Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 #ifdef CONFIG_NET_CLS_ACT
1340 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1341 net_timestamp(skb);
1342 #else
1343 net_timestamp(skb);
1344 #endif
1345
1346 rcu_read_lock();
1347 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1348 /* Never send packets back to the socket
1349 * they originated from - MvS (miquels@drinkel.ow.org)
1350 */
1351 if ((ptype->dev == dev || !ptype->dev) &&
1352 (ptype->af_packet_priv == NULL ||
1353 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1354 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1355 if (!skb2)
1356 break;
1357
1358 /* skb->nh should be correctly
1359 set by sender, so that the second statement is
1360 just protection against buggy protocols.
1361 */
1362 skb_reset_mac_header(skb2);
1363
1364 if (skb_network_header(skb2) < skb2->data ||
1365 skb2->network_header > skb2->tail) {
1366 if (net_ratelimit())
1367 printk(KERN_CRIT "protocol %04x is "
1368 "buggy, dev %s\n",
1369 skb2->protocol, dev->name);
1370 skb_reset_network_header(skb2);
1371 }
1372
1373 skb2->transport_header = skb2->network_header;
1374 skb2->pkt_type = PACKET_OUTGOING;
1375 ptype->func(skb2, skb->dev, ptype, skb->dev);
1376 }
1377 }
1378 rcu_read_unlock();
1379 }
1380
1381
1382 static inline void __netif_reschedule(struct Qdisc *q)
1383 {
1384 struct softnet_data *sd;
1385 unsigned long flags;
1386
1387 local_irq_save(flags);
1388 sd = &__get_cpu_var(softnet_data);
1389 q->next_sched = sd->output_queue;
1390 sd->output_queue = q;
1391 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1392 local_irq_restore(flags);
1393 }
1394
1395 void __netif_schedule(struct Qdisc *q)
1396 {
1397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1398 __netif_reschedule(q);
1399 }
1400 EXPORT_SYMBOL(__netif_schedule);
1401
1402 void dev_kfree_skb_irq(struct sk_buff *skb)
1403 {
1404 if (atomic_dec_and_test(&skb->users)) {
1405 struct softnet_data *sd;
1406 unsigned long flags;
1407
1408 local_irq_save(flags);
1409 sd = &__get_cpu_var(softnet_data);
1410 skb->next = sd->completion_queue;
1411 sd->completion_queue = skb;
1412 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1413 local_irq_restore(flags);
1414 }
1415 }
1416 EXPORT_SYMBOL(dev_kfree_skb_irq);
1417
1418 void dev_kfree_skb_any(struct sk_buff *skb)
1419 {
1420 if (in_irq() || irqs_disabled())
1421 dev_kfree_skb_irq(skb);
1422 else
1423 dev_kfree_skb(skb);
1424 }
1425 EXPORT_SYMBOL(dev_kfree_skb_any);
1426
1427
1428 /**
1429 * netif_device_detach - mark device as removed
1430 * @dev: network device
1431 *
1432 * Mark device as removed from system and therefore no longer available.
1433 */
1434 void netif_device_detach(struct net_device *dev)
1435 {
1436 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 netif_running(dev)) {
1438 netif_tx_stop_all_queues(dev);
1439 }
1440 }
1441 EXPORT_SYMBOL(netif_device_detach);
1442
1443 /**
1444 * netif_device_attach - mark device as attached
1445 * @dev: network device
1446 *
1447 * Mark device as attached from system and restart if needed.
1448 */
1449 void netif_device_attach(struct net_device *dev)
1450 {
1451 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1452 netif_running(dev)) {
1453 netif_tx_wake_all_queues(dev);
1454 __netdev_watchdog_up(dev);
1455 }
1456 }
1457 EXPORT_SYMBOL(netif_device_attach);
1458
1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1460 {
1461 return ((features & NETIF_F_GEN_CSUM) ||
1462 ((features & NETIF_F_IP_CSUM) &&
1463 protocol == htons(ETH_P_IP)) ||
1464 ((features & NETIF_F_IPV6_CSUM) &&
1465 protocol == htons(ETH_P_IPV6)) ||
1466 ((features & NETIF_F_FCOE_CRC) &&
1467 protocol == htons(ETH_P_FCOE)));
1468 }
1469
1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1471 {
1472 if (can_checksum_protocol(dev->features, skb->protocol))
1473 return true;
1474
1475 if (skb->protocol == htons(ETH_P_8021Q)) {
1476 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1477 if (can_checksum_protocol(dev->features & dev->vlan_features,
1478 veh->h_vlan_encapsulated_proto))
1479 return true;
1480 }
1481
1482 return false;
1483 }
1484
1485 /*
1486 * Invalidate hardware checksum when packet is to be mangled, and
1487 * complete checksum manually on outgoing path.
1488 */
1489 int skb_checksum_help(struct sk_buff *skb)
1490 {
1491 __wsum csum;
1492 int ret = 0, offset;
1493
1494 if (skb->ip_summed == CHECKSUM_COMPLETE)
1495 goto out_set_summed;
1496
1497 if (unlikely(skb_shinfo(skb)->gso_size)) {
1498 /* Let GSO fix up the checksum. */
1499 goto out_set_summed;
1500 }
1501
1502 offset = skb->csum_start - skb_headroom(skb);
1503 BUG_ON(offset >= skb_headlen(skb));
1504 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1505
1506 offset += skb->csum_offset;
1507 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1508
1509 if (skb_cloned(skb) &&
1510 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1511 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1512 if (ret)
1513 goto out;
1514 }
1515
1516 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1517 out_set_summed:
1518 skb->ip_summed = CHECKSUM_NONE;
1519 out:
1520 return ret;
1521 }
1522
1523 /**
1524 * skb_gso_segment - Perform segmentation on skb.
1525 * @skb: buffer to segment
1526 * @features: features for the output path (see dev->features)
1527 *
1528 * This function segments the given skb and returns a list of segments.
1529 *
1530 * It may return NULL if the skb requires no segmentation. This is
1531 * only possible when GSO is used for verifying header integrity.
1532 */
1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1534 {
1535 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1536 struct packet_type *ptype;
1537 __be16 type = skb->protocol;
1538 int err;
1539
1540 skb_reset_mac_header(skb);
1541 skb->mac_len = skb->network_header - skb->mac_header;
1542 __skb_pull(skb, skb->mac_len);
1543
1544 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1545 struct net_device *dev = skb->dev;
1546 struct ethtool_drvinfo info = {};
1547
1548 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1549 dev->ethtool_ops->get_drvinfo(dev, &info);
1550
1551 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1552 "ip_summed=%d",
1553 info.driver, dev ? dev->features : 0L,
1554 skb->sk ? skb->sk->sk_route_caps : 0L,
1555 skb->len, skb->data_len, skb->ip_summed);
1556
1557 if (skb_header_cloned(skb) &&
1558 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1559 return ERR_PTR(err);
1560 }
1561
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(ptype,
1564 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1565 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1566 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1567 err = ptype->gso_send_check(skb);
1568 segs = ERR_PTR(err);
1569 if (err || skb_gso_ok(skb, features))
1570 break;
1571 __skb_push(skb, (skb->data -
1572 skb_network_header(skb)));
1573 }
1574 segs = ptype->gso_segment(skb, features);
1575 break;
1576 }
1577 }
1578 rcu_read_unlock();
1579
1580 __skb_push(skb, skb->data - skb_mac_header(skb));
1581
1582 return segs;
1583 }
1584
1585 EXPORT_SYMBOL(skb_gso_segment);
1586
1587 /* Take action when hardware reception checksum errors are detected. */
1588 #ifdef CONFIG_BUG
1589 void netdev_rx_csum_fault(struct net_device *dev)
1590 {
1591 if (net_ratelimit()) {
1592 printk(KERN_ERR "%s: hw csum failure.\n",
1593 dev ? dev->name : "<unknown>");
1594 dump_stack();
1595 }
1596 }
1597 EXPORT_SYMBOL(netdev_rx_csum_fault);
1598 #endif
1599
1600 /* Actually, we should eliminate this check as soon as we know, that:
1601 * 1. IOMMU is present and allows to map all the memory.
1602 * 2. No high memory really exists on this machine.
1603 */
1604
1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1606 {
1607 #ifdef CONFIG_HIGHMEM
1608 int i;
1609
1610 if (dev->features & NETIF_F_HIGHDMA)
1611 return 0;
1612
1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1614 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1615 return 1;
1616
1617 #endif
1618 return 0;
1619 }
1620
1621 struct dev_gso_cb {
1622 void (*destructor)(struct sk_buff *skb);
1623 };
1624
1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1626
1627 static void dev_gso_skb_destructor(struct sk_buff *skb)
1628 {
1629 struct dev_gso_cb *cb;
1630
1631 do {
1632 struct sk_buff *nskb = skb->next;
1633
1634 skb->next = nskb->next;
1635 nskb->next = NULL;
1636 kfree_skb(nskb);
1637 } while (skb->next);
1638
1639 cb = DEV_GSO_CB(skb);
1640 if (cb->destructor)
1641 cb->destructor(skb);
1642 }
1643
1644 /**
1645 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1646 * @skb: buffer to segment
1647 *
1648 * This function segments the given skb and stores the list of segments
1649 * in skb->next.
1650 */
1651 static int dev_gso_segment(struct sk_buff *skb)
1652 {
1653 struct net_device *dev = skb->dev;
1654 struct sk_buff *segs;
1655 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1656 NETIF_F_SG : 0);
1657
1658 segs = skb_gso_segment(skb, features);
1659
1660 /* Verifying header integrity only. */
1661 if (!segs)
1662 return 0;
1663
1664 if (IS_ERR(segs))
1665 return PTR_ERR(segs);
1666
1667 skb->next = segs;
1668 DEV_GSO_CB(skb)->destructor = skb->destructor;
1669 skb->destructor = dev_gso_skb_destructor;
1670
1671 return 0;
1672 }
1673
1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1675 struct netdev_queue *txq)
1676 {
1677 const struct net_device_ops *ops = dev->netdev_ops;
1678 int rc;
1679
1680 if (likely(!skb->next)) {
1681 if (!list_empty(&ptype_all))
1682 dev_queue_xmit_nit(skb, dev);
1683
1684 if (netif_needs_gso(dev, skb)) {
1685 if (unlikely(dev_gso_segment(skb)))
1686 goto out_kfree_skb;
1687 if (skb->next)
1688 goto gso;
1689 }
1690
1691 rc = ops->ndo_start_xmit(skb, dev);
1692 /*
1693 * TODO: if skb_orphan() was called by
1694 * dev->hard_start_xmit() (for example, the unmodified
1695 * igb driver does that; bnx2 doesn't), then
1696 * skb_tx_software_timestamp() will be unable to send
1697 * back the time stamp.
1698 *
1699 * How can this be prevented? Always create another
1700 * reference to the socket before calling
1701 * dev->hard_start_xmit()? Prevent that skb_orphan()
1702 * does anything in dev->hard_start_xmit() by clearing
1703 * the skb destructor before the call and restoring it
1704 * afterwards, then doing the skb_orphan() ourselves?
1705 */
1706 return rc;
1707 }
1708
1709 gso:
1710 do {
1711 struct sk_buff *nskb = skb->next;
1712
1713 skb->next = nskb->next;
1714 nskb->next = NULL;
1715 rc = ops->ndo_start_xmit(nskb, dev);
1716 if (unlikely(rc)) {
1717 nskb->next = skb->next;
1718 skb->next = nskb;
1719 return rc;
1720 }
1721 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1722 return NETDEV_TX_BUSY;
1723 } while (skb->next);
1724
1725 skb->destructor = DEV_GSO_CB(skb)->destructor;
1726
1727 out_kfree_skb:
1728 kfree_skb(skb);
1729 return 0;
1730 }
1731
1732 static u32 skb_tx_hashrnd;
1733
1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1735 {
1736 u32 hash;
1737
1738 if (skb_rx_queue_recorded(skb)) {
1739 hash = skb_get_rx_queue(skb);
1740 } else if (skb->sk && skb->sk->sk_hash) {
1741 hash = skb->sk->sk_hash;
1742 } else
1743 hash = skb->protocol;
1744
1745 hash = jhash_1word(hash, skb_tx_hashrnd);
1746
1747 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1748 }
1749 EXPORT_SYMBOL(skb_tx_hash);
1750
1751 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1752 struct sk_buff *skb)
1753 {
1754 const struct net_device_ops *ops = dev->netdev_ops;
1755 u16 queue_index = 0;
1756
1757 if (ops->ndo_select_queue)
1758 queue_index = ops->ndo_select_queue(dev, skb);
1759 else if (dev->real_num_tx_queues > 1)
1760 queue_index = skb_tx_hash(dev, skb);
1761
1762 skb_set_queue_mapping(skb, queue_index);
1763 return netdev_get_tx_queue(dev, queue_index);
1764 }
1765
1766 /**
1767 * dev_queue_xmit - transmit a buffer
1768 * @skb: buffer to transmit
1769 *
1770 * Queue a buffer for transmission to a network device. The caller must
1771 * have set the device and priority and built the buffer before calling
1772 * this function. The function can be called from an interrupt.
1773 *
1774 * A negative errno code is returned on a failure. A success does not
1775 * guarantee the frame will be transmitted as it may be dropped due
1776 * to congestion or traffic shaping.
1777 *
1778 * -----------------------------------------------------------------------------------
1779 * I notice this method can also return errors from the queue disciplines,
1780 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1781 * be positive.
1782 *
1783 * Regardless of the return value, the skb is consumed, so it is currently
1784 * difficult to retry a send to this method. (You can bump the ref count
1785 * before sending to hold a reference for retry if you are careful.)
1786 *
1787 * When calling this method, interrupts MUST be enabled. This is because
1788 * the BH enable code must have IRQs enabled so that it will not deadlock.
1789 * --BLG
1790 */
1791 int dev_queue_xmit(struct sk_buff *skb)
1792 {
1793 struct net_device *dev = skb->dev;
1794 struct netdev_queue *txq;
1795 struct Qdisc *q;
1796 int rc = -ENOMEM;
1797
1798 /* GSO will handle the following emulations directly. */
1799 if (netif_needs_gso(dev, skb))
1800 goto gso;
1801
1802 if (skb_shinfo(skb)->frag_list &&
1803 !(dev->features & NETIF_F_FRAGLIST) &&
1804 __skb_linearize(skb))
1805 goto out_kfree_skb;
1806
1807 /* Fragmented skb is linearized if device does not support SG,
1808 * or if at least one of fragments is in highmem and device
1809 * does not support DMA from it.
1810 */
1811 if (skb_shinfo(skb)->nr_frags &&
1812 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1813 __skb_linearize(skb))
1814 goto out_kfree_skb;
1815
1816 /* If packet is not checksummed and device does not support
1817 * checksumming for this protocol, complete checksumming here.
1818 */
1819 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1820 skb_set_transport_header(skb, skb->csum_start -
1821 skb_headroom(skb));
1822 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1823 goto out_kfree_skb;
1824 }
1825
1826 gso:
1827 /* Disable soft irqs for various locks below. Also
1828 * stops preemption for RCU.
1829 */
1830 rcu_read_lock_bh();
1831
1832 txq = dev_pick_tx(dev, skb);
1833 q = rcu_dereference(txq->qdisc);
1834
1835 #ifdef CONFIG_NET_CLS_ACT
1836 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1837 #endif
1838 if (q->enqueue) {
1839 spinlock_t *root_lock = qdisc_lock(q);
1840
1841 spin_lock(root_lock);
1842
1843 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1844 kfree_skb(skb);
1845 rc = NET_XMIT_DROP;
1846 } else {
1847 rc = qdisc_enqueue_root(skb, q);
1848 qdisc_run(q);
1849 }
1850 spin_unlock(root_lock);
1851
1852 goto out;
1853 }
1854
1855 /* The device has no queue. Common case for software devices:
1856 loopback, all the sorts of tunnels...
1857
1858 Really, it is unlikely that netif_tx_lock protection is necessary
1859 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1860 counters.)
1861 However, it is possible, that they rely on protection
1862 made by us here.
1863
1864 Check this and shot the lock. It is not prone from deadlocks.
1865 Either shot noqueue qdisc, it is even simpler 8)
1866 */
1867 if (dev->flags & IFF_UP) {
1868 int cpu = smp_processor_id(); /* ok because BHs are off */
1869
1870 if (txq->xmit_lock_owner != cpu) {
1871
1872 HARD_TX_LOCK(dev, txq, cpu);
1873
1874 if (!netif_tx_queue_stopped(txq)) {
1875 rc = 0;
1876 if (!dev_hard_start_xmit(skb, dev, txq)) {
1877 HARD_TX_UNLOCK(dev, txq);
1878 goto out;
1879 }
1880 }
1881 HARD_TX_UNLOCK(dev, txq);
1882 if (net_ratelimit())
1883 printk(KERN_CRIT "Virtual device %s asks to "
1884 "queue packet!\n", dev->name);
1885 } else {
1886 /* Recursion is detected! It is possible,
1887 * unfortunately */
1888 if (net_ratelimit())
1889 printk(KERN_CRIT "Dead loop on virtual device "
1890 "%s, fix it urgently!\n", dev->name);
1891 }
1892 }
1893
1894 rc = -ENETDOWN;
1895 rcu_read_unlock_bh();
1896
1897 out_kfree_skb:
1898 kfree_skb(skb);
1899 return rc;
1900 out:
1901 rcu_read_unlock_bh();
1902 return rc;
1903 }
1904
1905
1906 /*=======================================================================
1907 Receiver routines
1908 =======================================================================*/
1909
1910 int netdev_max_backlog __read_mostly = 1000;
1911 int netdev_budget __read_mostly = 300;
1912 int weight_p __read_mostly = 64; /* old backlog weight */
1913
1914 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1915
1916
1917 /**
1918 * netif_rx - post buffer to the network code
1919 * @skb: buffer to post
1920 *
1921 * This function receives a packet from a device driver and queues it for
1922 * the upper (protocol) levels to process. It always succeeds. The buffer
1923 * may be dropped during processing for congestion control or by the
1924 * protocol layers.
1925 *
1926 * return values:
1927 * NET_RX_SUCCESS (no congestion)
1928 * NET_RX_DROP (packet was dropped)
1929 *
1930 */
1931
1932 int netif_rx(struct sk_buff *skb)
1933 {
1934 struct softnet_data *queue;
1935 unsigned long flags;
1936
1937 /* if netpoll wants it, pretend we never saw it */
1938 if (netpoll_rx(skb))
1939 return NET_RX_DROP;
1940
1941 if (!skb->tstamp.tv64)
1942 net_timestamp(skb);
1943
1944 /*
1945 * The code is rearranged so that the path is the most
1946 * short when CPU is congested, but is still operating.
1947 */
1948 local_irq_save(flags);
1949 queue = &__get_cpu_var(softnet_data);
1950
1951 __get_cpu_var(netdev_rx_stat).total++;
1952 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1953 if (queue->input_pkt_queue.qlen) {
1954 enqueue:
1955 __skb_queue_tail(&queue->input_pkt_queue, skb);
1956 local_irq_restore(flags);
1957 return NET_RX_SUCCESS;
1958 }
1959
1960 napi_schedule(&queue->backlog);
1961 goto enqueue;
1962 }
1963
1964 __get_cpu_var(netdev_rx_stat).dropped++;
1965 local_irq_restore(flags);
1966
1967 kfree_skb(skb);
1968 return NET_RX_DROP;
1969 }
1970
1971 int netif_rx_ni(struct sk_buff *skb)
1972 {
1973 int err;
1974
1975 preempt_disable();
1976 err = netif_rx(skb);
1977 if (local_softirq_pending())
1978 do_softirq();
1979 preempt_enable();
1980
1981 return err;
1982 }
1983
1984 EXPORT_SYMBOL(netif_rx_ni);
1985
1986 static void net_tx_action(struct softirq_action *h)
1987 {
1988 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1989
1990 if (sd->completion_queue) {
1991 struct sk_buff *clist;
1992
1993 local_irq_disable();
1994 clist = sd->completion_queue;
1995 sd->completion_queue = NULL;
1996 local_irq_enable();
1997
1998 while (clist) {
1999 struct sk_buff *skb = clist;
2000 clist = clist->next;
2001
2002 WARN_ON(atomic_read(&skb->users));
2003 __kfree_skb(skb);
2004 }
2005 }
2006
2007 if (sd->output_queue) {
2008 struct Qdisc *head;
2009
2010 local_irq_disable();
2011 head = sd->output_queue;
2012 sd->output_queue = NULL;
2013 local_irq_enable();
2014
2015 while (head) {
2016 struct Qdisc *q = head;
2017 spinlock_t *root_lock;
2018
2019 head = head->next_sched;
2020
2021 root_lock = qdisc_lock(q);
2022 if (spin_trylock(root_lock)) {
2023 smp_mb__before_clear_bit();
2024 clear_bit(__QDISC_STATE_SCHED,
2025 &q->state);
2026 qdisc_run(q);
2027 spin_unlock(root_lock);
2028 } else {
2029 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2030 &q->state)) {
2031 __netif_reschedule(q);
2032 } else {
2033 smp_mb__before_clear_bit();
2034 clear_bit(__QDISC_STATE_SCHED,
2035 &q->state);
2036 }
2037 }
2038 }
2039 }
2040 }
2041
2042 static inline int deliver_skb(struct sk_buff *skb,
2043 struct packet_type *pt_prev,
2044 struct net_device *orig_dev)
2045 {
2046 atomic_inc(&skb->users);
2047 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2048 }
2049
2050 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2051 /* These hooks defined here for ATM */
2052 struct net_bridge;
2053 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2054 unsigned char *addr);
2055 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2056
2057 /*
2058 * If bridge module is loaded call bridging hook.
2059 * returns NULL if packet was consumed.
2060 */
2061 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2062 struct sk_buff *skb) __read_mostly;
2063 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2064 struct packet_type **pt_prev, int *ret,
2065 struct net_device *orig_dev)
2066 {
2067 struct net_bridge_port *port;
2068
2069 if (skb->pkt_type == PACKET_LOOPBACK ||
2070 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2071 return skb;
2072
2073 if (*pt_prev) {
2074 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2075 *pt_prev = NULL;
2076 }
2077
2078 return br_handle_frame_hook(port, skb);
2079 }
2080 #else
2081 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2082 #endif
2083
2084 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2085 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2086 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2087
2088 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2089 struct packet_type **pt_prev,
2090 int *ret,
2091 struct net_device *orig_dev)
2092 {
2093 if (skb->dev->macvlan_port == NULL)
2094 return skb;
2095
2096 if (*pt_prev) {
2097 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2098 *pt_prev = NULL;
2099 }
2100 return macvlan_handle_frame_hook(skb);
2101 }
2102 #else
2103 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2104 #endif
2105
2106 #ifdef CONFIG_NET_CLS_ACT
2107 /* TODO: Maybe we should just force sch_ingress to be compiled in
2108 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2109 * a compare and 2 stores extra right now if we dont have it on
2110 * but have CONFIG_NET_CLS_ACT
2111 * NOTE: This doesnt stop any functionality; if you dont have
2112 * the ingress scheduler, you just cant add policies on ingress.
2113 *
2114 */
2115 static int ing_filter(struct sk_buff *skb)
2116 {
2117 struct net_device *dev = skb->dev;
2118 u32 ttl = G_TC_RTTL(skb->tc_verd);
2119 struct netdev_queue *rxq;
2120 int result = TC_ACT_OK;
2121 struct Qdisc *q;
2122
2123 if (MAX_RED_LOOP < ttl++) {
2124 printk(KERN_WARNING
2125 "Redir loop detected Dropping packet (%d->%d)\n",
2126 skb->iif, dev->ifindex);
2127 return TC_ACT_SHOT;
2128 }
2129
2130 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2131 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2132
2133 rxq = &dev->rx_queue;
2134
2135 q = rxq->qdisc;
2136 if (q != &noop_qdisc) {
2137 spin_lock(qdisc_lock(q));
2138 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2139 result = qdisc_enqueue_root(skb, q);
2140 spin_unlock(qdisc_lock(q));
2141 }
2142
2143 return result;
2144 }
2145
2146 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2147 struct packet_type **pt_prev,
2148 int *ret, struct net_device *orig_dev)
2149 {
2150 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2151 goto out;
2152
2153 if (*pt_prev) {
2154 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2155 *pt_prev = NULL;
2156 } else {
2157 /* Huh? Why does turning on AF_PACKET affect this? */
2158 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2159 }
2160
2161 switch (ing_filter(skb)) {
2162 case TC_ACT_SHOT:
2163 case TC_ACT_STOLEN:
2164 kfree_skb(skb);
2165 return NULL;
2166 }
2167
2168 out:
2169 skb->tc_verd = 0;
2170 return skb;
2171 }
2172 #endif
2173
2174 /*
2175 * netif_nit_deliver - deliver received packets to network taps
2176 * @skb: buffer
2177 *
2178 * This function is used to deliver incoming packets to network
2179 * taps. It should be used when the normal netif_receive_skb path
2180 * is bypassed, for example because of VLAN acceleration.
2181 */
2182 void netif_nit_deliver(struct sk_buff *skb)
2183 {
2184 struct packet_type *ptype;
2185
2186 if (list_empty(&ptype_all))
2187 return;
2188
2189 skb_reset_network_header(skb);
2190 skb_reset_transport_header(skb);
2191 skb->mac_len = skb->network_header - skb->mac_header;
2192
2193 rcu_read_lock();
2194 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2195 if (!ptype->dev || ptype->dev == skb->dev)
2196 deliver_skb(skb, ptype, skb->dev);
2197 }
2198 rcu_read_unlock();
2199 }
2200
2201 /**
2202 * netif_receive_skb - process receive buffer from network
2203 * @skb: buffer to process
2204 *
2205 * netif_receive_skb() is the main receive data processing function.
2206 * It always succeeds. The buffer may be dropped during processing
2207 * for congestion control or by the protocol layers.
2208 *
2209 * This function may only be called from softirq context and interrupts
2210 * should be enabled.
2211 *
2212 * Return values (usually ignored):
2213 * NET_RX_SUCCESS: no congestion
2214 * NET_RX_DROP: packet was dropped
2215 */
2216 int netif_receive_skb(struct sk_buff *skb)
2217 {
2218 struct packet_type *ptype, *pt_prev;
2219 struct net_device *orig_dev;
2220 struct net_device *null_or_orig;
2221 int ret = NET_RX_DROP;
2222 __be16 type;
2223
2224 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2225 return NET_RX_SUCCESS;
2226
2227 /* if we've gotten here through NAPI, check netpoll */
2228 if (netpoll_receive_skb(skb))
2229 return NET_RX_DROP;
2230
2231 if (!skb->tstamp.tv64)
2232 net_timestamp(skb);
2233
2234 if (!skb->iif)
2235 skb->iif = skb->dev->ifindex;
2236
2237 null_or_orig = NULL;
2238 orig_dev = skb->dev;
2239 if (orig_dev->master) {
2240 if (skb_bond_should_drop(skb))
2241 null_or_orig = orig_dev; /* deliver only exact match */
2242 else
2243 skb->dev = orig_dev->master;
2244 }
2245
2246 __get_cpu_var(netdev_rx_stat).total++;
2247
2248 skb_reset_network_header(skb);
2249 skb_reset_transport_header(skb);
2250 skb->mac_len = skb->network_header - skb->mac_header;
2251
2252 pt_prev = NULL;
2253
2254 rcu_read_lock();
2255
2256 #ifdef CONFIG_NET_CLS_ACT
2257 if (skb->tc_verd & TC_NCLS) {
2258 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2259 goto ncls;
2260 }
2261 #endif
2262
2263 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2264 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2265 ptype->dev == orig_dev) {
2266 if (pt_prev)
2267 ret = deliver_skb(skb, pt_prev, orig_dev);
2268 pt_prev = ptype;
2269 }
2270 }
2271
2272 #ifdef CONFIG_NET_CLS_ACT
2273 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2274 if (!skb)
2275 goto out;
2276 ncls:
2277 #endif
2278
2279 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2280 if (!skb)
2281 goto out;
2282 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2283 if (!skb)
2284 goto out;
2285
2286 skb_orphan(skb);
2287
2288 type = skb->protocol;
2289 list_for_each_entry_rcu(ptype,
2290 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2291 if (ptype->type == type &&
2292 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2293 ptype->dev == orig_dev)) {
2294 if (pt_prev)
2295 ret = deliver_skb(skb, pt_prev, orig_dev);
2296 pt_prev = ptype;
2297 }
2298 }
2299
2300 if (pt_prev) {
2301 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2302 } else {
2303 kfree_skb(skb);
2304 /* Jamal, now you will not able to escape explaining
2305 * me how you were going to use this. :-)
2306 */
2307 ret = NET_RX_DROP;
2308 }
2309
2310 out:
2311 rcu_read_unlock();
2312 return ret;
2313 }
2314
2315 /* Network device is going away, flush any packets still pending */
2316 static void flush_backlog(void *arg)
2317 {
2318 struct net_device *dev = arg;
2319 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2320 struct sk_buff *skb, *tmp;
2321
2322 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2323 if (skb->dev == dev) {
2324 __skb_unlink(skb, &queue->input_pkt_queue);
2325 kfree_skb(skb);
2326 }
2327 }
2328
2329 static int napi_gro_complete(struct sk_buff *skb)
2330 {
2331 struct packet_type *ptype;
2332 __be16 type = skb->protocol;
2333 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2334 int err = -ENOENT;
2335
2336 if (NAPI_GRO_CB(skb)->count == 1) {
2337 skb_shinfo(skb)->gso_size = 0;
2338 goto out;
2339 }
2340
2341 rcu_read_lock();
2342 list_for_each_entry_rcu(ptype, head, list) {
2343 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2344 continue;
2345
2346 err = ptype->gro_complete(skb);
2347 break;
2348 }
2349 rcu_read_unlock();
2350
2351 if (err) {
2352 WARN_ON(&ptype->list == head);
2353 kfree_skb(skb);
2354 return NET_RX_SUCCESS;
2355 }
2356
2357 out:
2358 return netif_receive_skb(skb);
2359 }
2360
2361 void napi_gro_flush(struct napi_struct *napi)
2362 {
2363 struct sk_buff *skb, *next;
2364
2365 for (skb = napi->gro_list; skb; skb = next) {
2366 next = skb->next;
2367 skb->next = NULL;
2368 napi_gro_complete(skb);
2369 }
2370
2371 napi->gro_count = 0;
2372 napi->gro_list = NULL;
2373 }
2374 EXPORT_SYMBOL(napi_gro_flush);
2375
2376 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2377 {
2378 unsigned int offset = skb_gro_offset(skb);
2379
2380 hlen += offset;
2381 if (hlen <= skb_headlen(skb))
2382 return skb->data + offset;
2383
2384 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2385 skb_shinfo(skb)->frags[0].size <=
2386 hlen - skb_headlen(skb) ||
2387 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2388 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2389
2390 return page_address(skb_shinfo(skb)->frags[0].page) +
2391 skb_shinfo(skb)->frags[0].page_offset +
2392 offset - skb_headlen(skb);
2393 }
2394 EXPORT_SYMBOL(skb_gro_header);
2395
2396 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2397 {
2398 struct sk_buff **pp = NULL;
2399 struct packet_type *ptype;
2400 __be16 type = skb->protocol;
2401 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2402 int same_flow;
2403 int mac_len;
2404 int ret;
2405
2406 if (!(skb->dev->features & NETIF_F_GRO))
2407 goto normal;
2408
2409 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2410 goto normal;
2411
2412 rcu_read_lock();
2413 list_for_each_entry_rcu(ptype, head, list) {
2414 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2415 continue;
2416
2417 skb_set_network_header(skb, skb_gro_offset(skb));
2418 mac_len = skb->network_header - skb->mac_header;
2419 skb->mac_len = mac_len;
2420 NAPI_GRO_CB(skb)->same_flow = 0;
2421 NAPI_GRO_CB(skb)->flush = 0;
2422 NAPI_GRO_CB(skb)->free = 0;
2423
2424 pp = ptype->gro_receive(&napi->gro_list, skb);
2425 break;
2426 }
2427 rcu_read_unlock();
2428
2429 if (&ptype->list == head)
2430 goto normal;
2431
2432 same_flow = NAPI_GRO_CB(skb)->same_flow;
2433 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2434
2435 if (pp) {
2436 struct sk_buff *nskb = *pp;
2437
2438 *pp = nskb->next;
2439 nskb->next = NULL;
2440 napi_gro_complete(nskb);
2441 napi->gro_count--;
2442 }
2443
2444 if (same_flow)
2445 goto ok;
2446
2447 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2448 goto normal;
2449
2450 napi->gro_count++;
2451 NAPI_GRO_CB(skb)->count = 1;
2452 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2453 skb->next = napi->gro_list;
2454 napi->gro_list = skb;
2455 ret = GRO_HELD;
2456
2457 pull:
2458 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2459 if (napi->gro_list == skb)
2460 napi->gro_list = skb->next;
2461 ret = GRO_DROP;
2462 }
2463
2464 ok:
2465 return ret;
2466
2467 normal:
2468 ret = GRO_NORMAL;
2469 goto pull;
2470 }
2471 EXPORT_SYMBOL(dev_gro_receive);
2472
2473 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2474 {
2475 struct sk_buff *p;
2476
2477 if (netpoll_rx_on(skb))
2478 return GRO_NORMAL;
2479
2480 for (p = napi->gro_list; p; p = p->next) {
2481 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2482 && !compare_ether_header(skb_mac_header(p),
2483 skb_gro_mac_header(skb));
2484 NAPI_GRO_CB(p)->flush = 0;
2485 }
2486
2487 return dev_gro_receive(napi, skb);
2488 }
2489
2490 int napi_skb_finish(int ret, struct sk_buff *skb)
2491 {
2492 int err = NET_RX_SUCCESS;
2493
2494 switch (ret) {
2495 case GRO_NORMAL:
2496 return netif_receive_skb(skb);
2497
2498 case GRO_DROP:
2499 err = NET_RX_DROP;
2500 /* fall through */
2501
2502 case GRO_MERGED_FREE:
2503 kfree_skb(skb);
2504 break;
2505 }
2506
2507 return err;
2508 }
2509 EXPORT_SYMBOL(napi_skb_finish);
2510
2511 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2512 {
2513 skb_gro_reset_offset(skb);
2514
2515 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2516 }
2517 EXPORT_SYMBOL(napi_gro_receive);
2518
2519 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2520 {
2521 __skb_pull(skb, skb_headlen(skb));
2522 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2523
2524 napi->skb = skb;
2525 }
2526 EXPORT_SYMBOL(napi_reuse_skb);
2527
2528 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2529 struct napi_gro_fraginfo *info)
2530 {
2531 struct net_device *dev = napi->dev;
2532 struct sk_buff *skb = napi->skb;
2533 struct ethhdr *eth;
2534 skb_frag_t *frag;
2535 int i;
2536
2537 napi->skb = NULL;
2538
2539 if (!skb) {
2540 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2541 if (!skb)
2542 goto out;
2543
2544 skb_reserve(skb, NET_IP_ALIGN);
2545 }
2546
2547 BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2548 frag = info->frags;
2549
2550 for (i = 0; i < info->nr_frags; i++) {
2551 skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2552 frag->size);
2553 frag++;
2554 }
2555 skb_shinfo(skb)->nr_frags = info->nr_frags;
2556
2557 skb->data_len = info->len;
2558 skb->len += info->len;
2559 skb->truesize += info->len;
2560
2561 skb_reset_mac_header(skb);
2562 skb_gro_reset_offset(skb);
2563
2564 eth = skb_gro_header(skb, sizeof(*eth));
2565 if (!eth) {
2566 napi_reuse_skb(napi, skb);
2567 skb = NULL;
2568 goto out;
2569 }
2570
2571 skb_gro_pull(skb, sizeof(*eth));
2572
2573 /*
2574 * This works because the only protocols we care about don't require
2575 * special handling. We'll fix it up properly at the end.
2576 */
2577 skb->protocol = eth->h_proto;
2578
2579 skb->ip_summed = info->ip_summed;
2580 skb->csum = info->csum;
2581
2582 out:
2583 return skb;
2584 }
2585 EXPORT_SYMBOL(napi_fraginfo_skb);
2586
2587 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2588 {
2589 int err = NET_RX_SUCCESS;
2590
2591 switch (ret) {
2592 case GRO_NORMAL:
2593 case GRO_HELD:
2594 skb->protocol = eth_type_trans(skb, napi->dev);
2595
2596 if (ret == GRO_NORMAL)
2597 return netif_receive_skb(skb);
2598
2599 skb_gro_pull(skb, -ETH_HLEN);
2600 break;
2601
2602 case GRO_DROP:
2603 err = NET_RX_DROP;
2604 /* fall through */
2605
2606 case GRO_MERGED_FREE:
2607 napi_reuse_skb(napi, skb);
2608 break;
2609 }
2610
2611 return err;
2612 }
2613 EXPORT_SYMBOL(napi_frags_finish);
2614
2615 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2616 {
2617 struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2618
2619 if (!skb)
2620 return NET_RX_DROP;
2621
2622 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2623 }
2624 EXPORT_SYMBOL(napi_gro_frags);
2625
2626 static int process_backlog(struct napi_struct *napi, int quota)
2627 {
2628 int work = 0;
2629 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2630 unsigned long start_time = jiffies;
2631
2632 napi->weight = weight_p;
2633 do {
2634 struct sk_buff *skb;
2635
2636 local_irq_disable();
2637 skb = __skb_dequeue(&queue->input_pkt_queue);
2638 if (!skb) {
2639 __napi_complete(napi);
2640 local_irq_enable();
2641 break;
2642 }
2643 local_irq_enable();
2644
2645 netif_receive_skb(skb);
2646 } while (++work < quota && jiffies == start_time);
2647
2648 return work;
2649 }
2650
2651 /**
2652 * __napi_schedule - schedule for receive
2653 * @n: entry to schedule
2654 *
2655 * The entry's receive function will be scheduled to run
2656 */
2657 void __napi_schedule(struct napi_struct *n)
2658 {
2659 unsigned long flags;
2660
2661 local_irq_save(flags);
2662 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2663 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2664 local_irq_restore(flags);
2665 }
2666 EXPORT_SYMBOL(__napi_schedule);
2667
2668 void __napi_complete(struct napi_struct *n)
2669 {
2670 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2671 BUG_ON(n->gro_list);
2672
2673 list_del(&n->poll_list);
2674 smp_mb__before_clear_bit();
2675 clear_bit(NAPI_STATE_SCHED, &n->state);
2676 }
2677 EXPORT_SYMBOL(__napi_complete);
2678
2679 void napi_complete(struct napi_struct *n)
2680 {
2681 unsigned long flags;
2682
2683 /*
2684 * don't let napi dequeue from the cpu poll list
2685 * just in case its running on a different cpu
2686 */
2687 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2688 return;
2689
2690 napi_gro_flush(n);
2691 local_irq_save(flags);
2692 __napi_complete(n);
2693 local_irq_restore(flags);
2694 }
2695 EXPORT_SYMBOL(napi_complete);
2696
2697 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2698 int (*poll)(struct napi_struct *, int), int weight)
2699 {
2700 INIT_LIST_HEAD(&napi->poll_list);
2701 napi->gro_count = 0;
2702 napi->gro_list = NULL;
2703 napi->skb = NULL;
2704 napi->poll = poll;
2705 napi->weight = weight;
2706 list_add(&napi->dev_list, &dev->napi_list);
2707 napi->dev = dev;
2708 #ifdef CONFIG_NETPOLL
2709 spin_lock_init(&napi->poll_lock);
2710 napi->poll_owner = -1;
2711 #endif
2712 set_bit(NAPI_STATE_SCHED, &napi->state);
2713 }
2714 EXPORT_SYMBOL(netif_napi_add);
2715
2716 void netif_napi_del(struct napi_struct *napi)
2717 {
2718 struct sk_buff *skb, *next;
2719
2720 list_del_init(&napi->dev_list);
2721 kfree_skb(napi->skb);
2722
2723 for (skb = napi->gro_list; skb; skb = next) {
2724 next = skb->next;
2725 skb->next = NULL;
2726 kfree_skb(skb);
2727 }
2728
2729 napi->gro_list = NULL;
2730 napi->gro_count = 0;
2731 }
2732 EXPORT_SYMBOL(netif_napi_del);
2733
2734
2735 static void net_rx_action(struct softirq_action *h)
2736 {
2737 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2738 unsigned long time_limit = jiffies + 2;
2739 int budget = netdev_budget;
2740 void *have;
2741
2742 local_irq_disable();
2743
2744 while (!list_empty(list)) {
2745 struct napi_struct *n;
2746 int work, weight;
2747
2748 /* If softirq window is exhuasted then punt.
2749 * Allow this to run for 2 jiffies since which will allow
2750 * an average latency of 1.5/HZ.
2751 */
2752 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2753 goto softnet_break;
2754
2755 local_irq_enable();
2756
2757 /* Even though interrupts have been re-enabled, this
2758 * access is safe because interrupts can only add new
2759 * entries to the tail of this list, and only ->poll()
2760 * calls can remove this head entry from the list.
2761 */
2762 n = list_entry(list->next, struct napi_struct, poll_list);
2763
2764 have = netpoll_poll_lock(n);
2765
2766 weight = n->weight;
2767
2768 /* This NAPI_STATE_SCHED test is for avoiding a race
2769 * with netpoll's poll_napi(). Only the entity which
2770 * obtains the lock and sees NAPI_STATE_SCHED set will
2771 * actually make the ->poll() call. Therefore we avoid
2772 * accidently calling ->poll() when NAPI is not scheduled.
2773 */
2774 work = 0;
2775 if (test_bit(NAPI_STATE_SCHED, &n->state))
2776 work = n->poll(n, weight);
2777
2778 WARN_ON_ONCE(work > weight);
2779
2780 budget -= work;
2781
2782 local_irq_disable();
2783
2784 /* Drivers must not modify the NAPI state if they
2785 * consume the entire weight. In such cases this code
2786 * still "owns" the NAPI instance and therefore can
2787 * move the instance around on the list at-will.
2788 */
2789 if (unlikely(work == weight)) {
2790 if (unlikely(napi_disable_pending(n)))
2791 __napi_complete(n);
2792 else
2793 list_move_tail(&n->poll_list, list);
2794 }
2795
2796 netpoll_poll_unlock(have);
2797 }
2798 out:
2799 local_irq_enable();
2800
2801 #ifdef CONFIG_NET_DMA
2802 /*
2803 * There may not be any more sk_buffs coming right now, so push
2804 * any pending DMA copies to hardware
2805 */
2806 dma_issue_pending_all();
2807 #endif
2808
2809 return;
2810
2811 softnet_break:
2812 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2813 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2814 goto out;
2815 }
2816
2817 static gifconf_func_t * gifconf_list [NPROTO];
2818
2819 /**
2820 * register_gifconf - register a SIOCGIF handler
2821 * @family: Address family
2822 * @gifconf: Function handler
2823 *
2824 * Register protocol dependent address dumping routines. The handler
2825 * that is passed must not be freed or reused until it has been replaced
2826 * by another handler.
2827 */
2828 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2829 {
2830 if (family >= NPROTO)
2831 return -EINVAL;
2832 gifconf_list[family] = gifconf;
2833 return 0;
2834 }
2835
2836
2837 /*
2838 * Map an interface index to its name (SIOCGIFNAME)
2839 */
2840
2841 /*
2842 * We need this ioctl for efficient implementation of the
2843 * if_indextoname() function required by the IPv6 API. Without
2844 * it, we would have to search all the interfaces to find a
2845 * match. --pb
2846 */
2847
2848 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2849 {
2850 struct net_device *dev;
2851 struct ifreq ifr;
2852
2853 /*
2854 * Fetch the caller's info block.
2855 */
2856
2857 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2858 return -EFAULT;
2859
2860 read_lock(&dev_base_lock);
2861 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2862 if (!dev) {
2863 read_unlock(&dev_base_lock);
2864 return -ENODEV;
2865 }
2866
2867 strcpy(ifr.ifr_name, dev->name);
2868 read_unlock(&dev_base_lock);
2869
2870 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2871 return -EFAULT;
2872 return 0;
2873 }
2874
2875 /*
2876 * Perform a SIOCGIFCONF call. This structure will change
2877 * size eventually, and there is nothing I can do about it.
2878 * Thus we will need a 'compatibility mode'.
2879 */
2880
2881 static int dev_ifconf(struct net *net, char __user *arg)
2882 {
2883 struct ifconf ifc;
2884 struct net_device *dev;
2885 char __user *pos;
2886 int len;
2887 int total;
2888 int i;
2889
2890 /*
2891 * Fetch the caller's info block.
2892 */
2893
2894 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2895 return -EFAULT;
2896
2897 pos = ifc.ifc_buf;
2898 len = ifc.ifc_len;
2899
2900 /*
2901 * Loop over the interfaces, and write an info block for each.
2902 */
2903
2904 total = 0;
2905 for_each_netdev(net, dev) {
2906 for (i = 0; i < NPROTO; i++) {
2907 if (gifconf_list[i]) {
2908 int done;
2909 if (!pos)
2910 done = gifconf_list[i](dev, NULL, 0);
2911 else
2912 done = gifconf_list[i](dev, pos + total,
2913 len - total);
2914 if (done < 0)
2915 return -EFAULT;
2916 total += done;
2917 }
2918 }
2919 }
2920
2921 /*
2922 * All done. Write the updated control block back to the caller.
2923 */
2924 ifc.ifc_len = total;
2925
2926 /*
2927 * Both BSD and Solaris return 0 here, so we do too.
2928 */
2929 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2930 }
2931
2932 #ifdef CONFIG_PROC_FS
2933 /*
2934 * This is invoked by the /proc filesystem handler to display a device
2935 * in detail.
2936 */
2937 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2938 __acquires(dev_base_lock)
2939 {
2940 struct net *net = seq_file_net(seq);
2941 loff_t off;
2942 struct net_device *dev;
2943
2944 read_lock(&dev_base_lock);
2945 if (!*pos)
2946 return SEQ_START_TOKEN;
2947
2948 off = 1;
2949 for_each_netdev(net, dev)
2950 if (off++ == *pos)
2951 return dev;
2952
2953 return NULL;
2954 }
2955
2956 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2957 {
2958 struct net *net = seq_file_net(seq);
2959 ++*pos;
2960 return v == SEQ_START_TOKEN ?
2961 first_net_device(net) : next_net_device((struct net_device *)v);
2962 }
2963
2964 void dev_seq_stop(struct seq_file *seq, void *v)
2965 __releases(dev_base_lock)
2966 {
2967 read_unlock(&dev_base_lock);
2968 }
2969
2970 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2971 {
2972 const struct net_device_stats *stats = dev_get_stats(dev);
2973
2974 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2975 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2976 dev->name, stats->rx_bytes, stats->rx_packets,
2977 stats->rx_errors,
2978 stats->rx_dropped + stats->rx_missed_errors,
2979 stats->rx_fifo_errors,
2980 stats->rx_length_errors + stats->rx_over_errors +
2981 stats->rx_crc_errors + stats->rx_frame_errors,
2982 stats->rx_compressed, stats->multicast,
2983 stats->tx_bytes, stats->tx_packets,
2984 stats->tx_errors, stats->tx_dropped,
2985 stats->tx_fifo_errors, stats->collisions,
2986 stats->tx_carrier_errors +
2987 stats->tx_aborted_errors +
2988 stats->tx_window_errors +
2989 stats->tx_heartbeat_errors,
2990 stats->tx_compressed);
2991 }
2992
2993 /*
2994 * Called from the PROCfs module. This now uses the new arbitrary sized
2995 * /proc/net interface to create /proc/net/dev
2996 */
2997 static int dev_seq_show(struct seq_file *seq, void *v)
2998 {
2999 if (v == SEQ_START_TOKEN)
3000 seq_puts(seq, "Inter-| Receive "
3001 " | Transmit\n"
3002 " face |bytes packets errs drop fifo frame "
3003 "compressed multicast|bytes packets errs "
3004 "drop fifo colls carrier compressed\n");
3005 else
3006 dev_seq_printf_stats(seq, v);
3007 return 0;
3008 }
3009
3010 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3011 {
3012 struct netif_rx_stats *rc = NULL;
3013
3014 while (*pos < nr_cpu_ids)
3015 if (cpu_online(*pos)) {
3016 rc = &per_cpu(netdev_rx_stat, *pos);
3017 break;
3018 } else
3019 ++*pos;
3020 return rc;
3021 }
3022
3023 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3024 {
3025 return softnet_get_online(pos);
3026 }
3027
3028 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3029 {
3030 ++*pos;
3031 return softnet_get_online(pos);
3032 }
3033
3034 static void softnet_seq_stop(struct seq_file *seq, void *v)
3035 {
3036 }
3037
3038 static int softnet_seq_show(struct seq_file *seq, void *v)
3039 {
3040 struct netif_rx_stats *s = v;
3041
3042 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3043 s->total, s->dropped, s->time_squeeze, 0,
3044 0, 0, 0, 0, /* was fastroute */
3045 s->cpu_collision );
3046 return 0;
3047 }
3048
3049 static const struct seq_operations dev_seq_ops = {
3050 .start = dev_seq_start,
3051 .next = dev_seq_next,
3052 .stop = dev_seq_stop,
3053 .show = dev_seq_show,
3054 };
3055
3056 static int dev_seq_open(struct inode *inode, struct file *file)
3057 {
3058 return seq_open_net(inode, file, &dev_seq_ops,
3059 sizeof(struct seq_net_private));
3060 }
3061
3062 static const struct file_operations dev_seq_fops = {
3063 .owner = THIS_MODULE,
3064 .open = dev_seq_open,
3065 .read = seq_read,
3066 .llseek = seq_lseek,
3067 .release = seq_release_net,
3068 };
3069
3070 static const struct seq_operations softnet_seq_ops = {
3071 .start = softnet_seq_start,
3072 .next = softnet_seq_next,
3073 .stop = softnet_seq_stop,
3074 .show = softnet_seq_show,
3075 };
3076
3077 static int softnet_seq_open(struct inode *inode, struct file *file)
3078 {
3079 return seq_open(file, &softnet_seq_ops);
3080 }
3081
3082 static const struct file_operations softnet_seq_fops = {
3083 .owner = THIS_MODULE,
3084 .open = softnet_seq_open,
3085 .read = seq_read,
3086 .llseek = seq_lseek,
3087 .release = seq_release,
3088 };
3089
3090 static void *ptype_get_idx(loff_t pos)
3091 {
3092 struct packet_type *pt = NULL;
3093 loff_t i = 0;
3094 int t;
3095
3096 list_for_each_entry_rcu(pt, &ptype_all, list) {
3097 if (i == pos)
3098 return pt;
3099 ++i;
3100 }
3101
3102 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3103 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3104 if (i == pos)
3105 return pt;
3106 ++i;
3107 }
3108 }
3109 return NULL;
3110 }
3111
3112 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3113 __acquires(RCU)
3114 {
3115 rcu_read_lock();
3116 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3117 }
3118
3119 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3120 {
3121 struct packet_type *pt;
3122 struct list_head *nxt;
3123 int hash;
3124
3125 ++*pos;
3126 if (v == SEQ_START_TOKEN)
3127 return ptype_get_idx(0);
3128
3129 pt = v;
3130 nxt = pt->list.next;
3131 if (pt->type == htons(ETH_P_ALL)) {
3132 if (nxt != &ptype_all)
3133 goto found;
3134 hash = 0;
3135 nxt = ptype_base[0].next;
3136 } else
3137 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3138
3139 while (nxt == &ptype_base[hash]) {
3140 if (++hash >= PTYPE_HASH_SIZE)
3141 return NULL;
3142 nxt = ptype_base[hash].next;
3143 }
3144 found:
3145 return list_entry(nxt, struct packet_type, list);
3146 }
3147
3148 static void ptype_seq_stop(struct seq_file *seq, void *v)
3149 __releases(RCU)
3150 {
3151 rcu_read_unlock();
3152 }
3153
3154 static int ptype_seq_show(struct seq_file *seq, void *v)
3155 {
3156 struct packet_type *pt = v;
3157
3158 if (v == SEQ_START_TOKEN)
3159 seq_puts(seq, "Type Device Function\n");
3160 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3161 if (pt->type == htons(ETH_P_ALL))
3162 seq_puts(seq, "ALL ");
3163 else
3164 seq_printf(seq, "%04x", ntohs(pt->type));
3165
3166 seq_printf(seq, " %-8s %pF\n",
3167 pt->dev ? pt->dev->name : "", pt->func);
3168 }
3169
3170 return 0;
3171 }
3172
3173 static const struct seq_operations ptype_seq_ops = {
3174 .start = ptype_seq_start,
3175 .next = ptype_seq_next,
3176 .stop = ptype_seq_stop,
3177 .show = ptype_seq_show,
3178 };
3179
3180 static int ptype_seq_open(struct inode *inode, struct file *file)
3181 {
3182 return seq_open_net(inode, file, &ptype_seq_ops,
3183 sizeof(struct seq_net_private));
3184 }
3185
3186 static const struct file_operations ptype_seq_fops = {
3187 .owner = THIS_MODULE,
3188 .open = ptype_seq_open,
3189 .read = seq_read,
3190 .llseek = seq_lseek,
3191 .release = seq_release_net,
3192 };
3193
3194
3195 static int __net_init dev_proc_net_init(struct net *net)
3196 {
3197 int rc = -ENOMEM;
3198
3199 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3200 goto out;
3201 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3202 goto out_dev;
3203 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3204 goto out_softnet;
3205
3206 if (wext_proc_init(net))
3207 goto out_ptype;
3208 rc = 0;
3209 out:
3210 return rc;
3211 out_ptype:
3212 proc_net_remove(net, "ptype");
3213 out_softnet:
3214 proc_net_remove(net, "softnet_stat");
3215 out_dev:
3216 proc_net_remove(net, "dev");
3217 goto out;
3218 }
3219
3220 static void __net_exit dev_proc_net_exit(struct net *net)
3221 {
3222 wext_proc_exit(net);
3223
3224 proc_net_remove(net, "ptype");
3225 proc_net_remove(net, "softnet_stat");
3226 proc_net_remove(net, "dev");
3227 }
3228
3229 static struct pernet_operations __net_initdata dev_proc_ops = {
3230 .init = dev_proc_net_init,
3231 .exit = dev_proc_net_exit,
3232 };
3233
3234 static int __init dev_proc_init(void)
3235 {
3236 return register_pernet_subsys(&dev_proc_ops);
3237 }
3238 #else
3239 #define dev_proc_init() 0
3240 #endif /* CONFIG_PROC_FS */
3241
3242
3243 /**
3244 * netdev_set_master - set up master/slave pair
3245 * @slave: slave device
3246 * @master: new master device
3247 *
3248 * Changes the master device of the slave. Pass %NULL to break the
3249 * bonding. The caller must hold the RTNL semaphore. On a failure
3250 * a negative errno code is returned. On success the reference counts
3251 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3252 * function returns zero.
3253 */
3254 int netdev_set_master(struct net_device *slave, struct net_device *master)
3255 {
3256 struct net_device *old = slave->master;
3257
3258 ASSERT_RTNL();
3259
3260 if (master) {
3261 if (old)
3262 return -EBUSY;
3263 dev_hold(master);
3264 }
3265
3266 slave->master = master;
3267
3268 synchronize_net();
3269
3270 if (old)
3271 dev_put(old);
3272
3273 if (master)
3274 slave->flags |= IFF_SLAVE;
3275 else
3276 slave->flags &= ~IFF_SLAVE;
3277
3278 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3279 return 0;
3280 }
3281
3282 static void dev_change_rx_flags(struct net_device *dev, int flags)
3283 {
3284 const struct net_device_ops *ops = dev->netdev_ops;
3285
3286 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3287 ops->ndo_change_rx_flags(dev, flags);
3288 }
3289
3290 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3291 {
3292 unsigned short old_flags = dev->flags;
3293 uid_t uid;
3294 gid_t gid;
3295
3296 ASSERT_RTNL();
3297
3298 dev->flags |= IFF_PROMISC;
3299 dev->promiscuity += inc;
3300 if (dev->promiscuity == 0) {
3301 /*
3302 * Avoid overflow.
3303 * If inc causes overflow, untouch promisc and return error.
3304 */
3305 if (inc < 0)
3306 dev->flags &= ~IFF_PROMISC;
3307 else {
3308 dev->promiscuity -= inc;
3309 printk(KERN_WARNING "%s: promiscuity touches roof, "
3310 "set promiscuity failed, promiscuity feature "
3311 "of device might be broken.\n", dev->name);
3312 return -EOVERFLOW;
3313 }
3314 }
3315 if (dev->flags != old_flags) {
3316 printk(KERN_INFO "device %s %s promiscuous mode\n",
3317 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3318 "left");
3319 if (audit_enabled) {
3320 current_uid_gid(&uid, &gid);
3321 audit_log(current->audit_context, GFP_ATOMIC,
3322 AUDIT_ANOM_PROMISCUOUS,
3323 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3324 dev->name, (dev->flags & IFF_PROMISC),
3325 (old_flags & IFF_PROMISC),
3326 audit_get_loginuid(current),
3327 uid, gid,
3328 audit_get_sessionid(current));
3329 }
3330
3331 dev_change_rx_flags(dev, IFF_PROMISC);
3332 }
3333 return 0;
3334 }
3335
3336 /**
3337 * dev_set_promiscuity - update promiscuity count on a device
3338 * @dev: device
3339 * @inc: modifier
3340 *
3341 * Add or remove promiscuity from a device. While the count in the device
3342 * remains above zero the interface remains promiscuous. Once it hits zero
3343 * the device reverts back to normal filtering operation. A negative inc
3344 * value is used to drop promiscuity on the device.
3345 * Return 0 if successful or a negative errno code on error.
3346 */
3347 int dev_set_promiscuity(struct net_device *dev, int inc)
3348 {
3349 unsigned short old_flags = dev->flags;
3350 int err;
3351
3352 err = __dev_set_promiscuity(dev, inc);
3353 if (err < 0)
3354 return err;
3355 if (dev->flags != old_flags)
3356 dev_set_rx_mode(dev);
3357 return err;
3358 }
3359
3360 /**
3361 * dev_set_allmulti - update allmulti count on a device
3362 * @dev: device
3363 * @inc: modifier
3364 *
3365 * Add or remove reception of all multicast frames to a device. While the
3366 * count in the device remains above zero the interface remains listening
3367 * to all interfaces. Once it hits zero the device reverts back to normal
3368 * filtering operation. A negative @inc value is used to drop the counter
3369 * when releasing a resource needing all multicasts.
3370 * Return 0 if successful or a negative errno code on error.
3371 */
3372
3373 int dev_set_allmulti(struct net_device *dev, int inc)
3374 {
3375 unsigned short old_flags = dev->flags;
3376
3377 ASSERT_RTNL();
3378
3379 dev->flags |= IFF_ALLMULTI;
3380 dev->allmulti += inc;
3381 if (dev->allmulti == 0) {
3382 /*
3383 * Avoid overflow.
3384 * If inc causes overflow, untouch allmulti and return error.
3385 */
3386 if (inc < 0)
3387 dev->flags &= ~IFF_ALLMULTI;
3388 else {
3389 dev->allmulti -= inc;
3390 printk(KERN_WARNING "%s: allmulti touches roof, "
3391 "set allmulti failed, allmulti feature of "
3392 "device might be broken.\n", dev->name);
3393 return -EOVERFLOW;
3394 }
3395 }
3396 if (dev->flags ^ old_flags) {
3397 dev_change_rx_flags(dev, IFF_ALLMULTI);
3398 dev_set_rx_mode(dev);
3399 }
3400 return 0;
3401 }
3402
3403 /*
3404 * Upload unicast and multicast address lists to device and
3405 * configure RX filtering. When the device doesn't support unicast
3406 * filtering it is put in promiscuous mode while unicast addresses
3407 * are present.
3408 */
3409 void __dev_set_rx_mode(struct net_device *dev)
3410 {
3411 const struct net_device_ops *ops = dev->netdev_ops;
3412
3413 /* dev_open will call this function so the list will stay sane. */
3414 if (!(dev->flags&IFF_UP))
3415 return;
3416
3417 if (!netif_device_present(dev))
3418 return;
3419
3420 if (ops->ndo_set_rx_mode)
3421 ops->ndo_set_rx_mode(dev);
3422 else {
3423 /* Unicast addresses changes may only happen under the rtnl,
3424 * therefore calling __dev_set_promiscuity here is safe.
3425 */
3426 if (dev->uc_count > 0 && !dev->uc_promisc) {
3427 __dev_set_promiscuity(dev, 1);
3428 dev->uc_promisc = 1;
3429 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3430 __dev_set_promiscuity(dev, -1);
3431 dev->uc_promisc = 0;
3432 }
3433
3434 if (ops->ndo_set_multicast_list)
3435 ops->ndo_set_multicast_list(dev);
3436 }
3437 }
3438
3439 void dev_set_rx_mode(struct net_device *dev)
3440 {
3441 netif_addr_lock_bh(dev);
3442 __dev_set_rx_mode(dev);
3443 netif_addr_unlock_bh(dev);
3444 }
3445
3446 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3447 void *addr, int alen, int glbl)
3448 {
3449 struct dev_addr_list *da;
3450
3451 for (; (da = *list) != NULL; list = &da->next) {
3452 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3453 alen == da->da_addrlen) {
3454 if (glbl) {
3455 int old_glbl = da->da_gusers;
3456 da->da_gusers = 0;
3457 if (old_glbl == 0)
3458 break;
3459 }
3460 if (--da->da_users)
3461 return 0;
3462
3463 *list = da->next;
3464 kfree(da);
3465 (*count)--;
3466 return 0;
3467 }
3468 }
3469 return -ENOENT;
3470 }
3471
3472 int __dev_addr_add(struct dev_addr_list **list, int *count,
3473 void *addr, int alen, int glbl)
3474 {
3475 struct dev_addr_list *da;
3476
3477 for (da = *list; da != NULL; da = da->next) {
3478 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3479 da->da_addrlen == alen) {
3480 if (glbl) {
3481 int old_glbl = da->da_gusers;
3482 da->da_gusers = 1;
3483 if (old_glbl)
3484 return 0;
3485 }
3486 da->da_users++;
3487 return 0;
3488 }
3489 }
3490
3491 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3492 if (da == NULL)
3493 return -ENOMEM;
3494 memcpy(da->da_addr, addr, alen);
3495 da->da_addrlen = alen;
3496 da->da_users = 1;
3497 da->da_gusers = glbl ? 1 : 0;
3498 da->next = *list;
3499 *list = da;
3500 (*count)++;
3501 return 0;
3502 }
3503
3504 /**
3505 * dev_unicast_delete - Release secondary unicast address.
3506 * @dev: device
3507 * @addr: address to delete
3508 * @alen: length of @addr
3509 *
3510 * Release reference to a secondary unicast address and remove it
3511 * from the device if the reference count drops to zero.
3512 *
3513 * The caller must hold the rtnl_mutex.
3514 */
3515 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3516 {
3517 int err;
3518
3519 ASSERT_RTNL();
3520
3521 netif_addr_lock_bh(dev);
3522 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3523 if (!err)
3524 __dev_set_rx_mode(dev);
3525 netif_addr_unlock_bh(dev);
3526 return err;
3527 }
3528 EXPORT_SYMBOL(dev_unicast_delete);
3529
3530 /**
3531 * dev_unicast_add - add a secondary unicast address
3532 * @dev: device
3533 * @addr: address to add
3534 * @alen: length of @addr
3535 *
3536 * Add a secondary unicast address to the device or increase
3537 * the reference count if it already exists.
3538 *
3539 * The caller must hold the rtnl_mutex.
3540 */
3541 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3542 {
3543 int err;
3544
3545 ASSERT_RTNL();
3546
3547 netif_addr_lock_bh(dev);
3548 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3549 if (!err)
3550 __dev_set_rx_mode(dev);
3551 netif_addr_unlock_bh(dev);
3552 return err;
3553 }
3554 EXPORT_SYMBOL(dev_unicast_add);
3555
3556 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3557 struct dev_addr_list **from, int *from_count)
3558 {
3559 struct dev_addr_list *da, *next;
3560 int err = 0;
3561
3562 da = *from;
3563 while (da != NULL) {
3564 next = da->next;
3565 if (!da->da_synced) {
3566 err = __dev_addr_add(to, to_count,
3567 da->da_addr, da->da_addrlen, 0);
3568 if (err < 0)
3569 break;
3570 da->da_synced = 1;
3571 da->da_users++;
3572 } else if (da->da_users == 1) {
3573 __dev_addr_delete(to, to_count,
3574 da->da_addr, da->da_addrlen, 0);
3575 __dev_addr_delete(from, from_count,
3576 da->da_addr, da->da_addrlen, 0);
3577 }
3578 da = next;
3579 }
3580 return err;
3581 }
3582
3583 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3584 struct dev_addr_list **from, int *from_count)
3585 {
3586 struct dev_addr_list *da, *next;
3587
3588 da = *from;
3589 while (da != NULL) {
3590 next = da->next;
3591 if (da->da_synced) {
3592 __dev_addr_delete(to, to_count,
3593 da->da_addr, da->da_addrlen, 0);
3594 da->da_synced = 0;
3595 __dev_addr_delete(from, from_count,
3596 da->da_addr, da->da_addrlen, 0);
3597 }
3598 da = next;
3599 }
3600 }
3601
3602 /**
3603 * dev_unicast_sync - Synchronize device's unicast list to another device
3604 * @to: destination device
3605 * @from: source device
3606 *
3607 * Add newly added addresses to the destination device and release
3608 * addresses that have no users left. The source device must be
3609 * locked by netif_tx_lock_bh.
3610 *
3611 * This function is intended to be called from the dev->set_rx_mode
3612 * function of layered software devices.
3613 */
3614 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3615 {
3616 int err = 0;
3617
3618 netif_addr_lock_bh(to);
3619 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3620 &from->uc_list, &from->uc_count);
3621 if (!err)
3622 __dev_set_rx_mode(to);
3623 netif_addr_unlock_bh(to);
3624 return err;
3625 }
3626 EXPORT_SYMBOL(dev_unicast_sync);
3627
3628 /**
3629 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3630 * @to: destination device
3631 * @from: source device
3632 *
3633 * Remove all addresses that were added to the destination device by
3634 * dev_unicast_sync(). This function is intended to be called from the
3635 * dev->stop function of layered software devices.
3636 */
3637 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3638 {
3639 netif_addr_lock_bh(from);
3640 netif_addr_lock(to);
3641
3642 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3643 &from->uc_list, &from->uc_count);
3644 __dev_set_rx_mode(to);
3645
3646 netif_addr_unlock(to);
3647 netif_addr_unlock_bh(from);
3648 }
3649 EXPORT_SYMBOL(dev_unicast_unsync);
3650
3651 static void __dev_addr_discard(struct dev_addr_list **list)
3652 {
3653 struct dev_addr_list *tmp;
3654
3655 while (*list != NULL) {
3656 tmp = *list;
3657 *list = tmp->next;
3658 if (tmp->da_users > tmp->da_gusers)
3659 printk("__dev_addr_discard: address leakage! "
3660 "da_users=%d\n", tmp->da_users);
3661 kfree(tmp);
3662 }
3663 }
3664
3665 static void dev_addr_discard(struct net_device *dev)
3666 {
3667 netif_addr_lock_bh(dev);
3668
3669 __dev_addr_discard(&dev->uc_list);
3670 dev->uc_count = 0;
3671
3672 __dev_addr_discard(&dev->mc_list);
3673 dev->mc_count = 0;
3674
3675 netif_addr_unlock_bh(dev);
3676 }
3677
3678 /**
3679 * dev_get_flags - get flags reported to userspace
3680 * @dev: device
3681 *
3682 * Get the combination of flag bits exported through APIs to userspace.
3683 */
3684 unsigned dev_get_flags(const struct net_device *dev)
3685 {
3686 unsigned flags;
3687
3688 flags = (dev->flags & ~(IFF_PROMISC |
3689 IFF_ALLMULTI |
3690 IFF_RUNNING |
3691 IFF_LOWER_UP |
3692 IFF_DORMANT)) |
3693 (dev->gflags & (IFF_PROMISC |
3694 IFF_ALLMULTI));
3695
3696 if (netif_running(dev)) {
3697 if (netif_oper_up(dev))
3698 flags |= IFF_RUNNING;
3699 if (netif_carrier_ok(dev))
3700 flags |= IFF_LOWER_UP;
3701 if (netif_dormant(dev))
3702 flags |= IFF_DORMANT;
3703 }
3704
3705 return flags;
3706 }
3707
3708 /**
3709 * dev_change_flags - change device settings
3710 * @dev: device
3711 * @flags: device state flags
3712 *
3713 * Change settings on device based state flags. The flags are
3714 * in the userspace exported format.
3715 */
3716 int dev_change_flags(struct net_device *dev, unsigned flags)
3717 {
3718 int ret, changes;
3719 int old_flags = dev->flags;
3720
3721 ASSERT_RTNL();
3722
3723 /*
3724 * Set the flags on our device.
3725 */
3726
3727 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3728 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3729 IFF_AUTOMEDIA)) |
3730 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3731 IFF_ALLMULTI));
3732
3733 /*
3734 * Load in the correct multicast list now the flags have changed.
3735 */
3736
3737 if ((old_flags ^ flags) & IFF_MULTICAST)
3738 dev_change_rx_flags(dev, IFF_MULTICAST);
3739
3740 dev_set_rx_mode(dev);
3741
3742 /*
3743 * Have we downed the interface. We handle IFF_UP ourselves
3744 * according to user attempts to set it, rather than blindly
3745 * setting it.
3746 */
3747
3748 ret = 0;
3749 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3750 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3751
3752 if (!ret)
3753 dev_set_rx_mode(dev);
3754 }
3755
3756 if (dev->flags & IFF_UP &&
3757 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3758 IFF_VOLATILE)))
3759 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3760
3761 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3762 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3763 dev->gflags ^= IFF_PROMISC;
3764 dev_set_promiscuity(dev, inc);
3765 }
3766
3767 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3768 is important. Some (broken) drivers set IFF_PROMISC, when
3769 IFF_ALLMULTI is requested not asking us and not reporting.
3770 */
3771 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3772 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3773 dev->gflags ^= IFF_ALLMULTI;
3774 dev_set_allmulti(dev, inc);
3775 }
3776
3777 /* Exclude state transition flags, already notified */
3778 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3779 if (changes)
3780 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3781
3782 return ret;
3783 }
3784
3785 /**
3786 * dev_set_mtu - Change maximum transfer unit
3787 * @dev: device
3788 * @new_mtu: new transfer unit
3789 *
3790 * Change the maximum transfer size of the network device.
3791 */
3792 int dev_set_mtu(struct net_device *dev, int new_mtu)
3793 {
3794 const struct net_device_ops *ops = dev->netdev_ops;
3795 int err;
3796
3797 if (new_mtu == dev->mtu)
3798 return 0;
3799
3800 /* MTU must be positive. */
3801 if (new_mtu < 0)
3802 return -EINVAL;
3803
3804 if (!netif_device_present(dev))
3805 return -ENODEV;
3806
3807 err = 0;
3808 if (ops->ndo_change_mtu)
3809 err = ops->ndo_change_mtu(dev, new_mtu);
3810 else
3811 dev->mtu = new_mtu;
3812
3813 if (!err && dev->flags & IFF_UP)
3814 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3815 return err;
3816 }
3817
3818 /**
3819 * dev_set_mac_address - Change Media Access Control Address
3820 * @dev: device
3821 * @sa: new address
3822 *
3823 * Change the hardware (MAC) address of the device
3824 */
3825 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3826 {
3827 const struct net_device_ops *ops = dev->netdev_ops;
3828 int err;
3829
3830 if (!ops->ndo_set_mac_address)
3831 return -EOPNOTSUPP;
3832 if (sa->sa_family != dev->type)
3833 return -EINVAL;
3834 if (!netif_device_present(dev))
3835 return -ENODEV;
3836 err = ops->ndo_set_mac_address(dev, sa);
3837 if (!err)
3838 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3839 return err;
3840 }
3841
3842 /*
3843 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3844 */
3845 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3846 {
3847 int err;
3848 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3849
3850 if (!dev)
3851 return -ENODEV;
3852
3853 switch (cmd) {
3854 case SIOCGIFFLAGS: /* Get interface flags */
3855 ifr->ifr_flags = dev_get_flags(dev);
3856 return 0;
3857
3858 case SIOCGIFMETRIC: /* Get the metric on the interface
3859 (currently unused) */
3860 ifr->ifr_metric = 0;
3861 return 0;
3862
3863 case SIOCGIFMTU: /* Get the MTU of a device */
3864 ifr->ifr_mtu = dev->mtu;
3865 return 0;
3866
3867 case SIOCGIFHWADDR:
3868 if (!dev->addr_len)
3869 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3870 else
3871 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3872 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3873 ifr->ifr_hwaddr.sa_family = dev->type;
3874 return 0;
3875
3876 case SIOCGIFSLAVE:
3877 err = -EINVAL;
3878 break;
3879
3880 case SIOCGIFMAP:
3881 ifr->ifr_map.mem_start = dev->mem_start;
3882 ifr->ifr_map.mem_end = dev->mem_end;
3883 ifr->ifr_map.base_addr = dev->base_addr;
3884 ifr->ifr_map.irq = dev->irq;
3885 ifr->ifr_map.dma = dev->dma;
3886 ifr->ifr_map.port = dev->if_port;
3887 return 0;
3888
3889 case SIOCGIFINDEX:
3890 ifr->ifr_ifindex = dev->ifindex;
3891 return 0;
3892
3893 case SIOCGIFTXQLEN:
3894 ifr->ifr_qlen = dev->tx_queue_len;
3895 return 0;
3896
3897 default:
3898 /* dev_ioctl() should ensure this case
3899 * is never reached
3900 */
3901 WARN_ON(1);
3902 err = -EINVAL;
3903 break;
3904
3905 }
3906 return err;
3907 }
3908
3909 /*
3910 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3911 */
3912 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3913 {
3914 int err;
3915 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3916 const struct net_device_ops *ops;
3917
3918 if (!dev)
3919 return -ENODEV;
3920
3921 ops = dev->netdev_ops;
3922
3923 switch (cmd) {
3924 case SIOCSIFFLAGS: /* Set interface flags */
3925 return dev_change_flags(dev, ifr->ifr_flags);
3926
3927 case SIOCSIFMETRIC: /* Set the metric on the interface
3928 (currently unused) */
3929 return -EOPNOTSUPP;
3930
3931 case SIOCSIFMTU: /* Set the MTU of a device */
3932 return dev_set_mtu(dev, ifr->ifr_mtu);
3933
3934 case SIOCSIFHWADDR:
3935 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3936
3937 case SIOCSIFHWBROADCAST:
3938 if (ifr->ifr_hwaddr.sa_family != dev->type)
3939 return -EINVAL;
3940 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3941 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3942 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3943 return 0;
3944
3945 case SIOCSIFMAP:
3946 if (ops->ndo_set_config) {
3947 if (!netif_device_present(dev))
3948 return -ENODEV;
3949 return ops->ndo_set_config(dev, &ifr->ifr_map);
3950 }
3951 return -EOPNOTSUPP;
3952
3953 case SIOCADDMULTI:
3954 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3955 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3956 return -EINVAL;
3957 if (!netif_device_present(dev))
3958 return -ENODEV;
3959 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3960 dev->addr_len, 1);
3961
3962 case SIOCDELMULTI:
3963 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3964 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3965 return -EINVAL;
3966 if (!netif_device_present(dev))
3967 return -ENODEV;
3968 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3969 dev->addr_len, 1);
3970
3971 case SIOCSIFTXQLEN:
3972 if (ifr->ifr_qlen < 0)
3973 return -EINVAL;
3974 dev->tx_queue_len = ifr->ifr_qlen;
3975 return 0;
3976
3977 case SIOCSIFNAME:
3978 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3979 return dev_change_name(dev, ifr->ifr_newname);
3980
3981 /*
3982 * Unknown or private ioctl
3983 */
3984
3985 default:
3986 if ((cmd >= SIOCDEVPRIVATE &&
3987 cmd <= SIOCDEVPRIVATE + 15) ||
3988 cmd == SIOCBONDENSLAVE ||
3989 cmd == SIOCBONDRELEASE ||
3990 cmd == SIOCBONDSETHWADDR ||
3991 cmd == SIOCBONDSLAVEINFOQUERY ||
3992 cmd == SIOCBONDINFOQUERY ||
3993 cmd == SIOCBONDCHANGEACTIVE ||
3994 cmd == SIOCGMIIPHY ||
3995 cmd == SIOCGMIIREG ||
3996 cmd == SIOCSMIIREG ||
3997 cmd == SIOCBRADDIF ||
3998 cmd == SIOCBRDELIF ||
3999 cmd == SIOCSHWTSTAMP ||
4000 cmd == SIOCWANDEV) {
4001 err = -EOPNOTSUPP;
4002 if (ops->ndo_do_ioctl) {
4003 if (netif_device_present(dev))
4004 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4005 else
4006 err = -ENODEV;
4007 }
4008 } else
4009 err = -EINVAL;
4010
4011 }
4012 return err;
4013 }
4014
4015 /*
4016 * This function handles all "interface"-type I/O control requests. The actual
4017 * 'doing' part of this is dev_ifsioc above.
4018 */
4019
4020 /**
4021 * dev_ioctl - network device ioctl
4022 * @net: the applicable net namespace
4023 * @cmd: command to issue
4024 * @arg: pointer to a struct ifreq in user space
4025 *
4026 * Issue ioctl functions to devices. This is normally called by the
4027 * user space syscall interfaces but can sometimes be useful for
4028 * other purposes. The return value is the return from the syscall if
4029 * positive or a negative errno code on error.
4030 */
4031
4032 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4033 {
4034 struct ifreq ifr;
4035 int ret;
4036 char *colon;
4037
4038 /* One special case: SIOCGIFCONF takes ifconf argument
4039 and requires shared lock, because it sleeps writing
4040 to user space.
4041 */
4042
4043 if (cmd == SIOCGIFCONF) {
4044 rtnl_lock();
4045 ret = dev_ifconf(net, (char __user *) arg);
4046 rtnl_unlock();
4047 return ret;
4048 }
4049 if (cmd == SIOCGIFNAME)
4050 return dev_ifname(net, (struct ifreq __user *)arg);
4051
4052 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4053 return -EFAULT;
4054
4055 ifr.ifr_name[IFNAMSIZ-1] = 0;
4056
4057 colon = strchr(ifr.ifr_name, ':');
4058 if (colon)
4059 *colon = 0;
4060
4061 /*
4062 * See which interface the caller is talking about.
4063 */
4064
4065 switch (cmd) {
4066 /*
4067 * These ioctl calls:
4068 * - can be done by all.
4069 * - atomic and do not require locking.
4070 * - return a value
4071 */
4072 case SIOCGIFFLAGS:
4073 case SIOCGIFMETRIC:
4074 case SIOCGIFMTU:
4075 case SIOCGIFHWADDR:
4076 case SIOCGIFSLAVE:
4077 case SIOCGIFMAP:
4078 case SIOCGIFINDEX:
4079 case SIOCGIFTXQLEN:
4080 dev_load(net, ifr.ifr_name);
4081 read_lock(&dev_base_lock);
4082 ret = dev_ifsioc_locked(net, &ifr, cmd);
4083 read_unlock(&dev_base_lock);
4084 if (!ret) {
4085 if (colon)
4086 *colon = ':';
4087 if (copy_to_user(arg, &ifr,
4088 sizeof(struct ifreq)))
4089 ret = -EFAULT;
4090 }
4091 return ret;
4092
4093 case SIOCETHTOOL:
4094 dev_load(net, ifr.ifr_name);
4095 rtnl_lock();
4096 ret = dev_ethtool(net, &ifr);
4097 rtnl_unlock();
4098 if (!ret) {
4099 if (colon)
4100 *colon = ':';
4101 if (copy_to_user(arg, &ifr,
4102 sizeof(struct ifreq)))
4103 ret = -EFAULT;
4104 }
4105 return ret;
4106
4107 /*
4108 * These ioctl calls:
4109 * - require superuser power.
4110 * - require strict serialization.
4111 * - return a value
4112 */
4113 case SIOCGMIIPHY:
4114 case SIOCGMIIREG:
4115 case SIOCSIFNAME:
4116 if (!capable(CAP_NET_ADMIN))
4117 return -EPERM;
4118 dev_load(net, ifr.ifr_name);
4119 rtnl_lock();
4120 ret = dev_ifsioc(net, &ifr, cmd);
4121 rtnl_unlock();
4122 if (!ret) {
4123 if (colon)
4124 *colon = ':';
4125 if (copy_to_user(arg, &ifr,
4126 sizeof(struct ifreq)))
4127 ret = -EFAULT;
4128 }
4129 return ret;
4130
4131 /*
4132 * These ioctl calls:
4133 * - require superuser power.
4134 * - require strict serialization.
4135 * - do not return a value
4136 */
4137 case SIOCSIFFLAGS:
4138 case SIOCSIFMETRIC:
4139 case SIOCSIFMTU:
4140 case SIOCSIFMAP:
4141 case SIOCSIFHWADDR:
4142 case SIOCSIFSLAVE:
4143 case SIOCADDMULTI:
4144 case SIOCDELMULTI:
4145 case SIOCSIFHWBROADCAST:
4146 case SIOCSIFTXQLEN:
4147 case SIOCSMIIREG:
4148 case SIOCBONDENSLAVE:
4149 case SIOCBONDRELEASE:
4150 case SIOCBONDSETHWADDR:
4151 case SIOCBONDCHANGEACTIVE:
4152 case SIOCBRADDIF:
4153 case SIOCBRDELIF:
4154 case SIOCSHWTSTAMP:
4155 if (!capable(CAP_NET_ADMIN))
4156 return -EPERM;
4157 /* fall through */
4158 case SIOCBONDSLAVEINFOQUERY:
4159 case SIOCBONDINFOQUERY:
4160 dev_load(net, ifr.ifr_name);
4161 rtnl_lock();
4162 ret = dev_ifsioc(net, &ifr, cmd);
4163 rtnl_unlock();
4164 return ret;
4165
4166 case SIOCGIFMEM:
4167 /* Get the per device memory space. We can add this but
4168 * currently do not support it */
4169 case SIOCSIFMEM:
4170 /* Set the per device memory buffer space.
4171 * Not applicable in our case */
4172 case SIOCSIFLINK:
4173 return -EINVAL;
4174
4175 /*
4176 * Unknown or private ioctl.
4177 */
4178 default:
4179 if (cmd == SIOCWANDEV ||
4180 (cmd >= SIOCDEVPRIVATE &&
4181 cmd <= SIOCDEVPRIVATE + 15)) {
4182 dev_load(net, ifr.ifr_name);
4183 rtnl_lock();
4184 ret = dev_ifsioc(net, &ifr, cmd);
4185 rtnl_unlock();
4186 if (!ret && copy_to_user(arg, &ifr,
4187 sizeof(struct ifreq)))
4188 ret = -EFAULT;
4189 return ret;
4190 }
4191 /* Take care of Wireless Extensions */
4192 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4193 return wext_handle_ioctl(net, &ifr, cmd, arg);
4194 return -EINVAL;
4195 }
4196 }
4197
4198
4199 /**
4200 * dev_new_index - allocate an ifindex
4201 * @net: the applicable net namespace
4202 *
4203 * Returns a suitable unique value for a new device interface
4204 * number. The caller must hold the rtnl semaphore or the
4205 * dev_base_lock to be sure it remains unique.
4206 */
4207 static int dev_new_index(struct net *net)
4208 {
4209 static int ifindex;
4210 for (;;) {
4211 if (++ifindex <= 0)
4212 ifindex = 1;
4213 if (!__dev_get_by_index(net, ifindex))
4214 return ifindex;
4215 }
4216 }
4217
4218 /* Delayed registration/unregisteration */
4219 static LIST_HEAD(net_todo_list);
4220
4221 static void net_set_todo(struct net_device *dev)
4222 {
4223 list_add_tail(&dev->todo_list, &net_todo_list);
4224 }
4225
4226 static void rollback_registered(struct net_device *dev)
4227 {
4228 BUG_ON(dev_boot_phase);
4229 ASSERT_RTNL();
4230
4231 /* Some devices call without registering for initialization unwind. */
4232 if (dev->reg_state == NETREG_UNINITIALIZED) {
4233 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4234 "was registered\n", dev->name, dev);
4235
4236 WARN_ON(1);
4237 return;
4238 }
4239
4240 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4241
4242 /* If device is running, close it first. */
4243 dev_close(dev);
4244
4245 /* And unlink it from device chain. */
4246 unlist_netdevice(dev);
4247
4248 dev->reg_state = NETREG_UNREGISTERING;
4249
4250 synchronize_net();
4251
4252 /* Shutdown queueing discipline. */
4253 dev_shutdown(dev);
4254
4255
4256 /* Notify protocols, that we are about to destroy
4257 this device. They should clean all the things.
4258 */
4259 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4260
4261 /*
4262 * Flush the unicast and multicast chains
4263 */
4264 dev_addr_discard(dev);
4265
4266 if (dev->netdev_ops->ndo_uninit)
4267 dev->netdev_ops->ndo_uninit(dev);
4268
4269 /* Notifier chain MUST detach us from master device. */
4270 WARN_ON(dev->master);
4271
4272 /* Remove entries from kobject tree */
4273 netdev_unregister_kobject(dev);
4274
4275 synchronize_net();
4276
4277 dev_put(dev);
4278 }
4279
4280 static void __netdev_init_queue_locks_one(struct net_device *dev,
4281 struct netdev_queue *dev_queue,
4282 void *_unused)
4283 {
4284 spin_lock_init(&dev_queue->_xmit_lock);
4285 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4286 dev_queue->xmit_lock_owner = -1;
4287 }
4288
4289 static void netdev_init_queue_locks(struct net_device *dev)
4290 {
4291 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4292 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4293 }
4294
4295 unsigned long netdev_fix_features(unsigned long features, const char *name)
4296 {
4297 /* Fix illegal SG+CSUM combinations. */
4298 if ((features & NETIF_F_SG) &&
4299 !(features & NETIF_F_ALL_CSUM)) {
4300 if (name)
4301 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4302 "checksum feature.\n", name);
4303 features &= ~NETIF_F_SG;
4304 }
4305
4306 /* TSO requires that SG is present as well. */
4307 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4308 if (name)
4309 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4310 "SG feature.\n", name);
4311 features &= ~NETIF_F_TSO;
4312 }
4313
4314 if (features & NETIF_F_UFO) {
4315 if (!(features & NETIF_F_GEN_CSUM)) {
4316 if (name)
4317 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4318 "since no NETIF_F_HW_CSUM feature.\n",
4319 name);
4320 features &= ~NETIF_F_UFO;
4321 }
4322
4323 if (!(features & NETIF_F_SG)) {
4324 if (name)
4325 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4326 "since no NETIF_F_SG feature.\n", name);
4327 features &= ~NETIF_F_UFO;
4328 }
4329 }
4330
4331 return features;
4332 }
4333 EXPORT_SYMBOL(netdev_fix_features);
4334
4335 /* Some devices need to (re-)set their netdev_ops inside
4336 * ->init() or similar. If that happens, we have to setup
4337 * the compat pointers again.
4338 */
4339 void netdev_resync_ops(struct net_device *dev)
4340 {
4341 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4342 const struct net_device_ops *ops = dev->netdev_ops;
4343
4344 dev->init = ops->ndo_init;
4345 dev->uninit = ops->ndo_uninit;
4346 dev->open = ops->ndo_open;
4347 dev->change_rx_flags = ops->ndo_change_rx_flags;
4348 dev->set_rx_mode = ops->ndo_set_rx_mode;
4349 dev->set_multicast_list = ops->ndo_set_multicast_list;
4350 dev->set_mac_address = ops->ndo_set_mac_address;
4351 dev->validate_addr = ops->ndo_validate_addr;
4352 dev->do_ioctl = ops->ndo_do_ioctl;
4353 dev->set_config = ops->ndo_set_config;
4354 dev->change_mtu = ops->ndo_change_mtu;
4355 dev->neigh_setup = ops->ndo_neigh_setup;
4356 dev->tx_timeout = ops->ndo_tx_timeout;
4357 dev->get_stats = ops->ndo_get_stats;
4358 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4359 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4360 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4361 #ifdef CONFIG_NET_POLL_CONTROLLER
4362 dev->poll_controller = ops->ndo_poll_controller;
4363 #endif
4364 #endif
4365 }
4366 EXPORT_SYMBOL(netdev_resync_ops);
4367
4368 /**
4369 * register_netdevice - register a network device
4370 * @dev: device to register
4371 *
4372 * Take a completed network device structure and add it to the kernel
4373 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4374 * chain. 0 is returned on success. A negative errno code is returned
4375 * on a failure to set up the device, or if the name is a duplicate.
4376 *
4377 * Callers must hold the rtnl semaphore. You may want
4378 * register_netdev() instead of this.
4379 *
4380 * BUGS:
4381 * The locking appears insufficient to guarantee two parallel registers
4382 * will not get the same name.
4383 */
4384
4385 int register_netdevice(struct net_device *dev)
4386 {
4387 struct hlist_head *head;
4388 struct hlist_node *p;
4389 int ret;
4390 struct net *net = dev_net(dev);
4391
4392 BUG_ON(dev_boot_phase);
4393 ASSERT_RTNL();
4394
4395 might_sleep();
4396
4397 /* When net_device's are persistent, this will be fatal. */
4398 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4399 BUG_ON(!net);
4400
4401 spin_lock_init(&dev->addr_list_lock);
4402 netdev_set_addr_lockdep_class(dev);
4403 netdev_init_queue_locks(dev);
4404
4405 dev->iflink = -1;
4406
4407 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4408 /* Netdevice_ops API compatibility support.
4409 * This is temporary until all network devices are converted.
4410 */
4411 if (dev->netdev_ops) {
4412 netdev_resync_ops(dev);
4413 } else {
4414 char drivername[64];
4415 pr_info("%s (%s): not using net_device_ops yet\n",
4416 dev->name, netdev_drivername(dev, drivername, 64));
4417
4418 /* This works only because net_device_ops and the
4419 compatibility structure are the same. */
4420 dev->netdev_ops = (void *) &(dev->init);
4421 }
4422 #endif
4423
4424 /* Init, if this function is available */
4425 if (dev->netdev_ops->ndo_init) {
4426 ret = dev->netdev_ops->ndo_init(dev);
4427 if (ret) {
4428 if (ret > 0)
4429 ret = -EIO;
4430 goto out;
4431 }
4432 }
4433
4434 if (!dev_valid_name(dev->name)) {
4435 ret = -EINVAL;
4436 goto err_uninit;
4437 }
4438
4439 dev->ifindex = dev_new_index(net);
4440 if (dev->iflink == -1)
4441 dev->iflink = dev->ifindex;
4442
4443 /* Check for existence of name */
4444 head = dev_name_hash(net, dev->name);
4445 hlist_for_each(p, head) {
4446 struct net_device *d
4447 = hlist_entry(p, struct net_device, name_hlist);
4448 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4449 ret = -EEXIST;
4450 goto err_uninit;
4451 }
4452 }
4453
4454 /* Fix illegal checksum combinations */
4455 if ((dev->features & NETIF_F_HW_CSUM) &&
4456 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4457 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4458 dev->name);
4459 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4460 }
4461
4462 if ((dev->features & NETIF_F_NO_CSUM) &&
4463 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4464 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4465 dev->name);
4466 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4467 }
4468
4469 dev->features = netdev_fix_features(dev->features, dev->name);
4470
4471 /* Enable software GSO if SG is supported. */
4472 if (dev->features & NETIF_F_SG)
4473 dev->features |= NETIF_F_GSO;
4474
4475 netdev_initialize_kobject(dev);
4476 ret = netdev_register_kobject(dev);
4477 if (ret)
4478 goto err_uninit;
4479 dev->reg_state = NETREG_REGISTERED;
4480
4481 /*
4482 * Default initial state at registry is that the
4483 * device is present.
4484 */
4485
4486 set_bit(__LINK_STATE_PRESENT, &dev->state);
4487
4488 dev_init_scheduler(dev);
4489 dev_hold(dev);
4490 list_netdevice(dev);
4491
4492 /* Notify protocols, that a new device appeared. */
4493 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4494 ret = notifier_to_errno(ret);
4495 if (ret) {
4496 rollback_registered(dev);
4497 dev->reg_state = NETREG_UNREGISTERED;
4498 }
4499
4500 out:
4501 return ret;
4502
4503 err_uninit:
4504 if (dev->netdev_ops->ndo_uninit)
4505 dev->netdev_ops->ndo_uninit(dev);
4506 goto out;
4507 }
4508
4509 /**
4510 * init_dummy_netdev - init a dummy network device for NAPI
4511 * @dev: device to init
4512 *
4513 * This takes a network device structure and initialize the minimum
4514 * amount of fields so it can be used to schedule NAPI polls without
4515 * registering a full blown interface. This is to be used by drivers
4516 * that need to tie several hardware interfaces to a single NAPI
4517 * poll scheduler due to HW limitations.
4518 */
4519 int init_dummy_netdev(struct net_device *dev)
4520 {
4521 /* Clear everything. Note we don't initialize spinlocks
4522 * are they aren't supposed to be taken by any of the
4523 * NAPI code and this dummy netdev is supposed to be
4524 * only ever used for NAPI polls
4525 */
4526 memset(dev, 0, sizeof(struct net_device));
4527
4528 /* make sure we BUG if trying to hit standard
4529 * register/unregister code path
4530 */
4531 dev->reg_state = NETREG_DUMMY;
4532
4533 /* initialize the ref count */
4534 atomic_set(&dev->refcnt, 1);
4535
4536 /* NAPI wants this */
4537 INIT_LIST_HEAD(&dev->napi_list);
4538
4539 /* a dummy interface is started by default */
4540 set_bit(__LINK_STATE_PRESENT, &dev->state);
4541 set_bit(__LINK_STATE_START, &dev->state);
4542
4543 return 0;
4544 }
4545 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4546
4547
4548 /**
4549 * register_netdev - register a network device
4550 * @dev: device to register
4551 *
4552 * Take a completed network device structure and add it to the kernel
4553 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4554 * chain. 0 is returned on success. A negative errno code is returned
4555 * on a failure to set up the device, or if the name is a duplicate.
4556 *
4557 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4558 * and expands the device name if you passed a format string to
4559 * alloc_netdev.
4560 */
4561 int register_netdev(struct net_device *dev)
4562 {
4563 int err;
4564
4565 rtnl_lock();
4566
4567 /*
4568 * If the name is a format string the caller wants us to do a
4569 * name allocation.
4570 */
4571 if (strchr(dev->name, '%')) {
4572 err = dev_alloc_name(dev, dev->name);
4573 if (err < 0)
4574 goto out;
4575 }
4576
4577 err = register_netdevice(dev);
4578 out:
4579 rtnl_unlock();
4580 return err;
4581 }
4582 EXPORT_SYMBOL(register_netdev);
4583
4584 /*
4585 * netdev_wait_allrefs - wait until all references are gone.
4586 *
4587 * This is called when unregistering network devices.
4588 *
4589 * Any protocol or device that holds a reference should register
4590 * for netdevice notification, and cleanup and put back the
4591 * reference if they receive an UNREGISTER event.
4592 * We can get stuck here if buggy protocols don't correctly
4593 * call dev_put.
4594 */
4595 static void netdev_wait_allrefs(struct net_device *dev)
4596 {
4597 unsigned long rebroadcast_time, warning_time;
4598
4599 rebroadcast_time = warning_time = jiffies;
4600 while (atomic_read(&dev->refcnt) != 0) {
4601 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4602 rtnl_lock();
4603
4604 /* Rebroadcast unregister notification */
4605 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4606
4607 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4608 &dev->state)) {
4609 /* We must not have linkwatch events
4610 * pending on unregister. If this
4611 * happens, we simply run the queue
4612 * unscheduled, resulting in a noop
4613 * for this device.
4614 */
4615 linkwatch_run_queue();
4616 }
4617
4618 __rtnl_unlock();
4619
4620 rebroadcast_time = jiffies;
4621 }
4622
4623 msleep(250);
4624
4625 if (time_after(jiffies, warning_time + 10 * HZ)) {
4626 printk(KERN_EMERG "unregister_netdevice: "
4627 "waiting for %s to become free. Usage "
4628 "count = %d\n",
4629 dev->name, atomic_read(&dev->refcnt));
4630 warning_time = jiffies;
4631 }
4632 }
4633 }
4634
4635 /* The sequence is:
4636 *
4637 * rtnl_lock();
4638 * ...
4639 * register_netdevice(x1);
4640 * register_netdevice(x2);
4641 * ...
4642 * unregister_netdevice(y1);
4643 * unregister_netdevice(y2);
4644 * ...
4645 * rtnl_unlock();
4646 * free_netdev(y1);
4647 * free_netdev(y2);
4648 *
4649 * We are invoked by rtnl_unlock().
4650 * This allows us to deal with problems:
4651 * 1) We can delete sysfs objects which invoke hotplug
4652 * without deadlocking with linkwatch via keventd.
4653 * 2) Since we run with the RTNL semaphore not held, we can sleep
4654 * safely in order to wait for the netdev refcnt to drop to zero.
4655 *
4656 * We must not return until all unregister events added during
4657 * the interval the lock was held have been completed.
4658 */
4659 void netdev_run_todo(void)
4660 {
4661 struct list_head list;
4662
4663 /* Snapshot list, allow later requests */
4664 list_replace_init(&net_todo_list, &list);
4665
4666 __rtnl_unlock();
4667
4668 while (!list_empty(&list)) {
4669 struct net_device *dev
4670 = list_entry(list.next, struct net_device, todo_list);
4671 list_del(&dev->todo_list);
4672
4673 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4674 printk(KERN_ERR "network todo '%s' but state %d\n",
4675 dev->name, dev->reg_state);
4676 dump_stack();
4677 continue;
4678 }
4679
4680 dev->reg_state = NETREG_UNREGISTERED;
4681
4682 on_each_cpu(flush_backlog, dev, 1);
4683
4684 netdev_wait_allrefs(dev);
4685
4686 /* paranoia */
4687 BUG_ON(atomic_read(&dev->refcnt));
4688 WARN_ON(dev->ip_ptr);
4689 WARN_ON(dev->ip6_ptr);
4690 WARN_ON(dev->dn_ptr);
4691
4692 if (dev->destructor)
4693 dev->destructor(dev);
4694
4695 /* Free network device */
4696 kobject_put(&dev->dev.kobj);
4697 }
4698 }
4699
4700 /**
4701 * dev_get_stats - get network device statistics
4702 * @dev: device to get statistics from
4703 *
4704 * Get network statistics from device. The device driver may provide
4705 * its own method by setting dev->netdev_ops->get_stats; otherwise
4706 * the internal statistics structure is used.
4707 */
4708 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4709 {
4710 const struct net_device_ops *ops = dev->netdev_ops;
4711
4712 if (ops->ndo_get_stats)
4713 return ops->ndo_get_stats(dev);
4714 else
4715 return &dev->stats;
4716 }
4717 EXPORT_SYMBOL(dev_get_stats);
4718
4719 static void netdev_init_one_queue(struct net_device *dev,
4720 struct netdev_queue *queue,
4721 void *_unused)
4722 {
4723 queue->dev = dev;
4724 }
4725
4726 static void netdev_init_queues(struct net_device *dev)
4727 {
4728 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4729 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4730 spin_lock_init(&dev->tx_global_lock);
4731 }
4732
4733 /**
4734 * alloc_netdev_mq - allocate network device
4735 * @sizeof_priv: size of private data to allocate space for
4736 * @name: device name format string
4737 * @setup: callback to initialize device
4738 * @queue_count: the number of subqueues to allocate
4739 *
4740 * Allocates a struct net_device with private data area for driver use
4741 * and performs basic initialization. Also allocates subquue structs
4742 * for each queue on the device at the end of the netdevice.
4743 */
4744 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4745 void (*setup)(struct net_device *), unsigned int queue_count)
4746 {
4747 struct netdev_queue *tx;
4748 struct net_device *dev;
4749 size_t alloc_size;
4750 void *p;
4751
4752 BUG_ON(strlen(name) >= sizeof(dev->name));
4753
4754 alloc_size = sizeof(struct net_device);
4755 if (sizeof_priv) {
4756 /* ensure 32-byte alignment of private area */
4757 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4758 alloc_size += sizeof_priv;
4759 }
4760 /* ensure 32-byte alignment of whole construct */
4761 alloc_size += NETDEV_ALIGN_CONST;
4762
4763 p = kzalloc(alloc_size, GFP_KERNEL);
4764 if (!p) {
4765 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4766 return NULL;
4767 }
4768
4769 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4770 if (!tx) {
4771 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4772 "tx qdiscs.\n");
4773 kfree(p);
4774 return NULL;
4775 }
4776
4777 dev = (struct net_device *)
4778 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4779 dev->padded = (char *)dev - (char *)p;
4780 dev_net_set(dev, &init_net);
4781
4782 dev->_tx = tx;
4783 dev->num_tx_queues = queue_count;
4784 dev->real_num_tx_queues = queue_count;
4785
4786 dev->gso_max_size = GSO_MAX_SIZE;
4787
4788 netdev_init_queues(dev);
4789
4790 INIT_LIST_HEAD(&dev->napi_list);
4791 setup(dev);
4792 strcpy(dev->name, name);
4793 return dev;
4794 }
4795 EXPORT_SYMBOL(alloc_netdev_mq);
4796
4797 /**
4798 * free_netdev - free network device
4799 * @dev: device
4800 *
4801 * This function does the last stage of destroying an allocated device
4802 * interface. The reference to the device object is released.
4803 * If this is the last reference then it will be freed.
4804 */
4805 void free_netdev(struct net_device *dev)
4806 {
4807 struct napi_struct *p, *n;
4808
4809 release_net(dev_net(dev));
4810
4811 kfree(dev->_tx);
4812
4813 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4814 netif_napi_del(p);
4815
4816 /* Compatibility with error handling in drivers */
4817 if (dev->reg_state == NETREG_UNINITIALIZED) {
4818 kfree((char *)dev - dev->padded);
4819 return;
4820 }
4821
4822 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4823 dev->reg_state = NETREG_RELEASED;
4824
4825 /* will free via device release */
4826 put_device(&dev->dev);
4827 }
4828
4829 /**
4830 * synchronize_net - Synchronize with packet receive processing
4831 *
4832 * Wait for packets currently being received to be done.
4833 * Does not block later packets from starting.
4834 */
4835 void synchronize_net(void)
4836 {
4837 might_sleep();
4838 synchronize_rcu();
4839 }
4840
4841 /**
4842 * unregister_netdevice - remove device from the kernel
4843 * @dev: device
4844 *
4845 * This function shuts down a device interface and removes it
4846 * from the kernel tables.
4847 *
4848 * Callers must hold the rtnl semaphore. You may want
4849 * unregister_netdev() instead of this.
4850 */
4851
4852 void unregister_netdevice(struct net_device *dev)
4853 {
4854 ASSERT_RTNL();
4855
4856 rollback_registered(dev);
4857 /* Finish processing unregister after unlock */
4858 net_set_todo(dev);
4859 }
4860
4861 /**
4862 * unregister_netdev - remove device from the kernel
4863 * @dev: device
4864 *
4865 * This function shuts down a device interface and removes it
4866 * from the kernel tables.
4867 *
4868 * This is just a wrapper for unregister_netdevice that takes
4869 * the rtnl semaphore. In general you want to use this and not
4870 * unregister_netdevice.
4871 */
4872 void unregister_netdev(struct net_device *dev)
4873 {
4874 rtnl_lock();
4875 unregister_netdevice(dev);
4876 rtnl_unlock();
4877 }
4878
4879 EXPORT_SYMBOL(unregister_netdev);
4880
4881 /**
4882 * dev_change_net_namespace - move device to different nethost namespace
4883 * @dev: device
4884 * @net: network namespace
4885 * @pat: If not NULL name pattern to try if the current device name
4886 * is already taken in the destination network namespace.
4887 *
4888 * This function shuts down a device interface and moves it
4889 * to a new network namespace. On success 0 is returned, on
4890 * a failure a netagive errno code is returned.
4891 *
4892 * Callers must hold the rtnl semaphore.
4893 */
4894
4895 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4896 {
4897 char buf[IFNAMSIZ];
4898 const char *destname;
4899 int err;
4900
4901 ASSERT_RTNL();
4902
4903 /* Don't allow namespace local devices to be moved. */
4904 err = -EINVAL;
4905 if (dev->features & NETIF_F_NETNS_LOCAL)
4906 goto out;
4907
4908 #ifdef CONFIG_SYSFS
4909 /* Don't allow real devices to be moved when sysfs
4910 * is enabled.
4911 */
4912 err = -EINVAL;
4913 if (dev->dev.parent)
4914 goto out;
4915 #endif
4916
4917 /* Ensure the device has been registrered */
4918 err = -EINVAL;
4919 if (dev->reg_state != NETREG_REGISTERED)
4920 goto out;
4921
4922 /* Get out if there is nothing todo */
4923 err = 0;
4924 if (net_eq(dev_net(dev), net))
4925 goto out;
4926
4927 /* Pick the destination device name, and ensure
4928 * we can use it in the destination network namespace.
4929 */
4930 err = -EEXIST;
4931 destname = dev->name;
4932 if (__dev_get_by_name(net, destname)) {
4933 /* We get here if we can't use the current device name */
4934 if (!pat)
4935 goto out;
4936 if (!dev_valid_name(pat))
4937 goto out;
4938 if (strchr(pat, '%')) {
4939 if (__dev_alloc_name(net, pat, buf) < 0)
4940 goto out;
4941 destname = buf;
4942 } else
4943 destname = pat;
4944 if (__dev_get_by_name(net, destname))
4945 goto out;
4946 }
4947
4948 /*
4949 * And now a mini version of register_netdevice unregister_netdevice.
4950 */
4951
4952 /* If device is running close it first. */
4953 dev_close(dev);
4954
4955 /* And unlink it from device chain */
4956 err = -ENODEV;
4957 unlist_netdevice(dev);
4958
4959 synchronize_net();
4960
4961 /* Shutdown queueing discipline. */
4962 dev_shutdown(dev);
4963
4964 /* Notify protocols, that we are about to destroy
4965 this device. They should clean all the things.
4966 */
4967 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4968
4969 /*
4970 * Flush the unicast and multicast chains
4971 */
4972 dev_addr_discard(dev);
4973
4974 netdev_unregister_kobject(dev);
4975
4976 /* Actually switch the network namespace */
4977 dev_net_set(dev, net);
4978
4979 /* Assign the new device name */
4980 if (destname != dev->name)
4981 strcpy(dev->name, destname);
4982
4983 /* If there is an ifindex conflict assign a new one */
4984 if (__dev_get_by_index(net, dev->ifindex)) {
4985 int iflink = (dev->iflink == dev->ifindex);
4986 dev->ifindex = dev_new_index(net);
4987 if (iflink)
4988 dev->iflink = dev->ifindex;
4989 }
4990
4991 /* Fixup kobjects */
4992 err = netdev_register_kobject(dev);
4993 WARN_ON(err);
4994
4995 /* Add the device back in the hashes */
4996 list_netdevice(dev);
4997
4998 /* Notify protocols, that a new device appeared. */
4999 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5000
5001 synchronize_net();
5002 err = 0;
5003 out:
5004 return err;
5005 }
5006
5007 static int dev_cpu_callback(struct notifier_block *nfb,
5008 unsigned long action,
5009 void *ocpu)
5010 {
5011 struct sk_buff **list_skb;
5012 struct Qdisc **list_net;
5013 struct sk_buff *skb;
5014 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5015 struct softnet_data *sd, *oldsd;
5016
5017 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5018 return NOTIFY_OK;
5019
5020 local_irq_disable();
5021 cpu = smp_processor_id();
5022 sd = &per_cpu(softnet_data, cpu);
5023 oldsd = &per_cpu(softnet_data, oldcpu);
5024
5025 /* Find end of our completion_queue. */
5026 list_skb = &sd->completion_queue;
5027 while (*list_skb)
5028 list_skb = &(*list_skb)->next;
5029 /* Append completion queue from offline CPU. */
5030 *list_skb = oldsd->completion_queue;
5031 oldsd->completion_queue = NULL;
5032
5033 /* Find end of our output_queue. */
5034 list_net = &sd->output_queue;
5035 while (*list_net)
5036 list_net = &(*list_net)->next_sched;
5037 /* Append output queue from offline CPU. */
5038 *list_net = oldsd->output_queue;
5039 oldsd->output_queue = NULL;
5040
5041 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5042 local_irq_enable();
5043
5044 /* Process offline CPU's input_pkt_queue */
5045 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5046 netif_rx(skb);
5047
5048 return NOTIFY_OK;
5049 }
5050
5051
5052 /**
5053 * netdev_increment_features - increment feature set by one
5054 * @all: current feature set
5055 * @one: new feature set
5056 * @mask: mask feature set
5057 *
5058 * Computes a new feature set after adding a device with feature set
5059 * @one to the master device with current feature set @all. Will not
5060 * enable anything that is off in @mask. Returns the new feature set.
5061 */
5062 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5063 unsigned long mask)
5064 {
5065 /* If device needs checksumming, downgrade to it. */
5066 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5067 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5068 else if (mask & NETIF_F_ALL_CSUM) {
5069 /* If one device supports v4/v6 checksumming, set for all. */
5070 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5071 !(all & NETIF_F_GEN_CSUM)) {
5072 all &= ~NETIF_F_ALL_CSUM;
5073 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5074 }
5075
5076 /* If one device supports hw checksumming, set for all. */
5077 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5078 all &= ~NETIF_F_ALL_CSUM;
5079 all |= NETIF_F_HW_CSUM;
5080 }
5081 }
5082
5083 one |= NETIF_F_ALL_CSUM;
5084
5085 one |= all & NETIF_F_ONE_FOR_ALL;
5086 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5087 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5088
5089 return all;
5090 }
5091 EXPORT_SYMBOL(netdev_increment_features);
5092
5093 static struct hlist_head *netdev_create_hash(void)
5094 {
5095 int i;
5096 struct hlist_head *hash;
5097
5098 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5099 if (hash != NULL)
5100 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5101 INIT_HLIST_HEAD(&hash[i]);
5102
5103 return hash;
5104 }
5105
5106 /* Initialize per network namespace state */
5107 static int __net_init netdev_init(struct net *net)
5108 {
5109 INIT_LIST_HEAD(&net->dev_base_head);
5110
5111 net->dev_name_head = netdev_create_hash();
5112 if (net->dev_name_head == NULL)
5113 goto err_name;
5114
5115 net->dev_index_head = netdev_create_hash();
5116 if (net->dev_index_head == NULL)
5117 goto err_idx;
5118
5119 return 0;
5120
5121 err_idx:
5122 kfree(net->dev_name_head);
5123 err_name:
5124 return -ENOMEM;
5125 }
5126
5127 /**
5128 * netdev_drivername - network driver for the device
5129 * @dev: network device
5130 * @buffer: buffer for resulting name
5131 * @len: size of buffer
5132 *
5133 * Determine network driver for device.
5134 */
5135 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5136 {
5137 const struct device_driver *driver;
5138 const struct device *parent;
5139
5140 if (len <= 0 || !buffer)
5141 return buffer;
5142 buffer[0] = 0;
5143
5144 parent = dev->dev.parent;
5145
5146 if (!parent)
5147 return buffer;
5148
5149 driver = parent->driver;
5150 if (driver && driver->name)
5151 strlcpy(buffer, driver->name, len);
5152 return buffer;
5153 }
5154
5155 static void __net_exit netdev_exit(struct net *net)
5156 {
5157 kfree(net->dev_name_head);
5158 kfree(net->dev_index_head);
5159 }
5160
5161 static struct pernet_operations __net_initdata netdev_net_ops = {
5162 .init = netdev_init,
5163 .exit = netdev_exit,
5164 };
5165
5166 static void __net_exit default_device_exit(struct net *net)
5167 {
5168 struct net_device *dev;
5169 /*
5170 * Push all migratable of the network devices back to the
5171 * initial network namespace
5172 */
5173 rtnl_lock();
5174 restart:
5175 for_each_netdev(net, dev) {
5176 int err;
5177 char fb_name[IFNAMSIZ];
5178
5179 /* Ignore unmoveable devices (i.e. loopback) */
5180 if (dev->features & NETIF_F_NETNS_LOCAL)
5181 continue;
5182
5183 /* Delete virtual devices */
5184 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5185 dev->rtnl_link_ops->dellink(dev);
5186 goto restart;
5187 }
5188
5189 /* Push remaing network devices to init_net */
5190 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5191 err = dev_change_net_namespace(dev, &init_net, fb_name);
5192 if (err) {
5193 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5194 __func__, dev->name, err);
5195 BUG();
5196 }
5197 goto restart;
5198 }
5199 rtnl_unlock();
5200 }
5201
5202 static struct pernet_operations __net_initdata default_device_ops = {
5203 .exit = default_device_exit,
5204 };
5205
5206 /*
5207 * Initialize the DEV module. At boot time this walks the device list and
5208 * unhooks any devices that fail to initialise (normally hardware not
5209 * present) and leaves us with a valid list of present and active devices.
5210 *
5211 */
5212
5213 /*
5214 * This is called single threaded during boot, so no need
5215 * to take the rtnl semaphore.
5216 */
5217 static int __init net_dev_init(void)
5218 {
5219 int i, rc = -ENOMEM;
5220
5221 BUG_ON(!dev_boot_phase);
5222
5223 if (dev_proc_init())
5224 goto out;
5225
5226 if (netdev_kobject_init())
5227 goto out;
5228
5229 INIT_LIST_HEAD(&ptype_all);
5230 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5231 INIT_LIST_HEAD(&ptype_base[i]);
5232
5233 if (register_pernet_subsys(&netdev_net_ops))
5234 goto out;
5235
5236 /*
5237 * Initialise the packet receive queues.
5238 */
5239
5240 for_each_possible_cpu(i) {
5241 struct softnet_data *queue;
5242
5243 queue = &per_cpu(softnet_data, i);
5244 skb_queue_head_init(&queue->input_pkt_queue);
5245 queue->completion_queue = NULL;
5246 INIT_LIST_HEAD(&queue->poll_list);
5247
5248 queue->backlog.poll = process_backlog;
5249 queue->backlog.weight = weight_p;
5250 queue->backlog.gro_list = NULL;
5251 queue->backlog.gro_count = 0;
5252 }
5253
5254 dev_boot_phase = 0;
5255
5256 /* The loopback device is special if any other network devices
5257 * is present in a network namespace the loopback device must
5258 * be present. Since we now dynamically allocate and free the
5259 * loopback device ensure this invariant is maintained by
5260 * keeping the loopback device as the first device on the
5261 * list of network devices. Ensuring the loopback devices
5262 * is the first device that appears and the last network device
5263 * that disappears.
5264 */
5265 if (register_pernet_device(&loopback_net_ops))
5266 goto out;
5267
5268 if (register_pernet_device(&default_device_ops))
5269 goto out;
5270
5271 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5272 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5273
5274 hotcpu_notifier(dev_cpu_callback, 0);
5275 dst_init();
5276 dev_mcast_init();
5277 rc = 0;
5278 out:
5279 return rc;
5280 }
5281
5282 subsys_initcall(net_dev_init);
5283
5284 static int __init initialize_hashrnd(void)
5285 {
5286 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5287 return 0;
5288 }
5289
5290 late_initcall_sync(initialize_hashrnd);
5291
5292 EXPORT_SYMBOL(__dev_get_by_index);
5293 EXPORT_SYMBOL(__dev_get_by_name);
5294 EXPORT_SYMBOL(__dev_remove_pack);
5295 EXPORT_SYMBOL(dev_valid_name);
5296 EXPORT_SYMBOL(dev_add_pack);
5297 EXPORT_SYMBOL(dev_alloc_name);
5298 EXPORT_SYMBOL(dev_close);
5299 EXPORT_SYMBOL(dev_get_by_flags);
5300 EXPORT_SYMBOL(dev_get_by_index);
5301 EXPORT_SYMBOL(dev_get_by_name);
5302 EXPORT_SYMBOL(dev_open);
5303 EXPORT_SYMBOL(dev_queue_xmit);
5304 EXPORT_SYMBOL(dev_remove_pack);
5305 EXPORT_SYMBOL(dev_set_allmulti);
5306 EXPORT_SYMBOL(dev_set_promiscuity);
5307 EXPORT_SYMBOL(dev_change_flags);
5308 EXPORT_SYMBOL(dev_set_mtu);
5309 EXPORT_SYMBOL(dev_set_mac_address);
5310 EXPORT_SYMBOL(free_netdev);
5311 EXPORT_SYMBOL(netdev_boot_setup_check);
5312 EXPORT_SYMBOL(netdev_set_master);
5313 EXPORT_SYMBOL(netdev_state_change);
5314 EXPORT_SYMBOL(netif_receive_skb);
5315 EXPORT_SYMBOL(netif_rx);
5316 EXPORT_SYMBOL(register_gifconf);
5317 EXPORT_SYMBOL(register_netdevice);
5318 EXPORT_SYMBOL(register_netdevice_notifier);
5319 EXPORT_SYMBOL(skb_checksum_help);
5320 EXPORT_SYMBOL(synchronize_net);
5321 EXPORT_SYMBOL(unregister_netdevice);
5322 EXPORT_SYMBOL(unregister_netdevice_notifier);
5323 EXPORT_SYMBOL(net_enable_timestamp);
5324 EXPORT_SYMBOL(net_disable_timestamp);
5325 EXPORT_SYMBOL(dev_get_flags);
5326
5327 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5328 EXPORT_SYMBOL(br_handle_frame_hook);
5329 EXPORT_SYMBOL(br_fdb_get_hook);
5330 EXPORT_SYMBOL(br_fdb_put_hook);
5331 #endif
5332
5333 EXPORT_SYMBOL(dev_load);
5334
5335 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.280494 seconds and 6 git commands to generate.