Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718 SKB_GSO_CB(skb)->encap_level = 0;
2719
2720 skb_reset_mac_header(skb);
2721 skb_reset_mac_len(skb);
2722
2723 return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731 if (net_ratelimit()) {
2732 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733 dump_stack();
2734 }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747 int i;
2748 if (!(dev->features & NETIF_F_HIGHDMA)) {
2749 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751 if (PageHighMem(skb_frag_page(frag)))
2752 return 1;
2753 }
2754 }
2755
2756 if (PCI_DMA_BUS_IS_PHYS) {
2757 struct device *pdev = dev->dev.parent;
2758
2759 if (!pdev)
2760 return 0;
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765 return 1;
2766 }
2767 }
2768 #endif
2769 return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777 netdev_features_t features,
2778 __be16 type)
2779 {
2780 if (eth_p_mpls(type))
2781 features &= skb->dev->mpls_features;
2782
2783 return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787 netdev_features_t features,
2788 __be16 type)
2789 {
2790 return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795 netdev_features_t features)
2796 {
2797 int tmp;
2798 __be16 type;
2799
2800 type = skb_network_protocol(skb, &tmp);
2801 features = net_mpls_features(skb, features, type);
2802
2803 if (skb->ip_summed != CHECKSUM_NONE &&
2804 !can_checksum_protocol(features, type)) {
2805 features &= ~NETIF_F_CSUM_MASK;
2806 } else if (illegal_highdma(skb->dev, skb)) {
2807 features &= ~NETIF_F_SG;
2808 }
2809
2810 return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822 struct net_device *dev,
2823 netdev_features_t features)
2824 {
2825 return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830 struct net_device *dev = skb->dev;
2831 netdev_features_t features = dev->features;
2832 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835 features &= ~NETIF_F_GSO_MASK;
2836
2837 /* If encapsulation offload request, verify we are testing
2838 * hardware encapsulation features instead of standard
2839 * features for the netdev
2840 */
2841 if (skb->encapsulation)
2842 features &= dev->hw_enc_features;
2843
2844 if (skb_vlan_tagged(skb))
2845 features = netdev_intersect_features(features,
2846 dev->vlan_features |
2847 NETIF_F_HW_VLAN_CTAG_TX |
2848 NETIF_F_HW_VLAN_STAG_TX);
2849
2850 if (dev->netdev_ops->ndo_features_check)
2851 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852 features);
2853 else
2854 features &= dflt_features_check(skb, dev, features);
2855
2856 return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861 struct netdev_queue *txq, bool more)
2862 {
2863 unsigned int len;
2864 int rc;
2865
2866 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867 dev_queue_xmit_nit(skb, dev);
2868
2869 len = skb->len;
2870 trace_net_dev_start_xmit(skb, dev);
2871 rc = netdev_start_xmit(skb, dev, txq, more);
2872 trace_net_dev_xmit(skb, rc, dev, len);
2873
2874 return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878 struct netdev_queue *txq, int *ret)
2879 {
2880 struct sk_buff *skb = first;
2881 int rc = NETDEV_TX_OK;
2882
2883 while (skb) {
2884 struct sk_buff *next = skb->next;
2885
2886 skb->next = NULL;
2887 rc = xmit_one(skb, dev, txq, next != NULL);
2888 if (unlikely(!dev_xmit_complete(rc))) {
2889 skb->next = next;
2890 goto out;
2891 }
2892
2893 skb = next;
2894 if (netif_xmit_stopped(txq) && skb) {
2895 rc = NETDEV_TX_BUSY;
2896 break;
2897 }
2898 }
2899
2900 out:
2901 *ret = rc;
2902 return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906 netdev_features_t features)
2907 {
2908 if (skb_vlan_tag_present(skb) &&
2909 !vlan_hw_offload_capable(features, skb->vlan_proto))
2910 skb = __vlan_hwaccel_push_inside(skb);
2911 return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916 netdev_features_t features;
2917
2918 if (skb->next)
2919 return skb;
2920
2921 features = netif_skb_features(skb);
2922 skb = validate_xmit_vlan(skb, features);
2923 if (unlikely(!skb))
2924 goto out_null;
2925
2926 if (netif_needs_gso(skb, features)) {
2927 struct sk_buff *segs;
2928
2929 segs = skb_gso_segment(skb, features);
2930 if (IS_ERR(segs)) {
2931 goto out_kfree_skb;
2932 } else if (segs) {
2933 consume_skb(skb);
2934 skb = segs;
2935 }
2936 } else {
2937 if (skb_needs_linearize(skb, features) &&
2938 __skb_linearize(skb))
2939 goto out_kfree_skb;
2940
2941 /* If packet is not checksummed and device does not
2942 * support checksumming for this protocol, complete
2943 * checksumming here.
2944 */
2945 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946 if (skb->encapsulation)
2947 skb_set_inner_transport_header(skb,
2948 skb_checksum_start_offset(skb));
2949 else
2950 skb_set_transport_header(skb,
2951 skb_checksum_start_offset(skb));
2952 if (!(features & NETIF_F_CSUM_MASK) &&
2953 skb_checksum_help(skb))
2954 goto out_kfree_skb;
2955 }
2956 }
2957
2958 return skb;
2959
2960 out_kfree_skb:
2961 kfree_skb(skb);
2962 out_null:
2963 return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968 struct sk_buff *next, *head = NULL, *tail;
2969
2970 for (; skb != NULL; skb = next) {
2971 next = skb->next;
2972 skb->next = NULL;
2973
2974 /* in case skb wont be segmented, point to itself */
2975 skb->prev = skb;
2976
2977 skb = validate_xmit_skb(skb, dev);
2978 if (!skb)
2979 continue;
2980
2981 if (!head)
2982 head = skb;
2983 else
2984 tail->next = skb;
2985 /* If skb was segmented, skb->prev points to
2986 * the last segment. If not, it still contains skb.
2987 */
2988 tail = skb->prev;
2989 }
2990 return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997 qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999 /* To get more precise estimation of bytes sent on wire,
3000 * we add to pkt_len the headers size of all segments
3001 */
3002 if (shinfo->gso_size) {
3003 unsigned int hdr_len;
3004 u16 gso_segs = shinfo->gso_segs;
3005
3006 /* mac layer + network layer */
3007 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009 /* + transport layer */
3010 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011 hdr_len += tcp_hdrlen(skb);
3012 else
3013 hdr_len += sizeof(struct udphdr);
3014
3015 if (shinfo->gso_type & SKB_GSO_DODGY)
3016 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017 shinfo->gso_size);
3018
3019 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020 }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024 struct net_device *dev,
3025 struct netdev_queue *txq)
3026 {
3027 spinlock_t *root_lock = qdisc_lock(q);
3028 bool contended;
3029 int rc;
3030
3031 qdisc_calculate_pkt_len(skb, q);
3032 /*
3033 * Heuristic to force contended enqueues to serialize on a
3034 * separate lock before trying to get qdisc main lock.
3035 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036 * often and dequeue packets faster.
3037 */
3038 contended = qdisc_is_running(q);
3039 if (unlikely(contended))
3040 spin_lock(&q->busylock);
3041
3042 spin_lock(root_lock);
3043 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044 kfree_skb(skb);
3045 rc = NET_XMIT_DROP;
3046 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047 qdisc_run_begin(q)) {
3048 /*
3049 * This is a work-conserving queue; there are no old skbs
3050 * waiting to be sent out; and the qdisc is not running -
3051 * xmit the skb directly.
3052 */
3053
3054 qdisc_bstats_update(q, skb);
3055
3056 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057 if (unlikely(contended)) {
3058 spin_unlock(&q->busylock);
3059 contended = false;
3060 }
3061 __qdisc_run(q);
3062 } else
3063 qdisc_run_end(q);
3064
3065 rc = NET_XMIT_SUCCESS;
3066 } else {
3067 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068 if (qdisc_run_begin(q)) {
3069 if (unlikely(contended)) {
3070 spin_unlock(&q->busylock);
3071 contended = false;
3072 }
3073 __qdisc_run(q);
3074 }
3075 }
3076 spin_unlock(root_lock);
3077 if (unlikely(contended))
3078 spin_unlock(&q->busylock);
3079 return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087 if (!skb->priority && skb->sk && map) {
3088 unsigned int prioidx =
3089 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091 if (prioidx < map->priomap_len)
3092 skb->priority = map->priomap[prioidx];
3093 }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105 * dev_loopback_xmit - loop back @skb
3106 * @net: network namespace this loopback is happening in
3107 * @sk: sk needed to be a netfilter okfn
3108 * @skb: buffer to transmit
3109 */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112 skb_reset_mac_header(skb);
3113 __skb_pull(skb, skb_network_offset(skb));
3114 skb->pkt_type = PACKET_LOOPBACK;
3115 skb->ip_summed = CHECKSUM_UNNECESSARY;
3116 WARN_ON(!skb_dst(skb));
3117 skb_dst_force(skb);
3118 netif_rx_ni(skb);
3119 return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128 struct tcf_result cl_res;
3129
3130 if (!cl)
3131 return skb;
3132
3133 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134 * earlier by the caller.
3135 */
3136 qdisc_bstats_cpu_update(cl->q, skb);
3137
3138 switch (tc_classify(skb, cl, &cl_res, false)) {
3139 case TC_ACT_OK:
3140 case TC_ACT_RECLASSIFY:
3141 skb->tc_index = TC_H_MIN(cl_res.classid);
3142 break;
3143 case TC_ACT_SHOT:
3144 qdisc_qstats_cpu_drop(cl->q);
3145 *ret = NET_XMIT_DROP;
3146 goto drop;
3147 case TC_ACT_STOLEN:
3148 case TC_ACT_QUEUED:
3149 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151 kfree_skb(skb);
3152 return NULL;
3153 case TC_ACT_REDIRECT:
3154 /* No need to push/pop skb's mac_header here on egress! */
3155 skb_do_redirect(skb);
3156 *ret = NET_XMIT_SUCCESS;
3157 return NULL;
3158 default:
3159 break;
3160 }
3161
3162 return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169 struct xps_dev_maps *dev_maps;
3170 struct xps_map *map;
3171 int queue_index = -1;
3172
3173 rcu_read_lock();
3174 dev_maps = rcu_dereference(dev->xps_maps);
3175 if (dev_maps) {
3176 map = rcu_dereference(
3177 dev_maps->cpu_map[skb->sender_cpu - 1]);
3178 if (map) {
3179 if (map->len == 1)
3180 queue_index = map->queues[0];
3181 else
3182 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183 map->len)];
3184 if (unlikely(queue_index >= dev->real_num_tx_queues))
3185 queue_index = -1;
3186 }
3187 }
3188 rcu_read_unlock();
3189
3190 return queue_index;
3191 #else
3192 return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198 struct sock *sk = skb->sk;
3199 int queue_index = sk_tx_queue_get(sk);
3200
3201 if (queue_index < 0 || skb->ooo_okay ||
3202 queue_index >= dev->real_num_tx_queues) {
3203 int new_index = get_xps_queue(dev, skb);
3204 if (new_index < 0)
3205 new_index = skb_tx_hash(dev, skb);
3206
3207 if (queue_index != new_index && sk &&
3208 sk_fullsock(sk) &&
3209 rcu_access_pointer(sk->sk_dst_cache))
3210 sk_tx_queue_set(sk, new_index);
3211
3212 queue_index = new_index;
3213 }
3214
3215 return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219 struct sk_buff *skb,
3220 void *accel_priv)
3221 {
3222 int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225 u32 sender_cpu = skb->sender_cpu - 1;
3226
3227 if (sender_cpu >= (u32)NR_CPUS)
3228 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231 if (dev->real_num_tx_queues != 1) {
3232 const struct net_device_ops *ops = dev->netdev_ops;
3233 if (ops->ndo_select_queue)
3234 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235 __netdev_pick_tx);
3236 else
3237 queue_index = __netdev_pick_tx(dev, skb);
3238
3239 if (!accel_priv)
3240 queue_index = netdev_cap_txqueue(dev, queue_index);
3241 }
3242
3243 skb_set_queue_mapping(skb, queue_index);
3244 return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248 * __dev_queue_xmit - transmit a buffer
3249 * @skb: buffer to transmit
3250 * @accel_priv: private data used for L2 forwarding offload
3251 *
3252 * Queue a buffer for transmission to a network device. The caller must
3253 * have set the device and priority and built the buffer before calling
3254 * this function. The function can be called from an interrupt.
3255 *
3256 * A negative errno code is returned on a failure. A success does not
3257 * guarantee the frame will be transmitted as it may be dropped due
3258 * to congestion or traffic shaping.
3259 *
3260 * -----------------------------------------------------------------------------------
3261 * I notice this method can also return errors from the queue disciplines,
3262 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3263 * be positive.
3264 *
3265 * Regardless of the return value, the skb is consumed, so it is currently
3266 * difficult to retry a send to this method. (You can bump the ref count
3267 * before sending to hold a reference for retry if you are careful.)
3268 *
3269 * When calling this method, interrupts MUST be enabled. This is because
3270 * the BH enable code must have IRQs enabled so that it will not deadlock.
3271 * --BLG
3272 */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275 struct net_device *dev = skb->dev;
3276 struct netdev_queue *txq;
3277 struct Qdisc *q;
3278 int rc = -ENOMEM;
3279
3280 skb_reset_mac_header(skb);
3281
3282 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285 /* Disable soft irqs for various locks below. Also
3286 * stops preemption for RCU.
3287 */
3288 rcu_read_lock_bh();
3289
3290 skb_update_prio(skb);
3291
3292 qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296 if (static_key_false(&egress_needed)) {
3297 skb = sch_handle_egress(skb, &rc, dev);
3298 if (!skb)
3299 goto out;
3300 }
3301 # endif
3302 #endif
3303 /* If device/qdisc don't need skb->dst, release it right now while
3304 * its hot in this cpu cache.
3305 */
3306 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307 skb_dst_drop(skb);
3308 else
3309 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312 /* Don't forward if offload device already forwarded */
3313 if (skb->offload_fwd_mark &&
3314 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315 consume_skb(skb);
3316 rc = NET_XMIT_SUCCESS;
3317 goto out;
3318 }
3319 #endif
3320
3321 txq = netdev_pick_tx(dev, skb, accel_priv);
3322 q = rcu_dereference_bh(txq->qdisc);
3323
3324 trace_net_dev_queue(skb);
3325 if (q->enqueue) {
3326 rc = __dev_xmit_skb(skb, q, dev, txq);
3327 goto out;
3328 }
3329
3330 /* The device has no queue. Common case for software devices:
3331 loopback, all the sorts of tunnels...
3332
3333 Really, it is unlikely that netif_tx_lock protection is necessary
3334 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3335 counters.)
3336 However, it is possible, that they rely on protection
3337 made by us here.
3338
3339 Check this and shot the lock. It is not prone from deadlocks.
3340 Either shot noqueue qdisc, it is even simpler 8)
3341 */
3342 if (dev->flags & IFF_UP) {
3343 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345 if (txq->xmit_lock_owner != cpu) {
3346
3347 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348 goto recursion_alert;
3349
3350 skb = validate_xmit_skb(skb, dev);
3351 if (!skb)
3352 goto drop;
3353
3354 HARD_TX_LOCK(dev, txq, cpu);
3355
3356 if (!netif_xmit_stopped(txq)) {
3357 __this_cpu_inc(xmit_recursion);
3358 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359 __this_cpu_dec(xmit_recursion);
3360 if (dev_xmit_complete(rc)) {
3361 HARD_TX_UNLOCK(dev, txq);
3362 goto out;
3363 }
3364 }
3365 HARD_TX_UNLOCK(dev, txq);
3366 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367 dev->name);
3368 } else {
3369 /* Recursion is detected! It is possible,
3370 * unfortunately
3371 */
3372 recursion_alert:
3373 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374 dev->name);
3375 }
3376 }
3377
3378 rc = -ENETDOWN;
3379 drop:
3380 rcu_read_unlock_bh();
3381
3382 atomic_long_inc(&dev->tx_dropped);
3383 kfree_skb_list(skb);
3384 return rc;
3385 out:
3386 rcu_read_unlock_bh();
3387 return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392 return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398 return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404 Receiver routines
3405 =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64; /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416 struct napi_struct *napi)
3417 {
3418 list_add_tail(&napi->poll_list, &sd->poll_list);
3419 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434 struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436 if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438 struct netdev_rx_queue *rxqueue;
3439 struct rps_dev_flow_table *flow_table;
3440 struct rps_dev_flow *old_rflow;
3441 u32 flow_id;
3442 u16 rxq_index;
3443 int rc;
3444
3445 /* Should we steer this flow to a different hardware queue? */
3446 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447 !(dev->features & NETIF_F_NTUPLE))
3448 goto out;
3449 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450 if (rxq_index == skb_get_rx_queue(skb))
3451 goto out;
3452
3453 rxqueue = dev->_rx + rxq_index;
3454 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455 if (!flow_table)
3456 goto out;
3457 flow_id = skb_get_hash(skb) & flow_table->mask;
3458 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459 rxq_index, flow_id);
3460 if (rc < 0)
3461 goto out;
3462 old_rflow = rflow;
3463 rflow = &flow_table->flows[flow_id];
3464 rflow->filter = rc;
3465 if (old_rflow->filter == rflow->filter)
3466 old_rflow->filter = RPS_NO_FILTER;
3467 out:
3468 #endif
3469 rflow->last_qtail =
3470 per_cpu(softnet_data, next_cpu).input_queue_head;
3471 }
3472
3473 rflow->cpu = next_cpu;
3474 return rflow;
3475 }
3476
3477 /*
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3481 */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483 struct rps_dev_flow **rflowp)
3484 {
3485 const struct rps_sock_flow_table *sock_flow_table;
3486 struct netdev_rx_queue *rxqueue = dev->_rx;
3487 struct rps_dev_flow_table *flow_table;
3488 struct rps_map *map;
3489 int cpu = -1;
3490 u32 tcpu;
3491 u32 hash;
3492
3493 if (skb_rx_queue_recorded(skb)) {
3494 u16 index = skb_get_rx_queue(skb);
3495
3496 if (unlikely(index >= dev->real_num_rx_queues)) {
3497 WARN_ONCE(dev->real_num_rx_queues > 1,
3498 "%s received packet on queue %u, but number "
3499 "of RX queues is %u\n",
3500 dev->name, index, dev->real_num_rx_queues);
3501 goto done;
3502 }
3503 rxqueue += index;
3504 }
3505
3506 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509 map = rcu_dereference(rxqueue->rps_map);
3510 if (!flow_table && !map)
3511 goto done;
3512
3513 skb_reset_network_header(skb);
3514 hash = skb_get_hash(skb);
3515 if (!hash)
3516 goto done;
3517
3518 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519 if (flow_table && sock_flow_table) {
3520 struct rps_dev_flow *rflow;
3521 u32 next_cpu;
3522 u32 ident;
3523
3524 /* First check into global flow table if there is a match */
3525 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526 if ((ident ^ hash) & ~rps_cpu_mask)
3527 goto try_rps;
3528
3529 next_cpu = ident & rps_cpu_mask;
3530
3531 /* OK, now we know there is a match,
3532 * we can look at the local (per receive queue) flow table
3533 */
3534 rflow = &flow_table->flows[hash & flow_table->mask];
3535 tcpu = rflow->cpu;
3536
3537 /*
3538 * If the desired CPU (where last recvmsg was done) is
3539 * different from current CPU (one in the rx-queue flow
3540 * table entry), switch if one of the following holds:
3541 * - Current CPU is unset (>= nr_cpu_ids).
3542 * - Current CPU is offline.
3543 * - The current CPU's queue tail has advanced beyond the
3544 * last packet that was enqueued using this table entry.
3545 * This guarantees that all previous packets for the flow
3546 * have been dequeued, thus preserving in order delivery.
3547 */
3548 if (unlikely(tcpu != next_cpu) &&
3549 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551 rflow->last_qtail)) >= 0)) {
3552 tcpu = next_cpu;
3553 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554 }
3555
3556 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557 *rflowp = rflow;
3558 cpu = tcpu;
3559 goto done;
3560 }
3561 }
3562
3563 try_rps:
3564
3565 if (map) {
3566 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567 if (cpu_online(tcpu)) {
3568 cpu = tcpu;
3569 goto done;
3570 }
3571 }
3572
3573 done:
3574 return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585 *
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3589 */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591 u32 flow_id, u16 filter_id)
3592 {
3593 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594 struct rps_dev_flow_table *flow_table;
3595 struct rps_dev_flow *rflow;
3596 bool expire = true;
3597 unsigned int cpu;
3598
3599 rcu_read_lock();
3600 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601 if (flow_table && flow_id <= flow_table->mask) {
3602 rflow = &flow_table->flows[flow_id];
3603 cpu = ACCESS_ONCE(rflow->cpu);
3604 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606 rflow->last_qtail) <
3607 (int)(10 * flow_table->mask)))
3608 expire = false;
3609 }
3610 rcu_read_unlock();
3611 return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620 struct softnet_data *sd = data;
3621
3622 ____napi_schedule(sd, &sd->backlog);
3623 sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
3632 */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638 if (sd != mysd) {
3639 sd->rps_ipi_next = mysd->rps_ipi_list;
3640 mysd->rps_ipi_list = sd;
3641
3642 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643 return 1;
3644 }
3645 #endif /* CONFIG_RPS */
3646 return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656 struct sd_flow_limit *fl;
3657 struct softnet_data *sd;
3658 unsigned int old_flow, new_flow;
3659
3660 if (qlen < (netdev_max_backlog >> 1))
3661 return false;
3662
3663 sd = this_cpu_ptr(&softnet_data);
3664
3665 rcu_read_lock();
3666 fl = rcu_dereference(sd->flow_limit);
3667 if (fl) {
3668 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669 old_flow = fl->history[fl->history_head];
3670 fl->history[fl->history_head] = new_flow;
3671
3672 fl->history_head++;
3673 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675 if (likely(fl->buckets[old_flow]))
3676 fl->buckets[old_flow]--;
3677
3678 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679 fl->count++;
3680 rcu_read_unlock();
3681 return true;
3682 }
3683 }
3684 rcu_read_unlock();
3685 #endif
3686 return false;
3687 }
3688
3689 /*
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3692 */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694 unsigned int *qtail)
3695 {
3696 struct softnet_data *sd;
3697 unsigned long flags;
3698 unsigned int qlen;
3699
3700 sd = &per_cpu(softnet_data, cpu);
3701
3702 local_irq_save(flags);
3703
3704 rps_lock(sd);
3705 if (!netif_running(skb->dev))
3706 goto drop;
3707 qlen = skb_queue_len(&sd->input_pkt_queue);
3708 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709 if (qlen) {
3710 enqueue:
3711 __skb_queue_tail(&sd->input_pkt_queue, skb);
3712 input_queue_tail_incr_save(sd, qtail);
3713 rps_unlock(sd);
3714 local_irq_restore(flags);
3715 return NET_RX_SUCCESS;
3716 }
3717
3718 /* Schedule NAPI for backlog device
3719 * We can use non atomic operation since we own the queue lock
3720 */
3721 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722 if (!rps_ipi_queued(sd))
3723 ____napi_schedule(sd, &sd->backlog);
3724 }
3725 goto enqueue;
3726 }
3727
3728 drop:
3729 sd->dropped++;
3730 rps_unlock(sd);
3731
3732 local_irq_restore(flags);
3733
3734 atomic_long_inc(&skb->dev->rx_dropped);
3735 kfree_skb(skb);
3736 return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741 int ret;
3742
3743 net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745 trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747 if (static_key_false(&rps_needed)) {
3748 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749 int cpu;
3750
3751 preempt_disable();
3752 rcu_read_lock();
3753
3754 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755 if (cpu < 0)
3756 cpu = smp_processor_id();
3757
3758 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760 rcu_read_unlock();
3761 preempt_enable();
3762 } else
3763 #endif
3764 {
3765 unsigned int qtail;
3766 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767 put_cpu();
3768 }
3769 return ret;
3770 }
3771
3772 /**
3773 * netif_rx - post buffer to the network code
3774 * @skb: buffer to post
3775 *
3776 * This function receives a packet from a device driver and queues it for
3777 * the upper (protocol) levels to process. It always succeeds. The buffer
3778 * may be dropped during processing for congestion control or by the
3779 * protocol layers.
3780 *
3781 * return values:
3782 * NET_RX_SUCCESS (no congestion)
3783 * NET_RX_DROP (packet was dropped)
3784 *
3785 */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789 trace_netif_rx_entry(skb);
3790
3791 return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797 int err;
3798
3799 trace_netif_rx_ni_entry(skb);
3800
3801 preempt_disable();
3802 err = netif_rx_internal(skb);
3803 if (local_softirq_pending())
3804 do_softirq();
3805 preempt_enable();
3806
3807 return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815 if (sd->completion_queue) {
3816 struct sk_buff *clist;
3817
3818 local_irq_disable();
3819 clist = sd->completion_queue;
3820 sd->completion_queue = NULL;
3821 local_irq_enable();
3822
3823 while (clist) {
3824 struct sk_buff *skb = clist;
3825 clist = clist->next;
3826
3827 WARN_ON(atomic_read(&skb->users));
3828 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829 trace_consume_skb(skb);
3830 else
3831 trace_kfree_skb(skb, net_tx_action);
3832 __kfree_skb(skb);
3833 }
3834 }
3835
3836 if (sd->output_queue) {
3837 struct Qdisc *head;
3838
3839 local_irq_disable();
3840 head = sd->output_queue;
3841 sd->output_queue = NULL;
3842 sd->output_queue_tailp = &sd->output_queue;
3843 local_irq_enable();
3844
3845 while (head) {
3846 struct Qdisc *q = head;
3847 spinlock_t *root_lock;
3848
3849 head = head->next_sched;
3850
3851 root_lock = qdisc_lock(q);
3852 if (spin_trylock(root_lock)) {
3853 smp_mb__before_atomic();
3854 clear_bit(__QDISC_STATE_SCHED,
3855 &q->state);
3856 qdisc_run(q);
3857 spin_unlock(root_lock);
3858 } else {
3859 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3860 &q->state)) {
3861 __netif_reschedule(q);
3862 } else {
3863 smp_mb__before_atomic();
3864 clear_bit(__QDISC_STATE_SCHED,
3865 &q->state);
3866 }
3867 }
3868 }
3869 }
3870 }
3871
3872 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3873 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3874 /* This hook is defined here for ATM LANE */
3875 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3876 unsigned char *addr) __read_mostly;
3877 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3878 #endif
3879
3880 static inline struct sk_buff *
3881 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3882 struct net_device *orig_dev)
3883 {
3884 #ifdef CONFIG_NET_CLS_ACT
3885 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3886 struct tcf_result cl_res;
3887
3888 /* If there's at least one ingress present somewhere (so
3889 * we get here via enabled static key), remaining devices
3890 * that are not configured with an ingress qdisc will bail
3891 * out here.
3892 */
3893 if (!cl)
3894 return skb;
3895 if (*pt_prev) {
3896 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3897 *pt_prev = NULL;
3898 }
3899
3900 qdisc_skb_cb(skb)->pkt_len = skb->len;
3901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3902 qdisc_bstats_cpu_update(cl->q, skb);
3903
3904 switch (tc_classify(skb, cl, &cl_res, false)) {
3905 case TC_ACT_OK:
3906 case TC_ACT_RECLASSIFY:
3907 skb->tc_index = TC_H_MIN(cl_res.classid);
3908 break;
3909 case TC_ACT_SHOT:
3910 qdisc_qstats_cpu_drop(cl->q);
3911 case TC_ACT_STOLEN:
3912 case TC_ACT_QUEUED:
3913 kfree_skb(skb);
3914 return NULL;
3915 case TC_ACT_REDIRECT:
3916 /* skb_mac_header check was done by cls/act_bpf, so
3917 * we can safely push the L2 header back before
3918 * redirecting to another netdev
3919 */
3920 __skb_push(skb, skb->mac_len);
3921 skb_do_redirect(skb);
3922 return NULL;
3923 default:
3924 break;
3925 }
3926 #endif /* CONFIG_NET_CLS_ACT */
3927 return skb;
3928 }
3929
3930 /**
3931 * netdev_rx_handler_register - register receive handler
3932 * @dev: device to register a handler for
3933 * @rx_handler: receive handler to register
3934 * @rx_handler_data: data pointer that is used by rx handler
3935 *
3936 * Register a receive handler for a device. This handler will then be
3937 * called from __netif_receive_skb. A negative errno code is returned
3938 * on a failure.
3939 *
3940 * The caller must hold the rtnl_mutex.
3941 *
3942 * For a general description of rx_handler, see enum rx_handler_result.
3943 */
3944 int netdev_rx_handler_register(struct net_device *dev,
3945 rx_handler_func_t *rx_handler,
3946 void *rx_handler_data)
3947 {
3948 ASSERT_RTNL();
3949
3950 if (dev->rx_handler)
3951 return -EBUSY;
3952
3953 /* Note: rx_handler_data must be set before rx_handler */
3954 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3955 rcu_assign_pointer(dev->rx_handler, rx_handler);
3956
3957 return 0;
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3960
3961 /**
3962 * netdev_rx_handler_unregister - unregister receive handler
3963 * @dev: device to unregister a handler from
3964 *
3965 * Unregister a receive handler from a device.
3966 *
3967 * The caller must hold the rtnl_mutex.
3968 */
3969 void netdev_rx_handler_unregister(struct net_device *dev)
3970 {
3971
3972 ASSERT_RTNL();
3973 RCU_INIT_POINTER(dev->rx_handler, NULL);
3974 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3975 * section has a guarantee to see a non NULL rx_handler_data
3976 * as well.
3977 */
3978 synchronize_net();
3979 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3982
3983 /*
3984 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3985 * the special handling of PFMEMALLOC skbs.
3986 */
3987 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3988 {
3989 switch (skb->protocol) {
3990 case htons(ETH_P_ARP):
3991 case htons(ETH_P_IP):
3992 case htons(ETH_P_IPV6):
3993 case htons(ETH_P_8021Q):
3994 case htons(ETH_P_8021AD):
3995 return true;
3996 default:
3997 return false;
3998 }
3999 }
4000
4001 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4002 int *ret, struct net_device *orig_dev)
4003 {
4004 #ifdef CONFIG_NETFILTER_INGRESS
4005 if (nf_hook_ingress_active(skb)) {
4006 if (*pt_prev) {
4007 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4008 *pt_prev = NULL;
4009 }
4010
4011 return nf_hook_ingress(skb);
4012 }
4013 #endif /* CONFIG_NETFILTER_INGRESS */
4014 return 0;
4015 }
4016
4017 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4018 {
4019 struct packet_type *ptype, *pt_prev;
4020 rx_handler_func_t *rx_handler;
4021 struct net_device *orig_dev;
4022 bool deliver_exact = false;
4023 int ret = NET_RX_DROP;
4024 __be16 type;
4025
4026 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4027
4028 trace_netif_receive_skb(skb);
4029
4030 orig_dev = skb->dev;
4031
4032 skb_reset_network_header(skb);
4033 if (!skb_transport_header_was_set(skb))
4034 skb_reset_transport_header(skb);
4035 skb_reset_mac_len(skb);
4036
4037 pt_prev = NULL;
4038
4039 another_round:
4040 skb->skb_iif = skb->dev->ifindex;
4041
4042 __this_cpu_inc(softnet_data.processed);
4043
4044 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4045 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4046 skb = skb_vlan_untag(skb);
4047 if (unlikely(!skb))
4048 goto out;
4049 }
4050
4051 #ifdef CONFIG_NET_CLS_ACT
4052 if (skb->tc_verd & TC_NCLS) {
4053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4054 goto ncls;
4055 }
4056 #endif
4057
4058 if (pfmemalloc)
4059 goto skip_taps;
4060
4061 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4062 if (pt_prev)
4063 ret = deliver_skb(skb, pt_prev, orig_dev);
4064 pt_prev = ptype;
4065 }
4066
4067 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4068 if (pt_prev)
4069 ret = deliver_skb(skb, pt_prev, orig_dev);
4070 pt_prev = ptype;
4071 }
4072
4073 skip_taps:
4074 #ifdef CONFIG_NET_INGRESS
4075 if (static_key_false(&ingress_needed)) {
4076 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4077 if (!skb)
4078 goto out;
4079
4080 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4081 goto out;
4082 }
4083 #endif
4084 #ifdef CONFIG_NET_CLS_ACT
4085 skb->tc_verd = 0;
4086 ncls:
4087 #endif
4088 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4089 goto drop;
4090
4091 if (skb_vlan_tag_present(skb)) {
4092 if (pt_prev) {
4093 ret = deliver_skb(skb, pt_prev, orig_dev);
4094 pt_prev = NULL;
4095 }
4096 if (vlan_do_receive(&skb))
4097 goto another_round;
4098 else if (unlikely(!skb))
4099 goto out;
4100 }
4101
4102 rx_handler = rcu_dereference(skb->dev->rx_handler);
4103 if (rx_handler) {
4104 if (pt_prev) {
4105 ret = deliver_skb(skb, pt_prev, orig_dev);
4106 pt_prev = NULL;
4107 }
4108 switch (rx_handler(&skb)) {
4109 case RX_HANDLER_CONSUMED:
4110 ret = NET_RX_SUCCESS;
4111 goto out;
4112 case RX_HANDLER_ANOTHER:
4113 goto another_round;
4114 case RX_HANDLER_EXACT:
4115 deliver_exact = true;
4116 case RX_HANDLER_PASS:
4117 break;
4118 default:
4119 BUG();
4120 }
4121 }
4122
4123 if (unlikely(skb_vlan_tag_present(skb))) {
4124 if (skb_vlan_tag_get_id(skb))
4125 skb->pkt_type = PACKET_OTHERHOST;
4126 /* Note: we might in the future use prio bits
4127 * and set skb->priority like in vlan_do_receive()
4128 * For the time being, just ignore Priority Code Point
4129 */
4130 skb->vlan_tci = 0;
4131 }
4132
4133 type = skb->protocol;
4134
4135 /* deliver only exact match when indicated */
4136 if (likely(!deliver_exact)) {
4137 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4138 &ptype_base[ntohs(type) &
4139 PTYPE_HASH_MASK]);
4140 }
4141
4142 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4143 &orig_dev->ptype_specific);
4144
4145 if (unlikely(skb->dev != orig_dev)) {
4146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4147 &skb->dev->ptype_specific);
4148 }
4149
4150 if (pt_prev) {
4151 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4152 goto drop;
4153 else
4154 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4155 } else {
4156 drop:
4157 atomic_long_inc(&skb->dev->rx_dropped);
4158 kfree_skb(skb);
4159 /* Jamal, now you will not able to escape explaining
4160 * me how you were going to use this. :-)
4161 */
4162 ret = NET_RX_DROP;
4163 }
4164
4165 out:
4166 return ret;
4167 }
4168
4169 static int __netif_receive_skb(struct sk_buff *skb)
4170 {
4171 int ret;
4172
4173 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4174 unsigned long pflags = current->flags;
4175
4176 /*
4177 * PFMEMALLOC skbs are special, they should
4178 * - be delivered to SOCK_MEMALLOC sockets only
4179 * - stay away from userspace
4180 * - have bounded memory usage
4181 *
4182 * Use PF_MEMALLOC as this saves us from propagating the allocation
4183 * context down to all allocation sites.
4184 */
4185 current->flags |= PF_MEMALLOC;
4186 ret = __netif_receive_skb_core(skb, true);
4187 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4188 } else
4189 ret = __netif_receive_skb_core(skb, false);
4190
4191 return ret;
4192 }
4193
4194 static int netif_receive_skb_internal(struct sk_buff *skb)
4195 {
4196 int ret;
4197
4198 net_timestamp_check(netdev_tstamp_prequeue, skb);
4199
4200 if (skb_defer_rx_timestamp(skb))
4201 return NET_RX_SUCCESS;
4202
4203 rcu_read_lock();
4204
4205 #ifdef CONFIG_RPS
4206 if (static_key_false(&rps_needed)) {
4207 struct rps_dev_flow voidflow, *rflow = &voidflow;
4208 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4209
4210 if (cpu >= 0) {
4211 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4212 rcu_read_unlock();
4213 return ret;
4214 }
4215 }
4216 #endif
4217 ret = __netif_receive_skb(skb);
4218 rcu_read_unlock();
4219 return ret;
4220 }
4221
4222 /**
4223 * netif_receive_skb - process receive buffer from network
4224 * @skb: buffer to process
4225 *
4226 * netif_receive_skb() is the main receive data processing function.
4227 * It always succeeds. The buffer may be dropped during processing
4228 * for congestion control or by the protocol layers.
4229 *
4230 * This function may only be called from softirq context and interrupts
4231 * should be enabled.
4232 *
4233 * Return values (usually ignored):
4234 * NET_RX_SUCCESS: no congestion
4235 * NET_RX_DROP: packet was dropped
4236 */
4237 int netif_receive_skb(struct sk_buff *skb)
4238 {
4239 trace_netif_receive_skb_entry(skb);
4240
4241 return netif_receive_skb_internal(skb);
4242 }
4243 EXPORT_SYMBOL(netif_receive_skb);
4244
4245 /* Network device is going away, flush any packets still pending
4246 * Called with irqs disabled.
4247 */
4248 static void flush_backlog(void *arg)
4249 {
4250 struct net_device *dev = arg;
4251 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4252 struct sk_buff *skb, *tmp;
4253
4254 rps_lock(sd);
4255 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4256 if (skb->dev == dev) {
4257 __skb_unlink(skb, &sd->input_pkt_queue);
4258 kfree_skb(skb);
4259 input_queue_head_incr(sd);
4260 }
4261 }
4262 rps_unlock(sd);
4263
4264 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4265 if (skb->dev == dev) {
4266 __skb_unlink(skb, &sd->process_queue);
4267 kfree_skb(skb);
4268 input_queue_head_incr(sd);
4269 }
4270 }
4271 }
4272
4273 static int napi_gro_complete(struct sk_buff *skb)
4274 {
4275 struct packet_offload *ptype;
4276 __be16 type = skb->protocol;
4277 struct list_head *head = &offload_base;
4278 int err = -ENOENT;
4279
4280 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4281
4282 if (NAPI_GRO_CB(skb)->count == 1) {
4283 skb_shinfo(skb)->gso_size = 0;
4284 goto out;
4285 }
4286
4287 rcu_read_lock();
4288 list_for_each_entry_rcu(ptype, head, list) {
4289 if (ptype->type != type || !ptype->callbacks.gro_complete)
4290 continue;
4291
4292 err = ptype->callbacks.gro_complete(skb, 0);
4293 break;
4294 }
4295 rcu_read_unlock();
4296
4297 if (err) {
4298 WARN_ON(&ptype->list == head);
4299 kfree_skb(skb);
4300 return NET_RX_SUCCESS;
4301 }
4302
4303 out:
4304 return netif_receive_skb_internal(skb);
4305 }
4306
4307 /* napi->gro_list contains packets ordered by age.
4308 * youngest packets at the head of it.
4309 * Complete skbs in reverse order to reduce latencies.
4310 */
4311 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4312 {
4313 struct sk_buff *skb, *prev = NULL;
4314
4315 /* scan list and build reverse chain */
4316 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4317 skb->prev = prev;
4318 prev = skb;
4319 }
4320
4321 for (skb = prev; skb; skb = prev) {
4322 skb->next = NULL;
4323
4324 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4325 return;
4326
4327 prev = skb->prev;
4328 napi_gro_complete(skb);
4329 napi->gro_count--;
4330 }
4331
4332 napi->gro_list = NULL;
4333 }
4334 EXPORT_SYMBOL(napi_gro_flush);
4335
4336 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4337 {
4338 struct sk_buff *p;
4339 unsigned int maclen = skb->dev->hard_header_len;
4340 u32 hash = skb_get_hash_raw(skb);
4341
4342 for (p = napi->gro_list; p; p = p->next) {
4343 unsigned long diffs;
4344
4345 NAPI_GRO_CB(p)->flush = 0;
4346
4347 if (hash != skb_get_hash_raw(p)) {
4348 NAPI_GRO_CB(p)->same_flow = 0;
4349 continue;
4350 }
4351
4352 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4353 diffs |= p->vlan_tci ^ skb->vlan_tci;
4354 if (maclen == ETH_HLEN)
4355 diffs |= compare_ether_header(skb_mac_header(p),
4356 skb_mac_header(skb));
4357 else if (!diffs)
4358 diffs = memcmp(skb_mac_header(p),
4359 skb_mac_header(skb),
4360 maclen);
4361 NAPI_GRO_CB(p)->same_flow = !diffs;
4362 }
4363 }
4364
4365 static void skb_gro_reset_offset(struct sk_buff *skb)
4366 {
4367 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4368 const skb_frag_t *frag0 = &pinfo->frags[0];
4369
4370 NAPI_GRO_CB(skb)->data_offset = 0;
4371 NAPI_GRO_CB(skb)->frag0 = NULL;
4372 NAPI_GRO_CB(skb)->frag0_len = 0;
4373
4374 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4375 pinfo->nr_frags &&
4376 !PageHighMem(skb_frag_page(frag0))) {
4377 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4378 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4379 }
4380 }
4381
4382 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4383 {
4384 struct skb_shared_info *pinfo = skb_shinfo(skb);
4385
4386 BUG_ON(skb->end - skb->tail < grow);
4387
4388 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4389
4390 skb->data_len -= grow;
4391 skb->tail += grow;
4392
4393 pinfo->frags[0].page_offset += grow;
4394 skb_frag_size_sub(&pinfo->frags[0], grow);
4395
4396 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4397 skb_frag_unref(skb, 0);
4398 memmove(pinfo->frags, pinfo->frags + 1,
4399 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4400 }
4401 }
4402
4403 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4404 {
4405 struct sk_buff **pp = NULL;
4406 struct packet_offload *ptype;
4407 __be16 type = skb->protocol;
4408 struct list_head *head = &offload_base;
4409 int same_flow;
4410 enum gro_result ret;
4411 int grow;
4412
4413 if (!(skb->dev->features & NETIF_F_GRO))
4414 goto normal;
4415
4416 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4417 goto normal;
4418
4419 gro_list_prepare(napi, skb);
4420
4421 rcu_read_lock();
4422 list_for_each_entry_rcu(ptype, head, list) {
4423 if (ptype->type != type || !ptype->callbacks.gro_receive)
4424 continue;
4425
4426 skb_set_network_header(skb, skb_gro_offset(skb));
4427 skb_reset_mac_len(skb);
4428 NAPI_GRO_CB(skb)->same_flow = 0;
4429 NAPI_GRO_CB(skb)->flush = 0;
4430 NAPI_GRO_CB(skb)->free = 0;
4431 NAPI_GRO_CB(skb)->udp_mark = 0;
4432 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4433
4434 /* Setup for GRO checksum validation */
4435 switch (skb->ip_summed) {
4436 case CHECKSUM_COMPLETE:
4437 NAPI_GRO_CB(skb)->csum = skb->csum;
4438 NAPI_GRO_CB(skb)->csum_valid = 1;
4439 NAPI_GRO_CB(skb)->csum_cnt = 0;
4440 break;
4441 case CHECKSUM_UNNECESSARY:
4442 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4443 NAPI_GRO_CB(skb)->csum_valid = 0;
4444 break;
4445 default:
4446 NAPI_GRO_CB(skb)->csum_cnt = 0;
4447 NAPI_GRO_CB(skb)->csum_valid = 0;
4448 }
4449
4450 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4451 break;
4452 }
4453 rcu_read_unlock();
4454
4455 if (&ptype->list == head)
4456 goto normal;
4457
4458 same_flow = NAPI_GRO_CB(skb)->same_flow;
4459 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4460
4461 if (pp) {
4462 struct sk_buff *nskb = *pp;
4463
4464 *pp = nskb->next;
4465 nskb->next = NULL;
4466 napi_gro_complete(nskb);
4467 napi->gro_count--;
4468 }
4469
4470 if (same_flow)
4471 goto ok;
4472
4473 if (NAPI_GRO_CB(skb)->flush)
4474 goto normal;
4475
4476 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4477 struct sk_buff *nskb = napi->gro_list;
4478
4479 /* locate the end of the list to select the 'oldest' flow */
4480 while (nskb->next) {
4481 pp = &nskb->next;
4482 nskb = *pp;
4483 }
4484 *pp = NULL;
4485 nskb->next = NULL;
4486 napi_gro_complete(nskb);
4487 } else {
4488 napi->gro_count++;
4489 }
4490 NAPI_GRO_CB(skb)->count = 1;
4491 NAPI_GRO_CB(skb)->age = jiffies;
4492 NAPI_GRO_CB(skb)->last = skb;
4493 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4494 skb->next = napi->gro_list;
4495 napi->gro_list = skb;
4496 ret = GRO_HELD;
4497
4498 pull:
4499 grow = skb_gro_offset(skb) - skb_headlen(skb);
4500 if (grow > 0)
4501 gro_pull_from_frag0(skb, grow);
4502 ok:
4503 return ret;
4504
4505 normal:
4506 ret = GRO_NORMAL;
4507 goto pull;
4508 }
4509
4510 struct packet_offload *gro_find_receive_by_type(__be16 type)
4511 {
4512 struct list_head *offload_head = &offload_base;
4513 struct packet_offload *ptype;
4514
4515 list_for_each_entry_rcu(ptype, offload_head, list) {
4516 if (ptype->type != type || !ptype->callbacks.gro_receive)
4517 continue;
4518 return ptype;
4519 }
4520 return NULL;
4521 }
4522 EXPORT_SYMBOL(gro_find_receive_by_type);
4523
4524 struct packet_offload *gro_find_complete_by_type(__be16 type)
4525 {
4526 struct list_head *offload_head = &offload_base;
4527 struct packet_offload *ptype;
4528
4529 list_for_each_entry_rcu(ptype, offload_head, list) {
4530 if (ptype->type != type || !ptype->callbacks.gro_complete)
4531 continue;
4532 return ptype;
4533 }
4534 return NULL;
4535 }
4536 EXPORT_SYMBOL(gro_find_complete_by_type);
4537
4538 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4539 {
4540 switch (ret) {
4541 case GRO_NORMAL:
4542 if (netif_receive_skb_internal(skb))
4543 ret = GRO_DROP;
4544 break;
4545
4546 case GRO_DROP:
4547 kfree_skb(skb);
4548 break;
4549
4550 case GRO_MERGED_FREE:
4551 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4552 kmem_cache_free(skbuff_head_cache, skb);
4553 else
4554 __kfree_skb(skb);
4555 break;
4556
4557 case GRO_HELD:
4558 case GRO_MERGED:
4559 break;
4560 }
4561
4562 return ret;
4563 }
4564
4565 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4566 {
4567 skb_mark_napi_id(skb, napi);
4568 trace_napi_gro_receive_entry(skb);
4569
4570 skb_gro_reset_offset(skb);
4571
4572 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4573 }
4574 EXPORT_SYMBOL(napi_gro_receive);
4575
4576 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4577 {
4578 if (unlikely(skb->pfmemalloc)) {
4579 consume_skb(skb);
4580 return;
4581 }
4582 __skb_pull(skb, skb_headlen(skb));
4583 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4584 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4585 skb->vlan_tci = 0;
4586 skb->dev = napi->dev;
4587 skb->skb_iif = 0;
4588 skb->encapsulation = 0;
4589 skb_shinfo(skb)->gso_type = 0;
4590 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4591
4592 napi->skb = skb;
4593 }
4594
4595 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4596 {
4597 struct sk_buff *skb = napi->skb;
4598
4599 if (!skb) {
4600 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4601 if (skb) {
4602 napi->skb = skb;
4603 skb_mark_napi_id(skb, napi);
4604 }
4605 }
4606 return skb;
4607 }
4608 EXPORT_SYMBOL(napi_get_frags);
4609
4610 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4611 struct sk_buff *skb,
4612 gro_result_t ret)
4613 {
4614 switch (ret) {
4615 case GRO_NORMAL:
4616 case GRO_HELD:
4617 __skb_push(skb, ETH_HLEN);
4618 skb->protocol = eth_type_trans(skb, skb->dev);
4619 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4620 ret = GRO_DROP;
4621 break;
4622
4623 case GRO_DROP:
4624 case GRO_MERGED_FREE:
4625 napi_reuse_skb(napi, skb);
4626 break;
4627
4628 case GRO_MERGED:
4629 break;
4630 }
4631
4632 return ret;
4633 }
4634
4635 /* Upper GRO stack assumes network header starts at gro_offset=0
4636 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4637 * We copy ethernet header into skb->data to have a common layout.
4638 */
4639 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4640 {
4641 struct sk_buff *skb = napi->skb;
4642 const struct ethhdr *eth;
4643 unsigned int hlen = sizeof(*eth);
4644
4645 napi->skb = NULL;
4646
4647 skb_reset_mac_header(skb);
4648 skb_gro_reset_offset(skb);
4649
4650 eth = skb_gro_header_fast(skb, 0);
4651 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4652 eth = skb_gro_header_slow(skb, hlen, 0);
4653 if (unlikely(!eth)) {
4654 napi_reuse_skb(napi, skb);
4655 return NULL;
4656 }
4657 } else {
4658 gro_pull_from_frag0(skb, hlen);
4659 NAPI_GRO_CB(skb)->frag0 += hlen;
4660 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4661 }
4662 __skb_pull(skb, hlen);
4663
4664 /*
4665 * This works because the only protocols we care about don't require
4666 * special handling.
4667 * We'll fix it up properly in napi_frags_finish()
4668 */
4669 skb->protocol = eth->h_proto;
4670
4671 return skb;
4672 }
4673
4674 gro_result_t napi_gro_frags(struct napi_struct *napi)
4675 {
4676 struct sk_buff *skb = napi_frags_skb(napi);
4677
4678 if (!skb)
4679 return GRO_DROP;
4680
4681 trace_napi_gro_frags_entry(skb);
4682
4683 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4684 }
4685 EXPORT_SYMBOL(napi_gro_frags);
4686
4687 /* Compute the checksum from gro_offset and return the folded value
4688 * after adding in any pseudo checksum.
4689 */
4690 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4691 {
4692 __wsum wsum;
4693 __sum16 sum;
4694
4695 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4696
4697 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4698 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4699 if (likely(!sum)) {
4700 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4701 !skb->csum_complete_sw)
4702 netdev_rx_csum_fault(skb->dev);
4703 }
4704
4705 NAPI_GRO_CB(skb)->csum = wsum;
4706 NAPI_GRO_CB(skb)->csum_valid = 1;
4707
4708 return sum;
4709 }
4710 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4711
4712 /*
4713 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4714 * Note: called with local irq disabled, but exits with local irq enabled.
4715 */
4716 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4717 {
4718 #ifdef CONFIG_RPS
4719 struct softnet_data *remsd = sd->rps_ipi_list;
4720
4721 if (remsd) {
4722 sd->rps_ipi_list = NULL;
4723
4724 local_irq_enable();
4725
4726 /* Send pending IPI's to kick RPS processing on remote cpus. */
4727 while (remsd) {
4728 struct softnet_data *next = remsd->rps_ipi_next;
4729
4730 if (cpu_online(remsd->cpu))
4731 smp_call_function_single_async(remsd->cpu,
4732 &remsd->csd);
4733 remsd = next;
4734 }
4735 } else
4736 #endif
4737 local_irq_enable();
4738 }
4739
4740 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4741 {
4742 #ifdef CONFIG_RPS
4743 return sd->rps_ipi_list != NULL;
4744 #else
4745 return false;
4746 #endif
4747 }
4748
4749 static int process_backlog(struct napi_struct *napi, int quota)
4750 {
4751 int work = 0;
4752 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4753
4754 /* Check if we have pending ipi, its better to send them now,
4755 * not waiting net_rx_action() end.
4756 */
4757 if (sd_has_rps_ipi_waiting(sd)) {
4758 local_irq_disable();
4759 net_rps_action_and_irq_enable(sd);
4760 }
4761
4762 napi->weight = weight_p;
4763 local_irq_disable();
4764 while (1) {
4765 struct sk_buff *skb;
4766
4767 while ((skb = __skb_dequeue(&sd->process_queue))) {
4768 rcu_read_lock();
4769 local_irq_enable();
4770 __netif_receive_skb(skb);
4771 rcu_read_unlock();
4772 local_irq_disable();
4773 input_queue_head_incr(sd);
4774 if (++work >= quota) {
4775 local_irq_enable();
4776 return work;
4777 }
4778 }
4779
4780 rps_lock(sd);
4781 if (skb_queue_empty(&sd->input_pkt_queue)) {
4782 /*
4783 * Inline a custom version of __napi_complete().
4784 * only current cpu owns and manipulates this napi,
4785 * and NAPI_STATE_SCHED is the only possible flag set
4786 * on backlog.
4787 * We can use a plain write instead of clear_bit(),
4788 * and we dont need an smp_mb() memory barrier.
4789 */
4790 napi->state = 0;
4791 rps_unlock(sd);
4792
4793 break;
4794 }
4795
4796 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4797 &sd->process_queue);
4798 rps_unlock(sd);
4799 }
4800 local_irq_enable();
4801
4802 return work;
4803 }
4804
4805 /**
4806 * __napi_schedule - schedule for receive
4807 * @n: entry to schedule
4808 *
4809 * The entry's receive function will be scheduled to run.
4810 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4811 */
4812 void __napi_schedule(struct napi_struct *n)
4813 {
4814 unsigned long flags;
4815
4816 local_irq_save(flags);
4817 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4818 local_irq_restore(flags);
4819 }
4820 EXPORT_SYMBOL(__napi_schedule);
4821
4822 /**
4823 * __napi_schedule_irqoff - schedule for receive
4824 * @n: entry to schedule
4825 *
4826 * Variant of __napi_schedule() assuming hard irqs are masked
4827 */
4828 void __napi_schedule_irqoff(struct napi_struct *n)
4829 {
4830 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4831 }
4832 EXPORT_SYMBOL(__napi_schedule_irqoff);
4833
4834 void __napi_complete(struct napi_struct *n)
4835 {
4836 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4837
4838 list_del_init(&n->poll_list);
4839 smp_mb__before_atomic();
4840 clear_bit(NAPI_STATE_SCHED, &n->state);
4841 }
4842 EXPORT_SYMBOL(__napi_complete);
4843
4844 void napi_complete_done(struct napi_struct *n, int work_done)
4845 {
4846 unsigned long flags;
4847
4848 /*
4849 * don't let napi dequeue from the cpu poll list
4850 * just in case its running on a different cpu
4851 */
4852 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4853 return;
4854
4855 if (n->gro_list) {
4856 unsigned long timeout = 0;
4857
4858 if (work_done)
4859 timeout = n->dev->gro_flush_timeout;
4860
4861 if (timeout)
4862 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4863 HRTIMER_MODE_REL_PINNED);
4864 else
4865 napi_gro_flush(n, false);
4866 }
4867 if (likely(list_empty(&n->poll_list))) {
4868 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4869 } else {
4870 /* If n->poll_list is not empty, we need to mask irqs */
4871 local_irq_save(flags);
4872 __napi_complete(n);
4873 local_irq_restore(flags);
4874 }
4875 }
4876 EXPORT_SYMBOL(napi_complete_done);
4877
4878 /* must be called under rcu_read_lock(), as we dont take a reference */
4879 static struct napi_struct *napi_by_id(unsigned int napi_id)
4880 {
4881 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4882 struct napi_struct *napi;
4883
4884 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4885 if (napi->napi_id == napi_id)
4886 return napi;
4887
4888 return NULL;
4889 }
4890
4891 #if defined(CONFIG_NET_RX_BUSY_POLL)
4892 #define BUSY_POLL_BUDGET 8
4893 bool sk_busy_loop(struct sock *sk, int nonblock)
4894 {
4895 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4896 int (*busy_poll)(struct napi_struct *dev);
4897 struct napi_struct *napi;
4898 int rc = false;
4899
4900 rcu_read_lock();
4901
4902 napi = napi_by_id(sk->sk_napi_id);
4903 if (!napi)
4904 goto out;
4905
4906 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4907 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4908
4909 do {
4910 rc = 0;
4911 local_bh_disable();
4912 if (busy_poll) {
4913 rc = busy_poll(napi);
4914 } else if (napi_schedule_prep(napi)) {
4915 void *have = netpoll_poll_lock(napi);
4916
4917 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4918 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4919 trace_napi_poll(napi);
4920 if (rc == BUSY_POLL_BUDGET) {
4921 napi_complete_done(napi, rc);
4922 napi_schedule(napi);
4923 }
4924 }
4925 netpoll_poll_unlock(have);
4926 }
4927 if (rc > 0)
4928 NET_ADD_STATS_BH(sock_net(sk),
4929 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4930 local_bh_enable();
4931
4932 if (rc == LL_FLUSH_FAILED)
4933 break; /* permanent failure */
4934
4935 cpu_relax();
4936 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4937 !need_resched() && !busy_loop_timeout(end_time));
4938
4939 rc = !skb_queue_empty(&sk->sk_receive_queue);
4940 out:
4941 rcu_read_unlock();
4942 return rc;
4943 }
4944 EXPORT_SYMBOL(sk_busy_loop);
4945
4946 #endif /* CONFIG_NET_RX_BUSY_POLL */
4947
4948 void napi_hash_add(struct napi_struct *napi)
4949 {
4950 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4951 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4952 return;
4953
4954 spin_lock(&napi_hash_lock);
4955
4956 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4957 do {
4958 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4959 napi_gen_id = NR_CPUS + 1;
4960 } while (napi_by_id(napi_gen_id));
4961 napi->napi_id = napi_gen_id;
4962
4963 hlist_add_head_rcu(&napi->napi_hash_node,
4964 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4965
4966 spin_unlock(&napi_hash_lock);
4967 }
4968 EXPORT_SYMBOL_GPL(napi_hash_add);
4969
4970 /* Warning : caller is responsible to make sure rcu grace period
4971 * is respected before freeing memory containing @napi
4972 */
4973 bool napi_hash_del(struct napi_struct *napi)
4974 {
4975 bool rcu_sync_needed = false;
4976
4977 spin_lock(&napi_hash_lock);
4978
4979 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4980 rcu_sync_needed = true;
4981 hlist_del_rcu(&napi->napi_hash_node);
4982 }
4983 spin_unlock(&napi_hash_lock);
4984 return rcu_sync_needed;
4985 }
4986 EXPORT_SYMBOL_GPL(napi_hash_del);
4987
4988 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4989 {
4990 struct napi_struct *napi;
4991
4992 napi = container_of(timer, struct napi_struct, timer);
4993 if (napi->gro_list)
4994 napi_schedule(napi);
4995
4996 return HRTIMER_NORESTART;
4997 }
4998
4999 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5000 int (*poll)(struct napi_struct *, int), int weight)
5001 {
5002 INIT_LIST_HEAD(&napi->poll_list);
5003 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5004 napi->timer.function = napi_watchdog;
5005 napi->gro_count = 0;
5006 napi->gro_list = NULL;
5007 napi->skb = NULL;
5008 napi->poll = poll;
5009 if (weight > NAPI_POLL_WEIGHT)
5010 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5011 weight, dev->name);
5012 napi->weight = weight;
5013 list_add(&napi->dev_list, &dev->napi_list);
5014 napi->dev = dev;
5015 #ifdef CONFIG_NETPOLL
5016 spin_lock_init(&napi->poll_lock);
5017 napi->poll_owner = -1;
5018 #endif
5019 set_bit(NAPI_STATE_SCHED, &napi->state);
5020 napi_hash_add(napi);
5021 }
5022 EXPORT_SYMBOL(netif_napi_add);
5023
5024 void napi_disable(struct napi_struct *n)
5025 {
5026 might_sleep();
5027 set_bit(NAPI_STATE_DISABLE, &n->state);
5028
5029 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5030 msleep(1);
5031 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5032 msleep(1);
5033
5034 hrtimer_cancel(&n->timer);
5035
5036 clear_bit(NAPI_STATE_DISABLE, &n->state);
5037 }
5038 EXPORT_SYMBOL(napi_disable);
5039
5040 /* Must be called in process context */
5041 void netif_napi_del(struct napi_struct *napi)
5042 {
5043 might_sleep();
5044 if (napi_hash_del(napi))
5045 synchronize_net();
5046 list_del_init(&napi->dev_list);
5047 napi_free_frags(napi);
5048
5049 kfree_skb_list(napi->gro_list);
5050 napi->gro_list = NULL;
5051 napi->gro_count = 0;
5052 }
5053 EXPORT_SYMBOL(netif_napi_del);
5054
5055 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5056 {
5057 void *have;
5058 int work, weight;
5059
5060 list_del_init(&n->poll_list);
5061
5062 have = netpoll_poll_lock(n);
5063
5064 weight = n->weight;
5065
5066 /* This NAPI_STATE_SCHED test is for avoiding a race
5067 * with netpoll's poll_napi(). Only the entity which
5068 * obtains the lock and sees NAPI_STATE_SCHED set will
5069 * actually make the ->poll() call. Therefore we avoid
5070 * accidentally calling ->poll() when NAPI is not scheduled.
5071 */
5072 work = 0;
5073 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5074 work = n->poll(n, weight);
5075 trace_napi_poll(n);
5076 }
5077
5078 WARN_ON_ONCE(work > weight);
5079
5080 if (likely(work < weight))
5081 goto out_unlock;
5082
5083 /* Drivers must not modify the NAPI state if they
5084 * consume the entire weight. In such cases this code
5085 * still "owns" the NAPI instance and therefore can
5086 * move the instance around on the list at-will.
5087 */
5088 if (unlikely(napi_disable_pending(n))) {
5089 napi_complete(n);
5090 goto out_unlock;
5091 }
5092
5093 if (n->gro_list) {
5094 /* flush too old packets
5095 * If HZ < 1000, flush all packets.
5096 */
5097 napi_gro_flush(n, HZ >= 1000);
5098 }
5099
5100 /* Some drivers may have called napi_schedule
5101 * prior to exhausting their budget.
5102 */
5103 if (unlikely(!list_empty(&n->poll_list))) {
5104 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5105 n->dev ? n->dev->name : "backlog");
5106 goto out_unlock;
5107 }
5108
5109 list_add_tail(&n->poll_list, repoll);
5110
5111 out_unlock:
5112 netpoll_poll_unlock(have);
5113
5114 return work;
5115 }
5116
5117 static void net_rx_action(struct softirq_action *h)
5118 {
5119 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5120 unsigned long time_limit = jiffies + 2;
5121 int budget = netdev_budget;
5122 LIST_HEAD(list);
5123 LIST_HEAD(repoll);
5124
5125 local_irq_disable();
5126 list_splice_init(&sd->poll_list, &list);
5127 local_irq_enable();
5128
5129 for (;;) {
5130 struct napi_struct *n;
5131
5132 if (list_empty(&list)) {
5133 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5134 return;
5135 break;
5136 }
5137
5138 n = list_first_entry(&list, struct napi_struct, poll_list);
5139 budget -= napi_poll(n, &repoll);
5140
5141 /* If softirq window is exhausted then punt.
5142 * Allow this to run for 2 jiffies since which will allow
5143 * an average latency of 1.5/HZ.
5144 */
5145 if (unlikely(budget <= 0 ||
5146 time_after_eq(jiffies, time_limit))) {
5147 sd->time_squeeze++;
5148 break;
5149 }
5150 }
5151
5152 local_irq_disable();
5153
5154 list_splice_tail_init(&sd->poll_list, &list);
5155 list_splice_tail(&repoll, &list);
5156 list_splice(&list, &sd->poll_list);
5157 if (!list_empty(&sd->poll_list))
5158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5159
5160 net_rps_action_and_irq_enable(sd);
5161 }
5162
5163 struct netdev_adjacent {
5164 struct net_device *dev;
5165
5166 /* upper master flag, there can only be one master device per list */
5167 bool master;
5168
5169 /* counter for the number of times this device was added to us */
5170 u16 ref_nr;
5171
5172 /* private field for the users */
5173 void *private;
5174
5175 struct list_head list;
5176 struct rcu_head rcu;
5177 };
5178
5179 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5180 struct list_head *adj_list)
5181 {
5182 struct netdev_adjacent *adj;
5183
5184 list_for_each_entry(adj, adj_list, list) {
5185 if (adj->dev == adj_dev)
5186 return adj;
5187 }
5188 return NULL;
5189 }
5190
5191 /**
5192 * netdev_has_upper_dev - Check if device is linked to an upper device
5193 * @dev: device
5194 * @upper_dev: upper device to check
5195 *
5196 * Find out if a device is linked to specified upper device and return true
5197 * in case it is. Note that this checks only immediate upper device,
5198 * not through a complete stack of devices. The caller must hold the RTNL lock.
5199 */
5200 bool netdev_has_upper_dev(struct net_device *dev,
5201 struct net_device *upper_dev)
5202 {
5203 ASSERT_RTNL();
5204
5205 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5206 }
5207 EXPORT_SYMBOL(netdev_has_upper_dev);
5208
5209 /**
5210 * netdev_has_any_upper_dev - Check if device is linked to some device
5211 * @dev: device
5212 *
5213 * Find out if a device is linked to an upper device and return true in case
5214 * it is. The caller must hold the RTNL lock.
5215 */
5216 static bool netdev_has_any_upper_dev(struct net_device *dev)
5217 {
5218 ASSERT_RTNL();
5219
5220 return !list_empty(&dev->all_adj_list.upper);
5221 }
5222
5223 /**
5224 * netdev_master_upper_dev_get - Get master upper device
5225 * @dev: device
5226 *
5227 * Find a master upper device and return pointer to it or NULL in case
5228 * it's not there. The caller must hold the RTNL lock.
5229 */
5230 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5231 {
5232 struct netdev_adjacent *upper;
5233
5234 ASSERT_RTNL();
5235
5236 if (list_empty(&dev->adj_list.upper))
5237 return NULL;
5238
5239 upper = list_first_entry(&dev->adj_list.upper,
5240 struct netdev_adjacent, list);
5241 if (likely(upper->master))
5242 return upper->dev;
5243 return NULL;
5244 }
5245 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5246
5247 void *netdev_adjacent_get_private(struct list_head *adj_list)
5248 {
5249 struct netdev_adjacent *adj;
5250
5251 adj = list_entry(adj_list, struct netdev_adjacent, list);
5252
5253 return adj->private;
5254 }
5255 EXPORT_SYMBOL(netdev_adjacent_get_private);
5256
5257 /**
5258 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5259 * @dev: device
5260 * @iter: list_head ** of the current position
5261 *
5262 * Gets the next device from the dev's upper list, starting from iter
5263 * position. The caller must hold RCU read lock.
5264 */
5265 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5266 struct list_head **iter)
5267 {
5268 struct netdev_adjacent *upper;
5269
5270 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5271
5272 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5273
5274 if (&upper->list == &dev->adj_list.upper)
5275 return NULL;
5276
5277 *iter = &upper->list;
5278
5279 return upper->dev;
5280 }
5281 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5282
5283 /**
5284 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5285 * @dev: device
5286 * @iter: list_head ** of the current position
5287 *
5288 * Gets the next device from the dev's upper list, starting from iter
5289 * position. The caller must hold RCU read lock.
5290 */
5291 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5292 struct list_head **iter)
5293 {
5294 struct netdev_adjacent *upper;
5295
5296 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5297
5298 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5299
5300 if (&upper->list == &dev->all_adj_list.upper)
5301 return NULL;
5302
5303 *iter = &upper->list;
5304
5305 return upper->dev;
5306 }
5307 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5308
5309 /**
5310 * netdev_lower_get_next_private - Get the next ->private from the
5311 * lower neighbour list
5312 * @dev: device
5313 * @iter: list_head ** of the current position
5314 *
5315 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5316 * list, starting from iter position. The caller must hold either hold the
5317 * RTNL lock or its own locking that guarantees that the neighbour lower
5318 * list will remain unchanged.
5319 */
5320 void *netdev_lower_get_next_private(struct net_device *dev,
5321 struct list_head **iter)
5322 {
5323 struct netdev_adjacent *lower;
5324
5325 lower = list_entry(*iter, struct netdev_adjacent, list);
5326
5327 if (&lower->list == &dev->adj_list.lower)
5328 return NULL;
5329
5330 *iter = lower->list.next;
5331
5332 return lower->private;
5333 }
5334 EXPORT_SYMBOL(netdev_lower_get_next_private);
5335
5336 /**
5337 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5338 * lower neighbour list, RCU
5339 * variant
5340 * @dev: device
5341 * @iter: list_head ** of the current position
5342 *
5343 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5344 * list, starting from iter position. The caller must hold RCU read lock.
5345 */
5346 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5347 struct list_head **iter)
5348 {
5349 struct netdev_adjacent *lower;
5350
5351 WARN_ON_ONCE(!rcu_read_lock_held());
5352
5353 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5354
5355 if (&lower->list == &dev->adj_list.lower)
5356 return NULL;
5357
5358 *iter = &lower->list;
5359
5360 return lower->private;
5361 }
5362 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5363
5364 /**
5365 * netdev_lower_get_next - Get the next device from the lower neighbour
5366 * list
5367 * @dev: device
5368 * @iter: list_head ** of the current position
5369 *
5370 * Gets the next netdev_adjacent from the dev's lower neighbour
5371 * list, starting from iter position. The caller must hold RTNL lock or
5372 * its own locking that guarantees that the neighbour lower
5373 * list will remain unchanged.
5374 */
5375 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5376 {
5377 struct netdev_adjacent *lower;
5378
5379 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5380
5381 if (&lower->list == &dev->adj_list.lower)
5382 return NULL;
5383
5384 *iter = &lower->list;
5385
5386 return lower->dev;
5387 }
5388 EXPORT_SYMBOL(netdev_lower_get_next);
5389
5390 /**
5391 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5392 * lower neighbour list, RCU
5393 * variant
5394 * @dev: device
5395 *
5396 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5397 * list. The caller must hold RCU read lock.
5398 */
5399 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5400 {
5401 struct netdev_adjacent *lower;
5402
5403 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5404 struct netdev_adjacent, list);
5405 if (lower)
5406 return lower->private;
5407 return NULL;
5408 }
5409 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5410
5411 /**
5412 * netdev_master_upper_dev_get_rcu - Get master upper device
5413 * @dev: device
5414 *
5415 * Find a master upper device and return pointer to it or NULL in case
5416 * it's not there. The caller must hold the RCU read lock.
5417 */
5418 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5419 {
5420 struct netdev_adjacent *upper;
5421
5422 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5423 struct netdev_adjacent, list);
5424 if (upper && likely(upper->master))
5425 return upper->dev;
5426 return NULL;
5427 }
5428 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5429
5430 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5431 struct net_device *adj_dev,
5432 struct list_head *dev_list)
5433 {
5434 char linkname[IFNAMSIZ+7];
5435 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5436 "upper_%s" : "lower_%s", adj_dev->name);
5437 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5438 linkname);
5439 }
5440 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5441 char *name,
5442 struct list_head *dev_list)
5443 {
5444 char linkname[IFNAMSIZ+7];
5445 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5446 "upper_%s" : "lower_%s", name);
5447 sysfs_remove_link(&(dev->dev.kobj), linkname);
5448 }
5449
5450 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5451 struct net_device *adj_dev,
5452 struct list_head *dev_list)
5453 {
5454 return (dev_list == &dev->adj_list.upper ||
5455 dev_list == &dev->adj_list.lower) &&
5456 net_eq(dev_net(dev), dev_net(adj_dev));
5457 }
5458
5459 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5460 struct net_device *adj_dev,
5461 struct list_head *dev_list,
5462 void *private, bool master)
5463 {
5464 struct netdev_adjacent *adj;
5465 int ret;
5466
5467 adj = __netdev_find_adj(adj_dev, dev_list);
5468
5469 if (adj) {
5470 adj->ref_nr++;
5471 return 0;
5472 }
5473
5474 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5475 if (!adj)
5476 return -ENOMEM;
5477
5478 adj->dev = adj_dev;
5479 adj->master = master;
5480 adj->ref_nr = 1;
5481 adj->private = private;
5482 dev_hold(adj_dev);
5483
5484 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5485 adj_dev->name, dev->name, adj_dev->name);
5486
5487 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5488 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5489 if (ret)
5490 goto free_adj;
5491 }
5492
5493 /* Ensure that master link is always the first item in list. */
5494 if (master) {
5495 ret = sysfs_create_link(&(dev->dev.kobj),
5496 &(adj_dev->dev.kobj), "master");
5497 if (ret)
5498 goto remove_symlinks;
5499
5500 list_add_rcu(&adj->list, dev_list);
5501 } else {
5502 list_add_tail_rcu(&adj->list, dev_list);
5503 }
5504
5505 return 0;
5506
5507 remove_symlinks:
5508 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5509 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5510 free_adj:
5511 kfree(adj);
5512 dev_put(adj_dev);
5513
5514 return ret;
5515 }
5516
5517 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5518 struct net_device *adj_dev,
5519 struct list_head *dev_list)
5520 {
5521 struct netdev_adjacent *adj;
5522
5523 adj = __netdev_find_adj(adj_dev, dev_list);
5524
5525 if (!adj) {
5526 pr_err("tried to remove device %s from %s\n",
5527 dev->name, adj_dev->name);
5528 BUG();
5529 }
5530
5531 if (adj->ref_nr > 1) {
5532 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5533 adj->ref_nr-1);
5534 adj->ref_nr--;
5535 return;
5536 }
5537
5538 if (adj->master)
5539 sysfs_remove_link(&(dev->dev.kobj), "master");
5540
5541 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5542 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5543
5544 list_del_rcu(&adj->list);
5545 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5546 adj_dev->name, dev->name, adj_dev->name);
5547 dev_put(adj_dev);
5548 kfree_rcu(adj, rcu);
5549 }
5550
5551 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5552 struct net_device *upper_dev,
5553 struct list_head *up_list,
5554 struct list_head *down_list,
5555 void *private, bool master)
5556 {
5557 int ret;
5558
5559 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5560 master);
5561 if (ret)
5562 return ret;
5563
5564 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5565 false);
5566 if (ret) {
5567 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5568 return ret;
5569 }
5570
5571 return 0;
5572 }
5573
5574 static int __netdev_adjacent_dev_link(struct net_device *dev,
5575 struct net_device *upper_dev)
5576 {
5577 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5578 &dev->all_adj_list.upper,
5579 &upper_dev->all_adj_list.lower,
5580 NULL, false);
5581 }
5582
5583 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5584 struct net_device *upper_dev,
5585 struct list_head *up_list,
5586 struct list_head *down_list)
5587 {
5588 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5589 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5590 }
5591
5592 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5593 struct net_device *upper_dev)
5594 {
5595 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5596 &dev->all_adj_list.upper,
5597 &upper_dev->all_adj_list.lower);
5598 }
5599
5600 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5601 struct net_device *upper_dev,
5602 void *private, bool master)
5603 {
5604 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5605
5606 if (ret)
5607 return ret;
5608
5609 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5610 &dev->adj_list.upper,
5611 &upper_dev->adj_list.lower,
5612 private, master);
5613 if (ret) {
5614 __netdev_adjacent_dev_unlink(dev, upper_dev);
5615 return ret;
5616 }
5617
5618 return 0;
5619 }
5620
5621 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5622 struct net_device *upper_dev)
5623 {
5624 __netdev_adjacent_dev_unlink(dev, upper_dev);
5625 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5626 &dev->adj_list.upper,
5627 &upper_dev->adj_list.lower);
5628 }
5629
5630 static int __netdev_upper_dev_link(struct net_device *dev,
5631 struct net_device *upper_dev, bool master,
5632 void *upper_priv, void *upper_info)
5633 {
5634 struct netdev_notifier_changeupper_info changeupper_info;
5635 struct netdev_adjacent *i, *j, *to_i, *to_j;
5636 int ret = 0;
5637
5638 ASSERT_RTNL();
5639
5640 if (dev == upper_dev)
5641 return -EBUSY;
5642
5643 /* To prevent loops, check if dev is not upper device to upper_dev. */
5644 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5645 return -EBUSY;
5646
5647 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5648 return -EEXIST;
5649
5650 if (master && netdev_master_upper_dev_get(dev))
5651 return -EBUSY;
5652
5653 changeupper_info.upper_dev = upper_dev;
5654 changeupper_info.master = master;
5655 changeupper_info.linking = true;
5656 changeupper_info.upper_info = upper_info;
5657
5658 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5659 &changeupper_info.info);
5660 ret = notifier_to_errno(ret);
5661 if (ret)
5662 return ret;
5663
5664 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5665 master);
5666 if (ret)
5667 return ret;
5668
5669 /* Now that we linked these devs, make all the upper_dev's
5670 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5671 * versa, and don't forget the devices itself. All of these
5672 * links are non-neighbours.
5673 */
5674 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5675 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5676 pr_debug("Interlinking %s with %s, non-neighbour\n",
5677 i->dev->name, j->dev->name);
5678 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5679 if (ret)
5680 goto rollback_mesh;
5681 }
5682 }
5683
5684 /* add dev to every upper_dev's upper device */
5685 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5686 pr_debug("linking %s's upper device %s with %s\n",
5687 upper_dev->name, i->dev->name, dev->name);
5688 ret = __netdev_adjacent_dev_link(dev, i->dev);
5689 if (ret)
5690 goto rollback_upper_mesh;
5691 }
5692
5693 /* add upper_dev to every dev's lower device */
5694 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5695 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5696 i->dev->name, upper_dev->name);
5697 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5698 if (ret)
5699 goto rollback_lower_mesh;
5700 }
5701
5702 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5703 &changeupper_info.info);
5704 ret = notifier_to_errno(ret);
5705 if (ret)
5706 goto rollback_lower_mesh;
5707
5708 return 0;
5709
5710 rollback_lower_mesh:
5711 to_i = i;
5712 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5713 if (i == to_i)
5714 break;
5715 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5716 }
5717
5718 i = NULL;
5719
5720 rollback_upper_mesh:
5721 to_i = i;
5722 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5723 if (i == to_i)
5724 break;
5725 __netdev_adjacent_dev_unlink(dev, i->dev);
5726 }
5727
5728 i = j = NULL;
5729
5730 rollback_mesh:
5731 to_i = i;
5732 to_j = j;
5733 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5734 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5735 if (i == to_i && j == to_j)
5736 break;
5737 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5738 }
5739 if (i == to_i)
5740 break;
5741 }
5742
5743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5744
5745 return ret;
5746 }
5747
5748 /**
5749 * netdev_upper_dev_link - Add a link to the upper device
5750 * @dev: device
5751 * @upper_dev: new upper device
5752 *
5753 * Adds a link to device which is upper to this one. The caller must hold
5754 * the RTNL lock. On a failure a negative errno code is returned.
5755 * On success the reference counts are adjusted and the function
5756 * returns zero.
5757 */
5758 int netdev_upper_dev_link(struct net_device *dev,
5759 struct net_device *upper_dev)
5760 {
5761 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5762 }
5763 EXPORT_SYMBOL(netdev_upper_dev_link);
5764
5765 /**
5766 * netdev_master_upper_dev_link - Add a master link to the upper device
5767 * @dev: device
5768 * @upper_dev: new upper device
5769 * @upper_priv: upper device private
5770 * @upper_info: upper info to be passed down via notifier
5771 *
5772 * Adds a link to device which is upper to this one. In this case, only
5773 * one master upper device can be linked, although other non-master devices
5774 * might be linked as well. The caller must hold the RTNL lock.
5775 * On a failure a negative errno code is returned. On success the reference
5776 * counts are adjusted and the function returns zero.
5777 */
5778 int netdev_master_upper_dev_link(struct net_device *dev,
5779 struct net_device *upper_dev,
5780 void *upper_priv, void *upper_info)
5781 {
5782 return __netdev_upper_dev_link(dev, upper_dev, true,
5783 upper_priv, upper_info);
5784 }
5785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5786
5787 /**
5788 * netdev_upper_dev_unlink - Removes a link to upper device
5789 * @dev: device
5790 * @upper_dev: new upper device
5791 *
5792 * Removes a link to device which is upper to this one. The caller must hold
5793 * the RTNL lock.
5794 */
5795 void netdev_upper_dev_unlink(struct net_device *dev,
5796 struct net_device *upper_dev)
5797 {
5798 struct netdev_notifier_changeupper_info changeupper_info;
5799 struct netdev_adjacent *i, *j;
5800 ASSERT_RTNL();
5801
5802 changeupper_info.upper_dev = upper_dev;
5803 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5804 changeupper_info.linking = false;
5805
5806 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5807 &changeupper_info.info);
5808
5809 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5810
5811 /* Here is the tricky part. We must remove all dev's lower
5812 * devices from all upper_dev's upper devices and vice
5813 * versa, to maintain the graph relationship.
5814 */
5815 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5817 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5818
5819 /* remove also the devices itself from lower/upper device
5820 * list
5821 */
5822 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5823 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5824
5825 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5826 __netdev_adjacent_dev_unlink(dev, i->dev);
5827
5828 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5829 &changeupper_info.info);
5830 }
5831 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5832
5833 /**
5834 * netdev_bonding_info_change - Dispatch event about slave change
5835 * @dev: device
5836 * @bonding_info: info to dispatch
5837 *
5838 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5839 * The caller must hold the RTNL lock.
5840 */
5841 void netdev_bonding_info_change(struct net_device *dev,
5842 struct netdev_bonding_info *bonding_info)
5843 {
5844 struct netdev_notifier_bonding_info info;
5845
5846 memcpy(&info.bonding_info, bonding_info,
5847 sizeof(struct netdev_bonding_info));
5848 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5849 &info.info);
5850 }
5851 EXPORT_SYMBOL(netdev_bonding_info_change);
5852
5853 static void netdev_adjacent_add_links(struct net_device *dev)
5854 {
5855 struct netdev_adjacent *iter;
5856
5857 struct net *net = dev_net(dev);
5858
5859 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5860 if (!net_eq(net,dev_net(iter->dev)))
5861 continue;
5862 netdev_adjacent_sysfs_add(iter->dev, dev,
5863 &iter->dev->adj_list.lower);
5864 netdev_adjacent_sysfs_add(dev, iter->dev,
5865 &dev->adj_list.upper);
5866 }
5867
5868 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5869 if (!net_eq(net,dev_net(iter->dev)))
5870 continue;
5871 netdev_adjacent_sysfs_add(iter->dev, dev,
5872 &iter->dev->adj_list.upper);
5873 netdev_adjacent_sysfs_add(dev, iter->dev,
5874 &dev->adj_list.lower);
5875 }
5876 }
5877
5878 static void netdev_adjacent_del_links(struct net_device *dev)
5879 {
5880 struct netdev_adjacent *iter;
5881
5882 struct net *net = dev_net(dev);
5883
5884 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5885 if (!net_eq(net,dev_net(iter->dev)))
5886 continue;
5887 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5888 &iter->dev->adj_list.lower);
5889 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5890 &dev->adj_list.upper);
5891 }
5892
5893 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5894 if (!net_eq(net,dev_net(iter->dev)))
5895 continue;
5896 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5897 &iter->dev->adj_list.upper);
5898 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5899 &dev->adj_list.lower);
5900 }
5901 }
5902
5903 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5904 {
5905 struct netdev_adjacent *iter;
5906
5907 struct net *net = dev_net(dev);
5908
5909 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5910 if (!net_eq(net,dev_net(iter->dev)))
5911 continue;
5912 netdev_adjacent_sysfs_del(iter->dev, oldname,
5913 &iter->dev->adj_list.lower);
5914 netdev_adjacent_sysfs_add(iter->dev, dev,
5915 &iter->dev->adj_list.lower);
5916 }
5917
5918 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5919 if (!net_eq(net,dev_net(iter->dev)))
5920 continue;
5921 netdev_adjacent_sysfs_del(iter->dev, oldname,
5922 &iter->dev->adj_list.upper);
5923 netdev_adjacent_sysfs_add(iter->dev, dev,
5924 &iter->dev->adj_list.upper);
5925 }
5926 }
5927
5928 void *netdev_lower_dev_get_private(struct net_device *dev,
5929 struct net_device *lower_dev)
5930 {
5931 struct netdev_adjacent *lower;
5932
5933 if (!lower_dev)
5934 return NULL;
5935 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5936 if (!lower)
5937 return NULL;
5938
5939 return lower->private;
5940 }
5941 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5942
5943
5944 int dev_get_nest_level(struct net_device *dev,
5945 bool (*type_check)(const struct net_device *dev))
5946 {
5947 struct net_device *lower = NULL;
5948 struct list_head *iter;
5949 int max_nest = -1;
5950 int nest;
5951
5952 ASSERT_RTNL();
5953
5954 netdev_for_each_lower_dev(dev, lower, iter) {
5955 nest = dev_get_nest_level(lower, type_check);
5956 if (max_nest < nest)
5957 max_nest = nest;
5958 }
5959
5960 if (type_check(dev))
5961 max_nest++;
5962
5963 return max_nest;
5964 }
5965 EXPORT_SYMBOL(dev_get_nest_level);
5966
5967 /**
5968 * netdev_lower_change - Dispatch event about lower device state change
5969 * @lower_dev: device
5970 * @lower_state_info: state to dispatch
5971 *
5972 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5973 * The caller must hold the RTNL lock.
5974 */
5975 void netdev_lower_state_changed(struct net_device *lower_dev,
5976 void *lower_state_info)
5977 {
5978 struct netdev_notifier_changelowerstate_info changelowerstate_info;
5979
5980 ASSERT_RTNL();
5981 changelowerstate_info.lower_state_info = lower_state_info;
5982 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5983 &changelowerstate_info.info);
5984 }
5985 EXPORT_SYMBOL(netdev_lower_state_changed);
5986
5987 static void dev_change_rx_flags(struct net_device *dev, int flags)
5988 {
5989 const struct net_device_ops *ops = dev->netdev_ops;
5990
5991 if (ops->ndo_change_rx_flags)
5992 ops->ndo_change_rx_flags(dev, flags);
5993 }
5994
5995 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5996 {
5997 unsigned int old_flags = dev->flags;
5998 kuid_t uid;
5999 kgid_t gid;
6000
6001 ASSERT_RTNL();
6002
6003 dev->flags |= IFF_PROMISC;
6004 dev->promiscuity += inc;
6005 if (dev->promiscuity == 0) {
6006 /*
6007 * Avoid overflow.
6008 * If inc causes overflow, untouch promisc and return error.
6009 */
6010 if (inc < 0)
6011 dev->flags &= ~IFF_PROMISC;
6012 else {
6013 dev->promiscuity -= inc;
6014 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6015 dev->name);
6016 return -EOVERFLOW;
6017 }
6018 }
6019 if (dev->flags != old_flags) {
6020 pr_info("device %s %s promiscuous mode\n",
6021 dev->name,
6022 dev->flags & IFF_PROMISC ? "entered" : "left");
6023 if (audit_enabled) {
6024 current_uid_gid(&uid, &gid);
6025 audit_log(current->audit_context, GFP_ATOMIC,
6026 AUDIT_ANOM_PROMISCUOUS,
6027 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6028 dev->name, (dev->flags & IFF_PROMISC),
6029 (old_flags & IFF_PROMISC),
6030 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6031 from_kuid(&init_user_ns, uid),
6032 from_kgid(&init_user_ns, gid),
6033 audit_get_sessionid(current));
6034 }
6035
6036 dev_change_rx_flags(dev, IFF_PROMISC);
6037 }
6038 if (notify)
6039 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6040 return 0;
6041 }
6042
6043 /**
6044 * dev_set_promiscuity - update promiscuity count on a device
6045 * @dev: device
6046 * @inc: modifier
6047 *
6048 * Add or remove promiscuity from a device. While the count in the device
6049 * remains above zero the interface remains promiscuous. Once it hits zero
6050 * the device reverts back to normal filtering operation. A negative inc
6051 * value is used to drop promiscuity on the device.
6052 * Return 0 if successful or a negative errno code on error.
6053 */
6054 int dev_set_promiscuity(struct net_device *dev, int inc)
6055 {
6056 unsigned int old_flags = dev->flags;
6057 int err;
6058
6059 err = __dev_set_promiscuity(dev, inc, true);
6060 if (err < 0)
6061 return err;
6062 if (dev->flags != old_flags)
6063 dev_set_rx_mode(dev);
6064 return err;
6065 }
6066 EXPORT_SYMBOL(dev_set_promiscuity);
6067
6068 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6069 {
6070 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6071
6072 ASSERT_RTNL();
6073
6074 dev->flags |= IFF_ALLMULTI;
6075 dev->allmulti += inc;
6076 if (dev->allmulti == 0) {
6077 /*
6078 * Avoid overflow.
6079 * If inc causes overflow, untouch allmulti and return error.
6080 */
6081 if (inc < 0)
6082 dev->flags &= ~IFF_ALLMULTI;
6083 else {
6084 dev->allmulti -= inc;
6085 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6086 dev->name);
6087 return -EOVERFLOW;
6088 }
6089 }
6090 if (dev->flags ^ old_flags) {
6091 dev_change_rx_flags(dev, IFF_ALLMULTI);
6092 dev_set_rx_mode(dev);
6093 if (notify)
6094 __dev_notify_flags(dev, old_flags,
6095 dev->gflags ^ old_gflags);
6096 }
6097 return 0;
6098 }
6099
6100 /**
6101 * dev_set_allmulti - update allmulti count on a device
6102 * @dev: device
6103 * @inc: modifier
6104 *
6105 * Add or remove reception of all multicast frames to a device. While the
6106 * count in the device remains above zero the interface remains listening
6107 * to all interfaces. Once it hits zero the device reverts back to normal
6108 * filtering operation. A negative @inc value is used to drop the counter
6109 * when releasing a resource needing all multicasts.
6110 * Return 0 if successful or a negative errno code on error.
6111 */
6112
6113 int dev_set_allmulti(struct net_device *dev, int inc)
6114 {
6115 return __dev_set_allmulti(dev, inc, true);
6116 }
6117 EXPORT_SYMBOL(dev_set_allmulti);
6118
6119 /*
6120 * Upload unicast and multicast address lists to device and
6121 * configure RX filtering. When the device doesn't support unicast
6122 * filtering it is put in promiscuous mode while unicast addresses
6123 * are present.
6124 */
6125 void __dev_set_rx_mode(struct net_device *dev)
6126 {
6127 const struct net_device_ops *ops = dev->netdev_ops;
6128
6129 /* dev_open will call this function so the list will stay sane. */
6130 if (!(dev->flags&IFF_UP))
6131 return;
6132
6133 if (!netif_device_present(dev))
6134 return;
6135
6136 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6137 /* Unicast addresses changes may only happen under the rtnl,
6138 * therefore calling __dev_set_promiscuity here is safe.
6139 */
6140 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6141 __dev_set_promiscuity(dev, 1, false);
6142 dev->uc_promisc = true;
6143 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6144 __dev_set_promiscuity(dev, -1, false);
6145 dev->uc_promisc = false;
6146 }
6147 }
6148
6149 if (ops->ndo_set_rx_mode)
6150 ops->ndo_set_rx_mode(dev);
6151 }
6152
6153 void dev_set_rx_mode(struct net_device *dev)
6154 {
6155 netif_addr_lock_bh(dev);
6156 __dev_set_rx_mode(dev);
6157 netif_addr_unlock_bh(dev);
6158 }
6159
6160 /**
6161 * dev_get_flags - get flags reported to userspace
6162 * @dev: device
6163 *
6164 * Get the combination of flag bits exported through APIs to userspace.
6165 */
6166 unsigned int dev_get_flags(const struct net_device *dev)
6167 {
6168 unsigned int flags;
6169
6170 flags = (dev->flags & ~(IFF_PROMISC |
6171 IFF_ALLMULTI |
6172 IFF_RUNNING |
6173 IFF_LOWER_UP |
6174 IFF_DORMANT)) |
6175 (dev->gflags & (IFF_PROMISC |
6176 IFF_ALLMULTI));
6177
6178 if (netif_running(dev)) {
6179 if (netif_oper_up(dev))
6180 flags |= IFF_RUNNING;
6181 if (netif_carrier_ok(dev))
6182 flags |= IFF_LOWER_UP;
6183 if (netif_dormant(dev))
6184 flags |= IFF_DORMANT;
6185 }
6186
6187 return flags;
6188 }
6189 EXPORT_SYMBOL(dev_get_flags);
6190
6191 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6192 {
6193 unsigned int old_flags = dev->flags;
6194 int ret;
6195
6196 ASSERT_RTNL();
6197
6198 /*
6199 * Set the flags on our device.
6200 */
6201
6202 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6203 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6204 IFF_AUTOMEDIA)) |
6205 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6206 IFF_ALLMULTI));
6207
6208 /*
6209 * Load in the correct multicast list now the flags have changed.
6210 */
6211
6212 if ((old_flags ^ flags) & IFF_MULTICAST)
6213 dev_change_rx_flags(dev, IFF_MULTICAST);
6214
6215 dev_set_rx_mode(dev);
6216
6217 /*
6218 * Have we downed the interface. We handle IFF_UP ourselves
6219 * according to user attempts to set it, rather than blindly
6220 * setting it.
6221 */
6222
6223 ret = 0;
6224 if ((old_flags ^ flags) & IFF_UP)
6225 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6226
6227 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6228 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6229 unsigned int old_flags = dev->flags;
6230
6231 dev->gflags ^= IFF_PROMISC;
6232
6233 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6234 if (dev->flags != old_flags)
6235 dev_set_rx_mode(dev);
6236 }
6237
6238 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6239 is important. Some (broken) drivers set IFF_PROMISC, when
6240 IFF_ALLMULTI is requested not asking us and not reporting.
6241 */
6242 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6243 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6244
6245 dev->gflags ^= IFF_ALLMULTI;
6246 __dev_set_allmulti(dev, inc, false);
6247 }
6248
6249 return ret;
6250 }
6251
6252 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6253 unsigned int gchanges)
6254 {
6255 unsigned int changes = dev->flags ^ old_flags;
6256
6257 if (gchanges)
6258 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6259
6260 if (changes & IFF_UP) {
6261 if (dev->flags & IFF_UP)
6262 call_netdevice_notifiers(NETDEV_UP, dev);
6263 else
6264 call_netdevice_notifiers(NETDEV_DOWN, dev);
6265 }
6266
6267 if (dev->flags & IFF_UP &&
6268 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6269 struct netdev_notifier_change_info change_info;
6270
6271 change_info.flags_changed = changes;
6272 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6273 &change_info.info);
6274 }
6275 }
6276
6277 /**
6278 * dev_change_flags - change device settings
6279 * @dev: device
6280 * @flags: device state flags
6281 *
6282 * Change settings on device based state flags. The flags are
6283 * in the userspace exported format.
6284 */
6285 int dev_change_flags(struct net_device *dev, unsigned int flags)
6286 {
6287 int ret;
6288 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6289
6290 ret = __dev_change_flags(dev, flags);
6291 if (ret < 0)
6292 return ret;
6293
6294 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6295 __dev_notify_flags(dev, old_flags, changes);
6296 return ret;
6297 }
6298 EXPORT_SYMBOL(dev_change_flags);
6299
6300 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6301 {
6302 const struct net_device_ops *ops = dev->netdev_ops;
6303
6304 if (ops->ndo_change_mtu)
6305 return ops->ndo_change_mtu(dev, new_mtu);
6306
6307 dev->mtu = new_mtu;
6308 return 0;
6309 }
6310
6311 /**
6312 * dev_set_mtu - Change maximum transfer unit
6313 * @dev: device
6314 * @new_mtu: new transfer unit
6315 *
6316 * Change the maximum transfer size of the network device.
6317 */
6318 int dev_set_mtu(struct net_device *dev, int new_mtu)
6319 {
6320 int err, orig_mtu;
6321
6322 if (new_mtu == dev->mtu)
6323 return 0;
6324
6325 /* MTU must be positive. */
6326 if (new_mtu < 0)
6327 return -EINVAL;
6328
6329 if (!netif_device_present(dev))
6330 return -ENODEV;
6331
6332 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6333 err = notifier_to_errno(err);
6334 if (err)
6335 return err;
6336
6337 orig_mtu = dev->mtu;
6338 err = __dev_set_mtu(dev, new_mtu);
6339
6340 if (!err) {
6341 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6342 err = notifier_to_errno(err);
6343 if (err) {
6344 /* setting mtu back and notifying everyone again,
6345 * so that they have a chance to revert changes.
6346 */
6347 __dev_set_mtu(dev, orig_mtu);
6348 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6349 }
6350 }
6351 return err;
6352 }
6353 EXPORT_SYMBOL(dev_set_mtu);
6354
6355 /**
6356 * dev_set_group - Change group this device belongs to
6357 * @dev: device
6358 * @new_group: group this device should belong to
6359 */
6360 void dev_set_group(struct net_device *dev, int new_group)
6361 {
6362 dev->group = new_group;
6363 }
6364 EXPORT_SYMBOL(dev_set_group);
6365
6366 /**
6367 * dev_set_mac_address - Change Media Access Control Address
6368 * @dev: device
6369 * @sa: new address
6370 *
6371 * Change the hardware (MAC) address of the device
6372 */
6373 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6374 {
6375 const struct net_device_ops *ops = dev->netdev_ops;
6376 int err;
6377
6378 if (!ops->ndo_set_mac_address)
6379 return -EOPNOTSUPP;
6380 if (sa->sa_family != dev->type)
6381 return -EINVAL;
6382 if (!netif_device_present(dev))
6383 return -ENODEV;
6384 err = ops->ndo_set_mac_address(dev, sa);
6385 if (err)
6386 return err;
6387 dev->addr_assign_type = NET_ADDR_SET;
6388 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6389 add_device_randomness(dev->dev_addr, dev->addr_len);
6390 return 0;
6391 }
6392 EXPORT_SYMBOL(dev_set_mac_address);
6393
6394 /**
6395 * dev_change_carrier - Change device carrier
6396 * @dev: device
6397 * @new_carrier: new value
6398 *
6399 * Change device carrier
6400 */
6401 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6402 {
6403 const struct net_device_ops *ops = dev->netdev_ops;
6404
6405 if (!ops->ndo_change_carrier)
6406 return -EOPNOTSUPP;
6407 if (!netif_device_present(dev))
6408 return -ENODEV;
6409 return ops->ndo_change_carrier(dev, new_carrier);
6410 }
6411 EXPORT_SYMBOL(dev_change_carrier);
6412
6413 /**
6414 * dev_get_phys_port_id - Get device physical port ID
6415 * @dev: device
6416 * @ppid: port ID
6417 *
6418 * Get device physical port ID
6419 */
6420 int dev_get_phys_port_id(struct net_device *dev,
6421 struct netdev_phys_item_id *ppid)
6422 {
6423 const struct net_device_ops *ops = dev->netdev_ops;
6424
6425 if (!ops->ndo_get_phys_port_id)
6426 return -EOPNOTSUPP;
6427 return ops->ndo_get_phys_port_id(dev, ppid);
6428 }
6429 EXPORT_SYMBOL(dev_get_phys_port_id);
6430
6431 /**
6432 * dev_get_phys_port_name - Get device physical port name
6433 * @dev: device
6434 * @name: port name
6435 *
6436 * Get device physical port name
6437 */
6438 int dev_get_phys_port_name(struct net_device *dev,
6439 char *name, size_t len)
6440 {
6441 const struct net_device_ops *ops = dev->netdev_ops;
6442
6443 if (!ops->ndo_get_phys_port_name)
6444 return -EOPNOTSUPP;
6445 return ops->ndo_get_phys_port_name(dev, name, len);
6446 }
6447 EXPORT_SYMBOL(dev_get_phys_port_name);
6448
6449 /**
6450 * dev_change_proto_down - update protocol port state information
6451 * @dev: device
6452 * @proto_down: new value
6453 *
6454 * This info can be used by switch drivers to set the phys state of the
6455 * port.
6456 */
6457 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6458 {
6459 const struct net_device_ops *ops = dev->netdev_ops;
6460
6461 if (!ops->ndo_change_proto_down)
6462 return -EOPNOTSUPP;
6463 if (!netif_device_present(dev))
6464 return -ENODEV;
6465 return ops->ndo_change_proto_down(dev, proto_down);
6466 }
6467 EXPORT_SYMBOL(dev_change_proto_down);
6468
6469 /**
6470 * dev_new_index - allocate an ifindex
6471 * @net: the applicable net namespace
6472 *
6473 * Returns a suitable unique value for a new device interface
6474 * number. The caller must hold the rtnl semaphore or the
6475 * dev_base_lock to be sure it remains unique.
6476 */
6477 static int dev_new_index(struct net *net)
6478 {
6479 int ifindex = net->ifindex;
6480 for (;;) {
6481 if (++ifindex <= 0)
6482 ifindex = 1;
6483 if (!__dev_get_by_index(net, ifindex))
6484 return net->ifindex = ifindex;
6485 }
6486 }
6487
6488 /* Delayed registration/unregisteration */
6489 static LIST_HEAD(net_todo_list);
6490 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6491
6492 static void net_set_todo(struct net_device *dev)
6493 {
6494 list_add_tail(&dev->todo_list, &net_todo_list);
6495 dev_net(dev)->dev_unreg_count++;
6496 }
6497
6498 static void rollback_registered_many(struct list_head *head)
6499 {
6500 struct net_device *dev, *tmp;
6501 LIST_HEAD(close_head);
6502
6503 BUG_ON(dev_boot_phase);
6504 ASSERT_RTNL();
6505
6506 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6507 /* Some devices call without registering
6508 * for initialization unwind. Remove those
6509 * devices and proceed with the remaining.
6510 */
6511 if (dev->reg_state == NETREG_UNINITIALIZED) {
6512 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6513 dev->name, dev);
6514
6515 WARN_ON(1);
6516 list_del(&dev->unreg_list);
6517 continue;
6518 }
6519 dev->dismantle = true;
6520 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6521 }
6522
6523 /* If device is running, close it first. */
6524 list_for_each_entry(dev, head, unreg_list)
6525 list_add_tail(&dev->close_list, &close_head);
6526 dev_close_many(&close_head, true);
6527
6528 list_for_each_entry(dev, head, unreg_list) {
6529 /* And unlink it from device chain. */
6530 unlist_netdevice(dev);
6531
6532 dev->reg_state = NETREG_UNREGISTERING;
6533 on_each_cpu(flush_backlog, dev, 1);
6534 }
6535
6536 synchronize_net();
6537
6538 list_for_each_entry(dev, head, unreg_list) {
6539 struct sk_buff *skb = NULL;
6540
6541 /* Shutdown queueing discipline. */
6542 dev_shutdown(dev);
6543
6544
6545 /* Notify protocols, that we are about to destroy
6546 this device. They should clean all the things.
6547 */
6548 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549
6550 if (!dev->rtnl_link_ops ||
6551 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6552 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6553 GFP_KERNEL);
6554
6555 /*
6556 * Flush the unicast and multicast chains
6557 */
6558 dev_uc_flush(dev);
6559 dev_mc_flush(dev);
6560
6561 if (dev->netdev_ops->ndo_uninit)
6562 dev->netdev_ops->ndo_uninit(dev);
6563
6564 if (skb)
6565 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6566
6567 /* Notifier chain MUST detach us all upper devices. */
6568 WARN_ON(netdev_has_any_upper_dev(dev));
6569
6570 /* Remove entries from kobject tree */
6571 netdev_unregister_kobject(dev);
6572 #ifdef CONFIG_XPS
6573 /* Remove XPS queueing entries */
6574 netif_reset_xps_queues_gt(dev, 0);
6575 #endif
6576 }
6577
6578 synchronize_net();
6579
6580 list_for_each_entry(dev, head, unreg_list)
6581 dev_put(dev);
6582 }
6583
6584 static void rollback_registered(struct net_device *dev)
6585 {
6586 LIST_HEAD(single);
6587
6588 list_add(&dev->unreg_list, &single);
6589 rollback_registered_many(&single);
6590 list_del(&single);
6591 }
6592
6593 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6594 struct net_device *upper, netdev_features_t features)
6595 {
6596 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6597 netdev_features_t feature;
6598 int feature_bit;
6599
6600 for_each_netdev_feature(&upper_disables, feature_bit) {
6601 feature = __NETIF_F_BIT(feature_bit);
6602 if (!(upper->wanted_features & feature)
6603 && (features & feature)) {
6604 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6605 &feature, upper->name);
6606 features &= ~feature;
6607 }
6608 }
6609
6610 return features;
6611 }
6612
6613 static void netdev_sync_lower_features(struct net_device *upper,
6614 struct net_device *lower, netdev_features_t features)
6615 {
6616 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6617 netdev_features_t feature;
6618 int feature_bit;
6619
6620 for_each_netdev_feature(&upper_disables, feature_bit) {
6621 feature = __NETIF_F_BIT(feature_bit);
6622 if (!(features & feature) && (lower->features & feature)) {
6623 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6624 &feature, lower->name);
6625 lower->wanted_features &= ~feature;
6626 netdev_update_features(lower);
6627
6628 if (unlikely(lower->features & feature))
6629 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6630 &feature, lower->name);
6631 }
6632 }
6633 }
6634
6635 static netdev_features_t netdev_fix_features(struct net_device *dev,
6636 netdev_features_t features)
6637 {
6638 /* Fix illegal checksum combinations */
6639 if ((features & NETIF_F_HW_CSUM) &&
6640 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6641 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6642 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6643 }
6644
6645 /* TSO requires that SG is present as well. */
6646 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6647 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6648 features &= ~NETIF_F_ALL_TSO;
6649 }
6650
6651 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6652 !(features & NETIF_F_IP_CSUM)) {
6653 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6654 features &= ~NETIF_F_TSO;
6655 features &= ~NETIF_F_TSO_ECN;
6656 }
6657
6658 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6659 !(features & NETIF_F_IPV6_CSUM)) {
6660 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6661 features &= ~NETIF_F_TSO6;
6662 }
6663
6664 /* TSO ECN requires that TSO is present as well. */
6665 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6666 features &= ~NETIF_F_TSO_ECN;
6667
6668 /* Software GSO depends on SG. */
6669 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6670 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6671 features &= ~NETIF_F_GSO;
6672 }
6673
6674 /* UFO needs SG and checksumming */
6675 if (features & NETIF_F_UFO) {
6676 /* maybe split UFO into V4 and V6? */
6677 if (!(features & NETIF_F_HW_CSUM) &&
6678 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6679 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6680 netdev_dbg(dev,
6681 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6682 features &= ~NETIF_F_UFO;
6683 }
6684
6685 if (!(features & NETIF_F_SG)) {
6686 netdev_dbg(dev,
6687 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6688 features &= ~NETIF_F_UFO;
6689 }
6690 }
6691
6692 #ifdef CONFIG_NET_RX_BUSY_POLL
6693 if (dev->netdev_ops->ndo_busy_poll)
6694 features |= NETIF_F_BUSY_POLL;
6695 else
6696 #endif
6697 features &= ~NETIF_F_BUSY_POLL;
6698
6699 return features;
6700 }
6701
6702 int __netdev_update_features(struct net_device *dev)
6703 {
6704 struct net_device *upper, *lower;
6705 netdev_features_t features;
6706 struct list_head *iter;
6707 int err = -1;
6708
6709 ASSERT_RTNL();
6710
6711 features = netdev_get_wanted_features(dev);
6712
6713 if (dev->netdev_ops->ndo_fix_features)
6714 features = dev->netdev_ops->ndo_fix_features(dev, features);
6715
6716 /* driver might be less strict about feature dependencies */
6717 features = netdev_fix_features(dev, features);
6718
6719 /* some features can't be enabled if they're off an an upper device */
6720 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6721 features = netdev_sync_upper_features(dev, upper, features);
6722
6723 if (dev->features == features)
6724 goto sync_lower;
6725
6726 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6727 &dev->features, &features);
6728
6729 if (dev->netdev_ops->ndo_set_features)
6730 err = dev->netdev_ops->ndo_set_features(dev, features);
6731 else
6732 err = 0;
6733
6734 if (unlikely(err < 0)) {
6735 netdev_err(dev,
6736 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6737 err, &features, &dev->features);
6738 /* return non-0 since some features might have changed and
6739 * it's better to fire a spurious notification than miss it
6740 */
6741 return -1;
6742 }
6743
6744 sync_lower:
6745 /* some features must be disabled on lower devices when disabled
6746 * on an upper device (think: bonding master or bridge)
6747 */
6748 netdev_for_each_lower_dev(dev, lower, iter)
6749 netdev_sync_lower_features(dev, lower, features);
6750
6751 if (!err)
6752 dev->features = features;
6753
6754 return err < 0 ? 0 : 1;
6755 }
6756
6757 /**
6758 * netdev_update_features - recalculate device features
6759 * @dev: the device to check
6760 *
6761 * Recalculate dev->features set and send notifications if it
6762 * has changed. Should be called after driver or hardware dependent
6763 * conditions might have changed that influence the features.
6764 */
6765 void netdev_update_features(struct net_device *dev)
6766 {
6767 if (__netdev_update_features(dev))
6768 netdev_features_change(dev);
6769 }
6770 EXPORT_SYMBOL(netdev_update_features);
6771
6772 /**
6773 * netdev_change_features - recalculate device features
6774 * @dev: the device to check
6775 *
6776 * Recalculate dev->features set and send notifications even
6777 * if they have not changed. Should be called instead of
6778 * netdev_update_features() if also dev->vlan_features might
6779 * have changed to allow the changes to be propagated to stacked
6780 * VLAN devices.
6781 */
6782 void netdev_change_features(struct net_device *dev)
6783 {
6784 __netdev_update_features(dev);
6785 netdev_features_change(dev);
6786 }
6787 EXPORT_SYMBOL(netdev_change_features);
6788
6789 /**
6790 * netif_stacked_transfer_operstate - transfer operstate
6791 * @rootdev: the root or lower level device to transfer state from
6792 * @dev: the device to transfer operstate to
6793 *
6794 * Transfer operational state from root to device. This is normally
6795 * called when a stacking relationship exists between the root
6796 * device and the device(a leaf device).
6797 */
6798 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6799 struct net_device *dev)
6800 {
6801 if (rootdev->operstate == IF_OPER_DORMANT)
6802 netif_dormant_on(dev);
6803 else
6804 netif_dormant_off(dev);
6805
6806 if (netif_carrier_ok(rootdev)) {
6807 if (!netif_carrier_ok(dev))
6808 netif_carrier_on(dev);
6809 } else {
6810 if (netif_carrier_ok(dev))
6811 netif_carrier_off(dev);
6812 }
6813 }
6814 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6815
6816 #ifdef CONFIG_SYSFS
6817 static int netif_alloc_rx_queues(struct net_device *dev)
6818 {
6819 unsigned int i, count = dev->num_rx_queues;
6820 struct netdev_rx_queue *rx;
6821 size_t sz = count * sizeof(*rx);
6822
6823 BUG_ON(count < 1);
6824
6825 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6826 if (!rx) {
6827 rx = vzalloc(sz);
6828 if (!rx)
6829 return -ENOMEM;
6830 }
6831 dev->_rx = rx;
6832
6833 for (i = 0; i < count; i++)
6834 rx[i].dev = dev;
6835 return 0;
6836 }
6837 #endif
6838
6839 static void netdev_init_one_queue(struct net_device *dev,
6840 struct netdev_queue *queue, void *_unused)
6841 {
6842 /* Initialize queue lock */
6843 spin_lock_init(&queue->_xmit_lock);
6844 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6845 queue->xmit_lock_owner = -1;
6846 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6847 queue->dev = dev;
6848 #ifdef CONFIG_BQL
6849 dql_init(&queue->dql, HZ);
6850 #endif
6851 }
6852
6853 static void netif_free_tx_queues(struct net_device *dev)
6854 {
6855 kvfree(dev->_tx);
6856 }
6857
6858 static int netif_alloc_netdev_queues(struct net_device *dev)
6859 {
6860 unsigned int count = dev->num_tx_queues;
6861 struct netdev_queue *tx;
6862 size_t sz = count * sizeof(*tx);
6863
6864 if (count < 1 || count > 0xffff)
6865 return -EINVAL;
6866
6867 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6868 if (!tx) {
6869 tx = vzalloc(sz);
6870 if (!tx)
6871 return -ENOMEM;
6872 }
6873 dev->_tx = tx;
6874
6875 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6876 spin_lock_init(&dev->tx_global_lock);
6877
6878 return 0;
6879 }
6880
6881 void netif_tx_stop_all_queues(struct net_device *dev)
6882 {
6883 unsigned int i;
6884
6885 for (i = 0; i < dev->num_tx_queues; i++) {
6886 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6887 netif_tx_stop_queue(txq);
6888 }
6889 }
6890 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6891
6892 /**
6893 * register_netdevice - register a network device
6894 * @dev: device to register
6895 *
6896 * Take a completed network device structure and add it to the kernel
6897 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6898 * chain. 0 is returned on success. A negative errno code is returned
6899 * on a failure to set up the device, or if the name is a duplicate.
6900 *
6901 * Callers must hold the rtnl semaphore. You may want
6902 * register_netdev() instead of this.
6903 *
6904 * BUGS:
6905 * The locking appears insufficient to guarantee two parallel registers
6906 * will not get the same name.
6907 */
6908
6909 int register_netdevice(struct net_device *dev)
6910 {
6911 int ret;
6912 struct net *net = dev_net(dev);
6913
6914 BUG_ON(dev_boot_phase);
6915 ASSERT_RTNL();
6916
6917 might_sleep();
6918
6919 /* When net_device's are persistent, this will be fatal. */
6920 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6921 BUG_ON(!net);
6922
6923 spin_lock_init(&dev->addr_list_lock);
6924 netdev_set_addr_lockdep_class(dev);
6925
6926 ret = dev_get_valid_name(net, dev, dev->name);
6927 if (ret < 0)
6928 goto out;
6929
6930 /* Init, if this function is available */
6931 if (dev->netdev_ops->ndo_init) {
6932 ret = dev->netdev_ops->ndo_init(dev);
6933 if (ret) {
6934 if (ret > 0)
6935 ret = -EIO;
6936 goto out;
6937 }
6938 }
6939
6940 if (((dev->hw_features | dev->features) &
6941 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6942 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6943 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6944 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6945 ret = -EINVAL;
6946 goto err_uninit;
6947 }
6948
6949 ret = -EBUSY;
6950 if (!dev->ifindex)
6951 dev->ifindex = dev_new_index(net);
6952 else if (__dev_get_by_index(net, dev->ifindex))
6953 goto err_uninit;
6954
6955 /* Transfer changeable features to wanted_features and enable
6956 * software offloads (GSO and GRO).
6957 */
6958 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6959 dev->features |= NETIF_F_SOFT_FEATURES;
6960 dev->wanted_features = dev->features & dev->hw_features;
6961
6962 if (!(dev->flags & IFF_LOOPBACK)) {
6963 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6964 }
6965
6966 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6967 */
6968 dev->vlan_features |= NETIF_F_HIGHDMA;
6969
6970 /* Make NETIF_F_SG inheritable to tunnel devices.
6971 */
6972 dev->hw_enc_features |= NETIF_F_SG;
6973
6974 /* Make NETIF_F_SG inheritable to MPLS.
6975 */
6976 dev->mpls_features |= NETIF_F_SG;
6977
6978 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6979 ret = notifier_to_errno(ret);
6980 if (ret)
6981 goto err_uninit;
6982
6983 ret = netdev_register_kobject(dev);
6984 if (ret)
6985 goto err_uninit;
6986 dev->reg_state = NETREG_REGISTERED;
6987
6988 __netdev_update_features(dev);
6989
6990 /*
6991 * Default initial state at registry is that the
6992 * device is present.
6993 */
6994
6995 set_bit(__LINK_STATE_PRESENT, &dev->state);
6996
6997 linkwatch_init_dev(dev);
6998
6999 dev_init_scheduler(dev);
7000 dev_hold(dev);
7001 list_netdevice(dev);
7002 add_device_randomness(dev->dev_addr, dev->addr_len);
7003
7004 /* If the device has permanent device address, driver should
7005 * set dev_addr and also addr_assign_type should be set to
7006 * NET_ADDR_PERM (default value).
7007 */
7008 if (dev->addr_assign_type == NET_ADDR_PERM)
7009 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7010
7011 /* Notify protocols, that a new device appeared. */
7012 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7013 ret = notifier_to_errno(ret);
7014 if (ret) {
7015 rollback_registered(dev);
7016 dev->reg_state = NETREG_UNREGISTERED;
7017 }
7018 /*
7019 * Prevent userspace races by waiting until the network
7020 * device is fully setup before sending notifications.
7021 */
7022 if (!dev->rtnl_link_ops ||
7023 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7024 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7025
7026 out:
7027 return ret;
7028
7029 err_uninit:
7030 if (dev->netdev_ops->ndo_uninit)
7031 dev->netdev_ops->ndo_uninit(dev);
7032 goto out;
7033 }
7034 EXPORT_SYMBOL(register_netdevice);
7035
7036 /**
7037 * init_dummy_netdev - init a dummy network device for NAPI
7038 * @dev: device to init
7039 *
7040 * This takes a network device structure and initialize the minimum
7041 * amount of fields so it can be used to schedule NAPI polls without
7042 * registering a full blown interface. This is to be used by drivers
7043 * that need to tie several hardware interfaces to a single NAPI
7044 * poll scheduler due to HW limitations.
7045 */
7046 int init_dummy_netdev(struct net_device *dev)
7047 {
7048 /* Clear everything. Note we don't initialize spinlocks
7049 * are they aren't supposed to be taken by any of the
7050 * NAPI code and this dummy netdev is supposed to be
7051 * only ever used for NAPI polls
7052 */
7053 memset(dev, 0, sizeof(struct net_device));
7054
7055 /* make sure we BUG if trying to hit standard
7056 * register/unregister code path
7057 */
7058 dev->reg_state = NETREG_DUMMY;
7059
7060 /* NAPI wants this */
7061 INIT_LIST_HEAD(&dev->napi_list);
7062
7063 /* a dummy interface is started by default */
7064 set_bit(__LINK_STATE_PRESENT, &dev->state);
7065 set_bit(__LINK_STATE_START, &dev->state);
7066
7067 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7068 * because users of this 'device' dont need to change
7069 * its refcount.
7070 */
7071
7072 return 0;
7073 }
7074 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7075
7076
7077 /**
7078 * register_netdev - register a network device
7079 * @dev: device to register
7080 *
7081 * Take a completed network device structure and add it to the kernel
7082 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7083 * chain. 0 is returned on success. A negative errno code is returned
7084 * on a failure to set up the device, or if the name is a duplicate.
7085 *
7086 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7087 * and expands the device name if you passed a format string to
7088 * alloc_netdev.
7089 */
7090 int register_netdev(struct net_device *dev)
7091 {
7092 int err;
7093
7094 rtnl_lock();
7095 err = register_netdevice(dev);
7096 rtnl_unlock();
7097 return err;
7098 }
7099 EXPORT_SYMBOL(register_netdev);
7100
7101 int netdev_refcnt_read(const struct net_device *dev)
7102 {
7103 int i, refcnt = 0;
7104
7105 for_each_possible_cpu(i)
7106 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7107 return refcnt;
7108 }
7109 EXPORT_SYMBOL(netdev_refcnt_read);
7110
7111 /**
7112 * netdev_wait_allrefs - wait until all references are gone.
7113 * @dev: target net_device
7114 *
7115 * This is called when unregistering network devices.
7116 *
7117 * Any protocol or device that holds a reference should register
7118 * for netdevice notification, and cleanup and put back the
7119 * reference if they receive an UNREGISTER event.
7120 * We can get stuck here if buggy protocols don't correctly
7121 * call dev_put.
7122 */
7123 static void netdev_wait_allrefs(struct net_device *dev)
7124 {
7125 unsigned long rebroadcast_time, warning_time;
7126 int refcnt;
7127
7128 linkwatch_forget_dev(dev);
7129
7130 rebroadcast_time = warning_time = jiffies;
7131 refcnt = netdev_refcnt_read(dev);
7132
7133 while (refcnt != 0) {
7134 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7135 rtnl_lock();
7136
7137 /* Rebroadcast unregister notification */
7138 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7139
7140 __rtnl_unlock();
7141 rcu_barrier();
7142 rtnl_lock();
7143
7144 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7145 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7146 &dev->state)) {
7147 /* We must not have linkwatch events
7148 * pending on unregister. If this
7149 * happens, we simply run the queue
7150 * unscheduled, resulting in a noop
7151 * for this device.
7152 */
7153 linkwatch_run_queue();
7154 }
7155
7156 __rtnl_unlock();
7157
7158 rebroadcast_time = jiffies;
7159 }
7160
7161 msleep(250);
7162
7163 refcnt = netdev_refcnt_read(dev);
7164
7165 if (time_after(jiffies, warning_time + 10 * HZ)) {
7166 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7167 dev->name, refcnt);
7168 warning_time = jiffies;
7169 }
7170 }
7171 }
7172
7173 /* The sequence is:
7174 *
7175 * rtnl_lock();
7176 * ...
7177 * register_netdevice(x1);
7178 * register_netdevice(x2);
7179 * ...
7180 * unregister_netdevice(y1);
7181 * unregister_netdevice(y2);
7182 * ...
7183 * rtnl_unlock();
7184 * free_netdev(y1);
7185 * free_netdev(y2);
7186 *
7187 * We are invoked by rtnl_unlock().
7188 * This allows us to deal with problems:
7189 * 1) We can delete sysfs objects which invoke hotplug
7190 * without deadlocking with linkwatch via keventd.
7191 * 2) Since we run with the RTNL semaphore not held, we can sleep
7192 * safely in order to wait for the netdev refcnt to drop to zero.
7193 *
7194 * We must not return until all unregister events added during
7195 * the interval the lock was held have been completed.
7196 */
7197 void netdev_run_todo(void)
7198 {
7199 struct list_head list;
7200
7201 /* Snapshot list, allow later requests */
7202 list_replace_init(&net_todo_list, &list);
7203
7204 __rtnl_unlock();
7205
7206
7207 /* Wait for rcu callbacks to finish before next phase */
7208 if (!list_empty(&list))
7209 rcu_barrier();
7210
7211 while (!list_empty(&list)) {
7212 struct net_device *dev
7213 = list_first_entry(&list, struct net_device, todo_list);
7214 list_del(&dev->todo_list);
7215
7216 rtnl_lock();
7217 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7218 __rtnl_unlock();
7219
7220 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7221 pr_err("network todo '%s' but state %d\n",
7222 dev->name, dev->reg_state);
7223 dump_stack();
7224 continue;
7225 }
7226
7227 dev->reg_state = NETREG_UNREGISTERED;
7228
7229 netdev_wait_allrefs(dev);
7230
7231 /* paranoia */
7232 BUG_ON(netdev_refcnt_read(dev));
7233 BUG_ON(!list_empty(&dev->ptype_all));
7234 BUG_ON(!list_empty(&dev->ptype_specific));
7235 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7236 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7237 WARN_ON(dev->dn_ptr);
7238
7239 if (dev->destructor)
7240 dev->destructor(dev);
7241
7242 /* Report a network device has been unregistered */
7243 rtnl_lock();
7244 dev_net(dev)->dev_unreg_count--;
7245 __rtnl_unlock();
7246 wake_up(&netdev_unregistering_wq);
7247
7248 /* Free network device */
7249 kobject_put(&dev->dev.kobj);
7250 }
7251 }
7252
7253 /* Convert net_device_stats to rtnl_link_stats64. They have the same
7254 * fields in the same order, with only the type differing.
7255 */
7256 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7257 const struct net_device_stats *netdev_stats)
7258 {
7259 #if BITS_PER_LONG == 64
7260 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7261 memcpy(stats64, netdev_stats, sizeof(*stats64));
7262 #else
7263 size_t i, n = sizeof(*stats64) / sizeof(u64);
7264 const unsigned long *src = (const unsigned long *)netdev_stats;
7265 u64 *dst = (u64 *)stats64;
7266
7267 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7268 sizeof(*stats64) / sizeof(u64));
7269 for (i = 0; i < n; i++)
7270 dst[i] = src[i];
7271 #endif
7272 }
7273 EXPORT_SYMBOL(netdev_stats_to_stats64);
7274
7275 /**
7276 * dev_get_stats - get network device statistics
7277 * @dev: device to get statistics from
7278 * @storage: place to store stats
7279 *
7280 * Get network statistics from device. Return @storage.
7281 * The device driver may provide its own method by setting
7282 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7283 * otherwise the internal statistics structure is used.
7284 */
7285 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7286 struct rtnl_link_stats64 *storage)
7287 {
7288 const struct net_device_ops *ops = dev->netdev_ops;
7289
7290 if (ops->ndo_get_stats64) {
7291 memset(storage, 0, sizeof(*storage));
7292 ops->ndo_get_stats64(dev, storage);
7293 } else if (ops->ndo_get_stats) {
7294 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7295 } else {
7296 netdev_stats_to_stats64(storage, &dev->stats);
7297 }
7298 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7299 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7300 return storage;
7301 }
7302 EXPORT_SYMBOL(dev_get_stats);
7303
7304 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7305 {
7306 struct netdev_queue *queue = dev_ingress_queue(dev);
7307
7308 #ifdef CONFIG_NET_CLS_ACT
7309 if (queue)
7310 return queue;
7311 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7312 if (!queue)
7313 return NULL;
7314 netdev_init_one_queue(dev, queue, NULL);
7315 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7316 queue->qdisc_sleeping = &noop_qdisc;
7317 rcu_assign_pointer(dev->ingress_queue, queue);
7318 #endif
7319 return queue;
7320 }
7321
7322 static const struct ethtool_ops default_ethtool_ops;
7323
7324 void netdev_set_default_ethtool_ops(struct net_device *dev,
7325 const struct ethtool_ops *ops)
7326 {
7327 if (dev->ethtool_ops == &default_ethtool_ops)
7328 dev->ethtool_ops = ops;
7329 }
7330 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7331
7332 void netdev_freemem(struct net_device *dev)
7333 {
7334 char *addr = (char *)dev - dev->padded;
7335
7336 kvfree(addr);
7337 }
7338
7339 /**
7340 * alloc_netdev_mqs - allocate network device
7341 * @sizeof_priv: size of private data to allocate space for
7342 * @name: device name format string
7343 * @name_assign_type: origin of device name
7344 * @setup: callback to initialize device
7345 * @txqs: the number of TX subqueues to allocate
7346 * @rxqs: the number of RX subqueues to allocate
7347 *
7348 * Allocates a struct net_device with private data area for driver use
7349 * and performs basic initialization. Also allocates subqueue structs
7350 * for each queue on the device.
7351 */
7352 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7353 unsigned char name_assign_type,
7354 void (*setup)(struct net_device *),
7355 unsigned int txqs, unsigned int rxqs)
7356 {
7357 struct net_device *dev;
7358 size_t alloc_size;
7359 struct net_device *p;
7360
7361 BUG_ON(strlen(name) >= sizeof(dev->name));
7362
7363 if (txqs < 1) {
7364 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7365 return NULL;
7366 }
7367
7368 #ifdef CONFIG_SYSFS
7369 if (rxqs < 1) {
7370 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7371 return NULL;
7372 }
7373 #endif
7374
7375 alloc_size = sizeof(struct net_device);
7376 if (sizeof_priv) {
7377 /* ensure 32-byte alignment of private area */
7378 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7379 alloc_size += sizeof_priv;
7380 }
7381 /* ensure 32-byte alignment of whole construct */
7382 alloc_size += NETDEV_ALIGN - 1;
7383
7384 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7385 if (!p)
7386 p = vzalloc(alloc_size);
7387 if (!p)
7388 return NULL;
7389
7390 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7391 dev->padded = (char *)dev - (char *)p;
7392
7393 dev->pcpu_refcnt = alloc_percpu(int);
7394 if (!dev->pcpu_refcnt)
7395 goto free_dev;
7396
7397 if (dev_addr_init(dev))
7398 goto free_pcpu;
7399
7400 dev_mc_init(dev);
7401 dev_uc_init(dev);
7402
7403 dev_net_set(dev, &init_net);
7404
7405 dev->gso_max_size = GSO_MAX_SIZE;
7406 dev->gso_max_segs = GSO_MAX_SEGS;
7407 dev->gso_min_segs = 0;
7408
7409 INIT_LIST_HEAD(&dev->napi_list);
7410 INIT_LIST_HEAD(&dev->unreg_list);
7411 INIT_LIST_HEAD(&dev->close_list);
7412 INIT_LIST_HEAD(&dev->link_watch_list);
7413 INIT_LIST_HEAD(&dev->adj_list.upper);
7414 INIT_LIST_HEAD(&dev->adj_list.lower);
7415 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7416 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7417 INIT_LIST_HEAD(&dev->ptype_all);
7418 INIT_LIST_HEAD(&dev->ptype_specific);
7419 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7420 setup(dev);
7421
7422 if (!dev->tx_queue_len)
7423 dev->priv_flags |= IFF_NO_QUEUE;
7424
7425 dev->num_tx_queues = txqs;
7426 dev->real_num_tx_queues = txqs;
7427 if (netif_alloc_netdev_queues(dev))
7428 goto free_all;
7429
7430 #ifdef CONFIG_SYSFS
7431 dev->num_rx_queues = rxqs;
7432 dev->real_num_rx_queues = rxqs;
7433 if (netif_alloc_rx_queues(dev))
7434 goto free_all;
7435 #endif
7436
7437 strcpy(dev->name, name);
7438 dev->name_assign_type = name_assign_type;
7439 dev->group = INIT_NETDEV_GROUP;
7440 if (!dev->ethtool_ops)
7441 dev->ethtool_ops = &default_ethtool_ops;
7442
7443 nf_hook_ingress_init(dev);
7444
7445 return dev;
7446
7447 free_all:
7448 free_netdev(dev);
7449 return NULL;
7450
7451 free_pcpu:
7452 free_percpu(dev->pcpu_refcnt);
7453 free_dev:
7454 netdev_freemem(dev);
7455 return NULL;
7456 }
7457 EXPORT_SYMBOL(alloc_netdev_mqs);
7458
7459 /**
7460 * free_netdev - free network device
7461 * @dev: device
7462 *
7463 * This function does the last stage of destroying an allocated device
7464 * interface. The reference to the device object is released.
7465 * If this is the last reference then it will be freed.
7466 * Must be called in process context.
7467 */
7468 void free_netdev(struct net_device *dev)
7469 {
7470 struct napi_struct *p, *n;
7471
7472 might_sleep();
7473 netif_free_tx_queues(dev);
7474 #ifdef CONFIG_SYSFS
7475 kvfree(dev->_rx);
7476 #endif
7477
7478 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7479
7480 /* Flush device addresses */
7481 dev_addr_flush(dev);
7482
7483 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7484 netif_napi_del(p);
7485
7486 free_percpu(dev->pcpu_refcnt);
7487 dev->pcpu_refcnt = NULL;
7488
7489 /* Compatibility with error handling in drivers */
7490 if (dev->reg_state == NETREG_UNINITIALIZED) {
7491 netdev_freemem(dev);
7492 return;
7493 }
7494
7495 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7496 dev->reg_state = NETREG_RELEASED;
7497
7498 /* will free via device release */
7499 put_device(&dev->dev);
7500 }
7501 EXPORT_SYMBOL(free_netdev);
7502
7503 /**
7504 * synchronize_net - Synchronize with packet receive processing
7505 *
7506 * Wait for packets currently being received to be done.
7507 * Does not block later packets from starting.
7508 */
7509 void synchronize_net(void)
7510 {
7511 might_sleep();
7512 if (rtnl_is_locked())
7513 synchronize_rcu_expedited();
7514 else
7515 synchronize_rcu();
7516 }
7517 EXPORT_SYMBOL(synchronize_net);
7518
7519 /**
7520 * unregister_netdevice_queue - remove device from the kernel
7521 * @dev: device
7522 * @head: list
7523 *
7524 * This function shuts down a device interface and removes it
7525 * from the kernel tables.
7526 * If head not NULL, device is queued to be unregistered later.
7527 *
7528 * Callers must hold the rtnl semaphore. You may want
7529 * unregister_netdev() instead of this.
7530 */
7531
7532 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7533 {
7534 ASSERT_RTNL();
7535
7536 if (head) {
7537 list_move_tail(&dev->unreg_list, head);
7538 } else {
7539 rollback_registered(dev);
7540 /* Finish processing unregister after unlock */
7541 net_set_todo(dev);
7542 }
7543 }
7544 EXPORT_SYMBOL(unregister_netdevice_queue);
7545
7546 /**
7547 * unregister_netdevice_many - unregister many devices
7548 * @head: list of devices
7549 *
7550 * Note: As most callers use a stack allocated list_head,
7551 * we force a list_del() to make sure stack wont be corrupted later.
7552 */
7553 void unregister_netdevice_many(struct list_head *head)
7554 {
7555 struct net_device *dev;
7556
7557 if (!list_empty(head)) {
7558 rollback_registered_many(head);
7559 list_for_each_entry(dev, head, unreg_list)
7560 net_set_todo(dev);
7561 list_del(head);
7562 }
7563 }
7564 EXPORT_SYMBOL(unregister_netdevice_many);
7565
7566 /**
7567 * unregister_netdev - remove device from the kernel
7568 * @dev: device
7569 *
7570 * This function shuts down a device interface and removes it
7571 * from the kernel tables.
7572 *
7573 * This is just a wrapper for unregister_netdevice that takes
7574 * the rtnl semaphore. In general you want to use this and not
7575 * unregister_netdevice.
7576 */
7577 void unregister_netdev(struct net_device *dev)
7578 {
7579 rtnl_lock();
7580 unregister_netdevice(dev);
7581 rtnl_unlock();
7582 }
7583 EXPORT_SYMBOL(unregister_netdev);
7584
7585 /**
7586 * dev_change_net_namespace - move device to different nethost namespace
7587 * @dev: device
7588 * @net: network namespace
7589 * @pat: If not NULL name pattern to try if the current device name
7590 * is already taken in the destination network namespace.
7591 *
7592 * This function shuts down a device interface and moves it
7593 * to a new network namespace. On success 0 is returned, on
7594 * a failure a netagive errno code is returned.
7595 *
7596 * Callers must hold the rtnl semaphore.
7597 */
7598
7599 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7600 {
7601 int err;
7602
7603 ASSERT_RTNL();
7604
7605 /* Don't allow namespace local devices to be moved. */
7606 err = -EINVAL;
7607 if (dev->features & NETIF_F_NETNS_LOCAL)
7608 goto out;
7609
7610 /* Ensure the device has been registrered */
7611 if (dev->reg_state != NETREG_REGISTERED)
7612 goto out;
7613
7614 /* Get out if there is nothing todo */
7615 err = 0;
7616 if (net_eq(dev_net(dev), net))
7617 goto out;
7618
7619 /* Pick the destination device name, and ensure
7620 * we can use it in the destination network namespace.
7621 */
7622 err = -EEXIST;
7623 if (__dev_get_by_name(net, dev->name)) {
7624 /* We get here if we can't use the current device name */
7625 if (!pat)
7626 goto out;
7627 if (dev_get_valid_name(net, dev, pat) < 0)
7628 goto out;
7629 }
7630
7631 /*
7632 * And now a mini version of register_netdevice unregister_netdevice.
7633 */
7634
7635 /* If device is running close it first. */
7636 dev_close(dev);
7637
7638 /* And unlink it from device chain */
7639 err = -ENODEV;
7640 unlist_netdevice(dev);
7641
7642 synchronize_net();
7643
7644 /* Shutdown queueing discipline. */
7645 dev_shutdown(dev);
7646
7647 /* Notify protocols, that we are about to destroy
7648 this device. They should clean all the things.
7649
7650 Note that dev->reg_state stays at NETREG_REGISTERED.
7651 This is wanted because this way 8021q and macvlan know
7652 the device is just moving and can keep their slaves up.
7653 */
7654 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7655 rcu_barrier();
7656 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7657 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7658
7659 /*
7660 * Flush the unicast and multicast chains
7661 */
7662 dev_uc_flush(dev);
7663 dev_mc_flush(dev);
7664
7665 /* Send a netdev-removed uevent to the old namespace */
7666 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7667 netdev_adjacent_del_links(dev);
7668
7669 /* Actually switch the network namespace */
7670 dev_net_set(dev, net);
7671
7672 /* If there is an ifindex conflict assign a new one */
7673 if (__dev_get_by_index(net, dev->ifindex))
7674 dev->ifindex = dev_new_index(net);
7675
7676 /* Send a netdev-add uevent to the new namespace */
7677 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7678 netdev_adjacent_add_links(dev);
7679
7680 /* Fixup kobjects */
7681 err = device_rename(&dev->dev, dev->name);
7682 WARN_ON(err);
7683
7684 /* Add the device back in the hashes */
7685 list_netdevice(dev);
7686
7687 /* Notify protocols, that a new device appeared. */
7688 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7689
7690 /*
7691 * Prevent userspace races by waiting until the network
7692 * device is fully setup before sending notifications.
7693 */
7694 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7695
7696 synchronize_net();
7697 err = 0;
7698 out:
7699 return err;
7700 }
7701 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7702
7703 static int dev_cpu_callback(struct notifier_block *nfb,
7704 unsigned long action,
7705 void *ocpu)
7706 {
7707 struct sk_buff **list_skb;
7708 struct sk_buff *skb;
7709 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7710 struct softnet_data *sd, *oldsd;
7711
7712 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7713 return NOTIFY_OK;
7714
7715 local_irq_disable();
7716 cpu = smp_processor_id();
7717 sd = &per_cpu(softnet_data, cpu);
7718 oldsd = &per_cpu(softnet_data, oldcpu);
7719
7720 /* Find end of our completion_queue. */
7721 list_skb = &sd->completion_queue;
7722 while (*list_skb)
7723 list_skb = &(*list_skb)->next;
7724 /* Append completion queue from offline CPU. */
7725 *list_skb = oldsd->completion_queue;
7726 oldsd->completion_queue = NULL;
7727
7728 /* Append output queue from offline CPU. */
7729 if (oldsd->output_queue) {
7730 *sd->output_queue_tailp = oldsd->output_queue;
7731 sd->output_queue_tailp = oldsd->output_queue_tailp;
7732 oldsd->output_queue = NULL;
7733 oldsd->output_queue_tailp = &oldsd->output_queue;
7734 }
7735 /* Append NAPI poll list from offline CPU, with one exception :
7736 * process_backlog() must be called by cpu owning percpu backlog.
7737 * We properly handle process_queue & input_pkt_queue later.
7738 */
7739 while (!list_empty(&oldsd->poll_list)) {
7740 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7741 struct napi_struct,
7742 poll_list);
7743
7744 list_del_init(&napi->poll_list);
7745 if (napi->poll == process_backlog)
7746 napi->state = 0;
7747 else
7748 ____napi_schedule(sd, napi);
7749 }
7750
7751 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7752 local_irq_enable();
7753
7754 /* Process offline CPU's input_pkt_queue */
7755 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7756 netif_rx_ni(skb);
7757 input_queue_head_incr(oldsd);
7758 }
7759 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7760 netif_rx_ni(skb);
7761 input_queue_head_incr(oldsd);
7762 }
7763
7764 return NOTIFY_OK;
7765 }
7766
7767
7768 /**
7769 * netdev_increment_features - increment feature set by one
7770 * @all: current feature set
7771 * @one: new feature set
7772 * @mask: mask feature set
7773 *
7774 * Computes a new feature set after adding a device with feature set
7775 * @one to the master device with current feature set @all. Will not
7776 * enable anything that is off in @mask. Returns the new feature set.
7777 */
7778 netdev_features_t netdev_increment_features(netdev_features_t all,
7779 netdev_features_t one, netdev_features_t mask)
7780 {
7781 if (mask & NETIF_F_HW_CSUM)
7782 mask |= NETIF_F_CSUM_MASK;
7783 mask |= NETIF_F_VLAN_CHALLENGED;
7784
7785 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7786 all &= one | ~NETIF_F_ALL_FOR_ALL;
7787
7788 /* If one device supports hw checksumming, set for all. */
7789 if (all & NETIF_F_HW_CSUM)
7790 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7791
7792 return all;
7793 }
7794 EXPORT_SYMBOL(netdev_increment_features);
7795
7796 static struct hlist_head * __net_init netdev_create_hash(void)
7797 {
7798 int i;
7799 struct hlist_head *hash;
7800
7801 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7802 if (hash != NULL)
7803 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7804 INIT_HLIST_HEAD(&hash[i]);
7805
7806 return hash;
7807 }
7808
7809 /* Initialize per network namespace state */
7810 static int __net_init netdev_init(struct net *net)
7811 {
7812 if (net != &init_net)
7813 INIT_LIST_HEAD(&net->dev_base_head);
7814
7815 net->dev_name_head = netdev_create_hash();
7816 if (net->dev_name_head == NULL)
7817 goto err_name;
7818
7819 net->dev_index_head = netdev_create_hash();
7820 if (net->dev_index_head == NULL)
7821 goto err_idx;
7822
7823 return 0;
7824
7825 err_idx:
7826 kfree(net->dev_name_head);
7827 err_name:
7828 return -ENOMEM;
7829 }
7830
7831 /**
7832 * netdev_drivername - network driver for the device
7833 * @dev: network device
7834 *
7835 * Determine network driver for device.
7836 */
7837 const char *netdev_drivername(const struct net_device *dev)
7838 {
7839 const struct device_driver *driver;
7840 const struct device *parent;
7841 const char *empty = "";
7842
7843 parent = dev->dev.parent;
7844 if (!parent)
7845 return empty;
7846
7847 driver = parent->driver;
7848 if (driver && driver->name)
7849 return driver->name;
7850 return empty;
7851 }
7852
7853 static void __netdev_printk(const char *level, const struct net_device *dev,
7854 struct va_format *vaf)
7855 {
7856 if (dev && dev->dev.parent) {
7857 dev_printk_emit(level[1] - '0',
7858 dev->dev.parent,
7859 "%s %s %s%s: %pV",
7860 dev_driver_string(dev->dev.parent),
7861 dev_name(dev->dev.parent),
7862 netdev_name(dev), netdev_reg_state(dev),
7863 vaf);
7864 } else if (dev) {
7865 printk("%s%s%s: %pV",
7866 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7867 } else {
7868 printk("%s(NULL net_device): %pV", level, vaf);
7869 }
7870 }
7871
7872 void netdev_printk(const char *level, const struct net_device *dev,
7873 const char *format, ...)
7874 {
7875 struct va_format vaf;
7876 va_list args;
7877
7878 va_start(args, format);
7879
7880 vaf.fmt = format;
7881 vaf.va = &args;
7882
7883 __netdev_printk(level, dev, &vaf);
7884
7885 va_end(args);
7886 }
7887 EXPORT_SYMBOL(netdev_printk);
7888
7889 #define define_netdev_printk_level(func, level) \
7890 void func(const struct net_device *dev, const char *fmt, ...) \
7891 { \
7892 struct va_format vaf; \
7893 va_list args; \
7894 \
7895 va_start(args, fmt); \
7896 \
7897 vaf.fmt = fmt; \
7898 vaf.va = &args; \
7899 \
7900 __netdev_printk(level, dev, &vaf); \
7901 \
7902 va_end(args); \
7903 } \
7904 EXPORT_SYMBOL(func);
7905
7906 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7907 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7908 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7909 define_netdev_printk_level(netdev_err, KERN_ERR);
7910 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7911 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7912 define_netdev_printk_level(netdev_info, KERN_INFO);
7913
7914 static void __net_exit netdev_exit(struct net *net)
7915 {
7916 kfree(net->dev_name_head);
7917 kfree(net->dev_index_head);
7918 }
7919
7920 static struct pernet_operations __net_initdata netdev_net_ops = {
7921 .init = netdev_init,
7922 .exit = netdev_exit,
7923 };
7924
7925 static void __net_exit default_device_exit(struct net *net)
7926 {
7927 struct net_device *dev, *aux;
7928 /*
7929 * Push all migratable network devices back to the
7930 * initial network namespace
7931 */
7932 rtnl_lock();
7933 for_each_netdev_safe(net, dev, aux) {
7934 int err;
7935 char fb_name[IFNAMSIZ];
7936
7937 /* Ignore unmoveable devices (i.e. loopback) */
7938 if (dev->features & NETIF_F_NETNS_LOCAL)
7939 continue;
7940
7941 /* Leave virtual devices for the generic cleanup */
7942 if (dev->rtnl_link_ops)
7943 continue;
7944
7945 /* Push remaining network devices to init_net */
7946 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7947 err = dev_change_net_namespace(dev, &init_net, fb_name);
7948 if (err) {
7949 pr_emerg("%s: failed to move %s to init_net: %d\n",
7950 __func__, dev->name, err);
7951 BUG();
7952 }
7953 }
7954 rtnl_unlock();
7955 }
7956
7957 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7958 {
7959 /* Return with the rtnl_lock held when there are no network
7960 * devices unregistering in any network namespace in net_list.
7961 */
7962 struct net *net;
7963 bool unregistering;
7964 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7965
7966 add_wait_queue(&netdev_unregistering_wq, &wait);
7967 for (;;) {
7968 unregistering = false;
7969 rtnl_lock();
7970 list_for_each_entry(net, net_list, exit_list) {
7971 if (net->dev_unreg_count > 0) {
7972 unregistering = true;
7973 break;
7974 }
7975 }
7976 if (!unregistering)
7977 break;
7978 __rtnl_unlock();
7979
7980 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7981 }
7982 remove_wait_queue(&netdev_unregistering_wq, &wait);
7983 }
7984
7985 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7986 {
7987 /* At exit all network devices most be removed from a network
7988 * namespace. Do this in the reverse order of registration.
7989 * Do this across as many network namespaces as possible to
7990 * improve batching efficiency.
7991 */
7992 struct net_device *dev;
7993 struct net *net;
7994 LIST_HEAD(dev_kill_list);
7995
7996 /* To prevent network device cleanup code from dereferencing
7997 * loopback devices or network devices that have been freed
7998 * wait here for all pending unregistrations to complete,
7999 * before unregistring the loopback device and allowing the
8000 * network namespace be freed.
8001 *
8002 * The netdev todo list containing all network devices
8003 * unregistrations that happen in default_device_exit_batch
8004 * will run in the rtnl_unlock() at the end of
8005 * default_device_exit_batch.
8006 */
8007 rtnl_lock_unregistering(net_list);
8008 list_for_each_entry(net, net_list, exit_list) {
8009 for_each_netdev_reverse(net, dev) {
8010 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8011 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8012 else
8013 unregister_netdevice_queue(dev, &dev_kill_list);
8014 }
8015 }
8016 unregister_netdevice_many(&dev_kill_list);
8017 rtnl_unlock();
8018 }
8019
8020 static struct pernet_operations __net_initdata default_device_ops = {
8021 .exit = default_device_exit,
8022 .exit_batch = default_device_exit_batch,
8023 };
8024
8025 /*
8026 * Initialize the DEV module. At boot time this walks the device list and
8027 * unhooks any devices that fail to initialise (normally hardware not
8028 * present) and leaves us with a valid list of present and active devices.
8029 *
8030 */
8031
8032 /*
8033 * This is called single threaded during boot, so no need
8034 * to take the rtnl semaphore.
8035 */
8036 static int __init net_dev_init(void)
8037 {
8038 int i, rc = -ENOMEM;
8039
8040 BUG_ON(!dev_boot_phase);
8041
8042 if (dev_proc_init())
8043 goto out;
8044
8045 if (netdev_kobject_init())
8046 goto out;
8047
8048 INIT_LIST_HEAD(&ptype_all);
8049 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8050 INIT_LIST_HEAD(&ptype_base[i]);
8051
8052 INIT_LIST_HEAD(&offload_base);
8053
8054 if (register_pernet_subsys(&netdev_net_ops))
8055 goto out;
8056
8057 /*
8058 * Initialise the packet receive queues.
8059 */
8060
8061 for_each_possible_cpu(i) {
8062 struct softnet_data *sd = &per_cpu(softnet_data, i);
8063
8064 skb_queue_head_init(&sd->input_pkt_queue);
8065 skb_queue_head_init(&sd->process_queue);
8066 INIT_LIST_HEAD(&sd->poll_list);
8067 sd->output_queue_tailp = &sd->output_queue;
8068 #ifdef CONFIG_RPS
8069 sd->csd.func = rps_trigger_softirq;
8070 sd->csd.info = sd;
8071 sd->cpu = i;
8072 #endif
8073
8074 sd->backlog.poll = process_backlog;
8075 sd->backlog.weight = weight_p;
8076 }
8077
8078 dev_boot_phase = 0;
8079
8080 /* The loopback device is special if any other network devices
8081 * is present in a network namespace the loopback device must
8082 * be present. Since we now dynamically allocate and free the
8083 * loopback device ensure this invariant is maintained by
8084 * keeping the loopback device as the first device on the
8085 * list of network devices. Ensuring the loopback devices
8086 * is the first device that appears and the last network device
8087 * that disappears.
8088 */
8089 if (register_pernet_device(&loopback_net_ops))
8090 goto out;
8091
8092 if (register_pernet_device(&default_device_ops))
8093 goto out;
8094
8095 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8096 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8097
8098 hotcpu_notifier(dev_cpu_callback, 0);
8099 dst_subsys_init();
8100 rc = 0;
8101 out:
8102 return rc;
8103 }
8104
8105 subsys_initcall(net_dev_init);
This page took 0.201059 seconds and 6 git commands to generate.