net: cleanup vlan_features setting in register_netdev
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0);
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static int list_netdevice(struct net_device *dev)
234 {
235 struct net *net = dev_net(dev);
236
237 ASSERT_RTNL();
238
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
245
246 dev_base_seq_inc(net);
247
248 return 0;
249 }
250
251 /* Device list removal
252 * caller must respect a RCU grace period before freeing/reusing dev
253 */
254 static void unlist_netdevice(struct net_device *dev)
255 {
256 ASSERT_RTNL();
257
258 /* Unlink dev from the device chain */
259 write_lock_bh(&dev_base_lock);
260 list_del_rcu(&dev->dev_list);
261 hlist_del_rcu(&dev->name_hlist);
262 hlist_del_rcu(&dev->index_hlist);
263 write_unlock_bh(&dev_base_lock);
264
265 dev_base_seq_inc(dev_net(dev));
266 }
267
268 /*
269 * Our notifier list
270 */
271
272 static RAW_NOTIFIER_HEAD(netdev_chain);
273
274 /*
275 * Device drivers call our routines to queue packets here. We empty the
276 * queue in the local softnet handler.
277 */
278
279 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
280 EXPORT_PER_CPU_SYMBOL(softnet_data);
281
282 #ifdef CONFIG_LOCKDEP
283 /*
284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
285 * according to dev->type
286 */
287 static const unsigned short netdev_lock_type[] =
288 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
289 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
290 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
291 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
292 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
293 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
294 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
295 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
296 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
297 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
298 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
299 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
300 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
301 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
302 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
303 ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] =
306 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
319 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
320 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
321 "_xmit_VOID", "_xmit_NONE"};
322
323 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
324 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
325
326 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
327 {
328 int i;
329
330 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
331 if (netdev_lock_type[i] == dev_type)
332 return i;
333 /* the last key is used by default */
334 return ARRAY_SIZE(netdev_lock_type) - 1;
335 }
336
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
339 {
340 int i;
341
342 i = netdev_lock_pos(dev_type);
343 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
344 netdev_lock_name[i]);
345 }
346
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 int i;
350
351 i = netdev_lock_pos(dev->type);
352 lockdep_set_class_and_name(&dev->addr_list_lock,
353 &netdev_addr_lock_key[i],
354 netdev_lock_name[i]);
355 }
356 #else
357 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
358 unsigned short dev_type)
359 {
360 }
361 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
362 {
363 }
364 #endif
365
366 /*******************************************************************************
367
368 Protocol management and registration routines
369
370 *******************************************************************************/
371
372 /*
373 * Add a protocol ID to the list. Now that the input handler is
374 * smarter we can dispense with all the messy stuff that used to be
375 * here.
376 *
377 * BEWARE!!! Protocol handlers, mangling input packets,
378 * MUST BE last in hash buckets and checking protocol handlers
379 * MUST start from promiscuous ptype_all chain in net_bh.
380 * It is true now, do not change it.
381 * Explanation follows: if protocol handler, mangling packet, will
382 * be the first on list, it is not able to sense, that packet
383 * is cloned and should be copied-on-write, so that it will
384 * change it and subsequent readers will get broken packet.
385 * --ANK (980803)
386 */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390 if (pt->type == htons(ETH_P_ALL))
391 return &ptype_all;
392 else
393 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
394 }
395
396 /**
397 * dev_add_pack - add packet handler
398 * @pt: packet type declaration
399 *
400 * Add a protocol handler to the networking stack. The passed &packet_type
401 * is linked into kernel lists and may not be freed until it has been
402 * removed from the kernel lists.
403 *
404 * This call does not sleep therefore it can not
405 * guarantee all CPU's that are in middle of receiving packets
406 * will see the new packet type (until the next received packet).
407 */
408
409 void dev_add_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412
413 spin_lock(&ptype_lock);
414 list_add_rcu(&pt->list, head);
415 spin_unlock(&ptype_lock);
416 }
417 EXPORT_SYMBOL(dev_add_pack);
418
419 /**
420 * __dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
422 *
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
427 *
428 * The packet type might still be in use by receivers
429 * and must not be freed until after all the CPU's have gone
430 * through a quiescent state.
431 */
432 void __dev_remove_pack(struct packet_type *pt)
433 {
434 struct list_head *head = ptype_head(pt);
435 struct packet_type *pt1;
436
437 spin_lock(&ptype_lock);
438
439 list_for_each_entry(pt1, head, list) {
440 if (pt == pt1) {
441 list_del_rcu(&pt->list);
442 goto out;
443 }
444 }
445
446 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
447 out:
448 spin_unlock(&ptype_lock);
449 }
450 EXPORT_SYMBOL(__dev_remove_pack);
451
452 /**
453 * dev_remove_pack - remove packet handler
454 * @pt: packet type declaration
455 *
456 * Remove a protocol handler that was previously added to the kernel
457 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
458 * from the kernel lists and can be freed or reused once this function
459 * returns.
460 *
461 * This call sleeps to guarantee that no CPU is looking at the packet
462 * type after return.
463 */
464 void dev_remove_pack(struct packet_type *pt)
465 {
466 __dev_remove_pack(pt);
467
468 synchronize_net();
469 }
470 EXPORT_SYMBOL(dev_remove_pack);
471
472 /******************************************************************************
473
474 Device Boot-time Settings Routines
475
476 *******************************************************************************/
477
478 /* Boot time configuration table */
479 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
480
481 /**
482 * netdev_boot_setup_add - add new setup entry
483 * @name: name of the device
484 * @map: configured settings for the device
485 *
486 * Adds new setup entry to the dev_boot_setup list. The function
487 * returns 0 on error and 1 on success. This is a generic routine to
488 * all netdevices.
489 */
490 static int netdev_boot_setup_add(char *name, struct ifmap *map)
491 {
492 struct netdev_boot_setup *s;
493 int i;
494
495 s = dev_boot_setup;
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
498 memset(s[i].name, 0, sizeof(s[i].name));
499 strlcpy(s[i].name, name, IFNAMSIZ);
500 memcpy(&s[i].map, map, sizeof(s[i].map));
501 break;
502 }
503 }
504
505 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
506 }
507
508 /**
509 * netdev_boot_setup_check - check boot time settings
510 * @dev: the netdevice
511 *
512 * Check boot time settings for the device.
513 * The found settings are set for the device to be used
514 * later in the device probing.
515 * Returns 0 if no settings found, 1 if they are.
516 */
517 int netdev_boot_setup_check(struct net_device *dev)
518 {
519 struct netdev_boot_setup *s = dev_boot_setup;
520 int i;
521
522 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
523 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
524 !strcmp(dev->name, s[i].name)) {
525 dev->irq = s[i].map.irq;
526 dev->base_addr = s[i].map.base_addr;
527 dev->mem_start = s[i].map.mem_start;
528 dev->mem_end = s[i].map.mem_end;
529 return 1;
530 }
531 }
532 return 0;
533 }
534 EXPORT_SYMBOL(netdev_boot_setup_check);
535
536
537 /**
538 * netdev_boot_base - get address from boot time settings
539 * @prefix: prefix for network device
540 * @unit: id for network device
541 *
542 * Check boot time settings for the base address of device.
543 * The found settings are set for the device to be used
544 * later in the device probing.
545 * Returns 0 if no settings found.
546 */
547 unsigned long netdev_boot_base(const char *prefix, int unit)
548 {
549 const struct netdev_boot_setup *s = dev_boot_setup;
550 char name[IFNAMSIZ];
551 int i;
552
553 sprintf(name, "%s%d", prefix, unit);
554
555 /*
556 * If device already registered then return base of 1
557 * to indicate not to probe for this interface
558 */
559 if (__dev_get_by_name(&init_net, name))
560 return 1;
561
562 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
563 if (!strcmp(name, s[i].name))
564 return s[i].map.base_addr;
565 return 0;
566 }
567
568 /*
569 * Saves at boot time configured settings for any netdevice.
570 */
571 int __init netdev_boot_setup(char *str)
572 {
573 int ints[5];
574 struct ifmap map;
575
576 str = get_options(str, ARRAY_SIZE(ints), ints);
577 if (!str || !*str)
578 return 0;
579
580 /* Save settings */
581 memset(&map, 0, sizeof(map));
582 if (ints[0] > 0)
583 map.irq = ints[1];
584 if (ints[0] > 1)
585 map.base_addr = ints[2];
586 if (ints[0] > 2)
587 map.mem_start = ints[3];
588 if (ints[0] > 3)
589 map.mem_end = ints[4];
590
591 /* Add new entry to the list */
592 return netdev_boot_setup_add(str, &map);
593 }
594
595 __setup("netdev=", netdev_boot_setup);
596
597 /*******************************************************************************
598
599 Device Interface Subroutines
600
601 *******************************************************************************/
602
603 /**
604 * __dev_get_by_name - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name. Must be called under RTNL semaphore
609 * or @dev_base_lock. If the name is found a pointer to the device
610 * is returned. If the name is not found then %NULL is returned. The
611 * reference counters are not incremented so the caller must be
612 * careful with locks.
613 */
614
615 struct net_device *__dev_get_by_name(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(__dev_get_by_name);
628
629 /**
630 * dev_get_by_name_rcu - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name.
635 * If the name is found a pointer to the device is returned.
636 * If the name is not found then %NULL is returned.
637 * The reference counters are not incremented so the caller must be
638 * careful with locks. The caller must hold RCU lock.
639 */
640
641 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
642 {
643 struct hlist_node *p;
644 struct net_device *dev;
645 struct hlist_head *head = dev_name_hash(net, name);
646
647 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
648 if (!strncmp(dev->name, name, IFNAMSIZ))
649 return dev;
650
651 return NULL;
652 }
653 EXPORT_SYMBOL(dev_get_by_name_rcu);
654
655 /**
656 * dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. This can be called from any
661 * context and does its own locking. The returned handle has
662 * the usage count incremented and the caller must use dev_put() to
663 * release it when it is no longer needed. %NULL is returned if no
664 * matching device is found.
665 */
666
667 struct net_device *dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670
671 rcu_read_lock();
672 dev = dev_get_by_name_rcu(net, name);
673 if (dev)
674 dev_hold(dev);
675 rcu_read_unlock();
676 return dev;
677 }
678 EXPORT_SYMBOL(dev_get_by_name);
679
680 /**
681 * __dev_get_by_index - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold either the RTNL semaphore
689 * or @dev_base_lock.
690 */
691
692 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
693 {
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
697
698 hlist_for_each_entry(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
700 return dev;
701
702 return NULL;
703 }
704 EXPORT_SYMBOL(__dev_get_by_index);
705
706 /**
707 * dev_get_by_index_rcu - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns %NULL if the device
712 * is not found or a pointer to the device. The device has not
713 * had its reference counter increased so the caller must be careful
714 * about locking. The caller must hold RCU lock.
715 */
716
717 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
718 {
719 struct hlist_node *p;
720 struct net_device *dev;
721 struct hlist_head *head = dev_index_hash(net, ifindex);
722
723 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
724 if (dev->ifindex == ifindex)
725 return dev;
726
727 return NULL;
728 }
729 EXPORT_SYMBOL(dev_get_by_index_rcu);
730
731
732 /**
733 * dev_get_by_index - find a device by its ifindex
734 * @net: the applicable net namespace
735 * @ifindex: index of device
736 *
737 * Search for an interface by index. Returns NULL if the device
738 * is not found or a pointer to the device. The device returned has
739 * had a reference added and the pointer is safe until the user calls
740 * dev_put to indicate they have finished with it.
741 */
742
743 struct net_device *dev_get_by_index(struct net *net, int ifindex)
744 {
745 struct net_device *dev;
746
747 rcu_read_lock();
748 dev = dev_get_by_index_rcu(net, ifindex);
749 if (dev)
750 dev_hold(dev);
751 rcu_read_unlock();
752 return dev;
753 }
754 EXPORT_SYMBOL(dev_get_by_index);
755
756 /**
757 * dev_getbyhwaddr_rcu - find a device by its hardware address
758 * @net: the applicable net namespace
759 * @type: media type of device
760 * @ha: hardware address
761 *
762 * Search for an interface by MAC address. Returns NULL if the device
763 * is not found or a pointer to the device.
764 * The caller must hold RCU or RTNL.
765 * The returned device has not had its ref count increased
766 * and the caller must therefore be careful about locking
767 *
768 */
769
770 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
771 const char *ha)
772 {
773 struct net_device *dev;
774
775 for_each_netdev_rcu(net, dev)
776 if (dev->type == type &&
777 !memcmp(dev->dev_addr, ha, dev->addr_len))
778 return dev;
779
780 return NULL;
781 }
782 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
783
784 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
785 {
786 struct net_device *dev;
787
788 ASSERT_RTNL();
789 for_each_netdev(net, dev)
790 if (dev->type == type)
791 return dev;
792
793 return NULL;
794 }
795 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
796
797 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
798 {
799 struct net_device *dev, *ret = NULL;
800
801 rcu_read_lock();
802 for_each_netdev_rcu(net, dev)
803 if (dev->type == type) {
804 dev_hold(dev);
805 ret = dev;
806 break;
807 }
808 rcu_read_unlock();
809 return ret;
810 }
811 EXPORT_SYMBOL(dev_getfirstbyhwtype);
812
813 /**
814 * dev_get_by_flags_rcu - find any device with given flags
815 * @net: the applicable net namespace
816 * @if_flags: IFF_* values
817 * @mask: bitmask of bits in if_flags to check
818 *
819 * Search for any interface with the given flags. Returns NULL if a device
820 * is not found or a pointer to the device. Must be called inside
821 * rcu_read_lock(), and result refcount is unchanged.
822 */
823
824 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
825 unsigned short mask)
826 {
827 struct net_device *dev, *ret;
828
829 ret = NULL;
830 for_each_netdev_rcu(net, dev) {
831 if (((dev->flags ^ if_flags) & mask) == 0) {
832 ret = dev;
833 break;
834 }
835 }
836 return ret;
837 }
838 EXPORT_SYMBOL(dev_get_by_flags_rcu);
839
840 /**
841 * dev_valid_name - check if name is okay for network device
842 * @name: name string
843 *
844 * Network device names need to be valid file names to
845 * to allow sysfs to work. We also disallow any kind of
846 * whitespace.
847 */
848 int dev_valid_name(const char *name)
849 {
850 if (*name == '\0')
851 return 0;
852 if (strlen(name) >= IFNAMSIZ)
853 return 0;
854 if (!strcmp(name, ".") || !strcmp(name, ".."))
855 return 0;
856
857 while (*name) {
858 if (*name == '/' || isspace(*name))
859 return 0;
860 name++;
861 }
862 return 1;
863 }
864 EXPORT_SYMBOL(dev_valid_name);
865
866 /**
867 * __dev_alloc_name - allocate a name for a device
868 * @net: network namespace to allocate the device name in
869 * @name: name format string
870 * @buf: scratch buffer and result name string
871 *
872 * Passed a format string - eg "lt%d" it will try and find a suitable
873 * id. It scans list of devices to build up a free map, then chooses
874 * the first empty slot. The caller must hold the dev_base or rtnl lock
875 * while allocating the name and adding the device in order to avoid
876 * duplicates.
877 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
878 * Returns the number of the unit assigned or a negative errno code.
879 */
880
881 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
882 {
883 int i = 0;
884 const char *p;
885 const int max_netdevices = 8*PAGE_SIZE;
886 unsigned long *inuse;
887 struct net_device *d;
888
889 p = strnchr(name, IFNAMSIZ-1, '%');
890 if (p) {
891 /*
892 * Verify the string as this thing may have come from
893 * the user. There must be either one "%d" and no other "%"
894 * characters.
895 */
896 if (p[1] != 'd' || strchr(p + 2, '%'))
897 return -EINVAL;
898
899 /* Use one page as a bit array of possible slots */
900 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
901 if (!inuse)
902 return -ENOMEM;
903
904 for_each_netdev(net, d) {
905 if (!sscanf(d->name, name, &i))
906 continue;
907 if (i < 0 || i >= max_netdevices)
908 continue;
909
910 /* avoid cases where sscanf is not exact inverse of printf */
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!strncmp(buf, d->name, IFNAMSIZ))
913 set_bit(i, inuse);
914 }
915
916 i = find_first_zero_bit(inuse, max_netdevices);
917 free_page((unsigned long) inuse);
918 }
919
920 if (buf != name)
921 snprintf(buf, IFNAMSIZ, name, i);
922 if (!__dev_get_by_name(net, buf))
923 return i;
924
925 /* It is possible to run out of possible slots
926 * when the name is long and there isn't enough space left
927 * for the digits, or if all bits are used.
928 */
929 return -ENFILE;
930 }
931
932 /**
933 * dev_alloc_name - allocate a name for a device
934 * @dev: device
935 * @name: name format string
936 *
937 * Passed a format string - eg "lt%d" it will try and find a suitable
938 * id. It scans list of devices to build up a free map, then chooses
939 * the first empty slot. The caller must hold the dev_base or rtnl lock
940 * while allocating the name and adding the device in order to avoid
941 * duplicates.
942 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
943 * Returns the number of the unit assigned or a negative errno code.
944 */
945
946 int dev_alloc_name(struct net_device *dev, const char *name)
947 {
948 char buf[IFNAMSIZ];
949 struct net *net;
950 int ret;
951
952 BUG_ON(!dev_net(dev));
953 net = dev_net(dev);
954 ret = __dev_alloc_name(net, name, buf);
955 if (ret >= 0)
956 strlcpy(dev->name, buf, IFNAMSIZ);
957 return ret;
958 }
959 EXPORT_SYMBOL(dev_alloc_name);
960
961 static int dev_get_valid_name(struct net_device *dev, const char *name)
962 {
963 struct net *net;
964
965 BUG_ON(!dev_net(dev));
966 net = dev_net(dev);
967
968 if (!dev_valid_name(name))
969 return -EINVAL;
970
971 if (strchr(name, '%'))
972 return dev_alloc_name(dev, name);
973 else if (__dev_get_by_name(net, name))
974 return -EEXIST;
975 else if (dev->name != name)
976 strlcpy(dev->name, name, IFNAMSIZ);
977
978 return 0;
979 }
980
981 /**
982 * dev_change_name - change name of a device
983 * @dev: device
984 * @newname: name (or format string) must be at least IFNAMSIZ
985 *
986 * Change name of a device, can pass format strings "eth%d".
987 * for wildcarding.
988 */
989 int dev_change_name(struct net_device *dev, const char *newname)
990 {
991 char oldname[IFNAMSIZ];
992 int err = 0;
993 int ret;
994 struct net *net;
995
996 ASSERT_RTNL();
997 BUG_ON(!dev_net(dev));
998
999 net = dev_net(dev);
1000 if (dev->flags & IFF_UP)
1001 return -EBUSY;
1002
1003 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1004 return 0;
1005
1006 memcpy(oldname, dev->name, IFNAMSIZ);
1007
1008 err = dev_get_valid_name(dev, newname);
1009 if (err < 0)
1010 return err;
1011
1012 rollback:
1013 ret = device_rename(&dev->dev, dev->name);
1014 if (ret) {
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1016 return ret;
1017 }
1018
1019 write_lock_bh(&dev_base_lock);
1020 hlist_del_rcu(&dev->name_hlist);
1021 write_unlock_bh(&dev_base_lock);
1022
1023 synchronize_rcu();
1024
1025 write_lock_bh(&dev_base_lock);
1026 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1027 write_unlock_bh(&dev_base_lock);
1028
1029 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1030 ret = notifier_to_errno(ret);
1031
1032 if (ret) {
1033 /* err >= 0 after dev_alloc_name() or stores the first errno */
1034 if (err >= 0) {
1035 err = ret;
1036 memcpy(dev->name, oldname, IFNAMSIZ);
1037 goto rollback;
1038 } else {
1039 printk(KERN_ERR
1040 "%s: name change rollback failed: %d.\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 ASSERT_RTNL();
1059
1060 if (len >= IFALIASZ)
1061 return -EINVAL;
1062
1063 if (!len) {
1064 if (dev->ifalias) {
1065 kfree(dev->ifalias);
1066 dev->ifalias = NULL;
1067 }
1068 return 0;
1069 }
1070
1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072 if (!dev->ifalias)
1073 return -ENOMEM;
1074
1075 strlcpy(dev->ifalias, alias, len+1);
1076 return len;
1077 }
1078
1079
1080 /**
1081 * netdev_features_change - device changes features
1082 * @dev: device to cause notification
1083 *
1084 * Called to indicate a device has changed features.
1085 */
1086 void netdev_features_change(struct net_device *dev)
1087 {
1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089 }
1090 EXPORT_SYMBOL(netdev_features_change);
1091
1092 /**
1093 * netdev_state_change - device changes state
1094 * @dev: device to cause notification
1095 *
1096 * Called to indicate a device has changed state. This function calls
1097 * the notifier chains for netdev_chain and sends a NEWLINK message
1098 * to the routing socket.
1099 */
1100 void netdev_state_change(struct net_device *dev)
1101 {
1102 if (dev->flags & IFF_UP) {
1103 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1105 }
1106 }
1107 EXPORT_SYMBOL(netdev_state_change);
1108
1109 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1110 {
1111 return call_netdevice_notifiers(event, dev);
1112 }
1113 EXPORT_SYMBOL(netdev_bonding_change);
1114
1115 /**
1116 * dev_load - load a network module
1117 * @net: the applicable net namespace
1118 * @name: name of interface
1119 *
1120 * If a network interface is not present and the process has suitable
1121 * privileges this function loads the module. If module loading is not
1122 * available in this kernel then it becomes a nop.
1123 */
1124
1125 void dev_load(struct net *net, const char *name)
1126 {
1127 struct net_device *dev;
1128 int no_module;
1129
1130 rcu_read_lock();
1131 dev = dev_get_by_name_rcu(net, name);
1132 rcu_read_unlock();
1133
1134 no_module = !dev;
1135 if (no_module && capable(CAP_NET_ADMIN))
1136 no_module = request_module("netdev-%s", name);
1137 if (no_module && capable(CAP_SYS_MODULE)) {
1138 if (!request_module("%s", name))
1139 pr_err("Loading kernel module for a network device "
1140 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1141 "instead\n", name);
1142 }
1143 }
1144 EXPORT_SYMBOL(dev_load);
1145
1146 static int __dev_open(struct net_device *dev)
1147 {
1148 const struct net_device_ops *ops = dev->netdev_ops;
1149 int ret;
1150
1151 ASSERT_RTNL();
1152
1153 if (!netif_device_present(dev))
1154 return -ENODEV;
1155
1156 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157 ret = notifier_to_errno(ret);
1158 if (ret)
1159 return ret;
1160
1161 set_bit(__LINK_STATE_START, &dev->state);
1162
1163 if (ops->ndo_validate_addr)
1164 ret = ops->ndo_validate_addr(dev);
1165
1166 if (!ret && ops->ndo_open)
1167 ret = ops->ndo_open(dev);
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 dev->flags |= IFF_UP;
1173 net_dmaengine_get();
1174 dev_set_rx_mode(dev);
1175 dev_activate(dev);
1176 }
1177
1178 return ret;
1179 }
1180
1181 /**
1182 * dev_open - prepare an interface for use.
1183 * @dev: device to open
1184 *
1185 * Takes a device from down to up state. The device's private open
1186 * function is invoked and then the multicast lists are loaded. Finally
1187 * the device is moved into the up state and a %NETDEV_UP message is
1188 * sent to the netdev notifier chain.
1189 *
1190 * Calling this function on an active interface is a nop. On a failure
1191 * a negative errno code is returned.
1192 */
1193 int dev_open(struct net_device *dev)
1194 {
1195 int ret;
1196
1197 if (dev->flags & IFF_UP)
1198 return 0;
1199
1200 ret = __dev_open(dev);
1201 if (ret < 0)
1202 return ret;
1203
1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205 call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207 return ret;
1208 }
1209 EXPORT_SYMBOL(dev_open);
1210
1211 static int __dev_close_many(struct list_head *head)
1212 {
1213 struct net_device *dev;
1214
1215 ASSERT_RTNL();
1216 might_sleep();
1217
1218 list_for_each_entry(dev, head, unreg_list) {
1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221 clear_bit(__LINK_STATE_START, &dev->state);
1222
1223 /* Synchronize to scheduled poll. We cannot touch poll list, it
1224 * can be even on different cpu. So just clear netif_running().
1225 *
1226 * dev->stop() will invoke napi_disable() on all of it's
1227 * napi_struct instances on this device.
1228 */
1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230 }
1231
1232 dev_deactivate_many(head);
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 /*
1238 * Call the device specific close. This cannot fail.
1239 * Only if device is UP
1240 *
1241 * We allow it to be called even after a DETACH hot-plug
1242 * event.
1243 */
1244 if (ops->ndo_stop)
1245 ops->ndo_stop(dev);
1246
1247 dev->flags &= ~IFF_UP;
1248 net_dmaengine_put();
1249 }
1250
1251 return 0;
1252 }
1253
1254 static int __dev_close(struct net_device *dev)
1255 {
1256 int retval;
1257 LIST_HEAD(single);
1258
1259 list_add(&dev->unreg_list, &single);
1260 retval = __dev_close_many(&single);
1261 list_del(&single);
1262 return retval;
1263 }
1264
1265 static int dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev, *tmp;
1268 LIST_HEAD(tmp_list);
1269
1270 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1271 if (!(dev->flags & IFF_UP))
1272 list_move(&dev->unreg_list, &tmp_list);
1273
1274 __dev_close_many(head);
1275
1276 list_for_each_entry(dev, head, unreg_list) {
1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278 call_netdevice_notifiers(NETDEV_DOWN, dev);
1279 }
1280
1281 /* rollback_registered_many needs the complete original list */
1282 list_splice(&tmp_list, head);
1283 return 0;
1284 }
1285
1286 /**
1287 * dev_close - shutdown an interface.
1288 * @dev: device to shutdown
1289 *
1290 * This function moves an active device into down state. A
1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 * chain.
1294 */
1295 int dev_close(struct net_device *dev)
1296 {
1297 if (dev->flags & IFF_UP) {
1298 LIST_HEAD(single);
1299
1300 list_add(&dev->unreg_list, &single);
1301 dev_close_many(&single);
1302 list_del(&single);
1303 }
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 u32 flags;
1320
1321 /*
1322 * If we're trying to disable lro on a vlan device
1323 * use the underlying physical device instead
1324 */
1325 if (is_vlan_dev(dev))
1326 dev = vlan_dev_real_dev(dev);
1327
1328 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1329 flags = dev->ethtool_ops->get_flags(dev);
1330 else
1331 flags = ethtool_op_get_flags(dev);
1332
1333 if (!(flags & ETH_FLAG_LRO))
1334 return;
1335
1336 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1337 if (unlikely(dev->features & NETIF_F_LRO))
1338 netdev_WARN(dev, "failed to disable LRO!\n");
1339 }
1340 EXPORT_SYMBOL(dev_disable_lro);
1341
1342
1343 static int dev_boot_phase = 1;
1344
1345 /**
1346 * register_netdevice_notifier - register a network notifier block
1347 * @nb: notifier
1348 *
1349 * Register a notifier to be called when network device events occur.
1350 * The notifier passed is linked into the kernel structures and must
1351 * not be reused until it has been unregistered. A negative errno code
1352 * is returned on a failure.
1353 *
1354 * When registered all registration and up events are replayed
1355 * to the new notifier to allow device to have a race free
1356 * view of the network device list.
1357 */
1358
1359 int register_netdevice_notifier(struct notifier_block *nb)
1360 {
1361 struct net_device *dev;
1362 struct net_device *last;
1363 struct net *net;
1364 int err;
1365
1366 rtnl_lock();
1367 err = raw_notifier_chain_register(&netdev_chain, nb);
1368 if (err)
1369 goto unlock;
1370 if (dev_boot_phase)
1371 goto unlock;
1372 for_each_net(net) {
1373 for_each_netdev(net, dev) {
1374 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1375 err = notifier_to_errno(err);
1376 if (err)
1377 goto rollback;
1378
1379 if (!(dev->flags & IFF_UP))
1380 continue;
1381
1382 nb->notifier_call(nb, NETDEV_UP, dev);
1383 }
1384 }
1385
1386 unlock:
1387 rtnl_unlock();
1388 return err;
1389
1390 rollback:
1391 last = dev;
1392 for_each_net(net) {
1393 for_each_netdev(net, dev) {
1394 if (dev == last)
1395 break;
1396
1397 if (dev->flags & IFF_UP) {
1398 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1399 nb->notifier_call(nb, NETDEV_DOWN, dev);
1400 }
1401 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1402 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1403 }
1404 }
1405
1406 raw_notifier_chain_unregister(&netdev_chain, nb);
1407 goto unlock;
1408 }
1409 EXPORT_SYMBOL(register_netdevice_notifier);
1410
1411 /**
1412 * unregister_netdevice_notifier - unregister a network notifier block
1413 * @nb: notifier
1414 *
1415 * Unregister a notifier previously registered by
1416 * register_netdevice_notifier(). The notifier is unlinked into the
1417 * kernel structures and may then be reused. A negative errno code
1418 * is returned on a failure.
1419 */
1420
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 int err;
1424
1425 rtnl_lock();
1426 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1427 rtnl_unlock();
1428 return err;
1429 }
1430 EXPORT_SYMBOL(unregister_netdevice_notifier);
1431
1432 /**
1433 * call_netdevice_notifiers - call all network notifier blocks
1434 * @val: value passed unmodified to notifier function
1435 * @dev: net_device pointer passed unmodified to notifier function
1436 *
1437 * Call all network notifier blocks. Parameters and return value
1438 * are as for raw_notifier_call_chain().
1439 */
1440
1441 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1442 {
1443 ASSERT_RTNL();
1444 return raw_notifier_call_chain(&netdev_chain, val, dev);
1445 }
1446 EXPORT_SYMBOL(call_netdevice_notifiers);
1447
1448 /* When > 0 there are consumers of rx skb time stamps */
1449 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1450
1451 void net_enable_timestamp(void)
1452 {
1453 atomic_inc(&netstamp_needed);
1454 }
1455 EXPORT_SYMBOL(net_enable_timestamp);
1456
1457 void net_disable_timestamp(void)
1458 {
1459 atomic_dec(&netstamp_needed);
1460 }
1461 EXPORT_SYMBOL(net_disable_timestamp);
1462
1463 static inline void net_timestamp_set(struct sk_buff *skb)
1464 {
1465 if (atomic_read(&netstamp_needed))
1466 __net_timestamp(skb);
1467 else
1468 skb->tstamp.tv64 = 0;
1469 }
1470
1471 static inline void net_timestamp_check(struct sk_buff *skb)
1472 {
1473 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1474 __net_timestamp(skb);
1475 }
1476
1477 static inline bool is_skb_forwardable(struct net_device *dev,
1478 struct sk_buff *skb)
1479 {
1480 unsigned int len;
1481
1482 if (!(dev->flags & IFF_UP))
1483 return false;
1484
1485 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1486 if (skb->len <= len)
1487 return true;
1488
1489 /* if TSO is enabled, we don't care about the length as the packet
1490 * could be forwarded without being segmented before
1491 */
1492 if (skb_is_gso(skb))
1493 return true;
1494
1495 return false;
1496 }
1497
1498 /**
1499 * dev_forward_skb - loopback an skb to another netif
1500 *
1501 * @dev: destination network device
1502 * @skb: buffer to forward
1503 *
1504 * return values:
1505 * NET_RX_SUCCESS (no congestion)
1506 * NET_RX_DROP (packet was dropped, but freed)
1507 *
1508 * dev_forward_skb can be used for injecting an skb from the
1509 * start_xmit function of one device into the receive queue
1510 * of another device.
1511 *
1512 * The receiving device may be in another namespace, so
1513 * we have to clear all information in the skb that could
1514 * impact namespace isolation.
1515 */
1516 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1517 {
1518 skb_orphan(skb);
1519 nf_reset(skb);
1520
1521 if (unlikely(!is_skb_forwardable(dev, skb))) {
1522 atomic_long_inc(&dev->rx_dropped);
1523 kfree_skb(skb);
1524 return NET_RX_DROP;
1525 }
1526 skb_set_dev(skb, dev);
1527 skb->tstamp.tv64 = 0;
1528 skb->pkt_type = PACKET_HOST;
1529 skb->protocol = eth_type_trans(skb, dev);
1530 return netif_rx(skb);
1531 }
1532 EXPORT_SYMBOL_GPL(dev_forward_skb);
1533
1534 static inline int deliver_skb(struct sk_buff *skb,
1535 struct packet_type *pt_prev,
1536 struct net_device *orig_dev)
1537 {
1538 atomic_inc(&skb->users);
1539 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1540 }
1541
1542 /*
1543 * Support routine. Sends outgoing frames to any network
1544 * taps currently in use.
1545 */
1546
1547 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1548 {
1549 struct packet_type *ptype;
1550 struct sk_buff *skb2 = NULL;
1551 struct packet_type *pt_prev = NULL;
1552
1553 rcu_read_lock();
1554 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1555 /* Never send packets back to the socket
1556 * they originated from - MvS (miquels@drinkel.ow.org)
1557 */
1558 if ((ptype->dev == dev || !ptype->dev) &&
1559 (ptype->af_packet_priv == NULL ||
1560 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1561 if (pt_prev) {
1562 deliver_skb(skb2, pt_prev, skb->dev);
1563 pt_prev = ptype;
1564 continue;
1565 }
1566
1567 skb2 = skb_clone(skb, GFP_ATOMIC);
1568 if (!skb2)
1569 break;
1570
1571 net_timestamp_set(skb2);
1572
1573 /* skb->nh should be correctly
1574 set by sender, so that the second statement is
1575 just protection against buggy protocols.
1576 */
1577 skb_reset_mac_header(skb2);
1578
1579 if (skb_network_header(skb2) < skb2->data ||
1580 skb2->network_header > skb2->tail) {
1581 if (net_ratelimit())
1582 printk(KERN_CRIT "protocol %04x is "
1583 "buggy, dev %s\n",
1584 ntohs(skb2->protocol),
1585 dev->name);
1586 skb_reset_network_header(skb2);
1587 }
1588
1589 skb2->transport_header = skb2->network_header;
1590 skb2->pkt_type = PACKET_OUTGOING;
1591 pt_prev = ptype;
1592 }
1593 }
1594 if (pt_prev)
1595 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1596 rcu_read_unlock();
1597 }
1598
1599 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1600 * @dev: Network device
1601 * @txq: number of queues available
1602 *
1603 * If real_num_tx_queues is changed the tc mappings may no longer be
1604 * valid. To resolve this verify the tc mapping remains valid and if
1605 * not NULL the mapping. With no priorities mapping to this
1606 * offset/count pair it will no longer be used. In the worst case TC0
1607 * is invalid nothing can be done so disable priority mappings. If is
1608 * expected that drivers will fix this mapping if they can before
1609 * calling netif_set_real_num_tx_queues.
1610 */
1611 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1612 {
1613 int i;
1614 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1615
1616 /* If TC0 is invalidated disable TC mapping */
1617 if (tc->offset + tc->count > txq) {
1618 pr_warning("Number of in use tx queues changed "
1619 "invalidating tc mappings. Priority "
1620 "traffic classification disabled!\n");
1621 dev->num_tc = 0;
1622 return;
1623 }
1624
1625 /* Invalidated prio to tc mappings set to TC0 */
1626 for (i = 1; i < TC_BITMASK + 1; i++) {
1627 int q = netdev_get_prio_tc_map(dev, i);
1628
1629 tc = &dev->tc_to_txq[q];
1630 if (tc->offset + tc->count > txq) {
1631 pr_warning("Number of in use tx queues "
1632 "changed. Priority %i to tc "
1633 "mapping %i is no longer valid "
1634 "setting map to 0\n",
1635 i, q);
1636 netdev_set_prio_tc_map(dev, i, 0);
1637 }
1638 }
1639 }
1640
1641 /*
1642 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1643 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1644 */
1645 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1646 {
1647 int rc;
1648
1649 if (txq < 1 || txq > dev->num_tx_queues)
1650 return -EINVAL;
1651
1652 if (dev->reg_state == NETREG_REGISTERED ||
1653 dev->reg_state == NETREG_UNREGISTERING) {
1654 ASSERT_RTNL();
1655
1656 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1657 txq);
1658 if (rc)
1659 return rc;
1660
1661 if (dev->num_tc)
1662 netif_setup_tc(dev, txq);
1663
1664 if (txq < dev->real_num_tx_queues)
1665 qdisc_reset_all_tx_gt(dev, txq);
1666 }
1667
1668 dev->real_num_tx_queues = txq;
1669 return 0;
1670 }
1671 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1672
1673 #ifdef CONFIG_RPS
1674 /**
1675 * netif_set_real_num_rx_queues - set actual number of RX queues used
1676 * @dev: Network device
1677 * @rxq: Actual number of RX queues
1678 *
1679 * This must be called either with the rtnl_lock held or before
1680 * registration of the net device. Returns 0 on success, or a
1681 * negative error code. If called before registration, it always
1682 * succeeds.
1683 */
1684 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1685 {
1686 int rc;
1687
1688 if (rxq < 1 || rxq > dev->num_rx_queues)
1689 return -EINVAL;
1690
1691 if (dev->reg_state == NETREG_REGISTERED) {
1692 ASSERT_RTNL();
1693
1694 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1695 rxq);
1696 if (rc)
1697 return rc;
1698 }
1699
1700 dev->real_num_rx_queues = rxq;
1701 return 0;
1702 }
1703 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1704 #endif
1705
1706 static inline void __netif_reschedule(struct Qdisc *q)
1707 {
1708 struct softnet_data *sd;
1709 unsigned long flags;
1710
1711 local_irq_save(flags);
1712 sd = &__get_cpu_var(softnet_data);
1713 q->next_sched = NULL;
1714 *sd->output_queue_tailp = q;
1715 sd->output_queue_tailp = &q->next_sched;
1716 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1717 local_irq_restore(flags);
1718 }
1719
1720 void __netif_schedule(struct Qdisc *q)
1721 {
1722 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1723 __netif_reschedule(q);
1724 }
1725 EXPORT_SYMBOL(__netif_schedule);
1726
1727 void dev_kfree_skb_irq(struct sk_buff *skb)
1728 {
1729 if (atomic_dec_and_test(&skb->users)) {
1730 struct softnet_data *sd;
1731 unsigned long flags;
1732
1733 local_irq_save(flags);
1734 sd = &__get_cpu_var(softnet_data);
1735 skb->next = sd->completion_queue;
1736 sd->completion_queue = skb;
1737 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1738 local_irq_restore(flags);
1739 }
1740 }
1741 EXPORT_SYMBOL(dev_kfree_skb_irq);
1742
1743 void dev_kfree_skb_any(struct sk_buff *skb)
1744 {
1745 if (in_irq() || irqs_disabled())
1746 dev_kfree_skb_irq(skb);
1747 else
1748 dev_kfree_skb(skb);
1749 }
1750 EXPORT_SYMBOL(dev_kfree_skb_any);
1751
1752
1753 /**
1754 * netif_device_detach - mark device as removed
1755 * @dev: network device
1756 *
1757 * Mark device as removed from system and therefore no longer available.
1758 */
1759 void netif_device_detach(struct net_device *dev)
1760 {
1761 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1762 netif_running(dev)) {
1763 netif_tx_stop_all_queues(dev);
1764 }
1765 }
1766 EXPORT_SYMBOL(netif_device_detach);
1767
1768 /**
1769 * netif_device_attach - mark device as attached
1770 * @dev: network device
1771 *
1772 * Mark device as attached from system and restart if needed.
1773 */
1774 void netif_device_attach(struct net_device *dev)
1775 {
1776 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1777 netif_running(dev)) {
1778 netif_tx_wake_all_queues(dev);
1779 __netdev_watchdog_up(dev);
1780 }
1781 }
1782 EXPORT_SYMBOL(netif_device_attach);
1783
1784 /**
1785 * skb_dev_set -- assign a new device to a buffer
1786 * @skb: buffer for the new device
1787 * @dev: network device
1788 *
1789 * If an skb is owned by a device already, we have to reset
1790 * all data private to the namespace a device belongs to
1791 * before assigning it a new device.
1792 */
1793 #ifdef CONFIG_NET_NS
1794 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1795 {
1796 skb_dst_drop(skb);
1797 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1798 secpath_reset(skb);
1799 nf_reset(skb);
1800 skb_init_secmark(skb);
1801 skb->mark = 0;
1802 skb->priority = 0;
1803 skb->nf_trace = 0;
1804 skb->ipvs_property = 0;
1805 #ifdef CONFIG_NET_SCHED
1806 skb->tc_index = 0;
1807 #endif
1808 }
1809 skb->dev = dev;
1810 }
1811 EXPORT_SYMBOL(skb_set_dev);
1812 #endif /* CONFIG_NET_NS */
1813
1814 /*
1815 * Invalidate hardware checksum when packet is to be mangled, and
1816 * complete checksum manually on outgoing path.
1817 */
1818 int skb_checksum_help(struct sk_buff *skb)
1819 {
1820 __wsum csum;
1821 int ret = 0, offset;
1822
1823 if (skb->ip_summed == CHECKSUM_COMPLETE)
1824 goto out_set_summed;
1825
1826 if (unlikely(skb_shinfo(skb)->gso_size)) {
1827 /* Let GSO fix up the checksum. */
1828 goto out_set_summed;
1829 }
1830
1831 offset = skb_checksum_start_offset(skb);
1832 BUG_ON(offset >= skb_headlen(skb));
1833 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1834
1835 offset += skb->csum_offset;
1836 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1837
1838 if (skb_cloned(skb) &&
1839 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1840 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1841 if (ret)
1842 goto out;
1843 }
1844
1845 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1846 out_set_summed:
1847 skb->ip_summed = CHECKSUM_NONE;
1848 out:
1849 return ret;
1850 }
1851 EXPORT_SYMBOL(skb_checksum_help);
1852
1853 /**
1854 * skb_gso_segment - Perform segmentation on skb.
1855 * @skb: buffer to segment
1856 * @features: features for the output path (see dev->features)
1857 *
1858 * This function segments the given skb and returns a list of segments.
1859 *
1860 * It may return NULL if the skb requires no segmentation. This is
1861 * only possible when GSO is used for verifying header integrity.
1862 */
1863 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1864 {
1865 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1866 struct packet_type *ptype;
1867 __be16 type = skb->protocol;
1868 int vlan_depth = ETH_HLEN;
1869 int err;
1870
1871 while (type == htons(ETH_P_8021Q)) {
1872 struct vlan_hdr *vh;
1873
1874 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1875 return ERR_PTR(-EINVAL);
1876
1877 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1878 type = vh->h_vlan_encapsulated_proto;
1879 vlan_depth += VLAN_HLEN;
1880 }
1881
1882 skb_reset_mac_header(skb);
1883 skb->mac_len = skb->network_header - skb->mac_header;
1884 __skb_pull(skb, skb->mac_len);
1885
1886 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1887 struct net_device *dev = skb->dev;
1888 struct ethtool_drvinfo info = {};
1889
1890 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1891 dev->ethtool_ops->get_drvinfo(dev, &info);
1892
1893 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1894 info.driver, dev ? dev->features : 0L,
1895 skb->sk ? skb->sk->sk_route_caps : 0L,
1896 skb->len, skb->data_len, skb->ip_summed);
1897
1898 if (skb_header_cloned(skb) &&
1899 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1900 return ERR_PTR(err);
1901 }
1902
1903 rcu_read_lock();
1904 list_for_each_entry_rcu(ptype,
1905 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1906 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1907 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1908 err = ptype->gso_send_check(skb);
1909 segs = ERR_PTR(err);
1910 if (err || skb_gso_ok(skb, features))
1911 break;
1912 __skb_push(skb, (skb->data -
1913 skb_network_header(skb)));
1914 }
1915 segs = ptype->gso_segment(skb, features);
1916 break;
1917 }
1918 }
1919 rcu_read_unlock();
1920
1921 __skb_push(skb, skb->data - skb_mac_header(skb));
1922
1923 return segs;
1924 }
1925 EXPORT_SYMBOL(skb_gso_segment);
1926
1927 /* Take action when hardware reception checksum errors are detected. */
1928 #ifdef CONFIG_BUG
1929 void netdev_rx_csum_fault(struct net_device *dev)
1930 {
1931 if (net_ratelimit()) {
1932 printk(KERN_ERR "%s: hw csum failure.\n",
1933 dev ? dev->name : "<unknown>");
1934 dump_stack();
1935 }
1936 }
1937 EXPORT_SYMBOL(netdev_rx_csum_fault);
1938 #endif
1939
1940 /* Actually, we should eliminate this check as soon as we know, that:
1941 * 1. IOMMU is present and allows to map all the memory.
1942 * 2. No high memory really exists on this machine.
1943 */
1944
1945 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1946 {
1947 #ifdef CONFIG_HIGHMEM
1948 int i;
1949 if (!(dev->features & NETIF_F_HIGHDMA)) {
1950 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1951 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1952 return 1;
1953 }
1954
1955 if (PCI_DMA_BUS_IS_PHYS) {
1956 struct device *pdev = dev->dev.parent;
1957
1958 if (!pdev)
1959 return 0;
1960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1961 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1962 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1963 return 1;
1964 }
1965 }
1966 #endif
1967 return 0;
1968 }
1969
1970 struct dev_gso_cb {
1971 void (*destructor)(struct sk_buff *skb);
1972 };
1973
1974 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1975
1976 static void dev_gso_skb_destructor(struct sk_buff *skb)
1977 {
1978 struct dev_gso_cb *cb;
1979
1980 do {
1981 struct sk_buff *nskb = skb->next;
1982
1983 skb->next = nskb->next;
1984 nskb->next = NULL;
1985 kfree_skb(nskb);
1986 } while (skb->next);
1987
1988 cb = DEV_GSO_CB(skb);
1989 if (cb->destructor)
1990 cb->destructor(skb);
1991 }
1992
1993 /**
1994 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1995 * @skb: buffer to segment
1996 * @features: device features as applicable to this skb
1997 *
1998 * This function segments the given skb and stores the list of segments
1999 * in skb->next.
2000 */
2001 static int dev_gso_segment(struct sk_buff *skb, int features)
2002 {
2003 struct sk_buff *segs;
2004
2005 segs = skb_gso_segment(skb, features);
2006
2007 /* Verifying header integrity only. */
2008 if (!segs)
2009 return 0;
2010
2011 if (IS_ERR(segs))
2012 return PTR_ERR(segs);
2013
2014 skb->next = segs;
2015 DEV_GSO_CB(skb)->destructor = skb->destructor;
2016 skb->destructor = dev_gso_skb_destructor;
2017
2018 return 0;
2019 }
2020
2021 /*
2022 * Try to orphan skb early, right before transmission by the device.
2023 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2024 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2025 */
2026 static inline void skb_orphan_try(struct sk_buff *skb)
2027 {
2028 struct sock *sk = skb->sk;
2029
2030 if (sk && !skb_shinfo(skb)->tx_flags) {
2031 /* skb_tx_hash() wont be able to get sk.
2032 * We copy sk_hash into skb->rxhash
2033 */
2034 if (!skb->rxhash)
2035 skb->rxhash = sk->sk_hash;
2036 skb_orphan(skb);
2037 }
2038 }
2039
2040 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2041 {
2042 return ((features & NETIF_F_GEN_CSUM) ||
2043 ((features & NETIF_F_V4_CSUM) &&
2044 protocol == htons(ETH_P_IP)) ||
2045 ((features & NETIF_F_V6_CSUM) &&
2046 protocol == htons(ETH_P_IPV6)) ||
2047 ((features & NETIF_F_FCOE_CRC) &&
2048 protocol == htons(ETH_P_FCOE)));
2049 }
2050
2051 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2052 {
2053 if (!can_checksum_protocol(features, protocol)) {
2054 features &= ~NETIF_F_ALL_CSUM;
2055 features &= ~NETIF_F_SG;
2056 } else if (illegal_highdma(skb->dev, skb)) {
2057 features &= ~NETIF_F_SG;
2058 }
2059
2060 return features;
2061 }
2062
2063 u32 netif_skb_features(struct sk_buff *skb)
2064 {
2065 __be16 protocol = skb->protocol;
2066 u32 features = skb->dev->features;
2067
2068 if (protocol == htons(ETH_P_8021Q)) {
2069 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2070 protocol = veh->h_vlan_encapsulated_proto;
2071 } else if (!vlan_tx_tag_present(skb)) {
2072 return harmonize_features(skb, protocol, features);
2073 }
2074
2075 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2076
2077 if (protocol != htons(ETH_P_8021Q)) {
2078 return harmonize_features(skb, protocol, features);
2079 } else {
2080 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2081 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2082 return harmonize_features(skb, protocol, features);
2083 }
2084 }
2085 EXPORT_SYMBOL(netif_skb_features);
2086
2087 /*
2088 * Returns true if either:
2089 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2090 * 2. skb is fragmented and the device does not support SG, or if
2091 * at least one of fragments is in highmem and device does not
2092 * support DMA from it.
2093 */
2094 static inline int skb_needs_linearize(struct sk_buff *skb,
2095 int features)
2096 {
2097 return skb_is_nonlinear(skb) &&
2098 ((skb_has_frag_list(skb) &&
2099 !(features & NETIF_F_FRAGLIST)) ||
2100 (skb_shinfo(skb)->nr_frags &&
2101 !(features & NETIF_F_SG)));
2102 }
2103
2104 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2105 struct netdev_queue *txq)
2106 {
2107 const struct net_device_ops *ops = dev->netdev_ops;
2108 int rc = NETDEV_TX_OK;
2109 unsigned int skb_len;
2110
2111 if (likely(!skb->next)) {
2112 u32 features;
2113
2114 /*
2115 * If device doesn't need skb->dst, release it right now while
2116 * its hot in this cpu cache
2117 */
2118 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2119 skb_dst_drop(skb);
2120
2121 if (!list_empty(&ptype_all))
2122 dev_queue_xmit_nit(skb, dev);
2123
2124 skb_orphan_try(skb);
2125
2126 features = netif_skb_features(skb);
2127
2128 if (vlan_tx_tag_present(skb) &&
2129 !(features & NETIF_F_HW_VLAN_TX)) {
2130 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2131 if (unlikely(!skb))
2132 goto out;
2133
2134 skb->vlan_tci = 0;
2135 }
2136
2137 if (netif_needs_gso(skb, features)) {
2138 if (unlikely(dev_gso_segment(skb, features)))
2139 goto out_kfree_skb;
2140 if (skb->next)
2141 goto gso;
2142 } else {
2143 if (skb_needs_linearize(skb, features) &&
2144 __skb_linearize(skb))
2145 goto out_kfree_skb;
2146
2147 /* If packet is not checksummed and device does not
2148 * support checksumming for this protocol, complete
2149 * checksumming here.
2150 */
2151 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2152 skb_set_transport_header(skb,
2153 skb_checksum_start_offset(skb));
2154 if (!(features & NETIF_F_ALL_CSUM) &&
2155 skb_checksum_help(skb))
2156 goto out_kfree_skb;
2157 }
2158 }
2159
2160 skb_len = skb->len;
2161 rc = ops->ndo_start_xmit(skb, dev);
2162 trace_net_dev_xmit(skb, rc, dev, skb_len);
2163 if (rc == NETDEV_TX_OK)
2164 txq_trans_update(txq);
2165 return rc;
2166 }
2167
2168 gso:
2169 do {
2170 struct sk_buff *nskb = skb->next;
2171
2172 skb->next = nskb->next;
2173 nskb->next = NULL;
2174
2175 /*
2176 * If device doesn't need nskb->dst, release it right now while
2177 * its hot in this cpu cache
2178 */
2179 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2180 skb_dst_drop(nskb);
2181
2182 skb_len = nskb->len;
2183 rc = ops->ndo_start_xmit(nskb, dev);
2184 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2185 if (unlikely(rc != NETDEV_TX_OK)) {
2186 if (rc & ~NETDEV_TX_MASK)
2187 goto out_kfree_gso_skb;
2188 nskb->next = skb->next;
2189 skb->next = nskb;
2190 return rc;
2191 }
2192 txq_trans_update(txq);
2193 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2194 return NETDEV_TX_BUSY;
2195 } while (skb->next);
2196
2197 out_kfree_gso_skb:
2198 if (likely(skb->next == NULL))
2199 skb->destructor = DEV_GSO_CB(skb)->destructor;
2200 out_kfree_skb:
2201 kfree_skb(skb);
2202 out:
2203 return rc;
2204 }
2205
2206 static u32 hashrnd __read_mostly;
2207
2208 /*
2209 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2210 * to be used as a distribution range.
2211 */
2212 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2213 unsigned int num_tx_queues)
2214 {
2215 u32 hash;
2216 u16 qoffset = 0;
2217 u16 qcount = num_tx_queues;
2218
2219 if (skb_rx_queue_recorded(skb)) {
2220 hash = skb_get_rx_queue(skb);
2221 while (unlikely(hash >= num_tx_queues))
2222 hash -= num_tx_queues;
2223 return hash;
2224 }
2225
2226 if (dev->num_tc) {
2227 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2228 qoffset = dev->tc_to_txq[tc].offset;
2229 qcount = dev->tc_to_txq[tc].count;
2230 }
2231
2232 if (skb->sk && skb->sk->sk_hash)
2233 hash = skb->sk->sk_hash;
2234 else
2235 hash = (__force u16) skb->protocol ^ skb->rxhash;
2236 hash = jhash_1word(hash, hashrnd);
2237
2238 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2239 }
2240 EXPORT_SYMBOL(__skb_tx_hash);
2241
2242 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2243 {
2244 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2245 if (net_ratelimit()) {
2246 pr_warning("%s selects TX queue %d, but "
2247 "real number of TX queues is %d\n",
2248 dev->name, queue_index, dev->real_num_tx_queues);
2249 }
2250 return 0;
2251 }
2252 return queue_index;
2253 }
2254
2255 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2256 {
2257 #ifdef CONFIG_XPS
2258 struct xps_dev_maps *dev_maps;
2259 struct xps_map *map;
2260 int queue_index = -1;
2261
2262 rcu_read_lock();
2263 dev_maps = rcu_dereference(dev->xps_maps);
2264 if (dev_maps) {
2265 map = rcu_dereference(
2266 dev_maps->cpu_map[raw_smp_processor_id()]);
2267 if (map) {
2268 if (map->len == 1)
2269 queue_index = map->queues[0];
2270 else {
2271 u32 hash;
2272 if (skb->sk && skb->sk->sk_hash)
2273 hash = skb->sk->sk_hash;
2274 else
2275 hash = (__force u16) skb->protocol ^
2276 skb->rxhash;
2277 hash = jhash_1word(hash, hashrnd);
2278 queue_index = map->queues[
2279 ((u64)hash * map->len) >> 32];
2280 }
2281 if (unlikely(queue_index >= dev->real_num_tx_queues))
2282 queue_index = -1;
2283 }
2284 }
2285 rcu_read_unlock();
2286
2287 return queue_index;
2288 #else
2289 return -1;
2290 #endif
2291 }
2292
2293 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2294 struct sk_buff *skb)
2295 {
2296 int queue_index;
2297 const struct net_device_ops *ops = dev->netdev_ops;
2298
2299 if (dev->real_num_tx_queues == 1)
2300 queue_index = 0;
2301 else if (ops->ndo_select_queue) {
2302 queue_index = ops->ndo_select_queue(dev, skb);
2303 queue_index = dev_cap_txqueue(dev, queue_index);
2304 } else {
2305 struct sock *sk = skb->sk;
2306 queue_index = sk_tx_queue_get(sk);
2307
2308 if (queue_index < 0 || skb->ooo_okay ||
2309 queue_index >= dev->real_num_tx_queues) {
2310 int old_index = queue_index;
2311
2312 queue_index = get_xps_queue(dev, skb);
2313 if (queue_index < 0)
2314 queue_index = skb_tx_hash(dev, skb);
2315
2316 if (queue_index != old_index && sk) {
2317 struct dst_entry *dst =
2318 rcu_dereference_check(sk->sk_dst_cache, 1);
2319
2320 if (dst && skb_dst(skb) == dst)
2321 sk_tx_queue_set(sk, queue_index);
2322 }
2323 }
2324 }
2325
2326 skb_set_queue_mapping(skb, queue_index);
2327 return netdev_get_tx_queue(dev, queue_index);
2328 }
2329
2330 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2331 struct net_device *dev,
2332 struct netdev_queue *txq)
2333 {
2334 spinlock_t *root_lock = qdisc_lock(q);
2335 bool contended;
2336 int rc;
2337
2338 qdisc_skb_cb(skb)->pkt_len = skb->len;
2339 qdisc_calculate_pkt_len(skb, q);
2340 /*
2341 * Heuristic to force contended enqueues to serialize on a
2342 * separate lock before trying to get qdisc main lock.
2343 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2344 * and dequeue packets faster.
2345 */
2346 contended = qdisc_is_running(q);
2347 if (unlikely(contended))
2348 spin_lock(&q->busylock);
2349
2350 spin_lock(root_lock);
2351 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2352 kfree_skb(skb);
2353 rc = NET_XMIT_DROP;
2354 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2355 qdisc_run_begin(q)) {
2356 /*
2357 * This is a work-conserving queue; there are no old skbs
2358 * waiting to be sent out; and the qdisc is not running -
2359 * xmit the skb directly.
2360 */
2361 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2362 skb_dst_force(skb);
2363
2364 qdisc_bstats_update(q, skb);
2365
2366 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2367 if (unlikely(contended)) {
2368 spin_unlock(&q->busylock);
2369 contended = false;
2370 }
2371 __qdisc_run(q);
2372 } else
2373 qdisc_run_end(q);
2374
2375 rc = NET_XMIT_SUCCESS;
2376 } else {
2377 skb_dst_force(skb);
2378 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2379 if (qdisc_run_begin(q)) {
2380 if (unlikely(contended)) {
2381 spin_unlock(&q->busylock);
2382 contended = false;
2383 }
2384 __qdisc_run(q);
2385 }
2386 }
2387 spin_unlock(root_lock);
2388 if (unlikely(contended))
2389 spin_unlock(&q->busylock);
2390 return rc;
2391 }
2392
2393 static DEFINE_PER_CPU(int, xmit_recursion);
2394 #define RECURSION_LIMIT 10
2395
2396 /**
2397 * dev_queue_xmit - transmit a buffer
2398 * @skb: buffer to transmit
2399 *
2400 * Queue a buffer for transmission to a network device. The caller must
2401 * have set the device and priority and built the buffer before calling
2402 * this function. The function can be called from an interrupt.
2403 *
2404 * A negative errno code is returned on a failure. A success does not
2405 * guarantee the frame will be transmitted as it may be dropped due
2406 * to congestion or traffic shaping.
2407 *
2408 * -----------------------------------------------------------------------------------
2409 * I notice this method can also return errors from the queue disciplines,
2410 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2411 * be positive.
2412 *
2413 * Regardless of the return value, the skb is consumed, so it is currently
2414 * difficult to retry a send to this method. (You can bump the ref count
2415 * before sending to hold a reference for retry if you are careful.)
2416 *
2417 * When calling this method, interrupts MUST be enabled. This is because
2418 * the BH enable code must have IRQs enabled so that it will not deadlock.
2419 * --BLG
2420 */
2421 int dev_queue_xmit(struct sk_buff *skb)
2422 {
2423 struct net_device *dev = skb->dev;
2424 struct netdev_queue *txq;
2425 struct Qdisc *q;
2426 int rc = -ENOMEM;
2427
2428 /* Disable soft irqs for various locks below. Also
2429 * stops preemption for RCU.
2430 */
2431 rcu_read_lock_bh();
2432
2433 txq = dev_pick_tx(dev, skb);
2434 q = rcu_dereference_bh(txq->qdisc);
2435
2436 #ifdef CONFIG_NET_CLS_ACT
2437 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2438 #endif
2439 trace_net_dev_queue(skb);
2440 if (q->enqueue) {
2441 rc = __dev_xmit_skb(skb, q, dev, txq);
2442 goto out;
2443 }
2444
2445 /* The device has no queue. Common case for software devices:
2446 loopback, all the sorts of tunnels...
2447
2448 Really, it is unlikely that netif_tx_lock protection is necessary
2449 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2450 counters.)
2451 However, it is possible, that they rely on protection
2452 made by us here.
2453
2454 Check this and shot the lock. It is not prone from deadlocks.
2455 Either shot noqueue qdisc, it is even simpler 8)
2456 */
2457 if (dev->flags & IFF_UP) {
2458 int cpu = smp_processor_id(); /* ok because BHs are off */
2459
2460 if (txq->xmit_lock_owner != cpu) {
2461
2462 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2463 goto recursion_alert;
2464
2465 HARD_TX_LOCK(dev, txq, cpu);
2466
2467 if (!netif_tx_queue_stopped(txq)) {
2468 __this_cpu_inc(xmit_recursion);
2469 rc = dev_hard_start_xmit(skb, dev, txq);
2470 __this_cpu_dec(xmit_recursion);
2471 if (dev_xmit_complete(rc)) {
2472 HARD_TX_UNLOCK(dev, txq);
2473 goto out;
2474 }
2475 }
2476 HARD_TX_UNLOCK(dev, txq);
2477 if (net_ratelimit())
2478 printk(KERN_CRIT "Virtual device %s asks to "
2479 "queue packet!\n", dev->name);
2480 } else {
2481 /* Recursion is detected! It is possible,
2482 * unfortunately
2483 */
2484 recursion_alert:
2485 if (net_ratelimit())
2486 printk(KERN_CRIT "Dead loop on virtual device "
2487 "%s, fix it urgently!\n", dev->name);
2488 }
2489 }
2490
2491 rc = -ENETDOWN;
2492 rcu_read_unlock_bh();
2493
2494 kfree_skb(skb);
2495 return rc;
2496 out:
2497 rcu_read_unlock_bh();
2498 return rc;
2499 }
2500 EXPORT_SYMBOL(dev_queue_xmit);
2501
2502
2503 /*=======================================================================
2504 Receiver routines
2505 =======================================================================*/
2506
2507 int netdev_max_backlog __read_mostly = 1000;
2508 int netdev_tstamp_prequeue __read_mostly = 1;
2509 int netdev_budget __read_mostly = 300;
2510 int weight_p __read_mostly = 64; /* old backlog weight */
2511
2512 /* Called with irq disabled */
2513 static inline void ____napi_schedule(struct softnet_data *sd,
2514 struct napi_struct *napi)
2515 {
2516 list_add_tail(&napi->poll_list, &sd->poll_list);
2517 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2518 }
2519
2520 /*
2521 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2522 * and src/dst port numbers. Returns a non-zero hash number on success
2523 * and 0 on failure.
2524 */
2525 __u32 __skb_get_rxhash(struct sk_buff *skb)
2526 {
2527 int nhoff, hash = 0, poff;
2528 const struct ipv6hdr *ip6;
2529 const struct iphdr *ip;
2530 u8 ip_proto;
2531 u32 addr1, addr2, ihl;
2532 union {
2533 u32 v32;
2534 u16 v16[2];
2535 } ports;
2536
2537 nhoff = skb_network_offset(skb);
2538
2539 switch (skb->protocol) {
2540 case __constant_htons(ETH_P_IP):
2541 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2542 goto done;
2543
2544 ip = (const struct iphdr *) (skb->data + nhoff);
2545 if (ip_is_fragment(ip))
2546 ip_proto = 0;
2547 else
2548 ip_proto = ip->protocol;
2549 addr1 = (__force u32) ip->saddr;
2550 addr2 = (__force u32) ip->daddr;
2551 ihl = ip->ihl;
2552 break;
2553 case __constant_htons(ETH_P_IPV6):
2554 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2555 goto done;
2556
2557 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2558 ip_proto = ip6->nexthdr;
2559 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2560 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2561 ihl = (40 >> 2);
2562 break;
2563 default:
2564 goto done;
2565 }
2566
2567 ports.v32 = 0;
2568 poff = proto_ports_offset(ip_proto);
2569 if (poff >= 0) {
2570 nhoff += ihl * 4 + poff;
2571 if (pskb_may_pull(skb, nhoff + 4)) {
2572 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2573 if (ports.v16[1] < ports.v16[0])
2574 swap(ports.v16[0], ports.v16[1]);
2575 }
2576 }
2577
2578 /* get a consistent hash (same value on both flow directions) */
2579 if (addr2 < addr1)
2580 swap(addr1, addr2);
2581
2582 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2583 if (!hash)
2584 hash = 1;
2585
2586 done:
2587 return hash;
2588 }
2589 EXPORT_SYMBOL(__skb_get_rxhash);
2590
2591 #ifdef CONFIG_RPS
2592
2593 /* One global table that all flow-based protocols share. */
2594 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2595 EXPORT_SYMBOL(rps_sock_flow_table);
2596
2597 static struct rps_dev_flow *
2598 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2599 struct rps_dev_flow *rflow, u16 next_cpu)
2600 {
2601 u16 tcpu;
2602
2603 tcpu = rflow->cpu = next_cpu;
2604 if (tcpu != RPS_NO_CPU) {
2605 #ifdef CONFIG_RFS_ACCEL
2606 struct netdev_rx_queue *rxqueue;
2607 struct rps_dev_flow_table *flow_table;
2608 struct rps_dev_flow *old_rflow;
2609 u32 flow_id;
2610 u16 rxq_index;
2611 int rc;
2612
2613 /* Should we steer this flow to a different hardware queue? */
2614 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2615 !(dev->features & NETIF_F_NTUPLE))
2616 goto out;
2617 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2618 if (rxq_index == skb_get_rx_queue(skb))
2619 goto out;
2620
2621 rxqueue = dev->_rx + rxq_index;
2622 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2623 if (!flow_table)
2624 goto out;
2625 flow_id = skb->rxhash & flow_table->mask;
2626 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2627 rxq_index, flow_id);
2628 if (rc < 0)
2629 goto out;
2630 old_rflow = rflow;
2631 rflow = &flow_table->flows[flow_id];
2632 rflow->cpu = next_cpu;
2633 rflow->filter = rc;
2634 if (old_rflow->filter == rflow->filter)
2635 old_rflow->filter = RPS_NO_FILTER;
2636 out:
2637 #endif
2638 rflow->last_qtail =
2639 per_cpu(softnet_data, tcpu).input_queue_head;
2640 }
2641
2642 return rflow;
2643 }
2644
2645 /*
2646 * get_rps_cpu is called from netif_receive_skb and returns the target
2647 * CPU from the RPS map of the receiving queue for a given skb.
2648 * rcu_read_lock must be held on entry.
2649 */
2650 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2651 struct rps_dev_flow **rflowp)
2652 {
2653 struct netdev_rx_queue *rxqueue;
2654 struct rps_map *map;
2655 struct rps_dev_flow_table *flow_table;
2656 struct rps_sock_flow_table *sock_flow_table;
2657 int cpu = -1;
2658 u16 tcpu;
2659
2660 if (skb_rx_queue_recorded(skb)) {
2661 u16 index = skb_get_rx_queue(skb);
2662 if (unlikely(index >= dev->real_num_rx_queues)) {
2663 WARN_ONCE(dev->real_num_rx_queues > 1,
2664 "%s received packet on queue %u, but number "
2665 "of RX queues is %u\n",
2666 dev->name, index, dev->real_num_rx_queues);
2667 goto done;
2668 }
2669 rxqueue = dev->_rx + index;
2670 } else
2671 rxqueue = dev->_rx;
2672
2673 map = rcu_dereference(rxqueue->rps_map);
2674 if (map) {
2675 if (map->len == 1 &&
2676 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2677 tcpu = map->cpus[0];
2678 if (cpu_online(tcpu))
2679 cpu = tcpu;
2680 goto done;
2681 }
2682 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2683 goto done;
2684 }
2685
2686 skb_reset_network_header(skb);
2687 if (!skb_get_rxhash(skb))
2688 goto done;
2689
2690 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2691 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2692 if (flow_table && sock_flow_table) {
2693 u16 next_cpu;
2694 struct rps_dev_flow *rflow;
2695
2696 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2697 tcpu = rflow->cpu;
2698
2699 next_cpu = sock_flow_table->ents[skb->rxhash &
2700 sock_flow_table->mask];
2701
2702 /*
2703 * If the desired CPU (where last recvmsg was done) is
2704 * different from current CPU (one in the rx-queue flow
2705 * table entry), switch if one of the following holds:
2706 * - Current CPU is unset (equal to RPS_NO_CPU).
2707 * - Current CPU is offline.
2708 * - The current CPU's queue tail has advanced beyond the
2709 * last packet that was enqueued using this table entry.
2710 * This guarantees that all previous packets for the flow
2711 * have been dequeued, thus preserving in order delivery.
2712 */
2713 if (unlikely(tcpu != next_cpu) &&
2714 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2715 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2716 rflow->last_qtail)) >= 0))
2717 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2718
2719 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2720 *rflowp = rflow;
2721 cpu = tcpu;
2722 goto done;
2723 }
2724 }
2725
2726 if (map) {
2727 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2728
2729 if (cpu_online(tcpu)) {
2730 cpu = tcpu;
2731 goto done;
2732 }
2733 }
2734
2735 done:
2736 return cpu;
2737 }
2738
2739 #ifdef CONFIG_RFS_ACCEL
2740
2741 /**
2742 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2743 * @dev: Device on which the filter was set
2744 * @rxq_index: RX queue index
2745 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2746 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2747 *
2748 * Drivers that implement ndo_rx_flow_steer() should periodically call
2749 * this function for each installed filter and remove the filters for
2750 * which it returns %true.
2751 */
2752 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2753 u32 flow_id, u16 filter_id)
2754 {
2755 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2756 struct rps_dev_flow_table *flow_table;
2757 struct rps_dev_flow *rflow;
2758 bool expire = true;
2759 int cpu;
2760
2761 rcu_read_lock();
2762 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2763 if (flow_table && flow_id <= flow_table->mask) {
2764 rflow = &flow_table->flows[flow_id];
2765 cpu = ACCESS_ONCE(rflow->cpu);
2766 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2767 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2768 rflow->last_qtail) <
2769 (int)(10 * flow_table->mask)))
2770 expire = false;
2771 }
2772 rcu_read_unlock();
2773 return expire;
2774 }
2775 EXPORT_SYMBOL(rps_may_expire_flow);
2776
2777 #endif /* CONFIG_RFS_ACCEL */
2778
2779 /* Called from hardirq (IPI) context */
2780 static void rps_trigger_softirq(void *data)
2781 {
2782 struct softnet_data *sd = data;
2783
2784 ____napi_schedule(sd, &sd->backlog);
2785 sd->received_rps++;
2786 }
2787
2788 #endif /* CONFIG_RPS */
2789
2790 /*
2791 * Check if this softnet_data structure is another cpu one
2792 * If yes, queue it to our IPI list and return 1
2793 * If no, return 0
2794 */
2795 static int rps_ipi_queued(struct softnet_data *sd)
2796 {
2797 #ifdef CONFIG_RPS
2798 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2799
2800 if (sd != mysd) {
2801 sd->rps_ipi_next = mysd->rps_ipi_list;
2802 mysd->rps_ipi_list = sd;
2803
2804 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2805 return 1;
2806 }
2807 #endif /* CONFIG_RPS */
2808 return 0;
2809 }
2810
2811 /*
2812 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2813 * queue (may be a remote CPU queue).
2814 */
2815 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2816 unsigned int *qtail)
2817 {
2818 struct softnet_data *sd;
2819 unsigned long flags;
2820
2821 sd = &per_cpu(softnet_data, cpu);
2822
2823 local_irq_save(flags);
2824
2825 rps_lock(sd);
2826 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2827 if (skb_queue_len(&sd->input_pkt_queue)) {
2828 enqueue:
2829 __skb_queue_tail(&sd->input_pkt_queue, skb);
2830 input_queue_tail_incr_save(sd, qtail);
2831 rps_unlock(sd);
2832 local_irq_restore(flags);
2833 return NET_RX_SUCCESS;
2834 }
2835
2836 /* Schedule NAPI for backlog device
2837 * We can use non atomic operation since we own the queue lock
2838 */
2839 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2840 if (!rps_ipi_queued(sd))
2841 ____napi_schedule(sd, &sd->backlog);
2842 }
2843 goto enqueue;
2844 }
2845
2846 sd->dropped++;
2847 rps_unlock(sd);
2848
2849 local_irq_restore(flags);
2850
2851 atomic_long_inc(&skb->dev->rx_dropped);
2852 kfree_skb(skb);
2853 return NET_RX_DROP;
2854 }
2855
2856 /**
2857 * netif_rx - post buffer to the network code
2858 * @skb: buffer to post
2859 *
2860 * This function receives a packet from a device driver and queues it for
2861 * the upper (protocol) levels to process. It always succeeds. The buffer
2862 * may be dropped during processing for congestion control or by the
2863 * protocol layers.
2864 *
2865 * return values:
2866 * NET_RX_SUCCESS (no congestion)
2867 * NET_RX_DROP (packet was dropped)
2868 *
2869 */
2870
2871 int netif_rx(struct sk_buff *skb)
2872 {
2873 int ret;
2874
2875 /* if netpoll wants it, pretend we never saw it */
2876 if (netpoll_rx(skb))
2877 return NET_RX_DROP;
2878
2879 if (netdev_tstamp_prequeue)
2880 net_timestamp_check(skb);
2881
2882 trace_netif_rx(skb);
2883 #ifdef CONFIG_RPS
2884 {
2885 struct rps_dev_flow voidflow, *rflow = &voidflow;
2886 int cpu;
2887
2888 preempt_disable();
2889 rcu_read_lock();
2890
2891 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2892 if (cpu < 0)
2893 cpu = smp_processor_id();
2894
2895 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2896
2897 rcu_read_unlock();
2898 preempt_enable();
2899 }
2900 #else
2901 {
2902 unsigned int qtail;
2903 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2904 put_cpu();
2905 }
2906 #endif
2907 return ret;
2908 }
2909 EXPORT_SYMBOL(netif_rx);
2910
2911 int netif_rx_ni(struct sk_buff *skb)
2912 {
2913 int err;
2914
2915 preempt_disable();
2916 err = netif_rx(skb);
2917 if (local_softirq_pending())
2918 do_softirq();
2919 preempt_enable();
2920
2921 return err;
2922 }
2923 EXPORT_SYMBOL(netif_rx_ni);
2924
2925 static void net_tx_action(struct softirq_action *h)
2926 {
2927 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2928
2929 if (sd->completion_queue) {
2930 struct sk_buff *clist;
2931
2932 local_irq_disable();
2933 clist = sd->completion_queue;
2934 sd->completion_queue = NULL;
2935 local_irq_enable();
2936
2937 while (clist) {
2938 struct sk_buff *skb = clist;
2939 clist = clist->next;
2940
2941 WARN_ON(atomic_read(&skb->users));
2942 trace_kfree_skb(skb, net_tx_action);
2943 __kfree_skb(skb);
2944 }
2945 }
2946
2947 if (sd->output_queue) {
2948 struct Qdisc *head;
2949
2950 local_irq_disable();
2951 head = sd->output_queue;
2952 sd->output_queue = NULL;
2953 sd->output_queue_tailp = &sd->output_queue;
2954 local_irq_enable();
2955
2956 while (head) {
2957 struct Qdisc *q = head;
2958 spinlock_t *root_lock;
2959
2960 head = head->next_sched;
2961
2962 root_lock = qdisc_lock(q);
2963 if (spin_trylock(root_lock)) {
2964 smp_mb__before_clear_bit();
2965 clear_bit(__QDISC_STATE_SCHED,
2966 &q->state);
2967 qdisc_run(q);
2968 spin_unlock(root_lock);
2969 } else {
2970 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2971 &q->state)) {
2972 __netif_reschedule(q);
2973 } else {
2974 smp_mb__before_clear_bit();
2975 clear_bit(__QDISC_STATE_SCHED,
2976 &q->state);
2977 }
2978 }
2979 }
2980 }
2981 }
2982
2983 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2984 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2985 /* This hook is defined here for ATM LANE */
2986 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2987 unsigned char *addr) __read_mostly;
2988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2989 #endif
2990
2991 #ifdef CONFIG_NET_CLS_ACT
2992 /* TODO: Maybe we should just force sch_ingress to be compiled in
2993 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2994 * a compare and 2 stores extra right now if we dont have it on
2995 * but have CONFIG_NET_CLS_ACT
2996 * NOTE: This doesn't stop any functionality; if you dont have
2997 * the ingress scheduler, you just can't add policies on ingress.
2998 *
2999 */
3000 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3001 {
3002 struct net_device *dev = skb->dev;
3003 u32 ttl = G_TC_RTTL(skb->tc_verd);
3004 int result = TC_ACT_OK;
3005 struct Qdisc *q;
3006
3007 if (unlikely(MAX_RED_LOOP < ttl++)) {
3008 if (net_ratelimit())
3009 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3010 skb->skb_iif, dev->ifindex);
3011 return TC_ACT_SHOT;
3012 }
3013
3014 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3015 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3016
3017 q = rxq->qdisc;
3018 if (q != &noop_qdisc) {
3019 spin_lock(qdisc_lock(q));
3020 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3021 result = qdisc_enqueue_root(skb, q);
3022 spin_unlock(qdisc_lock(q));
3023 }
3024
3025 return result;
3026 }
3027
3028 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3029 struct packet_type **pt_prev,
3030 int *ret, struct net_device *orig_dev)
3031 {
3032 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3033
3034 if (!rxq || rxq->qdisc == &noop_qdisc)
3035 goto out;
3036
3037 if (*pt_prev) {
3038 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3039 *pt_prev = NULL;
3040 }
3041
3042 switch (ing_filter(skb, rxq)) {
3043 case TC_ACT_SHOT:
3044 case TC_ACT_STOLEN:
3045 kfree_skb(skb);
3046 return NULL;
3047 }
3048
3049 out:
3050 skb->tc_verd = 0;
3051 return skb;
3052 }
3053 #endif
3054
3055 /**
3056 * netdev_rx_handler_register - register receive handler
3057 * @dev: device to register a handler for
3058 * @rx_handler: receive handler to register
3059 * @rx_handler_data: data pointer that is used by rx handler
3060 *
3061 * Register a receive hander for a device. This handler will then be
3062 * called from __netif_receive_skb. A negative errno code is returned
3063 * on a failure.
3064 *
3065 * The caller must hold the rtnl_mutex.
3066 *
3067 * For a general description of rx_handler, see enum rx_handler_result.
3068 */
3069 int netdev_rx_handler_register(struct net_device *dev,
3070 rx_handler_func_t *rx_handler,
3071 void *rx_handler_data)
3072 {
3073 ASSERT_RTNL();
3074
3075 if (dev->rx_handler)
3076 return -EBUSY;
3077
3078 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3079 rcu_assign_pointer(dev->rx_handler, rx_handler);
3080
3081 return 0;
3082 }
3083 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3084
3085 /**
3086 * netdev_rx_handler_unregister - unregister receive handler
3087 * @dev: device to unregister a handler from
3088 *
3089 * Unregister a receive hander from a device.
3090 *
3091 * The caller must hold the rtnl_mutex.
3092 */
3093 void netdev_rx_handler_unregister(struct net_device *dev)
3094 {
3095
3096 ASSERT_RTNL();
3097 rcu_assign_pointer(dev->rx_handler, NULL);
3098 rcu_assign_pointer(dev->rx_handler_data, NULL);
3099 }
3100 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3101
3102 static int __netif_receive_skb(struct sk_buff *skb)
3103 {
3104 struct packet_type *ptype, *pt_prev;
3105 rx_handler_func_t *rx_handler;
3106 struct net_device *orig_dev;
3107 struct net_device *null_or_dev;
3108 bool deliver_exact = false;
3109 int ret = NET_RX_DROP;
3110 __be16 type;
3111
3112 if (!netdev_tstamp_prequeue)
3113 net_timestamp_check(skb);
3114
3115 trace_netif_receive_skb(skb);
3116
3117 /* if we've gotten here through NAPI, check netpoll */
3118 if (netpoll_receive_skb(skb))
3119 return NET_RX_DROP;
3120
3121 if (!skb->skb_iif)
3122 skb->skb_iif = skb->dev->ifindex;
3123 orig_dev = skb->dev;
3124
3125 skb_reset_network_header(skb);
3126 skb_reset_transport_header(skb);
3127 skb_reset_mac_len(skb);
3128
3129 pt_prev = NULL;
3130
3131 rcu_read_lock();
3132
3133 another_round:
3134
3135 __this_cpu_inc(softnet_data.processed);
3136
3137 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3138 skb = vlan_untag(skb);
3139 if (unlikely(!skb))
3140 goto out;
3141 }
3142
3143 #ifdef CONFIG_NET_CLS_ACT
3144 if (skb->tc_verd & TC_NCLS) {
3145 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3146 goto ncls;
3147 }
3148 #endif
3149
3150 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3151 if (!ptype->dev || ptype->dev == skb->dev) {
3152 if (pt_prev)
3153 ret = deliver_skb(skb, pt_prev, orig_dev);
3154 pt_prev = ptype;
3155 }
3156 }
3157
3158 #ifdef CONFIG_NET_CLS_ACT
3159 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3160 if (!skb)
3161 goto out;
3162 ncls:
3163 #endif
3164
3165 rx_handler = rcu_dereference(skb->dev->rx_handler);
3166 if (rx_handler) {
3167 if (pt_prev) {
3168 ret = deliver_skb(skb, pt_prev, orig_dev);
3169 pt_prev = NULL;
3170 }
3171 switch (rx_handler(&skb)) {
3172 case RX_HANDLER_CONSUMED:
3173 goto out;
3174 case RX_HANDLER_ANOTHER:
3175 goto another_round;
3176 case RX_HANDLER_EXACT:
3177 deliver_exact = true;
3178 case RX_HANDLER_PASS:
3179 break;
3180 default:
3181 BUG();
3182 }
3183 }
3184
3185 if (vlan_tx_tag_present(skb)) {
3186 if (pt_prev) {
3187 ret = deliver_skb(skb, pt_prev, orig_dev);
3188 pt_prev = NULL;
3189 }
3190 if (vlan_do_receive(&skb)) {
3191 ret = __netif_receive_skb(skb);
3192 goto out;
3193 } else if (unlikely(!skb))
3194 goto out;
3195 }
3196
3197 /* deliver only exact match when indicated */
3198 null_or_dev = deliver_exact ? skb->dev : NULL;
3199
3200 type = skb->protocol;
3201 list_for_each_entry_rcu(ptype,
3202 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3203 if (ptype->type == type &&
3204 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3205 ptype->dev == orig_dev)) {
3206 if (pt_prev)
3207 ret = deliver_skb(skb, pt_prev, orig_dev);
3208 pt_prev = ptype;
3209 }
3210 }
3211
3212 if (pt_prev) {
3213 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3214 } else {
3215 atomic_long_inc(&skb->dev->rx_dropped);
3216 kfree_skb(skb);
3217 /* Jamal, now you will not able to escape explaining
3218 * me how you were going to use this. :-)
3219 */
3220 ret = NET_RX_DROP;
3221 }
3222
3223 out:
3224 rcu_read_unlock();
3225 return ret;
3226 }
3227
3228 /**
3229 * netif_receive_skb - process receive buffer from network
3230 * @skb: buffer to process
3231 *
3232 * netif_receive_skb() is the main receive data processing function.
3233 * It always succeeds. The buffer may be dropped during processing
3234 * for congestion control or by the protocol layers.
3235 *
3236 * This function may only be called from softirq context and interrupts
3237 * should be enabled.
3238 *
3239 * Return values (usually ignored):
3240 * NET_RX_SUCCESS: no congestion
3241 * NET_RX_DROP: packet was dropped
3242 */
3243 int netif_receive_skb(struct sk_buff *skb)
3244 {
3245 if (netdev_tstamp_prequeue)
3246 net_timestamp_check(skb);
3247
3248 if (skb_defer_rx_timestamp(skb))
3249 return NET_RX_SUCCESS;
3250
3251 #ifdef CONFIG_RPS
3252 {
3253 struct rps_dev_flow voidflow, *rflow = &voidflow;
3254 int cpu, ret;
3255
3256 rcu_read_lock();
3257
3258 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3259
3260 if (cpu >= 0) {
3261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3262 rcu_read_unlock();
3263 } else {
3264 rcu_read_unlock();
3265 ret = __netif_receive_skb(skb);
3266 }
3267
3268 return ret;
3269 }
3270 #else
3271 return __netif_receive_skb(skb);
3272 #endif
3273 }
3274 EXPORT_SYMBOL(netif_receive_skb);
3275
3276 /* Network device is going away, flush any packets still pending
3277 * Called with irqs disabled.
3278 */
3279 static void flush_backlog(void *arg)
3280 {
3281 struct net_device *dev = arg;
3282 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3283 struct sk_buff *skb, *tmp;
3284
3285 rps_lock(sd);
3286 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3287 if (skb->dev == dev) {
3288 __skb_unlink(skb, &sd->input_pkt_queue);
3289 kfree_skb(skb);
3290 input_queue_head_incr(sd);
3291 }
3292 }
3293 rps_unlock(sd);
3294
3295 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3296 if (skb->dev == dev) {
3297 __skb_unlink(skb, &sd->process_queue);
3298 kfree_skb(skb);
3299 input_queue_head_incr(sd);
3300 }
3301 }
3302 }
3303
3304 static int napi_gro_complete(struct sk_buff *skb)
3305 {
3306 struct packet_type *ptype;
3307 __be16 type = skb->protocol;
3308 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3309 int err = -ENOENT;
3310
3311 if (NAPI_GRO_CB(skb)->count == 1) {
3312 skb_shinfo(skb)->gso_size = 0;
3313 goto out;
3314 }
3315
3316 rcu_read_lock();
3317 list_for_each_entry_rcu(ptype, head, list) {
3318 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3319 continue;
3320
3321 err = ptype->gro_complete(skb);
3322 break;
3323 }
3324 rcu_read_unlock();
3325
3326 if (err) {
3327 WARN_ON(&ptype->list == head);
3328 kfree_skb(skb);
3329 return NET_RX_SUCCESS;
3330 }
3331
3332 out:
3333 return netif_receive_skb(skb);
3334 }
3335
3336 inline void napi_gro_flush(struct napi_struct *napi)
3337 {
3338 struct sk_buff *skb, *next;
3339
3340 for (skb = napi->gro_list; skb; skb = next) {
3341 next = skb->next;
3342 skb->next = NULL;
3343 napi_gro_complete(skb);
3344 }
3345
3346 napi->gro_count = 0;
3347 napi->gro_list = NULL;
3348 }
3349 EXPORT_SYMBOL(napi_gro_flush);
3350
3351 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3352 {
3353 struct sk_buff **pp = NULL;
3354 struct packet_type *ptype;
3355 __be16 type = skb->protocol;
3356 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3357 int same_flow;
3358 int mac_len;
3359 enum gro_result ret;
3360
3361 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3362 goto normal;
3363
3364 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3365 goto normal;
3366
3367 rcu_read_lock();
3368 list_for_each_entry_rcu(ptype, head, list) {
3369 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3370 continue;
3371
3372 skb_set_network_header(skb, skb_gro_offset(skb));
3373 mac_len = skb->network_header - skb->mac_header;
3374 skb->mac_len = mac_len;
3375 NAPI_GRO_CB(skb)->same_flow = 0;
3376 NAPI_GRO_CB(skb)->flush = 0;
3377 NAPI_GRO_CB(skb)->free = 0;
3378
3379 pp = ptype->gro_receive(&napi->gro_list, skb);
3380 break;
3381 }
3382 rcu_read_unlock();
3383
3384 if (&ptype->list == head)
3385 goto normal;
3386
3387 same_flow = NAPI_GRO_CB(skb)->same_flow;
3388 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3389
3390 if (pp) {
3391 struct sk_buff *nskb = *pp;
3392
3393 *pp = nskb->next;
3394 nskb->next = NULL;
3395 napi_gro_complete(nskb);
3396 napi->gro_count--;
3397 }
3398
3399 if (same_flow)
3400 goto ok;
3401
3402 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3403 goto normal;
3404
3405 napi->gro_count++;
3406 NAPI_GRO_CB(skb)->count = 1;
3407 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3408 skb->next = napi->gro_list;
3409 napi->gro_list = skb;
3410 ret = GRO_HELD;
3411
3412 pull:
3413 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3414 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3415
3416 BUG_ON(skb->end - skb->tail < grow);
3417
3418 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3419
3420 skb->tail += grow;
3421 skb->data_len -= grow;
3422
3423 skb_shinfo(skb)->frags[0].page_offset += grow;
3424 skb_shinfo(skb)->frags[0].size -= grow;
3425
3426 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3427 put_page(skb_shinfo(skb)->frags[0].page);
3428 memmove(skb_shinfo(skb)->frags,
3429 skb_shinfo(skb)->frags + 1,
3430 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3431 }
3432 }
3433
3434 ok:
3435 return ret;
3436
3437 normal:
3438 ret = GRO_NORMAL;
3439 goto pull;
3440 }
3441 EXPORT_SYMBOL(dev_gro_receive);
3442
3443 static inline gro_result_t
3444 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3445 {
3446 struct sk_buff *p;
3447
3448 for (p = napi->gro_list; p; p = p->next) {
3449 unsigned long diffs;
3450
3451 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3452 diffs |= p->vlan_tci ^ skb->vlan_tci;
3453 diffs |= compare_ether_header(skb_mac_header(p),
3454 skb_gro_mac_header(skb));
3455 NAPI_GRO_CB(p)->same_flow = !diffs;
3456 NAPI_GRO_CB(p)->flush = 0;
3457 }
3458
3459 return dev_gro_receive(napi, skb);
3460 }
3461
3462 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3463 {
3464 switch (ret) {
3465 case GRO_NORMAL:
3466 if (netif_receive_skb(skb))
3467 ret = GRO_DROP;
3468 break;
3469
3470 case GRO_DROP:
3471 case GRO_MERGED_FREE:
3472 kfree_skb(skb);
3473 break;
3474
3475 case GRO_HELD:
3476 case GRO_MERGED:
3477 break;
3478 }
3479
3480 return ret;
3481 }
3482 EXPORT_SYMBOL(napi_skb_finish);
3483
3484 void skb_gro_reset_offset(struct sk_buff *skb)
3485 {
3486 NAPI_GRO_CB(skb)->data_offset = 0;
3487 NAPI_GRO_CB(skb)->frag0 = NULL;
3488 NAPI_GRO_CB(skb)->frag0_len = 0;
3489
3490 if (skb->mac_header == skb->tail &&
3491 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3492 NAPI_GRO_CB(skb)->frag0 =
3493 page_address(skb_shinfo(skb)->frags[0].page) +
3494 skb_shinfo(skb)->frags[0].page_offset;
3495 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3496 }
3497 }
3498 EXPORT_SYMBOL(skb_gro_reset_offset);
3499
3500 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3501 {
3502 skb_gro_reset_offset(skb);
3503
3504 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3505 }
3506 EXPORT_SYMBOL(napi_gro_receive);
3507
3508 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3509 {
3510 __skb_pull(skb, skb_headlen(skb));
3511 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3512 skb->vlan_tci = 0;
3513 skb->dev = napi->dev;
3514 skb->skb_iif = 0;
3515
3516 napi->skb = skb;
3517 }
3518
3519 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3520 {
3521 struct sk_buff *skb = napi->skb;
3522
3523 if (!skb) {
3524 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3525 if (skb)
3526 napi->skb = skb;
3527 }
3528 return skb;
3529 }
3530 EXPORT_SYMBOL(napi_get_frags);
3531
3532 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3533 gro_result_t ret)
3534 {
3535 switch (ret) {
3536 case GRO_NORMAL:
3537 case GRO_HELD:
3538 skb->protocol = eth_type_trans(skb, skb->dev);
3539
3540 if (ret == GRO_HELD)
3541 skb_gro_pull(skb, -ETH_HLEN);
3542 else if (netif_receive_skb(skb))
3543 ret = GRO_DROP;
3544 break;
3545
3546 case GRO_DROP:
3547 case GRO_MERGED_FREE:
3548 napi_reuse_skb(napi, skb);
3549 break;
3550
3551 case GRO_MERGED:
3552 break;
3553 }
3554
3555 return ret;
3556 }
3557 EXPORT_SYMBOL(napi_frags_finish);
3558
3559 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3560 {
3561 struct sk_buff *skb = napi->skb;
3562 struct ethhdr *eth;
3563 unsigned int hlen;
3564 unsigned int off;
3565
3566 napi->skb = NULL;
3567
3568 skb_reset_mac_header(skb);
3569 skb_gro_reset_offset(skb);
3570
3571 off = skb_gro_offset(skb);
3572 hlen = off + sizeof(*eth);
3573 eth = skb_gro_header_fast(skb, off);
3574 if (skb_gro_header_hard(skb, hlen)) {
3575 eth = skb_gro_header_slow(skb, hlen, off);
3576 if (unlikely(!eth)) {
3577 napi_reuse_skb(napi, skb);
3578 skb = NULL;
3579 goto out;
3580 }
3581 }
3582
3583 skb_gro_pull(skb, sizeof(*eth));
3584
3585 /*
3586 * This works because the only protocols we care about don't require
3587 * special handling. We'll fix it up properly at the end.
3588 */
3589 skb->protocol = eth->h_proto;
3590
3591 out:
3592 return skb;
3593 }
3594 EXPORT_SYMBOL(napi_frags_skb);
3595
3596 gro_result_t napi_gro_frags(struct napi_struct *napi)
3597 {
3598 struct sk_buff *skb = napi_frags_skb(napi);
3599
3600 if (!skb)
3601 return GRO_DROP;
3602
3603 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3604 }
3605 EXPORT_SYMBOL(napi_gro_frags);
3606
3607 /*
3608 * net_rps_action sends any pending IPI's for rps.
3609 * Note: called with local irq disabled, but exits with local irq enabled.
3610 */
3611 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3612 {
3613 #ifdef CONFIG_RPS
3614 struct softnet_data *remsd = sd->rps_ipi_list;
3615
3616 if (remsd) {
3617 sd->rps_ipi_list = NULL;
3618
3619 local_irq_enable();
3620
3621 /* Send pending IPI's to kick RPS processing on remote cpus. */
3622 while (remsd) {
3623 struct softnet_data *next = remsd->rps_ipi_next;
3624
3625 if (cpu_online(remsd->cpu))
3626 __smp_call_function_single(remsd->cpu,
3627 &remsd->csd, 0);
3628 remsd = next;
3629 }
3630 } else
3631 #endif
3632 local_irq_enable();
3633 }
3634
3635 static int process_backlog(struct napi_struct *napi, int quota)
3636 {
3637 int work = 0;
3638 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3639
3640 #ifdef CONFIG_RPS
3641 /* Check if we have pending ipi, its better to send them now,
3642 * not waiting net_rx_action() end.
3643 */
3644 if (sd->rps_ipi_list) {
3645 local_irq_disable();
3646 net_rps_action_and_irq_enable(sd);
3647 }
3648 #endif
3649 napi->weight = weight_p;
3650 local_irq_disable();
3651 while (work < quota) {
3652 struct sk_buff *skb;
3653 unsigned int qlen;
3654
3655 while ((skb = __skb_dequeue(&sd->process_queue))) {
3656 local_irq_enable();
3657 __netif_receive_skb(skb);
3658 local_irq_disable();
3659 input_queue_head_incr(sd);
3660 if (++work >= quota) {
3661 local_irq_enable();
3662 return work;
3663 }
3664 }
3665
3666 rps_lock(sd);
3667 qlen = skb_queue_len(&sd->input_pkt_queue);
3668 if (qlen)
3669 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3670 &sd->process_queue);
3671
3672 if (qlen < quota - work) {
3673 /*
3674 * Inline a custom version of __napi_complete().
3675 * only current cpu owns and manipulates this napi,
3676 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3677 * we can use a plain write instead of clear_bit(),
3678 * and we dont need an smp_mb() memory barrier.
3679 */
3680 list_del(&napi->poll_list);
3681 napi->state = 0;
3682
3683 quota = work + qlen;
3684 }
3685 rps_unlock(sd);
3686 }
3687 local_irq_enable();
3688
3689 return work;
3690 }
3691
3692 /**
3693 * __napi_schedule - schedule for receive
3694 * @n: entry to schedule
3695 *
3696 * The entry's receive function will be scheduled to run
3697 */
3698 void __napi_schedule(struct napi_struct *n)
3699 {
3700 unsigned long flags;
3701
3702 local_irq_save(flags);
3703 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3704 local_irq_restore(flags);
3705 }
3706 EXPORT_SYMBOL(__napi_schedule);
3707
3708 void __napi_complete(struct napi_struct *n)
3709 {
3710 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3711 BUG_ON(n->gro_list);
3712
3713 list_del(&n->poll_list);
3714 smp_mb__before_clear_bit();
3715 clear_bit(NAPI_STATE_SCHED, &n->state);
3716 }
3717 EXPORT_SYMBOL(__napi_complete);
3718
3719 void napi_complete(struct napi_struct *n)
3720 {
3721 unsigned long flags;
3722
3723 /*
3724 * don't let napi dequeue from the cpu poll list
3725 * just in case its running on a different cpu
3726 */
3727 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3728 return;
3729
3730 napi_gro_flush(n);
3731 local_irq_save(flags);
3732 __napi_complete(n);
3733 local_irq_restore(flags);
3734 }
3735 EXPORT_SYMBOL(napi_complete);
3736
3737 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3738 int (*poll)(struct napi_struct *, int), int weight)
3739 {
3740 INIT_LIST_HEAD(&napi->poll_list);
3741 napi->gro_count = 0;
3742 napi->gro_list = NULL;
3743 napi->skb = NULL;
3744 napi->poll = poll;
3745 napi->weight = weight;
3746 list_add(&napi->dev_list, &dev->napi_list);
3747 napi->dev = dev;
3748 #ifdef CONFIG_NETPOLL
3749 spin_lock_init(&napi->poll_lock);
3750 napi->poll_owner = -1;
3751 #endif
3752 set_bit(NAPI_STATE_SCHED, &napi->state);
3753 }
3754 EXPORT_SYMBOL(netif_napi_add);
3755
3756 void netif_napi_del(struct napi_struct *napi)
3757 {
3758 struct sk_buff *skb, *next;
3759
3760 list_del_init(&napi->dev_list);
3761 napi_free_frags(napi);
3762
3763 for (skb = napi->gro_list; skb; skb = next) {
3764 next = skb->next;
3765 skb->next = NULL;
3766 kfree_skb(skb);
3767 }
3768
3769 napi->gro_list = NULL;
3770 napi->gro_count = 0;
3771 }
3772 EXPORT_SYMBOL(netif_napi_del);
3773
3774 static void net_rx_action(struct softirq_action *h)
3775 {
3776 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3777 unsigned long time_limit = jiffies + 2;
3778 int budget = netdev_budget;
3779 void *have;
3780
3781 local_irq_disable();
3782
3783 while (!list_empty(&sd->poll_list)) {
3784 struct napi_struct *n;
3785 int work, weight;
3786
3787 /* If softirq window is exhuasted then punt.
3788 * Allow this to run for 2 jiffies since which will allow
3789 * an average latency of 1.5/HZ.
3790 */
3791 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3792 goto softnet_break;
3793
3794 local_irq_enable();
3795
3796 /* Even though interrupts have been re-enabled, this
3797 * access is safe because interrupts can only add new
3798 * entries to the tail of this list, and only ->poll()
3799 * calls can remove this head entry from the list.
3800 */
3801 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3802
3803 have = netpoll_poll_lock(n);
3804
3805 weight = n->weight;
3806
3807 /* This NAPI_STATE_SCHED test is for avoiding a race
3808 * with netpoll's poll_napi(). Only the entity which
3809 * obtains the lock and sees NAPI_STATE_SCHED set will
3810 * actually make the ->poll() call. Therefore we avoid
3811 * accidentally calling ->poll() when NAPI is not scheduled.
3812 */
3813 work = 0;
3814 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3815 work = n->poll(n, weight);
3816 trace_napi_poll(n);
3817 }
3818
3819 WARN_ON_ONCE(work > weight);
3820
3821 budget -= work;
3822
3823 local_irq_disable();
3824
3825 /* Drivers must not modify the NAPI state if they
3826 * consume the entire weight. In such cases this code
3827 * still "owns" the NAPI instance and therefore can
3828 * move the instance around on the list at-will.
3829 */
3830 if (unlikely(work == weight)) {
3831 if (unlikely(napi_disable_pending(n))) {
3832 local_irq_enable();
3833 napi_complete(n);
3834 local_irq_disable();
3835 } else
3836 list_move_tail(&n->poll_list, &sd->poll_list);
3837 }
3838
3839 netpoll_poll_unlock(have);
3840 }
3841 out:
3842 net_rps_action_and_irq_enable(sd);
3843
3844 #ifdef CONFIG_NET_DMA
3845 /*
3846 * There may not be any more sk_buffs coming right now, so push
3847 * any pending DMA copies to hardware
3848 */
3849 dma_issue_pending_all();
3850 #endif
3851
3852 return;
3853
3854 softnet_break:
3855 sd->time_squeeze++;
3856 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3857 goto out;
3858 }
3859
3860 static gifconf_func_t *gifconf_list[NPROTO];
3861
3862 /**
3863 * register_gifconf - register a SIOCGIF handler
3864 * @family: Address family
3865 * @gifconf: Function handler
3866 *
3867 * Register protocol dependent address dumping routines. The handler
3868 * that is passed must not be freed or reused until it has been replaced
3869 * by another handler.
3870 */
3871 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3872 {
3873 if (family >= NPROTO)
3874 return -EINVAL;
3875 gifconf_list[family] = gifconf;
3876 return 0;
3877 }
3878 EXPORT_SYMBOL(register_gifconf);
3879
3880
3881 /*
3882 * Map an interface index to its name (SIOCGIFNAME)
3883 */
3884
3885 /*
3886 * We need this ioctl for efficient implementation of the
3887 * if_indextoname() function required by the IPv6 API. Without
3888 * it, we would have to search all the interfaces to find a
3889 * match. --pb
3890 */
3891
3892 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3893 {
3894 struct net_device *dev;
3895 struct ifreq ifr;
3896
3897 /*
3898 * Fetch the caller's info block.
3899 */
3900
3901 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3902 return -EFAULT;
3903
3904 rcu_read_lock();
3905 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3906 if (!dev) {
3907 rcu_read_unlock();
3908 return -ENODEV;
3909 }
3910
3911 strcpy(ifr.ifr_name, dev->name);
3912 rcu_read_unlock();
3913
3914 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3915 return -EFAULT;
3916 return 0;
3917 }
3918
3919 /*
3920 * Perform a SIOCGIFCONF call. This structure will change
3921 * size eventually, and there is nothing I can do about it.
3922 * Thus we will need a 'compatibility mode'.
3923 */
3924
3925 static int dev_ifconf(struct net *net, char __user *arg)
3926 {
3927 struct ifconf ifc;
3928 struct net_device *dev;
3929 char __user *pos;
3930 int len;
3931 int total;
3932 int i;
3933
3934 /*
3935 * Fetch the caller's info block.
3936 */
3937
3938 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3939 return -EFAULT;
3940
3941 pos = ifc.ifc_buf;
3942 len = ifc.ifc_len;
3943
3944 /*
3945 * Loop over the interfaces, and write an info block for each.
3946 */
3947
3948 total = 0;
3949 for_each_netdev(net, dev) {
3950 for (i = 0; i < NPROTO; i++) {
3951 if (gifconf_list[i]) {
3952 int done;
3953 if (!pos)
3954 done = gifconf_list[i](dev, NULL, 0);
3955 else
3956 done = gifconf_list[i](dev, pos + total,
3957 len - total);
3958 if (done < 0)
3959 return -EFAULT;
3960 total += done;
3961 }
3962 }
3963 }
3964
3965 /*
3966 * All done. Write the updated control block back to the caller.
3967 */
3968 ifc.ifc_len = total;
3969
3970 /*
3971 * Both BSD and Solaris return 0 here, so we do too.
3972 */
3973 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3974 }
3975
3976 #ifdef CONFIG_PROC_FS
3977 /*
3978 * This is invoked by the /proc filesystem handler to display a device
3979 * in detail.
3980 */
3981 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3982 __acquires(RCU)
3983 {
3984 struct net *net = seq_file_net(seq);
3985 loff_t off;
3986 struct net_device *dev;
3987
3988 rcu_read_lock();
3989 if (!*pos)
3990 return SEQ_START_TOKEN;
3991
3992 off = 1;
3993 for_each_netdev_rcu(net, dev)
3994 if (off++ == *pos)
3995 return dev;
3996
3997 return NULL;
3998 }
3999
4000 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4001 {
4002 struct net_device *dev = v;
4003
4004 if (v == SEQ_START_TOKEN)
4005 dev = first_net_device_rcu(seq_file_net(seq));
4006 else
4007 dev = next_net_device_rcu(dev);
4008
4009 ++*pos;
4010 return dev;
4011 }
4012
4013 void dev_seq_stop(struct seq_file *seq, void *v)
4014 __releases(RCU)
4015 {
4016 rcu_read_unlock();
4017 }
4018
4019 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4020 {
4021 struct rtnl_link_stats64 temp;
4022 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4023
4024 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4025 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4026 dev->name, stats->rx_bytes, stats->rx_packets,
4027 stats->rx_errors,
4028 stats->rx_dropped + stats->rx_missed_errors,
4029 stats->rx_fifo_errors,
4030 stats->rx_length_errors + stats->rx_over_errors +
4031 stats->rx_crc_errors + stats->rx_frame_errors,
4032 stats->rx_compressed, stats->multicast,
4033 stats->tx_bytes, stats->tx_packets,
4034 stats->tx_errors, stats->tx_dropped,
4035 stats->tx_fifo_errors, stats->collisions,
4036 stats->tx_carrier_errors +
4037 stats->tx_aborted_errors +
4038 stats->tx_window_errors +
4039 stats->tx_heartbeat_errors,
4040 stats->tx_compressed);
4041 }
4042
4043 /*
4044 * Called from the PROCfs module. This now uses the new arbitrary sized
4045 * /proc/net interface to create /proc/net/dev
4046 */
4047 static int dev_seq_show(struct seq_file *seq, void *v)
4048 {
4049 if (v == SEQ_START_TOKEN)
4050 seq_puts(seq, "Inter-| Receive "
4051 " | Transmit\n"
4052 " face |bytes packets errs drop fifo frame "
4053 "compressed multicast|bytes packets errs "
4054 "drop fifo colls carrier compressed\n");
4055 else
4056 dev_seq_printf_stats(seq, v);
4057 return 0;
4058 }
4059
4060 static struct softnet_data *softnet_get_online(loff_t *pos)
4061 {
4062 struct softnet_data *sd = NULL;
4063
4064 while (*pos < nr_cpu_ids)
4065 if (cpu_online(*pos)) {
4066 sd = &per_cpu(softnet_data, *pos);
4067 break;
4068 } else
4069 ++*pos;
4070 return sd;
4071 }
4072
4073 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4074 {
4075 return softnet_get_online(pos);
4076 }
4077
4078 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4079 {
4080 ++*pos;
4081 return softnet_get_online(pos);
4082 }
4083
4084 static void softnet_seq_stop(struct seq_file *seq, void *v)
4085 {
4086 }
4087
4088 static int softnet_seq_show(struct seq_file *seq, void *v)
4089 {
4090 struct softnet_data *sd = v;
4091
4092 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4093 sd->processed, sd->dropped, sd->time_squeeze, 0,
4094 0, 0, 0, 0, /* was fastroute */
4095 sd->cpu_collision, sd->received_rps);
4096 return 0;
4097 }
4098
4099 static const struct seq_operations dev_seq_ops = {
4100 .start = dev_seq_start,
4101 .next = dev_seq_next,
4102 .stop = dev_seq_stop,
4103 .show = dev_seq_show,
4104 };
4105
4106 static int dev_seq_open(struct inode *inode, struct file *file)
4107 {
4108 return seq_open_net(inode, file, &dev_seq_ops,
4109 sizeof(struct seq_net_private));
4110 }
4111
4112 static const struct file_operations dev_seq_fops = {
4113 .owner = THIS_MODULE,
4114 .open = dev_seq_open,
4115 .read = seq_read,
4116 .llseek = seq_lseek,
4117 .release = seq_release_net,
4118 };
4119
4120 static const struct seq_operations softnet_seq_ops = {
4121 .start = softnet_seq_start,
4122 .next = softnet_seq_next,
4123 .stop = softnet_seq_stop,
4124 .show = softnet_seq_show,
4125 };
4126
4127 static int softnet_seq_open(struct inode *inode, struct file *file)
4128 {
4129 return seq_open(file, &softnet_seq_ops);
4130 }
4131
4132 static const struct file_operations softnet_seq_fops = {
4133 .owner = THIS_MODULE,
4134 .open = softnet_seq_open,
4135 .read = seq_read,
4136 .llseek = seq_lseek,
4137 .release = seq_release,
4138 };
4139
4140 static void *ptype_get_idx(loff_t pos)
4141 {
4142 struct packet_type *pt = NULL;
4143 loff_t i = 0;
4144 int t;
4145
4146 list_for_each_entry_rcu(pt, &ptype_all, list) {
4147 if (i == pos)
4148 return pt;
4149 ++i;
4150 }
4151
4152 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4153 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4154 if (i == pos)
4155 return pt;
4156 ++i;
4157 }
4158 }
4159 return NULL;
4160 }
4161
4162 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4163 __acquires(RCU)
4164 {
4165 rcu_read_lock();
4166 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4167 }
4168
4169 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4170 {
4171 struct packet_type *pt;
4172 struct list_head *nxt;
4173 int hash;
4174
4175 ++*pos;
4176 if (v == SEQ_START_TOKEN)
4177 return ptype_get_idx(0);
4178
4179 pt = v;
4180 nxt = pt->list.next;
4181 if (pt->type == htons(ETH_P_ALL)) {
4182 if (nxt != &ptype_all)
4183 goto found;
4184 hash = 0;
4185 nxt = ptype_base[0].next;
4186 } else
4187 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4188
4189 while (nxt == &ptype_base[hash]) {
4190 if (++hash >= PTYPE_HASH_SIZE)
4191 return NULL;
4192 nxt = ptype_base[hash].next;
4193 }
4194 found:
4195 return list_entry(nxt, struct packet_type, list);
4196 }
4197
4198 static void ptype_seq_stop(struct seq_file *seq, void *v)
4199 __releases(RCU)
4200 {
4201 rcu_read_unlock();
4202 }
4203
4204 static int ptype_seq_show(struct seq_file *seq, void *v)
4205 {
4206 struct packet_type *pt = v;
4207
4208 if (v == SEQ_START_TOKEN)
4209 seq_puts(seq, "Type Device Function\n");
4210 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4211 if (pt->type == htons(ETH_P_ALL))
4212 seq_puts(seq, "ALL ");
4213 else
4214 seq_printf(seq, "%04x", ntohs(pt->type));
4215
4216 seq_printf(seq, " %-8s %pF\n",
4217 pt->dev ? pt->dev->name : "", pt->func);
4218 }
4219
4220 return 0;
4221 }
4222
4223 static const struct seq_operations ptype_seq_ops = {
4224 .start = ptype_seq_start,
4225 .next = ptype_seq_next,
4226 .stop = ptype_seq_stop,
4227 .show = ptype_seq_show,
4228 };
4229
4230 static int ptype_seq_open(struct inode *inode, struct file *file)
4231 {
4232 return seq_open_net(inode, file, &ptype_seq_ops,
4233 sizeof(struct seq_net_private));
4234 }
4235
4236 static const struct file_operations ptype_seq_fops = {
4237 .owner = THIS_MODULE,
4238 .open = ptype_seq_open,
4239 .read = seq_read,
4240 .llseek = seq_lseek,
4241 .release = seq_release_net,
4242 };
4243
4244
4245 static int __net_init dev_proc_net_init(struct net *net)
4246 {
4247 int rc = -ENOMEM;
4248
4249 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4250 goto out;
4251 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4252 goto out_dev;
4253 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4254 goto out_softnet;
4255
4256 if (wext_proc_init(net))
4257 goto out_ptype;
4258 rc = 0;
4259 out:
4260 return rc;
4261 out_ptype:
4262 proc_net_remove(net, "ptype");
4263 out_softnet:
4264 proc_net_remove(net, "softnet_stat");
4265 out_dev:
4266 proc_net_remove(net, "dev");
4267 goto out;
4268 }
4269
4270 static void __net_exit dev_proc_net_exit(struct net *net)
4271 {
4272 wext_proc_exit(net);
4273
4274 proc_net_remove(net, "ptype");
4275 proc_net_remove(net, "softnet_stat");
4276 proc_net_remove(net, "dev");
4277 }
4278
4279 static struct pernet_operations __net_initdata dev_proc_ops = {
4280 .init = dev_proc_net_init,
4281 .exit = dev_proc_net_exit,
4282 };
4283
4284 static int __init dev_proc_init(void)
4285 {
4286 return register_pernet_subsys(&dev_proc_ops);
4287 }
4288 #else
4289 #define dev_proc_init() 0
4290 #endif /* CONFIG_PROC_FS */
4291
4292
4293 /**
4294 * netdev_set_master - set up master pointer
4295 * @slave: slave device
4296 * @master: new master device
4297 *
4298 * Changes the master device of the slave. Pass %NULL to break the
4299 * bonding. The caller must hold the RTNL semaphore. On a failure
4300 * a negative errno code is returned. On success the reference counts
4301 * are adjusted and the function returns zero.
4302 */
4303 int netdev_set_master(struct net_device *slave, struct net_device *master)
4304 {
4305 struct net_device *old = slave->master;
4306
4307 ASSERT_RTNL();
4308
4309 if (master) {
4310 if (old)
4311 return -EBUSY;
4312 dev_hold(master);
4313 }
4314
4315 slave->master = master;
4316
4317 if (old)
4318 dev_put(old);
4319 return 0;
4320 }
4321 EXPORT_SYMBOL(netdev_set_master);
4322
4323 /**
4324 * netdev_set_bond_master - set up bonding master/slave pair
4325 * @slave: slave device
4326 * @master: new master device
4327 *
4328 * Changes the master device of the slave. Pass %NULL to break the
4329 * bonding. The caller must hold the RTNL semaphore. On a failure
4330 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4331 * to the routing socket and the function returns zero.
4332 */
4333 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4334 {
4335 int err;
4336
4337 ASSERT_RTNL();
4338
4339 err = netdev_set_master(slave, master);
4340 if (err)
4341 return err;
4342 if (master)
4343 slave->flags |= IFF_SLAVE;
4344 else
4345 slave->flags &= ~IFF_SLAVE;
4346
4347 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4348 return 0;
4349 }
4350 EXPORT_SYMBOL(netdev_set_bond_master);
4351
4352 static void dev_change_rx_flags(struct net_device *dev, int flags)
4353 {
4354 const struct net_device_ops *ops = dev->netdev_ops;
4355
4356 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4357 ops->ndo_change_rx_flags(dev, flags);
4358 }
4359
4360 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4361 {
4362 unsigned short old_flags = dev->flags;
4363 uid_t uid;
4364 gid_t gid;
4365
4366 ASSERT_RTNL();
4367
4368 dev->flags |= IFF_PROMISC;
4369 dev->promiscuity += inc;
4370 if (dev->promiscuity == 0) {
4371 /*
4372 * Avoid overflow.
4373 * If inc causes overflow, untouch promisc and return error.
4374 */
4375 if (inc < 0)
4376 dev->flags &= ~IFF_PROMISC;
4377 else {
4378 dev->promiscuity -= inc;
4379 printk(KERN_WARNING "%s: promiscuity touches roof, "
4380 "set promiscuity failed, promiscuity feature "
4381 "of device might be broken.\n", dev->name);
4382 return -EOVERFLOW;
4383 }
4384 }
4385 if (dev->flags != old_flags) {
4386 printk(KERN_INFO "device %s %s promiscuous mode\n",
4387 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4388 "left");
4389 if (audit_enabled) {
4390 current_uid_gid(&uid, &gid);
4391 audit_log(current->audit_context, GFP_ATOMIC,
4392 AUDIT_ANOM_PROMISCUOUS,
4393 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4394 dev->name, (dev->flags & IFF_PROMISC),
4395 (old_flags & IFF_PROMISC),
4396 audit_get_loginuid(current),
4397 uid, gid,
4398 audit_get_sessionid(current));
4399 }
4400
4401 dev_change_rx_flags(dev, IFF_PROMISC);
4402 }
4403 return 0;
4404 }
4405
4406 /**
4407 * dev_set_promiscuity - update promiscuity count on a device
4408 * @dev: device
4409 * @inc: modifier
4410 *
4411 * Add or remove promiscuity from a device. While the count in the device
4412 * remains above zero the interface remains promiscuous. Once it hits zero
4413 * the device reverts back to normal filtering operation. A negative inc
4414 * value is used to drop promiscuity on the device.
4415 * Return 0 if successful or a negative errno code on error.
4416 */
4417 int dev_set_promiscuity(struct net_device *dev, int inc)
4418 {
4419 unsigned short old_flags = dev->flags;
4420 int err;
4421
4422 err = __dev_set_promiscuity(dev, inc);
4423 if (err < 0)
4424 return err;
4425 if (dev->flags != old_flags)
4426 dev_set_rx_mode(dev);
4427 return err;
4428 }
4429 EXPORT_SYMBOL(dev_set_promiscuity);
4430
4431 /**
4432 * dev_set_allmulti - update allmulti count on a device
4433 * @dev: device
4434 * @inc: modifier
4435 *
4436 * Add or remove reception of all multicast frames to a device. While the
4437 * count in the device remains above zero the interface remains listening
4438 * to all interfaces. Once it hits zero the device reverts back to normal
4439 * filtering operation. A negative @inc value is used to drop the counter
4440 * when releasing a resource needing all multicasts.
4441 * Return 0 if successful or a negative errno code on error.
4442 */
4443
4444 int dev_set_allmulti(struct net_device *dev, int inc)
4445 {
4446 unsigned short old_flags = dev->flags;
4447
4448 ASSERT_RTNL();
4449
4450 dev->flags |= IFF_ALLMULTI;
4451 dev->allmulti += inc;
4452 if (dev->allmulti == 0) {
4453 /*
4454 * Avoid overflow.
4455 * If inc causes overflow, untouch allmulti and return error.
4456 */
4457 if (inc < 0)
4458 dev->flags &= ~IFF_ALLMULTI;
4459 else {
4460 dev->allmulti -= inc;
4461 printk(KERN_WARNING "%s: allmulti touches roof, "
4462 "set allmulti failed, allmulti feature of "
4463 "device might be broken.\n", dev->name);
4464 return -EOVERFLOW;
4465 }
4466 }
4467 if (dev->flags ^ old_flags) {
4468 dev_change_rx_flags(dev, IFF_ALLMULTI);
4469 dev_set_rx_mode(dev);
4470 }
4471 return 0;
4472 }
4473 EXPORT_SYMBOL(dev_set_allmulti);
4474
4475 /*
4476 * Upload unicast and multicast address lists to device and
4477 * configure RX filtering. When the device doesn't support unicast
4478 * filtering it is put in promiscuous mode while unicast addresses
4479 * are present.
4480 */
4481 void __dev_set_rx_mode(struct net_device *dev)
4482 {
4483 const struct net_device_ops *ops = dev->netdev_ops;
4484
4485 /* dev_open will call this function so the list will stay sane. */
4486 if (!(dev->flags&IFF_UP))
4487 return;
4488
4489 if (!netif_device_present(dev))
4490 return;
4491
4492 if (ops->ndo_set_rx_mode)
4493 ops->ndo_set_rx_mode(dev);
4494 else {
4495 /* Unicast addresses changes may only happen under the rtnl,
4496 * therefore calling __dev_set_promiscuity here is safe.
4497 */
4498 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4499 __dev_set_promiscuity(dev, 1);
4500 dev->uc_promisc = 1;
4501 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4502 __dev_set_promiscuity(dev, -1);
4503 dev->uc_promisc = 0;
4504 }
4505
4506 if (ops->ndo_set_multicast_list)
4507 ops->ndo_set_multicast_list(dev);
4508 }
4509 }
4510
4511 void dev_set_rx_mode(struct net_device *dev)
4512 {
4513 netif_addr_lock_bh(dev);
4514 __dev_set_rx_mode(dev);
4515 netif_addr_unlock_bh(dev);
4516 }
4517
4518 /**
4519 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4520 * @dev: device
4521 * @cmd: memory area for ethtool_ops::get_settings() result
4522 *
4523 * The cmd arg is initialized properly (cleared and
4524 * ethtool_cmd::cmd field set to ETHTOOL_GSET).
4525 *
4526 * Return device's ethtool_ops::get_settings() result value or
4527 * -EOPNOTSUPP when device doesn't expose
4528 * ethtool_ops::get_settings() operation.
4529 */
4530 int dev_ethtool_get_settings(struct net_device *dev,
4531 struct ethtool_cmd *cmd)
4532 {
4533 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4534 return -EOPNOTSUPP;
4535
4536 memset(cmd, 0, sizeof(struct ethtool_cmd));
4537 cmd->cmd = ETHTOOL_GSET;
4538 return dev->ethtool_ops->get_settings(dev, cmd);
4539 }
4540 EXPORT_SYMBOL(dev_ethtool_get_settings);
4541
4542 /**
4543 * dev_get_flags - get flags reported to userspace
4544 * @dev: device
4545 *
4546 * Get the combination of flag bits exported through APIs to userspace.
4547 */
4548 unsigned dev_get_flags(const struct net_device *dev)
4549 {
4550 unsigned flags;
4551
4552 flags = (dev->flags & ~(IFF_PROMISC |
4553 IFF_ALLMULTI |
4554 IFF_RUNNING |
4555 IFF_LOWER_UP |
4556 IFF_DORMANT)) |
4557 (dev->gflags & (IFF_PROMISC |
4558 IFF_ALLMULTI));
4559
4560 if (netif_running(dev)) {
4561 if (netif_oper_up(dev))
4562 flags |= IFF_RUNNING;
4563 if (netif_carrier_ok(dev))
4564 flags |= IFF_LOWER_UP;
4565 if (netif_dormant(dev))
4566 flags |= IFF_DORMANT;
4567 }
4568
4569 return flags;
4570 }
4571 EXPORT_SYMBOL(dev_get_flags);
4572
4573 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4574 {
4575 int old_flags = dev->flags;
4576 int ret;
4577
4578 ASSERT_RTNL();
4579
4580 /*
4581 * Set the flags on our device.
4582 */
4583
4584 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4585 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4586 IFF_AUTOMEDIA)) |
4587 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4588 IFF_ALLMULTI));
4589
4590 /*
4591 * Load in the correct multicast list now the flags have changed.
4592 */
4593
4594 if ((old_flags ^ flags) & IFF_MULTICAST)
4595 dev_change_rx_flags(dev, IFF_MULTICAST);
4596
4597 dev_set_rx_mode(dev);
4598
4599 /*
4600 * Have we downed the interface. We handle IFF_UP ourselves
4601 * according to user attempts to set it, rather than blindly
4602 * setting it.
4603 */
4604
4605 ret = 0;
4606 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4607 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4608
4609 if (!ret)
4610 dev_set_rx_mode(dev);
4611 }
4612
4613 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4614 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4615
4616 dev->gflags ^= IFF_PROMISC;
4617 dev_set_promiscuity(dev, inc);
4618 }
4619
4620 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4621 is important. Some (broken) drivers set IFF_PROMISC, when
4622 IFF_ALLMULTI is requested not asking us and not reporting.
4623 */
4624 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4625 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4626
4627 dev->gflags ^= IFF_ALLMULTI;
4628 dev_set_allmulti(dev, inc);
4629 }
4630
4631 return ret;
4632 }
4633
4634 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4635 {
4636 unsigned int changes = dev->flags ^ old_flags;
4637
4638 if (changes & IFF_UP) {
4639 if (dev->flags & IFF_UP)
4640 call_netdevice_notifiers(NETDEV_UP, dev);
4641 else
4642 call_netdevice_notifiers(NETDEV_DOWN, dev);
4643 }
4644
4645 if (dev->flags & IFF_UP &&
4646 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4647 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4648 }
4649
4650 /**
4651 * dev_change_flags - change device settings
4652 * @dev: device
4653 * @flags: device state flags
4654 *
4655 * Change settings on device based state flags. The flags are
4656 * in the userspace exported format.
4657 */
4658 int dev_change_flags(struct net_device *dev, unsigned flags)
4659 {
4660 int ret, changes;
4661 int old_flags = dev->flags;
4662
4663 ret = __dev_change_flags(dev, flags);
4664 if (ret < 0)
4665 return ret;
4666
4667 changes = old_flags ^ dev->flags;
4668 if (changes)
4669 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4670
4671 __dev_notify_flags(dev, old_flags);
4672 return ret;
4673 }
4674 EXPORT_SYMBOL(dev_change_flags);
4675
4676 /**
4677 * dev_set_mtu - Change maximum transfer unit
4678 * @dev: device
4679 * @new_mtu: new transfer unit
4680 *
4681 * Change the maximum transfer size of the network device.
4682 */
4683 int dev_set_mtu(struct net_device *dev, int new_mtu)
4684 {
4685 const struct net_device_ops *ops = dev->netdev_ops;
4686 int err;
4687
4688 if (new_mtu == dev->mtu)
4689 return 0;
4690
4691 /* MTU must be positive. */
4692 if (new_mtu < 0)
4693 return -EINVAL;
4694
4695 if (!netif_device_present(dev))
4696 return -ENODEV;
4697
4698 err = 0;
4699 if (ops->ndo_change_mtu)
4700 err = ops->ndo_change_mtu(dev, new_mtu);
4701 else
4702 dev->mtu = new_mtu;
4703
4704 if (!err && dev->flags & IFF_UP)
4705 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4706 return err;
4707 }
4708 EXPORT_SYMBOL(dev_set_mtu);
4709
4710 /**
4711 * dev_set_group - Change group this device belongs to
4712 * @dev: device
4713 * @new_group: group this device should belong to
4714 */
4715 void dev_set_group(struct net_device *dev, int new_group)
4716 {
4717 dev->group = new_group;
4718 }
4719 EXPORT_SYMBOL(dev_set_group);
4720
4721 /**
4722 * dev_set_mac_address - Change Media Access Control Address
4723 * @dev: device
4724 * @sa: new address
4725 *
4726 * Change the hardware (MAC) address of the device
4727 */
4728 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4729 {
4730 const struct net_device_ops *ops = dev->netdev_ops;
4731 int err;
4732
4733 if (!ops->ndo_set_mac_address)
4734 return -EOPNOTSUPP;
4735 if (sa->sa_family != dev->type)
4736 return -EINVAL;
4737 if (!netif_device_present(dev))
4738 return -ENODEV;
4739 err = ops->ndo_set_mac_address(dev, sa);
4740 if (!err)
4741 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4742 return err;
4743 }
4744 EXPORT_SYMBOL(dev_set_mac_address);
4745
4746 /*
4747 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4748 */
4749 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4750 {
4751 int err;
4752 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4753
4754 if (!dev)
4755 return -ENODEV;
4756
4757 switch (cmd) {
4758 case SIOCGIFFLAGS: /* Get interface flags */
4759 ifr->ifr_flags = (short) dev_get_flags(dev);
4760 return 0;
4761
4762 case SIOCGIFMETRIC: /* Get the metric on the interface
4763 (currently unused) */
4764 ifr->ifr_metric = 0;
4765 return 0;
4766
4767 case SIOCGIFMTU: /* Get the MTU of a device */
4768 ifr->ifr_mtu = dev->mtu;
4769 return 0;
4770
4771 case SIOCGIFHWADDR:
4772 if (!dev->addr_len)
4773 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4774 else
4775 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4776 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4777 ifr->ifr_hwaddr.sa_family = dev->type;
4778 return 0;
4779
4780 case SIOCGIFSLAVE:
4781 err = -EINVAL;
4782 break;
4783
4784 case SIOCGIFMAP:
4785 ifr->ifr_map.mem_start = dev->mem_start;
4786 ifr->ifr_map.mem_end = dev->mem_end;
4787 ifr->ifr_map.base_addr = dev->base_addr;
4788 ifr->ifr_map.irq = dev->irq;
4789 ifr->ifr_map.dma = dev->dma;
4790 ifr->ifr_map.port = dev->if_port;
4791 return 0;
4792
4793 case SIOCGIFINDEX:
4794 ifr->ifr_ifindex = dev->ifindex;
4795 return 0;
4796
4797 case SIOCGIFTXQLEN:
4798 ifr->ifr_qlen = dev->tx_queue_len;
4799 return 0;
4800
4801 default:
4802 /* dev_ioctl() should ensure this case
4803 * is never reached
4804 */
4805 WARN_ON(1);
4806 err = -ENOTTY;
4807 break;
4808
4809 }
4810 return err;
4811 }
4812
4813 /*
4814 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4815 */
4816 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4817 {
4818 int err;
4819 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4820 const struct net_device_ops *ops;
4821
4822 if (!dev)
4823 return -ENODEV;
4824
4825 ops = dev->netdev_ops;
4826
4827 switch (cmd) {
4828 case SIOCSIFFLAGS: /* Set interface flags */
4829 return dev_change_flags(dev, ifr->ifr_flags);
4830
4831 case SIOCSIFMETRIC: /* Set the metric on the interface
4832 (currently unused) */
4833 return -EOPNOTSUPP;
4834
4835 case SIOCSIFMTU: /* Set the MTU of a device */
4836 return dev_set_mtu(dev, ifr->ifr_mtu);
4837
4838 case SIOCSIFHWADDR:
4839 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4840
4841 case SIOCSIFHWBROADCAST:
4842 if (ifr->ifr_hwaddr.sa_family != dev->type)
4843 return -EINVAL;
4844 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4845 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4846 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4847 return 0;
4848
4849 case SIOCSIFMAP:
4850 if (ops->ndo_set_config) {
4851 if (!netif_device_present(dev))
4852 return -ENODEV;
4853 return ops->ndo_set_config(dev, &ifr->ifr_map);
4854 }
4855 return -EOPNOTSUPP;
4856
4857 case SIOCADDMULTI:
4858 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4859 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4860 return -EINVAL;
4861 if (!netif_device_present(dev))
4862 return -ENODEV;
4863 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4864
4865 case SIOCDELMULTI:
4866 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4867 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4868 return -EINVAL;
4869 if (!netif_device_present(dev))
4870 return -ENODEV;
4871 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4872
4873 case SIOCSIFTXQLEN:
4874 if (ifr->ifr_qlen < 0)
4875 return -EINVAL;
4876 dev->tx_queue_len = ifr->ifr_qlen;
4877 return 0;
4878
4879 case SIOCSIFNAME:
4880 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4881 return dev_change_name(dev, ifr->ifr_newname);
4882
4883 /*
4884 * Unknown or private ioctl
4885 */
4886 default:
4887 if ((cmd >= SIOCDEVPRIVATE &&
4888 cmd <= SIOCDEVPRIVATE + 15) ||
4889 cmd == SIOCBONDENSLAVE ||
4890 cmd == SIOCBONDRELEASE ||
4891 cmd == SIOCBONDSETHWADDR ||
4892 cmd == SIOCBONDSLAVEINFOQUERY ||
4893 cmd == SIOCBONDINFOQUERY ||
4894 cmd == SIOCBONDCHANGEACTIVE ||
4895 cmd == SIOCGMIIPHY ||
4896 cmd == SIOCGMIIREG ||
4897 cmd == SIOCSMIIREG ||
4898 cmd == SIOCBRADDIF ||
4899 cmd == SIOCBRDELIF ||
4900 cmd == SIOCSHWTSTAMP ||
4901 cmd == SIOCWANDEV) {
4902 err = -EOPNOTSUPP;
4903 if (ops->ndo_do_ioctl) {
4904 if (netif_device_present(dev))
4905 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4906 else
4907 err = -ENODEV;
4908 }
4909 } else
4910 err = -EINVAL;
4911
4912 }
4913 return err;
4914 }
4915
4916 /*
4917 * This function handles all "interface"-type I/O control requests. The actual
4918 * 'doing' part of this is dev_ifsioc above.
4919 */
4920
4921 /**
4922 * dev_ioctl - network device ioctl
4923 * @net: the applicable net namespace
4924 * @cmd: command to issue
4925 * @arg: pointer to a struct ifreq in user space
4926 *
4927 * Issue ioctl functions to devices. This is normally called by the
4928 * user space syscall interfaces but can sometimes be useful for
4929 * other purposes. The return value is the return from the syscall if
4930 * positive or a negative errno code on error.
4931 */
4932
4933 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4934 {
4935 struct ifreq ifr;
4936 int ret;
4937 char *colon;
4938
4939 /* One special case: SIOCGIFCONF takes ifconf argument
4940 and requires shared lock, because it sleeps writing
4941 to user space.
4942 */
4943
4944 if (cmd == SIOCGIFCONF) {
4945 rtnl_lock();
4946 ret = dev_ifconf(net, (char __user *) arg);
4947 rtnl_unlock();
4948 return ret;
4949 }
4950 if (cmd == SIOCGIFNAME)
4951 return dev_ifname(net, (struct ifreq __user *)arg);
4952
4953 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4954 return -EFAULT;
4955
4956 ifr.ifr_name[IFNAMSIZ-1] = 0;
4957
4958 colon = strchr(ifr.ifr_name, ':');
4959 if (colon)
4960 *colon = 0;
4961
4962 /*
4963 * See which interface the caller is talking about.
4964 */
4965
4966 switch (cmd) {
4967 /*
4968 * These ioctl calls:
4969 * - can be done by all.
4970 * - atomic and do not require locking.
4971 * - return a value
4972 */
4973 case SIOCGIFFLAGS:
4974 case SIOCGIFMETRIC:
4975 case SIOCGIFMTU:
4976 case SIOCGIFHWADDR:
4977 case SIOCGIFSLAVE:
4978 case SIOCGIFMAP:
4979 case SIOCGIFINDEX:
4980 case SIOCGIFTXQLEN:
4981 dev_load(net, ifr.ifr_name);
4982 rcu_read_lock();
4983 ret = dev_ifsioc_locked(net, &ifr, cmd);
4984 rcu_read_unlock();
4985 if (!ret) {
4986 if (colon)
4987 *colon = ':';
4988 if (copy_to_user(arg, &ifr,
4989 sizeof(struct ifreq)))
4990 ret = -EFAULT;
4991 }
4992 return ret;
4993
4994 case SIOCETHTOOL:
4995 dev_load(net, ifr.ifr_name);
4996 rtnl_lock();
4997 ret = dev_ethtool(net, &ifr);
4998 rtnl_unlock();
4999 if (!ret) {
5000 if (colon)
5001 *colon = ':';
5002 if (copy_to_user(arg, &ifr,
5003 sizeof(struct ifreq)))
5004 ret = -EFAULT;
5005 }
5006 return ret;
5007
5008 /*
5009 * These ioctl calls:
5010 * - require superuser power.
5011 * - require strict serialization.
5012 * - return a value
5013 */
5014 case SIOCGMIIPHY:
5015 case SIOCGMIIREG:
5016 case SIOCSIFNAME:
5017 if (!capable(CAP_NET_ADMIN))
5018 return -EPERM;
5019 dev_load(net, ifr.ifr_name);
5020 rtnl_lock();
5021 ret = dev_ifsioc(net, &ifr, cmd);
5022 rtnl_unlock();
5023 if (!ret) {
5024 if (colon)
5025 *colon = ':';
5026 if (copy_to_user(arg, &ifr,
5027 sizeof(struct ifreq)))
5028 ret = -EFAULT;
5029 }
5030 return ret;
5031
5032 /*
5033 * These ioctl calls:
5034 * - require superuser power.
5035 * - require strict serialization.
5036 * - do not return a value
5037 */
5038 case SIOCSIFFLAGS:
5039 case SIOCSIFMETRIC:
5040 case SIOCSIFMTU:
5041 case SIOCSIFMAP:
5042 case SIOCSIFHWADDR:
5043 case SIOCSIFSLAVE:
5044 case SIOCADDMULTI:
5045 case SIOCDELMULTI:
5046 case SIOCSIFHWBROADCAST:
5047 case SIOCSIFTXQLEN:
5048 case SIOCSMIIREG:
5049 case SIOCBONDENSLAVE:
5050 case SIOCBONDRELEASE:
5051 case SIOCBONDSETHWADDR:
5052 case SIOCBONDCHANGEACTIVE:
5053 case SIOCBRADDIF:
5054 case SIOCBRDELIF:
5055 case SIOCSHWTSTAMP:
5056 if (!capable(CAP_NET_ADMIN))
5057 return -EPERM;
5058 /* fall through */
5059 case SIOCBONDSLAVEINFOQUERY:
5060 case SIOCBONDINFOQUERY:
5061 dev_load(net, ifr.ifr_name);
5062 rtnl_lock();
5063 ret = dev_ifsioc(net, &ifr, cmd);
5064 rtnl_unlock();
5065 return ret;
5066
5067 case SIOCGIFMEM:
5068 /* Get the per device memory space. We can add this but
5069 * currently do not support it */
5070 case SIOCSIFMEM:
5071 /* Set the per device memory buffer space.
5072 * Not applicable in our case */
5073 case SIOCSIFLINK:
5074 return -ENOTTY;
5075
5076 /*
5077 * Unknown or private ioctl.
5078 */
5079 default:
5080 if (cmd == SIOCWANDEV ||
5081 (cmd >= SIOCDEVPRIVATE &&
5082 cmd <= SIOCDEVPRIVATE + 15)) {
5083 dev_load(net, ifr.ifr_name);
5084 rtnl_lock();
5085 ret = dev_ifsioc(net, &ifr, cmd);
5086 rtnl_unlock();
5087 if (!ret && copy_to_user(arg, &ifr,
5088 sizeof(struct ifreq)))
5089 ret = -EFAULT;
5090 return ret;
5091 }
5092 /* Take care of Wireless Extensions */
5093 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5094 return wext_handle_ioctl(net, &ifr, cmd, arg);
5095 return -ENOTTY;
5096 }
5097 }
5098
5099
5100 /**
5101 * dev_new_index - allocate an ifindex
5102 * @net: the applicable net namespace
5103 *
5104 * Returns a suitable unique value for a new device interface
5105 * number. The caller must hold the rtnl semaphore or the
5106 * dev_base_lock to be sure it remains unique.
5107 */
5108 static int dev_new_index(struct net *net)
5109 {
5110 static int ifindex;
5111 for (;;) {
5112 if (++ifindex <= 0)
5113 ifindex = 1;
5114 if (!__dev_get_by_index(net, ifindex))
5115 return ifindex;
5116 }
5117 }
5118
5119 /* Delayed registration/unregisteration */
5120 static LIST_HEAD(net_todo_list);
5121
5122 static void net_set_todo(struct net_device *dev)
5123 {
5124 list_add_tail(&dev->todo_list, &net_todo_list);
5125 }
5126
5127 static void rollback_registered_many(struct list_head *head)
5128 {
5129 struct net_device *dev, *tmp;
5130
5131 BUG_ON(dev_boot_phase);
5132 ASSERT_RTNL();
5133
5134 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5135 /* Some devices call without registering
5136 * for initialization unwind. Remove those
5137 * devices and proceed with the remaining.
5138 */
5139 if (dev->reg_state == NETREG_UNINITIALIZED) {
5140 pr_debug("unregister_netdevice: device %s/%p never "
5141 "was registered\n", dev->name, dev);
5142
5143 WARN_ON(1);
5144 list_del(&dev->unreg_list);
5145 continue;
5146 }
5147 dev->dismantle = true;
5148 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5149 }
5150
5151 /* If device is running, close it first. */
5152 dev_close_many(head);
5153
5154 list_for_each_entry(dev, head, unreg_list) {
5155 /* And unlink it from device chain. */
5156 unlist_netdevice(dev);
5157
5158 dev->reg_state = NETREG_UNREGISTERING;
5159 }
5160
5161 synchronize_net();
5162
5163 list_for_each_entry(dev, head, unreg_list) {
5164 /* Shutdown queueing discipline. */
5165 dev_shutdown(dev);
5166
5167
5168 /* Notify protocols, that we are about to destroy
5169 this device. They should clean all the things.
5170 */
5171 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5172
5173 if (!dev->rtnl_link_ops ||
5174 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5175 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5176
5177 /*
5178 * Flush the unicast and multicast chains
5179 */
5180 dev_uc_flush(dev);
5181 dev_mc_flush(dev);
5182
5183 if (dev->netdev_ops->ndo_uninit)
5184 dev->netdev_ops->ndo_uninit(dev);
5185
5186 /* Notifier chain MUST detach us from master device. */
5187 WARN_ON(dev->master);
5188
5189 /* Remove entries from kobject tree */
5190 netdev_unregister_kobject(dev);
5191 }
5192
5193 /* Process any work delayed until the end of the batch */
5194 dev = list_first_entry(head, struct net_device, unreg_list);
5195 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5196
5197 rcu_barrier();
5198
5199 list_for_each_entry(dev, head, unreg_list)
5200 dev_put(dev);
5201 }
5202
5203 static void rollback_registered(struct net_device *dev)
5204 {
5205 LIST_HEAD(single);
5206
5207 list_add(&dev->unreg_list, &single);
5208 rollback_registered_many(&single);
5209 list_del(&single);
5210 }
5211
5212 u32 netdev_fix_features(struct net_device *dev, u32 features)
5213 {
5214 /* Fix illegal checksum combinations */
5215 if ((features & NETIF_F_HW_CSUM) &&
5216 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5217 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5218 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5219 }
5220
5221 if ((features & NETIF_F_NO_CSUM) &&
5222 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5223 netdev_warn(dev, "mixed no checksumming and other settings.\n");
5224 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5225 }
5226
5227 /* Fix illegal SG+CSUM combinations. */
5228 if ((features & NETIF_F_SG) &&
5229 !(features & NETIF_F_ALL_CSUM)) {
5230 netdev_dbg(dev,
5231 "Dropping NETIF_F_SG since no checksum feature.\n");
5232 features &= ~NETIF_F_SG;
5233 }
5234
5235 /* TSO requires that SG is present as well. */
5236 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5237 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5238 features &= ~NETIF_F_ALL_TSO;
5239 }
5240
5241 /* TSO ECN requires that TSO is present as well. */
5242 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5243 features &= ~NETIF_F_TSO_ECN;
5244
5245 /* Software GSO depends on SG. */
5246 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5247 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5248 features &= ~NETIF_F_GSO;
5249 }
5250
5251 /* UFO needs SG and checksumming */
5252 if (features & NETIF_F_UFO) {
5253 /* maybe split UFO into V4 and V6? */
5254 if (!((features & NETIF_F_GEN_CSUM) ||
5255 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5256 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5257 netdev_dbg(dev,
5258 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5259 features &= ~NETIF_F_UFO;
5260 }
5261
5262 if (!(features & NETIF_F_SG)) {
5263 netdev_dbg(dev,
5264 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5265 features &= ~NETIF_F_UFO;
5266 }
5267 }
5268
5269 return features;
5270 }
5271 EXPORT_SYMBOL(netdev_fix_features);
5272
5273 int __netdev_update_features(struct net_device *dev)
5274 {
5275 u32 features;
5276 int err = 0;
5277
5278 ASSERT_RTNL();
5279
5280 features = netdev_get_wanted_features(dev);
5281
5282 if (dev->netdev_ops->ndo_fix_features)
5283 features = dev->netdev_ops->ndo_fix_features(dev, features);
5284
5285 /* driver might be less strict about feature dependencies */
5286 features = netdev_fix_features(dev, features);
5287
5288 if (dev->features == features)
5289 return 0;
5290
5291 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5292 dev->features, features);
5293
5294 if (dev->netdev_ops->ndo_set_features)
5295 err = dev->netdev_ops->ndo_set_features(dev, features);
5296
5297 if (unlikely(err < 0)) {
5298 netdev_err(dev,
5299 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5300 err, features, dev->features);
5301 return -1;
5302 }
5303
5304 if (!err)
5305 dev->features = features;
5306
5307 return 1;
5308 }
5309
5310 /**
5311 * netdev_update_features - recalculate device features
5312 * @dev: the device to check
5313 *
5314 * Recalculate dev->features set and send notifications if it
5315 * has changed. Should be called after driver or hardware dependent
5316 * conditions might have changed that influence the features.
5317 */
5318 void netdev_update_features(struct net_device *dev)
5319 {
5320 if (__netdev_update_features(dev))
5321 netdev_features_change(dev);
5322 }
5323 EXPORT_SYMBOL(netdev_update_features);
5324
5325 /**
5326 * netdev_change_features - recalculate device features
5327 * @dev: the device to check
5328 *
5329 * Recalculate dev->features set and send notifications even
5330 * if they have not changed. Should be called instead of
5331 * netdev_update_features() if also dev->vlan_features might
5332 * have changed to allow the changes to be propagated to stacked
5333 * VLAN devices.
5334 */
5335 void netdev_change_features(struct net_device *dev)
5336 {
5337 __netdev_update_features(dev);
5338 netdev_features_change(dev);
5339 }
5340 EXPORT_SYMBOL(netdev_change_features);
5341
5342 /**
5343 * netif_stacked_transfer_operstate - transfer operstate
5344 * @rootdev: the root or lower level device to transfer state from
5345 * @dev: the device to transfer operstate to
5346 *
5347 * Transfer operational state from root to device. This is normally
5348 * called when a stacking relationship exists between the root
5349 * device and the device(a leaf device).
5350 */
5351 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5352 struct net_device *dev)
5353 {
5354 if (rootdev->operstate == IF_OPER_DORMANT)
5355 netif_dormant_on(dev);
5356 else
5357 netif_dormant_off(dev);
5358
5359 if (netif_carrier_ok(rootdev)) {
5360 if (!netif_carrier_ok(dev))
5361 netif_carrier_on(dev);
5362 } else {
5363 if (netif_carrier_ok(dev))
5364 netif_carrier_off(dev);
5365 }
5366 }
5367 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5368
5369 #ifdef CONFIG_RPS
5370 static int netif_alloc_rx_queues(struct net_device *dev)
5371 {
5372 unsigned int i, count = dev->num_rx_queues;
5373 struct netdev_rx_queue *rx;
5374
5375 BUG_ON(count < 1);
5376
5377 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5378 if (!rx) {
5379 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5380 return -ENOMEM;
5381 }
5382 dev->_rx = rx;
5383
5384 for (i = 0; i < count; i++)
5385 rx[i].dev = dev;
5386 return 0;
5387 }
5388 #endif
5389
5390 static void netdev_init_one_queue(struct net_device *dev,
5391 struct netdev_queue *queue, void *_unused)
5392 {
5393 /* Initialize queue lock */
5394 spin_lock_init(&queue->_xmit_lock);
5395 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5396 queue->xmit_lock_owner = -1;
5397 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5398 queue->dev = dev;
5399 }
5400
5401 static int netif_alloc_netdev_queues(struct net_device *dev)
5402 {
5403 unsigned int count = dev->num_tx_queues;
5404 struct netdev_queue *tx;
5405
5406 BUG_ON(count < 1);
5407
5408 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5409 if (!tx) {
5410 pr_err("netdev: Unable to allocate %u tx queues.\n",
5411 count);
5412 return -ENOMEM;
5413 }
5414 dev->_tx = tx;
5415
5416 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5417 spin_lock_init(&dev->tx_global_lock);
5418
5419 return 0;
5420 }
5421
5422 /**
5423 * register_netdevice - register a network device
5424 * @dev: device to register
5425 *
5426 * Take a completed network device structure and add it to the kernel
5427 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5428 * chain. 0 is returned on success. A negative errno code is returned
5429 * on a failure to set up the device, or if the name is a duplicate.
5430 *
5431 * Callers must hold the rtnl semaphore. You may want
5432 * register_netdev() instead of this.
5433 *
5434 * BUGS:
5435 * The locking appears insufficient to guarantee two parallel registers
5436 * will not get the same name.
5437 */
5438
5439 int register_netdevice(struct net_device *dev)
5440 {
5441 int ret;
5442 struct net *net = dev_net(dev);
5443
5444 BUG_ON(dev_boot_phase);
5445 ASSERT_RTNL();
5446
5447 might_sleep();
5448
5449 /* When net_device's are persistent, this will be fatal. */
5450 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5451 BUG_ON(!net);
5452
5453 spin_lock_init(&dev->addr_list_lock);
5454 netdev_set_addr_lockdep_class(dev);
5455
5456 dev->iflink = -1;
5457
5458 ret = dev_get_valid_name(dev, dev->name);
5459 if (ret < 0)
5460 goto out;
5461
5462 /* Init, if this function is available */
5463 if (dev->netdev_ops->ndo_init) {
5464 ret = dev->netdev_ops->ndo_init(dev);
5465 if (ret) {
5466 if (ret > 0)
5467 ret = -EIO;
5468 goto out;
5469 }
5470 }
5471
5472 dev->ifindex = dev_new_index(net);
5473 if (dev->iflink == -1)
5474 dev->iflink = dev->ifindex;
5475
5476 /* Transfer changeable features to wanted_features and enable
5477 * software offloads (GSO and GRO).
5478 */
5479 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5480 dev->features |= NETIF_F_SOFT_FEATURES;
5481 dev->wanted_features = dev->features & dev->hw_features;
5482
5483 /* Turn on no cache copy if HW is doing checksum */
5484 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5485 if ((dev->features & NETIF_F_ALL_CSUM) &&
5486 !(dev->features & NETIF_F_NO_CSUM)) {
5487 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5488 dev->features |= NETIF_F_NOCACHE_COPY;
5489 }
5490
5491 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5492 */
5493 dev->vlan_features |= NETIF_F_HIGHDMA;
5494
5495 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5496 ret = notifier_to_errno(ret);
5497 if (ret)
5498 goto err_uninit;
5499
5500 ret = netdev_register_kobject(dev);
5501 if (ret)
5502 goto err_uninit;
5503 dev->reg_state = NETREG_REGISTERED;
5504
5505 __netdev_update_features(dev);
5506
5507 /*
5508 * Default initial state at registry is that the
5509 * device is present.
5510 */
5511
5512 set_bit(__LINK_STATE_PRESENT, &dev->state);
5513
5514 dev_init_scheduler(dev);
5515 dev_hold(dev);
5516 list_netdevice(dev);
5517
5518 /* Notify protocols, that a new device appeared. */
5519 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5520 ret = notifier_to_errno(ret);
5521 if (ret) {
5522 rollback_registered(dev);
5523 dev->reg_state = NETREG_UNREGISTERED;
5524 }
5525 /*
5526 * Prevent userspace races by waiting until the network
5527 * device is fully setup before sending notifications.
5528 */
5529 if (!dev->rtnl_link_ops ||
5530 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5531 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5532
5533 out:
5534 return ret;
5535
5536 err_uninit:
5537 if (dev->netdev_ops->ndo_uninit)
5538 dev->netdev_ops->ndo_uninit(dev);
5539 goto out;
5540 }
5541 EXPORT_SYMBOL(register_netdevice);
5542
5543 /**
5544 * init_dummy_netdev - init a dummy network device for NAPI
5545 * @dev: device to init
5546 *
5547 * This takes a network device structure and initialize the minimum
5548 * amount of fields so it can be used to schedule NAPI polls without
5549 * registering a full blown interface. This is to be used by drivers
5550 * that need to tie several hardware interfaces to a single NAPI
5551 * poll scheduler due to HW limitations.
5552 */
5553 int init_dummy_netdev(struct net_device *dev)
5554 {
5555 /* Clear everything. Note we don't initialize spinlocks
5556 * are they aren't supposed to be taken by any of the
5557 * NAPI code and this dummy netdev is supposed to be
5558 * only ever used for NAPI polls
5559 */
5560 memset(dev, 0, sizeof(struct net_device));
5561
5562 /* make sure we BUG if trying to hit standard
5563 * register/unregister code path
5564 */
5565 dev->reg_state = NETREG_DUMMY;
5566
5567 /* NAPI wants this */
5568 INIT_LIST_HEAD(&dev->napi_list);
5569
5570 /* a dummy interface is started by default */
5571 set_bit(__LINK_STATE_PRESENT, &dev->state);
5572 set_bit(__LINK_STATE_START, &dev->state);
5573
5574 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5575 * because users of this 'device' dont need to change
5576 * its refcount.
5577 */
5578
5579 return 0;
5580 }
5581 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5582
5583
5584 /**
5585 * register_netdev - register a network device
5586 * @dev: device to register
5587 *
5588 * Take a completed network device structure and add it to the kernel
5589 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5590 * chain. 0 is returned on success. A negative errno code is returned
5591 * on a failure to set up the device, or if the name is a duplicate.
5592 *
5593 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5594 * and expands the device name if you passed a format string to
5595 * alloc_netdev.
5596 */
5597 int register_netdev(struct net_device *dev)
5598 {
5599 int err;
5600
5601 rtnl_lock();
5602 err = register_netdevice(dev);
5603 rtnl_unlock();
5604 return err;
5605 }
5606 EXPORT_SYMBOL(register_netdev);
5607
5608 int netdev_refcnt_read(const struct net_device *dev)
5609 {
5610 int i, refcnt = 0;
5611
5612 for_each_possible_cpu(i)
5613 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5614 return refcnt;
5615 }
5616 EXPORT_SYMBOL(netdev_refcnt_read);
5617
5618 /*
5619 * netdev_wait_allrefs - wait until all references are gone.
5620 *
5621 * This is called when unregistering network devices.
5622 *
5623 * Any protocol or device that holds a reference should register
5624 * for netdevice notification, and cleanup and put back the
5625 * reference if they receive an UNREGISTER event.
5626 * We can get stuck here if buggy protocols don't correctly
5627 * call dev_put.
5628 */
5629 static void netdev_wait_allrefs(struct net_device *dev)
5630 {
5631 unsigned long rebroadcast_time, warning_time;
5632 int refcnt;
5633
5634 linkwatch_forget_dev(dev);
5635
5636 rebroadcast_time = warning_time = jiffies;
5637 refcnt = netdev_refcnt_read(dev);
5638
5639 while (refcnt != 0) {
5640 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5641 rtnl_lock();
5642
5643 /* Rebroadcast unregister notification */
5644 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5645 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5646 * should have already handle it the first time */
5647
5648 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5649 &dev->state)) {
5650 /* We must not have linkwatch events
5651 * pending on unregister. If this
5652 * happens, we simply run the queue
5653 * unscheduled, resulting in a noop
5654 * for this device.
5655 */
5656 linkwatch_run_queue();
5657 }
5658
5659 __rtnl_unlock();
5660
5661 rebroadcast_time = jiffies;
5662 }
5663
5664 msleep(250);
5665
5666 refcnt = netdev_refcnt_read(dev);
5667
5668 if (time_after(jiffies, warning_time + 10 * HZ)) {
5669 printk(KERN_EMERG "unregister_netdevice: "
5670 "waiting for %s to become free. Usage "
5671 "count = %d\n",
5672 dev->name, refcnt);
5673 warning_time = jiffies;
5674 }
5675 }
5676 }
5677
5678 /* The sequence is:
5679 *
5680 * rtnl_lock();
5681 * ...
5682 * register_netdevice(x1);
5683 * register_netdevice(x2);
5684 * ...
5685 * unregister_netdevice(y1);
5686 * unregister_netdevice(y2);
5687 * ...
5688 * rtnl_unlock();
5689 * free_netdev(y1);
5690 * free_netdev(y2);
5691 *
5692 * We are invoked by rtnl_unlock().
5693 * This allows us to deal with problems:
5694 * 1) We can delete sysfs objects which invoke hotplug
5695 * without deadlocking with linkwatch via keventd.
5696 * 2) Since we run with the RTNL semaphore not held, we can sleep
5697 * safely in order to wait for the netdev refcnt to drop to zero.
5698 *
5699 * We must not return until all unregister events added during
5700 * the interval the lock was held have been completed.
5701 */
5702 void netdev_run_todo(void)
5703 {
5704 struct list_head list;
5705
5706 /* Snapshot list, allow later requests */
5707 list_replace_init(&net_todo_list, &list);
5708
5709 __rtnl_unlock();
5710
5711 while (!list_empty(&list)) {
5712 struct net_device *dev
5713 = list_first_entry(&list, struct net_device, todo_list);
5714 list_del(&dev->todo_list);
5715
5716 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5717 printk(KERN_ERR "network todo '%s' but state %d\n",
5718 dev->name, dev->reg_state);
5719 dump_stack();
5720 continue;
5721 }
5722
5723 dev->reg_state = NETREG_UNREGISTERED;
5724
5725 on_each_cpu(flush_backlog, dev, 1);
5726
5727 netdev_wait_allrefs(dev);
5728
5729 /* paranoia */
5730 BUG_ON(netdev_refcnt_read(dev));
5731 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5732 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5733 WARN_ON(dev->dn_ptr);
5734
5735 if (dev->destructor)
5736 dev->destructor(dev);
5737
5738 /* Free network device */
5739 kobject_put(&dev->dev.kobj);
5740 }
5741 }
5742
5743 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5744 * fields in the same order, with only the type differing.
5745 */
5746 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5747 const struct net_device_stats *netdev_stats)
5748 {
5749 #if BITS_PER_LONG == 64
5750 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5751 memcpy(stats64, netdev_stats, sizeof(*stats64));
5752 #else
5753 size_t i, n = sizeof(*stats64) / sizeof(u64);
5754 const unsigned long *src = (const unsigned long *)netdev_stats;
5755 u64 *dst = (u64 *)stats64;
5756
5757 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5758 sizeof(*stats64) / sizeof(u64));
5759 for (i = 0; i < n; i++)
5760 dst[i] = src[i];
5761 #endif
5762 }
5763
5764 /**
5765 * dev_get_stats - get network device statistics
5766 * @dev: device to get statistics from
5767 * @storage: place to store stats
5768 *
5769 * Get network statistics from device. Return @storage.
5770 * The device driver may provide its own method by setting
5771 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5772 * otherwise the internal statistics structure is used.
5773 */
5774 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5775 struct rtnl_link_stats64 *storage)
5776 {
5777 const struct net_device_ops *ops = dev->netdev_ops;
5778
5779 if (ops->ndo_get_stats64) {
5780 memset(storage, 0, sizeof(*storage));
5781 ops->ndo_get_stats64(dev, storage);
5782 } else if (ops->ndo_get_stats) {
5783 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5784 } else {
5785 netdev_stats_to_stats64(storage, &dev->stats);
5786 }
5787 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5788 return storage;
5789 }
5790 EXPORT_SYMBOL(dev_get_stats);
5791
5792 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5793 {
5794 struct netdev_queue *queue = dev_ingress_queue(dev);
5795
5796 #ifdef CONFIG_NET_CLS_ACT
5797 if (queue)
5798 return queue;
5799 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5800 if (!queue)
5801 return NULL;
5802 netdev_init_one_queue(dev, queue, NULL);
5803 queue->qdisc = &noop_qdisc;
5804 queue->qdisc_sleeping = &noop_qdisc;
5805 rcu_assign_pointer(dev->ingress_queue, queue);
5806 #endif
5807 return queue;
5808 }
5809
5810 /**
5811 * alloc_netdev_mqs - allocate network device
5812 * @sizeof_priv: size of private data to allocate space for
5813 * @name: device name format string
5814 * @setup: callback to initialize device
5815 * @txqs: the number of TX subqueues to allocate
5816 * @rxqs: the number of RX subqueues to allocate
5817 *
5818 * Allocates a struct net_device with private data area for driver use
5819 * and performs basic initialization. Also allocates subquue structs
5820 * for each queue on the device.
5821 */
5822 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5823 void (*setup)(struct net_device *),
5824 unsigned int txqs, unsigned int rxqs)
5825 {
5826 struct net_device *dev;
5827 size_t alloc_size;
5828 struct net_device *p;
5829
5830 BUG_ON(strlen(name) >= sizeof(dev->name));
5831
5832 if (txqs < 1) {
5833 pr_err("alloc_netdev: Unable to allocate device "
5834 "with zero queues.\n");
5835 return NULL;
5836 }
5837
5838 #ifdef CONFIG_RPS
5839 if (rxqs < 1) {
5840 pr_err("alloc_netdev: Unable to allocate device "
5841 "with zero RX queues.\n");
5842 return NULL;
5843 }
5844 #endif
5845
5846 alloc_size = sizeof(struct net_device);
5847 if (sizeof_priv) {
5848 /* ensure 32-byte alignment of private area */
5849 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5850 alloc_size += sizeof_priv;
5851 }
5852 /* ensure 32-byte alignment of whole construct */
5853 alloc_size += NETDEV_ALIGN - 1;
5854
5855 p = kzalloc(alloc_size, GFP_KERNEL);
5856 if (!p) {
5857 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5858 return NULL;
5859 }
5860
5861 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5862 dev->padded = (char *)dev - (char *)p;
5863
5864 dev->pcpu_refcnt = alloc_percpu(int);
5865 if (!dev->pcpu_refcnt)
5866 goto free_p;
5867
5868 if (dev_addr_init(dev))
5869 goto free_pcpu;
5870
5871 dev_mc_init(dev);
5872 dev_uc_init(dev);
5873
5874 dev_net_set(dev, &init_net);
5875
5876 dev->gso_max_size = GSO_MAX_SIZE;
5877
5878 INIT_LIST_HEAD(&dev->napi_list);
5879 INIT_LIST_HEAD(&dev->unreg_list);
5880 INIT_LIST_HEAD(&dev->link_watch_list);
5881 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5882 setup(dev);
5883
5884 dev->num_tx_queues = txqs;
5885 dev->real_num_tx_queues = txqs;
5886 if (netif_alloc_netdev_queues(dev))
5887 goto free_all;
5888
5889 #ifdef CONFIG_RPS
5890 dev->num_rx_queues = rxqs;
5891 dev->real_num_rx_queues = rxqs;
5892 if (netif_alloc_rx_queues(dev))
5893 goto free_all;
5894 #endif
5895
5896 strcpy(dev->name, name);
5897 dev->group = INIT_NETDEV_GROUP;
5898 return dev;
5899
5900 free_all:
5901 free_netdev(dev);
5902 return NULL;
5903
5904 free_pcpu:
5905 free_percpu(dev->pcpu_refcnt);
5906 kfree(dev->_tx);
5907 #ifdef CONFIG_RPS
5908 kfree(dev->_rx);
5909 #endif
5910
5911 free_p:
5912 kfree(p);
5913 return NULL;
5914 }
5915 EXPORT_SYMBOL(alloc_netdev_mqs);
5916
5917 /**
5918 * free_netdev - free network device
5919 * @dev: device
5920 *
5921 * This function does the last stage of destroying an allocated device
5922 * interface. The reference to the device object is released.
5923 * If this is the last reference then it will be freed.
5924 */
5925 void free_netdev(struct net_device *dev)
5926 {
5927 struct napi_struct *p, *n;
5928
5929 release_net(dev_net(dev));
5930
5931 kfree(dev->_tx);
5932 #ifdef CONFIG_RPS
5933 kfree(dev->_rx);
5934 #endif
5935
5936 kfree(rcu_dereference_raw(dev->ingress_queue));
5937
5938 /* Flush device addresses */
5939 dev_addr_flush(dev);
5940
5941 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5942 netif_napi_del(p);
5943
5944 free_percpu(dev->pcpu_refcnt);
5945 dev->pcpu_refcnt = NULL;
5946
5947 /* Compatibility with error handling in drivers */
5948 if (dev->reg_state == NETREG_UNINITIALIZED) {
5949 kfree((char *)dev - dev->padded);
5950 return;
5951 }
5952
5953 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5954 dev->reg_state = NETREG_RELEASED;
5955
5956 /* will free via device release */
5957 put_device(&dev->dev);
5958 }
5959 EXPORT_SYMBOL(free_netdev);
5960
5961 /**
5962 * synchronize_net - Synchronize with packet receive processing
5963 *
5964 * Wait for packets currently being received to be done.
5965 * Does not block later packets from starting.
5966 */
5967 void synchronize_net(void)
5968 {
5969 might_sleep();
5970 if (rtnl_is_locked())
5971 synchronize_rcu_expedited();
5972 else
5973 synchronize_rcu();
5974 }
5975 EXPORT_SYMBOL(synchronize_net);
5976
5977 /**
5978 * unregister_netdevice_queue - remove device from the kernel
5979 * @dev: device
5980 * @head: list
5981 *
5982 * This function shuts down a device interface and removes it
5983 * from the kernel tables.
5984 * If head not NULL, device is queued to be unregistered later.
5985 *
5986 * Callers must hold the rtnl semaphore. You may want
5987 * unregister_netdev() instead of this.
5988 */
5989
5990 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5991 {
5992 ASSERT_RTNL();
5993
5994 if (head) {
5995 list_move_tail(&dev->unreg_list, head);
5996 } else {
5997 rollback_registered(dev);
5998 /* Finish processing unregister after unlock */
5999 net_set_todo(dev);
6000 }
6001 }
6002 EXPORT_SYMBOL(unregister_netdevice_queue);
6003
6004 /**
6005 * unregister_netdevice_many - unregister many devices
6006 * @head: list of devices
6007 */
6008 void unregister_netdevice_many(struct list_head *head)
6009 {
6010 struct net_device *dev;
6011
6012 if (!list_empty(head)) {
6013 rollback_registered_many(head);
6014 list_for_each_entry(dev, head, unreg_list)
6015 net_set_todo(dev);
6016 }
6017 }
6018 EXPORT_SYMBOL(unregister_netdevice_many);
6019
6020 /**
6021 * unregister_netdev - remove device from the kernel
6022 * @dev: device
6023 *
6024 * This function shuts down a device interface and removes it
6025 * from the kernel tables.
6026 *
6027 * This is just a wrapper for unregister_netdevice that takes
6028 * the rtnl semaphore. In general you want to use this and not
6029 * unregister_netdevice.
6030 */
6031 void unregister_netdev(struct net_device *dev)
6032 {
6033 rtnl_lock();
6034 unregister_netdevice(dev);
6035 rtnl_unlock();
6036 }
6037 EXPORT_SYMBOL(unregister_netdev);
6038
6039 /**
6040 * dev_change_net_namespace - move device to different nethost namespace
6041 * @dev: device
6042 * @net: network namespace
6043 * @pat: If not NULL name pattern to try if the current device name
6044 * is already taken in the destination network namespace.
6045 *
6046 * This function shuts down a device interface and moves it
6047 * to a new network namespace. On success 0 is returned, on
6048 * a failure a netagive errno code is returned.
6049 *
6050 * Callers must hold the rtnl semaphore.
6051 */
6052
6053 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6054 {
6055 int err;
6056
6057 ASSERT_RTNL();
6058
6059 /* Don't allow namespace local devices to be moved. */
6060 err = -EINVAL;
6061 if (dev->features & NETIF_F_NETNS_LOCAL)
6062 goto out;
6063
6064 /* Ensure the device has been registrered */
6065 err = -EINVAL;
6066 if (dev->reg_state != NETREG_REGISTERED)
6067 goto out;
6068
6069 /* Get out if there is nothing todo */
6070 err = 0;
6071 if (net_eq(dev_net(dev), net))
6072 goto out;
6073
6074 /* Pick the destination device name, and ensure
6075 * we can use it in the destination network namespace.
6076 */
6077 err = -EEXIST;
6078 if (__dev_get_by_name(net, dev->name)) {
6079 /* We get here if we can't use the current device name */
6080 if (!pat)
6081 goto out;
6082 if (dev_get_valid_name(dev, pat) < 0)
6083 goto out;
6084 }
6085
6086 /*
6087 * And now a mini version of register_netdevice unregister_netdevice.
6088 */
6089
6090 /* If device is running close it first. */
6091 dev_close(dev);
6092
6093 /* And unlink it from device chain */
6094 err = -ENODEV;
6095 unlist_netdevice(dev);
6096
6097 synchronize_net();
6098
6099 /* Shutdown queueing discipline. */
6100 dev_shutdown(dev);
6101
6102 /* Notify protocols, that we are about to destroy
6103 this device. They should clean all the things.
6104
6105 Note that dev->reg_state stays at NETREG_REGISTERED.
6106 This is wanted because this way 8021q and macvlan know
6107 the device is just moving and can keep their slaves up.
6108 */
6109 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6110 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6111
6112 /*
6113 * Flush the unicast and multicast chains
6114 */
6115 dev_uc_flush(dev);
6116 dev_mc_flush(dev);
6117
6118 /* Actually switch the network namespace */
6119 dev_net_set(dev, net);
6120
6121 /* If there is an ifindex conflict assign a new one */
6122 if (__dev_get_by_index(net, dev->ifindex)) {
6123 int iflink = (dev->iflink == dev->ifindex);
6124 dev->ifindex = dev_new_index(net);
6125 if (iflink)
6126 dev->iflink = dev->ifindex;
6127 }
6128
6129 /* Fixup kobjects */
6130 err = device_rename(&dev->dev, dev->name);
6131 WARN_ON(err);
6132
6133 /* Add the device back in the hashes */
6134 list_netdevice(dev);
6135
6136 /* Notify protocols, that a new device appeared. */
6137 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6138
6139 /*
6140 * Prevent userspace races by waiting until the network
6141 * device is fully setup before sending notifications.
6142 */
6143 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6144
6145 synchronize_net();
6146 err = 0;
6147 out:
6148 return err;
6149 }
6150 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6151
6152 static int dev_cpu_callback(struct notifier_block *nfb,
6153 unsigned long action,
6154 void *ocpu)
6155 {
6156 struct sk_buff **list_skb;
6157 struct sk_buff *skb;
6158 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6159 struct softnet_data *sd, *oldsd;
6160
6161 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6162 return NOTIFY_OK;
6163
6164 local_irq_disable();
6165 cpu = smp_processor_id();
6166 sd = &per_cpu(softnet_data, cpu);
6167 oldsd = &per_cpu(softnet_data, oldcpu);
6168
6169 /* Find end of our completion_queue. */
6170 list_skb = &sd->completion_queue;
6171 while (*list_skb)
6172 list_skb = &(*list_skb)->next;
6173 /* Append completion queue from offline CPU. */
6174 *list_skb = oldsd->completion_queue;
6175 oldsd->completion_queue = NULL;
6176
6177 /* Append output queue from offline CPU. */
6178 if (oldsd->output_queue) {
6179 *sd->output_queue_tailp = oldsd->output_queue;
6180 sd->output_queue_tailp = oldsd->output_queue_tailp;
6181 oldsd->output_queue = NULL;
6182 oldsd->output_queue_tailp = &oldsd->output_queue;
6183 }
6184 /* Append NAPI poll list from offline CPU. */
6185 if (!list_empty(&oldsd->poll_list)) {
6186 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6187 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6188 }
6189
6190 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6191 local_irq_enable();
6192
6193 /* Process offline CPU's input_pkt_queue */
6194 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6195 netif_rx(skb);
6196 input_queue_head_incr(oldsd);
6197 }
6198 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6199 netif_rx(skb);
6200 input_queue_head_incr(oldsd);
6201 }
6202
6203 return NOTIFY_OK;
6204 }
6205
6206
6207 /**
6208 * netdev_increment_features - increment feature set by one
6209 * @all: current feature set
6210 * @one: new feature set
6211 * @mask: mask feature set
6212 *
6213 * Computes a new feature set after adding a device with feature set
6214 * @one to the master device with current feature set @all. Will not
6215 * enable anything that is off in @mask. Returns the new feature set.
6216 */
6217 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6218 {
6219 if (mask & NETIF_F_GEN_CSUM)
6220 mask |= NETIF_F_ALL_CSUM;
6221 mask |= NETIF_F_VLAN_CHALLENGED;
6222
6223 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6224 all &= one | ~NETIF_F_ALL_FOR_ALL;
6225
6226 /* If device needs checksumming, downgrade to it. */
6227 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6228 all &= ~NETIF_F_NO_CSUM;
6229
6230 /* If one device supports hw checksumming, set for all. */
6231 if (all & NETIF_F_GEN_CSUM)
6232 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6233
6234 return all;
6235 }
6236 EXPORT_SYMBOL(netdev_increment_features);
6237
6238 static struct hlist_head *netdev_create_hash(void)
6239 {
6240 int i;
6241 struct hlist_head *hash;
6242
6243 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6244 if (hash != NULL)
6245 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6246 INIT_HLIST_HEAD(&hash[i]);
6247
6248 return hash;
6249 }
6250
6251 /* Initialize per network namespace state */
6252 static int __net_init netdev_init(struct net *net)
6253 {
6254 INIT_LIST_HEAD(&net->dev_base_head);
6255
6256 net->dev_name_head = netdev_create_hash();
6257 if (net->dev_name_head == NULL)
6258 goto err_name;
6259
6260 net->dev_index_head = netdev_create_hash();
6261 if (net->dev_index_head == NULL)
6262 goto err_idx;
6263
6264 return 0;
6265
6266 err_idx:
6267 kfree(net->dev_name_head);
6268 err_name:
6269 return -ENOMEM;
6270 }
6271
6272 /**
6273 * netdev_drivername - network driver for the device
6274 * @dev: network device
6275 *
6276 * Determine network driver for device.
6277 */
6278 const char *netdev_drivername(const struct net_device *dev)
6279 {
6280 const struct device_driver *driver;
6281 const struct device *parent;
6282 const char *empty = "";
6283
6284 parent = dev->dev.parent;
6285 if (!parent)
6286 return empty;
6287
6288 driver = parent->driver;
6289 if (driver && driver->name)
6290 return driver->name;
6291 return empty;
6292 }
6293
6294 static int __netdev_printk(const char *level, const struct net_device *dev,
6295 struct va_format *vaf)
6296 {
6297 int r;
6298
6299 if (dev && dev->dev.parent)
6300 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6301 netdev_name(dev), vaf);
6302 else if (dev)
6303 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6304 else
6305 r = printk("%s(NULL net_device): %pV", level, vaf);
6306
6307 return r;
6308 }
6309
6310 int netdev_printk(const char *level, const struct net_device *dev,
6311 const char *format, ...)
6312 {
6313 struct va_format vaf;
6314 va_list args;
6315 int r;
6316
6317 va_start(args, format);
6318
6319 vaf.fmt = format;
6320 vaf.va = &args;
6321
6322 r = __netdev_printk(level, dev, &vaf);
6323 va_end(args);
6324
6325 return r;
6326 }
6327 EXPORT_SYMBOL(netdev_printk);
6328
6329 #define define_netdev_printk_level(func, level) \
6330 int func(const struct net_device *dev, const char *fmt, ...) \
6331 { \
6332 int r; \
6333 struct va_format vaf; \
6334 va_list args; \
6335 \
6336 va_start(args, fmt); \
6337 \
6338 vaf.fmt = fmt; \
6339 vaf.va = &args; \
6340 \
6341 r = __netdev_printk(level, dev, &vaf); \
6342 va_end(args); \
6343 \
6344 return r; \
6345 } \
6346 EXPORT_SYMBOL(func);
6347
6348 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6349 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6350 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6351 define_netdev_printk_level(netdev_err, KERN_ERR);
6352 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6353 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6354 define_netdev_printk_level(netdev_info, KERN_INFO);
6355
6356 static void __net_exit netdev_exit(struct net *net)
6357 {
6358 kfree(net->dev_name_head);
6359 kfree(net->dev_index_head);
6360 }
6361
6362 static struct pernet_operations __net_initdata netdev_net_ops = {
6363 .init = netdev_init,
6364 .exit = netdev_exit,
6365 };
6366
6367 static void __net_exit default_device_exit(struct net *net)
6368 {
6369 struct net_device *dev, *aux;
6370 /*
6371 * Push all migratable network devices back to the
6372 * initial network namespace
6373 */
6374 rtnl_lock();
6375 for_each_netdev_safe(net, dev, aux) {
6376 int err;
6377 char fb_name[IFNAMSIZ];
6378
6379 /* Ignore unmoveable devices (i.e. loopback) */
6380 if (dev->features & NETIF_F_NETNS_LOCAL)
6381 continue;
6382
6383 /* Leave virtual devices for the generic cleanup */
6384 if (dev->rtnl_link_ops)
6385 continue;
6386
6387 /* Push remaining network devices to init_net */
6388 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6389 err = dev_change_net_namespace(dev, &init_net, fb_name);
6390 if (err) {
6391 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6392 __func__, dev->name, err);
6393 BUG();
6394 }
6395 }
6396 rtnl_unlock();
6397 }
6398
6399 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6400 {
6401 /* At exit all network devices most be removed from a network
6402 * namespace. Do this in the reverse order of registration.
6403 * Do this across as many network namespaces as possible to
6404 * improve batching efficiency.
6405 */
6406 struct net_device *dev;
6407 struct net *net;
6408 LIST_HEAD(dev_kill_list);
6409
6410 rtnl_lock();
6411 list_for_each_entry(net, net_list, exit_list) {
6412 for_each_netdev_reverse(net, dev) {
6413 if (dev->rtnl_link_ops)
6414 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6415 else
6416 unregister_netdevice_queue(dev, &dev_kill_list);
6417 }
6418 }
6419 unregister_netdevice_many(&dev_kill_list);
6420 list_del(&dev_kill_list);
6421 rtnl_unlock();
6422 }
6423
6424 static struct pernet_operations __net_initdata default_device_ops = {
6425 .exit = default_device_exit,
6426 .exit_batch = default_device_exit_batch,
6427 };
6428
6429 /*
6430 * Initialize the DEV module. At boot time this walks the device list and
6431 * unhooks any devices that fail to initialise (normally hardware not
6432 * present) and leaves us with a valid list of present and active devices.
6433 *
6434 */
6435
6436 /*
6437 * This is called single threaded during boot, so no need
6438 * to take the rtnl semaphore.
6439 */
6440 static int __init net_dev_init(void)
6441 {
6442 int i, rc = -ENOMEM;
6443
6444 BUG_ON(!dev_boot_phase);
6445
6446 if (dev_proc_init())
6447 goto out;
6448
6449 if (netdev_kobject_init())
6450 goto out;
6451
6452 INIT_LIST_HEAD(&ptype_all);
6453 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6454 INIT_LIST_HEAD(&ptype_base[i]);
6455
6456 if (register_pernet_subsys(&netdev_net_ops))
6457 goto out;
6458
6459 /*
6460 * Initialise the packet receive queues.
6461 */
6462
6463 for_each_possible_cpu(i) {
6464 struct softnet_data *sd = &per_cpu(softnet_data, i);
6465
6466 memset(sd, 0, sizeof(*sd));
6467 skb_queue_head_init(&sd->input_pkt_queue);
6468 skb_queue_head_init(&sd->process_queue);
6469 sd->completion_queue = NULL;
6470 INIT_LIST_HEAD(&sd->poll_list);
6471 sd->output_queue = NULL;
6472 sd->output_queue_tailp = &sd->output_queue;
6473 #ifdef CONFIG_RPS
6474 sd->csd.func = rps_trigger_softirq;
6475 sd->csd.info = sd;
6476 sd->csd.flags = 0;
6477 sd->cpu = i;
6478 #endif
6479
6480 sd->backlog.poll = process_backlog;
6481 sd->backlog.weight = weight_p;
6482 sd->backlog.gro_list = NULL;
6483 sd->backlog.gro_count = 0;
6484 }
6485
6486 dev_boot_phase = 0;
6487
6488 /* The loopback device is special if any other network devices
6489 * is present in a network namespace the loopback device must
6490 * be present. Since we now dynamically allocate and free the
6491 * loopback device ensure this invariant is maintained by
6492 * keeping the loopback device as the first device on the
6493 * list of network devices. Ensuring the loopback devices
6494 * is the first device that appears and the last network device
6495 * that disappears.
6496 */
6497 if (register_pernet_device(&loopback_net_ops))
6498 goto out;
6499
6500 if (register_pernet_device(&default_device_ops))
6501 goto out;
6502
6503 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6504 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6505
6506 hotcpu_notifier(dev_cpu_callback, 0);
6507 dst_init();
6508 dev_mcast_init();
6509 rc = 0;
6510 out:
6511 return rc;
6512 }
6513
6514 subsys_initcall(net_dev_init);
6515
6516 static int __init initialize_hashrnd(void)
6517 {
6518 get_random_bytes(&hashrnd, sizeof(hashrnd));
6519 return 0;
6520 }
6521
6522 late_initcall_sync(initialize_hashrnd);
6523
This page took 0.155915 seconds and 6 git commands to generate.