Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strcpy(s[i].name, name);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct net_device *dev)
1324 {
1325 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1326 unsigned long flags;
1327 struct softnet_data *sd;
1328
1329 local_irq_save(flags);
1330 sd = &__get_cpu_var(softnet_data);
1331 dev->next_sched = sd->output_queue;
1332 sd->output_queue = dev;
1333 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1334 local_irq_restore(flags);
1335 }
1336 }
1337 EXPORT_SYMBOL(__netif_schedule);
1338
1339 void dev_kfree_skb_irq(struct sk_buff *skb)
1340 {
1341 if (atomic_dec_and_test(&skb->users)) {
1342 struct softnet_data *sd;
1343 unsigned long flags;
1344
1345 local_irq_save(flags);
1346 sd = &__get_cpu_var(softnet_data);
1347 skb->next = sd->completion_queue;
1348 sd->completion_queue = skb;
1349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1350 local_irq_restore(flags);
1351 }
1352 }
1353 EXPORT_SYMBOL(dev_kfree_skb_irq);
1354
1355 void dev_kfree_skb_any(struct sk_buff *skb)
1356 {
1357 if (in_irq() || irqs_disabled())
1358 dev_kfree_skb_irq(skb);
1359 else
1360 dev_kfree_skb(skb);
1361 }
1362 EXPORT_SYMBOL(dev_kfree_skb_any);
1363
1364
1365 /**
1366 * netif_device_detach - mark device as removed
1367 * @dev: network device
1368 *
1369 * Mark device as removed from system and therefore no longer available.
1370 */
1371 void netif_device_detach(struct net_device *dev)
1372 {
1373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1374 netif_running(dev)) {
1375 netif_stop_queue(dev);
1376 }
1377 }
1378 EXPORT_SYMBOL(netif_device_detach);
1379
1380 /**
1381 * netif_device_attach - mark device as attached
1382 * @dev: network device
1383 *
1384 * Mark device as attached from system and restart if needed.
1385 */
1386 void netif_device_attach(struct net_device *dev)
1387 {
1388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1389 netif_running(dev)) {
1390 netif_wake_queue(dev);
1391 __netdev_watchdog_up(dev);
1392 }
1393 }
1394 EXPORT_SYMBOL(netif_device_attach);
1395
1396 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1397 {
1398 return ((features & NETIF_F_GEN_CSUM) ||
1399 ((features & NETIF_F_IP_CSUM) &&
1400 protocol == htons(ETH_P_IP)) ||
1401 ((features & NETIF_F_IPV6_CSUM) &&
1402 protocol == htons(ETH_P_IPV6)));
1403 }
1404
1405 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1406 {
1407 if (can_checksum_protocol(dev->features, skb->protocol))
1408 return true;
1409
1410 if (skb->protocol == htons(ETH_P_8021Q)) {
1411 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1412 if (can_checksum_protocol(dev->features & dev->vlan_features,
1413 veh->h_vlan_encapsulated_proto))
1414 return true;
1415 }
1416
1417 return false;
1418 }
1419
1420 /*
1421 * Invalidate hardware checksum when packet is to be mangled, and
1422 * complete checksum manually on outgoing path.
1423 */
1424 int skb_checksum_help(struct sk_buff *skb)
1425 {
1426 __wsum csum;
1427 int ret = 0, offset;
1428
1429 if (skb->ip_summed == CHECKSUM_COMPLETE)
1430 goto out_set_summed;
1431
1432 if (unlikely(skb_shinfo(skb)->gso_size)) {
1433 /* Let GSO fix up the checksum. */
1434 goto out_set_summed;
1435 }
1436
1437 offset = skb->csum_start - skb_headroom(skb);
1438 BUG_ON(offset >= skb_headlen(skb));
1439 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1440
1441 offset += skb->csum_offset;
1442 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1443
1444 if (skb_cloned(skb) &&
1445 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1446 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1447 if (ret)
1448 goto out;
1449 }
1450
1451 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1452 out_set_summed:
1453 skb->ip_summed = CHECKSUM_NONE;
1454 out:
1455 return ret;
1456 }
1457
1458 /**
1459 * skb_gso_segment - Perform segmentation on skb.
1460 * @skb: buffer to segment
1461 * @features: features for the output path (see dev->features)
1462 *
1463 * This function segments the given skb and returns a list of segments.
1464 *
1465 * It may return NULL if the skb requires no segmentation. This is
1466 * only possible when GSO is used for verifying header integrity.
1467 */
1468 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1469 {
1470 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1471 struct packet_type *ptype;
1472 __be16 type = skb->protocol;
1473 int err;
1474
1475 BUG_ON(skb_shinfo(skb)->frag_list);
1476
1477 skb_reset_mac_header(skb);
1478 skb->mac_len = skb->network_header - skb->mac_header;
1479 __skb_pull(skb, skb->mac_len);
1480
1481 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1482 if (skb_header_cloned(skb) &&
1483 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1484 return ERR_PTR(err);
1485 }
1486
1487 rcu_read_lock();
1488 list_for_each_entry_rcu(ptype,
1489 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1490 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1491 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1492 err = ptype->gso_send_check(skb);
1493 segs = ERR_PTR(err);
1494 if (err || skb_gso_ok(skb, features))
1495 break;
1496 __skb_push(skb, (skb->data -
1497 skb_network_header(skb)));
1498 }
1499 segs = ptype->gso_segment(skb, features);
1500 break;
1501 }
1502 }
1503 rcu_read_unlock();
1504
1505 __skb_push(skb, skb->data - skb_mac_header(skb));
1506
1507 return segs;
1508 }
1509
1510 EXPORT_SYMBOL(skb_gso_segment);
1511
1512 /* Take action when hardware reception checksum errors are detected. */
1513 #ifdef CONFIG_BUG
1514 void netdev_rx_csum_fault(struct net_device *dev)
1515 {
1516 if (net_ratelimit()) {
1517 printk(KERN_ERR "%s: hw csum failure.\n",
1518 dev ? dev->name : "<unknown>");
1519 dump_stack();
1520 }
1521 }
1522 EXPORT_SYMBOL(netdev_rx_csum_fault);
1523 #endif
1524
1525 /* Actually, we should eliminate this check as soon as we know, that:
1526 * 1. IOMMU is present and allows to map all the memory.
1527 * 2. No high memory really exists on this machine.
1528 */
1529
1530 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1531 {
1532 #ifdef CONFIG_HIGHMEM
1533 int i;
1534
1535 if (dev->features & NETIF_F_HIGHDMA)
1536 return 0;
1537
1538 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1539 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1540 return 1;
1541
1542 #endif
1543 return 0;
1544 }
1545
1546 struct dev_gso_cb {
1547 void (*destructor)(struct sk_buff *skb);
1548 };
1549
1550 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1551
1552 static void dev_gso_skb_destructor(struct sk_buff *skb)
1553 {
1554 struct dev_gso_cb *cb;
1555
1556 do {
1557 struct sk_buff *nskb = skb->next;
1558
1559 skb->next = nskb->next;
1560 nskb->next = NULL;
1561 kfree_skb(nskb);
1562 } while (skb->next);
1563
1564 cb = DEV_GSO_CB(skb);
1565 if (cb->destructor)
1566 cb->destructor(skb);
1567 }
1568
1569 /**
1570 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1571 * @skb: buffer to segment
1572 *
1573 * This function segments the given skb and stores the list of segments
1574 * in skb->next.
1575 */
1576 static int dev_gso_segment(struct sk_buff *skb)
1577 {
1578 struct net_device *dev = skb->dev;
1579 struct sk_buff *segs;
1580 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1581 NETIF_F_SG : 0);
1582
1583 segs = skb_gso_segment(skb, features);
1584
1585 /* Verifying header integrity only. */
1586 if (!segs)
1587 return 0;
1588
1589 if (IS_ERR(segs))
1590 return PTR_ERR(segs);
1591
1592 skb->next = segs;
1593 DEV_GSO_CB(skb)->destructor = skb->destructor;
1594 skb->destructor = dev_gso_skb_destructor;
1595
1596 return 0;
1597 }
1598
1599 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1600 {
1601 if (likely(!skb->next)) {
1602 if (!list_empty(&ptype_all))
1603 dev_queue_xmit_nit(skb, dev);
1604
1605 if (netif_needs_gso(dev, skb)) {
1606 if (unlikely(dev_gso_segment(skb)))
1607 goto out_kfree_skb;
1608 if (skb->next)
1609 goto gso;
1610 }
1611
1612 return dev->hard_start_xmit(skb, dev);
1613 }
1614
1615 gso:
1616 do {
1617 struct sk_buff *nskb = skb->next;
1618 int rc;
1619
1620 skb->next = nskb->next;
1621 nskb->next = NULL;
1622 rc = dev->hard_start_xmit(nskb, dev);
1623 if (unlikely(rc)) {
1624 nskb->next = skb->next;
1625 skb->next = nskb;
1626 return rc;
1627 }
1628 if (unlikely((netif_queue_stopped(dev) ||
1629 netif_subqueue_stopped(dev, skb)) &&
1630 skb->next))
1631 return NETDEV_TX_BUSY;
1632 } while (skb->next);
1633
1634 skb->destructor = DEV_GSO_CB(skb)->destructor;
1635
1636 out_kfree_skb:
1637 kfree_skb(skb);
1638 return 0;
1639 }
1640
1641 /**
1642 * dev_queue_xmit - transmit a buffer
1643 * @skb: buffer to transmit
1644 *
1645 * Queue a buffer for transmission to a network device. The caller must
1646 * have set the device and priority and built the buffer before calling
1647 * this function. The function can be called from an interrupt.
1648 *
1649 * A negative errno code is returned on a failure. A success does not
1650 * guarantee the frame will be transmitted as it may be dropped due
1651 * to congestion or traffic shaping.
1652 *
1653 * -----------------------------------------------------------------------------------
1654 * I notice this method can also return errors from the queue disciplines,
1655 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1656 * be positive.
1657 *
1658 * Regardless of the return value, the skb is consumed, so it is currently
1659 * difficult to retry a send to this method. (You can bump the ref count
1660 * before sending to hold a reference for retry if you are careful.)
1661 *
1662 * When calling this method, interrupts MUST be enabled. This is because
1663 * the BH enable code must have IRQs enabled so that it will not deadlock.
1664 * --BLG
1665 */
1666
1667 int dev_queue_xmit(struct sk_buff *skb)
1668 {
1669 struct net_device *dev = skb->dev;
1670 struct Qdisc *q;
1671 int rc = -ENOMEM;
1672
1673 /* GSO will handle the following emulations directly. */
1674 if (netif_needs_gso(dev, skb))
1675 goto gso;
1676
1677 if (skb_shinfo(skb)->frag_list &&
1678 !(dev->features & NETIF_F_FRAGLIST) &&
1679 __skb_linearize(skb))
1680 goto out_kfree_skb;
1681
1682 /* Fragmented skb is linearized if device does not support SG,
1683 * or if at least one of fragments is in highmem and device
1684 * does not support DMA from it.
1685 */
1686 if (skb_shinfo(skb)->nr_frags &&
1687 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1688 __skb_linearize(skb))
1689 goto out_kfree_skb;
1690
1691 /* If packet is not checksummed and device does not support
1692 * checksumming for this protocol, complete checksumming here.
1693 */
1694 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1695 skb_set_transport_header(skb, skb->csum_start -
1696 skb_headroom(skb));
1697 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1698 goto out_kfree_skb;
1699 }
1700
1701 gso:
1702 spin_lock_prefetch(&dev->queue_lock);
1703
1704 /* Disable soft irqs for various locks below. Also
1705 * stops preemption for RCU.
1706 */
1707 rcu_read_lock_bh();
1708
1709 /* Updates of qdisc are serialized by queue_lock.
1710 * The struct Qdisc which is pointed to by qdisc is now a
1711 * rcu structure - it may be accessed without acquiring
1712 * a lock (but the structure may be stale.) The freeing of the
1713 * qdisc will be deferred until it's known that there are no
1714 * more references to it.
1715 *
1716 * If the qdisc has an enqueue function, we still need to
1717 * hold the queue_lock before calling it, since queue_lock
1718 * also serializes access to the device queue.
1719 */
1720
1721 q = rcu_dereference(dev->qdisc);
1722 #ifdef CONFIG_NET_CLS_ACT
1723 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1724 #endif
1725 if (q->enqueue) {
1726 /* Grab device queue */
1727 spin_lock(&dev->queue_lock);
1728 q = dev->qdisc;
1729 if (q->enqueue) {
1730 /* reset queue_mapping to zero */
1731 skb_set_queue_mapping(skb, 0);
1732 rc = q->enqueue(skb, q);
1733 qdisc_run(dev);
1734 spin_unlock(&dev->queue_lock);
1735
1736 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1737 goto out;
1738 }
1739 spin_unlock(&dev->queue_lock);
1740 }
1741
1742 /* The device has no queue. Common case for software devices:
1743 loopback, all the sorts of tunnels...
1744
1745 Really, it is unlikely that netif_tx_lock protection is necessary
1746 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1747 counters.)
1748 However, it is possible, that they rely on protection
1749 made by us here.
1750
1751 Check this and shot the lock. It is not prone from deadlocks.
1752 Either shot noqueue qdisc, it is even simpler 8)
1753 */
1754 if (dev->flags & IFF_UP) {
1755 int cpu = smp_processor_id(); /* ok because BHs are off */
1756
1757 if (dev->xmit_lock_owner != cpu) {
1758
1759 HARD_TX_LOCK(dev, cpu);
1760
1761 if (!netif_queue_stopped(dev) &&
1762 !netif_subqueue_stopped(dev, skb)) {
1763 rc = 0;
1764 if (!dev_hard_start_xmit(skb, dev)) {
1765 HARD_TX_UNLOCK(dev);
1766 goto out;
1767 }
1768 }
1769 HARD_TX_UNLOCK(dev);
1770 if (net_ratelimit())
1771 printk(KERN_CRIT "Virtual device %s asks to "
1772 "queue packet!\n", dev->name);
1773 } else {
1774 /* Recursion is detected! It is possible,
1775 * unfortunately */
1776 if (net_ratelimit())
1777 printk(KERN_CRIT "Dead loop on virtual device "
1778 "%s, fix it urgently!\n", dev->name);
1779 }
1780 }
1781
1782 rc = -ENETDOWN;
1783 rcu_read_unlock_bh();
1784
1785 out_kfree_skb:
1786 kfree_skb(skb);
1787 return rc;
1788 out:
1789 rcu_read_unlock_bh();
1790 return rc;
1791 }
1792
1793
1794 /*=======================================================================
1795 Receiver routines
1796 =======================================================================*/
1797
1798 int netdev_max_backlog __read_mostly = 1000;
1799 int netdev_budget __read_mostly = 300;
1800 int weight_p __read_mostly = 64; /* old backlog weight */
1801
1802 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1803
1804
1805 /**
1806 * netif_rx - post buffer to the network code
1807 * @skb: buffer to post
1808 *
1809 * This function receives a packet from a device driver and queues it for
1810 * the upper (protocol) levels to process. It always succeeds. The buffer
1811 * may be dropped during processing for congestion control or by the
1812 * protocol layers.
1813 *
1814 * return values:
1815 * NET_RX_SUCCESS (no congestion)
1816 * NET_RX_DROP (packet was dropped)
1817 *
1818 */
1819
1820 int netif_rx(struct sk_buff *skb)
1821 {
1822 struct softnet_data *queue;
1823 unsigned long flags;
1824
1825 /* if netpoll wants it, pretend we never saw it */
1826 if (netpoll_rx(skb))
1827 return NET_RX_DROP;
1828
1829 if (!skb->tstamp.tv64)
1830 net_timestamp(skb);
1831
1832 /*
1833 * The code is rearranged so that the path is the most
1834 * short when CPU is congested, but is still operating.
1835 */
1836 local_irq_save(flags);
1837 queue = &__get_cpu_var(softnet_data);
1838
1839 __get_cpu_var(netdev_rx_stat).total++;
1840 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1841 if (queue->input_pkt_queue.qlen) {
1842 enqueue:
1843 dev_hold(skb->dev);
1844 __skb_queue_tail(&queue->input_pkt_queue, skb);
1845 local_irq_restore(flags);
1846 return NET_RX_SUCCESS;
1847 }
1848
1849 napi_schedule(&queue->backlog);
1850 goto enqueue;
1851 }
1852
1853 __get_cpu_var(netdev_rx_stat).dropped++;
1854 local_irq_restore(flags);
1855
1856 kfree_skb(skb);
1857 return NET_RX_DROP;
1858 }
1859
1860 int netif_rx_ni(struct sk_buff *skb)
1861 {
1862 int err;
1863
1864 preempt_disable();
1865 err = netif_rx(skb);
1866 if (local_softirq_pending())
1867 do_softirq();
1868 preempt_enable();
1869
1870 return err;
1871 }
1872
1873 EXPORT_SYMBOL(netif_rx_ni);
1874
1875 static inline struct net_device *skb_bond(struct sk_buff *skb)
1876 {
1877 struct net_device *dev = skb->dev;
1878
1879 if (dev->master) {
1880 if (skb_bond_should_drop(skb)) {
1881 kfree_skb(skb);
1882 return NULL;
1883 }
1884 skb->dev = dev->master;
1885 }
1886
1887 return dev;
1888 }
1889
1890
1891 static void net_tx_action(struct softirq_action *h)
1892 {
1893 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1894
1895 if (sd->completion_queue) {
1896 struct sk_buff *clist;
1897
1898 local_irq_disable();
1899 clist = sd->completion_queue;
1900 sd->completion_queue = NULL;
1901 local_irq_enable();
1902
1903 while (clist) {
1904 struct sk_buff *skb = clist;
1905 clist = clist->next;
1906
1907 BUG_TRAP(!atomic_read(&skb->users));
1908 __kfree_skb(skb);
1909 }
1910 }
1911
1912 if (sd->output_queue) {
1913 struct net_device *head;
1914
1915 local_irq_disable();
1916 head = sd->output_queue;
1917 sd->output_queue = NULL;
1918 local_irq_enable();
1919
1920 while (head) {
1921 struct net_device *dev = head;
1922 head = head->next_sched;
1923
1924 smp_mb__before_clear_bit();
1925 clear_bit(__LINK_STATE_SCHED, &dev->state);
1926
1927 if (spin_trylock(&dev->queue_lock)) {
1928 qdisc_run(dev);
1929 spin_unlock(&dev->queue_lock);
1930 } else {
1931 netif_schedule(dev);
1932 }
1933 }
1934 }
1935 }
1936
1937 static inline int deliver_skb(struct sk_buff *skb,
1938 struct packet_type *pt_prev,
1939 struct net_device *orig_dev)
1940 {
1941 atomic_inc(&skb->users);
1942 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1943 }
1944
1945 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1946 /* These hooks defined here for ATM */
1947 struct net_bridge;
1948 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1949 unsigned char *addr);
1950 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1951
1952 /*
1953 * If bridge module is loaded call bridging hook.
1954 * returns NULL if packet was consumed.
1955 */
1956 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1957 struct sk_buff *skb) __read_mostly;
1958 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1959 struct packet_type **pt_prev, int *ret,
1960 struct net_device *orig_dev)
1961 {
1962 struct net_bridge_port *port;
1963
1964 if (skb->pkt_type == PACKET_LOOPBACK ||
1965 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1966 return skb;
1967
1968 if (*pt_prev) {
1969 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1970 *pt_prev = NULL;
1971 }
1972
1973 return br_handle_frame_hook(port, skb);
1974 }
1975 #else
1976 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1977 #endif
1978
1979 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1980 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1981 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1982
1983 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1984 struct packet_type **pt_prev,
1985 int *ret,
1986 struct net_device *orig_dev)
1987 {
1988 if (skb->dev->macvlan_port == NULL)
1989 return skb;
1990
1991 if (*pt_prev) {
1992 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1993 *pt_prev = NULL;
1994 }
1995 return macvlan_handle_frame_hook(skb);
1996 }
1997 #else
1998 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1999 #endif
2000
2001 #ifdef CONFIG_NET_CLS_ACT
2002 /* TODO: Maybe we should just force sch_ingress to be compiled in
2003 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2004 * a compare and 2 stores extra right now if we dont have it on
2005 * but have CONFIG_NET_CLS_ACT
2006 * NOTE: This doesnt stop any functionality; if you dont have
2007 * the ingress scheduler, you just cant add policies on ingress.
2008 *
2009 */
2010 static int ing_filter(struct sk_buff *skb)
2011 {
2012 struct Qdisc *q;
2013 struct net_device *dev = skb->dev;
2014 int result = TC_ACT_OK;
2015 u32 ttl = G_TC_RTTL(skb->tc_verd);
2016
2017 if (MAX_RED_LOOP < ttl++) {
2018 printk(KERN_WARNING
2019 "Redir loop detected Dropping packet (%d->%d)\n",
2020 skb->iif, dev->ifindex);
2021 return TC_ACT_SHOT;
2022 }
2023
2024 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2025 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2026
2027 spin_lock(&dev->ingress_lock);
2028 if ((q = dev->qdisc_ingress) != NULL)
2029 result = q->enqueue(skb, q);
2030 spin_unlock(&dev->ingress_lock);
2031
2032 return result;
2033 }
2034
2035 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2036 struct packet_type **pt_prev,
2037 int *ret, struct net_device *orig_dev)
2038 {
2039 if (!skb->dev->qdisc_ingress)
2040 goto out;
2041
2042 if (*pt_prev) {
2043 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2044 *pt_prev = NULL;
2045 } else {
2046 /* Huh? Why does turning on AF_PACKET affect this? */
2047 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2048 }
2049
2050 switch (ing_filter(skb)) {
2051 case TC_ACT_SHOT:
2052 case TC_ACT_STOLEN:
2053 kfree_skb(skb);
2054 return NULL;
2055 }
2056
2057 out:
2058 skb->tc_verd = 0;
2059 return skb;
2060 }
2061 #endif
2062
2063 /**
2064 * netif_receive_skb - process receive buffer from network
2065 * @skb: buffer to process
2066 *
2067 * netif_receive_skb() is the main receive data processing function.
2068 * It always succeeds. The buffer may be dropped during processing
2069 * for congestion control or by the protocol layers.
2070 *
2071 * This function may only be called from softirq context and interrupts
2072 * should be enabled.
2073 *
2074 * Return values (usually ignored):
2075 * NET_RX_SUCCESS: no congestion
2076 * NET_RX_DROP: packet was dropped
2077 */
2078 int netif_receive_skb(struct sk_buff *skb)
2079 {
2080 struct packet_type *ptype, *pt_prev;
2081 struct net_device *orig_dev;
2082 int ret = NET_RX_DROP;
2083 __be16 type;
2084
2085 /* if we've gotten here through NAPI, check netpoll */
2086 if (netpoll_receive_skb(skb))
2087 return NET_RX_DROP;
2088
2089 if (!skb->tstamp.tv64)
2090 net_timestamp(skb);
2091
2092 if (!skb->iif)
2093 skb->iif = skb->dev->ifindex;
2094
2095 orig_dev = skb_bond(skb);
2096
2097 if (!orig_dev)
2098 return NET_RX_DROP;
2099
2100 __get_cpu_var(netdev_rx_stat).total++;
2101
2102 skb_reset_network_header(skb);
2103 skb_reset_transport_header(skb);
2104 skb->mac_len = skb->network_header - skb->mac_header;
2105
2106 pt_prev = NULL;
2107
2108 rcu_read_lock();
2109
2110 /* Don't receive packets in an exiting network namespace */
2111 if (!net_alive(dev_net(skb->dev)))
2112 goto out;
2113
2114 #ifdef CONFIG_NET_CLS_ACT
2115 if (skb->tc_verd & TC_NCLS) {
2116 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2117 goto ncls;
2118 }
2119 #endif
2120
2121 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2122 if (!ptype->dev || ptype->dev == skb->dev) {
2123 if (pt_prev)
2124 ret = deliver_skb(skb, pt_prev, orig_dev);
2125 pt_prev = ptype;
2126 }
2127 }
2128
2129 #ifdef CONFIG_NET_CLS_ACT
2130 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2131 if (!skb)
2132 goto out;
2133 ncls:
2134 #endif
2135
2136 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2137 if (!skb)
2138 goto out;
2139 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2140 if (!skb)
2141 goto out;
2142
2143 type = skb->protocol;
2144 list_for_each_entry_rcu(ptype,
2145 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2146 if (ptype->type == type &&
2147 (!ptype->dev || ptype->dev == skb->dev)) {
2148 if (pt_prev)
2149 ret = deliver_skb(skb, pt_prev, orig_dev);
2150 pt_prev = ptype;
2151 }
2152 }
2153
2154 if (pt_prev) {
2155 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2156 } else {
2157 kfree_skb(skb);
2158 /* Jamal, now you will not able to escape explaining
2159 * me how you were going to use this. :-)
2160 */
2161 ret = NET_RX_DROP;
2162 }
2163
2164 out:
2165 rcu_read_unlock();
2166 return ret;
2167 }
2168
2169 static int process_backlog(struct napi_struct *napi, int quota)
2170 {
2171 int work = 0;
2172 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2173 unsigned long start_time = jiffies;
2174
2175 napi->weight = weight_p;
2176 do {
2177 struct sk_buff *skb;
2178 struct net_device *dev;
2179
2180 local_irq_disable();
2181 skb = __skb_dequeue(&queue->input_pkt_queue);
2182 if (!skb) {
2183 __napi_complete(napi);
2184 local_irq_enable();
2185 break;
2186 }
2187
2188 local_irq_enable();
2189
2190 dev = skb->dev;
2191
2192 netif_receive_skb(skb);
2193
2194 dev_put(dev);
2195 } while (++work < quota && jiffies == start_time);
2196
2197 return work;
2198 }
2199
2200 /**
2201 * __napi_schedule - schedule for receive
2202 * @n: entry to schedule
2203 *
2204 * The entry's receive function will be scheduled to run
2205 */
2206 void __napi_schedule(struct napi_struct *n)
2207 {
2208 unsigned long flags;
2209
2210 local_irq_save(flags);
2211 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2212 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2213 local_irq_restore(flags);
2214 }
2215 EXPORT_SYMBOL(__napi_schedule);
2216
2217
2218 static void net_rx_action(struct softirq_action *h)
2219 {
2220 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2221 unsigned long start_time = jiffies;
2222 int budget = netdev_budget;
2223 void *have;
2224
2225 local_irq_disable();
2226
2227 while (!list_empty(list)) {
2228 struct napi_struct *n;
2229 int work, weight;
2230
2231 /* If softirq window is exhuasted then punt.
2232 *
2233 * Note that this is a slight policy change from the
2234 * previous NAPI code, which would allow up to 2
2235 * jiffies to pass before breaking out. The test
2236 * used to be "jiffies - start_time > 1".
2237 */
2238 if (unlikely(budget <= 0 || jiffies != start_time))
2239 goto softnet_break;
2240
2241 local_irq_enable();
2242
2243 /* Even though interrupts have been re-enabled, this
2244 * access is safe because interrupts can only add new
2245 * entries to the tail of this list, and only ->poll()
2246 * calls can remove this head entry from the list.
2247 */
2248 n = list_entry(list->next, struct napi_struct, poll_list);
2249
2250 have = netpoll_poll_lock(n);
2251
2252 weight = n->weight;
2253
2254 /* This NAPI_STATE_SCHED test is for avoiding a race
2255 * with netpoll's poll_napi(). Only the entity which
2256 * obtains the lock and sees NAPI_STATE_SCHED set will
2257 * actually make the ->poll() call. Therefore we avoid
2258 * accidently calling ->poll() when NAPI is not scheduled.
2259 */
2260 work = 0;
2261 if (test_bit(NAPI_STATE_SCHED, &n->state))
2262 work = n->poll(n, weight);
2263
2264 WARN_ON_ONCE(work > weight);
2265
2266 budget -= work;
2267
2268 local_irq_disable();
2269
2270 /* Drivers must not modify the NAPI state if they
2271 * consume the entire weight. In such cases this code
2272 * still "owns" the NAPI instance and therefore can
2273 * move the instance around on the list at-will.
2274 */
2275 if (unlikely(work == weight)) {
2276 if (unlikely(napi_disable_pending(n)))
2277 __napi_complete(n);
2278 else
2279 list_move_tail(&n->poll_list, list);
2280 }
2281
2282 netpoll_poll_unlock(have);
2283 }
2284 out:
2285 local_irq_enable();
2286
2287 #ifdef CONFIG_NET_DMA
2288 /*
2289 * There may not be any more sk_buffs coming right now, so push
2290 * any pending DMA copies to hardware
2291 */
2292 if (!cpus_empty(net_dma.channel_mask)) {
2293 int chan_idx;
2294 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2295 struct dma_chan *chan = net_dma.channels[chan_idx];
2296 if (chan)
2297 dma_async_memcpy_issue_pending(chan);
2298 }
2299 }
2300 #endif
2301
2302 return;
2303
2304 softnet_break:
2305 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2306 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2307 goto out;
2308 }
2309
2310 static gifconf_func_t * gifconf_list [NPROTO];
2311
2312 /**
2313 * register_gifconf - register a SIOCGIF handler
2314 * @family: Address family
2315 * @gifconf: Function handler
2316 *
2317 * Register protocol dependent address dumping routines. The handler
2318 * that is passed must not be freed or reused until it has been replaced
2319 * by another handler.
2320 */
2321 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2322 {
2323 if (family >= NPROTO)
2324 return -EINVAL;
2325 gifconf_list[family] = gifconf;
2326 return 0;
2327 }
2328
2329
2330 /*
2331 * Map an interface index to its name (SIOCGIFNAME)
2332 */
2333
2334 /*
2335 * We need this ioctl for efficient implementation of the
2336 * if_indextoname() function required by the IPv6 API. Without
2337 * it, we would have to search all the interfaces to find a
2338 * match. --pb
2339 */
2340
2341 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2342 {
2343 struct net_device *dev;
2344 struct ifreq ifr;
2345
2346 /*
2347 * Fetch the caller's info block.
2348 */
2349
2350 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2351 return -EFAULT;
2352
2353 read_lock(&dev_base_lock);
2354 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2355 if (!dev) {
2356 read_unlock(&dev_base_lock);
2357 return -ENODEV;
2358 }
2359
2360 strcpy(ifr.ifr_name, dev->name);
2361 read_unlock(&dev_base_lock);
2362
2363 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2364 return -EFAULT;
2365 return 0;
2366 }
2367
2368 /*
2369 * Perform a SIOCGIFCONF call. This structure will change
2370 * size eventually, and there is nothing I can do about it.
2371 * Thus we will need a 'compatibility mode'.
2372 */
2373
2374 static int dev_ifconf(struct net *net, char __user *arg)
2375 {
2376 struct ifconf ifc;
2377 struct net_device *dev;
2378 char __user *pos;
2379 int len;
2380 int total;
2381 int i;
2382
2383 /*
2384 * Fetch the caller's info block.
2385 */
2386
2387 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2388 return -EFAULT;
2389
2390 pos = ifc.ifc_buf;
2391 len = ifc.ifc_len;
2392
2393 /*
2394 * Loop over the interfaces, and write an info block for each.
2395 */
2396
2397 total = 0;
2398 for_each_netdev(net, dev) {
2399 for (i = 0; i < NPROTO; i++) {
2400 if (gifconf_list[i]) {
2401 int done;
2402 if (!pos)
2403 done = gifconf_list[i](dev, NULL, 0);
2404 else
2405 done = gifconf_list[i](dev, pos + total,
2406 len - total);
2407 if (done < 0)
2408 return -EFAULT;
2409 total += done;
2410 }
2411 }
2412 }
2413
2414 /*
2415 * All done. Write the updated control block back to the caller.
2416 */
2417 ifc.ifc_len = total;
2418
2419 /*
2420 * Both BSD and Solaris return 0 here, so we do too.
2421 */
2422 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2423 }
2424
2425 #ifdef CONFIG_PROC_FS
2426 /*
2427 * This is invoked by the /proc filesystem handler to display a device
2428 * in detail.
2429 */
2430 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2431 __acquires(dev_base_lock)
2432 {
2433 struct net *net = seq_file_net(seq);
2434 loff_t off;
2435 struct net_device *dev;
2436
2437 read_lock(&dev_base_lock);
2438 if (!*pos)
2439 return SEQ_START_TOKEN;
2440
2441 off = 1;
2442 for_each_netdev(net, dev)
2443 if (off++ == *pos)
2444 return dev;
2445
2446 return NULL;
2447 }
2448
2449 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2450 {
2451 struct net *net = seq_file_net(seq);
2452 ++*pos;
2453 return v == SEQ_START_TOKEN ?
2454 first_net_device(net) : next_net_device((struct net_device *)v);
2455 }
2456
2457 void dev_seq_stop(struct seq_file *seq, void *v)
2458 __releases(dev_base_lock)
2459 {
2460 read_unlock(&dev_base_lock);
2461 }
2462
2463 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2464 {
2465 struct net_device_stats *stats = dev->get_stats(dev);
2466
2467 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2468 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2469 dev->name, stats->rx_bytes, stats->rx_packets,
2470 stats->rx_errors,
2471 stats->rx_dropped + stats->rx_missed_errors,
2472 stats->rx_fifo_errors,
2473 stats->rx_length_errors + stats->rx_over_errors +
2474 stats->rx_crc_errors + stats->rx_frame_errors,
2475 stats->rx_compressed, stats->multicast,
2476 stats->tx_bytes, stats->tx_packets,
2477 stats->tx_errors, stats->tx_dropped,
2478 stats->tx_fifo_errors, stats->collisions,
2479 stats->tx_carrier_errors +
2480 stats->tx_aborted_errors +
2481 stats->tx_window_errors +
2482 stats->tx_heartbeat_errors,
2483 stats->tx_compressed);
2484 }
2485
2486 /*
2487 * Called from the PROCfs module. This now uses the new arbitrary sized
2488 * /proc/net interface to create /proc/net/dev
2489 */
2490 static int dev_seq_show(struct seq_file *seq, void *v)
2491 {
2492 if (v == SEQ_START_TOKEN)
2493 seq_puts(seq, "Inter-| Receive "
2494 " | Transmit\n"
2495 " face |bytes packets errs drop fifo frame "
2496 "compressed multicast|bytes packets errs "
2497 "drop fifo colls carrier compressed\n");
2498 else
2499 dev_seq_printf_stats(seq, v);
2500 return 0;
2501 }
2502
2503 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2504 {
2505 struct netif_rx_stats *rc = NULL;
2506
2507 while (*pos < nr_cpu_ids)
2508 if (cpu_online(*pos)) {
2509 rc = &per_cpu(netdev_rx_stat, *pos);
2510 break;
2511 } else
2512 ++*pos;
2513 return rc;
2514 }
2515
2516 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2517 {
2518 return softnet_get_online(pos);
2519 }
2520
2521 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2522 {
2523 ++*pos;
2524 return softnet_get_online(pos);
2525 }
2526
2527 static void softnet_seq_stop(struct seq_file *seq, void *v)
2528 {
2529 }
2530
2531 static int softnet_seq_show(struct seq_file *seq, void *v)
2532 {
2533 struct netif_rx_stats *s = v;
2534
2535 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2536 s->total, s->dropped, s->time_squeeze, 0,
2537 0, 0, 0, 0, /* was fastroute */
2538 s->cpu_collision );
2539 return 0;
2540 }
2541
2542 static const struct seq_operations dev_seq_ops = {
2543 .start = dev_seq_start,
2544 .next = dev_seq_next,
2545 .stop = dev_seq_stop,
2546 .show = dev_seq_show,
2547 };
2548
2549 static int dev_seq_open(struct inode *inode, struct file *file)
2550 {
2551 return seq_open_net(inode, file, &dev_seq_ops,
2552 sizeof(struct seq_net_private));
2553 }
2554
2555 static const struct file_operations dev_seq_fops = {
2556 .owner = THIS_MODULE,
2557 .open = dev_seq_open,
2558 .read = seq_read,
2559 .llseek = seq_lseek,
2560 .release = seq_release_net,
2561 };
2562
2563 static const struct seq_operations softnet_seq_ops = {
2564 .start = softnet_seq_start,
2565 .next = softnet_seq_next,
2566 .stop = softnet_seq_stop,
2567 .show = softnet_seq_show,
2568 };
2569
2570 static int softnet_seq_open(struct inode *inode, struct file *file)
2571 {
2572 return seq_open(file, &softnet_seq_ops);
2573 }
2574
2575 static const struct file_operations softnet_seq_fops = {
2576 .owner = THIS_MODULE,
2577 .open = softnet_seq_open,
2578 .read = seq_read,
2579 .llseek = seq_lseek,
2580 .release = seq_release,
2581 };
2582
2583 static void *ptype_get_idx(loff_t pos)
2584 {
2585 struct packet_type *pt = NULL;
2586 loff_t i = 0;
2587 int t;
2588
2589 list_for_each_entry_rcu(pt, &ptype_all, list) {
2590 if (i == pos)
2591 return pt;
2592 ++i;
2593 }
2594
2595 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2596 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2597 if (i == pos)
2598 return pt;
2599 ++i;
2600 }
2601 }
2602 return NULL;
2603 }
2604
2605 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2606 __acquires(RCU)
2607 {
2608 rcu_read_lock();
2609 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2610 }
2611
2612 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2613 {
2614 struct packet_type *pt;
2615 struct list_head *nxt;
2616 int hash;
2617
2618 ++*pos;
2619 if (v == SEQ_START_TOKEN)
2620 return ptype_get_idx(0);
2621
2622 pt = v;
2623 nxt = pt->list.next;
2624 if (pt->type == htons(ETH_P_ALL)) {
2625 if (nxt != &ptype_all)
2626 goto found;
2627 hash = 0;
2628 nxt = ptype_base[0].next;
2629 } else
2630 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2631
2632 while (nxt == &ptype_base[hash]) {
2633 if (++hash >= PTYPE_HASH_SIZE)
2634 return NULL;
2635 nxt = ptype_base[hash].next;
2636 }
2637 found:
2638 return list_entry(nxt, struct packet_type, list);
2639 }
2640
2641 static void ptype_seq_stop(struct seq_file *seq, void *v)
2642 __releases(RCU)
2643 {
2644 rcu_read_unlock();
2645 }
2646
2647 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2648 {
2649 #ifdef CONFIG_KALLSYMS
2650 unsigned long offset = 0, symsize;
2651 const char *symname;
2652 char *modname;
2653 char namebuf[128];
2654
2655 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2656 &modname, namebuf);
2657
2658 if (symname) {
2659 char *delim = ":";
2660
2661 if (!modname)
2662 modname = delim = "";
2663 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2664 symname, offset);
2665 return;
2666 }
2667 #endif
2668
2669 seq_printf(seq, "[%p]", sym);
2670 }
2671
2672 static int ptype_seq_show(struct seq_file *seq, void *v)
2673 {
2674 struct packet_type *pt = v;
2675
2676 if (v == SEQ_START_TOKEN)
2677 seq_puts(seq, "Type Device Function\n");
2678 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2679 if (pt->type == htons(ETH_P_ALL))
2680 seq_puts(seq, "ALL ");
2681 else
2682 seq_printf(seq, "%04x", ntohs(pt->type));
2683
2684 seq_printf(seq, " %-8s ",
2685 pt->dev ? pt->dev->name : "");
2686 ptype_seq_decode(seq, pt->func);
2687 seq_putc(seq, '\n');
2688 }
2689
2690 return 0;
2691 }
2692
2693 static const struct seq_operations ptype_seq_ops = {
2694 .start = ptype_seq_start,
2695 .next = ptype_seq_next,
2696 .stop = ptype_seq_stop,
2697 .show = ptype_seq_show,
2698 };
2699
2700 static int ptype_seq_open(struct inode *inode, struct file *file)
2701 {
2702 return seq_open_net(inode, file, &ptype_seq_ops,
2703 sizeof(struct seq_net_private));
2704 }
2705
2706 static const struct file_operations ptype_seq_fops = {
2707 .owner = THIS_MODULE,
2708 .open = ptype_seq_open,
2709 .read = seq_read,
2710 .llseek = seq_lseek,
2711 .release = seq_release_net,
2712 };
2713
2714
2715 static int __net_init dev_proc_net_init(struct net *net)
2716 {
2717 int rc = -ENOMEM;
2718
2719 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2720 goto out;
2721 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2722 goto out_dev;
2723 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2724 goto out_softnet;
2725
2726 if (wext_proc_init(net))
2727 goto out_ptype;
2728 rc = 0;
2729 out:
2730 return rc;
2731 out_ptype:
2732 proc_net_remove(net, "ptype");
2733 out_softnet:
2734 proc_net_remove(net, "softnet_stat");
2735 out_dev:
2736 proc_net_remove(net, "dev");
2737 goto out;
2738 }
2739
2740 static void __net_exit dev_proc_net_exit(struct net *net)
2741 {
2742 wext_proc_exit(net);
2743
2744 proc_net_remove(net, "ptype");
2745 proc_net_remove(net, "softnet_stat");
2746 proc_net_remove(net, "dev");
2747 }
2748
2749 static struct pernet_operations __net_initdata dev_proc_ops = {
2750 .init = dev_proc_net_init,
2751 .exit = dev_proc_net_exit,
2752 };
2753
2754 static int __init dev_proc_init(void)
2755 {
2756 return register_pernet_subsys(&dev_proc_ops);
2757 }
2758 #else
2759 #define dev_proc_init() 0
2760 #endif /* CONFIG_PROC_FS */
2761
2762
2763 /**
2764 * netdev_set_master - set up master/slave pair
2765 * @slave: slave device
2766 * @master: new master device
2767 *
2768 * Changes the master device of the slave. Pass %NULL to break the
2769 * bonding. The caller must hold the RTNL semaphore. On a failure
2770 * a negative errno code is returned. On success the reference counts
2771 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2772 * function returns zero.
2773 */
2774 int netdev_set_master(struct net_device *slave, struct net_device *master)
2775 {
2776 struct net_device *old = slave->master;
2777
2778 ASSERT_RTNL();
2779
2780 if (master) {
2781 if (old)
2782 return -EBUSY;
2783 dev_hold(master);
2784 }
2785
2786 slave->master = master;
2787
2788 synchronize_net();
2789
2790 if (old)
2791 dev_put(old);
2792
2793 if (master)
2794 slave->flags |= IFF_SLAVE;
2795 else
2796 slave->flags &= ~IFF_SLAVE;
2797
2798 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2799 return 0;
2800 }
2801
2802 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2803 {
2804 unsigned short old_flags = dev->flags;
2805
2806 ASSERT_RTNL();
2807
2808 dev->flags |= IFF_PROMISC;
2809 dev->promiscuity += inc;
2810 if (dev->promiscuity == 0) {
2811 /*
2812 * Avoid overflow.
2813 * If inc causes overflow, untouch promisc and return error.
2814 */
2815 if (inc < 0)
2816 dev->flags &= ~IFF_PROMISC;
2817 else {
2818 dev->promiscuity -= inc;
2819 printk(KERN_WARNING "%s: promiscuity touches roof, "
2820 "set promiscuity failed, promiscuity feature "
2821 "of device might be broken.\n", dev->name);
2822 return -EOVERFLOW;
2823 }
2824 }
2825 if (dev->flags != old_flags) {
2826 printk(KERN_INFO "device %s %s promiscuous mode\n",
2827 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2828 "left");
2829 if (audit_enabled)
2830 audit_log(current->audit_context, GFP_ATOMIC,
2831 AUDIT_ANOM_PROMISCUOUS,
2832 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2833 dev->name, (dev->flags & IFF_PROMISC),
2834 (old_flags & IFF_PROMISC),
2835 audit_get_loginuid(current),
2836 current->uid, current->gid,
2837 audit_get_sessionid(current));
2838
2839 if (dev->change_rx_flags)
2840 dev->change_rx_flags(dev, IFF_PROMISC);
2841 }
2842 return 0;
2843 }
2844
2845 /**
2846 * dev_set_promiscuity - update promiscuity count on a device
2847 * @dev: device
2848 * @inc: modifier
2849 *
2850 * Add or remove promiscuity from a device. While the count in the device
2851 * remains above zero the interface remains promiscuous. Once it hits zero
2852 * the device reverts back to normal filtering operation. A negative inc
2853 * value is used to drop promiscuity on the device.
2854 * Return 0 if successful or a negative errno code on error.
2855 */
2856 int dev_set_promiscuity(struct net_device *dev, int inc)
2857 {
2858 unsigned short old_flags = dev->flags;
2859 int err;
2860
2861 err = __dev_set_promiscuity(dev, inc);
2862 if (!err)
2863 return err;
2864 if (dev->flags != old_flags)
2865 dev_set_rx_mode(dev);
2866 return err;
2867 }
2868
2869 /**
2870 * dev_set_allmulti - update allmulti count on a device
2871 * @dev: device
2872 * @inc: modifier
2873 *
2874 * Add or remove reception of all multicast frames to a device. While the
2875 * count in the device remains above zero the interface remains listening
2876 * to all interfaces. Once it hits zero the device reverts back to normal
2877 * filtering operation. A negative @inc value is used to drop the counter
2878 * when releasing a resource needing all multicasts.
2879 * Return 0 if successful or a negative errno code on error.
2880 */
2881
2882 int dev_set_allmulti(struct net_device *dev, int inc)
2883 {
2884 unsigned short old_flags = dev->flags;
2885
2886 ASSERT_RTNL();
2887
2888 dev->flags |= IFF_ALLMULTI;
2889 dev->allmulti += inc;
2890 if (dev->allmulti == 0) {
2891 /*
2892 * Avoid overflow.
2893 * If inc causes overflow, untouch allmulti and return error.
2894 */
2895 if (inc < 0)
2896 dev->flags &= ~IFF_ALLMULTI;
2897 else {
2898 dev->allmulti -= inc;
2899 printk(KERN_WARNING "%s: allmulti touches roof, "
2900 "set allmulti failed, allmulti feature of "
2901 "device might be broken.\n", dev->name);
2902 return -EOVERFLOW;
2903 }
2904 }
2905 if (dev->flags ^ old_flags) {
2906 if (dev->change_rx_flags)
2907 dev->change_rx_flags(dev, IFF_ALLMULTI);
2908 dev_set_rx_mode(dev);
2909 }
2910 return 0;
2911 }
2912
2913 /*
2914 * Upload unicast and multicast address lists to device and
2915 * configure RX filtering. When the device doesn't support unicast
2916 * filtering it is put in promiscuous mode while unicast addresses
2917 * are present.
2918 */
2919 void __dev_set_rx_mode(struct net_device *dev)
2920 {
2921 /* dev_open will call this function so the list will stay sane. */
2922 if (!(dev->flags&IFF_UP))
2923 return;
2924
2925 if (!netif_device_present(dev))
2926 return;
2927
2928 if (dev->set_rx_mode)
2929 dev->set_rx_mode(dev);
2930 else {
2931 /* Unicast addresses changes may only happen under the rtnl,
2932 * therefore calling __dev_set_promiscuity here is safe.
2933 */
2934 if (dev->uc_count > 0 && !dev->uc_promisc) {
2935 __dev_set_promiscuity(dev, 1);
2936 dev->uc_promisc = 1;
2937 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2938 __dev_set_promiscuity(dev, -1);
2939 dev->uc_promisc = 0;
2940 }
2941
2942 if (dev->set_multicast_list)
2943 dev->set_multicast_list(dev);
2944 }
2945 }
2946
2947 void dev_set_rx_mode(struct net_device *dev)
2948 {
2949 netif_tx_lock_bh(dev);
2950 __dev_set_rx_mode(dev);
2951 netif_tx_unlock_bh(dev);
2952 }
2953
2954 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2955 void *addr, int alen, int glbl)
2956 {
2957 struct dev_addr_list *da;
2958
2959 for (; (da = *list) != NULL; list = &da->next) {
2960 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2961 alen == da->da_addrlen) {
2962 if (glbl) {
2963 int old_glbl = da->da_gusers;
2964 da->da_gusers = 0;
2965 if (old_glbl == 0)
2966 break;
2967 }
2968 if (--da->da_users)
2969 return 0;
2970
2971 *list = da->next;
2972 kfree(da);
2973 (*count)--;
2974 return 0;
2975 }
2976 }
2977 return -ENOENT;
2978 }
2979
2980 int __dev_addr_add(struct dev_addr_list **list, int *count,
2981 void *addr, int alen, int glbl)
2982 {
2983 struct dev_addr_list *da;
2984
2985 for (da = *list; da != NULL; da = da->next) {
2986 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2987 da->da_addrlen == alen) {
2988 if (glbl) {
2989 int old_glbl = da->da_gusers;
2990 da->da_gusers = 1;
2991 if (old_glbl)
2992 return 0;
2993 }
2994 da->da_users++;
2995 return 0;
2996 }
2997 }
2998
2999 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3000 if (da == NULL)
3001 return -ENOMEM;
3002 memcpy(da->da_addr, addr, alen);
3003 da->da_addrlen = alen;
3004 da->da_users = 1;
3005 da->da_gusers = glbl ? 1 : 0;
3006 da->next = *list;
3007 *list = da;
3008 (*count)++;
3009 return 0;
3010 }
3011
3012 /**
3013 * dev_unicast_delete - Release secondary unicast address.
3014 * @dev: device
3015 * @addr: address to delete
3016 * @alen: length of @addr
3017 *
3018 * Release reference to a secondary unicast address and remove it
3019 * from the device if the reference count drops to zero.
3020 *
3021 * The caller must hold the rtnl_mutex.
3022 */
3023 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3024 {
3025 int err;
3026
3027 ASSERT_RTNL();
3028
3029 netif_tx_lock_bh(dev);
3030 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3031 if (!err)
3032 __dev_set_rx_mode(dev);
3033 netif_tx_unlock_bh(dev);
3034 return err;
3035 }
3036 EXPORT_SYMBOL(dev_unicast_delete);
3037
3038 /**
3039 * dev_unicast_add - add a secondary unicast address
3040 * @dev: device
3041 * @addr: address to add
3042 * @alen: length of @addr
3043 *
3044 * Add a secondary unicast address to the device or increase
3045 * the reference count if it already exists.
3046 *
3047 * The caller must hold the rtnl_mutex.
3048 */
3049 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3050 {
3051 int err;
3052
3053 ASSERT_RTNL();
3054
3055 netif_tx_lock_bh(dev);
3056 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3057 if (!err)
3058 __dev_set_rx_mode(dev);
3059 netif_tx_unlock_bh(dev);
3060 return err;
3061 }
3062 EXPORT_SYMBOL(dev_unicast_add);
3063
3064 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3065 struct dev_addr_list **from, int *from_count)
3066 {
3067 struct dev_addr_list *da, *next;
3068 int err = 0;
3069
3070 da = *from;
3071 while (da != NULL) {
3072 next = da->next;
3073 if (!da->da_synced) {
3074 err = __dev_addr_add(to, to_count,
3075 da->da_addr, da->da_addrlen, 0);
3076 if (err < 0)
3077 break;
3078 da->da_synced = 1;
3079 da->da_users++;
3080 } else if (da->da_users == 1) {
3081 __dev_addr_delete(to, to_count,
3082 da->da_addr, da->da_addrlen, 0);
3083 __dev_addr_delete(from, from_count,
3084 da->da_addr, da->da_addrlen, 0);
3085 }
3086 da = next;
3087 }
3088 return err;
3089 }
3090
3091 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3092 struct dev_addr_list **from, int *from_count)
3093 {
3094 struct dev_addr_list *da, *next;
3095
3096 da = *from;
3097 while (da != NULL) {
3098 next = da->next;
3099 if (da->da_synced) {
3100 __dev_addr_delete(to, to_count,
3101 da->da_addr, da->da_addrlen, 0);
3102 da->da_synced = 0;
3103 __dev_addr_delete(from, from_count,
3104 da->da_addr, da->da_addrlen, 0);
3105 }
3106 da = next;
3107 }
3108 }
3109
3110 /**
3111 * dev_unicast_sync - Synchronize device's unicast list to another device
3112 * @to: destination device
3113 * @from: source device
3114 *
3115 * Add newly added addresses to the destination device and release
3116 * addresses that have no users left. The source device must be
3117 * locked by netif_tx_lock_bh.
3118 *
3119 * This function is intended to be called from the dev->set_rx_mode
3120 * function of layered software devices.
3121 */
3122 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3123 {
3124 int err = 0;
3125
3126 netif_tx_lock_bh(to);
3127 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3128 &from->uc_list, &from->uc_count);
3129 if (!err)
3130 __dev_set_rx_mode(to);
3131 netif_tx_unlock_bh(to);
3132 return err;
3133 }
3134 EXPORT_SYMBOL(dev_unicast_sync);
3135
3136 /**
3137 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3138 * @to: destination device
3139 * @from: source device
3140 *
3141 * Remove all addresses that were added to the destination device by
3142 * dev_unicast_sync(). This function is intended to be called from the
3143 * dev->stop function of layered software devices.
3144 */
3145 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3146 {
3147 netif_tx_lock_bh(from);
3148 netif_tx_lock_bh(to);
3149
3150 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3151 &from->uc_list, &from->uc_count);
3152 __dev_set_rx_mode(to);
3153
3154 netif_tx_unlock_bh(to);
3155 netif_tx_unlock_bh(from);
3156 }
3157 EXPORT_SYMBOL(dev_unicast_unsync);
3158
3159 static void __dev_addr_discard(struct dev_addr_list **list)
3160 {
3161 struct dev_addr_list *tmp;
3162
3163 while (*list != NULL) {
3164 tmp = *list;
3165 *list = tmp->next;
3166 if (tmp->da_users > tmp->da_gusers)
3167 printk("__dev_addr_discard: address leakage! "
3168 "da_users=%d\n", tmp->da_users);
3169 kfree(tmp);
3170 }
3171 }
3172
3173 static void dev_addr_discard(struct net_device *dev)
3174 {
3175 netif_tx_lock_bh(dev);
3176
3177 __dev_addr_discard(&dev->uc_list);
3178 dev->uc_count = 0;
3179
3180 __dev_addr_discard(&dev->mc_list);
3181 dev->mc_count = 0;
3182
3183 netif_tx_unlock_bh(dev);
3184 }
3185
3186 unsigned dev_get_flags(const struct net_device *dev)
3187 {
3188 unsigned flags;
3189
3190 flags = (dev->flags & ~(IFF_PROMISC |
3191 IFF_ALLMULTI |
3192 IFF_RUNNING |
3193 IFF_LOWER_UP |
3194 IFF_DORMANT)) |
3195 (dev->gflags & (IFF_PROMISC |
3196 IFF_ALLMULTI));
3197
3198 if (netif_running(dev)) {
3199 if (netif_oper_up(dev))
3200 flags |= IFF_RUNNING;
3201 if (netif_carrier_ok(dev))
3202 flags |= IFF_LOWER_UP;
3203 if (netif_dormant(dev))
3204 flags |= IFF_DORMANT;
3205 }
3206
3207 return flags;
3208 }
3209
3210 int dev_change_flags(struct net_device *dev, unsigned flags)
3211 {
3212 int ret, changes;
3213 int old_flags = dev->flags;
3214
3215 ASSERT_RTNL();
3216
3217 /*
3218 * Set the flags on our device.
3219 */
3220
3221 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3222 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3223 IFF_AUTOMEDIA)) |
3224 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3225 IFF_ALLMULTI));
3226
3227 /*
3228 * Load in the correct multicast list now the flags have changed.
3229 */
3230
3231 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3232 dev->change_rx_flags(dev, IFF_MULTICAST);
3233
3234 dev_set_rx_mode(dev);
3235
3236 /*
3237 * Have we downed the interface. We handle IFF_UP ourselves
3238 * according to user attempts to set it, rather than blindly
3239 * setting it.
3240 */
3241
3242 ret = 0;
3243 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3244 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3245
3246 if (!ret)
3247 dev_set_rx_mode(dev);
3248 }
3249
3250 if (dev->flags & IFF_UP &&
3251 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3252 IFF_VOLATILE)))
3253 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3254
3255 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3256 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3257 dev->gflags ^= IFF_PROMISC;
3258 dev_set_promiscuity(dev, inc);
3259 }
3260
3261 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3262 is important. Some (broken) drivers set IFF_PROMISC, when
3263 IFF_ALLMULTI is requested not asking us and not reporting.
3264 */
3265 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3266 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3267 dev->gflags ^= IFF_ALLMULTI;
3268 dev_set_allmulti(dev, inc);
3269 }
3270
3271 /* Exclude state transition flags, already notified */
3272 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3273 if (changes)
3274 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3275
3276 return ret;
3277 }
3278
3279 int dev_set_mtu(struct net_device *dev, int new_mtu)
3280 {
3281 int err;
3282
3283 if (new_mtu == dev->mtu)
3284 return 0;
3285
3286 /* MTU must be positive. */
3287 if (new_mtu < 0)
3288 return -EINVAL;
3289
3290 if (!netif_device_present(dev))
3291 return -ENODEV;
3292
3293 err = 0;
3294 if (dev->change_mtu)
3295 err = dev->change_mtu(dev, new_mtu);
3296 else
3297 dev->mtu = new_mtu;
3298 if (!err && dev->flags & IFF_UP)
3299 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3300 return err;
3301 }
3302
3303 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3304 {
3305 int err;
3306
3307 if (!dev->set_mac_address)
3308 return -EOPNOTSUPP;
3309 if (sa->sa_family != dev->type)
3310 return -EINVAL;
3311 if (!netif_device_present(dev))
3312 return -ENODEV;
3313 err = dev->set_mac_address(dev, sa);
3314 if (!err)
3315 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3316 return err;
3317 }
3318
3319 /*
3320 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3321 */
3322 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3323 {
3324 int err;
3325 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3326
3327 if (!dev)
3328 return -ENODEV;
3329
3330 switch (cmd) {
3331 case SIOCGIFFLAGS: /* Get interface flags */
3332 ifr->ifr_flags = dev_get_flags(dev);
3333 return 0;
3334
3335 case SIOCGIFMETRIC: /* Get the metric on the interface
3336 (currently unused) */
3337 ifr->ifr_metric = 0;
3338 return 0;
3339
3340 case SIOCGIFMTU: /* Get the MTU of a device */
3341 ifr->ifr_mtu = dev->mtu;
3342 return 0;
3343
3344 case SIOCGIFHWADDR:
3345 if (!dev->addr_len)
3346 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3347 else
3348 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3349 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3350 ifr->ifr_hwaddr.sa_family = dev->type;
3351 return 0;
3352
3353 case SIOCGIFSLAVE:
3354 err = -EINVAL;
3355 break;
3356
3357 case SIOCGIFMAP:
3358 ifr->ifr_map.mem_start = dev->mem_start;
3359 ifr->ifr_map.mem_end = dev->mem_end;
3360 ifr->ifr_map.base_addr = dev->base_addr;
3361 ifr->ifr_map.irq = dev->irq;
3362 ifr->ifr_map.dma = dev->dma;
3363 ifr->ifr_map.port = dev->if_port;
3364 return 0;
3365
3366 case SIOCGIFINDEX:
3367 ifr->ifr_ifindex = dev->ifindex;
3368 return 0;
3369
3370 case SIOCGIFTXQLEN:
3371 ifr->ifr_qlen = dev->tx_queue_len;
3372 return 0;
3373
3374 default:
3375 /* dev_ioctl() should ensure this case
3376 * is never reached
3377 */
3378 WARN_ON(1);
3379 err = -EINVAL;
3380 break;
3381
3382 }
3383 return err;
3384 }
3385
3386 /*
3387 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3388 */
3389 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3390 {
3391 int err;
3392 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3393
3394 if (!dev)
3395 return -ENODEV;
3396
3397 switch (cmd) {
3398 case SIOCSIFFLAGS: /* Set interface flags */
3399 return dev_change_flags(dev, ifr->ifr_flags);
3400
3401 case SIOCSIFMETRIC: /* Set the metric on the interface
3402 (currently unused) */
3403 return -EOPNOTSUPP;
3404
3405 case SIOCSIFMTU: /* Set the MTU of a device */
3406 return dev_set_mtu(dev, ifr->ifr_mtu);
3407
3408 case SIOCSIFHWADDR:
3409 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3410
3411 case SIOCSIFHWBROADCAST:
3412 if (ifr->ifr_hwaddr.sa_family != dev->type)
3413 return -EINVAL;
3414 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3415 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3416 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3417 return 0;
3418
3419 case SIOCSIFMAP:
3420 if (dev->set_config) {
3421 if (!netif_device_present(dev))
3422 return -ENODEV;
3423 return dev->set_config(dev, &ifr->ifr_map);
3424 }
3425 return -EOPNOTSUPP;
3426
3427 case SIOCADDMULTI:
3428 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3429 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3430 return -EINVAL;
3431 if (!netif_device_present(dev))
3432 return -ENODEV;
3433 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3434 dev->addr_len, 1);
3435
3436 case SIOCDELMULTI:
3437 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3438 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3439 return -EINVAL;
3440 if (!netif_device_present(dev))
3441 return -ENODEV;
3442 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3443 dev->addr_len, 1);
3444
3445 case SIOCSIFTXQLEN:
3446 if (ifr->ifr_qlen < 0)
3447 return -EINVAL;
3448 dev->tx_queue_len = ifr->ifr_qlen;
3449 return 0;
3450
3451 case SIOCSIFNAME:
3452 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3453 return dev_change_name(dev, ifr->ifr_newname);
3454
3455 /*
3456 * Unknown or private ioctl
3457 */
3458
3459 default:
3460 if ((cmd >= SIOCDEVPRIVATE &&
3461 cmd <= SIOCDEVPRIVATE + 15) ||
3462 cmd == SIOCBONDENSLAVE ||
3463 cmd == SIOCBONDRELEASE ||
3464 cmd == SIOCBONDSETHWADDR ||
3465 cmd == SIOCBONDSLAVEINFOQUERY ||
3466 cmd == SIOCBONDINFOQUERY ||
3467 cmd == SIOCBONDCHANGEACTIVE ||
3468 cmd == SIOCGMIIPHY ||
3469 cmd == SIOCGMIIREG ||
3470 cmd == SIOCSMIIREG ||
3471 cmd == SIOCBRADDIF ||
3472 cmd == SIOCBRDELIF ||
3473 cmd == SIOCWANDEV) {
3474 err = -EOPNOTSUPP;
3475 if (dev->do_ioctl) {
3476 if (netif_device_present(dev))
3477 err = dev->do_ioctl(dev, ifr,
3478 cmd);
3479 else
3480 err = -ENODEV;
3481 }
3482 } else
3483 err = -EINVAL;
3484
3485 }
3486 return err;
3487 }
3488
3489 /*
3490 * This function handles all "interface"-type I/O control requests. The actual
3491 * 'doing' part of this is dev_ifsioc above.
3492 */
3493
3494 /**
3495 * dev_ioctl - network device ioctl
3496 * @net: the applicable net namespace
3497 * @cmd: command to issue
3498 * @arg: pointer to a struct ifreq in user space
3499 *
3500 * Issue ioctl functions to devices. This is normally called by the
3501 * user space syscall interfaces but can sometimes be useful for
3502 * other purposes. The return value is the return from the syscall if
3503 * positive or a negative errno code on error.
3504 */
3505
3506 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3507 {
3508 struct ifreq ifr;
3509 int ret;
3510 char *colon;
3511
3512 /* One special case: SIOCGIFCONF takes ifconf argument
3513 and requires shared lock, because it sleeps writing
3514 to user space.
3515 */
3516
3517 if (cmd == SIOCGIFCONF) {
3518 rtnl_lock();
3519 ret = dev_ifconf(net, (char __user *) arg);
3520 rtnl_unlock();
3521 return ret;
3522 }
3523 if (cmd == SIOCGIFNAME)
3524 return dev_ifname(net, (struct ifreq __user *)arg);
3525
3526 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3527 return -EFAULT;
3528
3529 ifr.ifr_name[IFNAMSIZ-1] = 0;
3530
3531 colon = strchr(ifr.ifr_name, ':');
3532 if (colon)
3533 *colon = 0;
3534
3535 /*
3536 * See which interface the caller is talking about.
3537 */
3538
3539 switch (cmd) {
3540 /*
3541 * These ioctl calls:
3542 * - can be done by all.
3543 * - atomic and do not require locking.
3544 * - return a value
3545 */
3546 case SIOCGIFFLAGS:
3547 case SIOCGIFMETRIC:
3548 case SIOCGIFMTU:
3549 case SIOCGIFHWADDR:
3550 case SIOCGIFSLAVE:
3551 case SIOCGIFMAP:
3552 case SIOCGIFINDEX:
3553 case SIOCGIFTXQLEN:
3554 dev_load(net, ifr.ifr_name);
3555 read_lock(&dev_base_lock);
3556 ret = dev_ifsioc_locked(net, &ifr, cmd);
3557 read_unlock(&dev_base_lock);
3558 if (!ret) {
3559 if (colon)
3560 *colon = ':';
3561 if (copy_to_user(arg, &ifr,
3562 sizeof(struct ifreq)))
3563 ret = -EFAULT;
3564 }
3565 return ret;
3566
3567 case SIOCETHTOOL:
3568 dev_load(net, ifr.ifr_name);
3569 rtnl_lock();
3570 ret = dev_ethtool(net, &ifr);
3571 rtnl_unlock();
3572 if (!ret) {
3573 if (colon)
3574 *colon = ':';
3575 if (copy_to_user(arg, &ifr,
3576 sizeof(struct ifreq)))
3577 ret = -EFAULT;
3578 }
3579 return ret;
3580
3581 /*
3582 * These ioctl calls:
3583 * - require superuser power.
3584 * - require strict serialization.
3585 * - return a value
3586 */
3587 case SIOCGMIIPHY:
3588 case SIOCGMIIREG:
3589 case SIOCSIFNAME:
3590 if (!capable(CAP_NET_ADMIN))
3591 return -EPERM;
3592 dev_load(net, ifr.ifr_name);
3593 rtnl_lock();
3594 ret = dev_ifsioc(net, &ifr, cmd);
3595 rtnl_unlock();
3596 if (!ret) {
3597 if (colon)
3598 *colon = ':';
3599 if (copy_to_user(arg, &ifr,
3600 sizeof(struct ifreq)))
3601 ret = -EFAULT;
3602 }
3603 return ret;
3604
3605 /*
3606 * These ioctl calls:
3607 * - require superuser power.
3608 * - require strict serialization.
3609 * - do not return a value
3610 */
3611 case SIOCSIFFLAGS:
3612 case SIOCSIFMETRIC:
3613 case SIOCSIFMTU:
3614 case SIOCSIFMAP:
3615 case SIOCSIFHWADDR:
3616 case SIOCSIFSLAVE:
3617 case SIOCADDMULTI:
3618 case SIOCDELMULTI:
3619 case SIOCSIFHWBROADCAST:
3620 case SIOCSIFTXQLEN:
3621 case SIOCSMIIREG:
3622 case SIOCBONDENSLAVE:
3623 case SIOCBONDRELEASE:
3624 case SIOCBONDSETHWADDR:
3625 case SIOCBONDCHANGEACTIVE:
3626 case SIOCBRADDIF:
3627 case SIOCBRDELIF:
3628 if (!capable(CAP_NET_ADMIN))
3629 return -EPERM;
3630 /* fall through */
3631 case SIOCBONDSLAVEINFOQUERY:
3632 case SIOCBONDINFOQUERY:
3633 dev_load(net, ifr.ifr_name);
3634 rtnl_lock();
3635 ret = dev_ifsioc(net, &ifr, cmd);
3636 rtnl_unlock();
3637 return ret;
3638
3639 case SIOCGIFMEM:
3640 /* Get the per device memory space. We can add this but
3641 * currently do not support it */
3642 case SIOCSIFMEM:
3643 /* Set the per device memory buffer space.
3644 * Not applicable in our case */
3645 case SIOCSIFLINK:
3646 return -EINVAL;
3647
3648 /*
3649 * Unknown or private ioctl.
3650 */
3651 default:
3652 if (cmd == SIOCWANDEV ||
3653 (cmd >= SIOCDEVPRIVATE &&
3654 cmd <= SIOCDEVPRIVATE + 15)) {
3655 dev_load(net, ifr.ifr_name);
3656 rtnl_lock();
3657 ret = dev_ifsioc(net, &ifr, cmd);
3658 rtnl_unlock();
3659 if (!ret && copy_to_user(arg, &ifr,
3660 sizeof(struct ifreq)))
3661 ret = -EFAULT;
3662 return ret;
3663 }
3664 /* Take care of Wireless Extensions */
3665 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3666 return wext_handle_ioctl(net, &ifr, cmd, arg);
3667 return -EINVAL;
3668 }
3669 }
3670
3671
3672 /**
3673 * dev_new_index - allocate an ifindex
3674 * @net: the applicable net namespace
3675 *
3676 * Returns a suitable unique value for a new device interface
3677 * number. The caller must hold the rtnl semaphore or the
3678 * dev_base_lock to be sure it remains unique.
3679 */
3680 static int dev_new_index(struct net *net)
3681 {
3682 static int ifindex;
3683 for (;;) {
3684 if (++ifindex <= 0)
3685 ifindex = 1;
3686 if (!__dev_get_by_index(net, ifindex))
3687 return ifindex;
3688 }
3689 }
3690
3691 /* Delayed registration/unregisteration */
3692 static DEFINE_SPINLOCK(net_todo_list_lock);
3693 static LIST_HEAD(net_todo_list);
3694
3695 static void net_set_todo(struct net_device *dev)
3696 {
3697 spin_lock(&net_todo_list_lock);
3698 list_add_tail(&dev->todo_list, &net_todo_list);
3699 spin_unlock(&net_todo_list_lock);
3700 }
3701
3702 static void rollback_registered(struct net_device *dev)
3703 {
3704 BUG_ON(dev_boot_phase);
3705 ASSERT_RTNL();
3706
3707 /* Some devices call without registering for initialization unwind. */
3708 if (dev->reg_state == NETREG_UNINITIALIZED) {
3709 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3710 "was registered\n", dev->name, dev);
3711
3712 WARN_ON(1);
3713 return;
3714 }
3715
3716 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3717
3718 /* If device is running, close it first. */
3719 dev_close(dev);
3720
3721 /* And unlink it from device chain. */
3722 unlist_netdevice(dev);
3723
3724 dev->reg_state = NETREG_UNREGISTERING;
3725
3726 synchronize_net();
3727
3728 /* Shutdown queueing discipline. */
3729 dev_shutdown(dev);
3730
3731
3732 /* Notify protocols, that we are about to destroy
3733 this device. They should clean all the things.
3734 */
3735 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3736
3737 /*
3738 * Flush the unicast and multicast chains
3739 */
3740 dev_addr_discard(dev);
3741
3742 if (dev->uninit)
3743 dev->uninit(dev);
3744
3745 /* Notifier chain MUST detach us from master device. */
3746 BUG_TRAP(!dev->master);
3747
3748 /* Remove entries from kobject tree */
3749 netdev_unregister_kobject(dev);
3750
3751 synchronize_net();
3752
3753 dev_put(dev);
3754 }
3755
3756 /**
3757 * register_netdevice - register a network device
3758 * @dev: device to register
3759 *
3760 * Take a completed network device structure and add it to the kernel
3761 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3762 * chain. 0 is returned on success. A negative errno code is returned
3763 * on a failure to set up the device, or if the name is a duplicate.
3764 *
3765 * Callers must hold the rtnl semaphore. You may want
3766 * register_netdev() instead of this.
3767 *
3768 * BUGS:
3769 * The locking appears insufficient to guarantee two parallel registers
3770 * will not get the same name.
3771 */
3772
3773 int register_netdevice(struct net_device *dev)
3774 {
3775 struct hlist_head *head;
3776 struct hlist_node *p;
3777 int ret;
3778 struct net *net;
3779
3780 BUG_ON(dev_boot_phase);
3781 ASSERT_RTNL();
3782
3783 might_sleep();
3784
3785 /* When net_device's are persistent, this will be fatal. */
3786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3787 BUG_ON(!dev_net(dev));
3788 net = dev_net(dev);
3789
3790 spin_lock_init(&dev->queue_lock);
3791 spin_lock_init(&dev->_xmit_lock);
3792 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3793 dev->xmit_lock_owner = -1;
3794 spin_lock_init(&dev->ingress_lock);
3795
3796 dev->iflink = -1;
3797
3798 /* Init, if this function is available */
3799 if (dev->init) {
3800 ret = dev->init(dev);
3801 if (ret) {
3802 if (ret > 0)
3803 ret = -EIO;
3804 goto out;
3805 }
3806 }
3807
3808 if (!dev_valid_name(dev->name)) {
3809 ret = -EINVAL;
3810 goto err_uninit;
3811 }
3812
3813 dev->ifindex = dev_new_index(net);
3814 if (dev->iflink == -1)
3815 dev->iflink = dev->ifindex;
3816
3817 /* Check for existence of name */
3818 head = dev_name_hash(net, dev->name);
3819 hlist_for_each(p, head) {
3820 struct net_device *d
3821 = hlist_entry(p, struct net_device, name_hlist);
3822 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3823 ret = -EEXIST;
3824 goto err_uninit;
3825 }
3826 }
3827
3828 /* Fix illegal checksum combinations */
3829 if ((dev->features & NETIF_F_HW_CSUM) &&
3830 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3831 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3832 dev->name);
3833 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3834 }
3835
3836 if ((dev->features & NETIF_F_NO_CSUM) &&
3837 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3838 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3839 dev->name);
3840 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3841 }
3842
3843
3844 /* Fix illegal SG+CSUM combinations. */
3845 if ((dev->features & NETIF_F_SG) &&
3846 !(dev->features & NETIF_F_ALL_CSUM)) {
3847 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3848 dev->name);
3849 dev->features &= ~NETIF_F_SG;
3850 }
3851
3852 /* TSO requires that SG is present as well. */
3853 if ((dev->features & NETIF_F_TSO) &&
3854 !(dev->features & NETIF_F_SG)) {
3855 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3856 dev->name);
3857 dev->features &= ~NETIF_F_TSO;
3858 }
3859 if (dev->features & NETIF_F_UFO) {
3860 if (!(dev->features & NETIF_F_HW_CSUM)) {
3861 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3862 "NETIF_F_HW_CSUM feature.\n",
3863 dev->name);
3864 dev->features &= ~NETIF_F_UFO;
3865 }
3866 if (!(dev->features & NETIF_F_SG)) {
3867 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3868 "NETIF_F_SG feature.\n",
3869 dev->name);
3870 dev->features &= ~NETIF_F_UFO;
3871 }
3872 }
3873
3874 netdev_initialize_kobject(dev);
3875 ret = netdev_register_kobject(dev);
3876 if (ret)
3877 goto err_uninit;
3878 dev->reg_state = NETREG_REGISTERED;
3879
3880 /*
3881 * Default initial state at registry is that the
3882 * device is present.
3883 */
3884
3885 set_bit(__LINK_STATE_PRESENT, &dev->state);
3886
3887 dev_init_scheduler(dev);
3888 dev_hold(dev);
3889 list_netdevice(dev);
3890
3891 /* Notify protocols, that a new device appeared. */
3892 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3893 ret = notifier_to_errno(ret);
3894 if (ret) {
3895 rollback_registered(dev);
3896 dev->reg_state = NETREG_UNREGISTERED;
3897 }
3898
3899 out:
3900 return ret;
3901
3902 err_uninit:
3903 if (dev->uninit)
3904 dev->uninit(dev);
3905 goto out;
3906 }
3907
3908 /**
3909 * register_netdev - register a network device
3910 * @dev: device to register
3911 *
3912 * Take a completed network device structure and add it to the kernel
3913 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3914 * chain. 0 is returned on success. A negative errno code is returned
3915 * on a failure to set up the device, or if the name is a duplicate.
3916 *
3917 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3918 * and expands the device name if you passed a format string to
3919 * alloc_netdev.
3920 */
3921 int register_netdev(struct net_device *dev)
3922 {
3923 int err;
3924
3925 rtnl_lock();
3926
3927 /*
3928 * If the name is a format string the caller wants us to do a
3929 * name allocation.
3930 */
3931 if (strchr(dev->name, '%')) {
3932 err = dev_alloc_name(dev, dev->name);
3933 if (err < 0)
3934 goto out;
3935 }
3936
3937 err = register_netdevice(dev);
3938 out:
3939 rtnl_unlock();
3940 return err;
3941 }
3942 EXPORT_SYMBOL(register_netdev);
3943
3944 /*
3945 * netdev_wait_allrefs - wait until all references are gone.
3946 *
3947 * This is called when unregistering network devices.
3948 *
3949 * Any protocol or device that holds a reference should register
3950 * for netdevice notification, and cleanup and put back the
3951 * reference if they receive an UNREGISTER event.
3952 * We can get stuck here if buggy protocols don't correctly
3953 * call dev_put.
3954 */
3955 static void netdev_wait_allrefs(struct net_device *dev)
3956 {
3957 unsigned long rebroadcast_time, warning_time;
3958
3959 rebroadcast_time = warning_time = jiffies;
3960 while (atomic_read(&dev->refcnt) != 0) {
3961 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3962 rtnl_lock();
3963
3964 /* Rebroadcast unregister notification */
3965 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3966
3967 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3968 &dev->state)) {
3969 /* We must not have linkwatch events
3970 * pending on unregister. If this
3971 * happens, we simply run the queue
3972 * unscheduled, resulting in a noop
3973 * for this device.
3974 */
3975 linkwatch_run_queue();
3976 }
3977
3978 __rtnl_unlock();
3979
3980 rebroadcast_time = jiffies;
3981 }
3982
3983 msleep(250);
3984
3985 if (time_after(jiffies, warning_time + 10 * HZ)) {
3986 printk(KERN_EMERG "unregister_netdevice: "
3987 "waiting for %s to become free. Usage "
3988 "count = %d\n",
3989 dev->name, atomic_read(&dev->refcnt));
3990 warning_time = jiffies;
3991 }
3992 }
3993 }
3994
3995 /* The sequence is:
3996 *
3997 * rtnl_lock();
3998 * ...
3999 * register_netdevice(x1);
4000 * register_netdevice(x2);
4001 * ...
4002 * unregister_netdevice(y1);
4003 * unregister_netdevice(y2);
4004 * ...
4005 * rtnl_unlock();
4006 * free_netdev(y1);
4007 * free_netdev(y2);
4008 *
4009 * We are invoked by rtnl_unlock() after it drops the semaphore.
4010 * This allows us to deal with problems:
4011 * 1) We can delete sysfs objects which invoke hotplug
4012 * without deadlocking with linkwatch via keventd.
4013 * 2) Since we run with the RTNL semaphore not held, we can sleep
4014 * safely in order to wait for the netdev refcnt to drop to zero.
4015 */
4016 static DEFINE_MUTEX(net_todo_run_mutex);
4017 void netdev_run_todo(void)
4018 {
4019 struct list_head list;
4020
4021 /* Need to guard against multiple cpu's getting out of order. */
4022 mutex_lock(&net_todo_run_mutex);
4023
4024 /* Not safe to do outside the semaphore. We must not return
4025 * until all unregister events invoked by the local processor
4026 * have been completed (either by this todo run, or one on
4027 * another cpu).
4028 */
4029 if (list_empty(&net_todo_list))
4030 goto out;
4031
4032 /* Snapshot list, allow later requests */
4033 spin_lock(&net_todo_list_lock);
4034 list_replace_init(&net_todo_list, &list);
4035 spin_unlock(&net_todo_list_lock);
4036
4037 while (!list_empty(&list)) {
4038 struct net_device *dev
4039 = list_entry(list.next, struct net_device, todo_list);
4040 list_del(&dev->todo_list);
4041
4042 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4043 printk(KERN_ERR "network todo '%s' but state %d\n",
4044 dev->name, dev->reg_state);
4045 dump_stack();
4046 continue;
4047 }
4048
4049 dev->reg_state = NETREG_UNREGISTERED;
4050
4051 netdev_wait_allrefs(dev);
4052
4053 /* paranoia */
4054 BUG_ON(atomic_read(&dev->refcnt));
4055 BUG_TRAP(!dev->ip_ptr);
4056 BUG_TRAP(!dev->ip6_ptr);
4057 BUG_TRAP(!dev->dn_ptr);
4058
4059 if (dev->destructor)
4060 dev->destructor(dev);
4061
4062 /* Free network device */
4063 kobject_put(&dev->dev.kobj);
4064 }
4065
4066 out:
4067 mutex_unlock(&net_todo_run_mutex);
4068 }
4069
4070 static struct net_device_stats *internal_stats(struct net_device *dev)
4071 {
4072 return &dev->stats;
4073 }
4074
4075 /**
4076 * alloc_netdev_mq - allocate network device
4077 * @sizeof_priv: size of private data to allocate space for
4078 * @name: device name format string
4079 * @setup: callback to initialize device
4080 * @queue_count: the number of subqueues to allocate
4081 *
4082 * Allocates a struct net_device with private data area for driver use
4083 * and performs basic initialization. Also allocates subquue structs
4084 * for each queue on the device at the end of the netdevice.
4085 */
4086 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4087 void (*setup)(struct net_device *), unsigned int queue_count)
4088 {
4089 void *p;
4090 struct net_device *dev;
4091 int alloc_size;
4092
4093 BUG_ON(strlen(name) >= sizeof(dev->name));
4094
4095 alloc_size = sizeof(struct net_device) +
4096 sizeof(struct net_device_subqueue) * (queue_count - 1);
4097 if (sizeof_priv) {
4098 /* ensure 32-byte alignment of private area */
4099 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4100 alloc_size += sizeof_priv;
4101 }
4102 /* ensure 32-byte alignment of whole construct */
4103 alloc_size += NETDEV_ALIGN_CONST;
4104
4105 p = kzalloc(alloc_size, GFP_KERNEL);
4106 if (!p) {
4107 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4108 return NULL;
4109 }
4110
4111 dev = (struct net_device *)
4112 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4113 dev->padded = (char *)dev - (char *)p;
4114 dev_net_set(dev, &init_net);
4115
4116 if (sizeof_priv) {
4117 dev->priv = ((char *)dev +
4118 ((sizeof(struct net_device) +
4119 (sizeof(struct net_device_subqueue) *
4120 (queue_count - 1)) + NETDEV_ALIGN_CONST)
4121 & ~NETDEV_ALIGN_CONST));
4122 }
4123
4124 dev->egress_subqueue_count = queue_count;
4125 dev->gso_max_size = GSO_MAX_SIZE;
4126
4127 dev->get_stats = internal_stats;
4128 netpoll_netdev_init(dev);
4129 setup(dev);
4130 strcpy(dev->name, name);
4131 return dev;
4132 }
4133 EXPORT_SYMBOL(alloc_netdev_mq);
4134
4135 /**
4136 * free_netdev - free network device
4137 * @dev: device
4138 *
4139 * This function does the last stage of destroying an allocated device
4140 * interface. The reference to the device object is released.
4141 * If this is the last reference then it will be freed.
4142 */
4143 void free_netdev(struct net_device *dev)
4144 {
4145 release_net(dev_net(dev));
4146
4147 /* Compatibility with error handling in drivers */
4148 if (dev->reg_state == NETREG_UNINITIALIZED) {
4149 kfree((char *)dev - dev->padded);
4150 return;
4151 }
4152
4153 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4154 dev->reg_state = NETREG_RELEASED;
4155
4156 /* will free via device release */
4157 put_device(&dev->dev);
4158 }
4159
4160 /* Synchronize with packet receive processing. */
4161 void synchronize_net(void)
4162 {
4163 might_sleep();
4164 synchronize_rcu();
4165 }
4166
4167 /**
4168 * unregister_netdevice - remove device from the kernel
4169 * @dev: device
4170 *
4171 * This function shuts down a device interface and removes it
4172 * from the kernel tables.
4173 *
4174 * Callers must hold the rtnl semaphore. You may want
4175 * unregister_netdev() instead of this.
4176 */
4177
4178 void unregister_netdevice(struct net_device *dev)
4179 {
4180 ASSERT_RTNL();
4181
4182 rollback_registered(dev);
4183 /* Finish processing unregister after unlock */
4184 net_set_todo(dev);
4185 }
4186
4187 /**
4188 * unregister_netdev - remove device from the kernel
4189 * @dev: device
4190 *
4191 * This function shuts down a device interface and removes it
4192 * from the kernel tables.
4193 *
4194 * This is just a wrapper for unregister_netdevice that takes
4195 * the rtnl semaphore. In general you want to use this and not
4196 * unregister_netdevice.
4197 */
4198 void unregister_netdev(struct net_device *dev)
4199 {
4200 rtnl_lock();
4201 unregister_netdevice(dev);
4202 rtnl_unlock();
4203 }
4204
4205 EXPORT_SYMBOL(unregister_netdev);
4206
4207 /**
4208 * dev_change_net_namespace - move device to different nethost namespace
4209 * @dev: device
4210 * @net: network namespace
4211 * @pat: If not NULL name pattern to try if the current device name
4212 * is already taken in the destination network namespace.
4213 *
4214 * This function shuts down a device interface and moves it
4215 * to a new network namespace. On success 0 is returned, on
4216 * a failure a netagive errno code is returned.
4217 *
4218 * Callers must hold the rtnl semaphore.
4219 */
4220
4221 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4222 {
4223 char buf[IFNAMSIZ];
4224 const char *destname;
4225 int err;
4226
4227 ASSERT_RTNL();
4228
4229 /* Don't allow namespace local devices to be moved. */
4230 err = -EINVAL;
4231 if (dev->features & NETIF_F_NETNS_LOCAL)
4232 goto out;
4233
4234 /* Ensure the device has been registrered */
4235 err = -EINVAL;
4236 if (dev->reg_state != NETREG_REGISTERED)
4237 goto out;
4238
4239 /* Get out if there is nothing todo */
4240 err = 0;
4241 if (net_eq(dev_net(dev), net))
4242 goto out;
4243
4244 /* Pick the destination device name, and ensure
4245 * we can use it in the destination network namespace.
4246 */
4247 err = -EEXIST;
4248 destname = dev->name;
4249 if (__dev_get_by_name(net, destname)) {
4250 /* We get here if we can't use the current device name */
4251 if (!pat)
4252 goto out;
4253 if (!dev_valid_name(pat))
4254 goto out;
4255 if (strchr(pat, '%')) {
4256 if (__dev_alloc_name(net, pat, buf) < 0)
4257 goto out;
4258 destname = buf;
4259 } else
4260 destname = pat;
4261 if (__dev_get_by_name(net, destname))
4262 goto out;
4263 }
4264
4265 /*
4266 * And now a mini version of register_netdevice unregister_netdevice.
4267 */
4268
4269 /* If device is running close it first. */
4270 dev_close(dev);
4271
4272 /* And unlink it from device chain */
4273 err = -ENODEV;
4274 unlist_netdevice(dev);
4275
4276 synchronize_net();
4277
4278 /* Shutdown queueing discipline. */
4279 dev_shutdown(dev);
4280
4281 /* Notify protocols, that we are about to destroy
4282 this device. They should clean all the things.
4283 */
4284 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4285
4286 /*
4287 * Flush the unicast and multicast chains
4288 */
4289 dev_addr_discard(dev);
4290
4291 /* Actually switch the network namespace */
4292 dev_net_set(dev, net);
4293
4294 /* Assign the new device name */
4295 if (destname != dev->name)
4296 strcpy(dev->name, destname);
4297
4298 /* If there is an ifindex conflict assign a new one */
4299 if (__dev_get_by_index(net, dev->ifindex)) {
4300 int iflink = (dev->iflink == dev->ifindex);
4301 dev->ifindex = dev_new_index(net);
4302 if (iflink)
4303 dev->iflink = dev->ifindex;
4304 }
4305
4306 /* Fixup kobjects */
4307 netdev_unregister_kobject(dev);
4308 err = netdev_register_kobject(dev);
4309 WARN_ON(err);
4310
4311 /* Add the device back in the hashes */
4312 list_netdevice(dev);
4313
4314 /* Notify protocols, that a new device appeared. */
4315 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4316
4317 synchronize_net();
4318 err = 0;
4319 out:
4320 return err;
4321 }
4322
4323 static int dev_cpu_callback(struct notifier_block *nfb,
4324 unsigned long action,
4325 void *ocpu)
4326 {
4327 struct sk_buff **list_skb;
4328 struct net_device **list_net;
4329 struct sk_buff *skb;
4330 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4331 struct softnet_data *sd, *oldsd;
4332
4333 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4334 return NOTIFY_OK;
4335
4336 local_irq_disable();
4337 cpu = smp_processor_id();
4338 sd = &per_cpu(softnet_data, cpu);
4339 oldsd = &per_cpu(softnet_data, oldcpu);
4340
4341 /* Find end of our completion_queue. */
4342 list_skb = &sd->completion_queue;
4343 while (*list_skb)
4344 list_skb = &(*list_skb)->next;
4345 /* Append completion queue from offline CPU. */
4346 *list_skb = oldsd->completion_queue;
4347 oldsd->completion_queue = NULL;
4348
4349 /* Find end of our output_queue. */
4350 list_net = &sd->output_queue;
4351 while (*list_net)
4352 list_net = &(*list_net)->next_sched;
4353 /* Append output queue from offline CPU. */
4354 *list_net = oldsd->output_queue;
4355 oldsd->output_queue = NULL;
4356
4357 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4358 local_irq_enable();
4359
4360 /* Process offline CPU's input_pkt_queue */
4361 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4362 netif_rx(skb);
4363
4364 return NOTIFY_OK;
4365 }
4366
4367 #ifdef CONFIG_NET_DMA
4368 /**
4369 * net_dma_rebalance - try to maintain one DMA channel per CPU
4370 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4371 *
4372 * This is called when the number of channels allocated to the net_dma client
4373 * changes. The net_dma client tries to have one DMA channel per CPU.
4374 */
4375
4376 static void net_dma_rebalance(struct net_dma *net_dma)
4377 {
4378 unsigned int cpu, i, n, chan_idx;
4379 struct dma_chan *chan;
4380
4381 if (cpus_empty(net_dma->channel_mask)) {
4382 for_each_online_cpu(cpu)
4383 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4384 return;
4385 }
4386
4387 i = 0;
4388 cpu = first_cpu(cpu_online_map);
4389
4390 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4391 chan = net_dma->channels[chan_idx];
4392
4393 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4394 + (i < (num_online_cpus() %
4395 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4396
4397 while(n) {
4398 per_cpu(softnet_data, cpu).net_dma = chan;
4399 cpu = next_cpu(cpu, cpu_online_map);
4400 n--;
4401 }
4402 i++;
4403 }
4404 }
4405
4406 /**
4407 * netdev_dma_event - event callback for the net_dma_client
4408 * @client: should always be net_dma_client
4409 * @chan: DMA channel for the event
4410 * @state: DMA state to be handled
4411 */
4412 static enum dma_state_client
4413 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4414 enum dma_state state)
4415 {
4416 int i, found = 0, pos = -1;
4417 struct net_dma *net_dma =
4418 container_of(client, struct net_dma, client);
4419 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4420
4421 spin_lock(&net_dma->lock);
4422 switch (state) {
4423 case DMA_RESOURCE_AVAILABLE:
4424 for (i = 0; i < nr_cpu_ids; i++)
4425 if (net_dma->channels[i] == chan) {
4426 found = 1;
4427 break;
4428 } else if (net_dma->channels[i] == NULL && pos < 0)
4429 pos = i;
4430
4431 if (!found && pos >= 0) {
4432 ack = DMA_ACK;
4433 net_dma->channels[pos] = chan;
4434 cpu_set(pos, net_dma->channel_mask);
4435 net_dma_rebalance(net_dma);
4436 }
4437 break;
4438 case DMA_RESOURCE_REMOVED:
4439 for (i = 0; i < nr_cpu_ids; i++)
4440 if (net_dma->channels[i] == chan) {
4441 found = 1;
4442 pos = i;
4443 break;
4444 }
4445
4446 if (found) {
4447 ack = DMA_ACK;
4448 cpu_clear(pos, net_dma->channel_mask);
4449 net_dma->channels[i] = NULL;
4450 net_dma_rebalance(net_dma);
4451 }
4452 break;
4453 default:
4454 break;
4455 }
4456 spin_unlock(&net_dma->lock);
4457
4458 return ack;
4459 }
4460
4461 /**
4462 * netdev_dma_regiser - register the networking subsystem as a DMA client
4463 */
4464 static int __init netdev_dma_register(void)
4465 {
4466 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4467 GFP_KERNEL);
4468 if (unlikely(!net_dma.channels)) {
4469 printk(KERN_NOTICE
4470 "netdev_dma: no memory for net_dma.channels\n");
4471 return -ENOMEM;
4472 }
4473 spin_lock_init(&net_dma.lock);
4474 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4475 dma_async_client_register(&net_dma.client);
4476 dma_async_client_chan_request(&net_dma.client);
4477 return 0;
4478 }
4479
4480 #else
4481 static int __init netdev_dma_register(void) { return -ENODEV; }
4482 #endif /* CONFIG_NET_DMA */
4483
4484 /**
4485 * netdev_compute_feature - compute conjunction of two feature sets
4486 * @all: first feature set
4487 * @one: second feature set
4488 *
4489 * Computes a new feature set after adding a device with feature set
4490 * @one to the master device with current feature set @all. Returns
4491 * the new feature set.
4492 */
4493 int netdev_compute_features(unsigned long all, unsigned long one)
4494 {
4495 /* if device needs checksumming, downgrade to hw checksumming */
4496 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4497 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4498
4499 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4500 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4501 all ^= NETIF_F_HW_CSUM
4502 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4503
4504 if (one & NETIF_F_GSO)
4505 one |= NETIF_F_GSO_SOFTWARE;
4506 one |= NETIF_F_GSO;
4507
4508 /* If even one device supports robust GSO, enable it for all. */
4509 if (one & NETIF_F_GSO_ROBUST)
4510 all |= NETIF_F_GSO_ROBUST;
4511
4512 all &= one | NETIF_F_LLTX;
4513
4514 if (!(all & NETIF_F_ALL_CSUM))
4515 all &= ~NETIF_F_SG;
4516 if (!(all & NETIF_F_SG))
4517 all &= ~NETIF_F_GSO_MASK;
4518
4519 return all;
4520 }
4521 EXPORT_SYMBOL(netdev_compute_features);
4522
4523 static struct hlist_head *netdev_create_hash(void)
4524 {
4525 int i;
4526 struct hlist_head *hash;
4527
4528 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4529 if (hash != NULL)
4530 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4531 INIT_HLIST_HEAD(&hash[i]);
4532
4533 return hash;
4534 }
4535
4536 /* Initialize per network namespace state */
4537 static int __net_init netdev_init(struct net *net)
4538 {
4539 INIT_LIST_HEAD(&net->dev_base_head);
4540
4541 net->dev_name_head = netdev_create_hash();
4542 if (net->dev_name_head == NULL)
4543 goto err_name;
4544
4545 net->dev_index_head = netdev_create_hash();
4546 if (net->dev_index_head == NULL)
4547 goto err_idx;
4548
4549 return 0;
4550
4551 err_idx:
4552 kfree(net->dev_name_head);
4553 err_name:
4554 return -ENOMEM;
4555 }
4556
4557 static void __net_exit netdev_exit(struct net *net)
4558 {
4559 kfree(net->dev_name_head);
4560 kfree(net->dev_index_head);
4561 }
4562
4563 static struct pernet_operations __net_initdata netdev_net_ops = {
4564 .init = netdev_init,
4565 .exit = netdev_exit,
4566 };
4567
4568 static void __net_exit default_device_exit(struct net *net)
4569 {
4570 struct net_device *dev, *next;
4571 /*
4572 * Push all migratable of the network devices back to the
4573 * initial network namespace
4574 */
4575 rtnl_lock();
4576 for_each_netdev_safe(net, dev, next) {
4577 int err;
4578 char fb_name[IFNAMSIZ];
4579
4580 /* Ignore unmoveable devices (i.e. loopback) */
4581 if (dev->features & NETIF_F_NETNS_LOCAL)
4582 continue;
4583
4584 /* Push remaing network devices to init_net */
4585 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4586 err = dev_change_net_namespace(dev, &init_net, fb_name);
4587 if (err) {
4588 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4589 __func__, dev->name, err);
4590 BUG();
4591 }
4592 }
4593 rtnl_unlock();
4594 }
4595
4596 static struct pernet_operations __net_initdata default_device_ops = {
4597 .exit = default_device_exit,
4598 };
4599
4600 /*
4601 * Initialize the DEV module. At boot time this walks the device list and
4602 * unhooks any devices that fail to initialise (normally hardware not
4603 * present) and leaves us with a valid list of present and active devices.
4604 *
4605 */
4606
4607 /*
4608 * This is called single threaded during boot, so no need
4609 * to take the rtnl semaphore.
4610 */
4611 static int __init net_dev_init(void)
4612 {
4613 int i, rc = -ENOMEM;
4614
4615 BUG_ON(!dev_boot_phase);
4616
4617 if (dev_proc_init())
4618 goto out;
4619
4620 if (netdev_kobject_init())
4621 goto out;
4622
4623 INIT_LIST_HEAD(&ptype_all);
4624 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4625 INIT_LIST_HEAD(&ptype_base[i]);
4626
4627 if (register_pernet_subsys(&netdev_net_ops))
4628 goto out;
4629
4630 if (register_pernet_device(&default_device_ops))
4631 goto out;
4632
4633 /*
4634 * Initialise the packet receive queues.
4635 */
4636
4637 for_each_possible_cpu(i) {
4638 struct softnet_data *queue;
4639
4640 queue = &per_cpu(softnet_data, i);
4641 skb_queue_head_init(&queue->input_pkt_queue);
4642 queue->completion_queue = NULL;
4643 INIT_LIST_HEAD(&queue->poll_list);
4644
4645 queue->backlog.poll = process_backlog;
4646 queue->backlog.weight = weight_p;
4647 }
4648
4649 netdev_dma_register();
4650
4651 dev_boot_phase = 0;
4652
4653 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4654 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4655
4656 hotcpu_notifier(dev_cpu_callback, 0);
4657 dst_init();
4658 dev_mcast_init();
4659 rc = 0;
4660 out:
4661 return rc;
4662 }
4663
4664 subsys_initcall(net_dev_init);
4665
4666 EXPORT_SYMBOL(__dev_get_by_index);
4667 EXPORT_SYMBOL(__dev_get_by_name);
4668 EXPORT_SYMBOL(__dev_remove_pack);
4669 EXPORT_SYMBOL(dev_valid_name);
4670 EXPORT_SYMBOL(dev_add_pack);
4671 EXPORT_SYMBOL(dev_alloc_name);
4672 EXPORT_SYMBOL(dev_close);
4673 EXPORT_SYMBOL(dev_get_by_flags);
4674 EXPORT_SYMBOL(dev_get_by_index);
4675 EXPORT_SYMBOL(dev_get_by_name);
4676 EXPORT_SYMBOL(dev_open);
4677 EXPORT_SYMBOL(dev_queue_xmit);
4678 EXPORT_SYMBOL(dev_remove_pack);
4679 EXPORT_SYMBOL(dev_set_allmulti);
4680 EXPORT_SYMBOL(dev_set_promiscuity);
4681 EXPORT_SYMBOL(dev_change_flags);
4682 EXPORT_SYMBOL(dev_set_mtu);
4683 EXPORT_SYMBOL(dev_set_mac_address);
4684 EXPORT_SYMBOL(free_netdev);
4685 EXPORT_SYMBOL(netdev_boot_setup_check);
4686 EXPORT_SYMBOL(netdev_set_master);
4687 EXPORT_SYMBOL(netdev_state_change);
4688 EXPORT_SYMBOL(netif_receive_skb);
4689 EXPORT_SYMBOL(netif_rx);
4690 EXPORT_SYMBOL(register_gifconf);
4691 EXPORT_SYMBOL(register_netdevice);
4692 EXPORT_SYMBOL(register_netdevice_notifier);
4693 EXPORT_SYMBOL(skb_checksum_help);
4694 EXPORT_SYMBOL(synchronize_net);
4695 EXPORT_SYMBOL(unregister_netdevice);
4696 EXPORT_SYMBOL(unregister_netdevice_notifier);
4697 EXPORT_SYMBOL(net_enable_timestamp);
4698 EXPORT_SYMBOL(net_disable_timestamp);
4699 EXPORT_SYMBOL(dev_get_flags);
4700
4701 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4702 EXPORT_SYMBOL(br_handle_frame_hook);
4703 EXPORT_SYMBOL(br_fdb_get_hook);
4704 EXPORT_SYMBOL(br_fdb_put_hook);
4705 #endif
4706
4707 #ifdef CONFIG_KMOD
4708 EXPORT_SYMBOL(dev_load);
4709 #endif
4710
4711 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.142343 seconds and 6 git commands to generate.