Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/wireless-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strcpy(s[i].name, name);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct net_device *dev)
1324 {
1325 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1326 unsigned long flags;
1327 struct softnet_data *sd;
1328
1329 local_irq_save(flags);
1330 sd = &__get_cpu_var(softnet_data);
1331 dev->next_sched = sd->output_queue;
1332 sd->output_queue = dev;
1333 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1334 local_irq_restore(flags);
1335 }
1336 }
1337 EXPORT_SYMBOL(__netif_schedule);
1338
1339 void dev_kfree_skb_irq(struct sk_buff *skb)
1340 {
1341 if (atomic_dec_and_test(&skb->users)) {
1342 struct softnet_data *sd;
1343 unsigned long flags;
1344
1345 local_irq_save(flags);
1346 sd = &__get_cpu_var(softnet_data);
1347 skb->next = sd->completion_queue;
1348 sd->completion_queue = skb;
1349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1350 local_irq_restore(flags);
1351 }
1352 }
1353 EXPORT_SYMBOL(dev_kfree_skb_irq);
1354
1355 void dev_kfree_skb_any(struct sk_buff *skb)
1356 {
1357 if (in_irq() || irqs_disabled())
1358 dev_kfree_skb_irq(skb);
1359 else
1360 dev_kfree_skb(skb);
1361 }
1362 EXPORT_SYMBOL(dev_kfree_skb_any);
1363
1364
1365 /**
1366 * netif_device_detach - mark device as removed
1367 * @dev: network device
1368 *
1369 * Mark device as removed from system and therefore no longer available.
1370 */
1371 void netif_device_detach(struct net_device *dev)
1372 {
1373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1374 netif_running(dev)) {
1375 netif_stop_queue(dev);
1376 }
1377 }
1378 EXPORT_SYMBOL(netif_device_detach);
1379
1380 /**
1381 * netif_device_attach - mark device as attached
1382 * @dev: network device
1383 *
1384 * Mark device as attached from system and restart if needed.
1385 */
1386 void netif_device_attach(struct net_device *dev)
1387 {
1388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1389 netif_running(dev)) {
1390 netif_wake_queue(dev);
1391 __netdev_watchdog_up(dev);
1392 }
1393 }
1394 EXPORT_SYMBOL(netif_device_attach);
1395
1396 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1397 {
1398 return ((features & NETIF_F_GEN_CSUM) ||
1399 ((features & NETIF_F_IP_CSUM) &&
1400 protocol == htons(ETH_P_IP)) ||
1401 ((features & NETIF_F_IPV6_CSUM) &&
1402 protocol == htons(ETH_P_IPV6)));
1403 }
1404
1405 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1406 {
1407 if (can_checksum_protocol(dev->features, skb->protocol))
1408 return true;
1409
1410 if (skb->protocol == htons(ETH_P_8021Q)) {
1411 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1412 if (can_checksum_protocol(dev->features & dev->vlan_features,
1413 veh->h_vlan_encapsulated_proto))
1414 return true;
1415 }
1416
1417 return false;
1418 }
1419
1420 /*
1421 * Invalidate hardware checksum when packet is to be mangled, and
1422 * complete checksum manually on outgoing path.
1423 */
1424 int skb_checksum_help(struct sk_buff *skb)
1425 {
1426 __wsum csum;
1427 int ret = 0, offset;
1428
1429 if (skb->ip_summed == CHECKSUM_COMPLETE)
1430 goto out_set_summed;
1431
1432 if (unlikely(skb_shinfo(skb)->gso_size)) {
1433 /* Let GSO fix up the checksum. */
1434 goto out_set_summed;
1435 }
1436
1437 offset = skb->csum_start - skb_headroom(skb);
1438 BUG_ON(offset >= skb_headlen(skb));
1439 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1440
1441 offset += skb->csum_offset;
1442 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1443
1444 if (skb_cloned(skb) &&
1445 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1446 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1447 if (ret)
1448 goto out;
1449 }
1450
1451 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1452 out_set_summed:
1453 skb->ip_summed = CHECKSUM_NONE;
1454 out:
1455 return ret;
1456 }
1457
1458 /**
1459 * skb_gso_segment - Perform segmentation on skb.
1460 * @skb: buffer to segment
1461 * @features: features for the output path (see dev->features)
1462 *
1463 * This function segments the given skb and returns a list of segments.
1464 *
1465 * It may return NULL if the skb requires no segmentation. This is
1466 * only possible when GSO is used for verifying header integrity.
1467 */
1468 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1469 {
1470 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1471 struct packet_type *ptype;
1472 __be16 type = skb->protocol;
1473 int err;
1474
1475 BUG_ON(skb_shinfo(skb)->frag_list);
1476
1477 skb_reset_mac_header(skb);
1478 skb->mac_len = skb->network_header - skb->mac_header;
1479 __skb_pull(skb, skb->mac_len);
1480
1481 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1482 if (skb_header_cloned(skb) &&
1483 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1484 return ERR_PTR(err);
1485 }
1486
1487 rcu_read_lock();
1488 list_for_each_entry_rcu(ptype,
1489 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1490 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1491 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1492 err = ptype->gso_send_check(skb);
1493 segs = ERR_PTR(err);
1494 if (err || skb_gso_ok(skb, features))
1495 break;
1496 __skb_push(skb, (skb->data -
1497 skb_network_header(skb)));
1498 }
1499 segs = ptype->gso_segment(skb, features);
1500 break;
1501 }
1502 }
1503 rcu_read_unlock();
1504
1505 __skb_push(skb, skb->data - skb_mac_header(skb));
1506
1507 return segs;
1508 }
1509
1510 EXPORT_SYMBOL(skb_gso_segment);
1511
1512 /* Take action when hardware reception checksum errors are detected. */
1513 #ifdef CONFIG_BUG
1514 void netdev_rx_csum_fault(struct net_device *dev)
1515 {
1516 if (net_ratelimit()) {
1517 printk(KERN_ERR "%s: hw csum failure.\n",
1518 dev ? dev->name : "<unknown>");
1519 dump_stack();
1520 }
1521 }
1522 EXPORT_SYMBOL(netdev_rx_csum_fault);
1523 #endif
1524
1525 /* Actually, we should eliminate this check as soon as we know, that:
1526 * 1. IOMMU is present and allows to map all the memory.
1527 * 2. No high memory really exists on this machine.
1528 */
1529
1530 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1531 {
1532 #ifdef CONFIG_HIGHMEM
1533 int i;
1534
1535 if (dev->features & NETIF_F_HIGHDMA)
1536 return 0;
1537
1538 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1539 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1540 return 1;
1541
1542 #endif
1543 return 0;
1544 }
1545
1546 struct dev_gso_cb {
1547 void (*destructor)(struct sk_buff *skb);
1548 };
1549
1550 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1551
1552 static void dev_gso_skb_destructor(struct sk_buff *skb)
1553 {
1554 struct dev_gso_cb *cb;
1555
1556 do {
1557 struct sk_buff *nskb = skb->next;
1558
1559 skb->next = nskb->next;
1560 nskb->next = NULL;
1561 kfree_skb(nskb);
1562 } while (skb->next);
1563
1564 cb = DEV_GSO_CB(skb);
1565 if (cb->destructor)
1566 cb->destructor(skb);
1567 }
1568
1569 /**
1570 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1571 * @skb: buffer to segment
1572 *
1573 * This function segments the given skb and stores the list of segments
1574 * in skb->next.
1575 */
1576 static int dev_gso_segment(struct sk_buff *skb)
1577 {
1578 struct net_device *dev = skb->dev;
1579 struct sk_buff *segs;
1580 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1581 NETIF_F_SG : 0);
1582
1583 segs = skb_gso_segment(skb, features);
1584
1585 /* Verifying header integrity only. */
1586 if (!segs)
1587 return 0;
1588
1589 if (IS_ERR(segs))
1590 return PTR_ERR(segs);
1591
1592 skb->next = segs;
1593 DEV_GSO_CB(skb)->destructor = skb->destructor;
1594 skb->destructor = dev_gso_skb_destructor;
1595
1596 return 0;
1597 }
1598
1599 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1600 {
1601 if (likely(!skb->next)) {
1602 if (!list_empty(&ptype_all))
1603 dev_queue_xmit_nit(skb, dev);
1604
1605 if (netif_needs_gso(dev, skb)) {
1606 if (unlikely(dev_gso_segment(skb)))
1607 goto out_kfree_skb;
1608 if (skb->next)
1609 goto gso;
1610 }
1611
1612 return dev->hard_start_xmit(skb, dev);
1613 }
1614
1615 gso:
1616 do {
1617 struct sk_buff *nskb = skb->next;
1618 int rc;
1619
1620 skb->next = nskb->next;
1621 nskb->next = NULL;
1622 rc = dev->hard_start_xmit(nskb, dev);
1623 if (unlikely(rc)) {
1624 nskb->next = skb->next;
1625 skb->next = nskb;
1626 return rc;
1627 }
1628 if (unlikely((netif_queue_stopped(dev) ||
1629 netif_subqueue_stopped(dev, skb)) &&
1630 skb->next))
1631 return NETDEV_TX_BUSY;
1632 } while (skb->next);
1633
1634 skb->destructor = DEV_GSO_CB(skb)->destructor;
1635
1636 out_kfree_skb:
1637 kfree_skb(skb);
1638 return 0;
1639 }
1640
1641 /**
1642 * dev_queue_xmit - transmit a buffer
1643 * @skb: buffer to transmit
1644 *
1645 * Queue a buffer for transmission to a network device. The caller must
1646 * have set the device and priority and built the buffer before calling
1647 * this function. The function can be called from an interrupt.
1648 *
1649 * A negative errno code is returned on a failure. A success does not
1650 * guarantee the frame will be transmitted as it may be dropped due
1651 * to congestion or traffic shaping.
1652 *
1653 * -----------------------------------------------------------------------------------
1654 * I notice this method can also return errors from the queue disciplines,
1655 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1656 * be positive.
1657 *
1658 * Regardless of the return value, the skb is consumed, so it is currently
1659 * difficult to retry a send to this method. (You can bump the ref count
1660 * before sending to hold a reference for retry if you are careful.)
1661 *
1662 * When calling this method, interrupts MUST be enabled. This is because
1663 * the BH enable code must have IRQs enabled so that it will not deadlock.
1664 * --BLG
1665 */
1666
1667 int dev_queue_xmit(struct sk_buff *skb)
1668 {
1669 struct net_device *dev = skb->dev;
1670 struct Qdisc *q;
1671 int rc = -ENOMEM;
1672
1673 /* GSO will handle the following emulations directly. */
1674 if (netif_needs_gso(dev, skb))
1675 goto gso;
1676
1677 if (skb_shinfo(skb)->frag_list &&
1678 !(dev->features & NETIF_F_FRAGLIST) &&
1679 __skb_linearize(skb))
1680 goto out_kfree_skb;
1681
1682 /* Fragmented skb is linearized if device does not support SG,
1683 * or if at least one of fragments is in highmem and device
1684 * does not support DMA from it.
1685 */
1686 if (skb_shinfo(skb)->nr_frags &&
1687 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1688 __skb_linearize(skb))
1689 goto out_kfree_skb;
1690
1691 /* If packet is not checksummed and device does not support
1692 * checksumming for this protocol, complete checksumming here.
1693 */
1694 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1695 skb_set_transport_header(skb, skb->csum_start -
1696 skb_headroom(skb));
1697 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1698 goto out_kfree_skb;
1699 }
1700
1701 gso:
1702 spin_lock_prefetch(&dev->queue_lock);
1703
1704 /* Disable soft irqs for various locks below. Also
1705 * stops preemption for RCU.
1706 */
1707 rcu_read_lock_bh();
1708
1709 /* Updates of qdisc are serialized by queue_lock.
1710 * The struct Qdisc which is pointed to by qdisc is now a
1711 * rcu structure - it may be accessed without acquiring
1712 * a lock (but the structure may be stale.) The freeing of the
1713 * qdisc will be deferred until it's known that there are no
1714 * more references to it.
1715 *
1716 * If the qdisc has an enqueue function, we still need to
1717 * hold the queue_lock before calling it, since queue_lock
1718 * also serializes access to the device queue.
1719 */
1720
1721 q = rcu_dereference(dev->qdisc);
1722 #ifdef CONFIG_NET_CLS_ACT
1723 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1724 #endif
1725 if (q->enqueue) {
1726 /* Grab device queue */
1727 spin_lock(&dev->queue_lock);
1728 q = dev->qdisc;
1729 if (q->enqueue) {
1730 /* reset queue_mapping to zero */
1731 skb_set_queue_mapping(skb, 0);
1732 rc = q->enqueue(skb, q);
1733 qdisc_run(dev);
1734 spin_unlock(&dev->queue_lock);
1735
1736 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1737 goto out;
1738 }
1739 spin_unlock(&dev->queue_lock);
1740 }
1741
1742 /* The device has no queue. Common case for software devices:
1743 loopback, all the sorts of tunnels...
1744
1745 Really, it is unlikely that netif_tx_lock protection is necessary
1746 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1747 counters.)
1748 However, it is possible, that they rely on protection
1749 made by us here.
1750
1751 Check this and shot the lock. It is not prone from deadlocks.
1752 Either shot noqueue qdisc, it is even simpler 8)
1753 */
1754 if (dev->flags & IFF_UP) {
1755 int cpu = smp_processor_id(); /* ok because BHs are off */
1756
1757 if (dev->xmit_lock_owner != cpu) {
1758
1759 HARD_TX_LOCK(dev, cpu);
1760
1761 if (!netif_queue_stopped(dev) &&
1762 !netif_subqueue_stopped(dev, skb)) {
1763 rc = 0;
1764 if (!dev_hard_start_xmit(skb, dev)) {
1765 HARD_TX_UNLOCK(dev);
1766 goto out;
1767 }
1768 }
1769 HARD_TX_UNLOCK(dev);
1770 if (net_ratelimit())
1771 printk(KERN_CRIT "Virtual device %s asks to "
1772 "queue packet!\n", dev->name);
1773 } else {
1774 /* Recursion is detected! It is possible,
1775 * unfortunately */
1776 if (net_ratelimit())
1777 printk(KERN_CRIT "Dead loop on virtual device "
1778 "%s, fix it urgently!\n", dev->name);
1779 }
1780 }
1781
1782 rc = -ENETDOWN;
1783 rcu_read_unlock_bh();
1784
1785 out_kfree_skb:
1786 kfree_skb(skb);
1787 return rc;
1788 out:
1789 rcu_read_unlock_bh();
1790 return rc;
1791 }
1792
1793
1794 /*=======================================================================
1795 Receiver routines
1796 =======================================================================*/
1797
1798 int netdev_max_backlog __read_mostly = 1000;
1799 int netdev_budget __read_mostly = 300;
1800 int weight_p __read_mostly = 64; /* old backlog weight */
1801
1802 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1803
1804
1805 /**
1806 * netif_rx - post buffer to the network code
1807 * @skb: buffer to post
1808 *
1809 * This function receives a packet from a device driver and queues it for
1810 * the upper (protocol) levels to process. It always succeeds. The buffer
1811 * may be dropped during processing for congestion control or by the
1812 * protocol layers.
1813 *
1814 * return values:
1815 * NET_RX_SUCCESS (no congestion)
1816 * NET_RX_DROP (packet was dropped)
1817 *
1818 */
1819
1820 int netif_rx(struct sk_buff *skb)
1821 {
1822 struct softnet_data *queue;
1823 unsigned long flags;
1824
1825 /* if netpoll wants it, pretend we never saw it */
1826 if (netpoll_rx(skb))
1827 return NET_RX_DROP;
1828
1829 if (!skb->tstamp.tv64)
1830 net_timestamp(skb);
1831
1832 /*
1833 * The code is rearranged so that the path is the most
1834 * short when CPU is congested, but is still operating.
1835 */
1836 local_irq_save(flags);
1837 queue = &__get_cpu_var(softnet_data);
1838
1839 __get_cpu_var(netdev_rx_stat).total++;
1840 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1841 if (queue->input_pkt_queue.qlen) {
1842 enqueue:
1843 dev_hold(skb->dev);
1844 __skb_queue_tail(&queue->input_pkt_queue, skb);
1845 local_irq_restore(flags);
1846 return NET_RX_SUCCESS;
1847 }
1848
1849 napi_schedule(&queue->backlog);
1850 goto enqueue;
1851 }
1852
1853 __get_cpu_var(netdev_rx_stat).dropped++;
1854 local_irq_restore(flags);
1855
1856 kfree_skb(skb);
1857 return NET_RX_DROP;
1858 }
1859
1860 int netif_rx_ni(struct sk_buff *skb)
1861 {
1862 int err;
1863
1864 preempt_disable();
1865 err = netif_rx(skb);
1866 if (local_softirq_pending())
1867 do_softirq();
1868 preempt_enable();
1869
1870 return err;
1871 }
1872
1873 EXPORT_SYMBOL(netif_rx_ni);
1874
1875 static inline struct net_device *skb_bond(struct sk_buff *skb)
1876 {
1877 struct net_device *dev = skb->dev;
1878
1879 if (dev->master) {
1880 if (skb_bond_should_drop(skb)) {
1881 kfree_skb(skb);
1882 return NULL;
1883 }
1884 skb->dev = dev->master;
1885 }
1886
1887 return dev;
1888 }
1889
1890
1891 static void net_tx_action(struct softirq_action *h)
1892 {
1893 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1894
1895 if (sd->completion_queue) {
1896 struct sk_buff *clist;
1897
1898 local_irq_disable();
1899 clist = sd->completion_queue;
1900 sd->completion_queue = NULL;
1901 local_irq_enable();
1902
1903 while (clist) {
1904 struct sk_buff *skb = clist;
1905 clist = clist->next;
1906
1907 BUG_TRAP(!atomic_read(&skb->users));
1908 __kfree_skb(skb);
1909 }
1910 }
1911
1912 if (sd->output_queue) {
1913 struct net_device *head;
1914
1915 local_irq_disable();
1916 head = sd->output_queue;
1917 sd->output_queue = NULL;
1918 local_irq_enable();
1919
1920 while (head) {
1921 struct net_device *dev = head;
1922 head = head->next_sched;
1923
1924 smp_mb__before_clear_bit();
1925 clear_bit(__LINK_STATE_SCHED, &dev->state);
1926
1927 if (spin_trylock(&dev->queue_lock)) {
1928 qdisc_run(dev);
1929 spin_unlock(&dev->queue_lock);
1930 } else {
1931 netif_schedule(dev);
1932 }
1933 }
1934 }
1935 }
1936
1937 static inline int deliver_skb(struct sk_buff *skb,
1938 struct packet_type *pt_prev,
1939 struct net_device *orig_dev)
1940 {
1941 atomic_inc(&skb->users);
1942 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1943 }
1944
1945 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1946 /* These hooks defined here for ATM */
1947 struct net_bridge;
1948 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1949 unsigned char *addr);
1950 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1951
1952 /*
1953 * If bridge module is loaded call bridging hook.
1954 * returns NULL if packet was consumed.
1955 */
1956 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1957 struct sk_buff *skb) __read_mostly;
1958 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1959 struct packet_type **pt_prev, int *ret,
1960 struct net_device *orig_dev)
1961 {
1962 struct net_bridge_port *port;
1963
1964 if (skb->pkt_type == PACKET_LOOPBACK ||
1965 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1966 return skb;
1967
1968 if (*pt_prev) {
1969 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1970 *pt_prev = NULL;
1971 }
1972
1973 return br_handle_frame_hook(port, skb);
1974 }
1975 #else
1976 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1977 #endif
1978
1979 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1980 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1981 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1982
1983 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1984 struct packet_type **pt_prev,
1985 int *ret,
1986 struct net_device *orig_dev)
1987 {
1988 if (skb->dev->macvlan_port == NULL)
1989 return skb;
1990
1991 if (*pt_prev) {
1992 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1993 *pt_prev = NULL;
1994 }
1995 return macvlan_handle_frame_hook(skb);
1996 }
1997 #else
1998 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1999 #endif
2000
2001 #ifdef CONFIG_NET_CLS_ACT
2002 /* TODO: Maybe we should just force sch_ingress to be compiled in
2003 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2004 * a compare and 2 stores extra right now if we dont have it on
2005 * but have CONFIG_NET_CLS_ACT
2006 * NOTE: This doesnt stop any functionality; if you dont have
2007 * the ingress scheduler, you just cant add policies on ingress.
2008 *
2009 */
2010 static int ing_filter(struct sk_buff *skb)
2011 {
2012 struct Qdisc *q;
2013 struct net_device *dev = skb->dev;
2014 int result = TC_ACT_OK;
2015 u32 ttl = G_TC_RTTL(skb->tc_verd);
2016
2017 if (MAX_RED_LOOP < ttl++) {
2018 printk(KERN_WARNING
2019 "Redir loop detected Dropping packet (%d->%d)\n",
2020 skb->iif, dev->ifindex);
2021 return TC_ACT_SHOT;
2022 }
2023
2024 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2025 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2026
2027 spin_lock(&dev->ingress_lock);
2028 if ((q = dev->qdisc_ingress) != NULL)
2029 result = q->enqueue(skb, q);
2030 spin_unlock(&dev->ingress_lock);
2031
2032 return result;
2033 }
2034
2035 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2036 struct packet_type **pt_prev,
2037 int *ret, struct net_device *orig_dev)
2038 {
2039 if (!skb->dev->qdisc_ingress)
2040 goto out;
2041
2042 if (*pt_prev) {
2043 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2044 *pt_prev = NULL;
2045 } else {
2046 /* Huh? Why does turning on AF_PACKET affect this? */
2047 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2048 }
2049
2050 switch (ing_filter(skb)) {
2051 case TC_ACT_SHOT:
2052 case TC_ACT_STOLEN:
2053 kfree_skb(skb);
2054 return NULL;
2055 }
2056
2057 out:
2058 skb->tc_verd = 0;
2059 return skb;
2060 }
2061 #endif
2062
2063 /**
2064 * netif_receive_skb - process receive buffer from network
2065 * @skb: buffer to process
2066 *
2067 * netif_receive_skb() is the main receive data processing function.
2068 * It always succeeds. The buffer may be dropped during processing
2069 * for congestion control or by the protocol layers.
2070 *
2071 * This function may only be called from softirq context and interrupts
2072 * should be enabled.
2073 *
2074 * Return values (usually ignored):
2075 * NET_RX_SUCCESS: no congestion
2076 * NET_RX_DROP: packet was dropped
2077 */
2078 int netif_receive_skb(struct sk_buff *skb)
2079 {
2080 struct packet_type *ptype, *pt_prev;
2081 struct net_device *orig_dev;
2082 int ret = NET_RX_DROP;
2083 __be16 type;
2084
2085 /* if we've gotten here through NAPI, check netpoll */
2086 if (netpoll_receive_skb(skb))
2087 return NET_RX_DROP;
2088
2089 if (!skb->tstamp.tv64)
2090 net_timestamp(skb);
2091
2092 if (!skb->iif)
2093 skb->iif = skb->dev->ifindex;
2094
2095 orig_dev = skb_bond(skb);
2096
2097 if (!orig_dev)
2098 return NET_RX_DROP;
2099
2100 __get_cpu_var(netdev_rx_stat).total++;
2101
2102 skb_reset_network_header(skb);
2103 skb_reset_transport_header(skb);
2104 skb->mac_len = skb->network_header - skb->mac_header;
2105
2106 pt_prev = NULL;
2107
2108 rcu_read_lock();
2109
2110 #ifdef CONFIG_NET_CLS_ACT
2111 if (skb->tc_verd & TC_NCLS) {
2112 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2113 goto ncls;
2114 }
2115 #endif
2116
2117 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2118 if (!ptype->dev || ptype->dev == skb->dev) {
2119 if (pt_prev)
2120 ret = deliver_skb(skb, pt_prev, orig_dev);
2121 pt_prev = ptype;
2122 }
2123 }
2124
2125 #ifdef CONFIG_NET_CLS_ACT
2126 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2127 if (!skb)
2128 goto out;
2129 ncls:
2130 #endif
2131
2132 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2133 if (!skb)
2134 goto out;
2135 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2136 if (!skb)
2137 goto out;
2138
2139 type = skb->protocol;
2140 list_for_each_entry_rcu(ptype,
2141 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2142 if (ptype->type == type &&
2143 (!ptype->dev || ptype->dev == skb->dev)) {
2144 if (pt_prev)
2145 ret = deliver_skb(skb, pt_prev, orig_dev);
2146 pt_prev = ptype;
2147 }
2148 }
2149
2150 if (pt_prev) {
2151 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2152 } else {
2153 kfree_skb(skb);
2154 /* Jamal, now you will not able to escape explaining
2155 * me how you were going to use this. :-)
2156 */
2157 ret = NET_RX_DROP;
2158 }
2159
2160 out:
2161 rcu_read_unlock();
2162 return ret;
2163 }
2164
2165 static int process_backlog(struct napi_struct *napi, int quota)
2166 {
2167 int work = 0;
2168 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2169 unsigned long start_time = jiffies;
2170
2171 napi->weight = weight_p;
2172 do {
2173 struct sk_buff *skb;
2174 struct net_device *dev;
2175
2176 local_irq_disable();
2177 skb = __skb_dequeue(&queue->input_pkt_queue);
2178 if (!skb) {
2179 __napi_complete(napi);
2180 local_irq_enable();
2181 break;
2182 }
2183
2184 local_irq_enable();
2185
2186 dev = skb->dev;
2187
2188 netif_receive_skb(skb);
2189
2190 dev_put(dev);
2191 } while (++work < quota && jiffies == start_time);
2192
2193 return work;
2194 }
2195
2196 /**
2197 * __napi_schedule - schedule for receive
2198 * @n: entry to schedule
2199 *
2200 * The entry's receive function will be scheduled to run
2201 */
2202 void __napi_schedule(struct napi_struct *n)
2203 {
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
2207 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2208 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2209 local_irq_restore(flags);
2210 }
2211 EXPORT_SYMBOL(__napi_schedule);
2212
2213
2214 static void net_rx_action(struct softirq_action *h)
2215 {
2216 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2217 unsigned long start_time = jiffies;
2218 int budget = netdev_budget;
2219 void *have;
2220
2221 local_irq_disable();
2222
2223 while (!list_empty(list)) {
2224 struct napi_struct *n;
2225 int work, weight;
2226
2227 /* If softirq window is exhuasted then punt.
2228 *
2229 * Note that this is a slight policy change from the
2230 * previous NAPI code, which would allow up to 2
2231 * jiffies to pass before breaking out. The test
2232 * used to be "jiffies - start_time > 1".
2233 */
2234 if (unlikely(budget <= 0 || jiffies != start_time))
2235 goto softnet_break;
2236
2237 local_irq_enable();
2238
2239 /* Even though interrupts have been re-enabled, this
2240 * access is safe because interrupts can only add new
2241 * entries to the tail of this list, and only ->poll()
2242 * calls can remove this head entry from the list.
2243 */
2244 n = list_entry(list->next, struct napi_struct, poll_list);
2245
2246 have = netpoll_poll_lock(n);
2247
2248 weight = n->weight;
2249
2250 /* This NAPI_STATE_SCHED test is for avoiding a race
2251 * with netpoll's poll_napi(). Only the entity which
2252 * obtains the lock and sees NAPI_STATE_SCHED set will
2253 * actually make the ->poll() call. Therefore we avoid
2254 * accidently calling ->poll() when NAPI is not scheduled.
2255 */
2256 work = 0;
2257 if (test_bit(NAPI_STATE_SCHED, &n->state))
2258 work = n->poll(n, weight);
2259
2260 WARN_ON_ONCE(work > weight);
2261
2262 budget -= work;
2263
2264 local_irq_disable();
2265
2266 /* Drivers must not modify the NAPI state if they
2267 * consume the entire weight. In such cases this code
2268 * still "owns" the NAPI instance and therefore can
2269 * move the instance around on the list at-will.
2270 */
2271 if (unlikely(work == weight)) {
2272 if (unlikely(napi_disable_pending(n)))
2273 __napi_complete(n);
2274 else
2275 list_move_tail(&n->poll_list, list);
2276 }
2277
2278 netpoll_poll_unlock(have);
2279 }
2280 out:
2281 local_irq_enable();
2282
2283 #ifdef CONFIG_NET_DMA
2284 /*
2285 * There may not be any more sk_buffs coming right now, so push
2286 * any pending DMA copies to hardware
2287 */
2288 if (!cpus_empty(net_dma.channel_mask)) {
2289 int chan_idx;
2290 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2291 struct dma_chan *chan = net_dma.channels[chan_idx];
2292 if (chan)
2293 dma_async_memcpy_issue_pending(chan);
2294 }
2295 }
2296 #endif
2297
2298 return;
2299
2300 softnet_break:
2301 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2302 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2303 goto out;
2304 }
2305
2306 static gifconf_func_t * gifconf_list [NPROTO];
2307
2308 /**
2309 * register_gifconf - register a SIOCGIF handler
2310 * @family: Address family
2311 * @gifconf: Function handler
2312 *
2313 * Register protocol dependent address dumping routines. The handler
2314 * that is passed must not be freed or reused until it has been replaced
2315 * by another handler.
2316 */
2317 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2318 {
2319 if (family >= NPROTO)
2320 return -EINVAL;
2321 gifconf_list[family] = gifconf;
2322 return 0;
2323 }
2324
2325
2326 /*
2327 * Map an interface index to its name (SIOCGIFNAME)
2328 */
2329
2330 /*
2331 * We need this ioctl for efficient implementation of the
2332 * if_indextoname() function required by the IPv6 API. Without
2333 * it, we would have to search all the interfaces to find a
2334 * match. --pb
2335 */
2336
2337 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2338 {
2339 struct net_device *dev;
2340 struct ifreq ifr;
2341
2342 /*
2343 * Fetch the caller's info block.
2344 */
2345
2346 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2347 return -EFAULT;
2348
2349 read_lock(&dev_base_lock);
2350 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2351 if (!dev) {
2352 read_unlock(&dev_base_lock);
2353 return -ENODEV;
2354 }
2355
2356 strcpy(ifr.ifr_name, dev->name);
2357 read_unlock(&dev_base_lock);
2358
2359 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2360 return -EFAULT;
2361 return 0;
2362 }
2363
2364 /*
2365 * Perform a SIOCGIFCONF call. This structure will change
2366 * size eventually, and there is nothing I can do about it.
2367 * Thus we will need a 'compatibility mode'.
2368 */
2369
2370 static int dev_ifconf(struct net *net, char __user *arg)
2371 {
2372 struct ifconf ifc;
2373 struct net_device *dev;
2374 char __user *pos;
2375 int len;
2376 int total;
2377 int i;
2378
2379 /*
2380 * Fetch the caller's info block.
2381 */
2382
2383 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2384 return -EFAULT;
2385
2386 pos = ifc.ifc_buf;
2387 len = ifc.ifc_len;
2388
2389 /*
2390 * Loop over the interfaces, and write an info block for each.
2391 */
2392
2393 total = 0;
2394 for_each_netdev(net, dev) {
2395 for (i = 0; i < NPROTO; i++) {
2396 if (gifconf_list[i]) {
2397 int done;
2398 if (!pos)
2399 done = gifconf_list[i](dev, NULL, 0);
2400 else
2401 done = gifconf_list[i](dev, pos + total,
2402 len - total);
2403 if (done < 0)
2404 return -EFAULT;
2405 total += done;
2406 }
2407 }
2408 }
2409
2410 /*
2411 * All done. Write the updated control block back to the caller.
2412 */
2413 ifc.ifc_len = total;
2414
2415 /*
2416 * Both BSD and Solaris return 0 here, so we do too.
2417 */
2418 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2419 }
2420
2421 #ifdef CONFIG_PROC_FS
2422 /*
2423 * This is invoked by the /proc filesystem handler to display a device
2424 * in detail.
2425 */
2426 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2427 __acquires(dev_base_lock)
2428 {
2429 struct net *net = seq_file_net(seq);
2430 loff_t off;
2431 struct net_device *dev;
2432
2433 read_lock(&dev_base_lock);
2434 if (!*pos)
2435 return SEQ_START_TOKEN;
2436
2437 off = 1;
2438 for_each_netdev(net, dev)
2439 if (off++ == *pos)
2440 return dev;
2441
2442 return NULL;
2443 }
2444
2445 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2446 {
2447 struct net *net = seq_file_net(seq);
2448 ++*pos;
2449 return v == SEQ_START_TOKEN ?
2450 first_net_device(net) : next_net_device((struct net_device *)v);
2451 }
2452
2453 void dev_seq_stop(struct seq_file *seq, void *v)
2454 __releases(dev_base_lock)
2455 {
2456 read_unlock(&dev_base_lock);
2457 }
2458
2459 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2460 {
2461 struct net_device_stats *stats = dev->get_stats(dev);
2462
2463 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2464 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2465 dev->name, stats->rx_bytes, stats->rx_packets,
2466 stats->rx_errors,
2467 stats->rx_dropped + stats->rx_missed_errors,
2468 stats->rx_fifo_errors,
2469 stats->rx_length_errors + stats->rx_over_errors +
2470 stats->rx_crc_errors + stats->rx_frame_errors,
2471 stats->rx_compressed, stats->multicast,
2472 stats->tx_bytes, stats->tx_packets,
2473 stats->tx_errors, stats->tx_dropped,
2474 stats->tx_fifo_errors, stats->collisions,
2475 stats->tx_carrier_errors +
2476 stats->tx_aborted_errors +
2477 stats->tx_window_errors +
2478 stats->tx_heartbeat_errors,
2479 stats->tx_compressed);
2480 }
2481
2482 /*
2483 * Called from the PROCfs module. This now uses the new arbitrary sized
2484 * /proc/net interface to create /proc/net/dev
2485 */
2486 static int dev_seq_show(struct seq_file *seq, void *v)
2487 {
2488 if (v == SEQ_START_TOKEN)
2489 seq_puts(seq, "Inter-| Receive "
2490 " | Transmit\n"
2491 " face |bytes packets errs drop fifo frame "
2492 "compressed multicast|bytes packets errs "
2493 "drop fifo colls carrier compressed\n");
2494 else
2495 dev_seq_printf_stats(seq, v);
2496 return 0;
2497 }
2498
2499 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2500 {
2501 struct netif_rx_stats *rc = NULL;
2502
2503 while (*pos < nr_cpu_ids)
2504 if (cpu_online(*pos)) {
2505 rc = &per_cpu(netdev_rx_stat, *pos);
2506 break;
2507 } else
2508 ++*pos;
2509 return rc;
2510 }
2511
2512 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2513 {
2514 return softnet_get_online(pos);
2515 }
2516
2517 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2518 {
2519 ++*pos;
2520 return softnet_get_online(pos);
2521 }
2522
2523 static void softnet_seq_stop(struct seq_file *seq, void *v)
2524 {
2525 }
2526
2527 static int softnet_seq_show(struct seq_file *seq, void *v)
2528 {
2529 struct netif_rx_stats *s = v;
2530
2531 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2532 s->total, s->dropped, s->time_squeeze, 0,
2533 0, 0, 0, 0, /* was fastroute */
2534 s->cpu_collision );
2535 return 0;
2536 }
2537
2538 static const struct seq_operations dev_seq_ops = {
2539 .start = dev_seq_start,
2540 .next = dev_seq_next,
2541 .stop = dev_seq_stop,
2542 .show = dev_seq_show,
2543 };
2544
2545 static int dev_seq_open(struct inode *inode, struct file *file)
2546 {
2547 return seq_open_net(inode, file, &dev_seq_ops,
2548 sizeof(struct seq_net_private));
2549 }
2550
2551 static const struct file_operations dev_seq_fops = {
2552 .owner = THIS_MODULE,
2553 .open = dev_seq_open,
2554 .read = seq_read,
2555 .llseek = seq_lseek,
2556 .release = seq_release_net,
2557 };
2558
2559 static const struct seq_operations softnet_seq_ops = {
2560 .start = softnet_seq_start,
2561 .next = softnet_seq_next,
2562 .stop = softnet_seq_stop,
2563 .show = softnet_seq_show,
2564 };
2565
2566 static int softnet_seq_open(struct inode *inode, struct file *file)
2567 {
2568 return seq_open(file, &softnet_seq_ops);
2569 }
2570
2571 static const struct file_operations softnet_seq_fops = {
2572 .owner = THIS_MODULE,
2573 .open = softnet_seq_open,
2574 .read = seq_read,
2575 .llseek = seq_lseek,
2576 .release = seq_release,
2577 };
2578
2579 static void *ptype_get_idx(loff_t pos)
2580 {
2581 struct packet_type *pt = NULL;
2582 loff_t i = 0;
2583 int t;
2584
2585 list_for_each_entry_rcu(pt, &ptype_all, list) {
2586 if (i == pos)
2587 return pt;
2588 ++i;
2589 }
2590
2591 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2592 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2593 if (i == pos)
2594 return pt;
2595 ++i;
2596 }
2597 }
2598 return NULL;
2599 }
2600
2601 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2602 __acquires(RCU)
2603 {
2604 rcu_read_lock();
2605 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2606 }
2607
2608 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2609 {
2610 struct packet_type *pt;
2611 struct list_head *nxt;
2612 int hash;
2613
2614 ++*pos;
2615 if (v == SEQ_START_TOKEN)
2616 return ptype_get_idx(0);
2617
2618 pt = v;
2619 nxt = pt->list.next;
2620 if (pt->type == htons(ETH_P_ALL)) {
2621 if (nxt != &ptype_all)
2622 goto found;
2623 hash = 0;
2624 nxt = ptype_base[0].next;
2625 } else
2626 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2627
2628 while (nxt == &ptype_base[hash]) {
2629 if (++hash >= PTYPE_HASH_SIZE)
2630 return NULL;
2631 nxt = ptype_base[hash].next;
2632 }
2633 found:
2634 return list_entry(nxt, struct packet_type, list);
2635 }
2636
2637 static void ptype_seq_stop(struct seq_file *seq, void *v)
2638 __releases(RCU)
2639 {
2640 rcu_read_unlock();
2641 }
2642
2643 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2644 {
2645 #ifdef CONFIG_KALLSYMS
2646 unsigned long offset = 0, symsize;
2647 const char *symname;
2648 char *modname;
2649 char namebuf[128];
2650
2651 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2652 &modname, namebuf);
2653
2654 if (symname) {
2655 char *delim = ":";
2656
2657 if (!modname)
2658 modname = delim = "";
2659 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2660 symname, offset);
2661 return;
2662 }
2663 #endif
2664
2665 seq_printf(seq, "[%p]", sym);
2666 }
2667
2668 static int ptype_seq_show(struct seq_file *seq, void *v)
2669 {
2670 struct packet_type *pt = v;
2671
2672 if (v == SEQ_START_TOKEN)
2673 seq_puts(seq, "Type Device Function\n");
2674 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2675 if (pt->type == htons(ETH_P_ALL))
2676 seq_puts(seq, "ALL ");
2677 else
2678 seq_printf(seq, "%04x", ntohs(pt->type));
2679
2680 seq_printf(seq, " %-8s ",
2681 pt->dev ? pt->dev->name : "");
2682 ptype_seq_decode(seq, pt->func);
2683 seq_putc(seq, '\n');
2684 }
2685
2686 return 0;
2687 }
2688
2689 static const struct seq_operations ptype_seq_ops = {
2690 .start = ptype_seq_start,
2691 .next = ptype_seq_next,
2692 .stop = ptype_seq_stop,
2693 .show = ptype_seq_show,
2694 };
2695
2696 static int ptype_seq_open(struct inode *inode, struct file *file)
2697 {
2698 return seq_open_net(inode, file, &ptype_seq_ops,
2699 sizeof(struct seq_net_private));
2700 }
2701
2702 static const struct file_operations ptype_seq_fops = {
2703 .owner = THIS_MODULE,
2704 .open = ptype_seq_open,
2705 .read = seq_read,
2706 .llseek = seq_lseek,
2707 .release = seq_release_net,
2708 };
2709
2710
2711 static int __net_init dev_proc_net_init(struct net *net)
2712 {
2713 int rc = -ENOMEM;
2714
2715 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2716 goto out;
2717 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2718 goto out_dev;
2719 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2720 goto out_softnet;
2721
2722 if (wext_proc_init(net))
2723 goto out_ptype;
2724 rc = 0;
2725 out:
2726 return rc;
2727 out_ptype:
2728 proc_net_remove(net, "ptype");
2729 out_softnet:
2730 proc_net_remove(net, "softnet_stat");
2731 out_dev:
2732 proc_net_remove(net, "dev");
2733 goto out;
2734 }
2735
2736 static void __net_exit dev_proc_net_exit(struct net *net)
2737 {
2738 wext_proc_exit(net);
2739
2740 proc_net_remove(net, "ptype");
2741 proc_net_remove(net, "softnet_stat");
2742 proc_net_remove(net, "dev");
2743 }
2744
2745 static struct pernet_operations __net_initdata dev_proc_ops = {
2746 .init = dev_proc_net_init,
2747 .exit = dev_proc_net_exit,
2748 };
2749
2750 static int __init dev_proc_init(void)
2751 {
2752 return register_pernet_subsys(&dev_proc_ops);
2753 }
2754 #else
2755 #define dev_proc_init() 0
2756 #endif /* CONFIG_PROC_FS */
2757
2758
2759 /**
2760 * netdev_set_master - set up master/slave pair
2761 * @slave: slave device
2762 * @master: new master device
2763 *
2764 * Changes the master device of the slave. Pass %NULL to break the
2765 * bonding. The caller must hold the RTNL semaphore. On a failure
2766 * a negative errno code is returned. On success the reference counts
2767 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2768 * function returns zero.
2769 */
2770 int netdev_set_master(struct net_device *slave, struct net_device *master)
2771 {
2772 struct net_device *old = slave->master;
2773
2774 ASSERT_RTNL();
2775
2776 if (master) {
2777 if (old)
2778 return -EBUSY;
2779 dev_hold(master);
2780 }
2781
2782 slave->master = master;
2783
2784 synchronize_net();
2785
2786 if (old)
2787 dev_put(old);
2788
2789 if (master)
2790 slave->flags |= IFF_SLAVE;
2791 else
2792 slave->flags &= ~IFF_SLAVE;
2793
2794 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2795 return 0;
2796 }
2797
2798 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2799 {
2800 unsigned short old_flags = dev->flags;
2801
2802 ASSERT_RTNL();
2803
2804 dev->flags |= IFF_PROMISC;
2805 dev->promiscuity += inc;
2806 if (dev->promiscuity == 0) {
2807 /*
2808 * Avoid overflow.
2809 * If inc causes overflow, untouch promisc and return error.
2810 */
2811 if (inc < 0)
2812 dev->flags &= ~IFF_PROMISC;
2813 else {
2814 dev->promiscuity -= inc;
2815 printk(KERN_WARNING "%s: promiscuity touches roof, "
2816 "set promiscuity failed, promiscuity feature "
2817 "of device might be broken.\n", dev->name);
2818 return -EOVERFLOW;
2819 }
2820 }
2821 if (dev->flags != old_flags) {
2822 printk(KERN_INFO "device %s %s promiscuous mode\n",
2823 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2824 "left");
2825 if (audit_enabled)
2826 audit_log(current->audit_context, GFP_ATOMIC,
2827 AUDIT_ANOM_PROMISCUOUS,
2828 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2829 dev->name, (dev->flags & IFF_PROMISC),
2830 (old_flags & IFF_PROMISC),
2831 audit_get_loginuid(current),
2832 current->uid, current->gid,
2833 audit_get_sessionid(current));
2834
2835 if (dev->change_rx_flags)
2836 dev->change_rx_flags(dev, IFF_PROMISC);
2837 }
2838 return 0;
2839 }
2840
2841 /**
2842 * dev_set_promiscuity - update promiscuity count on a device
2843 * @dev: device
2844 * @inc: modifier
2845 *
2846 * Add or remove promiscuity from a device. While the count in the device
2847 * remains above zero the interface remains promiscuous. Once it hits zero
2848 * the device reverts back to normal filtering operation. A negative inc
2849 * value is used to drop promiscuity on the device.
2850 * Return 0 if successful or a negative errno code on error.
2851 */
2852 int dev_set_promiscuity(struct net_device *dev, int inc)
2853 {
2854 unsigned short old_flags = dev->flags;
2855 int err;
2856
2857 err = __dev_set_promiscuity(dev, inc);
2858 if (!err)
2859 return err;
2860 if (dev->flags != old_flags)
2861 dev_set_rx_mode(dev);
2862 return err;
2863 }
2864
2865 /**
2866 * dev_set_allmulti - update allmulti count on a device
2867 * @dev: device
2868 * @inc: modifier
2869 *
2870 * Add or remove reception of all multicast frames to a device. While the
2871 * count in the device remains above zero the interface remains listening
2872 * to all interfaces. Once it hits zero the device reverts back to normal
2873 * filtering operation. A negative @inc value is used to drop the counter
2874 * when releasing a resource needing all multicasts.
2875 * Return 0 if successful or a negative errno code on error.
2876 */
2877
2878 int dev_set_allmulti(struct net_device *dev, int inc)
2879 {
2880 unsigned short old_flags = dev->flags;
2881
2882 ASSERT_RTNL();
2883
2884 dev->flags |= IFF_ALLMULTI;
2885 dev->allmulti += inc;
2886 if (dev->allmulti == 0) {
2887 /*
2888 * Avoid overflow.
2889 * If inc causes overflow, untouch allmulti and return error.
2890 */
2891 if (inc < 0)
2892 dev->flags &= ~IFF_ALLMULTI;
2893 else {
2894 dev->allmulti -= inc;
2895 printk(KERN_WARNING "%s: allmulti touches roof, "
2896 "set allmulti failed, allmulti feature of "
2897 "device might be broken.\n", dev->name);
2898 return -EOVERFLOW;
2899 }
2900 }
2901 if (dev->flags ^ old_flags) {
2902 if (dev->change_rx_flags)
2903 dev->change_rx_flags(dev, IFF_ALLMULTI);
2904 dev_set_rx_mode(dev);
2905 }
2906 return 0;
2907 }
2908
2909 /*
2910 * Upload unicast and multicast address lists to device and
2911 * configure RX filtering. When the device doesn't support unicast
2912 * filtering it is put in promiscuous mode while unicast addresses
2913 * are present.
2914 */
2915 void __dev_set_rx_mode(struct net_device *dev)
2916 {
2917 /* dev_open will call this function so the list will stay sane. */
2918 if (!(dev->flags&IFF_UP))
2919 return;
2920
2921 if (!netif_device_present(dev))
2922 return;
2923
2924 if (dev->set_rx_mode)
2925 dev->set_rx_mode(dev);
2926 else {
2927 /* Unicast addresses changes may only happen under the rtnl,
2928 * therefore calling __dev_set_promiscuity here is safe.
2929 */
2930 if (dev->uc_count > 0 && !dev->uc_promisc) {
2931 __dev_set_promiscuity(dev, 1);
2932 dev->uc_promisc = 1;
2933 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2934 __dev_set_promiscuity(dev, -1);
2935 dev->uc_promisc = 0;
2936 }
2937
2938 if (dev->set_multicast_list)
2939 dev->set_multicast_list(dev);
2940 }
2941 }
2942
2943 void dev_set_rx_mode(struct net_device *dev)
2944 {
2945 netif_tx_lock_bh(dev);
2946 __dev_set_rx_mode(dev);
2947 netif_tx_unlock_bh(dev);
2948 }
2949
2950 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2951 void *addr, int alen, int glbl)
2952 {
2953 struct dev_addr_list *da;
2954
2955 for (; (da = *list) != NULL; list = &da->next) {
2956 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2957 alen == da->da_addrlen) {
2958 if (glbl) {
2959 int old_glbl = da->da_gusers;
2960 da->da_gusers = 0;
2961 if (old_glbl == 0)
2962 break;
2963 }
2964 if (--da->da_users)
2965 return 0;
2966
2967 *list = da->next;
2968 kfree(da);
2969 (*count)--;
2970 return 0;
2971 }
2972 }
2973 return -ENOENT;
2974 }
2975
2976 int __dev_addr_add(struct dev_addr_list **list, int *count,
2977 void *addr, int alen, int glbl)
2978 {
2979 struct dev_addr_list *da;
2980
2981 for (da = *list; da != NULL; da = da->next) {
2982 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2983 da->da_addrlen == alen) {
2984 if (glbl) {
2985 int old_glbl = da->da_gusers;
2986 da->da_gusers = 1;
2987 if (old_glbl)
2988 return 0;
2989 }
2990 da->da_users++;
2991 return 0;
2992 }
2993 }
2994
2995 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2996 if (da == NULL)
2997 return -ENOMEM;
2998 memcpy(da->da_addr, addr, alen);
2999 da->da_addrlen = alen;
3000 da->da_users = 1;
3001 da->da_gusers = glbl ? 1 : 0;
3002 da->next = *list;
3003 *list = da;
3004 (*count)++;
3005 return 0;
3006 }
3007
3008 /**
3009 * dev_unicast_delete - Release secondary unicast address.
3010 * @dev: device
3011 * @addr: address to delete
3012 * @alen: length of @addr
3013 *
3014 * Release reference to a secondary unicast address and remove it
3015 * from the device if the reference count drops to zero.
3016 *
3017 * The caller must hold the rtnl_mutex.
3018 */
3019 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3020 {
3021 int err;
3022
3023 ASSERT_RTNL();
3024
3025 netif_tx_lock_bh(dev);
3026 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3027 if (!err)
3028 __dev_set_rx_mode(dev);
3029 netif_tx_unlock_bh(dev);
3030 return err;
3031 }
3032 EXPORT_SYMBOL(dev_unicast_delete);
3033
3034 /**
3035 * dev_unicast_add - add a secondary unicast address
3036 * @dev: device
3037 * @addr: address to delete
3038 * @alen: length of @addr
3039 *
3040 * Add a secondary unicast address to the device or increase
3041 * the reference count if it already exists.
3042 *
3043 * The caller must hold the rtnl_mutex.
3044 */
3045 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3046 {
3047 int err;
3048
3049 ASSERT_RTNL();
3050
3051 netif_tx_lock_bh(dev);
3052 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3053 if (!err)
3054 __dev_set_rx_mode(dev);
3055 netif_tx_unlock_bh(dev);
3056 return err;
3057 }
3058 EXPORT_SYMBOL(dev_unicast_add);
3059
3060 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3061 struct dev_addr_list **from, int *from_count)
3062 {
3063 struct dev_addr_list *da, *next;
3064 int err = 0;
3065
3066 da = *from;
3067 while (da != NULL) {
3068 next = da->next;
3069 if (!da->da_synced) {
3070 err = __dev_addr_add(to, to_count,
3071 da->da_addr, da->da_addrlen, 0);
3072 if (err < 0)
3073 break;
3074 da->da_synced = 1;
3075 da->da_users++;
3076 } else if (da->da_users == 1) {
3077 __dev_addr_delete(to, to_count,
3078 da->da_addr, da->da_addrlen, 0);
3079 __dev_addr_delete(from, from_count,
3080 da->da_addr, da->da_addrlen, 0);
3081 }
3082 da = next;
3083 }
3084 return err;
3085 }
3086
3087 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3088 struct dev_addr_list **from, int *from_count)
3089 {
3090 struct dev_addr_list *da, *next;
3091
3092 da = *from;
3093 while (da != NULL) {
3094 next = da->next;
3095 if (da->da_synced) {
3096 __dev_addr_delete(to, to_count,
3097 da->da_addr, da->da_addrlen, 0);
3098 da->da_synced = 0;
3099 __dev_addr_delete(from, from_count,
3100 da->da_addr, da->da_addrlen, 0);
3101 }
3102 da = next;
3103 }
3104 }
3105
3106 /**
3107 * dev_unicast_sync - Synchronize device's unicast list to another device
3108 * @to: destination device
3109 * @from: source device
3110 *
3111 * Add newly added addresses to the destination device and release
3112 * addresses that have no users left. The source device must be
3113 * locked by netif_tx_lock_bh.
3114 *
3115 * This function is intended to be called from the dev->set_rx_mode
3116 * function of layered software devices.
3117 */
3118 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3119 {
3120 int err = 0;
3121
3122 netif_tx_lock_bh(to);
3123 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3124 &from->uc_list, &from->uc_count);
3125 if (!err)
3126 __dev_set_rx_mode(to);
3127 netif_tx_unlock_bh(to);
3128 return err;
3129 }
3130 EXPORT_SYMBOL(dev_unicast_sync);
3131
3132 /**
3133 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3134 * @to: destination device
3135 * @from: source device
3136 *
3137 * Remove all addresses that were added to the destination device by
3138 * dev_unicast_sync(). This function is intended to be called from the
3139 * dev->stop function of layered software devices.
3140 */
3141 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3142 {
3143 netif_tx_lock_bh(from);
3144 netif_tx_lock_bh(to);
3145
3146 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3147 &from->uc_list, &from->uc_count);
3148 __dev_set_rx_mode(to);
3149
3150 netif_tx_unlock_bh(to);
3151 netif_tx_unlock_bh(from);
3152 }
3153 EXPORT_SYMBOL(dev_unicast_unsync);
3154
3155 static void __dev_addr_discard(struct dev_addr_list **list)
3156 {
3157 struct dev_addr_list *tmp;
3158
3159 while (*list != NULL) {
3160 tmp = *list;
3161 *list = tmp->next;
3162 if (tmp->da_users > tmp->da_gusers)
3163 printk("__dev_addr_discard: address leakage! "
3164 "da_users=%d\n", tmp->da_users);
3165 kfree(tmp);
3166 }
3167 }
3168
3169 static void dev_addr_discard(struct net_device *dev)
3170 {
3171 netif_tx_lock_bh(dev);
3172
3173 __dev_addr_discard(&dev->uc_list);
3174 dev->uc_count = 0;
3175
3176 __dev_addr_discard(&dev->mc_list);
3177 dev->mc_count = 0;
3178
3179 netif_tx_unlock_bh(dev);
3180 }
3181
3182 unsigned dev_get_flags(const struct net_device *dev)
3183 {
3184 unsigned flags;
3185
3186 flags = (dev->flags & ~(IFF_PROMISC |
3187 IFF_ALLMULTI |
3188 IFF_RUNNING |
3189 IFF_LOWER_UP |
3190 IFF_DORMANT)) |
3191 (dev->gflags & (IFF_PROMISC |
3192 IFF_ALLMULTI));
3193
3194 if (netif_running(dev)) {
3195 if (netif_oper_up(dev))
3196 flags |= IFF_RUNNING;
3197 if (netif_carrier_ok(dev))
3198 flags |= IFF_LOWER_UP;
3199 if (netif_dormant(dev))
3200 flags |= IFF_DORMANT;
3201 }
3202
3203 return flags;
3204 }
3205
3206 int dev_change_flags(struct net_device *dev, unsigned flags)
3207 {
3208 int ret, changes;
3209 int old_flags = dev->flags;
3210
3211 ASSERT_RTNL();
3212
3213 /*
3214 * Set the flags on our device.
3215 */
3216
3217 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3218 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3219 IFF_AUTOMEDIA)) |
3220 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3221 IFF_ALLMULTI));
3222
3223 /*
3224 * Load in the correct multicast list now the flags have changed.
3225 */
3226
3227 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3228 dev->change_rx_flags(dev, IFF_MULTICAST);
3229
3230 dev_set_rx_mode(dev);
3231
3232 /*
3233 * Have we downed the interface. We handle IFF_UP ourselves
3234 * according to user attempts to set it, rather than blindly
3235 * setting it.
3236 */
3237
3238 ret = 0;
3239 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3240 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3241
3242 if (!ret)
3243 dev_set_rx_mode(dev);
3244 }
3245
3246 if (dev->flags & IFF_UP &&
3247 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3248 IFF_VOLATILE)))
3249 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3250
3251 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3252 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3253 dev->gflags ^= IFF_PROMISC;
3254 dev_set_promiscuity(dev, inc);
3255 }
3256
3257 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3258 is important. Some (broken) drivers set IFF_PROMISC, when
3259 IFF_ALLMULTI is requested not asking us and not reporting.
3260 */
3261 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3262 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3263 dev->gflags ^= IFF_ALLMULTI;
3264 dev_set_allmulti(dev, inc);
3265 }
3266
3267 /* Exclude state transition flags, already notified */
3268 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3269 if (changes)
3270 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3271
3272 return ret;
3273 }
3274
3275 int dev_set_mtu(struct net_device *dev, int new_mtu)
3276 {
3277 int err;
3278
3279 if (new_mtu == dev->mtu)
3280 return 0;
3281
3282 /* MTU must be positive. */
3283 if (new_mtu < 0)
3284 return -EINVAL;
3285
3286 if (!netif_device_present(dev))
3287 return -ENODEV;
3288
3289 err = 0;
3290 if (dev->change_mtu)
3291 err = dev->change_mtu(dev, new_mtu);
3292 else
3293 dev->mtu = new_mtu;
3294 if (!err && dev->flags & IFF_UP)
3295 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3296 return err;
3297 }
3298
3299 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3300 {
3301 int err;
3302
3303 if (!dev->set_mac_address)
3304 return -EOPNOTSUPP;
3305 if (sa->sa_family != dev->type)
3306 return -EINVAL;
3307 if (!netif_device_present(dev))
3308 return -ENODEV;
3309 err = dev->set_mac_address(dev, sa);
3310 if (!err)
3311 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3312 return err;
3313 }
3314
3315 /*
3316 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3317 */
3318 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3319 {
3320 int err;
3321 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3322
3323 if (!dev)
3324 return -ENODEV;
3325
3326 switch (cmd) {
3327 case SIOCGIFFLAGS: /* Get interface flags */
3328 ifr->ifr_flags = dev_get_flags(dev);
3329 return 0;
3330
3331 case SIOCGIFMETRIC: /* Get the metric on the interface
3332 (currently unused) */
3333 ifr->ifr_metric = 0;
3334 return 0;
3335
3336 case SIOCGIFMTU: /* Get the MTU of a device */
3337 ifr->ifr_mtu = dev->mtu;
3338 return 0;
3339
3340 case SIOCGIFHWADDR:
3341 if (!dev->addr_len)
3342 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3343 else
3344 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3345 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3346 ifr->ifr_hwaddr.sa_family = dev->type;
3347 return 0;
3348
3349 case SIOCGIFSLAVE:
3350 err = -EINVAL;
3351 break;
3352
3353 case SIOCGIFMAP:
3354 ifr->ifr_map.mem_start = dev->mem_start;
3355 ifr->ifr_map.mem_end = dev->mem_end;
3356 ifr->ifr_map.base_addr = dev->base_addr;
3357 ifr->ifr_map.irq = dev->irq;
3358 ifr->ifr_map.dma = dev->dma;
3359 ifr->ifr_map.port = dev->if_port;
3360 return 0;
3361
3362 case SIOCGIFINDEX:
3363 ifr->ifr_ifindex = dev->ifindex;
3364 return 0;
3365
3366 case SIOCGIFTXQLEN:
3367 ifr->ifr_qlen = dev->tx_queue_len;
3368 return 0;
3369
3370 default:
3371 /* dev_ioctl() should ensure this case
3372 * is never reached
3373 */
3374 WARN_ON(1);
3375 err = -EINVAL;
3376 break;
3377
3378 }
3379 return err;
3380 }
3381
3382 /*
3383 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3384 */
3385 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3386 {
3387 int err;
3388 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3389
3390 if (!dev)
3391 return -ENODEV;
3392
3393 switch (cmd) {
3394 case SIOCSIFFLAGS: /* Set interface flags */
3395 return dev_change_flags(dev, ifr->ifr_flags);
3396
3397 case SIOCSIFMETRIC: /* Set the metric on the interface
3398 (currently unused) */
3399 return -EOPNOTSUPP;
3400
3401 case SIOCSIFMTU: /* Set the MTU of a device */
3402 return dev_set_mtu(dev, ifr->ifr_mtu);
3403
3404 case SIOCSIFHWADDR:
3405 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3406
3407 case SIOCSIFHWBROADCAST:
3408 if (ifr->ifr_hwaddr.sa_family != dev->type)
3409 return -EINVAL;
3410 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3411 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3412 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3413 return 0;
3414
3415 case SIOCSIFMAP:
3416 if (dev->set_config) {
3417 if (!netif_device_present(dev))
3418 return -ENODEV;
3419 return dev->set_config(dev, &ifr->ifr_map);
3420 }
3421 return -EOPNOTSUPP;
3422
3423 case SIOCADDMULTI:
3424 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3425 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3426 return -EINVAL;
3427 if (!netif_device_present(dev))
3428 return -ENODEV;
3429 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3430 dev->addr_len, 1);
3431
3432 case SIOCDELMULTI:
3433 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3434 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3435 return -EINVAL;
3436 if (!netif_device_present(dev))
3437 return -ENODEV;
3438 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3439 dev->addr_len, 1);
3440
3441 case SIOCSIFTXQLEN:
3442 if (ifr->ifr_qlen < 0)
3443 return -EINVAL;
3444 dev->tx_queue_len = ifr->ifr_qlen;
3445 return 0;
3446
3447 case SIOCSIFNAME:
3448 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3449 return dev_change_name(dev, ifr->ifr_newname);
3450
3451 /*
3452 * Unknown or private ioctl
3453 */
3454
3455 default:
3456 if ((cmd >= SIOCDEVPRIVATE &&
3457 cmd <= SIOCDEVPRIVATE + 15) ||
3458 cmd == SIOCBONDENSLAVE ||
3459 cmd == SIOCBONDRELEASE ||
3460 cmd == SIOCBONDSETHWADDR ||
3461 cmd == SIOCBONDSLAVEINFOQUERY ||
3462 cmd == SIOCBONDINFOQUERY ||
3463 cmd == SIOCBONDCHANGEACTIVE ||
3464 cmd == SIOCGMIIPHY ||
3465 cmd == SIOCGMIIREG ||
3466 cmd == SIOCSMIIREG ||
3467 cmd == SIOCBRADDIF ||
3468 cmd == SIOCBRDELIF ||
3469 cmd == SIOCWANDEV) {
3470 err = -EOPNOTSUPP;
3471 if (dev->do_ioctl) {
3472 if (netif_device_present(dev))
3473 err = dev->do_ioctl(dev, ifr,
3474 cmd);
3475 else
3476 err = -ENODEV;
3477 }
3478 } else
3479 err = -EINVAL;
3480
3481 }
3482 return err;
3483 }
3484
3485 /*
3486 * This function handles all "interface"-type I/O control requests. The actual
3487 * 'doing' part of this is dev_ifsioc above.
3488 */
3489
3490 /**
3491 * dev_ioctl - network device ioctl
3492 * @net: the applicable net namespace
3493 * @cmd: command to issue
3494 * @arg: pointer to a struct ifreq in user space
3495 *
3496 * Issue ioctl functions to devices. This is normally called by the
3497 * user space syscall interfaces but can sometimes be useful for
3498 * other purposes. The return value is the return from the syscall if
3499 * positive or a negative errno code on error.
3500 */
3501
3502 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3503 {
3504 struct ifreq ifr;
3505 int ret;
3506 char *colon;
3507
3508 /* One special case: SIOCGIFCONF takes ifconf argument
3509 and requires shared lock, because it sleeps writing
3510 to user space.
3511 */
3512
3513 if (cmd == SIOCGIFCONF) {
3514 rtnl_lock();
3515 ret = dev_ifconf(net, (char __user *) arg);
3516 rtnl_unlock();
3517 return ret;
3518 }
3519 if (cmd == SIOCGIFNAME)
3520 return dev_ifname(net, (struct ifreq __user *)arg);
3521
3522 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3523 return -EFAULT;
3524
3525 ifr.ifr_name[IFNAMSIZ-1] = 0;
3526
3527 colon = strchr(ifr.ifr_name, ':');
3528 if (colon)
3529 *colon = 0;
3530
3531 /*
3532 * See which interface the caller is talking about.
3533 */
3534
3535 switch (cmd) {
3536 /*
3537 * These ioctl calls:
3538 * - can be done by all.
3539 * - atomic and do not require locking.
3540 * - return a value
3541 */
3542 case SIOCGIFFLAGS:
3543 case SIOCGIFMETRIC:
3544 case SIOCGIFMTU:
3545 case SIOCGIFHWADDR:
3546 case SIOCGIFSLAVE:
3547 case SIOCGIFMAP:
3548 case SIOCGIFINDEX:
3549 case SIOCGIFTXQLEN:
3550 dev_load(net, ifr.ifr_name);
3551 read_lock(&dev_base_lock);
3552 ret = dev_ifsioc_locked(net, &ifr, cmd);
3553 read_unlock(&dev_base_lock);
3554 if (!ret) {
3555 if (colon)
3556 *colon = ':';
3557 if (copy_to_user(arg, &ifr,
3558 sizeof(struct ifreq)))
3559 ret = -EFAULT;
3560 }
3561 return ret;
3562
3563 case SIOCETHTOOL:
3564 dev_load(net, ifr.ifr_name);
3565 rtnl_lock();
3566 ret = dev_ethtool(net, &ifr);
3567 rtnl_unlock();
3568 if (!ret) {
3569 if (colon)
3570 *colon = ':';
3571 if (copy_to_user(arg, &ifr,
3572 sizeof(struct ifreq)))
3573 ret = -EFAULT;
3574 }
3575 return ret;
3576
3577 /*
3578 * These ioctl calls:
3579 * - require superuser power.
3580 * - require strict serialization.
3581 * - return a value
3582 */
3583 case SIOCGMIIPHY:
3584 case SIOCGMIIREG:
3585 case SIOCSIFNAME:
3586 if (!capable(CAP_NET_ADMIN))
3587 return -EPERM;
3588 dev_load(net, ifr.ifr_name);
3589 rtnl_lock();
3590 ret = dev_ifsioc(net, &ifr, cmd);
3591 rtnl_unlock();
3592 if (!ret) {
3593 if (colon)
3594 *colon = ':';
3595 if (copy_to_user(arg, &ifr,
3596 sizeof(struct ifreq)))
3597 ret = -EFAULT;
3598 }
3599 return ret;
3600
3601 /*
3602 * These ioctl calls:
3603 * - require superuser power.
3604 * - require strict serialization.
3605 * - do not return a value
3606 */
3607 case SIOCSIFFLAGS:
3608 case SIOCSIFMETRIC:
3609 case SIOCSIFMTU:
3610 case SIOCSIFMAP:
3611 case SIOCSIFHWADDR:
3612 case SIOCSIFSLAVE:
3613 case SIOCADDMULTI:
3614 case SIOCDELMULTI:
3615 case SIOCSIFHWBROADCAST:
3616 case SIOCSIFTXQLEN:
3617 case SIOCSMIIREG:
3618 case SIOCBONDENSLAVE:
3619 case SIOCBONDRELEASE:
3620 case SIOCBONDSETHWADDR:
3621 case SIOCBONDCHANGEACTIVE:
3622 case SIOCBRADDIF:
3623 case SIOCBRDELIF:
3624 if (!capable(CAP_NET_ADMIN))
3625 return -EPERM;
3626 /* fall through */
3627 case SIOCBONDSLAVEINFOQUERY:
3628 case SIOCBONDINFOQUERY:
3629 dev_load(net, ifr.ifr_name);
3630 rtnl_lock();
3631 ret = dev_ifsioc(net, &ifr, cmd);
3632 rtnl_unlock();
3633 return ret;
3634
3635 case SIOCGIFMEM:
3636 /* Get the per device memory space. We can add this but
3637 * currently do not support it */
3638 case SIOCSIFMEM:
3639 /* Set the per device memory buffer space.
3640 * Not applicable in our case */
3641 case SIOCSIFLINK:
3642 return -EINVAL;
3643
3644 /*
3645 * Unknown or private ioctl.
3646 */
3647 default:
3648 if (cmd == SIOCWANDEV ||
3649 (cmd >= SIOCDEVPRIVATE &&
3650 cmd <= SIOCDEVPRIVATE + 15)) {
3651 dev_load(net, ifr.ifr_name);
3652 rtnl_lock();
3653 ret = dev_ifsioc(net, &ifr, cmd);
3654 rtnl_unlock();
3655 if (!ret && copy_to_user(arg, &ifr,
3656 sizeof(struct ifreq)))
3657 ret = -EFAULT;
3658 return ret;
3659 }
3660 /* Take care of Wireless Extensions */
3661 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3662 return wext_handle_ioctl(net, &ifr, cmd, arg);
3663 return -EINVAL;
3664 }
3665 }
3666
3667
3668 /**
3669 * dev_new_index - allocate an ifindex
3670 * @net: the applicable net namespace
3671 *
3672 * Returns a suitable unique value for a new device interface
3673 * number. The caller must hold the rtnl semaphore or the
3674 * dev_base_lock to be sure it remains unique.
3675 */
3676 static int dev_new_index(struct net *net)
3677 {
3678 static int ifindex;
3679 for (;;) {
3680 if (++ifindex <= 0)
3681 ifindex = 1;
3682 if (!__dev_get_by_index(net, ifindex))
3683 return ifindex;
3684 }
3685 }
3686
3687 /* Delayed registration/unregisteration */
3688 static DEFINE_SPINLOCK(net_todo_list_lock);
3689 static LIST_HEAD(net_todo_list);
3690
3691 static void net_set_todo(struct net_device *dev)
3692 {
3693 spin_lock(&net_todo_list_lock);
3694 list_add_tail(&dev->todo_list, &net_todo_list);
3695 spin_unlock(&net_todo_list_lock);
3696 }
3697
3698 static void rollback_registered(struct net_device *dev)
3699 {
3700 BUG_ON(dev_boot_phase);
3701 ASSERT_RTNL();
3702
3703 /* Some devices call without registering for initialization unwind. */
3704 if (dev->reg_state == NETREG_UNINITIALIZED) {
3705 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3706 "was registered\n", dev->name, dev);
3707
3708 WARN_ON(1);
3709 return;
3710 }
3711
3712 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3713
3714 /* If device is running, close it first. */
3715 dev_close(dev);
3716
3717 /* And unlink it from device chain. */
3718 unlist_netdevice(dev);
3719
3720 dev->reg_state = NETREG_UNREGISTERING;
3721
3722 synchronize_net();
3723
3724 /* Shutdown queueing discipline. */
3725 dev_shutdown(dev);
3726
3727
3728 /* Notify protocols, that we are about to destroy
3729 this device. They should clean all the things.
3730 */
3731 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3732
3733 /*
3734 * Flush the unicast and multicast chains
3735 */
3736 dev_addr_discard(dev);
3737
3738 if (dev->uninit)
3739 dev->uninit(dev);
3740
3741 /* Notifier chain MUST detach us from master device. */
3742 BUG_TRAP(!dev->master);
3743
3744 /* Remove entries from kobject tree */
3745 netdev_unregister_kobject(dev);
3746
3747 synchronize_net();
3748
3749 dev_put(dev);
3750 }
3751
3752 /**
3753 * register_netdevice - register a network device
3754 * @dev: device to register
3755 *
3756 * Take a completed network device structure and add it to the kernel
3757 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3758 * chain. 0 is returned on success. A negative errno code is returned
3759 * on a failure to set up the device, or if the name is a duplicate.
3760 *
3761 * Callers must hold the rtnl semaphore. You may want
3762 * register_netdev() instead of this.
3763 *
3764 * BUGS:
3765 * The locking appears insufficient to guarantee two parallel registers
3766 * will not get the same name.
3767 */
3768
3769 int register_netdevice(struct net_device *dev)
3770 {
3771 struct hlist_head *head;
3772 struct hlist_node *p;
3773 int ret;
3774 struct net *net;
3775
3776 BUG_ON(dev_boot_phase);
3777 ASSERT_RTNL();
3778
3779 might_sleep();
3780
3781 /* When net_device's are persistent, this will be fatal. */
3782 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3783 BUG_ON(!dev_net(dev));
3784 net = dev_net(dev);
3785
3786 spin_lock_init(&dev->queue_lock);
3787 spin_lock_init(&dev->_xmit_lock);
3788 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3789 dev->xmit_lock_owner = -1;
3790 spin_lock_init(&dev->ingress_lock);
3791
3792 dev->iflink = -1;
3793
3794 /* Init, if this function is available */
3795 if (dev->init) {
3796 ret = dev->init(dev);
3797 if (ret) {
3798 if (ret > 0)
3799 ret = -EIO;
3800 goto out;
3801 }
3802 }
3803
3804 if (!dev_valid_name(dev->name)) {
3805 ret = -EINVAL;
3806 goto err_uninit;
3807 }
3808
3809 dev->ifindex = dev_new_index(net);
3810 if (dev->iflink == -1)
3811 dev->iflink = dev->ifindex;
3812
3813 /* Check for existence of name */
3814 head = dev_name_hash(net, dev->name);
3815 hlist_for_each(p, head) {
3816 struct net_device *d
3817 = hlist_entry(p, struct net_device, name_hlist);
3818 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3819 ret = -EEXIST;
3820 goto err_uninit;
3821 }
3822 }
3823
3824 /* Fix illegal checksum combinations */
3825 if ((dev->features & NETIF_F_HW_CSUM) &&
3826 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3827 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3828 dev->name);
3829 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3830 }
3831
3832 if ((dev->features & NETIF_F_NO_CSUM) &&
3833 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3834 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3835 dev->name);
3836 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3837 }
3838
3839
3840 /* Fix illegal SG+CSUM combinations. */
3841 if ((dev->features & NETIF_F_SG) &&
3842 !(dev->features & NETIF_F_ALL_CSUM)) {
3843 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3844 dev->name);
3845 dev->features &= ~NETIF_F_SG;
3846 }
3847
3848 /* TSO requires that SG is present as well. */
3849 if ((dev->features & NETIF_F_TSO) &&
3850 !(dev->features & NETIF_F_SG)) {
3851 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3852 dev->name);
3853 dev->features &= ~NETIF_F_TSO;
3854 }
3855 if (dev->features & NETIF_F_UFO) {
3856 if (!(dev->features & NETIF_F_HW_CSUM)) {
3857 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3858 "NETIF_F_HW_CSUM feature.\n",
3859 dev->name);
3860 dev->features &= ~NETIF_F_UFO;
3861 }
3862 if (!(dev->features & NETIF_F_SG)) {
3863 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3864 "NETIF_F_SG feature.\n",
3865 dev->name);
3866 dev->features &= ~NETIF_F_UFO;
3867 }
3868 }
3869
3870 netdev_initialize_kobject(dev);
3871 ret = netdev_register_kobject(dev);
3872 if (ret)
3873 goto err_uninit;
3874 dev->reg_state = NETREG_REGISTERED;
3875
3876 /*
3877 * Default initial state at registry is that the
3878 * device is present.
3879 */
3880
3881 set_bit(__LINK_STATE_PRESENT, &dev->state);
3882
3883 dev_init_scheduler(dev);
3884 dev_hold(dev);
3885 list_netdevice(dev);
3886
3887 /* Notify protocols, that a new device appeared. */
3888 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3889 ret = notifier_to_errno(ret);
3890 if (ret) {
3891 rollback_registered(dev);
3892 dev->reg_state = NETREG_UNREGISTERED;
3893 }
3894
3895 out:
3896 return ret;
3897
3898 err_uninit:
3899 if (dev->uninit)
3900 dev->uninit(dev);
3901 goto out;
3902 }
3903
3904 /**
3905 * register_netdev - register a network device
3906 * @dev: device to register
3907 *
3908 * Take a completed network device structure and add it to the kernel
3909 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3910 * chain. 0 is returned on success. A negative errno code is returned
3911 * on a failure to set up the device, or if the name is a duplicate.
3912 *
3913 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3914 * and expands the device name if you passed a format string to
3915 * alloc_netdev.
3916 */
3917 int register_netdev(struct net_device *dev)
3918 {
3919 int err;
3920
3921 rtnl_lock();
3922
3923 /*
3924 * If the name is a format string the caller wants us to do a
3925 * name allocation.
3926 */
3927 if (strchr(dev->name, '%')) {
3928 err = dev_alloc_name(dev, dev->name);
3929 if (err < 0)
3930 goto out;
3931 }
3932
3933 err = register_netdevice(dev);
3934 out:
3935 rtnl_unlock();
3936 return err;
3937 }
3938 EXPORT_SYMBOL(register_netdev);
3939
3940 /*
3941 * netdev_wait_allrefs - wait until all references are gone.
3942 *
3943 * This is called when unregistering network devices.
3944 *
3945 * Any protocol or device that holds a reference should register
3946 * for netdevice notification, and cleanup and put back the
3947 * reference if they receive an UNREGISTER event.
3948 * We can get stuck here if buggy protocols don't correctly
3949 * call dev_put.
3950 */
3951 static void netdev_wait_allrefs(struct net_device *dev)
3952 {
3953 unsigned long rebroadcast_time, warning_time;
3954
3955 rebroadcast_time = warning_time = jiffies;
3956 while (atomic_read(&dev->refcnt) != 0) {
3957 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3958 rtnl_lock();
3959
3960 /* Rebroadcast unregister notification */
3961 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3962
3963 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3964 &dev->state)) {
3965 /* We must not have linkwatch events
3966 * pending on unregister. If this
3967 * happens, we simply run the queue
3968 * unscheduled, resulting in a noop
3969 * for this device.
3970 */
3971 linkwatch_run_queue();
3972 }
3973
3974 __rtnl_unlock();
3975
3976 rebroadcast_time = jiffies;
3977 }
3978
3979 msleep(250);
3980
3981 if (time_after(jiffies, warning_time + 10 * HZ)) {
3982 printk(KERN_EMERG "unregister_netdevice: "
3983 "waiting for %s to become free. Usage "
3984 "count = %d\n",
3985 dev->name, atomic_read(&dev->refcnt));
3986 warning_time = jiffies;
3987 }
3988 }
3989 }
3990
3991 /* The sequence is:
3992 *
3993 * rtnl_lock();
3994 * ...
3995 * register_netdevice(x1);
3996 * register_netdevice(x2);
3997 * ...
3998 * unregister_netdevice(y1);
3999 * unregister_netdevice(y2);
4000 * ...
4001 * rtnl_unlock();
4002 * free_netdev(y1);
4003 * free_netdev(y2);
4004 *
4005 * We are invoked by rtnl_unlock() after it drops the semaphore.
4006 * This allows us to deal with problems:
4007 * 1) We can delete sysfs objects which invoke hotplug
4008 * without deadlocking with linkwatch via keventd.
4009 * 2) Since we run with the RTNL semaphore not held, we can sleep
4010 * safely in order to wait for the netdev refcnt to drop to zero.
4011 */
4012 static DEFINE_MUTEX(net_todo_run_mutex);
4013 void netdev_run_todo(void)
4014 {
4015 struct list_head list;
4016
4017 /* Need to guard against multiple cpu's getting out of order. */
4018 mutex_lock(&net_todo_run_mutex);
4019
4020 /* Not safe to do outside the semaphore. We must not return
4021 * until all unregister events invoked by the local processor
4022 * have been completed (either by this todo run, or one on
4023 * another cpu).
4024 */
4025 if (list_empty(&net_todo_list))
4026 goto out;
4027
4028 /* Snapshot list, allow later requests */
4029 spin_lock(&net_todo_list_lock);
4030 list_replace_init(&net_todo_list, &list);
4031 spin_unlock(&net_todo_list_lock);
4032
4033 while (!list_empty(&list)) {
4034 struct net_device *dev
4035 = list_entry(list.next, struct net_device, todo_list);
4036 list_del(&dev->todo_list);
4037
4038 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4039 printk(KERN_ERR "network todo '%s' but state %d\n",
4040 dev->name, dev->reg_state);
4041 dump_stack();
4042 continue;
4043 }
4044
4045 dev->reg_state = NETREG_UNREGISTERED;
4046
4047 netdev_wait_allrefs(dev);
4048
4049 /* paranoia */
4050 BUG_ON(atomic_read(&dev->refcnt));
4051 BUG_TRAP(!dev->ip_ptr);
4052 BUG_TRAP(!dev->ip6_ptr);
4053 BUG_TRAP(!dev->dn_ptr);
4054
4055 if (dev->destructor)
4056 dev->destructor(dev);
4057
4058 /* Free network device */
4059 kobject_put(&dev->dev.kobj);
4060 }
4061
4062 out:
4063 mutex_unlock(&net_todo_run_mutex);
4064 }
4065
4066 static struct net_device_stats *internal_stats(struct net_device *dev)
4067 {
4068 return &dev->stats;
4069 }
4070
4071 /**
4072 * alloc_netdev_mq - allocate network device
4073 * @sizeof_priv: size of private data to allocate space for
4074 * @name: device name format string
4075 * @setup: callback to initialize device
4076 * @queue_count: the number of subqueues to allocate
4077 *
4078 * Allocates a struct net_device with private data area for driver use
4079 * and performs basic initialization. Also allocates subquue structs
4080 * for each queue on the device at the end of the netdevice.
4081 */
4082 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4083 void (*setup)(struct net_device *), unsigned int queue_count)
4084 {
4085 void *p;
4086 struct net_device *dev;
4087 int alloc_size;
4088
4089 BUG_ON(strlen(name) >= sizeof(dev->name));
4090
4091 alloc_size = sizeof(struct net_device) +
4092 sizeof(struct net_device_subqueue) * (queue_count - 1);
4093 if (sizeof_priv) {
4094 /* ensure 32-byte alignment of private area */
4095 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4096 alloc_size += sizeof_priv;
4097 }
4098 /* ensure 32-byte alignment of whole construct */
4099 alloc_size += NETDEV_ALIGN_CONST;
4100
4101 p = kzalloc(alloc_size, GFP_KERNEL);
4102 if (!p) {
4103 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4104 return NULL;
4105 }
4106
4107 dev = (struct net_device *)
4108 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4109 dev->padded = (char *)dev - (char *)p;
4110 dev_net_set(dev, &init_net);
4111
4112 if (sizeof_priv) {
4113 dev->priv = ((char *)dev +
4114 ((sizeof(struct net_device) +
4115 (sizeof(struct net_device_subqueue) *
4116 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4117 & ~NETDEV_ALIGN_CONST));
4118 }
4119
4120 dev->egress_subqueue_count = queue_count;
4121 dev->gso_max_size = GSO_MAX_SIZE;
4122
4123 dev->get_stats = internal_stats;
4124 netpoll_netdev_init(dev);
4125 setup(dev);
4126 strcpy(dev->name, name);
4127 return dev;
4128 }
4129 EXPORT_SYMBOL(alloc_netdev_mq);
4130
4131 /**
4132 * free_netdev - free network device
4133 * @dev: device
4134 *
4135 * This function does the last stage of destroying an allocated device
4136 * interface. The reference to the device object is released.
4137 * If this is the last reference then it will be freed.
4138 */
4139 void free_netdev(struct net_device *dev)
4140 {
4141 release_net(dev_net(dev));
4142
4143 /* Compatibility with error handling in drivers */
4144 if (dev->reg_state == NETREG_UNINITIALIZED) {
4145 kfree((char *)dev - dev->padded);
4146 return;
4147 }
4148
4149 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4150 dev->reg_state = NETREG_RELEASED;
4151
4152 /* will free via device release */
4153 put_device(&dev->dev);
4154 }
4155
4156 /* Synchronize with packet receive processing. */
4157 void synchronize_net(void)
4158 {
4159 might_sleep();
4160 synchronize_rcu();
4161 }
4162
4163 /**
4164 * unregister_netdevice - remove device from the kernel
4165 * @dev: device
4166 *
4167 * This function shuts down a device interface and removes it
4168 * from the kernel tables.
4169 *
4170 * Callers must hold the rtnl semaphore. You may want
4171 * unregister_netdev() instead of this.
4172 */
4173
4174 void unregister_netdevice(struct net_device *dev)
4175 {
4176 ASSERT_RTNL();
4177
4178 rollback_registered(dev);
4179 /* Finish processing unregister after unlock */
4180 net_set_todo(dev);
4181 }
4182
4183 /**
4184 * unregister_netdev - remove device from the kernel
4185 * @dev: device
4186 *
4187 * This function shuts down a device interface and removes it
4188 * from the kernel tables.
4189 *
4190 * This is just a wrapper for unregister_netdevice that takes
4191 * the rtnl semaphore. In general you want to use this and not
4192 * unregister_netdevice.
4193 */
4194 void unregister_netdev(struct net_device *dev)
4195 {
4196 rtnl_lock();
4197 unregister_netdevice(dev);
4198 rtnl_unlock();
4199 }
4200
4201 EXPORT_SYMBOL(unregister_netdev);
4202
4203 /**
4204 * dev_change_net_namespace - move device to different nethost namespace
4205 * @dev: device
4206 * @net: network namespace
4207 * @pat: If not NULL name pattern to try if the current device name
4208 * is already taken in the destination network namespace.
4209 *
4210 * This function shuts down a device interface and moves it
4211 * to a new network namespace. On success 0 is returned, on
4212 * a failure a netagive errno code is returned.
4213 *
4214 * Callers must hold the rtnl semaphore.
4215 */
4216
4217 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4218 {
4219 char buf[IFNAMSIZ];
4220 const char *destname;
4221 int err;
4222
4223 ASSERT_RTNL();
4224
4225 /* Don't allow namespace local devices to be moved. */
4226 err = -EINVAL;
4227 if (dev->features & NETIF_F_NETNS_LOCAL)
4228 goto out;
4229
4230 /* Ensure the device has been registrered */
4231 err = -EINVAL;
4232 if (dev->reg_state != NETREG_REGISTERED)
4233 goto out;
4234
4235 /* Get out if there is nothing todo */
4236 err = 0;
4237 if (net_eq(dev_net(dev), net))
4238 goto out;
4239
4240 /* Pick the destination device name, and ensure
4241 * we can use it in the destination network namespace.
4242 */
4243 err = -EEXIST;
4244 destname = dev->name;
4245 if (__dev_get_by_name(net, destname)) {
4246 /* We get here if we can't use the current device name */
4247 if (!pat)
4248 goto out;
4249 if (!dev_valid_name(pat))
4250 goto out;
4251 if (strchr(pat, '%')) {
4252 if (__dev_alloc_name(net, pat, buf) < 0)
4253 goto out;
4254 destname = buf;
4255 } else
4256 destname = pat;
4257 if (__dev_get_by_name(net, destname))
4258 goto out;
4259 }
4260
4261 /*
4262 * And now a mini version of register_netdevice unregister_netdevice.
4263 */
4264
4265 /* If device is running close it first. */
4266 dev_close(dev);
4267
4268 /* And unlink it from device chain */
4269 err = -ENODEV;
4270 unlist_netdevice(dev);
4271
4272 synchronize_net();
4273
4274 /* Shutdown queueing discipline. */
4275 dev_shutdown(dev);
4276
4277 /* Notify protocols, that we are about to destroy
4278 this device. They should clean all the things.
4279 */
4280 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4281
4282 /*
4283 * Flush the unicast and multicast chains
4284 */
4285 dev_addr_discard(dev);
4286
4287 /* Actually switch the network namespace */
4288 dev_net_set(dev, net);
4289
4290 /* Assign the new device name */
4291 if (destname != dev->name)
4292 strcpy(dev->name, destname);
4293
4294 /* If there is an ifindex conflict assign a new one */
4295 if (__dev_get_by_index(net, dev->ifindex)) {
4296 int iflink = (dev->iflink == dev->ifindex);
4297 dev->ifindex = dev_new_index(net);
4298 if (iflink)
4299 dev->iflink = dev->ifindex;
4300 }
4301
4302 /* Fixup kobjects */
4303 netdev_unregister_kobject(dev);
4304 err = netdev_register_kobject(dev);
4305 WARN_ON(err);
4306
4307 /* Add the device back in the hashes */
4308 list_netdevice(dev);
4309
4310 /* Notify protocols, that a new device appeared. */
4311 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4312
4313 synchronize_net();
4314 err = 0;
4315 out:
4316 return err;
4317 }
4318
4319 static int dev_cpu_callback(struct notifier_block *nfb,
4320 unsigned long action,
4321 void *ocpu)
4322 {
4323 struct sk_buff **list_skb;
4324 struct net_device **list_net;
4325 struct sk_buff *skb;
4326 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4327 struct softnet_data *sd, *oldsd;
4328
4329 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4330 return NOTIFY_OK;
4331
4332 local_irq_disable();
4333 cpu = smp_processor_id();
4334 sd = &per_cpu(softnet_data, cpu);
4335 oldsd = &per_cpu(softnet_data, oldcpu);
4336
4337 /* Find end of our completion_queue. */
4338 list_skb = &sd->completion_queue;
4339 while (*list_skb)
4340 list_skb = &(*list_skb)->next;
4341 /* Append completion queue from offline CPU. */
4342 *list_skb = oldsd->completion_queue;
4343 oldsd->completion_queue = NULL;
4344
4345 /* Find end of our output_queue. */
4346 list_net = &sd->output_queue;
4347 while (*list_net)
4348 list_net = &(*list_net)->next_sched;
4349 /* Append output queue from offline CPU. */
4350 *list_net = oldsd->output_queue;
4351 oldsd->output_queue = NULL;
4352
4353 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4354 local_irq_enable();
4355
4356 /* Process offline CPU's input_pkt_queue */
4357 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4358 netif_rx(skb);
4359
4360 return NOTIFY_OK;
4361 }
4362
4363 #ifdef CONFIG_NET_DMA
4364 /**
4365 * net_dma_rebalance - try to maintain one DMA channel per CPU
4366 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4367 *
4368 * This is called when the number of channels allocated to the net_dma client
4369 * changes. The net_dma client tries to have one DMA channel per CPU.
4370 */
4371
4372 static void net_dma_rebalance(struct net_dma *net_dma)
4373 {
4374 unsigned int cpu, i, n, chan_idx;
4375 struct dma_chan *chan;
4376
4377 if (cpus_empty(net_dma->channel_mask)) {
4378 for_each_online_cpu(cpu)
4379 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4380 return;
4381 }
4382
4383 i = 0;
4384 cpu = first_cpu(cpu_online_map);
4385
4386 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4387 chan = net_dma->channels[chan_idx];
4388
4389 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4390 + (i < (num_online_cpus() %
4391 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4392
4393 while(n) {
4394 per_cpu(softnet_data, cpu).net_dma = chan;
4395 cpu = next_cpu(cpu, cpu_online_map);
4396 n--;
4397 }
4398 i++;
4399 }
4400 }
4401
4402 /**
4403 * netdev_dma_event - event callback for the net_dma_client
4404 * @client: should always be net_dma_client
4405 * @chan: DMA channel for the event
4406 * @state: DMA state to be handled
4407 */
4408 static enum dma_state_client
4409 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4410 enum dma_state state)
4411 {
4412 int i, found = 0, pos = -1;
4413 struct net_dma *net_dma =
4414 container_of(client, struct net_dma, client);
4415 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4416
4417 spin_lock(&net_dma->lock);
4418 switch (state) {
4419 case DMA_RESOURCE_AVAILABLE:
4420 for (i = 0; i < nr_cpu_ids; i++)
4421 if (net_dma->channels[i] == chan) {
4422 found = 1;
4423 break;
4424 } else if (net_dma->channels[i] == NULL && pos < 0)
4425 pos = i;
4426
4427 if (!found && pos >= 0) {
4428 ack = DMA_ACK;
4429 net_dma->channels[pos] = chan;
4430 cpu_set(pos, net_dma->channel_mask);
4431 net_dma_rebalance(net_dma);
4432 }
4433 break;
4434 case DMA_RESOURCE_REMOVED:
4435 for (i = 0; i < nr_cpu_ids; i++)
4436 if (net_dma->channels[i] == chan) {
4437 found = 1;
4438 pos = i;
4439 break;
4440 }
4441
4442 if (found) {
4443 ack = DMA_ACK;
4444 cpu_clear(pos, net_dma->channel_mask);
4445 net_dma->channels[i] = NULL;
4446 net_dma_rebalance(net_dma);
4447 }
4448 break;
4449 default:
4450 break;
4451 }
4452 spin_unlock(&net_dma->lock);
4453
4454 return ack;
4455 }
4456
4457 /**
4458 * netdev_dma_regiser - register the networking subsystem as a DMA client
4459 */
4460 static int __init netdev_dma_register(void)
4461 {
4462 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4463 GFP_KERNEL);
4464 if (unlikely(!net_dma.channels)) {
4465 printk(KERN_NOTICE
4466 "netdev_dma: no memory for net_dma.channels\n");
4467 return -ENOMEM;
4468 }
4469 spin_lock_init(&net_dma.lock);
4470 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4471 dma_async_client_register(&net_dma.client);
4472 dma_async_client_chan_request(&net_dma.client);
4473 return 0;
4474 }
4475
4476 #else
4477 static int __init netdev_dma_register(void) { return -ENODEV; }
4478 #endif /* CONFIG_NET_DMA */
4479
4480 /**
4481 * netdev_compute_feature - compute conjunction of two feature sets
4482 * @all: first feature set
4483 * @one: second feature set
4484 *
4485 * Computes a new feature set after adding a device with feature set
4486 * @one to the master device with current feature set @all. Returns
4487 * the new feature set.
4488 */
4489 int netdev_compute_features(unsigned long all, unsigned long one)
4490 {
4491 /* if device needs checksumming, downgrade to hw checksumming */
4492 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4493 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4494
4495 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4496 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4497 all ^= NETIF_F_HW_CSUM
4498 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4499
4500 if (one & NETIF_F_GSO)
4501 one |= NETIF_F_GSO_SOFTWARE;
4502 one |= NETIF_F_GSO;
4503
4504 /* If even one device supports robust GSO, enable it for all. */
4505 if (one & NETIF_F_GSO_ROBUST)
4506 all |= NETIF_F_GSO_ROBUST;
4507
4508 all &= one | NETIF_F_LLTX;
4509
4510 if (!(all & NETIF_F_ALL_CSUM))
4511 all &= ~NETIF_F_SG;
4512 if (!(all & NETIF_F_SG))
4513 all &= ~NETIF_F_GSO_MASK;
4514
4515 return all;
4516 }
4517 EXPORT_SYMBOL(netdev_compute_features);
4518
4519 static struct hlist_head *netdev_create_hash(void)
4520 {
4521 int i;
4522 struct hlist_head *hash;
4523
4524 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4525 if (hash != NULL)
4526 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4527 INIT_HLIST_HEAD(&hash[i]);
4528
4529 return hash;
4530 }
4531
4532 /* Initialize per network namespace state */
4533 static int __net_init netdev_init(struct net *net)
4534 {
4535 INIT_LIST_HEAD(&net->dev_base_head);
4536
4537 net->dev_name_head = netdev_create_hash();
4538 if (net->dev_name_head == NULL)
4539 goto err_name;
4540
4541 net->dev_index_head = netdev_create_hash();
4542 if (net->dev_index_head == NULL)
4543 goto err_idx;
4544
4545 return 0;
4546
4547 err_idx:
4548 kfree(net->dev_name_head);
4549 err_name:
4550 return -ENOMEM;
4551 }
4552
4553 static void __net_exit netdev_exit(struct net *net)
4554 {
4555 kfree(net->dev_name_head);
4556 kfree(net->dev_index_head);
4557 }
4558
4559 static struct pernet_operations __net_initdata netdev_net_ops = {
4560 .init = netdev_init,
4561 .exit = netdev_exit,
4562 };
4563
4564 static void __net_exit default_device_exit(struct net *net)
4565 {
4566 struct net_device *dev, *next;
4567 /*
4568 * Push all migratable of the network devices back to the
4569 * initial network namespace
4570 */
4571 rtnl_lock();
4572 for_each_netdev_safe(net, dev, next) {
4573 int err;
4574 char fb_name[IFNAMSIZ];
4575
4576 /* Ignore unmoveable devices (i.e. loopback) */
4577 if (dev->features & NETIF_F_NETNS_LOCAL)
4578 continue;
4579
4580 /* Push remaing network devices to init_net */
4581 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4582 err = dev_change_net_namespace(dev, &init_net, fb_name);
4583 if (err) {
4584 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4585 __func__, dev->name, err);
4586 BUG();
4587 }
4588 }
4589 rtnl_unlock();
4590 }
4591
4592 static struct pernet_operations __net_initdata default_device_ops = {
4593 .exit = default_device_exit,
4594 };
4595
4596 /*
4597 * Initialize the DEV module. At boot time this walks the device list and
4598 * unhooks any devices that fail to initialise (normally hardware not
4599 * present) and leaves us with a valid list of present and active devices.
4600 *
4601 */
4602
4603 /*
4604 * This is called single threaded during boot, so no need
4605 * to take the rtnl semaphore.
4606 */
4607 static int __init net_dev_init(void)
4608 {
4609 int i, rc = -ENOMEM;
4610
4611 BUG_ON(!dev_boot_phase);
4612
4613 if (dev_proc_init())
4614 goto out;
4615
4616 if (netdev_kobject_init())
4617 goto out;
4618
4619 INIT_LIST_HEAD(&ptype_all);
4620 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4621 INIT_LIST_HEAD(&ptype_base[i]);
4622
4623 if (register_pernet_subsys(&netdev_net_ops))
4624 goto out;
4625
4626 if (register_pernet_device(&default_device_ops))
4627 goto out;
4628
4629 /*
4630 * Initialise the packet receive queues.
4631 */
4632
4633 for_each_possible_cpu(i) {
4634 struct softnet_data *queue;
4635
4636 queue = &per_cpu(softnet_data, i);
4637 skb_queue_head_init(&queue->input_pkt_queue);
4638 queue->completion_queue = NULL;
4639 INIT_LIST_HEAD(&queue->poll_list);
4640
4641 queue->backlog.poll = process_backlog;
4642 queue->backlog.weight = weight_p;
4643 }
4644
4645 netdev_dma_register();
4646
4647 dev_boot_phase = 0;
4648
4649 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4650 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4651
4652 hotcpu_notifier(dev_cpu_callback, 0);
4653 dst_init();
4654 dev_mcast_init();
4655 rc = 0;
4656 out:
4657 return rc;
4658 }
4659
4660 subsys_initcall(net_dev_init);
4661
4662 EXPORT_SYMBOL(__dev_get_by_index);
4663 EXPORT_SYMBOL(__dev_get_by_name);
4664 EXPORT_SYMBOL(__dev_remove_pack);
4665 EXPORT_SYMBOL(dev_valid_name);
4666 EXPORT_SYMBOL(dev_add_pack);
4667 EXPORT_SYMBOL(dev_alloc_name);
4668 EXPORT_SYMBOL(dev_close);
4669 EXPORT_SYMBOL(dev_get_by_flags);
4670 EXPORT_SYMBOL(dev_get_by_index);
4671 EXPORT_SYMBOL(dev_get_by_name);
4672 EXPORT_SYMBOL(dev_open);
4673 EXPORT_SYMBOL(dev_queue_xmit);
4674 EXPORT_SYMBOL(dev_remove_pack);
4675 EXPORT_SYMBOL(dev_set_allmulti);
4676 EXPORT_SYMBOL(dev_set_promiscuity);
4677 EXPORT_SYMBOL(dev_change_flags);
4678 EXPORT_SYMBOL(dev_set_mtu);
4679 EXPORT_SYMBOL(dev_set_mac_address);
4680 EXPORT_SYMBOL(free_netdev);
4681 EXPORT_SYMBOL(netdev_boot_setup_check);
4682 EXPORT_SYMBOL(netdev_set_master);
4683 EXPORT_SYMBOL(netdev_state_change);
4684 EXPORT_SYMBOL(netif_receive_skb);
4685 EXPORT_SYMBOL(netif_rx);
4686 EXPORT_SYMBOL(register_gifconf);
4687 EXPORT_SYMBOL(register_netdevice);
4688 EXPORT_SYMBOL(register_netdevice_notifier);
4689 EXPORT_SYMBOL(skb_checksum_help);
4690 EXPORT_SYMBOL(synchronize_net);
4691 EXPORT_SYMBOL(unregister_netdevice);
4692 EXPORT_SYMBOL(unregister_netdevice_notifier);
4693 EXPORT_SYMBOL(net_enable_timestamp);
4694 EXPORT_SYMBOL(net_disable_timestamp);
4695 EXPORT_SYMBOL(dev_get_flags);
4696
4697 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4698 EXPORT_SYMBOL(br_handle_frame_hook);
4699 EXPORT_SYMBOL(br_fdb_get_hook);
4700 EXPORT_SYMBOL(br_fdb_put_hook);
4701 #endif
4702
4703 #ifdef CONFIG_KMOD
4704 EXPORT_SYMBOL(dev_load);
4705 #endif
4706
4707 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.125783 seconds and 6 git commands to generate.