Merge branch 'master' into for_mm
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123
124 #include "net-sysfs.h"
125
126 /*
127 * The list of packet types we will receive (as opposed to discard)
128 * and the routines to invoke.
129 *
130 * Why 16. Because with 16 the only overlap we get on a hash of the
131 * low nibble of the protocol value is RARP/SNAP/X.25.
132 *
133 * NOTE: That is no longer true with the addition of VLAN tags. Not
134 * sure which should go first, but I bet it won't make much
135 * difference if we are running VLANs. The good news is that
136 * this protocol won't be in the list unless compiled in, so
137 * the average user (w/out VLANs) will not be adversely affected.
138 * --BLG
139 *
140 * 0800 IP
141 * 8100 802.1Q VLAN
142 * 0001 802.3
143 * 0002 AX.25
144 * 0004 802.2
145 * 8035 RARP
146 * 0005 SNAP
147 * 0805 X.25
148 * 0806 ARP
149 * 8137 IPX
150 * 0009 Localtalk
151 * 86DD IPv6
152 */
153
154 #define PTYPE_HASH_SIZE (16)
155 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 static struct list_head ptype_all __read_mostly; /* Taps */
160
161 #ifdef CONFIG_NET_DMA
162 struct net_dma {
163 struct dma_client client;
164 spinlock_t lock;
165 cpumask_t channel_mask;
166 struct dma_chan **channels;
167 };
168
169 static enum dma_state_client
170 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
171 enum dma_state state);
172
173 static struct net_dma net_dma = {
174 .client = {
175 .event_callback = netdev_dma_event,
176 },
177 };
178 #endif
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading.
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200
201 EXPORT_SYMBOL(dev_base_lock);
202
203 #define NETDEV_HASHBITS 8
204 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
209 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
215 }
216
217 /* Device list insertion */
218 static int list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
228 write_unlock_bh(&dev_base_lock);
229 return 0;
230 }
231
232 /* Device list removal */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del(&dev->dev_list);
240 hlist_del(&dev->name_hlist);
241 hlist_del(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243 }
244
245 /*
246 * Our notifier list
247 */
248
249 static RAW_NOTIFIER_HEAD(netdev_chain);
250
251 /*
252 * Device drivers call our routines to queue packets here. We empty the
253 * queue in the local softnet handler.
254 */
255
256 DEFINE_PER_CPU(struct softnet_data, softnet_data);
257
258 #ifdef CONFIG_DEBUG_LOCK_ALLOC
259 /*
260 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
261 * according to dev->type
262 */
263 static const unsigned short netdev_lock_type[] =
264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
277 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
278 ARPHRD_NONE};
279
280 static const char *netdev_lock_name[] =
281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
294 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
295 "_xmit_NONE"};
296
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 {
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
305 return i;
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
308 }
309
310 static inline void netdev_set_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
312 {
313 int i;
314
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
318 }
319 #else
320 static inline void netdev_set_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 }
324 #endif
325
326 /*******************************************************************************
327
328 Protocol management and registration routines
329
330 *******************************************************************************/
331
332 /*
333 * Add a protocol ID to the list. Now that the input handler is
334 * smarter we can dispense with all the messy stuff that used to be
335 * here.
336 *
337 * BEWARE!!! Protocol handlers, mangling input packets,
338 * MUST BE last in hash buckets and checking protocol handlers
339 * MUST start from promiscuous ptype_all chain in net_bh.
340 * It is true now, do not change it.
341 * Explanation follows: if protocol handler, mangling packet, will
342 * be the first on list, it is not able to sense, that packet
343 * is cloned and should be copied-on-write, so that it will
344 * change it and subsequent readers will get broken packet.
345 * --ANK (980803)
346 */
347
348 /**
349 * dev_add_pack - add packet handler
350 * @pt: packet type declaration
351 *
352 * Add a protocol handler to the networking stack. The passed &packet_type
353 * is linked into kernel lists and may not be freed until it has been
354 * removed from the kernel lists.
355 *
356 * This call does not sleep therefore it can not
357 * guarantee all CPU's that are in middle of receiving packets
358 * will see the new packet type (until the next received packet).
359 */
360
361 void dev_add_pack(struct packet_type *pt)
362 {
363 int hash;
364
365 spin_lock_bh(&ptype_lock);
366 if (pt->type == htons(ETH_P_ALL))
367 list_add_rcu(&pt->list, &ptype_all);
368 else {
369 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
370 list_add_rcu(&pt->list, &ptype_base[hash]);
371 }
372 spin_unlock_bh(&ptype_lock);
373 }
374
375 /**
376 * __dev_remove_pack - remove packet handler
377 * @pt: packet type declaration
378 *
379 * Remove a protocol handler that was previously added to the kernel
380 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
381 * from the kernel lists and can be freed or reused once this function
382 * returns.
383 *
384 * The packet type might still be in use by receivers
385 * and must not be freed until after all the CPU's have gone
386 * through a quiescent state.
387 */
388 void __dev_remove_pack(struct packet_type *pt)
389 {
390 struct list_head *head;
391 struct packet_type *pt1;
392
393 spin_lock_bh(&ptype_lock);
394
395 if (pt->type == htons(ETH_P_ALL))
396 head = &ptype_all;
397 else
398 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
399
400 list_for_each_entry(pt1, head, list) {
401 if (pt == pt1) {
402 list_del_rcu(&pt->list);
403 goto out;
404 }
405 }
406
407 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
408 out:
409 spin_unlock_bh(&ptype_lock);
410 }
411 /**
412 * dev_remove_pack - remove packet handler
413 * @pt: packet type declaration
414 *
415 * Remove a protocol handler that was previously added to the kernel
416 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
417 * from the kernel lists and can be freed or reused once this function
418 * returns.
419 *
420 * This call sleeps to guarantee that no CPU is looking at the packet
421 * type after return.
422 */
423 void dev_remove_pack(struct packet_type *pt)
424 {
425 __dev_remove_pack(pt);
426
427 synchronize_net();
428 }
429
430 /******************************************************************************
431
432 Device Boot-time Settings Routines
433
434 *******************************************************************************/
435
436 /* Boot time configuration table */
437 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
438
439 /**
440 * netdev_boot_setup_add - add new setup entry
441 * @name: name of the device
442 * @map: configured settings for the device
443 *
444 * Adds new setup entry to the dev_boot_setup list. The function
445 * returns 0 on error and 1 on success. This is a generic routine to
446 * all netdevices.
447 */
448 static int netdev_boot_setup_add(char *name, struct ifmap *map)
449 {
450 struct netdev_boot_setup *s;
451 int i;
452
453 s = dev_boot_setup;
454 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
455 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
456 memset(s[i].name, 0, sizeof(s[i].name));
457 strcpy(s[i].name, name);
458 memcpy(&s[i].map, map, sizeof(s[i].map));
459 break;
460 }
461 }
462
463 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
464 }
465
466 /**
467 * netdev_boot_setup_check - check boot time settings
468 * @dev: the netdevice
469 *
470 * Check boot time settings for the device.
471 * The found settings are set for the device to be used
472 * later in the device probing.
473 * Returns 0 if no settings found, 1 if they are.
474 */
475 int netdev_boot_setup_check(struct net_device *dev)
476 {
477 struct netdev_boot_setup *s = dev_boot_setup;
478 int i;
479
480 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
481 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
482 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
483 dev->irq = s[i].map.irq;
484 dev->base_addr = s[i].map.base_addr;
485 dev->mem_start = s[i].map.mem_start;
486 dev->mem_end = s[i].map.mem_end;
487 return 1;
488 }
489 }
490 return 0;
491 }
492
493
494 /**
495 * netdev_boot_base - get address from boot time settings
496 * @prefix: prefix for network device
497 * @unit: id for network device
498 *
499 * Check boot time settings for the base address of device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found.
503 */
504 unsigned long netdev_boot_base(const char *prefix, int unit)
505 {
506 const struct netdev_boot_setup *s = dev_boot_setup;
507 char name[IFNAMSIZ];
508 int i;
509
510 sprintf(name, "%s%d", prefix, unit);
511
512 /*
513 * If device already registered then return base of 1
514 * to indicate not to probe for this interface
515 */
516 if (__dev_get_by_name(&init_net, name))
517 return 1;
518
519 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
520 if (!strcmp(name, s[i].name))
521 return s[i].map.base_addr;
522 return 0;
523 }
524
525 /*
526 * Saves at boot time configured settings for any netdevice.
527 */
528 int __init netdev_boot_setup(char *str)
529 {
530 int ints[5];
531 struct ifmap map;
532
533 str = get_options(str, ARRAY_SIZE(ints), ints);
534 if (!str || !*str)
535 return 0;
536
537 /* Save settings */
538 memset(&map, 0, sizeof(map));
539 if (ints[0] > 0)
540 map.irq = ints[1];
541 if (ints[0] > 1)
542 map.base_addr = ints[2];
543 if (ints[0] > 2)
544 map.mem_start = ints[3];
545 if (ints[0] > 3)
546 map.mem_end = ints[4];
547
548 /* Add new entry to the list */
549 return netdev_boot_setup_add(str, &map);
550 }
551
552 __setup("netdev=", netdev_boot_setup);
553
554 /*******************************************************************************
555
556 Device Interface Subroutines
557
558 *******************************************************************************/
559
560 /**
561 * __dev_get_by_name - find a device by its name
562 * @net: the applicable net namespace
563 * @name: name to find
564 *
565 * Find an interface by name. Must be called under RTNL semaphore
566 * or @dev_base_lock. If the name is found a pointer to the device
567 * is returned. If the name is not found then %NULL is returned. The
568 * reference counters are not incremented so the caller must be
569 * careful with locks.
570 */
571
572 struct net_device *__dev_get_by_name(struct net *net, const char *name)
573 {
574 struct hlist_node *p;
575
576 hlist_for_each(p, dev_name_hash(net, name)) {
577 struct net_device *dev
578 = hlist_entry(p, struct net_device, name_hlist);
579 if (!strncmp(dev->name, name, IFNAMSIZ))
580 return dev;
581 }
582 return NULL;
583 }
584
585 /**
586 * dev_get_by_name - find a device by its name
587 * @net: the applicable net namespace
588 * @name: name to find
589 *
590 * Find an interface by name. This can be called from any
591 * context and does its own locking. The returned handle has
592 * the usage count incremented and the caller must use dev_put() to
593 * release it when it is no longer needed. %NULL is returned if no
594 * matching device is found.
595 */
596
597 struct net_device *dev_get_by_name(struct net *net, const char *name)
598 {
599 struct net_device *dev;
600
601 read_lock(&dev_base_lock);
602 dev = __dev_get_by_name(net, name);
603 if (dev)
604 dev_hold(dev);
605 read_unlock(&dev_base_lock);
606 return dev;
607 }
608
609 /**
610 * __dev_get_by_index - find a device by its ifindex
611 * @net: the applicable net namespace
612 * @ifindex: index of device
613 *
614 * Search for an interface by index. Returns %NULL if the device
615 * is not found or a pointer to the device. The device has not
616 * had its reference counter increased so the caller must be careful
617 * about locking. The caller must hold either the RTNL semaphore
618 * or @dev_base_lock.
619 */
620
621 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
622 {
623 struct hlist_node *p;
624
625 hlist_for_each(p, dev_index_hash(net, ifindex)) {
626 struct net_device *dev
627 = hlist_entry(p, struct net_device, index_hlist);
628 if (dev->ifindex == ifindex)
629 return dev;
630 }
631 return NULL;
632 }
633
634
635 /**
636 * dev_get_by_index - find a device by its ifindex
637 * @net: the applicable net namespace
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
644 */
645
646 struct net_device *dev_get_by_index(struct net *net, int ifindex)
647 {
648 struct net_device *dev;
649
650 read_lock(&dev_base_lock);
651 dev = __dev_get_by_index(net, ifindex);
652 if (dev)
653 dev_hold(dev);
654 read_unlock(&dev_base_lock);
655 return dev;
656 }
657
658 /**
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @net: the applicable net namespace
661 * @type: media type of device
662 * @ha: hardware address
663 *
664 * Search for an interface by MAC address. Returns NULL if the device
665 * is not found or a pointer to the device. The caller must hold the
666 * rtnl semaphore. The returned device has not had its ref count increased
667 * and the caller must therefore be careful about locking
668 *
669 * BUGS:
670 * If the API was consistent this would be __dev_get_by_hwaddr
671 */
672
673 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
674 {
675 struct net_device *dev;
676
677 ASSERT_RTNL();
678
679 for_each_netdev(net, dev)
680 if (dev->type == type &&
681 !memcmp(dev->dev_addr, ha, dev->addr_len))
682 return dev;
683
684 return NULL;
685 }
686
687 EXPORT_SYMBOL(dev_getbyhwaddr);
688
689 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
690 {
691 struct net_device *dev;
692
693 ASSERT_RTNL();
694 for_each_netdev(net, dev)
695 if (dev->type == type)
696 return dev;
697
698 return NULL;
699 }
700
701 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
702
703 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
704 {
705 struct net_device *dev;
706
707 rtnl_lock();
708 dev = __dev_getfirstbyhwtype(net, type);
709 if (dev)
710 dev_hold(dev);
711 rtnl_unlock();
712 return dev;
713 }
714
715 EXPORT_SYMBOL(dev_getfirstbyhwtype);
716
717 /**
718 * dev_get_by_flags - find any device with given flags
719 * @net: the applicable net namespace
720 * @if_flags: IFF_* values
721 * @mask: bitmask of bits in if_flags to check
722 *
723 * Search for any interface with the given flags. Returns NULL if a device
724 * is not found or a pointer to the device. The device returned has
725 * had a reference added and the pointer is safe until the user calls
726 * dev_put to indicate they have finished with it.
727 */
728
729 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
730 {
731 struct net_device *dev, *ret;
732
733 ret = NULL;
734 read_lock(&dev_base_lock);
735 for_each_netdev(net, dev) {
736 if (((dev->flags ^ if_flags) & mask) == 0) {
737 dev_hold(dev);
738 ret = dev;
739 break;
740 }
741 }
742 read_unlock(&dev_base_lock);
743 return ret;
744 }
745
746 /**
747 * dev_valid_name - check if name is okay for network device
748 * @name: name string
749 *
750 * Network device names need to be valid file names to
751 * to allow sysfs to work. We also disallow any kind of
752 * whitespace.
753 */
754 int dev_valid_name(const char *name)
755 {
756 if (*name == '\0')
757 return 0;
758 if (strlen(name) >= IFNAMSIZ)
759 return 0;
760 if (!strcmp(name, ".") || !strcmp(name, ".."))
761 return 0;
762
763 while (*name) {
764 if (*name == '/' || isspace(*name))
765 return 0;
766 name++;
767 }
768 return 1;
769 }
770
771 /**
772 * __dev_alloc_name - allocate a name for a device
773 * @net: network namespace to allocate the device name in
774 * @name: name format string
775 * @buf: scratch buffer and result name string
776 *
777 * Passed a format string - eg "lt%d" it will try and find a suitable
778 * id. It scans list of devices to build up a free map, then chooses
779 * the first empty slot. The caller must hold the dev_base or rtnl lock
780 * while allocating the name and adding the device in order to avoid
781 * duplicates.
782 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
783 * Returns the number of the unit assigned or a negative errno code.
784 */
785
786 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
787 {
788 int i = 0;
789 const char *p;
790 const int max_netdevices = 8*PAGE_SIZE;
791 unsigned long *inuse;
792 struct net_device *d;
793
794 p = strnchr(name, IFNAMSIZ-1, '%');
795 if (p) {
796 /*
797 * Verify the string as this thing may have come from
798 * the user. There must be either one "%d" and no other "%"
799 * characters.
800 */
801 if (p[1] != 'd' || strchr(p + 2, '%'))
802 return -EINVAL;
803
804 /* Use one page as a bit array of possible slots */
805 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
806 if (!inuse)
807 return -ENOMEM;
808
809 for_each_netdev(net, d) {
810 if (!sscanf(d->name, name, &i))
811 continue;
812 if (i < 0 || i >= max_netdevices)
813 continue;
814
815 /* avoid cases where sscanf is not exact inverse of printf */
816 snprintf(buf, IFNAMSIZ, name, i);
817 if (!strncmp(buf, d->name, IFNAMSIZ))
818 set_bit(i, inuse);
819 }
820
821 i = find_first_zero_bit(inuse, max_netdevices);
822 free_page((unsigned long) inuse);
823 }
824
825 snprintf(buf, IFNAMSIZ, name, i);
826 if (!__dev_get_by_name(net, buf))
827 return i;
828
829 /* It is possible to run out of possible slots
830 * when the name is long and there isn't enough space left
831 * for the digits, or if all bits are used.
832 */
833 return -ENFILE;
834 }
835
836 /**
837 * dev_alloc_name - allocate a name for a device
838 * @dev: device
839 * @name: name format string
840 *
841 * Passed a format string - eg "lt%d" it will try and find a suitable
842 * id. It scans list of devices to build up a free map, then chooses
843 * the first empty slot. The caller must hold the dev_base or rtnl lock
844 * while allocating the name and adding the device in order to avoid
845 * duplicates.
846 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
847 * Returns the number of the unit assigned or a negative errno code.
848 */
849
850 int dev_alloc_name(struct net_device *dev, const char *name)
851 {
852 char buf[IFNAMSIZ];
853 struct net *net;
854 int ret;
855
856 BUG_ON(!dev_net(dev));
857 net = dev_net(dev);
858 ret = __dev_alloc_name(net, name, buf);
859 if (ret >= 0)
860 strlcpy(dev->name, buf, IFNAMSIZ);
861 return ret;
862 }
863
864
865 /**
866 * dev_change_name - change name of a device
867 * @dev: device
868 * @newname: name (or format string) must be at least IFNAMSIZ
869 *
870 * Change name of a device, can pass format strings "eth%d".
871 * for wildcarding.
872 */
873 int dev_change_name(struct net_device *dev, char *newname)
874 {
875 char oldname[IFNAMSIZ];
876 int err = 0;
877 int ret;
878 struct net *net;
879
880 ASSERT_RTNL();
881 BUG_ON(!dev_net(dev));
882
883 net = dev_net(dev);
884 if (dev->flags & IFF_UP)
885 return -EBUSY;
886
887 if (!dev_valid_name(newname))
888 return -EINVAL;
889
890 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
891 return 0;
892
893 memcpy(oldname, dev->name, IFNAMSIZ);
894
895 if (strchr(newname, '%')) {
896 err = dev_alloc_name(dev, newname);
897 if (err < 0)
898 return err;
899 strcpy(newname, dev->name);
900 }
901 else if (__dev_get_by_name(net, newname))
902 return -EEXIST;
903 else
904 strlcpy(dev->name, newname, IFNAMSIZ);
905
906 rollback:
907 err = device_rename(&dev->dev, dev->name);
908 if (err) {
909 memcpy(dev->name, oldname, IFNAMSIZ);
910 return err;
911 }
912
913 write_lock_bh(&dev_base_lock);
914 hlist_del(&dev->name_hlist);
915 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
916 write_unlock_bh(&dev_base_lock);
917
918 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
919 ret = notifier_to_errno(ret);
920
921 if (ret) {
922 if (err) {
923 printk(KERN_ERR
924 "%s: name change rollback failed: %d.\n",
925 dev->name, ret);
926 } else {
927 err = ret;
928 memcpy(dev->name, oldname, IFNAMSIZ);
929 goto rollback;
930 }
931 }
932
933 return err;
934 }
935
936 /**
937 * netdev_features_change - device changes features
938 * @dev: device to cause notification
939 *
940 * Called to indicate a device has changed features.
941 */
942 void netdev_features_change(struct net_device *dev)
943 {
944 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
945 }
946 EXPORT_SYMBOL(netdev_features_change);
947
948 /**
949 * netdev_state_change - device changes state
950 * @dev: device to cause notification
951 *
952 * Called to indicate a device has changed state. This function calls
953 * the notifier chains for netdev_chain and sends a NEWLINK message
954 * to the routing socket.
955 */
956 void netdev_state_change(struct net_device *dev)
957 {
958 if (dev->flags & IFF_UP) {
959 call_netdevice_notifiers(NETDEV_CHANGE, dev);
960 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
961 }
962 }
963
964 /**
965 * dev_load - load a network module
966 * @net: the applicable net namespace
967 * @name: name of interface
968 *
969 * If a network interface is not present and the process has suitable
970 * privileges this function loads the module. If module loading is not
971 * available in this kernel then it becomes a nop.
972 */
973
974 void dev_load(struct net *net, const char *name)
975 {
976 struct net_device *dev;
977
978 read_lock(&dev_base_lock);
979 dev = __dev_get_by_name(net, name);
980 read_unlock(&dev_base_lock);
981
982 if (!dev && capable(CAP_SYS_MODULE))
983 request_module("%s", name);
984 }
985
986 /**
987 * dev_open - prepare an interface for use.
988 * @dev: device to open
989 *
990 * Takes a device from down to up state. The device's private open
991 * function is invoked and then the multicast lists are loaded. Finally
992 * the device is moved into the up state and a %NETDEV_UP message is
993 * sent to the netdev notifier chain.
994 *
995 * Calling this function on an active interface is a nop. On a failure
996 * a negative errno code is returned.
997 */
998 int dev_open(struct net_device *dev)
999 {
1000 int ret = 0;
1001
1002 ASSERT_RTNL();
1003
1004 /*
1005 * Is it already up?
1006 */
1007
1008 if (dev->flags & IFF_UP)
1009 return 0;
1010
1011 /*
1012 * Is it even present?
1013 */
1014 if (!netif_device_present(dev))
1015 return -ENODEV;
1016
1017 /*
1018 * Call device private open method
1019 */
1020 set_bit(__LINK_STATE_START, &dev->state);
1021
1022 if (dev->validate_addr)
1023 ret = dev->validate_addr(dev);
1024
1025 if (!ret && dev->open)
1026 ret = dev->open(dev);
1027
1028 /*
1029 * If it went open OK then:
1030 */
1031
1032 if (ret)
1033 clear_bit(__LINK_STATE_START, &dev->state);
1034 else {
1035 /*
1036 * Set the flags.
1037 */
1038 dev->flags |= IFF_UP;
1039
1040 /*
1041 * Initialize multicasting status
1042 */
1043 dev_set_rx_mode(dev);
1044
1045 /*
1046 * Wakeup transmit queue engine
1047 */
1048 dev_activate(dev);
1049
1050 /*
1051 * ... and announce new interface.
1052 */
1053 call_netdevice_notifiers(NETDEV_UP, dev);
1054 }
1055
1056 return ret;
1057 }
1058
1059 /**
1060 * dev_close - shutdown an interface.
1061 * @dev: device to shutdown
1062 *
1063 * This function moves an active device into down state. A
1064 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1065 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1066 * chain.
1067 */
1068 int dev_close(struct net_device *dev)
1069 {
1070 ASSERT_RTNL();
1071
1072 might_sleep();
1073
1074 if (!(dev->flags & IFF_UP))
1075 return 0;
1076
1077 /*
1078 * Tell people we are going down, so that they can
1079 * prepare to death, when device is still operating.
1080 */
1081 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1082
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084
1085 /* Synchronize to scheduled poll. We cannot touch poll list,
1086 * it can be even on different cpu. So just clear netif_running().
1087 *
1088 * dev->stop() will invoke napi_disable() on all of it's
1089 * napi_struct instances on this device.
1090 */
1091 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1092
1093 dev_deactivate(dev);
1094
1095 /*
1096 * Call the device specific close. This cannot fail.
1097 * Only if device is UP
1098 *
1099 * We allow it to be called even after a DETACH hot-plug
1100 * event.
1101 */
1102 if (dev->stop)
1103 dev->stop(dev);
1104
1105 /*
1106 * Device is now down.
1107 */
1108
1109 dev->flags &= ~IFF_UP;
1110
1111 /*
1112 * Tell people we are down
1113 */
1114 call_netdevice_notifiers(NETDEV_DOWN, dev);
1115
1116 return 0;
1117 }
1118
1119
1120 static int dev_boot_phase = 1;
1121
1122 /*
1123 * Device change register/unregister. These are not inline or static
1124 * as we export them to the world.
1125 */
1126
1127 /**
1128 * register_netdevice_notifier - register a network notifier block
1129 * @nb: notifier
1130 *
1131 * Register a notifier to be called when network device events occur.
1132 * The notifier passed is linked into the kernel structures and must
1133 * not be reused until it has been unregistered. A negative errno code
1134 * is returned on a failure.
1135 *
1136 * When registered all registration and up events are replayed
1137 * to the new notifier to allow device to have a race free
1138 * view of the network device list.
1139 */
1140
1141 int register_netdevice_notifier(struct notifier_block *nb)
1142 {
1143 struct net_device *dev;
1144 struct net_device *last;
1145 struct net *net;
1146 int err;
1147
1148 rtnl_lock();
1149 err = raw_notifier_chain_register(&netdev_chain, nb);
1150 if (err)
1151 goto unlock;
1152 if (dev_boot_phase)
1153 goto unlock;
1154 for_each_net(net) {
1155 for_each_netdev(net, dev) {
1156 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1157 err = notifier_to_errno(err);
1158 if (err)
1159 goto rollback;
1160
1161 if (!(dev->flags & IFF_UP))
1162 continue;
1163
1164 nb->notifier_call(nb, NETDEV_UP, dev);
1165 }
1166 }
1167
1168 unlock:
1169 rtnl_unlock();
1170 return err;
1171
1172 rollback:
1173 last = dev;
1174 for_each_net(net) {
1175 for_each_netdev(net, dev) {
1176 if (dev == last)
1177 break;
1178
1179 if (dev->flags & IFF_UP) {
1180 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1181 nb->notifier_call(nb, NETDEV_DOWN, dev);
1182 }
1183 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1184 }
1185 }
1186
1187 raw_notifier_chain_unregister(&netdev_chain, nb);
1188 goto unlock;
1189 }
1190
1191 /**
1192 * unregister_netdevice_notifier - unregister a network notifier block
1193 * @nb: notifier
1194 *
1195 * Unregister a notifier previously registered by
1196 * register_netdevice_notifier(). The notifier is unlinked into the
1197 * kernel structures and may then be reused. A negative errno code
1198 * is returned on a failure.
1199 */
1200
1201 int unregister_netdevice_notifier(struct notifier_block *nb)
1202 {
1203 int err;
1204
1205 rtnl_lock();
1206 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1207 rtnl_unlock();
1208 return err;
1209 }
1210
1211 /**
1212 * call_netdevice_notifiers - call all network notifier blocks
1213 * @val: value passed unmodified to notifier function
1214 * @dev: net_device pointer passed unmodified to notifier function
1215 *
1216 * Call all network notifier blocks. Parameters and return value
1217 * are as for raw_notifier_call_chain().
1218 */
1219
1220 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1221 {
1222 return raw_notifier_call_chain(&netdev_chain, val, dev);
1223 }
1224
1225 /* When > 0 there are consumers of rx skb time stamps */
1226 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1227
1228 void net_enable_timestamp(void)
1229 {
1230 atomic_inc(&netstamp_needed);
1231 }
1232
1233 void net_disable_timestamp(void)
1234 {
1235 atomic_dec(&netstamp_needed);
1236 }
1237
1238 static inline void net_timestamp(struct sk_buff *skb)
1239 {
1240 if (atomic_read(&netstamp_needed))
1241 __net_timestamp(skb);
1242 else
1243 skb->tstamp.tv64 = 0;
1244 }
1245
1246 /*
1247 * Support routine. Sends outgoing frames to any network
1248 * taps currently in use.
1249 */
1250
1251 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1252 {
1253 struct packet_type *ptype;
1254
1255 net_timestamp(skb);
1256
1257 rcu_read_lock();
1258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1259 /* Never send packets back to the socket
1260 * they originated from - MvS (miquels@drinkel.ow.org)
1261 */
1262 if ((ptype->dev == dev || !ptype->dev) &&
1263 (ptype->af_packet_priv == NULL ||
1264 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1265 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1266 if (!skb2)
1267 break;
1268
1269 /* skb->nh should be correctly
1270 set by sender, so that the second statement is
1271 just protection against buggy protocols.
1272 */
1273 skb_reset_mac_header(skb2);
1274
1275 if (skb_network_header(skb2) < skb2->data ||
1276 skb2->network_header > skb2->tail) {
1277 if (net_ratelimit())
1278 printk(KERN_CRIT "protocol %04x is "
1279 "buggy, dev %s\n",
1280 skb2->protocol, dev->name);
1281 skb_reset_network_header(skb2);
1282 }
1283
1284 skb2->transport_header = skb2->network_header;
1285 skb2->pkt_type = PACKET_OUTGOING;
1286 ptype->func(skb2, skb->dev, ptype, skb->dev);
1287 }
1288 }
1289 rcu_read_unlock();
1290 }
1291
1292
1293 void __netif_schedule(struct net_device *dev)
1294 {
1295 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1296 unsigned long flags;
1297 struct softnet_data *sd;
1298
1299 local_irq_save(flags);
1300 sd = &__get_cpu_var(softnet_data);
1301 dev->next_sched = sd->output_queue;
1302 sd->output_queue = dev;
1303 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1304 local_irq_restore(flags);
1305 }
1306 }
1307 EXPORT_SYMBOL(__netif_schedule);
1308
1309 void dev_kfree_skb_irq(struct sk_buff *skb)
1310 {
1311 if (atomic_dec_and_test(&skb->users)) {
1312 struct softnet_data *sd;
1313 unsigned long flags;
1314
1315 local_irq_save(flags);
1316 sd = &__get_cpu_var(softnet_data);
1317 skb->next = sd->completion_queue;
1318 sd->completion_queue = skb;
1319 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1320 local_irq_restore(flags);
1321 }
1322 }
1323 EXPORT_SYMBOL(dev_kfree_skb_irq);
1324
1325 void dev_kfree_skb_any(struct sk_buff *skb)
1326 {
1327 if (in_irq() || irqs_disabled())
1328 dev_kfree_skb_irq(skb);
1329 else
1330 dev_kfree_skb(skb);
1331 }
1332 EXPORT_SYMBOL(dev_kfree_skb_any);
1333
1334
1335 /**
1336 * netif_device_detach - mark device as removed
1337 * @dev: network device
1338 *
1339 * Mark device as removed from system and therefore no longer available.
1340 */
1341 void netif_device_detach(struct net_device *dev)
1342 {
1343 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1344 netif_running(dev)) {
1345 netif_stop_queue(dev);
1346 }
1347 }
1348 EXPORT_SYMBOL(netif_device_detach);
1349
1350 /**
1351 * netif_device_attach - mark device as attached
1352 * @dev: network device
1353 *
1354 * Mark device as attached from system and restart if needed.
1355 */
1356 void netif_device_attach(struct net_device *dev)
1357 {
1358 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1359 netif_running(dev)) {
1360 netif_wake_queue(dev);
1361 __netdev_watchdog_up(dev);
1362 }
1363 }
1364 EXPORT_SYMBOL(netif_device_attach);
1365
1366 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1367 {
1368 return ((features & NETIF_F_GEN_CSUM) ||
1369 ((features & NETIF_F_IP_CSUM) &&
1370 protocol == htons(ETH_P_IP)) ||
1371 ((features & NETIF_F_IPV6_CSUM) &&
1372 protocol == htons(ETH_P_IPV6)));
1373 }
1374
1375 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1376 {
1377 if (can_checksum_protocol(dev->features, skb->protocol))
1378 return true;
1379
1380 if (skb->protocol == htons(ETH_P_8021Q)) {
1381 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1382 if (can_checksum_protocol(dev->features & dev->vlan_features,
1383 veh->h_vlan_encapsulated_proto))
1384 return true;
1385 }
1386
1387 return false;
1388 }
1389
1390 /*
1391 * Invalidate hardware checksum when packet is to be mangled, and
1392 * complete checksum manually on outgoing path.
1393 */
1394 int skb_checksum_help(struct sk_buff *skb)
1395 {
1396 __wsum csum;
1397 int ret = 0, offset;
1398
1399 if (skb->ip_summed == CHECKSUM_COMPLETE)
1400 goto out_set_summed;
1401
1402 if (unlikely(skb_shinfo(skb)->gso_size)) {
1403 /* Let GSO fix up the checksum. */
1404 goto out_set_summed;
1405 }
1406
1407 offset = skb->csum_start - skb_headroom(skb);
1408 BUG_ON(offset >= skb_headlen(skb));
1409 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1410
1411 offset += skb->csum_offset;
1412 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1413
1414 if (skb_cloned(skb) &&
1415 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1416 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1417 if (ret)
1418 goto out;
1419 }
1420
1421 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1422 out_set_summed:
1423 skb->ip_summed = CHECKSUM_NONE;
1424 out:
1425 return ret;
1426 }
1427
1428 /**
1429 * skb_gso_segment - Perform segmentation on skb.
1430 * @skb: buffer to segment
1431 * @features: features for the output path (see dev->features)
1432 *
1433 * This function segments the given skb and returns a list of segments.
1434 *
1435 * It may return NULL if the skb requires no segmentation. This is
1436 * only possible when GSO is used for verifying header integrity.
1437 */
1438 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1439 {
1440 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1441 struct packet_type *ptype;
1442 __be16 type = skb->protocol;
1443 int err;
1444
1445 BUG_ON(skb_shinfo(skb)->frag_list);
1446
1447 skb_reset_mac_header(skb);
1448 skb->mac_len = skb->network_header - skb->mac_header;
1449 __skb_pull(skb, skb->mac_len);
1450
1451 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1452 if (skb_header_cloned(skb) &&
1453 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1454 return ERR_PTR(err);
1455 }
1456
1457 rcu_read_lock();
1458 list_for_each_entry_rcu(ptype,
1459 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1460 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1461 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1462 err = ptype->gso_send_check(skb);
1463 segs = ERR_PTR(err);
1464 if (err || skb_gso_ok(skb, features))
1465 break;
1466 __skb_push(skb, (skb->data -
1467 skb_network_header(skb)));
1468 }
1469 segs = ptype->gso_segment(skb, features);
1470 break;
1471 }
1472 }
1473 rcu_read_unlock();
1474
1475 __skb_push(skb, skb->data - skb_mac_header(skb));
1476
1477 return segs;
1478 }
1479
1480 EXPORT_SYMBOL(skb_gso_segment);
1481
1482 /* Take action when hardware reception checksum errors are detected. */
1483 #ifdef CONFIG_BUG
1484 void netdev_rx_csum_fault(struct net_device *dev)
1485 {
1486 if (net_ratelimit()) {
1487 printk(KERN_ERR "%s: hw csum failure.\n",
1488 dev ? dev->name : "<unknown>");
1489 dump_stack();
1490 }
1491 }
1492 EXPORT_SYMBOL(netdev_rx_csum_fault);
1493 #endif
1494
1495 /* Actually, we should eliminate this check as soon as we know, that:
1496 * 1. IOMMU is present and allows to map all the memory.
1497 * 2. No high memory really exists on this machine.
1498 */
1499
1500 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1501 {
1502 #ifdef CONFIG_HIGHMEM
1503 int i;
1504
1505 if (dev->features & NETIF_F_HIGHDMA)
1506 return 0;
1507
1508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1509 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1510 return 1;
1511
1512 #endif
1513 return 0;
1514 }
1515
1516 struct dev_gso_cb {
1517 void (*destructor)(struct sk_buff *skb);
1518 };
1519
1520 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1521
1522 static void dev_gso_skb_destructor(struct sk_buff *skb)
1523 {
1524 struct dev_gso_cb *cb;
1525
1526 do {
1527 struct sk_buff *nskb = skb->next;
1528
1529 skb->next = nskb->next;
1530 nskb->next = NULL;
1531 kfree_skb(nskb);
1532 } while (skb->next);
1533
1534 cb = DEV_GSO_CB(skb);
1535 if (cb->destructor)
1536 cb->destructor(skb);
1537 }
1538
1539 /**
1540 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1541 * @skb: buffer to segment
1542 *
1543 * This function segments the given skb and stores the list of segments
1544 * in skb->next.
1545 */
1546 static int dev_gso_segment(struct sk_buff *skb)
1547 {
1548 struct net_device *dev = skb->dev;
1549 struct sk_buff *segs;
1550 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1551 NETIF_F_SG : 0);
1552
1553 segs = skb_gso_segment(skb, features);
1554
1555 /* Verifying header integrity only. */
1556 if (!segs)
1557 return 0;
1558
1559 if (IS_ERR(segs))
1560 return PTR_ERR(segs);
1561
1562 skb->next = segs;
1563 DEV_GSO_CB(skb)->destructor = skb->destructor;
1564 skb->destructor = dev_gso_skb_destructor;
1565
1566 return 0;
1567 }
1568
1569 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1570 {
1571 if (likely(!skb->next)) {
1572 if (!list_empty(&ptype_all))
1573 dev_queue_xmit_nit(skb, dev);
1574
1575 if (netif_needs_gso(dev, skb)) {
1576 if (unlikely(dev_gso_segment(skb)))
1577 goto out_kfree_skb;
1578 if (skb->next)
1579 goto gso;
1580 }
1581
1582 return dev->hard_start_xmit(skb, dev);
1583 }
1584
1585 gso:
1586 do {
1587 struct sk_buff *nskb = skb->next;
1588 int rc;
1589
1590 skb->next = nskb->next;
1591 nskb->next = NULL;
1592 rc = dev->hard_start_xmit(nskb, dev);
1593 if (unlikely(rc)) {
1594 nskb->next = skb->next;
1595 skb->next = nskb;
1596 return rc;
1597 }
1598 if (unlikely((netif_queue_stopped(dev) ||
1599 netif_subqueue_stopped(dev, skb)) &&
1600 skb->next))
1601 return NETDEV_TX_BUSY;
1602 } while (skb->next);
1603
1604 skb->destructor = DEV_GSO_CB(skb)->destructor;
1605
1606 out_kfree_skb:
1607 kfree_skb(skb);
1608 return 0;
1609 }
1610
1611 /**
1612 * dev_queue_xmit - transmit a buffer
1613 * @skb: buffer to transmit
1614 *
1615 * Queue a buffer for transmission to a network device. The caller must
1616 * have set the device and priority and built the buffer before calling
1617 * this function. The function can be called from an interrupt.
1618 *
1619 * A negative errno code is returned on a failure. A success does not
1620 * guarantee the frame will be transmitted as it may be dropped due
1621 * to congestion or traffic shaping.
1622 *
1623 * -----------------------------------------------------------------------------------
1624 * I notice this method can also return errors from the queue disciplines,
1625 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1626 * be positive.
1627 *
1628 * Regardless of the return value, the skb is consumed, so it is currently
1629 * difficult to retry a send to this method. (You can bump the ref count
1630 * before sending to hold a reference for retry if you are careful.)
1631 *
1632 * When calling this method, interrupts MUST be enabled. This is because
1633 * the BH enable code must have IRQs enabled so that it will not deadlock.
1634 * --BLG
1635 */
1636
1637 int dev_queue_xmit(struct sk_buff *skb)
1638 {
1639 struct net_device *dev = skb->dev;
1640 struct Qdisc *q;
1641 int rc = -ENOMEM;
1642
1643 /* GSO will handle the following emulations directly. */
1644 if (netif_needs_gso(dev, skb))
1645 goto gso;
1646
1647 if (skb_shinfo(skb)->frag_list &&
1648 !(dev->features & NETIF_F_FRAGLIST) &&
1649 __skb_linearize(skb))
1650 goto out_kfree_skb;
1651
1652 /* Fragmented skb is linearized if device does not support SG,
1653 * or if at least one of fragments is in highmem and device
1654 * does not support DMA from it.
1655 */
1656 if (skb_shinfo(skb)->nr_frags &&
1657 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1658 __skb_linearize(skb))
1659 goto out_kfree_skb;
1660
1661 /* If packet is not checksummed and device does not support
1662 * checksumming for this protocol, complete checksumming here.
1663 */
1664 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1665 skb_set_transport_header(skb, skb->csum_start -
1666 skb_headroom(skb));
1667 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1668 goto out_kfree_skb;
1669 }
1670
1671 gso:
1672 spin_lock_prefetch(&dev->queue_lock);
1673
1674 /* Disable soft irqs for various locks below. Also
1675 * stops preemption for RCU.
1676 */
1677 rcu_read_lock_bh();
1678
1679 /* Updates of qdisc are serialized by queue_lock.
1680 * The struct Qdisc which is pointed to by qdisc is now a
1681 * rcu structure - it may be accessed without acquiring
1682 * a lock (but the structure may be stale.) The freeing of the
1683 * qdisc will be deferred until it's known that there are no
1684 * more references to it.
1685 *
1686 * If the qdisc has an enqueue function, we still need to
1687 * hold the queue_lock before calling it, since queue_lock
1688 * also serializes access to the device queue.
1689 */
1690
1691 q = rcu_dereference(dev->qdisc);
1692 #ifdef CONFIG_NET_CLS_ACT
1693 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1694 #endif
1695 if (q->enqueue) {
1696 /* Grab device queue */
1697 spin_lock(&dev->queue_lock);
1698 q = dev->qdisc;
1699 if (q->enqueue) {
1700 /* reset queue_mapping to zero */
1701 skb_set_queue_mapping(skb, 0);
1702 rc = q->enqueue(skb, q);
1703 qdisc_run(dev);
1704 spin_unlock(&dev->queue_lock);
1705
1706 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1707 goto out;
1708 }
1709 spin_unlock(&dev->queue_lock);
1710 }
1711
1712 /* The device has no queue. Common case for software devices:
1713 loopback, all the sorts of tunnels...
1714
1715 Really, it is unlikely that netif_tx_lock protection is necessary
1716 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1717 counters.)
1718 However, it is possible, that they rely on protection
1719 made by us here.
1720
1721 Check this and shot the lock. It is not prone from deadlocks.
1722 Either shot noqueue qdisc, it is even simpler 8)
1723 */
1724 if (dev->flags & IFF_UP) {
1725 int cpu = smp_processor_id(); /* ok because BHs are off */
1726
1727 if (dev->xmit_lock_owner != cpu) {
1728
1729 HARD_TX_LOCK(dev, cpu);
1730
1731 if (!netif_queue_stopped(dev) &&
1732 !netif_subqueue_stopped(dev, skb)) {
1733 rc = 0;
1734 if (!dev_hard_start_xmit(skb, dev)) {
1735 HARD_TX_UNLOCK(dev);
1736 goto out;
1737 }
1738 }
1739 HARD_TX_UNLOCK(dev);
1740 if (net_ratelimit())
1741 printk(KERN_CRIT "Virtual device %s asks to "
1742 "queue packet!\n", dev->name);
1743 } else {
1744 /* Recursion is detected! It is possible,
1745 * unfortunately */
1746 if (net_ratelimit())
1747 printk(KERN_CRIT "Dead loop on virtual device "
1748 "%s, fix it urgently!\n", dev->name);
1749 }
1750 }
1751
1752 rc = -ENETDOWN;
1753 rcu_read_unlock_bh();
1754
1755 out_kfree_skb:
1756 kfree_skb(skb);
1757 return rc;
1758 out:
1759 rcu_read_unlock_bh();
1760 return rc;
1761 }
1762
1763
1764 /*=======================================================================
1765 Receiver routines
1766 =======================================================================*/
1767
1768 int netdev_max_backlog __read_mostly = 1000;
1769 int netdev_budget __read_mostly = 300;
1770 int weight_p __read_mostly = 64; /* old backlog weight */
1771
1772 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1773
1774
1775 /**
1776 * netif_rx - post buffer to the network code
1777 * @skb: buffer to post
1778 *
1779 * This function receives a packet from a device driver and queues it for
1780 * the upper (protocol) levels to process. It always succeeds. The buffer
1781 * may be dropped during processing for congestion control or by the
1782 * protocol layers.
1783 *
1784 * return values:
1785 * NET_RX_SUCCESS (no congestion)
1786 * NET_RX_DROP (packet was dropped)
1787 *
1788 */
1789
1790 int netif_rx(struct sk_buff *skb)
1791 {
1792 struct softnet_data *queue;
1793 unsigned long flags;
1794
1795 /* if netpoll wants it, pretend we never saw it */
1796 if (netpoll_rx(skb))
1797 return NET_RX_DROP;
1798
1799 if (!skb->tstamp.tv64)
1800 net_timestamp(skb);
1801
1802 /*
1803 * The code is rearranged so that the path is the most
1804 * short when CPU is congested, but is still operating.
1805 */
1806 local_irq_save(flags);
1807 queue = &__get_cpu_var(softnet_data);
1808
1809 __get_cpu_var(netdev_rx_stat).total++;
1810 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1811 if (queue->input_pkt_queue.qlen) {
1812 enqueue:
1813 dev_hold(skb->dev);
1814 __skb_queue_tail(&queue->input_pkt_queue, skb);
1815 local_irq_restore(flags);
1816 return NET_RX_SUCCESS;
1817 }
1818
1819 napi_schedule(&queue->backlog);
1820 goto enqueue;
1821 }
1822
1823 __get_cpu_var(netdev_rx_stat).dropped++;
1824 local_irq_restore(flags);
1825
1826 kfree_skb(skb);
1827 return NET_RX_DROP;
1828 }
1829
1830 int netif_rx_ni(struct sk_buff *skb)
1831 {
1832 int err;
1833
1834 preempt_disable();
1835 err = netif_rx(skb);
1836 if (local_softirq_pending())
1837 do_softirq();
1838 preempt_enable();
1839
1840 return err;
1841 }
1842
1843 EXPORT_SYMBOL(netif_rx_ni);
1844
1845 static inline struct net_device *skb_bond(struct sk_buff *skb)
1846 {
1847 struct net_device *dev = skb->dev;
1848
1849 if (dev->master) {
1850 if (skb_bond_should_drop(skb)) {
1851 kfree_skb(skb);
1852 return NULL;
1853 }
1854 skb->dev = dev->master;
1855 }
1856
1857 return dev;
1858 }
1859
1860
1861 static void net_tx_action(struct softirq_action *h)
1862 {
1863 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1864
1865 if (sd->completion_queue) {
1866 struct sk_buff *clist;
1867
1868 local_irq_disable();
1869 clist = sd->completion_queue;
1870 sd->completion_queue = NULL;
1871 local_irq_enable();
1872
1873 while (clist) {
1874 struct sk_buff *skb = clist;
1875 clist = clist->next;
1876
1877 BUG_TRAP(!atomic_read(&skb->users));
1878 __kfree_skb(skb);
1879 }
1880 }
1881
1882 if (sd->output_queue) {
1883 struct net_device *head;
1884
1885 local_irq_disable();
1886 head = sd->output_queue;
1887 sd->output_queue = NULL;
1888 local_irq_enable();
1889
1890 while (head) {
1891 struct net_device *dev = head;
1892 head = head->next_sched;
1893
1894 smp_mb__before_clear_bit();
1895 clear_bit(__LINK_STATE_SCHED, &dev->state);
1896
1897 if (spin_trylock(&dev->queue_lock)) {
1898 qdisc_run(dev);
1899 spin_unlock(&dev->queue_lock);
1900 } else {
1901 netif_schedule(dev);
1902 }
1903 }
1904 }
1905 }
1906
1907 static inline int deliver_skb(struct sk_buff *skb,
1908 struct packet_type *pt_prev,
1909 struct net_device *orig_dev)
1910 {
1911 atomic_inc(&skb->users);
1912 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1913 }
1914
1915 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1916 /* These hooks defined here for ATM */
1917 struct net_bridge;
1918 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1919 unsigned char *addr);
1920 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1921
1922 /*
1923 * If bridge module is loaded call bridging hook.
1924 * returns NULL if packet was consumed.
1925 */
1926 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1927 struct sk_buff *skb) __read_mostly;
1928 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1929 struct packet_type **pt_prev, int *ret,
1930 struct net_device *orig_dev)
1931 {
1932 struct net_bridge_port *port;
1933
1934 if (skb->pkt_type == PACKET_LOOPBACK ||
1935 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1936 return skb;
1937
1938 if (*pt_prev) {
1939 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1940 *pt_prev = NULL;
1941 }
1942
1943 return br_handle_frame_hook(port, skb);
1944 }
1945 #else
1946 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1947 #endif
1948
1949 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1950 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1951 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1952
1953 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1954 struct packet_type **pt_prev,
1955 int *ret,
1956 struct net_device *orig_dev)
1957 {
1958 if (skb->dev->macvlan_port == NULL)
1959 return skb;
1960
1961 if (*pt_prev) {
1962 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1963 *pt_prev = NULL;
1964 }
1965 return macvlan_handle_frame_hook(skb);
1966 }
1967 #else
1968 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1969 #endif
1970
1971 #ifdef CONFIG_NET_CLS_ACT
1972 /* TODO: Maybe we should just force sch_ingress to be compiled in
1973 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1974 * a compare and 2 stores extra right now if we dont have it on
1975 * but have CONFIG_NET_CLS_ACT
1976 * NOTE: This doesnt stop any functionality; if you dont have
1977 * the ingress scheduler, you just cant add policies on ingress.
1978 *
1979 */
1980 static int ing_filter(struct sk_buff *skb)
1981 {
1982 struct Qdisc *q;
1983 struct net_device *dev = skb->dev;
1984 int result = TC_ACT_OK;
1985 u32 ttl = G_TC_RTTL(skb->tc_verd);
1986
1987 if (MAX_RED_LOOP < ttl++) {
1988 printk(KERN_WARNING
1989 "Redir loop detected Dropping packet (%d->%d)\n",
1990 skb->iif, dev->ifindex);
1991 return TC_ACT_SHOT;
1992 }
1993
1994 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1995 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1996
1997 spin_lock(&dev->ingress_lock);
1998 if ((q = dev->qdisc_ingress) != NULL)
1999 result = q->enqueue(skb, q);
2000 spin_unlock(&dev->ingress_lock);
2001
2002 return result;
2003 }
2004
2005 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2006 struct packet_type **pt_prev,
2007 int *ret, struct net_device *orig_dev)
2008 {
2009 if (!skb->dev->qdisc_ingress)
2010 goto out;
2011
2012 if (*pt_prev) {
2013 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2014 *pt_prev = NULL;
2015 } else {
2016 /* Huh? Why does turning on AF_PACKET affect this? */
2017 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2018 }
2019
2020 switch (ing_filter(skb)) {
2021 case TC_ACT_SHOT:
2022 case TC_ACT_STOLEN:
2023 kfree_skb(skb);
2024 return NULL;
2025 }
2026
2027 out:
2028 skb->tc_verd = 0;
2029 return skb;
2030 }
2031 #endif
2032
2033 /**
2034 * netif_receive_skb - process receive buffer from network
2035 * @skb: buffer to process
2036 *
2037 * netif_receive_skb() is the main receive data processing function.
2038 * It always succeeds. The buffer may be dropped during processing
2039 * for congestion control or by the protocol layers.
2040 *
2041 * This function may only be called from softirq context and interrupts
2042 * should be enabled.
2043 *
2044 * Return values (usually ignored):
2045 * NET_RX_SUCCESS: no congestion
2046 * NET_RX_DROP: packet was dropped
2047 */
2048 int netif_receive_skb(struct sk_buff *skb)
2049 {
2050 struct packet_type *ptype, *pt_prev;
2051 struct net_device *orig_dev;
2052 int ret = NET_RX_DROP;
2053 __be16 type;
2054
2055 /* if we've gotten here through NAPI, check netpoll */
2056 if (netpoll_receive_skb(skb))
2057 return NET_RX_DROP;
2058
2059 if (!skb->tstamp.tv64)
2060 net_timestamp(skb);
2061
2062 if (!skb->iif)
2063 skb->iif = skb->dev->ifindex;
2064
2065 orig_dev = skb_bond(skb);
2066
2067 if (!orig_dev)
2068 return NET_RX_DROP;
2069
2070 __get_cpu_var(netdev_rx_stat).total++;
2071
2072 skb_reset_network_header(skb);
2073 skb_reset_transport_header(skb);
2074 skb->mac_len = skb->network_header - skb->mac_header;
2075
2076 pt_prev = NULL;
2077
2078 rcu_read_lock();
2079
2080 /* Don't receive packets in an exiting network namespace */
2081 if (!net_alive(dev_net(skb->dev)))
2082 goto out;
2083
2084 #ifdef CONFIG_NET_CLS_ACT
2085 if (skb->tc_verd & TC_NCLS) {
2086 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2087 goto ncls;
2088 }
2089 #endif
2090
2091 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2092 if (!ptype->dev || ptype->dev == skb->dev) {
2093 if (pt_prev)
2094 ret = deliver_skb(skb, pt_prev, orig_dev);
2095 pt_prev = ptype;
2096 }
2097 }
2098
2099 #ifdef CONFIG_NET_CLS_ACT
2100 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2101 if (!skb)
2102 goto out;
2103 ncls:
2104 #endif
2105
2106 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2107 if (!skb)
2108 goto out;
2109 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2110 if (!skb)
2111 goto out;
2112
2113 type = skb->protocol;
2114 list_for_each_entry_rcu(ptype,
2115 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2116 if (ptype->type == type &&
2117 (!ptype->dev || ptype->dev == skb->dev)) {
2118 if (pt_prev)
2119 ret = deliver_skb(skb, pt_prev, orig_dev);
2120 pt_prev = ptype;
2121 }
2122 }
2123
2124 if (pt_prev) {
2125 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2126 } else {
2127 kfree_skb(skb);
2128 /* Jamal, now you will not able to escape explaining
2129 * me how you were going to use this. :-)
2130 */
2131 ret = NET_RX_DROP;
2132 }
2133
2134 out:
2135 rcu_read_unlock();
2136 return ret;
2137 }
2138
2139 static int process_backlog(struct napi_struct *napi, int quota)
2140 {
2141 int work = 0;
2142 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2143 unsigned long start_time = jiffies;
2144
2145 napi->weight = weight_p;
2146 do {
2147 struct sk_buff *skb;
2148 struct net_device *dev;
2149
2150 local_irq_disable();
2151 skb = __skb_dequeue(&queue->input_pkt_queue);
2152 if (!skb) {
2153 __napi_complete(napi);
2154 local_irq_enable();
2155 break;
2156 }
2157
2158 local_irq_enable();
2159
2160 dev = skb->dev;
2161
2162 netif_receive_skb(skb);
2163
2164 dev_put(dev);
2165 } while (++work < quota && jiffies == start_time);
2166
2167 return work;
2168 }
2169
2170 /**
2171 * __napi_schedule - schedule for receive
2172 * @n: entry to schedule
2173 *
2174 * The entry's receive function will be scheduled to run
2175 */
2176 void __napi_schedule(struct napi_struct *n)
2177 {
2178 unsigned long flags;
2179
2180 local_irq_save(flags);
2181 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2182 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2183 local_irq_restore(flags);
2184 }
2185 EXPORT_SYMBOL(__napi_schedule);
2186
2187
2188 static void net_rx_action(struct softirq_action *h)
2189 {
2190 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2191 unsigned long start_time = jiffies;
2192 int budget = netdev_budget;
2193 void *have;
2194
2195 local_irq_disable();
2196
2197 while (!list_empty(list)) {
2198 struct napi_struct *n;
2199 int work, weight;
2200
2201 /* If softirq window is exhuasted then punt.
2202 *
2203 * Note that this is a slight policy change from the
2204 * previous NAPI code, which would allow up to 2
2205 * jiffies to pass before breaking out. The test
2206 * used to be "jiffies - start_time > 1".
2207 */
2208 if (unlikely(budget <= 0 || jiffies != start_time))
2209 goto softnet_break;
2210
2211 local_irq_enable();
2212
2213 /* Even though interrupts have been re-enabled, this
2214 * access is safe because interrupts can only add new
2215 * entries to the tail of this list, and only ->poll()
2216 * calls can remove this head entry from the list.
2217 */
2218 n = list_entry(list->next, struct napi_struct, poll_list);
2219
2220 have = netpoll_poll_lock(n);
2221
2222 weight = n->weight;
2223
2224 /* This NAPI_STATE_SCHED test is for avoiding a race
2225 * with netpoll's poll_napi(). Only the entity which
2226 * obtains the lock and sees NAPI_STATE_SCHED set will
2227 * actually make the ->poll() call. Therefore we avoid
2228 * accidently calling ->poll() when NAPI is not scheduled.
2229 */
2230 work = 0;
2231 if (test_bit(NAPI_STATE_SCHED, &n->state))
2232 work = n->poll(n, weight);
2233
2234 WARN_ON_ONCE(work > weight);
2235
2236 budget -= work;
2237
2238 local_irq_disable();
2239
2240 /* Drivers must not modify the NAPI state if they
2241 * consume the entire weight. In such cases this code
2242 * still "owns" the NAPI instance and therefore can
2243 * move the instance around on the list at-will.
2244 */
2245 if (unlikely(work == weight)) {
2246 if (unlikely(napi_disable_pending(n)))
2247 __napi_complete(n);
2248 else
2249 list_move_tail(&n->poll_list, list);
2250 }
2251
2252 netpoll_poll_unlock(have);
2253 }
2254 out:
2255 local_irq_enable();
2256
2257 #ifdef CONFIG_NET_DMA
2258 /*
2259 * There may not be any more sk_buffs coming right now, so push
2260 * any pending DMA copies to hardware
2261 */
2262 if (!cpus_empty(net_dma.channel_mask)) {
2263 int chan_idx;
2264 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2265 struct dma_chan *chan = net_dma.channels[chan_idx];
2266 if (chan)
2267 dma_async_memcpy_issue_pending(chan);
2268 }
2269 }
2270 #endif
2271
2272 return;
2273
2274 softnet_break:
2275 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2276 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2277 goto out;
2278 }
2279
2280 static gifconf_func_t * gifconf_list [NPROTO];
2281
2282 /**
2283 * register_gifconf - register a SIOCGIF handler
2284 * @family: Address family
2285 * @gifconf: Function handler
2286 *
2287 * Register protocol dependent address dumping routines. The handler
2288 * that is passed must not be freed or reused until it has been replaced
2289 * by another handler.
2290 */
2291 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2292 {
2293 if (family >= NPROTO)
2294 return -EINVAL;
2295 gifconf_list[family] = gifconf;
2296 return 0;
2297 }
2298
2299
2300 /*
2301 * Map an interface index to its name (SIOCGIFNAME)
2302 */
2303
2304 /*
2305 * We need this ioctl for efficient implementation of the
2306 * if_indextoname() function required by the IPv6 API. Without
2307 * it, we would have to search all the interfaces to find a
2308 * match. --pb
2309 */
2310
2311 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2312 {
2313 struct net_device *dev;
2314 struct ifreq ifr;
2315
2316 /*
2317 * Fetch the caller's info block.
2318 */
2319
2320 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2321 return -EFAULT;
2322
2323 read_lock(&dev_base_lock);
2324 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2325 if (!dev) {
2326 read_unlock(&dev_base_lock);
2327 return -ENODEV;
2328 }
2329
2330 strcpy(ifr.ifr_name, dev->name);
2331 read_unlock(&dev_base_lock);
2332
2333 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2334 return -EFAULT;
2335 return 0;
2336 }
2337
2338 /*
2339 * Perform a SIOCGIFCONF call. This structure will change
2340 * size eventually, and there is nothing I can do about it.
2341 * Thus we will need a 'compatibility mode'.
2342 */
2343
2344 static int dev_ifconf(struct net *net, char __user *arg)
2345 {
2346 struct ifconf ifc;
2347 struct net_device *dev;
2348 char __user *pos;
2349 int len;
2350 int total;
2351 int i;
2352
2353 /*
2354 * Fetch the caller's info block.
2355 */
2356
2357 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2358 return -EFAULT;
2359
2360 pos = ifc.ifc_buf;
2361 len = ifc.ifc_len;
2362
2363 /*
2364 * Loop over the interfaces, and write an info block for each.
2365 */
2366
2367 total = 0;
2368 for_each_netdev(net, dev) {
2369 for (i = 0; i < NPROTO; i++) {
2370 if (gifconf_list[i]) {
2371 int done;
2372 if (!pos)
2373 done = gifconf_list[i](dev, NULL, 0);
2374 else
2375 done = gifconf_list[i](dev, pos + total,
2376 len - total);
2377 if (done < 0)
2378 return -EFAULT;
2379 total += done;
2380 }
2381 }
2382 }
2383
2384 /*
2385 * All done. Write the updated control block back to the caller.
2386 */
2387 ifc.ifc_len = total;
2388
2389 /*
2390 * Both BSD and Solaris return 0 here, so we do too.
2391 */
2392 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2393 }
2394
2395 #ifdef CONFIG_PROC_FS
2396 /*
2397 * This is invoked by the /proc filesystem handler to display a device
2398 * in detail.
2399 */
2400 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2401 __acquires(dev_base_lock)
2402 {
2403 struct net *net = seq_file_net(seq);
2404 loff_t off;
2405 struct net_device *dev;
2406
2407 read_lock(&dev_base_lock);
2408 if (!*pos)
2409 return SEQ_START_TOKEN;
2410
2411 off = 1;
2412 for_each_netdev(net, dev)
2413 if (off++ == *pos)
2414 return dev;
2415
2416 return NULL;
2417 }
2418
2419 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2420 {
2421 struct net *net = seq_file_net(seq);
2422 ++*pos;
2423 return v == SEQ_START_TOKEN ?
2424 first_net_device(net) : next_net_device((struct net_device *)v);
2425 }
2426
2427 void dev_seq_stop(struct seq_file *seq, void *v)
2428 __releases(dev_base_lock)
2429 {
2430 read_unlock(&dev_base_lock);
2431 }
2432
2433 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2434 {
2435 struct net_device_stats *stats = dev->get_stats(dev);
2436
2437 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2438 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2439 dev->name, stats->rx_bytes, stats->rx_packets,
2440 stats->rx_errors,
2441 stats->rx_dropped + stats->rx_missed_errors,
2442 stats->rx_fifo_errors,
2443 stats->rx_length_errors + stats->rx_over_errors +
2444 stats->rx_crc_errors + stats->rx_frame_errors,
2445 stats->rx_compressed, stats->multicast,
2446 stats->tx_bytes, stats->tx_packets,
2447 stats->tx_errors, stats->tx_dropped,
2448 stats->tx_fifo_errors, stats->collisions,
2449 stats->tx_carrier_errors +
2450 stats->tx_aborted_errors +
2451 stats->tx_window_errors +
2452 stats->tx_heartbeat_errors,
2453 stats->tx_compressed);
2454 }
2455
2456 /*
2457 * Called from the PROCfs module. This now uses the new arbitrary sized
2458 * /proc/net interface to create /proc/net/dev
2459 */
2460 static int dev_seq_show(struct seq_file *seq, void *v)
2461 {
2462 if (v == SEQ_START_TOKEN)
2463 seq_puts(seq, "Inter-| Receive "
2464 " | Transmit\n"
2465 " face |bytes packets errs drop fifo frame "
2466 "compressed multicast|bytes packets errs "
2467 "drop fifo colls carrier compressed\n");
2468 else
2469 dev_seq_printf_stats(seq, v);
2470 return 0;
2471 }
2472
2473 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2474 {
2475 struct netif_rx_stats *rc = NULL;
2476
2477 while (*pos < nr_cpu_ids)
2478 if (cpu_online(*pos)) {
2479 rc = &per_cpu(netdev_rx_stat, *pos);
2480 break;
2481 } else
2482 ++*pos;
2483 return rc;
2484 }
2485
2486 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2487 {
2488 return softnet_get_online(pos);
2489 }
2490
2491 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2492 {
2493 ++*pos;
2494 return softnet_get_online(pos);
2495 }
2496
2497 static void softnet_seq_stop(struct seq_file *seq, void *v)
2498 {
2499 }
2500
2501 static int softnet_seq_show(struct seq_file *seq, void *v)
2502 {
2503 struct netif_rx_stats *s = v;
2504
2505 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2506 s->total, s->dropped, s->time_squeeze, 0,
2507 0, 0, 0, 0, /* was fastroute */
2508 s->cpu_collision );
2509 return 0;
2510 }
2511
2512 static const struct seq_operations dev_seq_ops = {
2513 .start = dev_seq_start,
2514 .next = dev_seq_next,
2515 .stop = dev_seq_stop,
2516 .show = dev_seq_show,
2517 };
2518
2519 static int dev_seq_open(struct inode *inode, struct file *file)
2520 {
2521 return seq_open_net(inode, file, &dev_seq_ops,
2522 sizeof(struct seq_net_private));
2523 }
2524
2525 static const struct file_operations dev_seq_fops = {
2526 .owner = THIS_MODULE,
2527 .open = dev_seq_open,
2528 .read = seq_read,
2529 .llseek = seq_lseek,
2530 .release = seq_release_net,
2531 };
2532
2533 static const struct seq_operations softnet_seq_ops = {
2534 .start = softnet_seq_start,
2535 .next = softnet_seq_next,
2536 .stop = softnet_seq_stop,
2537 .show = softnet_seq_show,
2538 };
2539
2540 static int softnet_seq_open(struct inode *inode, struct file *file)
2541 {
2542 return seq_open(file, &softnet_seq_ops);
2543 }
2544
2545 static const struct file_operations softnet_seq_fops = {
2546 .owner = THIS_MODULE,
2547 .open = softnet_seq_open,
2548 .read = seq_read,
2549 .llseek = seq_lseek,
2550 .release = seq_release,
2551 };
2552
2553 static void *ptype_get_idx(loff_t pos)
2554 {
2555 struct packet_type *pt = NULL;
2556 loff_t i = 0;
2557 int t;
2558
2559 list_for_each_entry_rcu(pt, &ptype_all, list) {
2560 if (i == pos)
2561 return pt;
2562 ++i;
2563 }
2564
2565 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2566 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2567 if (i == pos)
2568 return pt;
2569 ++i;
2570 }
2571 }
2572 return NULL;
2573 }
2574
2575 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2576 __acquires(RCU)
2577 {
2578 rcu_read_lock();
2579 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2580 }
2581
2582 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2583 {
2584 struct packet_type *pt;
2585 struct list_head *nxt;
2586 int hash;
2587
2588 ++*pos;
2589 if (v == SEQ_START_TOKEN)
2590 return ptype_get_idx(0);
2591
2592 pt = v;
2593 nxt = pt->list.next;
2594 if (pt->type == htons(ETH_P_ALL)) {
2595 if (nxt != &ptype_all)
2596 goto found;
2597 hash = 0;
2598 nxt = ptype_base[0].next;
2599 } else
2600 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2601
2602 while (nxt == &ptype_base[hash]) {
2603 if (++hash >= PTYPE_HASH_SIZE)
2604 return NULL;
2605 nxt = ptype_base[hash].next;
2606 }
2607 found:
2608 return list_entry(nxt, struct packet_type, list);
2609 }
2610
2611 static void ptype_seq_stop(struct seq_file *seq, void *v)
2612 __releases(RCU)
2613 {
2614 rcu_read_unlock();
2615 }
2616
2617 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2618 {
2619 #ifdef CONFIG_KALLSYMS
2620 unsigned long offset = 0, symsize;
2621 const char *symname;
2622 char *modname;
2623 char namebuf[128];
2624
2625 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2626 &modname, namebuf);
2627
2628 if (symname) {
2629 char *delim = ":";
2630
2631 if (!modname)
2632 modname = delim = "";
2633 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2634 symname, offset);
2635 return;
2636 }
2637 #endif
2638
2639 seq_printf(seq, "[%p]", sym);
2640 }
2641
2642 static int ptype_seq_show(struct seq_file *seq, void *v)
2643 {
2644 struct packet_type *pt = v;
2645
2646 if (v == SEQ_START_TOKEN)
2647 seq_puts(seq, "Type Device Function\n");
2648 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2649 if (pt->type == htons(ETH_P_ALL))
2650 seq_puts(seq, "ALL ");
2651 else
2652 seq_printf(seq, "%04x", ntohs(pt->type));
2653
2654 seq_printf(seq, " %-8s ",
2655 pt->dev ? pt->dev->name : "");
2656 ptype_seq_decode(seq, pt->func);
2657 seq_putc(seq, '\n');
2658 }
2659
2660 return 0;
2661 }
2662
2663 static const struct seq_operations ptype_seq_ops = {
2664 .start = ptype_seq_start,
2665 .next = ptype_seq_next,
2666 .stop = ptype_seq_stop,
2667 .show = ptype_seq_show,
2668 };
2669
2670 static int ptype_seq_open(struct inode *inode, struct file *file)
2671 {
2672 return seq_open_net(inode, file, &ptype_seq_ops,
2673 sizeof(struct seq_net_private));
2674 }
2675
2676 static const struct file_operations ptype_seq_fops = {
2677 .owner = THIS_MODULE,
2678 .open = ptype_seq_open,
2679 .read = seq_read,
2680 .llseek = seq_lseek,
2681 .release = seq_release_net,
2682 };
2683
2684
2685 static int __net_init dev_proc_net_init(struct net *net)
2686 {
2687 int rc = -ENOMEM;
2688
2689 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2690 goto out;
2691 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2692 goto out_dev;
2693 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2694 goto out_softnet;
2695
2696 if (wext_proc_init(net))
2697 goto out_ptype;
2698 rc = 0;
2699 out:
2700 return rc;
2701 out_ptype:
2702 proc_net_remove(net, "ptype");
2703 out_softnet:
2704 proc_net_remove(net, "softnet_stat");
2705 out_dev:
2706 proc_net_remove(net, "dev");
2707 goto out;
2708 }
2709
2710 static void __net_exit dev_proc_net_exit(struct net *net)
2711 {
2712 wext_proc_exit(net);
2713
2714 proc_net_remove(net, "ptype");
2715 proc_net_remove(net, "softnet_stat");
2716 proc_net_remove(net, "dev");
2717 }
2718
2719 static struct pernet_operations __net_initdata dev_proc_ops = {
2720 .init = dev_proc_net_init,
2721 .exit = dev_proc_net_exit,
2722 };
2723
2724 static int __init dev_proc_init(void)
2725 {
2726 return register_pernet_subsys(&dev_proc_ops);
2727 }
2728 #else
2729 #define dev_proc_init() 0
2730 #endif /* CONFIG_PROC_FS */
2731
2732
2733 /**
2734 * netdev_set_master - set up master/slave pair
2735 * @slave: slave device
2736 * @master: new master device
2737 *
2738 * Changes the master device of the slave. Pass %NULL to break the
2739 * bonding. The caller must hold the RTNL semaphore. On a failure
2740 * a negative errno code is returned. On success the reference counts
2741 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2742 * function returns zero.
2743 */
2744 int netdev_set_master(struct net_device *slave, struct net_device *master)
2745 {
2746 struct net_device *old = slave->master;
2747
2748 ASSERT_RTNL();
2749
2750 if (master) {
2751 if (old)
2752 return -EBUSY;
2753 dev_hold(master);
2754 }
2755
2756 slave->master = master;
2757
2758 synchronize_net();
2759
2760 if (old)
2761 dev_put(old);
2762
2763 if (master)
2764 slave->flags |= IFF_SLAVE;
2765 else
2766 slave->flags &= ~IFF_SLAVE;
2767
2768 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2769 return 0;
2770 }
2771
2772 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2773 {
2774 unsigned short old_flags = dev->flags;
2775
2776 ASSERT_RTNL();
2777
2778 if ((dev->promiscuity += inc) == 0)
2779 dev->flags &= ~IFF_PROMISC;
2780 else
2781 dev->flags |= IFF_PROMISC;
2782 if (dev->flags != old_flags) {
2783 printk(KERN_INFO "device %s %s promiscuous mode\n",
2784 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2785 "left");
2786 if (audit_enabled)
2787 audit_log(current->audit_context, GFP_ATOMIC,
2788 AUDIT_ANOM_PROMISCUOUS,
2789 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2790 dev->name, (dev->flags & IFF_PROMISC),
2791 (old_flags & IFF_PROMISC),
2792 audit_get_loginuid(current),
2793 current->uid, current->gid,
2794 audit_get_sessionid(current));
2795
2796 if (dev->change_rx_flags)
2797 dev->change_rx_flags(dev, IFF_PROMISC);
2798 }
2799 }
2800
2801 /**
2802 * dev_set_promiscuity - update promiscuity count on a device
2803 * @dev: device
2804 * @inc: modifier
2805 *
2806 * Add or remove promiscuity from a device. While the count in the device
2807 * remains above zero the interface remains promiscuous. Once it hits zero
2808 * the device reverts back to normal filtering operation. A negative inc
2809 * value is used to drop promiscuity on the device.
2810 */
2811 void dev_set_promiscuity(struct net_device *dev, int inc)
2812 {
2813 unsigned short old_flags = dev->flags;
2814
2815 __dev_set_promiscuity(dev, inc);
2816 if (dev->flags != old_flags)
2817 dev_set_rx_mode(dev);
2818 }
2819
2820 /**
2821 * dev_set_allmulti - update allmulti count on a device
2822 * @dev: device
2823 * @inc: modifier
2824 *
2825 * Add or remove reception of all multicast frames to a device. While the
2826 * count in the device remains above zero the interface remains listening
2827 * to all interfaces. Once it hits zero the device reverts back to normal
2828 * filtering operation. A negative @inc value is used to drop the counter
2829 * when releasing a resource needing all multicasts.
2830 */
2831
2832 void dev_set_allmulti(struct net_device *dev, int inc)
2833 {
2834 unsigned short old_flags = dev->flags;
2835
2836 ASSERT_RTNL();
2837
2838 dev->flags |= IFF_ALLMULTI;
2839 if ((dev->allmulti += inc) == 0)
2840 dev->flags &= ~IFF_ALLMULTI;
2841 if (dev->flags ^ old_flags) {
2842 if (dev->change_rx_flags)
2843 dev->change_rx_flags(dev, IFF_ALLMULTI);
2844 dev_set_rx_mode(dev);
2845 }
2846 }
2847
2848 /*
2849 * Upload unicast and multicast address lists to device and
2850 * configure RX filtering. When the device doesn't support unicast
2851 * filtering it is put in promiscuous mode while unicast addresses
2852 * are present.
2853 */
2854 void __dev_set_rx_mode(struct net_device *dev)
2855 {
2856 /* dev_open will call this function so the list will stay sane. */
2857 if (!(dev->flags&IFF_UP))
2858 return;
2859
2860 if (!netif_device_present(dev))
2861 return;
2862
2863 if (dev->set_rx_mode)
2864 dev->set_rx_mode(dev);
2865 else {
2866 /* Unicast addresses changes may only happen under the rtnl,
2867 * therefore calling __dev_set_promiscuity here is safe.
2868 */
2869 if (dev->uc_count > 0 && !dev->uc_promisc) {
2870 __dev_set_promiscuity(dev, 1);
2871 dev->uc_promisc = 1;
2872 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2873 __dev_set_promiscuity(dev, -1);
2874 dev->uc_promisc = 0;
2875 }
2876
2877 if (dev->set_multicast_list)
2878 dev->set_multicast_list(dev);
2879 }
2880 }
2881
2882 void dev_set_rx_mode(struct net_device *dev)
2883 {
2884 netif_tx_lock_bh(dev);
2885 __dev_set_rx_mode(dev);
2886 netif_tx_unlock_bh(dev);
2887 }
2888
2889 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2890 void *addr, int alen, int glbl)
2891 {
2892 struct dev_addr_list *da;
2893
2894 for (; (da = *list) != NULL; list = &da->next) {
2895 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2896 alen == da->da_addrlen) {
2897 if (glbl) {
2898 int old_glbl = da->da_gusers;
2899 da->da_gusers = 0;
2900 if (old_glbl == 0)
2901 break;
2902 }
2903 if (--da->da_users)
2904 return 0;
2905
2906 *list = da->next;
2907 kfree(da);
2908 (*count)--;
2909 return 0;
2910 }
2911 }
2912 return -ENOENT;
2913 }
2914
2915 int __dev_addr_add(struct dev_addr_list **list, int *count,
2916 void *addr, int alen, int glbl)
2917 {
2918 struct dev_addr_list *da;
2919
2920 for (da = *list; da != NULL; da = da->next) {
2921 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2922 da->da_addrlen == alen) {
2923 if (glbl) {
2924 int old_glbl = da->da_gusers;
2925 da->da_gusers = 1;
2926 if (old_glbl)
2927 return 0;
2928 }
2929 da->da_users++;
2930 return 0;
2931 }
2932 }
2933
2934 da = kzalloc(sizeof(*da), GFP_ATOMIC);
2935 if (da == NULL)
2936 return -ENOMEM;
2937 memcpy(da->da_addr, addr, alen);
2938 da->da_addrlen = alen;
2939 da->da_users = 1;
2940 da->da_gusers = glbl ? 1 : 0;
2941 da->next = *list;
2942 *list = da;
2943 (*count)++;
2944 return 0;
2945 }
2946
2947 /**
2948 * dev_unicast_delete - Release secondary unicast address.
2949 * @dev: device
2950 * @addr: address to delete
2951 * @alen: length of @addr
2952 *
2953 * Release reference to a secondary unicast address and remove it
2954 * from the device if the reference count drops to zero.
2955 *
2956 * The caller must hold the rtnl_mutex.
2957 */
2958 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2959 {
2960 int err;
2961
2962 ASSERT_RTNL();
2963
2964 netif_tx_lock_bh(dev);
2965 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2966 if (!err)
2967 __dev_set_rx_mode(dev);
2968 netif_tx_unlock_bh(dev);
2969 return err;
2970 }
2971 EXPORT_SYMBOL(dev_unicast_delete);
2972
2973 /**
2974 * dev_unicast_add - add a secondary unicast address
2975 * @dev: device
2976 * @addr: address to delete
2977 * @alen: length of @addr
2978 *
2979 * Add a secondary unicast address to the device or increase
2980 * the reference count if it already exists.
2981 *
2982 * The caller must hold the rtnl_mutex.
2983 */
2984 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2985 {
2986 int err;
2987
2988 ASSERT_RTNL();
2989
2990 netif_tx_lock_bh(dev);
2991 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2992 if (!err)
2993 __dev_set_rx_mode(dev);
2994 netif_tx_unlock_bh(dev);
2995 return err;
2996 }
2997 EXPORT_SYMBOL(dev_unicast_add);
2998
2999 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3000 struct dev_addr_list **from, int *from_count)
3001 {
3002 struct dev_addr_list *da, *next;
3003 int err = 0;
3004
3005 da = *from;
3006 while (da != NULL) {
3007 next = da->next;
3008 if (!da->da_synced) {
3009 err = __dev_addr_add(to, to_count,
3010 da->da_addr, da->da_addrlen, 0);
3011 if (err < 0)
3012 break;
3013 da->da_synced = 1;
3014 da->da_users++;
3015 } else if (da->da_users == 1) {
3016 __dev_addr_delete(to, to_count,
3017 da->da_addr, da->da_addrlen, 0);
3018 __dev_addr_delete(from, from_count,
3019 da->da_addr, da->da_addrlen, 0);
3020 }
3021 da = next;
3022 }
3023 return err;
3024 }
3025
3026 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3027 struct dev_addr_list **from, int *from_count)
3028 {
3029 struct dev_addr_list *da, *next;
3030
3031 da = *from;
3032 while (da != NULL) {
3033 next = da->next;
3034 if (da->da_synced) {
3035 __dev_addr_delete(to, to_count,
3036 da->da_addr, da->da_addrlen, 0);
3037 da->da_synced = 0;
3038 __dev_addr_delete(from, from_count,
3039 da->da_addr, da->da_addrlen, 0);
3040 }
3041 da = next;
3042 }
3043 }
3044
3045 /**
3046 * dev_unicast_sync - Synchronize device's unicast list to another device
3047 * @to: destination device
3048 * @from: source device
3049 *
3050 * Add newly added addresses to the destination device and release
3051 * addresses that have no users left. The source device must be
3052 * locked by netif_tx_lock_bh.
3053 *
3054 * This function is intended to be called from the dev->set_rx_mode
3055 * function of layered software devices.
3056 */
3057 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3058 {
3059 int err = 0;
3060
3061 netif_tx_lock_bh(to);
3062 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3063 &from->uc_list, &from->uc_count);
3064 if (!err)
3065 __dev_set_rx_mode(to);
3066 netif_tx_unlock_bh(to);
3067 return err;
3068 }
3069 EXPORT_SYMBOL(dev_unicast_sync);
3070
3071 /**
3072 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3073 * @to: destination device
3074 * @from: source device
3075 *
3076 * Remove all addresses that were added to the destination device by
3077 * dev_unicast_sync(). This function is intended to be called from the
3078 * dev->stop function of layered software devices.
3079 */
3080 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3081 {
3082 netif_tx_lock_bh(from);
3083 netif_tx_lock_bh(to);
3084
3085 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3086 &from->uc_list, &from->uc_count);
3087 __dev_set_rx_mode(to);
3088
3089 netif_tx_unlock_bh(to);
3090 netif_tx_unlock_bh(from);
3091 }
3092 EXPORT_SYMBOL(dev_unicast_unsync);
3093
3094 static void __dev_addr_discard(struct dev_addr_list **list)
3095 {
3096 struct dev_addr_list *tmp;
3097
3098 while (*list != NULL) {
3099 tmp = *list;
3100 *list = tmp->next;
3101 if (tmp->da_users > tmp->da_gusers)
3102 printk("__dev_addr_discard: address leakage! "
3103 "da_users=%d\n", tmp->da_users);
3104 kfree(tmp);
3105 }
3106 }
3107
3108 static void dev_addr_discard(struct net_device *dev)
3109 {
3110 netif_tx_lock_bh(dev);
3111
3112 __dev_addr_discard(&dev->uc_list);
3113 dev->uc_count = 0;
3114
3115 __dev_addr_discard(&dev->mc_list);
3116 dev->mc_count = 0;
3117
3118 netif_tx_unlock_bh(dev);
3119 }
3120
3121 unsigned dev_get_flags(const struct net_device *dev)
3122 {
3123 unsigned flags;
3124
3125 flags = (dev->flags & ~(IFF_PROMISC |
3126 IFF_ALLMULTI |
3127 IFF_RUNNING |
3128 IFF_LOWER_UP |
3129 IFF_DORMANT)) |
3130 (dev->gflags & (IFF_PROMISC |
3131 IFF_ALLMULTI));
3132
3133 if (netif_running(dev)) {
3134 if (netif_oper_up(dev))
3135 flags |= IFF_RUNNING;
3136 if (netif_carrier_ok(dev))
3137 flags |= IFF_LOWER_UP;
3138 if (netif_dormant(dev))
3139 flags |= IFF_DORMANT;
3140 }
3141
3142 return flags;
3143 }
3144
3145 int dev_change_flags(struct net_device *dev, unsigned flags)
3146 {
3147 int ret, changes;
3148 int old_flags = dev->flags;
3149
3150 ASSERT_RTNL();
3151
3152 /*
3153 * Set the flags on our device.
3154 */
3155
3156 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3157 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3158 IFF_AUTOMEDIA)) |
3159 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3160 IFF_ALLMULTI));
3161
3162 /*
3163 * Load in the correct multicast list now the flags have changed.
3164 */
3165
3166 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3167 dev->change_rx_flags(dev, IFF_MULTICAST);
3168
3169 dev_set_rx_mode(dev);
3170
3171 /*
3172 * Have we downed the interface. We handle IFF_UP ourselves
3173 * according to user attempts to set it, rather than blindly
3174 * setting it.
3175 */
3176
3177 ret = 0;
3178 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3179 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3180
3181 if (!ret)
3182 dev_set_rx_mode(dev);
3183 }
3184
3185 if (dev->flags & IFF_UP &&
3186 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3187 IFF_VOLATILE)))
3188 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3189
3190 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3191 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3192 dev->gflags ^= IFF_PROMISC;
3193 dev_set_promiscuity(dev, inc);
3194 }
3195
3196 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3197 is important. Some (broken) drivers set IFF_PROMISC, when
3198 IFF_ALLMULTI is requested not asking us and not reporting.
3199 */
3200 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3201 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3202 dev->gflags ^= IFF_ALLMULTI;
3203 dev_set_allmulti(dev, inc);
3204 }
3205
3206 /* Exclude state transition flags, already notified */
3207 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3208 if (changes)
3209 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3210
3211 return ret;
3212 }
3213
3214 int dev_set_mtu(struct net_device *dev, int new_mtu)
3215 {
3216 int err;
3217
3218 if (new_mtu == dev->mtu)
3219 return 0;
3220
3221 /* MTU must be positive. */
3222 if (new_mtu < 0)
3223 return -EINVAL;
3224
3225 if (!netif_device_present(dev))
3226 return -ENODEV;
3227
3228 err = 0;
3229 if (dev->change_mtu)
3230 err = dev->change_mtu(dev, new_mtu);
3231 else
3232 dev->mtu = new_mtu;
3233 if (!err && dev->flags & IFF_UP)
3234 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3235 return err;
3236 }
3237
3238 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3239 {
3240 int err;
3241
3242 if (!dev->set_mac_address)
3243 return -EOPNOTSUPP;
3244 if (sa->sa_family != dev->type)
3245 return -EINVAL;
3246 if (!netif_device_present(dev))
3247 return -ENODEV;
3248 err = dev->set_mac_address(dev, sa);
3249 if (!err)
3250 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3251 return err;
3252 }
3253
3254 /*
3255 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3256 */
3257 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3258 {
3259 int err;
3260 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3261
3262 if (!dev)
3263 return -ENODEV;
3264
3265 switch (cmd) {
3266 case SIOCGIFFLAGS: /* Get interface flags */
3267 ifr->ifr_flags = dev_get_flags(dev);
3268 return 0;
3269
3270 case SIOCGIFMETRIC: /* Get the metric on the interface
3271 (currently unused) */
3272 ifr->ifr_metric = 0;
3273 return 0;
3274
3275 case SIOCGIFMTU: /* Get the MTU of a device */
3276 ifr->ifr_mtu = dev->mtu;
3277 return 0;
3278
3279 case SIOCGIFHWADDR:
3280 if (!dev->addr_len)
3281 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3282 else
3283 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3284 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3285 ifr->ifr_hwaddr.sa_family = dev->type;
3286 return 0;
3287
3288 case SIOCGIFSLAVE:
3289 err = -EINVAL;
3290 break;
3291
3292 case SIOCGIFMAP:
3293 ifr->ifr_map.mem_start = dev->mem_start;
3294 ifr->ifr_map.mem_end = dev->mem_end;
3295 ifr->ifr_map.base_addr = dev->base_addr;
3296 ifr->ifr_map.irq = dev->irq;
3297 ifr->ifr_map.dma = dev->dma;
3298 ifr->ifr_map.port = dev->if_port;
3299 return 0;
3300
3301 case SIOCGIFINDEX:
3302 ifr->ifr_ifindex = dev->ifindex;
3303 return 0;
3304
3305 case SIOCGIFTXQLEN:
3306 ifr->ifr_qlen = dev->tx_queue_len;
3307 return 0;
3308
3309 default:
3310 /* dev_ioctl() should ensure this case
3311 * is never reached
3312 */
3313 WARN_ON(1);
3314 err = -EINVAL;
3315 break;
3316
3317 }
3318 return err;
3319 }
3320
3321 /*
3322 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3323 */
3324 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3325 {
3326 int err;
3327 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3328
3329 if (!dev)
3330 return -ENODEV;
3331
3332 switch (cmd) {
3333 case SIOCSIFFLAGS: /* Set interface flags */
3334 return dev_change_flags(dev, ifr->ifr_flags);
3335
3336 case SIOCSIFMETRIC: /* Set the metric on the interface
3337 (currently unused) */
3338 return -EOPNOTSUPP;
3339
3340 case SIOCSIFMTU: /* Set the MTU of a device */
3341 return dev_set_mtu(dev, ifr->ifr_mtu);
3342
3343 case SIOCSIFHWADDR:
3344 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3345
3346 case SIOCSIFHWBROADCAST:
3347 if (ifr->ifr_hwaddr.sa_family != dev->type)
3348 return -EINVAL;
3349 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3350 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3351 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3352 return 0;
3353
3354 case SIOCSIFMAP:
3355 if (dev->set_config) {
3356 if (!netif_device_present(dev))
3357 return -ENODEV;
3358 return dev->set_config(dev, &ifr->ifr_map);
3359 }
3360 return -EOPNOTSUPP;
3361
3362 case SIOCADDMULTI:
3363 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3364 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3365 return -EINVAL;
3366 if (!netif_device_present(dev))
3367 return -ENODEV;
3368 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3369 dev->addr_len, 1);
3370
3371 case SIOCDELMULTI:
3372 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3373 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3374 return -EINVAL;
3375 if (!netif_device_present(dev))
3376 return -ENODEV;
3377 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3378 dev->addr_len, 1);
3379
3380 case SIOCSIFTXQLEN:
3381 if (ifr->ifr_qlen < 0)
3382 return -EINVAL;
3383 dev->tx_queue_len = ifr->ifr_qlen;
3384 return 0;
3385
3386 case SIOCSIFNAME:
3387 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3388 return dev_change_name(dev, ifr->ifr_newname);
3389
3390 /*
3391 * Unknown or private ioctl
3392 */
3393
3394 default:
3395 if ((cmd >= SIOCDEVPRIVATE &&
3396 cmd <= SIOCDEVPRIVATE + 15) ||
3397 cmd == SIOCBONDENSLAVE ||
3398 cmd == SIOCBONDRELEASE ||
3399 cmd == SIOCBONDSETHWADDR ||
3400 cmd == SIOCBONDSLAVEINFOQUERY ||
3401 cmd == SIOCBONDINFOQUERY ||
3402 cmd == SIOCBONDCHANGEACTIVE ||
3403 cmd == SIOCGMIIPHY ||
3404 cmd == SIOCGMIIREG ||
3405 cmd == SIOCSMIIREG ||
3406 cmd == SIOCBRADDIF ||
3407 cmd == SIOCBRDELIF ||
3408 cmd == SIOCWANDEV) {
3409 err = -EOPNOTSUPP;
3410 if (dev->do_ioctl) {
3411 if (netif_device_present(dev))
3412 err = dev->do_ioctl(dev, ifr,
3413 cmd);
3414 else
3415 err = -ENODEV;
3416 }
3417 } else
3418 err = -EINVAL;
3419
3420 }
3421 return err;
3422 }
3423
3424 /*
3425 * This function handles all "interface"-type I/O control requests. The actual
3426 * 'doing' part of this is dev_ifsioc above.
3427 */
3428
3429 /**
3430 * dev_ioctl - network device ioctl
3431 * @net: the applicable net namespace
3432 * @cmd: command to issue
3433 * @arg: pointer to a struct ifreq in user space
3434 *
3435 * Issue ioctl functions to devices. This is normally called by the
3436 * user space syscall interfaces but can sometimes be useful for
3437 * other purposes. The return value is the return from the syscall if
3438 * positive or a negative errno code on error.
3439 */
3440
3441 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3442 {
3443 struct ifreq ifr;
3444 int ret;
3445 char *colon;
3446
3447 /* One special case: SIOCGIFCONF takes ifconf argument
3448 and requires shared lock, because it sleeps writing
3449 to user space.
3450 */
3451
3452 if (cmd == SIOCGIFCONF) {
3453 rtnl_lock();
3454 ret = dev_ifconf(net, (char __user *) arg);
3455 rtnl_unlock();
3456 return ret;
3457 }
3458 if (cmd == SIOCGIFNAME)
3459 return dev_ifname(net, (struct ifreq __user *)arg);
3460
3461 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3462 return -EFAULT;
3463
3464 ifr.ifr_name[IFNAMSIZ-1] = 0;
3465
3466 colon = strchr(ifr.ifr_name, ':');
3467 if (colon)
3468 *colon = 0;
3469
3470 /*
3471 * See which interface the caller is talking about.
3472 */
3473
3474 switch (cmd) {
3475 /*
3476 * These ioctl calls:
3477 * - can be done by all.
3478 * - atomic and do not require locking.
3479 * - return a value
3480 */
3481 case SIOCGIFFLAGS:
3482 case SIOCGIFMETRIC:
3483 case SIOCGIFMTU:
3484 case SIOCGIFHWADDR:
3485 case SIOCGIFSLAVE:
3486 case SIOCGIFMAP:
3487 case SIOCGIFINDEX:
3488 case SIOCGIFTXQLEN:
3489 dev_load(net, ifr.ifr_name);
3490 read_lock(&dev_base_lock);
3491 ret = dev_ifsioc_locked(net, &ifr, cmd);
3492 read_unlock(&dev_base_lock);
3493 if (!ret) {
3494 if (colon)
3495 *colon = ':';
3496 if (copy_to_user(arg, &ifr,
3497 sizeof(struct ifreq)))
3498 ret = -EFAULT;
3499 }
3500 return ret;
3501
3502 case SIOCETHTOOL:
3503 dev_load(net, ifr.ifr_name);
3504 rtnl_lock();
3505 ret = dev_ethtool(net, &ifr);
3506 rtnl_unlock();
3507 if (!ret) {
3508 if (colon)
3509 *colon = ':';
3510 if (copy_to_user(arg, &ifr,
3511 sizeof(struct ifreq)))
3512 ret = -EFAULT;
3513 }
3514 return ret;
3515
3516 /*
3517 * These ioctl calls:
3518 * - require superuser power.
3519 * - require strict serialization.
3520 * - return a value
3521 */
3522 case SIOCGMIIPHY:
3523 case SIOCGMIIREG:
3524 case SIOCSIFNAME:
3525 if (!capable(CAP_NET_ADMIN))
3526 return -EPERM;
3527 dev_load(net, ifr.ifr_name);
3528 rtnl_lock();
3529 ret = dev_ifsioc(net, &ifr, cmd);
3530 rtnl_unlock();
3531 if (!ret) {
3532 if (colon)
3533 *colon = ':';
3534 if (copy_to_user(arg, &ifr,
3535 sizeof(struct ifreq)))
3536 ret = -EFAULT;
3537 }
3538 return ret;
3539
3540 /*
3541 * These ioctl calls:
3542 * - require superuser power.
3543 * - require strict serialization.
3544 * - do not return a value
3545 */
3546 case SIOCSIFFLAGS:
3547 case SIOCSIFMETRIC:
3548 case SIOCSIFMTU:
3549 case SIOCSIFMAP:
3550 case SIOCSIFHWADDR:
3551 case SIOCSIFSLAVE:
3552 case SIOCADDMULTI:
3553 case SIOCDELMULTI:
3554 case SIOCSIFHWBROADCAST:
3555 case SIOCSIFTXQLEN:
3556 case SIOCSMIIREG:
3557 case SIOCBONDENSLAVE:
3558 case SIOCBONDRELEASE:
3559 case SIOCBONDSETHWADDR:
3560 case SIOCBONDCHANGEACTIVE:
3561 case SIOCBRADDIF:
3562 case SIOCBRDELIF:
3563 if (!capable(CAP_NET_ADMIN))
3564 return -EPERM;
3565 /* fall through */
3566 case SIOCBONDSLAVEINFOQUERY:
3567 case SIOCBONDINFOQUERY:
3568 dev_load(net, ifr.ifr_name);
3569 rtnl_lock();
3570 ret = dev_ifsioc(net, &ifr, cmd);
3571 rtnl_unlock();
3572 return ret;
3573
3574 case SIOCGIFMEM:
3575 /* Get the per device memory space. We can add this but
3576 * currently do not support it */
3577 case SIOCSIFMEM:
3578 /* Set the per device memory buffer space.
3579 * Not applicable in our case */
3580 case SIOCSIFLINK:
3581 return -EINVAL;
3582
3583 /*
3584 * Unknown or private ioctl.
3585 */
3586 default:
3587 if (cmd == SIOCWANDEV ||
3588 (cmd >= SIOCDEVPRIVATE &&
3589 cmd <= SIOCDEVPRIVATE + 15)) {
3590 dev_load(net, ifr.ifr_name);
3591 rtnl_lock();
3592 ret = dev_ifsioc(net, &ifr, cmd);
3593 rtnl_unlock();
3594 if (!ret && copy_to_user(arg, &ifr,
3595 sizeof(struct ifreq)))
3596 ret = -EFAULT;
3597 return ret;
3598 }
3599 /* Take care of Wireless Extensions */
3600 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3601 return wext_handle_ioctl(net, &ifr, cmd, arg);
3602 return -EINVAL;
3603 }
3604 }
3605
3606
3607 /**
3608 * dev_new_index - allocate an ifindex
3609 * @net: the applicable net namespace
3610 *
3611 * Returns a suitable unique value for a new device interface
3612 * number. The caller must hold the rtnl semaphore or the
3613 * dev_base_lock to be sure it remains unique.
3614 */
3615 static int dev_new_index(struct net *net)
3616 {
3617 static int ifindex;
3618 for (;;) {
3619 if (++ifindex <= 0)
3620 ifindex = 1;
3621 if (!__dev_get_by_index(net, ifindex))
3622 return ifindex;
3623 }
3624 }
3625
3626 /* Delayed registration/unregisteration */
3627 static DEFINE_SPINLOCK(net_todo_list_lock);
3628 static LIST_HEAD(net_todo_list);
3629
3630 static void net_set_todo(struct net_device *dev)
3631 {
3632 spin_lock(&net_todo_list_lock);
3633 list_add_tail(&dev->todo_list, &net_todo_list);
3634 spin_unlock(&net_todo_list_lock);
3635 }
3636
3637 static void rollback_registered(struct net_device *dev)
3638 {
3639 BUG_ON(dev_boot_phase);
3640 ASSERT_RTNL();
3641
3642 /* Some devices call without registering for initialization unwind. */
3643 if (dev->reg_state == NETREG_UNINITIALIZED) {
3644 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3645 "was registered\n", dev->name, dev);
3646
3647 WARN_ON(1);
3648 return;
3649 }
3650
3651 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3652
3653 /* If device is running, close it first. */
3654 dev_close(dev);
3655
3656 /* And unlink it from device chain. */
3657 unlist_netdevice(dev);
3658
3659 dev->reg_state = NETREG_UNREGISTERING;
3660
3661 synchronize_net();
3662
3663 /* Shutdown queueing discipline. */
3664 dev_shutdown(dev);
3665
3666
3667 /* Notify protocols, that we are about to destroy
3668 this device. They should clean all the things.
3669 */
3670 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3671
3672 /*
3673 * Flush the unicast and multicast chains
3674 */
3675 dev_addr_discard(dev);
3676
3677 if (dev->uninit)
3678 dev->uninit(dev);
3679
3680 /* Notifier chain MUST detach us from master device. */
3681 BUG_TRAP(!dev->master);
3682
3683 /* Remove entries from kobject tree */
3684 netdev_unregister_kobject(dev);
3685
3686 synchronize_net();
3687
3688 dev_put(dev);
3689 }
3690
3691 /**
3692 * register_netdevice - register a network device
3693 * @dev: device to register
3694 *
3695 * Take a completed network device structure and add it to the kernel
3696 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3697 * chain. 0 is returned on success. A negative errno code is returned
3698 * on a failure to set up the device, or if the name is a duplicate.
3699 *
3700 * Callers must hold the rtnl semaphore. You may want
3701 * register_netdev() instead of this.
3702 *
3703 * BUGS:
3704 * The locking appears insufficient to guarantee two parallel registers
3705 * will not get the same name.
3706 */
3707
3708 int register_netdevice(struct net_device *dev)
3709 {
3710 struct hlist_head *head;
3711 struct hlist_node *p;
3712 int ret;
3713 struct net *net;
3714
3715 BUG_ON(dev_boot_phase);
3716 ASSERT_RTNL();
3717
3718 might_sleep();
3719
3720 /* When net_device's are persistent, this will be fatal. */
3721 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3722 BUG_ON(!dev_net(dev));
3723 net = dev_net(dev);
3724
3725 spin_lock_init(&dev->queue_lock);
3726 spin_lock_init(&dev->_xmit_lock);
3727 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3728 dev->xmit_lock_owner = -1;
3729 spin_lock_init(&dev->ingress_lock);
3730
3731 dev->iflink = -1;
3732
3733 /* Init, if this function is available */
3734 if (dev->init) {
3735 ret = dev->init(dev);
3736 if (ret) {
3737 if (ret > 0)
3738 ret = -EIO;
3739 goto out;
3740 }
3741 }
3742
3743 if (!dev_valid_name(dev->name)) {
3744 ret = -EINVAL;
3745 goto err_uninit;
3746 }
3747
3748 dev->ifindex = dev_new_index(net);
3749 if (dev->iflink == -1)
3750 dev->iflink = dev->ifindex;
3751
3752 /* Check for existence of name */
3753 head = dev_name_hash(net, dev->name);
3754 hlist_for_each(p, head) {
3755 struct net_device *d
3756 = hlist_entry(p, struct net_device, name_hlist);
3757 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3758 ret = -EEXIST;
3759 goto err_uninit;
3760 }
3761 }
3762
3763 /* Fix illegal checksum combinations */
3764 if ((dev->features & NETIF_F_HW_CSUM) &&
3765 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3766 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3767 dev->name);
3768 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3769 }
3770
3771 if ((dev->features & NETIF_F_NO_CSUM) &&
3772 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3773 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3774 dev->name);
3775 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3776 }
3777
3778
3779 /* Fix illegal SG+CSUM combinations. */
3780 if ((dev->features & NETIF_F_SG) &&
3781 !(dev->features & NETIF_F_ALL_CSUM)) {
3782 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3783 dev->name);
3784 dev->features &= ~NETIF_F_SG;
3785 }
3786
3787 /* TSO requires that SG is present as well. */
3788 if ((dev->features & NETIF_F_TSO) &&
3789 !(dev->features & NETIF_F_SG)) {
3790 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3791 dev->name);
3792 dev->features &= ~NETIF_F_TSO;
3793 }
3794 if (dev->features & NETIF_F_UFO) {
3795 if (!(dev->features & NETIF_F_HW_CSUM)) {
3796 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3797 "NETIF_F_HW_CSUM feature.\n",
3798 dev->name);
3799 dev->features &= ~NETIF_F_UFO;
3800 }
3801 if (!(dev->features & NETIF_F_SG)) {
3802 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3803 "NETIF_F_SG feature.\n",
3804 dev->name);
3805 dev->features &= ~NETIF_F_UFO;
3806 }
3807 }
3808
3809 netdev_initialize_kobject(dev);
3810 ret = netdev_register_kobject(dev);
3811 if (ret)
3812 goto err_uninit;
3813 dev->reg_state = NETREG_REGISTERED;
3814
3815 /*
3816 * Default initial state at registry is that the
3817 * device is present.
3818 */
3819
3820 set_bit(__LINK_STATE_PRESENT, &dev->state);
3821
3822 dev_init_scheduler(dev);
3823 dev_hold(dev);
3824 list_netdevice(dev);
3825
3826 /* Notify protocols, that a new device appeared. */
3827 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3828 ret = notifier_to_errno(ret);
3829 if (ret) {
3830 rollback_registered(dev);
3831 dev->reg_state = NETREG_UNREGISTERED;
3832 }
3833
3834 out:
3835 return ret;
3836
3837 err_uninit:
3838 if (dev->uninit)
3839 dev->uninit(dev);
3840 goto out;
3841 }
3842
3843 /**
3844 * register_netdev - register a network device
3845 * @dev: device to register
3846 *
3847 * Take a completed network device structure and add it to the kernel
3848 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3849 * chain. 0 is returned on success. A negative errno code is returned
3850 * on a failure to set up the device, or if the name is a duplicate.
3851 *
3852 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3853 * and expands the device name if you passed a format string to
3854 * alloc_netdev.
3855 */
3856 int register_netdev(struct net_device *dev)
3857 {
3858 int err;
3859
3860 rtnl_lock();
3861
3862 /*
3863 * If the name is a format string the caller wants us to do a
3864 * name allocation.
3865 */
3866 if (strchr(dev->name, '%')) {
3867 err = dev_alloc_name(dev, dev->name);
3868 if (err < 0)
3869 goto out;
3870 }
3871
3872 err = register_netdevice(dev);
3873 out:
3874 rtnl_unlock();
3875 return err;
3876 }
3877 EXPORT_SYMBOL(register_netdev);
3878
3879 /*
3880 * netdev_wait_allrefs - wait until all references are gone.
3881 *
3882 * This is called when unregistering network devices.
3883 *
3884 * Any protocol or device that holds a reference should register
3885 * for netdevice notification, and cleanup and put back the
3886 * reference if they receive an UNREGISTER event.
3887 * We can get stuck here if buggy protocols don't correctly
3888 * call dev_put.
3889 */
3890 static void netdev_wait_allrefs(struct net_device *dev)
3891 {
3892 unsigned long rebroadcast_time, warning_time;
3893
3894 rebroadcast_time = warning_time = jiffies;
3895 while (atomic_read(&dev->refcnt) != 0) {
3896 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3897 rtnl_lock();
3898
3899 /* Rebroadcast unregister notification */
3900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3901
3902 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3903 &dev->state)) {
3904 /* We must not have linkwatch events
3905 * pending on unregister. If this
3906 * happens, we simply run the queue
3907 * unscheduled, resulting in a noop
3908 * for this device.
3909 */
3910 linkwatch_run_queue();
3911 }
3912
3913 __rtnl_unlock();
3914
3915 rebroadcast_time = jiffies;
3916 }
3917
3918 msleep(250);
3919
3920 if (time_after(jiffies, warning_time + 10 * HZ)) {
3921 printk(KERN_EMERG "unregister_netdevice: "
3922 "waiting for %s to become free. Usage "
3923 "count = %d\n",
3924 dev->name, atomic_read(&dev->refcnt));
3925 warning_time = jiffies;
3926 }
3927 }
3928 }
3929
3930 /* The sequence is:
3931 *
3932 * rtnl_lock();
3933 * ...
3934 * register_netdevice(x1);
3935 * register_netdevice(x2);
3936 * ...
3937 * unregister_netdevice(y1);
3938 * unregister_netdevice(y2);
3939 * ...
3940 * rtnl_unlock();
3941 * free_netdev(y1);
3942 * free_netdev(y2);
3943 *
3944 * We are invoked by rtnl_unlock() after it drops the semaphore.
3945 * This allows us to deal with problems:
3946 * 1) We can delete sysfs objects which invoke hotplug
3947 * without deadlocking with linkwatch via keventd.
3948 * 2) Since we run with the RTNL semaphore not held, we can sleep
3949 * safely in order to wait for the netdev refcnt to drop to zero.
3950 */
3951 static DEFINE_MUTEX(net_todo_run_mutex);
3952 void netdev_run_todo(void)
3953 {
3954 struct list_head list;
3955
3956 /* Need to guard against multiple cpu's getting out of order. */
3957 mutex_lock(&net_todo_run_mutex);
3958
3959 /* Not safe to do outside the semaphore. We must not return
3960 * until all unregister events invoked by the local processor
3961 * have been completed (either by this todo run, or one on
3962 * another cpu).
3963 */
3964 if (list_empty(&net_todo_list))
3965 goto out;
3966
3967 /* Snapshot list, allow later requests */
3968 spin_lock(&net_todo_list_lock);
3969 list_replace_init(&net_todo_list, &list);
3970 spin_unlock(&net_todo_list_lock);
3971
3972 while (!list_empty(&list)) {
3973 struct net_device *dev
3974 = list_entry(list.next, struct net_device, todo_list);
3975 list_del(&dev->todo_list);
3976
3977 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3978 printk(KERN_ERR "network todo '%s' but state %d\n",
3979 dev->name, dev->reg_state);
3980 dump_stack();
3981 continue;
3982 }
3983
3984 dev->reg_state = NETREG_UNREGISTERED;
3985
3986 netdev_wait_allrefs(dev);
3987
3988 /* paranoia */
3989 BUG_ON(atomic_read(&dev->refcnt));
3990 BUG_TRAP(!dev->ip_ptr);
3991 BUG_TRAP(!dev->ip6_ptr);
3992 BUG_TRAP(!dev->dn_ptr);
3993
3994 if (dev->destructor)
3995 dev->destructor(dev);
3996
3997 /* Free network device */
3998 kobject_put(&dev->dev.kobj);
3999 }
4000
4001 out:
4002 mutex_unlock(&net_todo_run_mutex);
4003 }
4004
4005 static struct net_device_stats *internal_stats(struct net_device *dev)
4006 {
4007 return &dev->stats;
4008 }
4009
4010 /**
4011 * alloc_netdev_mq - allocate network device
4012 * @sizeof_priv: size of private data to allocate space for
4013 * @name: device name format string
4014 * @setup: callback to initialize device
4015 * @queue_count: the number of subqueues to allocate
4016 *
4017 * Allocates a struct net_device with private data area for driver use
4018 * and performs basic initialization. Also allocates subquue structs
4019 * for each queue on the device at the end of the netdevice.
4020 */
4021 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4022 void (*setup)(struct net_device *), unsigned int queue_count)
4023 {
4024 void *p;
4025 struct net_device *dev;
4026 int alloc_size;
4027
4028 BUG_ON(strlen(name) >= sizeof(dev->name));
4029
4030 alloc_size = sizeof(struct net_device) +
4031 sizeof(struct net_device_subqueue) * (queue_count - 1);
4032 if (sizeof_priv) {
4033 /* ensure 32-byte alignment of private area */
4034 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4035 alloc_size += sizeof_priv;
4036 }
4037 /* ensure 32-byte alignment of whole construct */
4038 alloc_size += NETDEV_ALIGN_CONST;
4039
4040 p = kzalloc(alloc_size, GFP_KERNEL);
4041 if (!p) {
4042 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4043 return NULL;
4044 }
4045
4046 dev = (struct net_device *)
4047 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4048 dev->padded = (char *)dev - (char *)p;
4049 dev_net_set(dev, &init_net);
4050
4051 if (sizeof_priv) {
4052 dev->priv = ((char *)dev +
4053 ((sizeof(struct net_device) +
4054 (sizeof(struct net_device_subqueue) *
4055 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4056 & ~NETDEV_ALIGN_CONST));
4057 }
4058
4059 dev->egress_subqueue_count = queue_count;
4060 dev->gso_max_size = GSO_MAX_SIZE;
4061
4062 dev->get_stats = internal_stats;
4063 netpoll_netdev_init(dev);
4064 setup(dev);
4065 strcpy(dev->name, name);
4066 return dev;
4067 }
4068 EXPORT_SYMBOL(alloc_netdev_mq);
4069
4070 /**
4071 * free_netdev - free network device
4072 * @dev: device
4073 *
4074 * This function does the last stage of destroying an allocated device
4075 * interface. The reference to the device object is released.
4076 * If this is the last reference then it will be freed.
4077 */
4078 void free_netdev(struct net_device *dev)
4079 {
4080 release_net(dev_net(dev));
4081
4082 /* Compatibility with error handling in drivers */
4083 if (dev->reg_state == NETREG_UNINITIALIZED) {
4084 kfree((char *)dev - dev->padded);
4085 return;
4086 }
4087
4088 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4089 dev->reg_state = NETREG_RELEASED;
4090
4091 /* will free via device release */
4092 put_device(&dev->dev);
4093 }
4094
4095 /* Synchronize with packet receive processing. */
4096 void synchronize_net(void)
4097 {
4098 might_sleep();
4099 synchronize_rcu();
4100 }
4101
4102 /**
4103 * unregister_netdevice - remove device from the kernel
4104 * @dev: device
4105 *
4106 * This function shuts down a device interface and removes it
4107 * from the kernel tables.
4108 *
4109 * Callers must hold the rtnl semaphore. You may want
4110 * unregister_netdev() instead of this.
4111 */
4112
4113 void unregister_netdevice(struct net_device *dev)
4114 {
4115 ASSERT_RTNL();
4116
4117 rollback_registered(dev);
4118 /* Finish processing unregister after unlock */
4119 net_set_todo(dev);
4120 }
4121
4122 /**
4123 * unregister_netdev - remove device from the kernel
4124 * @dev: device
4125 *
4126 * This function shuts down a device interface and removes it
4127 * from the kernel tables.
4128 *
4129 * This is just a wrapper for unregister_netdevice that takes
4130 * the rtnl semaphore. In general you want to use this and not
4131 * unregister_netdevice.
4132 */
4133 void unregister_netdev(struct net_device *dev)
4134 {
4135 rtnl_lock();
4136 unregister_netdevice(dev);
4137 rtnl_unlock();
4138 }
4139
4140 EXPORT_SYMBOL(unregister_netdev);
4141
4142 /**
4143 * dev_change_net_namespace - move device to different nethost namespace
4144 * @dev: device
4145 * @net: network namespace
4146 * @pat: If not NULL name pattern to try if the current device name
4147 * is already taken in the destination network namespace.
4148 *
4149 * This function shuts down a device interface and moves it
4150 * to a new network namespace. On success 0 is returned, on
4151 * a failure a netagive errno code is returned.
4152 *
4153 * Callers must hold the rtnl semaphore.
4154 */
4155
4156 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4157 {
4158 char buf[IFNAMSIZ];
4159 const char *destname;
4160 int err;
4161
4162 ASSERT_RTNL();
4163
4164 /* Don't allow namespace local devices to be moved. */
4165 err = -EINVAL;
4166 if (dev->features & NETIF_F_NETNS_LOCAL)
4167 goto out;
4168
4169 /* Ensure the device has been registrered */
4170 err = -EINVAL;
4171 if (dev->reg_state != NETREG_REGISTERED)
4172 goto out;
4173
4174 /* Get out if there is nothing todo */
4175 err = 0;
4176 if (net_eq(dev_net(dev), net))
4177 goto out;
4178
4179 /* Pick the destination device name, and ensure
4180 * we can use it in the destination network namespace.
4181 */
4182 err = -EEXIST;
4183 destname = dev->name;
4184 if (__dev_get_by_name(net, destname)) {
4185 /* We get here if we can't use the current device name */
4186 if (!pat)
4187 goto out;
4188 if (!dev_valid_name(pat))
4189 goto out;
4190 if (strchr(pat, '%')) {
4191 if (__dev_alloc_name(net, pat, buf) < 0)
4192 goto out;
4193 destname = buf;
4194 } else
4195 destname = pat;
4196 if (__dev_get_by_name(net, destname))
4197 goto out;
4198 }
4199
4200 /*
4201 * And now a mini version of register_netdevice unregister_netdevice.
4202 */
4203
4204 /* If device is running close it first. */
4205 dev_close(dev);
4206
4207 /* And unlink it from device chain */
4208 err = -ENODEV;
4209 unlist_netdevice(dev);
4210
4211 synchronize_net();
4212
4213 /* Shutdown queueing discipline. */
4214 dev_shutdown(dev);
4215
4216 /* Notify protocols, that we are about to destroy
4217 this device. They should clean all the things.
4218 */
4219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4220
4221 /*
4222 * Flush the unicast and multicast chains
4223 */
4224 dev_addr_discard(dev);
4225
4226 /* Actually switch the network namespace */
4227 dev_net_set(dev, net);
4228
4229 /* Assign the new device name */
4230 if (destname != dev->name)
4231 strcpy(dev->name, destname);
4232
4233 /* If there is an ifindex conflict assign a new one */
4234 if (__dev_get_by_index(net, dev->ifindex)) {
4235 int iflink = (dev->iflink == dev->ifindex);
4236 dev->ifindex = dev_new_index(net);
4237 if (iflink)
4238 dev->iflink = dev->ifindex;
4239 }
4240
4241 /* Fixup kobjects */
4242 netdev_unregister_kobject(dev);
4243 err = netdev_register_kobject(dev);
4244 WARN_ON(err);
4245
4246 /* Add the device back in the hashes */
4247 list_netdevice(dev);
4248
4249 /* Notify protocols, that a new device appeared. */
4250 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4251
4252 synchronize_net();
4253 err = 0;
4254 out:
4255 return err;
4256 }
4257
4258 static int dev_cpu_callback(struct notifier_block *nfb,
4259 unsigned long action,
4260 void *ocpu)
4261 {
4262 struct sk_buff **list_skb;
4263 struct net_device **list_net;
4264 struct sk_buff *skb;
4265 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4266 struct softnet_data *sd, *oldsd;
4267
4268 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4269 return NOTIFY_OK;
4270
4271 local_irq_disable();
4272 cpu = smp_processor_id();
4273 sd = &per_cpu(softnet_data, cpu);
4274 oldsd = &per_cpu(softnet_data, oldcpu);
4275
4276 /* Find end of our completion_queue. */
4277 list_skb = &sd->completion_queue;
4278 while (*list_skb)
4279 list_skb = &(*list_skb)->next;
4280 /* Append completion queue from offline CPU. */
4281 *list_skb = oldsd->completion_queue;
4282 oldsd->completion_queue = NULL;
4283
4284 /* Find end of our output_queue. */
4285 list_net = &sd->output_queue;
4286 while (*list_net)
4287 list_net = &(*list_net)->next_sched;
4288 /* Append output queue from offline CPU. */
4289 *list_net = oldsd->output_queue;
4290 oldsd->output_queue = NULL;
4291
4292 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4293 local_irq_enable();
4294
4295 /* Process offline CPU's input_pkt_queue */
4296 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4297 netif_rx(skb);
4298
4299 return NOTIFY_OK;
4300 }
4301
4302 #ifdef CONFIG_NET_DMA
4303 /**
4304 * net_dma_rebalance - try to maintain one DMA channel per CPU
4305 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4306 *
4307 * This is called when the number of channels allocated to the net_dma client
4308 * changes. The net_dma client tries to have one DMA channel per CPU.
4309 */
4310
4311 static void net_dma_rebalance(struct net_dma *net_dma)
4312 {
4313 unsigned int cpu, i, n, chan_idx;
4314 struct dma_chan *chan;
4315
4316 if (cpus_empty(net_dma->channel_mask)) {
4317 for_each_online_cpu(cpu)
4318 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4319 return;
4320 }
4321
4322 i = 0;
4323 cpu = first_cpu(cpu_online_map);
4324
4325 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4326 chan = net_dma->channels[chan_idx];
4327
4328 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4329 + (i < (num_online_cpus() %
4330 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4331
4332 while(n) {
4333 per_cpu(softnet_data, cpu).net_dma = chan;
4334 cpu = next_cpu(cpu, cpu_online_map);
4335 n--;
4336 }
4337 i++;
4338 }
4339 }
4340
4341 /**
4342 * netdev_dma_event - event callback for the net_dma_client
4343 * @client: should always be net_dma_client
4344 * @chan: DMA channel for the event
4345 * @state: DMA state to be handled
4346 */
4347 static enum dma_state_client
4348 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4349 enum dma_state state)
4350 {
4351 int i, found = 0, pos = -1;
4352 struct net_dma *net_dma =
4353 container_of(client, struct net_dma, client);
4354 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4355
4356 spin_lock(&net_dma->lock);
4357 switch (state) {
4358 case DMA_RESOURCE_AVAILABLE:
4359 for (i = 0; i < nr_cpu_ids; i++)
4360 if (net_dma->channels[i] == chan) {
4361 found = 1;
4362 break;
4363 } else if (net_dma->channels[i] == NULL && pos < 0)
4364 pos = i;
4365
4366 if (!found && pos >= 0) {
4367 ack = DMA_ACK;
4368 net_dma->channels[pos] = chan;
4369 cpu_set(pos, net_dma->channel_mask);
4370 net_dma_rebalance(net_dma);
4371 }
4372 break;
4373 case DMA_RESOURCE_REMOVED:
4374 for (i = 0; i < nr_cpu_ids; i++)
4375 if (net_dma->channels[i] == chan) {
4376 found = 1;
4377 pos = i;
4378 break;
4379 }
4380
4381 if (found) {
4382 ack = DMA_ACK;
4383 cpu_clear(pos, net_dma->channel_mask);
4384 net_dma->channels[i] = NULL;
4385 net_dma_rebalance(net_dma);
4386 }
4387 break;
4388 default:
4389 break;
4390 }
4391 spin_unlock(&net_dma->lock);
4392
4393 return ack;
4394 }
4395
4396 /**
4397 * netdev_dma_regiser - register the networking subsystem as a DMA client
4398 */
4399 static int __init netdev_dma_register(void)
4400 {
4401 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4402 GFP_KERNEL);
4403 if (unlikely(!net_dma.channels)) {
4404 printk(KERN_NOTICE
4405 "netdev_dma: no memory for net_dma.channels\n");
4406 return -ENOMEM;
4407 }
4408 spin_lock_init(&net_dma.lock);
4409 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4410 dma_async_client_register(&net_dma.client);
4411 dma_async_client_chan_request(&net_dma.client);
4412 return 0;
4413 }
4414
4415 #else
4416 static int __init netdev_dma_register(void) { return -ENODEV; }
4417 #endif /* CONFIG_NET_DMA */
4418
4419 /**
4420 * netdev_compute_feature - compute conjunction of two feature sets
4421 * @all: first feature set
4422 * @one: second feature set
4423 *
4424 * Computes a new feature set after adding a device with feature set
4425 * @one to the master device with current feature set @all. Returns
4426 * the new feature set.
4427 */
4428 int netdev_compute_features(unsigned long all, unsigned long one)
4429 {
4430 /* if device needs checksumming, downgrade to hw checksumming */
4431 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4432 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4433
4434 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4435 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4436 all ^= NETIF_F_HW_CSUM
4437 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4438
4439 if (one & NETIF_F_GSO)
4440 one |= NETIF_F_GSO_SOFTWARE;
4441 one |= NETIF_F_GSO;
4442
4443 /* If even one device supports robust GSO, enable it for all. */
4444 if (one & NETIF_F_GSO_ROBUST)
4445 all |= NETIF_F_GSO_ROBUST;
4446
4447 all &= one | NETIF_F_LLTX;
4448
4449 if (!(all & NETIF_F_ALL_CSUM))
4450 all &= ~NETIF_F_SG;
4451 if (!(all & NETIF_F_SG))
4452 all &= ~NETIF_F_GSO_MASK;
4453
4454 return all;
4455 }
4456 EXPORT_SYMBOL(netdev_compute_features);
4457
4458 static struct hlist_head *netdev_create_hash(void)
4459 {
4460 int i;
4461 struct hlist_head *hash;
4462
4463 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4464 if (hash != NULL)
4465 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4466 INIT_HLIST_HEAD(&hash[i]);
4467
4468 return hash;
4469 }
4470
4471 /* Initialize per network namespace state */
4472 static int __net_init netdev_init(struct net *net)
4473 {
4474 INIT_LIST_HEAD(&net->dev_base_head);
4475
4476 net->dev_name_head = netdev_create_hash();
4477 if (net->dev_name_head == NULL)
4478 goto err_name;
4479
4480 net->dev_index_head = netdev_create_hash();
4481 if (net->dev_index_head == NULL)
4482 goto err_idx;
4483
4484 return 0;
4485
4486 err_idx:
4487 kfree(net->dev_name_head);
4488 err_name:
4489 return -ENOMEM;
4490 }
4491
4492 static void __net_exit netdev_exit(struct net *net)
4493 {
4494 kfree(net->dev_name_head);
4495 kfree(net->dev_index_head);
4496 }
4497
4498 static struct pernet_operations __net_initdata netdev_net_ops = {
4499 .init = netdev_init,
4500 .exit = netdev_exit,
4501 };
4502
4503 static void __net_exit default_device_exit(struct net *net)
4504 {
4505 struct net_device *dev, *next;
4506 /*
4507 * Push all migratable of the network devices back to the
4508 * initial network namespace
4509 */
4510 rtnl_lock();
4511 for_each_netdev_safe(net, dev, next) {
4512 int err;
4513 char fb_name[IFNAMSIZ];
4514
4515 /* Ignore unmoveable devices (i.e. loopback) */
4516 if (dev->features & NETIF_F_NETNS_LOCAL)
4517 continue;
4518
4519 /* Push remaing network devices to init_net */
4520 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4521 err = dev_change_net_namespace(dev, &init_net, fb_name);
4522 if (err) {
4523 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4524 __func__, dev->name, err);
4525 BUG();
4526 }
4527 }
4528 rtnl_unlock();
4529 }
4530
4531 static struct pernet_operations __net_initdata default_device_ops = {
4532 .exit = default_device_exit,
4533 };
4534
4535 /*
4536 * Initialize the DEV module. At boot time this walks the device list and
4537 * unhooks any devices that fail to initialise (normally hardware not
4538 * present) and leaves us with a valid list of present and active devices.
4539 *
4540 */
4541
4542 /*
4543 * This is called single threaded during boot, so no need
4544 * to take the rtnl semaphore.
4545 */
4546 static int __init net_dev_init(void)
4547 {
4548 int i, rc = -ENOMEM;
4549
4550 BUG_ON(!dev_boot_phase);
4551
4552 if (dev_proc_init())
4553 goto out;
4554
4555 if (netdev_kobject_init())
4556 goto out;
4557
4558 INIT_LIST_HEAD(&ptype_all);
4559 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4560 INIT_LIST_HEAD(&ptype_base[i]);
4561
4562 if (register_pernet_subsys(&netdev_net_ops))
4563 goto out;
4564
4565 if (register_pernet_device(&default_device_ops))
4566 goto out;
4567
4568 /*
4569 * Initialise the packet receive queues.
4570 */
4571
4572 for_each_possible_cpu(i) {
4573 struct softnet_data *queue;
4574
4575 queue = &per_cpu(softnet_data, i);
4576 skb_queue_head_init(&queue->input_pkt_queue);
4577 queue->completion_queue = NULL;
4578 INIT_LIST_HEAD(&queue->poll_list);
4579
4580 queue->backlog.poll = process_backlog;
4581 queue->backlog.weight = weight_p;
4582 }
4583
4584 netdev_dma_register();
4585
4586 dev_boot_phase = 0;
4587
4588 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4589 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4590
4591 hotcpu_notifier(dev_cpu_callback, 0);
4592 dst_init();
4593 dev_mcast_init();
4594 rc = 0;
4595 out:
4596 return rc;
4597 }
4598
4599 subsys_initcall(net_dev_init);
4600
4601 EXPORT_SYMBOL(__dev_get_by_index);
4602 EXPORT_SYMBOL(__dev_get_by_name);
4603 EXPORT_SYMBOL(__dev_remove_pack);
4604 EXPORT_SYMBOL(dev_valid_name);
4605 EXPORT_SYMBOL(dev_add_pack);
4606 EXPORT_SYMBOL(dev_alloc_name);
4607 EXPORT_SYMBOL(dev_close);
4608 EXPORT_SYMBOL(dev_get_by_flags);
4609 EXPORT_SYMBOL(dev_get_by_index);
4610 EXPORT_SYMBOL(dev_get_by_name);
4611 EXPORT_SYMBOL(dev_open);
4612 EXPORT_SYMBOL(dev_queue_xmit);
4613 EXPORT_SYMBOL(dev_remove_pack);
4614 EXPORT_SYMBOL(dev_set_allmulti);
4615 EXPORT_SYMBOL(dev_set_promiscuity);
4616 EXPORT_SYMBOL(dev_change_flags);
4617 EXPORT_SYMBOL(dev_set_mtu);
4618 EXPORT_SYMBOL(dev_set_mac_address);
4619 EXPORT_SYMBOL(free_netdev);
4620 EXPORT_SYMBOL(netdev_boot_setup_check);
4621 EXPORT_SYMBOL(netdev_set_master);
4622 EXPORT_SYMBOL(netdev_state_change);
4623 EXPORT_SYMBOL(netif_receive_skb);
4624 EXPORT_SYMBOL(netif_rx);
4625 EXPORT_SYMBOL(register_gifconf);
4626 EXPORT_SYMBOL(register_netdevice);
4627 EXPORT_SYMBOL(register_netdevice_notifier);
4628 EXPORT_SYMBOL(skb_checksum_help);
4629 EXPORT_SYMBOL(synchronize_net);
4630 EXPORT_SYMBOL(unregister_netdevice);
4631 EXPORT_SYMBOL(unregister_netdevice_notifier);
4632 EXPORT_SYMBOL(net_enable_timestamp);
4633 EXPORT_SYMBOL(net_disable_timestamp);
4634 EXPORT_SYMBOL(dev_get_flags);
4635
4636 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4637 EXPORT_SYMBOL(br_handle_frame_hook);
4638 EXPORT_SYMBOL(br_fdb_get_hook);
4639 EXPORT_SYMBOL(br_fdb_put_hook);
4640 #endif
4641
4642 #ifdef CONFIG_KMOD
4643 EXPORT_SYMBOL(dev_load);
4644 #endif
4645
4646 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.393591 seconds and 6 git commands to generate.