5844 * Set the flags on our device.
5845 */
5846
5847 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5848 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5849 IFF_AUTOMEDIA)) |
5850 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5851 IFF_ALLMULTI));
5852
5853 /*
5854 * Load in the correct multicast list now the flags have changed.
5855 */
5856
5857 if ((old_flags ^ flags) & IFF_MULTICAST)
5858 dev_change_rx_flags(dev, IFF_MULTICAST);
5859
5860 dev_set_rx_mode(dev);
5861
5862 /*
5863 * Have we downed the interface. We handle IFF_UP ourselves
5864 * according to user attempts to set it, rather than blindly
5865 * setting it.
5866 */
5867
5868 ret = 0;
5869 if ((old_flags ^ flags) & IFF_UP)
5870 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5871
5872 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5873 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5874 unsigned int old_flags = dev->flags;
5875
5876 dev->gflags ^= IFF_PROMISC;
5877
5878 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5879 if (dev->flags != old_flags)
5880 dev_set_rx_mode(dev);
5881 }
5882
5883 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5884 is important. Some (broken) drivers set IFF_PROMISC, when
5885 IFF_ALLMULTI is requested not asking us and not reporting.
5886 */
5887 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5888 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5889
5890 dev->gflags ^= IFF_ALLMULTI;
5891 __dev_set_allmulti(dev, inc, false);
5892 }
5893
5894 return ret;
5895 }
5896
5897 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5898 unsigned int gchanges)
5899 {
5900 unsigned int changes = dev->flags ^ old_flags;
5901
5902 if (gchanges)
5903 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5904
5905 if (changes & IFF_UP) {
5906 if (dev->flags & IFF_UP)
5907 call_netdevice_notifiers(NETDEV_UP, dev);
5908 else
5909 call_netdevice_notifiers(NETDEV_DOWN, dev);
5910 }
5911
5912 if (dev->flags & IFF_UP &&
5913 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5914 struct netdev_notifier_change_info change_info;
5915
5916 change_info.flags_changed = changes;
5917 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5918 &change_info.info);
5919 }
5920 }
5921
5922 /**
5923 * dev_change_flags - change device settings
5924 * @dev: device
5925 * @flags: device state flags
5926 *
5927 * Change settings on device based state flags. The flags are
5928 * in the userspace exported format.
5929 */
5930 int dev_change_flags(struct net_device *dev, unsigned int flags)
5931 {
5932 int ret;
5933 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5934
5935 ret = __dev_change_flags(dev, flags);
5936 if (ret < 0)
5937 return ret;
5938
5939 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5940 __dev_notify_flags(dev, old_flags, changes);
5941 return ret;
5942 }
5943 EXPORT_SYMBOL(dev_change_flags);
5944
5945 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5946 {
5947 const struct net_device_ops *ops = dev->netdev_ops;
5948
5949 if (ops->ndo_change_mtu)
5950 return ops->ndo_change_mtu(dev, new_mtu);
5951
5952 dev->mtu = new_mtu;
5953 return 0;
5954 }
5955
5956 /**
5957 * dev_set_mtu - Change maximum transfer unit
5958 * @dev: device
5959 * @new_mtu: new transfer unit
5960 *
5961 * Change the maximum transfer size of the network device.
5962 */
5963 int dev_set_mtu(struct net_device *dev, int new_mtu)
5964 {
5965 int err, orig_mtu;
5966
5967 if (new_mtu == dev->mtu)
5968 return 0;
5969
5970 /* MTU must be positive. */
5971 if (new_mtu < 0)
5972 return -EINVAL;
5973
5974 if (!netif_device_present(dev))
5975 return -ENODEV;
5976
5977 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5978 err = notifier_to_errno(err);
5979 if (err)
5980 return err;
5981
5982 orig_mtu = dev->mtu;
5983 err = __dev_set_mtu(dev, new_mtu);
5984
5985 if (!err) {
5986 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5987 err = notifier_to_errno(err);
5988 if (err) {
5989 /* setting mtu back and notifying everyone again,
5990 * so that they have a chance to revert changes.
5991 */
5992 __dev_set_mtu(dev, orig_mtu);
5993 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5994 }
5995 }
5996 return err;
5997 }
5998 EXPORT_SYMBOL(dev_set_mtu);
5999
6000 /**
6001 * dev_set_group - Change group this device belongs to
6002 * @dev: device
6003 * @new_group: group this device should belong to
6004 */
6005 void dev_set_group(struct net_device *dev, int new_group)
6006 {
6007 dev->group = new_group;
6008 }
6009 EXPORT_SYMBOL(dev_set_group);
6010
6011 /**
6012 * dev_set_mac_address - Change Media Access Control Address
6013 * @dev: device
6014 * @sa: new address
6015 *
6016 * Change the hardware (MAC) address of the device
6017 */
6018 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6019 {
6020 const struct net_device_ops *ops = dev->netdev_ops;
6021 int err;
6022
6023 if (!ops->ndo_set_mac_address)
6024 return -EOPNOTSUPP;
6025 if (sa->sa_family != dev->type)
6026 return -EINVAL;
6027 if (!netif_device_present(dev))
6028 return -ENODEV;
6029 err = ops->ndo_set_mac_address(dev, sa);
6030 if (err)
6031 return err;
6032 dev->addr_assign_type = NET_ADDR_SET;
6033 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6034 add_device_randomness(dev->dev_addr, dev->addr_len);
6035 return 0;
6036 }
6037 EXPORT_SYMBOL(dev_set_mac_address);
6038
6039 /**
6040 * dev_change_carrier - Change device carrier
6041 * @dev: device
6042 * @new_carrier: new value
6043 *
6044 * Change device carrier
6045 */
6046 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6047 {
6048 const struct net_device_ops *ops = dev->netdev_ops;
6049
6050 if (!ops->ndo_change_carrier)
6051 return -EOPNOTSUPP;
6052 if (!netif_device_present(dev))
6053 return -ENODEV;
6054 return ops->ndo_change_carrier(dev, new_carrier);
6055 }
6056 EXPORT_SYMBOL(dev_change_carrier);
6057
6058 /**
6059 * dev_get_phys_port_id - Get device physical port ID
6060 * @dev: device
6061 * @ppid: port ID
6062 *
6063 * Get device physical port ID
6064 */
6065 int dev_get_phys_port_id(struct net_device *dev,
6066 struct netdev_phys_item_id *ppid)
6067 {
6068 const struct net_device_ops *ops = dev->netdev_ops;
6069
6070 if (!ops->ndo_get_phys_port_id)
6071 return -EOPNOTSUPP;
6072 return ops->ndo_get_phys_port_id(dev, ppid);
6073 }
6074 EXPORT_SYMBOL(dev_get_phys_port_id);
6075
6076 /**
6077 * dev_get_phys_port_name - Get device physical port name
6078 * @dev: device
6079 * @name: port name
6080 *
6081 * Get device physical port name
6082 */
6083 int dev_get_phys_port_name(struct net_device *dev,
6084 char *name, size_t len)
6085 {
6086 const struct net_device_ops *ops = dev->netdev_ops;
6087
6088 if (!ops->ndo_get_phys_port_name)
6089 return -EOPNOTSUPP;
6090 return ops->ndo_get_phys_port_name(dev, name, len);
6091 }
6092 EXPORT_SYMBOL(dev_get_phys_port_name);
6093
6094 /**
6095 * dev_new_index - allocate an ifindex
6096 * @net: the applicable net namespace
6097 *
6098 * Returns a suitable unique value for a new device interface
6099 * number. The caller must hold the rtnl semaphore or the
6100 * dev_base_lock to be sure it remains unique.
6101 */
6102 static int dev_new_index(struct net *net)
6103 {
6104 int ifindex = net->ifindex;
6105 for (;;) {
6106 if (++ifindex <= 0)
6107 ifindex = 1;
6108 if (!__dev_get_by_index(net, ifindex))
6109 return net->ifindex = ifindex;
6110 }
6111 }
6112
6113 /* Delayed registration/unregisteration */
6114 static LIST_HEAD(net_todo_list);
6115 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6116
6117 static void net_set_todo(struct net_device *dev)
6118 {
6119 list_add_tail(&dev->todo_list, &net_todo_list);
6120 dev_net(dev)->dev_unreg_count++;
6121 }
6122
6123 static void rollback_registered_many(struct list_head *head)
6124 {
6125 struct net_device *dev, *tmp;
6126 LIST_HEAD(close_head);
6127
6128 BUG_ON(dev_boot_phase);
6129 ASSERT_RTNL();
6130
6131 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6132 /* Some devices call without registering
6133 * for initialization unwind. Remove those
6134 * devices and proceed with the remaining.
6135 */
6136 if (dev->reg_state == NETREG_UNINITIALIZED) {
6137 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6138 dev->name, dev);
6139
6140 WARN_ON(1);
6141 list_del(&dev->unreg_list);
6142 continue;
6143 }
6144 dev->dismantle = true;
6145 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6146 }
6147
6148 /* If device is running, close it first. */
6149 list_for_each_entry(dev, head, unreg_list)
6150 list_add_tail(&dev->close_list, &close_head);
6151 dev_close_many(&close_head, true);
6152
6153 list_for_each_entry(dev, head, unreg_list) {
6154 /* And unlink it from device chain. */
6155 unlist_netdevice(dev);
6156
6157 dev->reg_state = NETREG_UNREGISTERING;
6158 }
6159
6160 synchronize_net();
6161
6162 list_for_each_entry(dev, head, unreg_list) {
6163 struct sk_buff *skb = NULL;
6164
6165 /* Shutdown queueing discipline. */
6166 dev_shutdown(dev);
6167
6168
6169 /* Notify protocols, that we are about to destroy
6170 this device. They should clean all the things.
6171 */
6172 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6173
6174 if (!dev->rtnl_link_ops ||
6175 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6176 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6177 GFP_KERNEL);
6178
6179 /*
6180 * Flush the unicast and multicast chains
6181 */
6182 dev_uc_flush(dev);
6183 dev_mc_flush(dev);
6184
6185 if (dev->netdev_ops->ndo_uninit)
6186 dev->netdev_ops->ndo_uninit(dev);
6187
6188 if (skb)
6189 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6190
6191 /* Notifier chain MUST detach us all upper devices. */
6192 WARN_ON(netdev_has_any_upper_dev(dev));
6193
6194 /* Remove entries from kobject tree */
6195 netdev_unregister_kobject(dev);
6196 #ifdef CONFIG_XPS
6197 /* Remove XPS queueing entries */
6198 netif_reset_xps_queues_gt(dev, 0);
6199 #endif
6200 }
6201
6202 synchronize_net();
6203
6204 list_for_each_entry(dev, head, unreg_list)
6205 dev_put(dev);
6206 }
6207
6208 static void rollback_registered(struct net_device *dev)
6209 {
6210 LIST_HEAD(single);
6211
6212 list_add(&dev->unreg_list, &single);
6213 rollback_registered_many(&single);
6214 list_del(&single);
6215 }
6216
6217 static netdev_features_t netdev_fix_features(struct net_device *dev,
6218 netdev_features_t features)
6219 {
6220 /* Fix illegal checksum combinations */
6221 if ((features & NETIF_F_HW_CSUM) &&
6222 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6223 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6224 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6225 }
6226
6227 /* TSO requires that SG is present as well. */
6228 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6229 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6230 features &= ~NETIF_F_ALL_TSO;
6231 }
6232
6233 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6234 !(features & NETIF_F_IP_CSUM)) {
6235 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6236 features &= ~NETIF_F_TSO;
6237 features &= ~NETIF_F_TSO_ECN;
6238 }
6239
6240 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6241 !(features & NETIF_F_IPV6_CSUM)) {
6242 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6243 features &= ~NETIF_F_TSO6;
6244 }
6245
6246 /* TSO ECN requires that TSO is present as well. */
6247 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6248 features &= ~NETIF_F_TSO_ECN;
6249
6250 /* Software GSO depends on SG. */
6251 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6252 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6253 features &= ~NETIF_F_GSO;
6254 }
6255
6256 /* UFO needs SG and checksumming */
6257 if (features & NETIF_F_UFO) {
6258 /* maybe split UFO into V4 and V6? */
6259 if (!((features & NETIF_F_GEN_CSUM) ||
6260 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6261 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6262 netdev_dbg(dev,
6263 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6264 features &= ~NETIF_F_UFO;
6265 }
6266
6267 if (!(features & NETIF_F_SG)) {
6268 netdev_dbg(dev,
6269 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6270 features &= ~NETIF_F_UFO;
6271 }
6272 }
6273
6274 #ifdef CONFIG_NET_RX_BUSY_POLL
6275 if (dev->netdev_ops->ndo_busy_poll)
6276 features |= NETIF_F_BUSY_POLL;
6277 else
6278 #endif
6279 features &= ~NETIF_F_BUSY_POLL;
6280
6281 return features;
6282 }
6283
6284 int __netdev_update_features(struct net_device *dev)
6285 {
6286 netdev_features_t features;
6287 int err = 0;
6288
6289 ASSERT_RTNL();
6290
6291 features = netdev_get_wanted_features(dev);
6292
6293 if (dev->netdev_ops->ndo_fix_features)
6294 features = dev->netdev_ops->ndo_fix_features(dev, features);
6295
6296 /* driver might be less strict about feature dependencies */
6297 features = netdev_fix_features(dev, features);
6298
6299 if (dev->features == features)
6300 return 0;
6301
6302 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6303 &dev->features, &features);
6304
6305 if (dev->netdev_ops->ndo_set_features)
6306 err = dev->netdev_ops->ndo_set_features(dev, features);
6307
6308 if (unlikely(err < 0)) {
6309 netdev_err(dev,
6310 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6311 err, &features, &dev->features);
6312 return -1;
6313 }
6314
6315 if (!err)
6316 dev->features = features;
6317
6318 return 1;
6319 }
6320
6321 /**
6322 * netdev_update_features - recalculate device features
6323 * @dev: the device to check
6324 *
6325 * Recalculate dev->features set and send notifications if it
6326 * has changed. Should be called after driver or hardware dependent
6327 * conditions might have changed that influence the features.
6328 */
6329 void netdev_update_features(struct net_device *dev)
6330 {
6331 if (__netdev_update_features(dev))
6332 netdev_features_change(dev);
6333 }
6334 EXPORT_SYMBOL(netdev_update_features);
6335
6336 /**
6337 * netdev_change_features - recalculate device features
6338 * @dev: the device to check
6339 *
6340 * Recalculate dev->features set and send notifications even
6341 * if they have not changed. Should be called instead of
6342 * netdev_update_features() if also dev->vlan_features might
6343 * have changed to allow the changes to be propagated to stacked
6344 * VLAN devices.
6345 */
6346 void netdev_change_features(struct net_device *dev)
6347 {
6348 __netdev_update_features(dev);
6349 netdev_features_change(dev);
6350 }
6351 EXPORT_SYMBOL(netdev_change_features);
6352
6353 /**
6354 * netif_stacked_transfer_operstate - transfer operstate
6355 * @rootdev: the root or lower level device to transfer state from
6356 * @dev: the device to transfer operstate to
6357 *
6358 * Transfer operational state from root to device. This is normally
6359 * called when a stacking relationship exists between the root
6360 * device and the device(a leaf device).
6361 */
6362 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6363 struct net_device *dev)
6364 {
6365 if (rootdev->operstate == IF_OPER_DORMANT)
6366 netif_dormant_on(dev);
6367 else
6368 netif_dormant_off(dev);
6369
6370 if (netif_carrier_ok(rootdev)) {
6371 if (!netif_carrier_ok(dev))
6372 netif_carrier_on(dev);
6373 } else {
6374 if (netif_carrier_ok(dev))
6375 netif_carrier_off(dev);
6376 }
6377 }
6378 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6379
6380 #ifdef CONFIG_SYSFS
6381 static int netif_alloc_rx_queues(struct net_device *dev)
6382 {
6383 unsigned int i, count = dev->num_rx_queues;
6384 struct netdev_rx_queue *rx;
6385 size_t sz = count * sizeof(*rx);
6386
6387 BUG_ON(count < 1);
6388
6389 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6390 if (!rx) {
6391 rx = vzalloc(sz);
6392 if (!rx)
6393 return -ENOMEM;
6394 }
6395 dev->_rx = rx;
6396
6397 for (i = 0; i < count; i++)
6398 rx[i].dev = dev;
6399 return 0;
6400 }
6401 #endif
6402
6403 static void netdev_init_one_queue(struct net_device *dev,
6404 struct netdev_queue *queue, void *_unused)
6405 {
6406 /* Initialize queue lock */
6407 spin_lock_init(&queue->_xmit_lock);
6408 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6409 queue->xmit_lock_owner = -1;
6410 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6411 queue->dev = dev;
6412 #ifdef CONFIG_BQL
6413 dql_init(&queue->dql, HZ);
6414 #endif
6415 }
6416
6417 static void netif_free_tx_queues(struct net_device *dev)
6418 {
6419 kvfree(dev->_tx);
6420 }
6421
6422 static int netif_alloc_netdev_queues(struct net_device *dev)
6423 {
6424 unsigned int count = dev->num_tx_queues;
6425 struct netdev_queue *tx;
6426 size_t sz = count * sizeof(*tx);
6427
6428 BUG_ON(count < 1 || count > 0xffff);
6429
6430 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6431 if (!tx) {
6432 tx = vzalloc(sz);
6433 if (!tx)
6434 return -ENOMEM;
6435 }
6436 dev->_tx = tx;
6437
6438 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6439 spin_lock_init(&dev->tx_global_lock);
6440
6441 return 0;
6442 }
6443
6444 void netif_tx_stop_all_queues(struct net_device *dev)
6445 {
6446 unsigned int i;
6447
6448 for (i = 0; i < dev->num_tx_queues; i++) {
6449 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6450 netif_tx_stop_queue(txq);
6451 }
6452 }
6453 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6454
6455 /**
6456 * register_netdevice - register a network device
6457 * @dev: device to register
6458 *
6459 * Take a completed network device structure and add it to the kernel
6460 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6461 * chain. 0 is returned on success. A negative errno code is returned
6462 * on a failure to set up the device, or if the name is a duplicate.
6463 *
6464 * Callers must hold the rtnl semaphore. You may want
6465 * register_netdev() instead of this.
6466 *
6467 * BUGS:
6468 * The locking appears insufficient to guarantee two parallel registers
6469 * will not get the same name.
6470 */
6471
6472 int register_netdevice(struct net_device *dev)
6473 {
6474 int ret;
6475 struct net *net = dev_net(dev);
6476
6477 BUG_ON(dev_boot_phase);
6478 ASSERT_RTNL();
6479
6480 might_sleep();
6481
6482 /* When net_device's are persistent, this will be fatal. */
6483 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6484 BUG_ON(!net);
6485
6486 spin_lock_init(&dev->addr_list_lock);
6487 netdev_set_addr_lockdep_class(dev);
6488
6489 ret = dev_get_valid_name(net, dev, dev->name);
6490 if (ret < 0)
6491 goto out;
6492
6493 /* Init, if this function is available */
6494 if (dev->netdev_ops->ndo_init) {
6495 ret = dev->netdev_ops->ndo_init(dev);
6496 if (ret) {
6497 if (ret > 0)
6498 ret = -EIO;
6499 goto out;
6500 }
6501 }
6502
6503 if (((dev->hw_features | dev->features) &
6504 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6505 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6506 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6507 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6508 ret = -EINVAL;
6509 goto err_uninit;
6510 }
6511
6512 ret = -EBUSY;
6513 if (!dev->ifindex)
6514 dev->ifindex = dev_new_index(net);
6515 else if (__dev_get_by_index(net, dev->ifindex))
6516 goto err_uninit;
6517
6518 /* Transfer changeable features to wanted_features and enable
6519 * software offloads (GSO and GRO).
6520 */
6521 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6522 dev->features |= NETIF_F_SOFT_FEATURES;
6523 dev->wanted_features = dev->features & dev->hw_features;
6524
6525 if (!(dev->flags & IFF_LOOPBACK)) {
6526 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6527 }
6528
6529 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6530 */
6531 dev->vlan_features |= NETIF_F_HIGHDMA;
6532
6533 /* Make NETIF_F_SG inheritable to tunnel devices.
6534 */
6535 dev->hw_enc_features |= NETIF_F_SG;
6536
6537 /* Make NETIF_F_SG inheritable to MPLS.
6538 */
6539 dev->mpls_features |= NETIF_F_SG;
6540
6541 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6542 ret = notifier_to_errno(ret);
6543 if (ret)
6544 goto err_uninit;
6545
6546 ret = netdev_register_kobject(dev);
6547 if (ret)
6548 goto err_uninit;
6549 dev->reg_state = NETREG_REGISTERED;
6550
6551 __netdev_update_features(dev);
6552
6553 /*
6554 * Default initial state at registry is that the
6555 * device is present.
6556 */
6557
6558 set_bit(__LINK_STATE_PRESENT, &dev->state);
6559
6560 linkwatch_init_dev(dev);
6561
6562 dev_init_scheduler(dev);
6563 dev_hold(dev);
6564 list_netdevice(dev);
6565 add_device_randomness(dev->dev_addr, dev->addr_len);
6566
6567 /* If the device has permanent device address, driver should
6568 * set dev_addr and also addr_assign_type should be set to
6569 * NET_ADDR_PERM (default value).
6570 */
6571 if (dev->addr_assign_type == NET_ADDR_PERM)
6572 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6573
6574 /* Notify protocols, that a new device appeared. */
6575 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6576 ret = notifier_to_errno(ret);
6577 if (ret) {
6578 rollback_registered(dev);
6579 dev->reg_state = NETREG_UNREGISTERED;
6580 }
6581 /*
6582 * Prevent userspace races by waiting until the network
6583 * device is fully setup before sending notifications.
6584 */
6585 if (!dev->rtnl_link_ops ||
6586 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6587 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6588
6589 out:
6590 return ret;
6591
6592 err_uninit:
6593 if (dev->netdev_ops->ndo_uninit)
6594 dev->netdev_ops->ndo_uninit(dev);
6595 goto out;
6596 }
6597 EXPORT_SYMBOL(register_netdevice);
6598
6599 /**
6600 * init_dummy_netdev - init a dummy network device for NAPI
6601 * @dev: device to init
6602 *
6603 * This takes a network device structure and initialize the minimum
6604 * amount of fields so it can be used to schedule NAPI polls without
6605 * registering a full blown interface. This is to be used by drivers
6606 * that need to tie several hardware interfaces to a single NAPI
6607 * poll scheduler due to HW limitations.
6608 */
6609 int init_dummy_netdev(struct net_device *dev)
6610 {
6611 /* Clear everything. Note we don't initialize spinlocks
6612 * are they aren't supposed to be taken by any of the
6613 * NAPI code and this dummy netdev is supposed to be
6614 * only ever used for NAPI polls
6615 */
6616 memset(dev, 0, sizeof(struct net_device));
6617
6618 /* make sure we BUG if trying to hit standard
6619 * register/unregister code path
6620 */
6621 dev->reg_state = NETREG_DUMMY;
6622
6623 /* NAPI wants this */
6624 INIT_LIST_HEAD(&dev->napi_list);
6625
6626 /* a dummy interface is started by default */
6627 set_bit(__LINK_STATE_PRESENT, &dev->state);
6628 set_bit(__LINK_STATE_START, &dev->state);
6629
6630 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6631 * because users of this 'device' dont need to change
6632 * its refcount.
6633 */
6634
6635 return 0;
6636 }
6637 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6638
6639
6640 /**
6641 * register_netdev - register a network device
6642 * @dev: device to register
6643 *
6644 * Take a completed network device structure and add it to the kernel
6645 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6646 * chain. 0 is returned on success. A negative errno code is returned
6647 * on a failure to set up the device, or if the name is a duplicate.
6648 *
6649 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6650 * and expands the device name if you passed a format string to
6651 * alloc_netdev.
6652 */
6653 int register_netdev(struct net_device *dev)
6654 {
6655 int err;
6656
6657 rtnl_lock();
6658 err = register_netdevice(dev);
6659 rtnl_unlock();
6660 return err;
6661 }
6662 EXPORT_SYMBOL(register_netdev);
6663
6664 int netdev_refcnt_read(const struct net_device *dev)
6665 {
6666 int i, refcnt = 0;
6667
6668 for_each_possible_cpu(i)
6669 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6670 return refcnt;
6671 }
6672 EXPORT_SYMBOL(netdev_refcnt_read);
6673
6674 /**
6675 * netdev_wait_allrefs - wait until all references are gone.
6676 * @dev: target net_device
6677 *
6678 * This is called when unregistering network devices.
6679 *
6680 * Any protocol or device that holds a reference should register
6681 * for netdevice notification, and cleanup and put back the
6682 * reference if they receive an UNREGISTER event.
6683 * We can get stuck here if buggy protocols don't correctly
6684 * call dev_put.
6685 */
6686 static void netdev_wait_allrefs(struct net_device *dev)
6687 {
6688 unsigned long rebroadcast_time, warning_time;
6689 int refcnt;
6690
6691 linkwatch_forget_dev(dev);
6692
6693 rebroadcast_time = warning_time = jiffies;
6694 refcnt = netdev_refcnt_read(dev);
6695
6696 while (refcnt != 0) {
6697 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6698 rtnl_lock();
6699
6700 /* Rebroadcast unregister notification */
6701 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6702
6703 __rtnl_unlock();
6704 rcu_barrier();
6705 rtnl_lock();
6706
6707 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6708 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6709 &dev->state)) {
6710 /* We must not have linkwatch events
6711 * pending on unregister. If this
6712 * happens, we simply run the queue
6713 * unscheduled, resulting in a noop
6714 * for this device.
6715 */
6716 linkwatch_run_queue();
6717 }
6718
6719 __rtnl_unlock();
6720
6721 rebroadcast_time = jiffies;
6722 }
6723
6724 msleep(250);
6725
6726 refcnt = netdev_refcnt_read(dev);
6727
6728 if (time_after(jiffies, warning_time + 10 * HZ)) {
6729 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6730 dev->name, refcnt);
6731 warning_time = jiffies;
6732 }
6733 }
6734 }
6735
6736 /* The sequence is:
6737 *
6738 * rtnl_lock();
6739 * ...
6740 * register_netdevice(x1);
6741 * register_netdevice(x2);
6742 * ...
6743 * unregister_netdevice(y1);
6744 * unregister_netdevice(y2);
6745 * ...
6746 * rtnl_unlock();
6747 * free_netdev(y1);
6748 * free_netdev(y2);
6749 *
6750 * We are invoked by rtnl_unlock().
6751 * This allows us to deal with problems:
6752 * 1) We can delete sysfs objects which invoke hotplug
6753 * without deadlocking with linkwatch via keventd.
6754 * 2) Since we run with the RTNL semaphore not held, we can sleep
6755 * safely in order to wait for the netdev refcnt to drop to zero.
6756 *
6757 * We must not return until all unregister events added during
6758 * the interval the lock was held have been completed.
6759 */
6760 void netdev_run_todo(void)
6761 {
6762 struct list_head list;
6763
6764 /* Snapshot list, allow later requests */
6765 list_replace_init(&net_todo_list, &list);
6766
6767 __rtnl_unlock();
6768
6769
6770 /* Wait for rcu callbacks to finish before next phase */
6771 if (!list_empty(&list))
6772 rcu_barrier();
6773
6774 while (!list_empty(&list)) {
6775 struct net_device *dev
6776 = list_first_entry(&list, struct net_device, todo_list);
6777 list_del(&dev->todo_list);
6778
6779 rtnl_lock();
6780 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6781 __rtnl_unlock();
6782
6783 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6784 pr_err("network todo '%s' but state %d\n",
6785 dev->name, dev->reg_state);
6786 dump_stack();
6787 continue;
6788 }
6789
6790 dev->reg_state = NETREG_UNREGISTERED;
6791
6792 on_each_cpu(flush_backlog, dev, 1);
6793
6794 netdev_wait_allrefs(dev);
6795
6796 /* paranoia */
6797 BUG_ON(netdev_refcnt_read(dev));
6798 BUG_ON(!list_empty(&dev->ptype_all));
6799 BUG_ON(!list_empty(&dev->ptype_specific));
6800 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6801 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6802 WARN_ON(dev->dn_ptr);
6803
6804 if (dev->destructor)
6805 dev->destructor(dev);
6806
6807 /* Report a network device has been unregistered */
6808 rtnl_lock();
6809 dev_net(dev)->dev_unreg_count--;
6810 __rtnl_unlock();
6811 wake_up(&netdev_unregistering_wq);
6812
6813 /* Free network device */
6814 kobject_put(&dev->dev.kobj);
6815 }
6816 }
6817
6818 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6819 * fields in the same order, with only the type differing.
6820 */
6821 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6822 const struct net_device_stats *netdev_stats)
6823 {
6824 #if BITS_PER_LONG == 64
6825 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6826 memcpy(stats64, netdev_stats, sizeof(*stats64));
6827 #else
6828 size_t i, n = sizeof(*stats64) / sizeof(u64);
6829 const unsigned long *src = (const unsigned long *)netdev_stats;
6830 u64 *dst = (u64 *)stats64;
6831
6832 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6833 sizeof(*stats64) / sizeof(u64));
6834 for (i = 0; i < n; i++)
6835 dst[i] = src[i];
6836 #endif
6837 }
6838 EXPORT_SYMBOL(netdev_stats_to_stats64);
6839
6840 /**
6841 * dev_get_stats - get network device statistics
6842 * @dev: device to get statistics from
6843 * @storage: place to store stats
6844 *
6845 * Get network statistics from device. Return @storage.
6846 * The device driver may provide its own method by setting
6847 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6848 * otherwise the internal statistics structure is used.
6849 */
6850 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6851 struct rtnl_link_stats64 *storage)
6852 {
6853 const struct net_device_ops *ops = dev->netdev_ops;
6854
6855 if (ops->ndo_get_stats64) {
6856 memset(storage, 0, sizeof(*storage));
6857 ops->ndo_get_stats64(dev, storage);
6858 } else if (ops->ndo_get_stats) {
6859 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6860 } else {
6861 netdev_stats_to_stats64(storage, &dev->stats);
6862 }
6863 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6864 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6865 return storage;
6866 }
6867 EXPORT_SYMBOL(dev_get_stats);
6868
6869 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6870 {
6871 struct netdev_queue *queue = dev_ingress_queue(dev);
6872
6873 #ifdef CONFIG_NET_CLS_ACT
6874 if (queue)
6875 return queue;
6876 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6877 if (!queue)
6878 return NULL;
6879 netdev_init_one_queue(dev, queue, NULL);
6880 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6881 queue->qdisc_sleeping = &noop_qdisc;
6882 rcu_assign_pointer(dev->ingress_queue, queue);
6883 #endif
6884 return queue;
6885 }
6886
6887 static const struct ethtool_ops default_ethtool_ops;
6888
6889 void netdev_set_default_ethtool_ops(struct net_device *dev,
6890 const struct ethtool_ops *ops)
6891 {
6892 if (dev->ethtool_ops == &default_ethtool_ops)
6893 dev->ethtool_ops = ops;
6894 }
6895 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6896
6897 void netdev_freemem(struct net_device *dev)
6898 {
6899 char *addr = (char *)dev - dev->padded;
6900
6901 kvfree(addr);
6902 }
6903
6904 /**
6905 * alloc_netdev_mqs - allocate network device
6906 * @sizeof_priv: size of private data to allocate space for
6907 * @name: device name format string
6908 * @name_assign_type: origin of device name
6909 * @setup: callback to initialize device
6910 * @txqs: the number of TX subqueues to allocate
6911 * @rxqs: the number of RX subqueues to allocate
6912 *
6913 * Allocates a struct net_device with private data area for driver use
6914 * and performs basic initialization. Also allocates subqueue structs
6915 * for each queue on the device.
6916 */
6917 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6918 unsigned char name_assign_type,
6919 void (*setup)(struct net_device *),
6920 unsigned int txqs, unsigned int rxqs)
6921 {
6922 struct net_device *dev;
6923 size_t alloc_size;
6924 struct net_device *p;
6925
6926 BUG_ON(strlen(name) >= sizeof(dev->name));
6927
6928 if (txqs < 1) {
6929 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6930 return NULL;
6931 }
6932
6933 #ifdef CONFIG_SYSFS
6934 if (rxqs < 1) {
6935 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6936 return NULL;
6937 }
6938 #endif
6939
6940 alloc_size = sizeof(struct net_device);
6941 if (sizeof_priv) {
6942 /* ensure 32-byte alignment of private area */
6943 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6944 alloc_size += sizeof_priv;
6945 }
6946 /* ensure 32-byte alignment of whole construct */
6947 alloc_size += NETDEV_ALIGN - 1;
6948
6949 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6950 if (!p)
6951 p = vzalloc(alloc_size);
6952 if (!p)
6953 return NULL;
6954
6955 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6956 dev->padded = (char *)dev - (char *)p;
6957
6958 dev->pcpu_refcnt = alloc_percpu(int);
6959 if (!dev->pcpu_refcnt)
6960 goto free_dev;
6961
6962 if (dev_addr_init(dev))
6963 goto free_pcpu;
6964
6965 dev_mc_init(dev);
6966 dev_uc_init(dev);
6967
6968 dev_net_set(dev, &init_net);
6969
6970 dev->gso_max_size = GSO_MAX_SIZE;
6971 dev->gso_max_segs = GSO_MAX_SEGS;
6972 dev->gso_min_segs = 0;
6973
6974 INIT_LIST_HEAD(&dev->napi_list);
6975 INIT_LIST_HEAD(&dev->unreg_list);
6976 INIT_LIST_HEAD(&dev->close_list);
6977 INIT_LIST_HEAD(&dev->link_watch_list);
6978 INIT_LIST_HEAD(&dev->adj_list.upper);
6979 INIT_LIST_HEAD(&dev->adj_list.lower);
6980 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6981 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6982 INIT_LIST_HEAD(&dev->ptype_all);
6983 INIT_LIST_HEAD(&dev->ptype_specific);
6984 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6985 setup(dev);
6986
6987 dev->num_tx_queues = txqs;
6988 dev->real_num_tx_queues = txqs;
6989 if (netif_alloc_netdev_queues(dev))
6990 goto free_all;
6991
6992 #ifdef CONFIG_SYSFS
6993 dev->num_rx_queues = rxqs;
6994 dev->real_num_rx_queues = rxqs;
6995 if (netif_alloc_rx_queues(dev))
6996 goto free_all;
6997 #endif
6998
6999 strcpy(dev->name, name);
7000 dev->name_assign_type = name_assign_type;
7001 dev->group = INIT_NETDEV_GROUP;
7002 if (!dev->ethtool_ops)
7003 dev->ethtool_ops = &default_ethtool_ops;
7004
7005 nf_hook_ingress_init(dev);
7006
7007 return dev;
7008
7009 free_all:
7010 free_netdev(dev);
7011 return NULL;
7012
7013 free_pcpu:
7014 free_percpu(dev->pcpu_refcnt);
7015 free_dev:
7016 netdev_freemem(dev);
7017 return NULL;
7018 }
7019 EXPORT_SYMBOL(alloc_netdev_mqs);
7020
7021 /**
7022 * free_netdev - free network device
7023 * @dev: device
7024 *
7025 * This function does the last stage of destroying an allocated device
7026 * interface. The reference to the device object is released.
7027 * If this is the last reference then it will be freed.
7028 */
7029 void free_netdev(struct net_device *dev)
7030 {
7031 struct napi_struct *p, *n;
7032
7033 netif_free_tx_queues(dev);
7034 #ifdef CONFIG_SYSFS
7035 kvfree(dev->_rx);
7036 #endif
7037
7038 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7039
7040 /* Flush device addresses */
7041 dev_addr_flush(dev);
7042
7043 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7044 netif_napi_del(p);
7045
7046 free_percpu(dev->pcpu_refcnt);
7047 dev->pcpu_refcnt = NULL;
7048
7049 /* Compatibility with error handling in drivers */
7050 if (dev->reg_state == NETREG_UNINITIALIZED) {
7051 netdev_freemem(dev);
7052 return;
7053 }
7054
7055 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7056 dev->reg_state = NETREG_RELEASED;
7057
7058 /* will free via device release */
7059 put_device(&dev->dev);
7060 }
7061 EXPORT_SYMBOL(free_netdev);
7062
7063 /**
7064 * synchronize_net - Synchronize with packet receive processing
7065 *
7066 * Wait for packets currently being received to be done.
7067 * Does not block later packets from starting.
7068 */
7069 void synchronize_net(void)
7070 {
7071 might_sleep();
7072 if (rtnl_is_locked())
7073 synchronize_rcu_expedited();
7074 else
7075 synchronize_rcu();
7076 }
7077 EXPORT_SYMBOL(synchronize_net);
7078
7079 /**
7080 * unregister_netdevice_queue - remove device from the kernel
7081 * @dev: device
7082 * @head: list
7083 *
7084 * This function shuts down a device interface and removes it
7085 * from the kernel tables.
7086 * If head not NULL, device is queued to be unregistered later.
7087 *
7088 * Callers must hold the rtnl semaphore. You may want
7089 * unregister_netdev() instead of this.
7090 */
7091
7092 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7093 {
7094 ASSERT_RTNL();
7095
7096 if (head) {
7097 list_move_tail(&dev->unreg_list, head);
7098 } else {
7099 rollback_registered(dev);
7100 /* Finish processing unregister after unlock */
7101 net_set_todo(dev);
7102 }
7103 }
7104 EXPORT_SYMBOL(unregister_netdevice_queue);
7105
7106 /**
7107 * unregister_netdevice_many - unregister many devices
7108 * @head: list of devices
7109 *
7110 * Note: As most callers use a stack allocated list_head,
7111 * we force a list_del() to make sure stack wont be corrupted later.
7112 */
7113 void unregister_netdevice_many(struct list_head *head)
7114 {
7115 struct net_device *dev;
7116
7117 if (!list_empty(head)) {
7118 rollback_registered_many(head);
7119 list_for_each_entry(dev, head, unreg_list)
7120 net_set_todo(dev);
7121 list_del(head);
7122 }
7123 }
7124 EXPORT_SYMBOL(unregister_netdevice_many);
7125
7126 /**
7127 * unregister_netdev - remove device from the kernel
7128 * @dev: device
7129 *
7130 * This function shuts down a device interface and removes it
7131 * from the kernel tables.
7132 *
7133 * This is just a wrapper for unregister_netdevice that takes
7134 * the rtnl semaphore. In general you want to use this and not
7135 * unregister_netdevice.
7136 */
7137 void unregister_netdev(struct net_device *dev)
7138 {
7139 rtnl_lock();
7140 unregister_netdevice(dev);
7141 rtnl_unlock();
7142 }
7143 EXPORT_SYMBOL(unregister_netdev);
7144
7145 /**
7146 * dev_change_net_namespace - move device to different nethost namespace
7147 * @dev: device
7148 * @net: network namespace
7149 * @pat: If not NULL name pattern to try if the current device name
7150 * is already taken in the destination network namespace.
7151 *
7152 * This function shuts down a device interface and moves it
7153 * to a new network namespace. On success 0 is returned, on
7154 * a failure a netagive errno code is returned.
7155 *
7156 * Callers must hold the rtnl semaphore.
7157 */
7158
7159 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7160 {
7161 int err;
7162
7163 ASSERT_RTNL();
7164
7165 /* Don't allow namespace local devices to be moved. */
7166 err = -EINVAL;
7167 if (dev->features & NETIF_F_NETNS_LOCAL)
7168 goto out;
7169
7170 /* Ensure the device has been registrered */
7171 if (dev->reg_state != NETREG_REGISTERED)
7172 goto out;
7173
7174 /* Get out if there is nothing todo */
7175 err = 0;
7176 if (net_eq(dev_net(dev), net))
7177 goto out;
7178
7179 /* Pick the destination device name, and ensure
7180 * we can use it in the destination network namespace.
7181 */
7182 err = -EEXIST;
7183 if (__dev_get_by_name(net, dev->name)) {
7184 /* We get here if we can't use the current device name */
7185 if (!pat)
7186 goto out;
7187 if (dev_get_valid_name(net, dev, pat) < 0)
7188 goto out;
7189 }
7190
7191 /*
7192 * And now a mini version of register_netdevice unregister_netdevice.
7193 */
7194
7195 /* If device is running close it first. */
7196 dev_close(dev);
7197
7198 /* And unlink it from device chain */
7199 err = -ENODEV;
7200 unlist_netdevice(dev);
7201
7202 synchronize_net();
7203
7204 /* Shutdown queueing discipline. */
7205 dev_shutdown(dev);
7206
7207 /* Notify protocols, that we are about to destroy
7208 this device. They should clean all the things.
7209
7210 Note that dev->reg_state stays at NETREG_REGISTERED.
7211 This is wanted because this way 8021q and macvlan know
7212 the device is just moving and can keep their slaves up.
7213 */
7214 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7215 rcu_barrier();
7216 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7217 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7218
7219 /*
7220 * Flush the unicast and multicast chains
7221 */
7222 dev_uc_flush(dev);
7223 dev_mc_flush(dev);
7224
7225 /* Send a netdev-removed uevent to the old namespace */
7226 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7227 netdev_adjacent_del_links(dev);
7228
7229 /* Actually switch the network namespace */
7230 dev_net_set(dev, net);
7231
7232 /* If there is an ifindex conflict assign a new one */
7233 if (__dev_get_by_index(net, dev->ifindex))
7234 dev->ifindex = dev_new_index(net);
7235
7236 /* Send a netdev-add uevent to the new namespace */
7237 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7238 netdev_adjacent_add_links(dev);
7239
7240 /* Fixup kobjects */
7241 err = device_rename(&dev->dev, dev->name);
7242 WARN_ON(err);
7243
7244 /* Add the device back in the hashes */
7245 list_netdevice(dev);
7246
7247 /* Notify protocols, that a new device appeared. */
7248 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7249
7250 /*
7251 * Prevent userspace races by waiting until the network
7252 * device is fully setup before sending notifications.
7253 */
7254 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7255
7256 synchronize_net();
7257 err = 0;
7258 out:
7259 return err;
7260 }
7261 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7262
7263 static int dev_cpu_callback(struct notifier_block *nfb,
7264 unsigned long action,
7265 void *ocpu)
7266 {
7267 struct sk_buff **list_skb;
7268 struct sk_buff *skb;
7269 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7270 struct softnet_data *sd, *oldsd;
7271
7272 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7273 return NOTIFY_OK;
7274
7275 local_irq_disable();
7276 cpu = smp_processor_id();
7277 sd = &per_cpu(softnet_data, cpu);
7278 oldsd = &per_cpu(softnet_data, oldcpu);
7279
7280 /* Find end of our completion_queue. */
7281 list_skb = &sd->completion_queue;
7282 while (*list_skb)
7283 list_skb = &(*list_skb)->next;
7284 /* Append completion queue from offline CPU. */
7285 *list_skb = oldsd->completion_queue;
7286 oldsd->completion_queue = NULL;
7287
7288 /* Append output queue from offline CPU. */
7289 if (oldsd->output_queue) {
7290 *sd->output_queue_tailp = oldsd->output_queue;
7291 sd->output_queue_tailp = oldsd->output_queue_tailp;
7292 oldsd->output_queue = NULL;
7293 oldsd->output_queue_tailp = &oldsd->output_queue;
7294 }
7295 /* Append NAPI poll list from offline CPU, with one exception :
7296 * process_backlog() must be called by cpu owning percpu backlog.
7297 * We properly handle process_queue & input_pkt_queue later.
7298 */
7299 while (!list_empty(&oldsd->poll_list)) {
7300 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7301 struct napi_struct,
7302 poll_list);
7303
7304 list_del_init(&napi->poll_list);
7305 if (napi->poll == process_backlog)
7306 napi->state = 0;
7307 else
7308 ____napi_schedule(sd, napi);
7309 }
7310
7311 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7312 local_irq_enable();
7313
7314 /* Process offline CPU's input_pkt_queue */
7315 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7316 netif_rx_ni(skb);
7317 input_queue_head_incr(oldsd);
7318 }
7319 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7320 netif_rx_ni(skb);
7321 input_queue_head_incr(oldsd);
7322 }
7323
7324 return NOTIFY_OK;
7325 }
7326
7327
7328 /**
7329 * netdev_increment_features - increment feature set by one
7330 * @all: current feature set
7331 * @one: new feature set
7332 * @mask: mask feature set
7333 *
7334 * Computes a new feature set after adding a device with feature set
7335 * @one to the master device with current feature set @all. Will not
7336 * enable anything that is off in @mask. Returns the new feature set.
7337 */
7338 netdev_features_t netdev_increment_features(netdev_features_t all,
7339 netdev_features_t one, netdev_features_t mask)
7340 {
7341 if (mask & NETIF_F_GEN_CSUM)
7342 mask |= NETIF_F_ALL_CSUM;
7343 mask |= NETIF_F_VLAN_CHALLENGED;
7344
7345 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7346 all &= one | ~NETIF_F_ALL_FOR_ALL;
7347
7348 /* If one device supports hw checksumming, set for all. */
7349 if (all & NETIF_F_GEN_CSUM)
7350 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7351
7352 return all;
7353 }
7354 EXPORT_SYMBOL(netdev_increment_features);
7355
7356 static struct hlist_head * __net_init netdev_create_hash(void)
7357 {
7358 int i;
7359 struct hlist_head *hash;
7360
7361 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7362 if (hash != NULL)
7363 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7364 INIT_HLIST_HEAD(&hash[i]);
7365
7366 return hash;
7367 }
7368
7369 /* Initialize per network namespace state */
7370 static int __net_init netdev_init(struct net *net)
7371 {
7372 if (net != &init_net)
7373 INIT_LIST_HEAD(&net->dev_base_head);
7374
7375 net->dev_name_head = netdev_create_hash();
7376 if (net->dev_name_head == NULL)
7377 goto err_name;
7378
7379 net->dev_index_head = netdev_create_hash();
7380 if (net->dev_index_head == NULL)
7381 goto err_idx;
7382
7383 return 0;
7384
7385 err_idx:
7386 kfree(net->dev_name_head);
7387 err_name:
7388 return -ENOMEM;
7389 }
7390
7391 /**
7392 * netdev_drivername - network driver for the device
7393 * @dev: network device
7394 *
7395 * Determine network driver for device.
7396 */
7397 const char *netdev_drivername(const struct net_device *dev)
7398 {
7399 const struct device_driver *driver;
7400 const struct device *parent;
7401 const char *empty = "";
7402
7403 parent = dev->dev.parent;
7404 if (!parent)
7405 return empty;
7406
7407 driver = parent->driver;
7408 if (driver && driver->name)
7409 return driver->name;
7410 return empty;
7411 }
7412
7413 static void __netdev_printk(const char *level, const struct net_device *dev,
7414 struct va_format *vaf)
7415 {
7416 if (dev && dev->dev.parent) {
7417 dev_printk_emit(level[1] - '0',
7418 dev->dev.parent,
7419 "%s %s %s%s: %pV",
7420 dev_driver_string(dev->dev.parent),
7421 dev_name(dev->dev.parent),
7422 netdev_name(dev), netdev_reg_state(dev),
7423 vaf);
7424 } else if (dev) {
7425 printk("%s%s%s: %pV",
7426 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7427 } else {
7428 printk("%s(NULL net_device): %pV", level, vaf);
7429 }
7430 }
7431
7432 void netdev_printk(const char *level, const struct net_device *dev,
7433 const char *format, ...)
7434 {
7435 struct va_format vaf;
7436 va_list args;
7437
7438 va_start(args, format);
7439
7440 vaf.fmt = format;
7441 vaf.va = &args;
7442
7443 __netdev_printk(level, dev, &vaf);
7444
7445 va_end(args);
7446 }
7447 EXPORT_SYMBOL(netdev_printk);
7448
7449 #define define_netdev_printk_level(func, level) \
7450 void func(const struct net_device *dev, const char *fmt, ...) \
7451 { \
7452 struct va_format vaf; \
7453 va_list args; \
7454 \
7455 va_start(args, fmt); \
7456 \
7457 vaf.fmt = fmt; \
7458 vaf.va = &args; \
7459 \
7460 __netdev_printk(level, dev, &vaf); \
7461 \
7462 va_end(args); \
7463 } \
7464 EXPORT_SYMBOL(func);
7465
7466 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7467 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7468 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7469 define_netdev_printk_level(netdev_err, KERN_ERR);
7470 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7471 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7472 define_netdev_printk_level(netdev_info, KERN_INFO);
7473
7474 static void __net_exit netdev_exit(struct net *net)
7475 {
7476 kfree(net->dev_name_head);
7477 kfree(net->dev_index_head);
7478 }
7479
7480 static struct pernet_operations __net_initdata netdev_net_ops = {
7481 .init = netdev_init,
7482 .exit = netdev_exit,
7483 };
7484
7485 static void __net_exit default_device_exit(struct net *net)
7486 {
7487 struct net_device *dev, *aux;
7488 /*
7489 * Push all migratable network devices back to the
7490 * initial network namespace
7491 */
7492 rtnl_lock();
7493 for_each_netdev_safe(net, dev, aux) {
7494 int err;
7495 char fb_name[IFNAMSIZ];
7496
7497 /* Ignore unmoveable devices (i.e. loopback) */
7498 if (dev->features & NETIF_F_NETNS_LOCAL)
7499 continue;
7500
7501 /* Leave virtual devices for the generic cleanup */
7502 if (dev->rtnl_link_ops)
7503 continue;
7504
7505 /* Push remaining network devices to init_net */
7506 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7507 err = dev_change_net_namespace(dev, &init_net, fb_name);
7508 if (err) {
7509 pr_emerg("%s: failed to move %s to init_net: %d\n",
7510 __func__, dev->name, err);
7511 BUG();
7512 }
7513 }
7514 rtnl_unlock();
7515 }
7516
7517 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7518 {
7519 /* Return with the rtnl_lock held when there are no network
7520 * devices unregistering in any network namespace in net_list.
7521 */
7522 struct net *net;
7523 bool unregistering;
7524 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7525
7526 add_wait_queue(&netdev_unregistering_wq, &wait);
7527 for (;;) {
7528 unregistering = false;
7529 rtnl_lock();
7530 list_for_each_entry(net, net_list, exit_list) {
7531 if (net->dev_unreg_count > 0) {
7532 unregistering = true;
7533 break;
7534 }
7535 }
7536 if (!unregistering)
7537 break;
7538 __rtnl_unlock();
7539
7540 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7541 }
7542 remove_wait_queue(&netdev_unregistering_wq, &wait);
7543 }
7544
7545 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7546 {
7547 /* At exit all network devices most be removed from a network
7548 * namespace. Do this in the reverse order of registration.
7549 * Do this across as many network namespaces as possible to
7550 * improve batching efficiency.
7551 */
7552 struct net_device *dev;
7553 struct net *net;
7554 LIST_HEAD(dev_kill_list);
7555
7556 /* To prevent network device cleanup code from dereferencing
7557 * loopback devices or network devices that have been freed
7558 * wait here for all pending unregistrations to complete,
7559 * before unregistring the loopback device and allowing the
7560 * network namespace be freed.
7561 *
7562 * The netdev todo list containing all network devices
7563 * unregistrations that happen in default_device_exit_batch
7564 * will run in the rtnl_unlock() at the end of
7565 * default_device_exit_batch.
7566 */
7567 rtnl_lock_unregistering(net_list);
7568 list_for_each_entry(net, net_list, exit_list) {
7569 for_each_netdev_reverse(net, dev) {
7570 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7571 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7572 else
7573 unregister_netdevice_queue(dev, &dev_kill_list);
7574 }
7575 }
7576 unregister_netdevice_many(&dev_kill_list);
7577 rtnl_unlock();
7578 }
7579
7580 static struct pernet_operations __net_initdata default_device_ops = {
7581 .exit = default_device_exit,
7582 .exit_batch = default_device_exit_batch,
7583 };
7584
7585 /*
7586 * Initialize the DEV module. At boot time this walks the device list and
7587 * unhooks any devices that fail to initialise (normally hardware not
7588 * present) and leaves us with a valid list of present and active devices.
7589 *
7590 */
7591
7592 /*
7593 * This is called single threaded during boot, so no need
7594 * to take the rtnl semaphore.
7595 */
7596 static int __init net_dev_init(void)
7597 {
7598 int i, rc = -ENOMEM;
7599
7600 BUG_ON(!dev_boot_phase);
7601
7602 if (dev_proc_init())
7603 goto out;
7604
7605 if (netdev_kobject_init())
7606 goto out;
7607
7608 INIT_LIST_HEAD(&ptype_all);
7609 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7610 INIT_LIST_HEAD(&ptype_base[i]);
7611
7612 INIT_LIST_HEAD(&offload_base);
7613
7614 if (register_pernet_subsys(&netdev_net_ops))
7615 goto out;
7616
7617 /*
7618 * Initialise the packet receive queues.
7619 */
7620
7621 for_each_possible_cpu(i) {
7622 struct softnet_data *sd = &per_cpu(softnet_data, i);
7623
7624 skb_queue_head_init(&sd->input_pkt_queue);
7625 skb_queue_head_init(&sd->process_queue);
7626 INIT_LIST_HEAD(&sd->poll_list);
7627 sd->output_queue_tailp = &sd->output_queue;
7628 #ifdef CONFIG_RPS
7629 sd->csd.func = rps_trigger_softirq;
7630 sd->csd.info = sd;
7631 sd->cpu = i;
7632 #endif
7633
7634 sd->backlog.poll = process_backlog;
7635 sd->backlog.weight = weight_p;
7636 }
7637
7638 dev_boot_phase = 0;
7639
7640 /* The loopback device is special if any other network devices
7641 * is present in a network namespace the loopback device must
7642 * be present. Since we now dynamically allocate and free the
7643 * loopback device ensure this invariant is maintained by
7644 * keeping the loopback device as the first device on the
7645 * list of network devices. Ensuring the loopback devices
7646 * is the first device that appears and the last network device
7647 * that disappears.
7648 */
7649 if (register_pernet_device(&loopback_net_ops))
7650 goto out;
7651
7652 if (register_pernet_device(&default_device_ops))
7653 goto out;
7654
7655 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7656 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7657
7658 hotcpu_notifier(dev_cpu_callback, 0);
7659 dst_init();
7660 rc = 0;
7661 out:
7662 return rc;
7663 }
7664
7665 subsys_initcall(net_dev_init);
This page took 0.171134 seconds and 6 git commands to generate.