Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr_rcu - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device.
753 * The caller must hold RCU or RTNL.
754 * The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 */
758
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 const char *ha)
761 {
762 struct net_device *dev;
763
764 for_each_netdev_rcu(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close_many(struct list_head *head)
1227 {
1228 struct net_device *dev;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list, it
1243 * can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 }
1250
1251 dev_deactivate_many(head);
1252
1253 list_for_each_entry(dev, head, unreg_list) {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255
1256 /*
1257 * Call the device specific close. This cannot fail.
1258 * Only if device is UP
1259 *
1260 * We allow it to be called even after a DETACH hot-plug
1261 * event.
1262 */
1263 if (ops->ndo_stop)
1264 ops->ndo_stop(dev);
1265
1266 /*
1267 * Device is now down.
1268 */
1269
1270 dev->flags &= ~IFF_UP;
1271
1272 /*
1273 * Shutdown NET_DMA
1274 */
1275 net_dmaengine_put();
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 LIST_HEAD(single);
1284
1285 list_add(&dev->unreg_list, &single);
1286 return __dev_close_many(&single);
1287 }
1288
1289 int dev_close_many(struct list_head *head)
1290 {
1291 struct net_device *dev, *tmp;
1292 LIST_HEAD(tmp_list);
1293
1294 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1295 if (!(dev->flags & IFF_UP))
1296 list_move(&dev->unreg_list, &tmp_list);
1297
1298 __dev_close_many(head);
1299
1300 /*
1301 * Tell people we are down
1302 */
1303 list_for_each_entry(dev, head, unreg_list) {
1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 }
1307
1308 /* rollback_registered_many needs the complete original list */
1309 list_splice(&tmp_list, head);
1310 return 0;
1311 }
1312
1313 /**
1314 * dev_close - shutdown an interface.
1315 * @dev: device to shutdown
1316 *
1317 * This function moves an active device into down state. A
1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320 * chain.
1321 */
1322 int dev_close(struct net_device *dev)
1323 {
1324 LIST_HEAD(single);
1325
1326 list_add(&dev->unreg_list, &single);
1327 dev_close_many(&single);
1328
1329 return 0;
1330 }
1331 EXPORT_SYMBOL(dev_close);
1332
1333
1334 /**
1335 * dev_disable_lro - disable Large Receive Offload on a device
1336 * @dev: device
1337 *
1338 * Disable Large Receive Offload (LRO) on a net device. Must be
1339 * called under RTNL. This is needed if received packets may be
1340 * forwarded to another interface.
1341 */
1342 void dev_disable_lro(struct net_device *dev)
1343 {
1344 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1345 dev->ethtool_ops->set_flags) {
1346 u32 flags = dev->ethtool_ops->get_flags(dev);
1347 if (flags & ETH_FLAG_LRO) {
1348 flags &= ~ETH_FLAG_LRO;
1349 dev->ethtool_ops->set_flags(dev, flags);
1350 }
1351 }
1352 WARN_ON(dev->features & NETIF_F_LRO);
1353 }
1354 EXPORT_SYMBOL(dev_disable_lro);
1355
1356
1357 static int dev_boot_phase = 1;
1358
1359 /*
1360 * Device change register/unregister. These are not inline or static
1361 * as we export them to the world.
1362 */
1363
1364 /**
1365 * register_netdevice_notifier - register a network notifier block
1366 * @nb: notifier
1367 *
1368 * Register a notifier to be called when network device events occur.
1369 * The notifier passed is linked into the kernel structures and must
1370 * not be reused until it has been unregistered. A negative errno code
1371 * is returned on a failure.
1372 *
1373 * When registered all registration and up events are replayed
1374 * to the new notifier to allow device to have a race free
1375 * view of the network device list.
1376 */
1377
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 struct net_device *dev;
1381 struct net_device *last;
1382 struct net *net;
1383 int err;
1384
1385 rtnl_lock();
1386 err = raw_notifier_chain_register(&netdev_chain, nb);
1387 if (err)
1388 goto unlock;
1389 if (dev_boot_phase)
1390 goto unlock;
1391 for_each_net(net) {
1392 for_each_netdev(net, dev) {
1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 err = notifier_to_errno(err);
1395 if (err)
1396 goto rollback;
1397
1398 if (!(dev->flags & IFF_UP))
1399 continue;
1400
1401 nb->notifier_call(nb, NETDEV_UP, dev);
1402 }
1403 }
1404
1405 unlock:
1406 rtnl_unlock();
1407 return err;
1408
1409 rollback:
1410 last = dev;
1411 for_each_net(net) {
1412 for_each_netdev(net, dev) {
1413 if (dev == last)
1414 break;
1415
1416 if (dev->flags & IFF_UP) {
1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 }
1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1422 }
1423 }
1424
1425 raw_notifier_chain_unregister(&netdev_chain, nb);
1426 goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429
1430 /**
1431 * unregister_netdevice_notifier - unregister a network notifier block
1432 * @nb: notifier
1433 *
1434 * Unregister a notifier previously registered by
1435 * register_netdevice_notifier(). The notifier is unlinked into the
1436 * kernel structures and may then be reused. A negative errno code
1437 * is returned on a failure.
1438 */
1439
1440 int unregister_netdevice_notifier(struct notifier_block *nb)
1441 {
1442 int err;
1443
1444 rtnl_lock();
1445 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1446 rtnl_unlock();
1447 return err;
1448 }
1449 EXPORT_SYMBOL(unregister_netdevice_notifier);
1450
1451 /**
1452 * call_netdevice_notifiers - call all network notifier blocks
1453 * @val: value passed unmodified to notifier function
1454 * @dev: net_device pointer passed unmodified to notifier function
1455 *
1456 * Call all network notifier blocks. Parameters and return value
1457 * are as for raw_notifier_call_chain().
1458 */
1459
1460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1461 {
1462 ASSERT_RTNL();
1463 return raw_notifier_call_chain(&netdev_chain, val, dev);
1464 }
1465
1466 /* When > 0 there are consumers of rx skb time stamps */
1467 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1468
1469 void net_enable_timestamp(void)
1470 {
1471 atomic_inc(&netstamp_needed);
1472 }
1473 EXPORT_SYMBOL(net_enable_timestamp);
1474
1475 void net_disable_timestamp(void)
1476 {
1477 atomic_dec(&netstamp_needed);
1478 }
1479 EXPORT_SYMBOL(net_disable_timestamp);
1480
1481 static inline void net_timestamp_set(struct sk_buff *skb)
1482 {
1483 if (atomic_read(&netstamp_needed))
1484 __net_timestamp(skb);
1485 else
1486 skb->tstamp.tv64 = 0;
1487 }
1488
1489 static inline void net_timestamp_check(struct sk_buff *skb)
1490 {
1491 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1492 __net_timestamp(skb);
1493 }
1494
1495 /**
1496 * dev_forward_skb - loopback an skb to another netif
1497 *
1498 * @dev: destination network device
1499 * @skb: buffer to forward
1500 *
1501 * return values:
1502 * NET_RX_SUCCESS (no congestion)
1503 * NET_RX_DROP (packet was dropped, but freed)
1504 *
1505 * dev_forward_skb can be used for injecting an skb from the
1506 * start_xmit function of one device into the receive queue
1507 * of another device.
1508 *
1509 * The receiving device may be in another namespace, so
1510 * we have to clear all information in the skb that could
1511 * impact namespace isolation.
1512 */
1513 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1514 {
1515 skb_orphan(skb);
1516 nf_reset(skb);
1517
1518 if (unlikely(!(dev->flags & IFF_UP) ||
1519 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1520 atomic_long_inc(&dev->rx_dropped);
1521 kfree_skb(skb);
1522 return NET_RX_DROP;
1523 }
1524 skb_set_dev(skb, dev);
1525 skb->tstamp.tv64 = 0;
1526 skb->pkt_type = PACKET_HOST;
1527 skb->protocol = eth_type_trans(skb, dev);
1528 return netif_rx(skb);
1529 }
1530 EXPORT_SYMBOL_GPL(dev_forward_skb);
1531
1532 static inline int deliver_skb(struct sk_buff *skb,
1533 struct packet_type *pt_prev,
1534 struct net_device *orig_dev)
1535 {
1536 atomic_inc(&skb->users);
1537 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1538 }
1539
1540 /*
1541 * Support routine. Sends outgoing frames to any network
1542 * taps currently in use.
1543 */
1544
1545 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1546 {
1547 struct packet_type *ptype;
1548 struct sk_buff *skb2 = NULL;
1549 struct packet_type *pt_prev = NULL;
1550
1551 rcu_read_lock();
1552 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1553 /* Never send packets back to the socket
1554 * they originated from - MvS (miquels@drinkel.ow.org)
1555 */
1556 if ((ptype->dev == dev || !ptype->dev) &&
1557 (ptype->af_packet_priv == NULL ||
1558 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1559 if (pt_prev) {
1560 deliver_skb(skb2, pt_prev, skb->dev);
1561 pt_prev = ptype;
1562 continue;
1563 }
1564
1565 skb2 = skb_clone(skb, GFP_ATOMIC);
1566 if (!skb2)
1567 break;
1568
1569 net_timestamp_set(skb2);
1570
1571 /* skb->nh should be correctly
1572 set by sender, so that the second statement is
1573 just protection against buggy protocols.
1574 */
1575 skb_reset_mac_header(skb2);
1576
1577 if (skb_network_header(skb2) < skb2->data ||
1578 skb2->network_header > skb2->tail) {
1579 if (net_ratelimit())
1580 printk(KERN_CRIT "protocol %04x is "
1581 "buggy, dev %s\n",
1582 ntohs(skb2->protocol),
1583 dev->name);
1584 skb_reset_network_header(skb2);
1585 }
1586
1587 skb2->transport_header = skb2->network_header;
1588 skb2->pkt_type = PACKET_OUTGOING;
1589 pt_prev = ptype;
1590 }
1591 }
1592 if (pt_prev)
1593 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1594 rcu_read_unlock();
1595 }
1596
1597 /*
1598 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1599 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1600 */
1601 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1602 {
1603 int rc;
1604
1605 if (txq < 1 || txq > dev->num_tx_queues)
1606 return -EINVAL;
1607
1608 if (dev->reg_state == NETREG_REGISTERED) {
1609 ASSERT_RTNL();
1610
1611 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1612 txq);
1613 if (rc)
1614 return rc;
1615
1616 if (txq < dev->real_num_tx_queues)
1617 qdisc_reset_all_tx_gt(dev, txq);
1618 }
1619
1620 dev->real_num_tx_queues = txq;
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1624
1625 #ifdef CONFIG_RPS
1626 /**
1627 * netif_set_real_num_rx_queues - set actual number of RX queues used
1628 * @dev: Network device
1629 * @rxq: Actual number of RX queues
1630 *
1631 * This must be called either with the rtnl_lock held or before
1632 * registration of the net device. Returns 0 on success, or a
1633 * negative error code. If called before registration, it always
1634 * succeeds.
1635 */
1636 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1637 {
1638 int rc;
1639
1640 if (rxq < 1 || rxq > dev->num_rx_queues)
1641 return -EINVAL;
1642
1643 if (dev->reg_state == NETREG_REGISTERED) {
1644 ASSERT_RTNL();
1645
1646 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1647 rxq);
1648 if (rc)
1649 return rc;
1650 }
1651
1652 dev->real_num_rx_queues = rxq;
1653 return 0;
1654 }
1655 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1656 #endif
1657
1658 static inline void __netif_reschedule(struct Qdisc *q)
1659 {
1660 struct softnet_data *sd;
1661 unsigned long flags;
1662
1663 local_irq_save(flags);
1664 sd = &__get_cpu_var(softnet_data);
1665 q->next_sched = NULL;
1666 *sd->output_queue_tailp = q;
1667 sd->output_queue_tailp = &q->next_sched;
1668 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1669 local_irq_restore(flags);
1670 }
1671
1672 void __netif_schedule(struct Qdisc *q)
1673 {
1674 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1675 __netif_reschedule(q);
1676 }
1677 EXPORT_SYMBOL(__netif_schedule);
1678
1679 void dev_kfree_skb_irq(struct sk_buff *skb)
1680 {
1681 if (atomic_dec_and_test(&skb->users)) {
1682 struct softnet_data *sd;
1683 unsigned long flags;
1684
1685 local_irq_save(flags);
1686 sd = &__get_cpu_var(softnet_data);
1687 skb->next = sd->completion_queue;
1688 sd->completion_queue = skb;
1689 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1690 local_irq_restore(flags);
1691 }
1692 }
1693 EXPORT_SYMBOL(dev_kfree_skb_irq);
1694
1695 void dev_kfree_skb_any(struct sk_buff *skb)
1696 {
1697 if (in_irq() || irqs_disabled())
1698 dev_kfree_skb_irq(skb);
1699 else
1700 dev_kfree_skb(skb);
1701 }
1702 EXPORT_SYMBOL(dev_kfree_skb_any);
1703
1704
1705 /**
1706 * netif_device_detach - mark device as removed
1707 * @dev: network device
1708 *
1709 * Mark device as removed from system and therefore no longer available.
1710 */
1711 void netif_device_detach(struct net_device *dev)
1712 {
1713 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1714 netif_running(dev)) {
1715 netif_tx_stop_all_queues(dev);
1716 }
1717 }
1718 EXPORT_SYMBOL(netif_device_detach);
1719
1720 /**
1721 * netif_device_attach - mark device as attached
1722 * @dev: network device
1723 *
1724 * Mark device as attached from system and restart if needed.
1725 */
1726 void netif_device_attach(struct net_device *dev)
1727 {
1728 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1729 netif_running(dev)) {
1730 netif_tx_wake_all_queues(dev);
1731 __netdev_watchdog_up(dev);
1732 }
1733 }
1734 EXPORT_SYMBOL(netif_device_attach);
1735
1736 /**
1737 * skb_dev_set -- assign a new device to a buffer
1738 * @skb: buffer for the new device
1739 * @dev: network device
1740 *
1741 * If an skb is owned by a device already, we have to reset
1742 * all data private to the namespace a device belongs to
1743 * before assigning it a new device.
1744 */
1745 #ifdef CONFIG_NET_NS
1746 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 skb_dst_drop(skb);
1749 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1750 secpath_reset(skb);
1751 nf_reset(skb);
1752 skb_init_secmark(skb);
1753 skb->mark = 0;
1754 skb->priority = 0;
1755 skb->nf_trace = 0;
1756 skb->ipvs_property = 0;
1757 #ifdef CONFIG_NET_SCHED
1758 skb->tc_index = 0;
1759 #endif
1760 }
1761 skb->dev = dev;
1762 }
1763 EXPORT_SYMBOL(skb_set_dev);
1764 #endif /* CONFIG_NET_NS */
1765
1766 /*
1767 * Invalidate hardware checksum when packet is to be mangled, and
1768 * complete checksum manually on outgoing path.
1769 */
1770 int skb_checksum_help(struct sk_buff *skb)
1771 {
1772 __wsum csum;
1773 int ret = 0, offset;
1774
1775 if (skb->ip_summed == CHECKSUM_COMPLETE)
1776 goto out_set_summed;
1777
1778 if (unlikely(skb_shinfo(skb)->gso_size)) {
1779 /* Let GSO fix up the checksum. */
1780 goto out_set_summed;
1781 }
1782
1783 offset = skb_checksum_start_offset(skb);
1784 BUG_ON(offset >= skb_headlen(skb));
1785 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1786
1787 offset += skb->csum_offset;
1788 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1789
1790 if (skb_cloned(skb) &&
1791 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1792 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1793 if (ret)
1794 goto out;
1795 }
1796
1797 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1798 out_set_summed:
1799 skb->ip_summed = CHECKSUM_NONE;
1800 out:
1801 return ret;
1802 }
1803 EXPORT_SYMBOL(skb_checksum_help);
1804
1805 /**
1806 * skb_gso_segment - Perform segmentation on skb.
1807 * @skb: buffer to segment
1808 * @features: features for the output path (see dev->features)
1809 *
1810 * This function segments the given skb and returns a list of segments.
1811 *
1812 * It may return NULL if the skb requires no segmentation. This is
1813 * only possible when GSO is used for verifying header integrity.
1814 */
1815 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1816 {
1817 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1818 struct packet_type *ptype;
1819 __be16 type = skb->protocol;
1820 int vlan_depth = ETH_HLEN;
1821 int err;
1822
1823 while (type == htons(ETH_P_8021Q)) {
1824 struct vlan_hdr *vh;
1825
1826 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1827 return ERR_PTR(-EINVAL);
1828
1829 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1830 type = vh->h_vlan_encapsulated_proto;
1831 vlan_depth += VLAN_HLEN;
1832 }
1833
1834 skb_reset_mac_header(skb);
1835 skb->mac_len = skb->network_header - skb->mac_header;
1836 __skb_pull(skb, skb->mac_len);
1837
1838 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1839 struct net_device *dev = skb->dev;
1840 struct ethtool_drvinfo info = {};
1841
1842 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1843 dev->ethtool_ops->get_drvinfo(dev, &info);
1844
1845 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1846 info.driver, dev ? dev->features : 0L,
1847 skb->sk ? skb->sk->sk_route_caps : 0L,
1848 skb->len, skb->data_len, skb->ip_summed);
1849
1850 if (skb_header_cloned(skb) &&
1851 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1852 return ERR_PTR(err);
1853 }
1854
1855 rcu_read_lock();
1856 list_for_each_entry_rcu(ptype,
1857 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1858 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1859 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1860 err = ptype->gso_send_check(skb);
1861 segs = ERR_PTR(err);
1862 if (err || skb_gso_ok(skb, features))
1863 break;
1864 __skb_push(skb, (skb->data -
1865 skb_network_header(skb)));
1866 }
1867 segs = ptype->gso_segment(skb, features);
1868 break;
1869 }
1870 }
1871 rcu_read_unlock();
1872
1873 __skb_push(skb, skb->data - skb_mac_header(skb));
1874
1875 return segs;
1876 }
1877 EXPORT_SYMBOL(skb_gso_segment);
1878
1879 /* Take action when hardware reception checksum errors are detected. */
1880 #ifdef CONFIG_BUG
1881 void netdev_rx_csum_fault(struct net_device *dev)
1882 {
1883 if (net_ratelimit()) {
1884 printk(KERN_ERR "%s: hw csum failure.\n",
1885 dev ? dev->name : "<unknown>");
1886 dump_stack();
1887 }
1888 }
1889 EXPORT_SYMBOL(netdev_rx_csum_fault);
1890 #endif
1891
1892 /* Actually, we should eliminate this check as soon as we know, that:
1893 * 1. IOMMU is present and allows to map all the memory.
1894 * 2. No high memory really exists on this machine.
1895 */
1896
1897 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1898 {
1899 #ifdef CONFIG_HIGHMEM
1900 int i;
1901 if (!(dev->features & NETIF_F_HIGHDMA)) {
1902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1903 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1904 return 1;
1905 }
1906
1907 if (PCI_DMA_BUS_IS_PHYS) {
1908 struct device *pdev = dev->dev.parent;
1909
1910 if (!pdev)
1911 return 0;
1912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1913 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1914 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1915 return 1;
1916 }
1917 }
1918 #endif
1919 return 0;
1920 }
1921
1922 struct dev_gso_cb {
1923 void (*destructor)(struct sk_buff *skb);
1924 };
1925
1926 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1927
1928 static void dev_gso_skb_destructor(struct sk_buff *skb)
1929 {
1930 struct dev_gso_cb *cb;
1931
1932 do {
1933 struct sk_buff *nskb = skb->next;
1934
1935 skb->next = nskb->next;
1936 nskb->next = NULL;
1937 kfree_skb(nskb);
1938 } while (skb->next);
1939
1940 cb = DEV_GSO_CB(skb);
1941 if (cb->destructor)
1942 cb->destructor(skb);
1943 }
1944
1945 /**
1946 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1947 * @skb: buffer to segment
1948 * @features: device features as applicable to this skb
1949 *
1950 * This function segments the given skb and stores the list of segments
1951 * in skb->next.
1952 */
1953 static int dev_gso_segment(struct sk_buff *skb, int features)
1954 {
1955 struct sk_buff *segs;
1956
1957 segs = skb_gso_segment(skb, features);
1958
1959 /* Verifying header integrity only. */
1960 if (!segs)
1961 return 0;
1962
1963 if (IS_ERR(segs))
1964 return PTR_ERR(segs);
1965
1966 skb->next = segs;
1967 DEV_GSO_CB(skb)->destructor = skb->destructor;
1968 skb->destructor = dev_gso_skb_destructor;
1969
1970 return 0;
1971 }
1972
1973 /*
1974 * Try to orphan skb early, right before transmission by the device.
1975 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1976 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1977 */
1978 static inline void skb_orphan_try(struct sk_buff *skb)
1979 {
1980 struct sock *sk = skb->sk;
1981
1982 if (sk && !skb_shinfo(skb)->tx_flags) {
1983 /* skb_tx_hash() wont be able to get sk.
1984 * We copy sk_hash into skb->rxhash
1985 */
1986 if (!skb->rxhash)
1987 skb->rxhash = sk->sk_hash;
1988 skb_orphan(skb);
1989 }
1990 }
1991
1992 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1993 {
1994 return ((features & NETIF_F_GEN_CSUM) ||
1995 ((features & NETIF_F_V4_CSUM) &&
1996 protocol == htons(ETH_P_IP)) ||
1997 ((features & NETIF_F_V6_CSUM) &&
1998 protocol == htons(ETH_P_IPV6)) ||
1999 ((features & NETIF_F_FCOE_CRC) &&
2000 protocol == htons(ETH_P_FCOE)));
2001 }
2002
2003 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2004 {
2005 if (!can_checksum_protocol(features, protocol)) {
2006 features &= ~NETIF_F_ALL_CSUM;
2007 features &= ~NETIF_F_SG;
2008 } else if (illegal_highdma(skb->dev, skb)) {
2009 features &= ~NETIF_F_SG;
2010 }
2011
2012 return features;
2013 }
2014
2015 int netif_skb_features(struct sk_buff *skb)
2016 {
2017 __be16 protocol = skb->protocol;
2018 int features = skb->dev->features;
2019
2020 if (protocol == htons(ETH_P_8021Q)) {
2021 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2022 protocol = veh->h_vlan_encapsulated_proto;
2023 } else if (!vlan_tx_tag_present(skb)) {
2024 return harmonize_features(skb, protocol, features);
2025 }
2026
2027 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2028
2029 if (protocol != htons(ETH_P_8021Q)) {
2030 return harmonize_features(skb, protocol, features);
2031 } else {
2032 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2033 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2034 return harmonize_features(skb, protocol, features);
2035 }
2036 }
2037 EXPORT_SYMBOL(netif_skb_features);
2038
2039 /*
2040 * Returns true if either:
2041 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2042 * 2. skb is fragmented and the device does not support SG, or if
2043 * at least one of fragments is in highmem and device does not
2044 * support DMA from it.
2045 */
2046 static inline int skb_needs_linearize(struct sk_buff *skb,
2047 int features)
2048 {
2049 return skb_is_nonlinear(skb) &&
2050 ((skb_has_frag_list(skb) &&
2051 !(features & NETIF_F_FRAGLIST)) ||
2052 (skb_shinfo(skb)->nr_frags &&
2053 !(features & NETIF_F_SG)));
2054 }
2055
2056 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2057 struct netdev_queue *txq)
2058 {
2059 const struct net_device_ops *ops = dev->netdev_ops;
2060 int rc = NETDEV_TX_OK;
2061
2062 if (likely(!skb->next)) {
2063 int features;
2064
2065 /*
2066 * If device doesnt need skb->dst, release it right now while
2067 * its hot in this cpu cache
2068 */
2069 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2070 skb_dst_drop(skb);
2071
2072 if (!list_empty(&ptype_all))
2073 dev_queue_xmit_nit(skb, dev);
2074
2075 skb_orphan_try(skb);
2076
2077 features = netif_skb_features(skb);
2078
2079 if (vlan_tx_tag_present(skb) &&
2080 !(features & NETIF_F_HW_VLAN_TX)) {
2081 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2082 if (unlikely(!skb))
2083 goto out;
2084
2085 skb->vlan_tci = 0;
2086 }
2087
2088 if (netif_needs_gso(skb, features)) {
2089 if (unlikely(dev_gso_segment(skb, features)))
2090 goto out_kfree_skb;
2091 if (skb->next)
2092 goto gso;
2093 } else {
2094 if (skb_needs_linearize(skb, features) &&
2095 __skb_linearize(skb))
2096 goto out_kfree_skb;
2097
2098 /* If packet is not checksummed and device does not
2099 * support checksumming for this protocol, complete
2100 * checksumming here.
2101 */
2102 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2103 skb_set_transport_header(skb,
2104 skb_checksum_start_offset(skb));
2105 if (!(features & NETIF_F_ALL_CSUM) &&
2106 skb_checksum_help(skb))
2107 goto out_kfree_skb;
2108 }
2109 }
2110
2111 rc = ops->ndo_start_xmit(skb, dev);
2112 trace_net_dev_xmit(skb, rc);
2113 if (rc == NETDEV_TX_OK)
2114 txq_trans_update(txq);
2115 return rc;
2116 }
2117
2118 gso:
2119 do {
2120 struct sk_buff *nskb = skb->next;
2121
2122 skb->next = nskb->next;
2123 nskb->next = NULL;
2124
2125 /*
2126 * If device doesnt need nskb->dst, release it right now while
2127 * its hot in this cpu cache
2128 */
2129 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2130 skb_dst_drop(nskb);
2131
2132 rc = ops->ndo_start_xmit(nskb, dev);
2133 trace_net_dev_xmit(nskb, rc);
2134 if (unlikely(rc != NETDEV_TX_OK)) {
2135 if (rc & ~NETDEV_TX_MASK)
2136 goto out_kfree_gso_skb;
2137 nskb->next = skb->next;
2138 skb->next = nskb;
2139 return rc;
2140 }
2141 txq_trans_update(txq);
2142 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2143 return NETDEV_TX_BUSY;
2144 } while (skb->next);
2145
2146 out_kfree_gso_skb:
2147 if (likely(skb->next == NULL))
2148 skb->destructor = DEV_GSO_CB(skb)->destructor;
2149 out_kfree_skb:
2150 kfree_skb(skb);
2151 out:
2152 return rc;
2153 }
2154
2155 static u32 hashrnd __read_mostly;
2156
2157 /*
2158 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2159 * to be used as a distribution range.
2160 */
2161 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2162 unsigned int num_tx_queues)
2163 {
2164 u32 hash;
2165
2166 if (skb_rx_queue_recorded(skb)) {
2167 hash = skb_get_rx_queue(skb);
2168 while (unlikely(hash >= num_tx_queues))
2169 hash -= num_tx_queues;
2170 return hash;
2171 }
2172
2173 if (skb->sk && skb->sk->sk_hash)
2174 hash = skb->sk->sk_hash;
2175 else
2176 hash = (__force u16) skb->protocol ^ skb->rxhash;
2177 hash = jhash_1word(hash, hashrnd);
2178
2179 return (u16) (((u64) hash * num_tx_queues) >> 32);
2180 }
2181 EXPORT_SYMBOL(__skb_tx_hash);
2182
2183 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2184 {
2185 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2186 if (net_ratelimit()) {
2187 pr_warning("%s selects TX queue %d, but "
2188 "real number of TX queues is %d\n",
2189 dev->name, queue_index, dev->real_num_tx_queues);
2190 }
2191 return 0;
2192 }
2193 return queue_index;
2194 }
2195
2196 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 #ifdef CONFIG_XPS
2199 struct xps_dev_maps *dev_maps;
2200 struct xps_map *map;
2201 int queue_index = -1;
2202
2203 rcu_read_lock();
2204 dev_maps = rcu_dereference(dev->xps_maps);
2205 if (dev_maps) {
2206 map = rcu_dereference(
2207 dev_maps->cpu_map[raw_smp_processor_id()]);
2208 if (map) {
2209 if (map->len == 1)
2210 queue_index = map->queues[0];
2211 else {
2212 u32 hash;
2213 if (skb->sk && skb->sk->sk_hash)
2214 hash = skb->sk->sk_hash;
2215 else
2216 hash = (__force u16) skb->protocol ^
2217 skb->rxhash;
2218 hash = jhash_1word(hash, hashrnd);
2219 queue_index = map->queues[
2220 ((u64)hash * map->len) >> 32];
2221 }
2222 if (unlikely(queue_index >= dev->real_num_tx_queues))
2223 queue_index = -1;
2224 }
2225 }
2226 rcu_read_unlock();
2227
2228 return queue_index;
2229 #else
2230 return -1;
2231 #endif
2232 }
2233
2234 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2235 struct sk_buff *skb)
2236 {
2237 int queue_index;
2238 const struct net_device_ops *ops = dev->netdev_ops;
2239
2240 if (dev->real_num_tx_queues == 1)
2241 queue_index = 0;
2242 else if (ops->ndo_select_queue) {
2243 queue_index = ops->ndo_select_queue(dev, skb);
2244 queue_index = dev_cap_txqueue(dev, queue_index);
2245 } else {
2246 struct sock *sk = skb->sk;
2247 queue_index = sk_tx_queue_get(sk);
2248
2249 if (queue_index < 0 || skb->ooo_okay ||
2250 queue_index >= dev->real_num_tx_queues) {
2251 int old_index = queue_index;
2252
2253 queue_index = get_xps_queue(dev, skb);
2254 if (queue_index < 0)
2255 queue_index = skb_tx_hash(dev, skb);
2256
2257 if (queue_index != old_index && sk) {
2258 struct dst_entry *dst =
2259 rcu_dereference_check(sk->sk_dst_cache, 1);
2260
2261 if (dst && skb_dst(skb) == dst)
2262 sk_tx_queue_set(sk, queue_index);
2263 }
2264 }
2265 }
2266
2267 skb_set_queue_mapping(skb, queue_index);
2268 return netdev_get_tx_queue(dev, queue_index);
2269 }
2270
2271 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2272 struct net_device *dev,
2273 struct netdev_queue *txq)
2274 {
2275 spinlock_t *root_lock = qdisc_lock(q);
2276 bool contended = qdisc_is_running(q);
2277 int rc;
2278
2279 /*
2280 * Heuristic to force contended enqueues to serialize on a
2281 * separate lock before trying to get qdisc main lock.
2282 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2283 * and dequeue packets faster.
2284 */
2285 if (unlikely(contended))
2286 spin_lock(&q->busylock);
2287
2288 spin_lock(root_lock);
2289 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2290 kfree_skb(skb);
2291 rc = NET_XMIT_DROP;
2292 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2293 qdisc_run_begin(q)) {
2294 /*
2295 * This is a work-conserving queue; there are no old skbs
2296 * waiting to be sent out; and the qdisc is not running -
2297 * xmit the skb directly.
2298 */
2299 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2300 skb_dst_force(skb);
2301
2302 qdisc_skb_cb(skb)->pkt_len = skb->len;
2303 qdisc_bstats_update(q, skb);
2304
2305 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2306 if (unlikely(contended)) {
2307 spin_unlock(&q->busylock);
2308 contended = false;
2309 }
2310 __qdisc_run(q);
2311 } else
2312 qdisc_run_end(q);
2313
2314 rc = NET_XMIT_SUCCESS;
2315 } else {
2316 skb_dst_force(skb);
2317 rc = qdisc_enqueue_root(skb, q);
2318 if (qdisc_run_begin(q)) {
2319 if (unlikely(contended)) {
2320 spin_unlock(&q->busylock);
2321 contended = false;
2322 }
2323 __qdisc_run(q);
2324 }
2325 }
2326 spin_unlock(root_lock);
2327 if (unlikely(contended))
2328 spin_unlock(&q->busylock);
2329 return rc;
2330 }
2331
2332 static DEFINE_PER_CPU(int, xmit_recursion);
2333 #define RECURSION_LIMIT 10
2334
2335 /**
2336 * dev_queue_xmit - transmit a buffer
2337 * @skb: buffer to transmit
2338 *
2339 * Queue a buffer for transmission to a network device. The caller must
2340 * have set the device and priority and built the buffer before calling
2341 * this function. The function can be called from an interrupt.
2342 *
2343 * A negative errno code is returned on a failure. A success does not
2344 * guarantee the frame will be transmitted as it may be dropped due
2345 * to congestion or traffic shaping.
2346 *
2347 * -----------------------------------------------------------------------------------
2348 * I notice this method can also return errors from the queue disciplines,
2349 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2350 * be positive.
2351 *
2352 * Regardless of the return value, the skb is consumed, so it is currently
2353 * difficult to retry a send to this method. (You can bump the ref count
2354 * before sending to hold a reference for retry if you are careful.)
2355 *
2356 * When calling this method, interrupts MUST be enabled. This is because
2357 * the BH enable code must have IRQs enabled so that it will not deadlock.
2358 * --BLG
2359 */
2360 int dev_queue_xmit(struct sk_buff *skb)
2361 {
2362 struct net_device *dev = skb->dev;
2363 struct netdev_queue *txq;
2364 struct Qdisc *q;
2365 int rc = -ENOMEM;
2366
2367 /* Disable soft irqs for various locks below. Also
2368 * stops preemption for RCU.
2369 */
2370 rcu_read_lock_bh();
2371
2372 txq = dev_pick_tx(dev, skb);
2373 q = rcu_dereference_bh(txq->qdisc);
2374
2375 #ifdef CONFIG_NET_CLS_ACT
2376 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2377 #endif
2378 trace_net_dev_queue(skb);
2379 if (q->enqueue) {
2380 rc = __dev_xmit_skb(skb, q, dev, txq);
2381 goto out;
2382 }
2383
2384 /* The device has no queue. Common case for software devices:
2385 loopback, all the sorts of tunnels...
2386
2387 Really, it is unlikely that netif_tx_lock protection is necessary
2388 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2389 counters.)
2390 However, it is possible, that they rely on protection
2391 made by us here.
2392
2393 Check this and shot the lock. It is not prone from deadlocks.
2394 Either shot noqueue qdisc, it is even simpler 8)
2395 */
2396 if (dev->flags & IFF_UP) {
2397 int cpu = smp_processor_id(); /* ok because BHs are off */
2398
2399 if (txq->xmit_lock_owner != cpu) {
2400
2401 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2402 goto recursion_alert;
2403
2404 HARD_TX_LOCK(dev, txq, cpu);
2405
2406 if (!netif_tx_queue_stopped(txq)) {
2407 __this_cpu_inc(xmit_recursion);
2408 rc = dev_hard_start_xmit(skb, dev, txq);
2409 __this_cpu_dec(xmit_recursion);
2410 if (dev_xmit_complete(rc)) {
2411 HARD_TX_UNLOCK(dev, txq);
2412 goto out;
2413 }
2414 }
2415 HARD_TX_UNLOCK(dev, txq);
2416 if (net_ratelimit())
2417 printk(KERN_CRIT "Virtual device %s asks to "
2418 "queue packet!\n", dev->name);
2419 } else {
2420 /* Recursion is detected! It is possible,
2421 * unfortunately
2422 */
2423 recursion_alert:
2424 if (net_ratelimit())
2425 printk(KERN_CRIT "Dead loop on virtual device "
2426 "%s, fix it urgently!\n", dev->name);
2427 }
2428 }
2429
2430 rc = -ENETDOWN;
2431 rcu_read_unlock_bh();
2432
2433 kfree_skb(skb);
2434 return rc;
2435 out:
2436 rcu_read_unlock_bh();
2437 return rc;
2438 }
2439 EXPORT_SYMBOL(dev_queue_xmit);
2440
2441
2442 /*=======================================================================
2443 Receiver routines
2444 =======================================================================*/
2445
2446 int netdev_max_backlog __read_mostly = 1000;
2447 int netdev_tstamp_prequeue __read_mostly = 1;
2448 int netdev_budget __read_mostly = 300;
2449 int weight_p __read_mostly = 64; /* old backlog weight */
2450
2451 /* Called with irq disabled */
2452 static inline void ____napi_schedule(struct softnet_data *sd,
2453 struct napi_struct *napi)
2454 {
2455 list_add_tail(&napi->poll_list, &sd->poll_list);
2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 }
2458
2459 /*
2460 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2461 * and src/dst port numbers. Returns a non-zero hash number on success
2462 * and 0 on failure.
2463 */
2464 __u32 __skb_get_rxhash(struct sk_buff *skb)
2465 {
2466 int nhoff, hash = 0, poff;
2467 struct ipv6hdr *ip6;
2468 struct iphdr *ip;
2469 u8 ip_proto;
2470 u32 addr1, addr2, ihl;
2471 union {
2472 u32 v32;
2473 u16 v16[2];
2474 } ports;
2475
2476 nhoff = skb_network_offset(skb);
2477
2478 switch (skb->protocol) {
2479 case __constant_htons(ETH_P_IP):
2480 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2481 goto done;
2482
2483 ip = (struct iphdr *) (skb->data + nhoff);
2484 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2485 ip_proto = 0;
2486 else
2487 ip_proto = ip->protocol;
2488 addr1 = (__force u32) ip->saddr;
2489 addr2 = (__force u32) ip->daddr;
2490 ihl = ip->ihl;
2491 break;
2492 case __constant_htons(ETH_P_IPV6):
2493 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2494 goto done;
2495
2496 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2497 ip_proto = ip6->nexthdr;
2498 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2499 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2500 ihl = (40 >> 2);
2501 break;
2502 default:
2503 goto done;
2504 }
2505
2506 ports.v32 = 0;
2507 poff = proto_ports_offset(ip_proto);
2508 if (poff >= 0) {
2509 nhoff += ihl * 4 + poff;
2510 if (pskb_may_pull(skb, nhoff + 4)) {
2511 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2512 if (ports.v16[1] < ports.v16[0])
2513 swap(ports.v16[0], ports.v16[1]);
2514 }
2515 }
2516
2517 /* get a consistent hash (same value on both flow directions) */
2518 if (addr2 < addr1)
2519 swap(addr1, addr2);
2520
2521 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2522 if (!hash)
2523 hash = 1;
2524
2525 done:
2526 return hash;
2527 }
2528 EXPORT_SYMBOL(__skb_get_rxhash);
2529
2530 #ifdef CONFIG_RPS
2531
2532 /* One global table that all flow-based protocols share. */
2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2534 EXPORT_SYMBOL(rps_sock_flow_table);
2535
2536 /*
2537 * get_rps_cpu is called from netif_receive_skb and returns the target
2538 * CPU from the RPS map of the receiving queue for a given skb.
2539 * rcu_read_lock must be held on entry.
2540 */
2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2542 struct rps_dev_flow **rflowp)
2543 {
2544 struct netdev_rx_queue *rxqueue;
2545 struct rps_map *map;
2546 struct rps_dev_flow_table *flow_table;
2547 struct rps_sock_flow_table *sock_flow_table;
2548 int cpu = -1;
2549 u16 tcpu;
2550
2551 if (skb_rx_queue_recorded(skb)) {
2552 u16 index = skb_get_rx_queue(skb);
2553 if (unlikely(index >= dev->real_num_rx_queues)) {
2554 WARN_ONCE(dev->real_num_rx_queues > 1,
2555 "%s received packet on queue %u, but number "
2556 "of RX queues is %u\n",
2557 dev->name, index, dev->real_num_rx_queues);
2558 goto done;
2559 }
2560 rxqueue = dev->_rx + index;
2561 } else
2562 rxqueue = dev->_rx;
2563
2564 map = rcu_dereference(rxqueue->rps_map);
2565 if (map) {
2566 if (map->len == 1 &&
2567 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2568 tcpu = map->cpus[0];
2569 if (cpu_online(tcpu))
2570 cpu = tcpu;
2571 goto done;
2572 }
2573 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2574 goto done;
2575 }
2576
2577 skb_reset_network_header(skb);
2578 if (!skb_get_rxhash(skb))
2579 goto done;
2580
2581 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2582 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2583 if (flow_table && sock_flow_table) {
2584 u16 next_cpu;
2585 struct rps_dev_flow *rflow;
2586
2587 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2588 tcpu = rflow->cpu;
2589
2590 next_cpu = sock_flow_table->ents[skb->rxhash &
2591 sock_flow_table->mask];
2592
2593 /*
2594 * If the desired CPU (where last recvmsg was done) is
2595 * different from current CPU (one in the rx-queue flow
2596 * table entry), switch if one of the following holds:
2597 * - Current CPU is unset (equal to RPS_NO_CPU).
2598 * - Current CPU is offline.
2599 * - The current CPU's queue tail has advanced beyond the
2600 * last packet that was enqueued using this table entry.
2601 * This guarantees that all previous packets for the flow
2602 * have been dequeued, thus preserving in order delivery.
2603 */
2604 if (unlikely(tcpu != next_cpu) &&
2605 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2606 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2607 rflow->last_qtail)) >= 0)) {
2608 tcpu = rflow->cpu = next_cpu;
2609 if (tcpu != RPS_NO_CPU)
2610 rflow->last_qtail = per_cpu(softnet_data,
2611 tcpu).input_queue_head;
2612 }
2613 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2614 *rflowp = rflow;
2615 cpu = tcpu;
2616 goto done;
2617 }
2618 }
2619
2620 if (map) {
2621 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2622
2623 if (cpu_online(tcpu)) {
2624 cpu = tcpu;
2625 goto done;
2626 }
2627 }
2628
2629 done:
2630 return cpu;
2631 }
2632
2633 /* Called from hardirq (IPI) context */
2634 static void rps_trigger_softirq(void *data)
2635 {
2636 struct softnet_data *sd = data;
2637
2638 ____napi_schedule(sd, &sd->backlog);
2639 sd->received_rps++;
2640 }
2641
2642 #endif /* CONFIG_RPS */
2643
2644 /*
2645 * Check if this softnet_data structure is another cpu one
2646 * If yes, queue it to our IPI list and return 1
2647 * If no, return 0
2648 */
2649 static int rps_ipi_queued(struct softnet_data *sd)
2650 {
2651 #ifdef CONFIG_RPS
2652 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2653
2654 if (sd != mysd) {
2655 sd->rps_ipi_next = mysd->rps_ipi_list;
2656 mysd->rps_ipi_list = sd;
2657
2658 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2659 return 1;
2660 }
2661 #endif /* CONFIG_RPS */
2662 return 0;
2663 }
2664
2665 /*
2666 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2667 * queue (may be a remote CPU queue).
2668 */
2669 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2670 unsigned int *qtail)
2671 {
2672 struct softnet_data *sd;
2673 unsigned long flags;
2674
2675 sd = &per_cpu(softnet_data, cpu);
2676
2677 local_irq_save(flags);
2678
2679 rps_lock(sd);
2680 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2681 if (skb_queue_len(&sd->input_pkt_queue)) {
2682 enqueue:
2683 __skb_queue_tail(&sd->input_pkt_queue, skb);
2684 input_queue_tail_incr_save(sd, qtail);
2685 rps_unlock(sd);
2686 local_irq_restore(flags);
2687 return NET_RX_SUCCESS;
2688 }
2689
2690 /* Schedule NAPI for backlog device
2691 * We can use non atomic operation since we own the queue lock
2692 */
2693 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2694 if (!rps_ipi_queued(sd))
2695 ____napi_schedule(sd, &sd->backlog);
2696 }
2697 goto enqueue;
2698 }
2699
2700 sd->dropped++;
2701 rps_unlock(sd);
2702
2703 local_irq_restore(flags);
2704
2705 atomic_long_inc(&skb->dev->rx_dropped);
2706 kfree_skb(skb);
2707 return NET_RX_DROP;
2708 }
2709
2710 /**
2711 * netif_rx - post buffer to the network code
2712 * @skb: buffer to post
2713 *
2714 * This function receives a packet from a device driver and queues it for
2715 * the upper (protocol) levels to process. It always succeeds. The buffer
2716 * may be dropped during processing for congestion control or by the
2717 * protocol layers.
2718 *
2719 * return values:
2720 * NET_RX_SUCCESS (no congestion)
2721 * NET_RX_DROP (packet was dropped)
2722 *
2723 */
2724
2725 int netif_rx(struct sk_buff *skb)
2726 {
2727 int ret;
2728
2729 /* if netpoll wants it, pretend we never saw it */
2730 if (netpoll_rx(skb))
2731 return NET_RX_DROP;
2732
2733 if (netdev_tstamp_prequeue)
2734 net_timestamp_check(skb);
2735
2736 trace_netif_rx(skb);
2737 #ifdef CONFIG_RPS
2738 {
2739 struct rps_dev_flow voidflow, *rflow = &voidflow;
2740 int cpu;
2741
2742 preempt_disable();
2743 rcu_read_lock();
2744
2745 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2746 if (cpu < 0)
2747 cpu = smp_processor_id();
2748
2749 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2750
2751 rcu_read_unlock();
2752 preempt_enable();
2753 }
2754 #else
2755 {
2756 unsigned int qtail;
2757 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2758 put_cpu();
2759 }
2760 #endif
2761 return ret;
2762 }
2763 EXPORT_SYMBOL(netif_rx);
2764
2765 int netif_rx_ni(struct sk_buff *skb)
2766 {
2767 int err;
2768
2769 preempt_disable();
2770 err = netif_rx(skb);
2771 if (local_softirq_pending())
2772 do_softirq();
2773 preempt_enable();
2774
2775 return err;
2776 }
2777 EXPORT_SYMBOL(netif_rx_ni);
2778
2779 static void net_tx_action(struct softirq_action *h)
2780 {
2781 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2782
2783 if (sd->completion_queue) {
2784 struct sk_buff *clist;
2785
2786 local_irq_disable();
2787 clist = sd->completion_queue;
2788 sd->completion_queue = NULL;
2789 local_irq_enable();
2790
2791 while (clist) {
2792 struct sk_buff *skb = clist;
2793 clist = clist->next;
2794
2795 WARN_ON(atomic_read(&skb->users));
2796 trace_kfree_skb(skb, net_tx_action);
2797 __kfree_skb(skb);
2798 }
2799 }
2800
2801 if (sd->output_queue) {
2802 struct Qdisc *head;
2803
2804 local_irq_disable();
2805 head = sd->output_queue;
2806 sd->output_queue = NULL;
2807 sd->output_queue_tailp = &sd->output_queue;
2808 local_irq_enable();
2809
2810 while (head) {
2811 struct Qdisc *q = head;
2812 spinlock_t *root_lock;
2813
2814 head = head->next_sched;
2815
2816 root_lock = qdisc_lock(q);
2817 if (spin_trylock(root_lock)) {
2818 smp_mb__before_clear_bit();
2819 clear_bit(__QDISC_STATE_SCHED,
2820 &q->state);
2821 qdisc_run(q);
2822 spin_unlock(root_lock);
2823 } else {
2824 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2825 &q->state)) {
2826 __netif_reschedule(q);
2827 } else {
2828 smp_mb__before_clear_bit();
2829 clear_bit(__QDISC_STATE_SCHED,
2830 &q->state);
2831 }
2832 }
2833 }
2834 }
2835 }
2836
2837 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2838 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2839 /* This hook is defined here for ATM LANE */
2840 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2841 unsigned char *addr) __read_mostly;
2842 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2843 #endif
2844
2845 #ifdef CONFIG_NET_CLS_ACT
2846 /* TODO: Maybe we should just force sch_ingress to be compiled in
2847 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2848 * a compare and 2 stores extra right now if we dont have it on
2849 * but have CONFIG_NET_CLS_ACT
2850 * NOTE: This doesnt stop any functionality; if you dont have
2851 * the ingress scheduler, you just cant add policies on ingress.
2852 *
2853 */
2854 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2855 {
2856 struct net_device *dev = skb->dev;
2857 u32 ttl = G_TC_RTTL(skb->tc_verd);
2858 int result = TC_ACT_OK;
2859 struct Qdisc *q;
2860
2861 if (unlikely(MAX_RED_LOOP < ttl++)) {
2862 if (net_ratelimit())
2863 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2864 skb->skb_iif, dev->ifindex);
2865 return TC_ACT_SHOT;
2866 }
2867
2868 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2869 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2870
2871 q = rxq->qdisc;
2872 if (q != &noop_qdisc) {
2873 spin_lock(qdisc_lock(q));
2874 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2875 result = qdisc_enqueue_root(skb, q);
2876 spin_unlock(qdisc_lock(q));
2877 }
2878
2879 return result;
2880 }
2881
2882 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2883 struct packet_type **pt_prev,
2884 int *ret, struct net_device *orig_dev)
2885 {
2886 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2887
2888 if (!rxq || rxq->qdisc == &noop_qdisc)
2889 goto out;
2890
2891 if (*pt_prev) {
2892 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2893 *pt_prev = NULL;
2894 }
2895
2896 switch (ing_filter(skb, rxq)) {
2897 case TC_ACT_SHOT:
2898 case TC_ACT_STOLEN:
2899 kfree_skb(skb);
2900 return NULL;
2901 }
2902
2903 out:
2904 skb->tc_verd = 0;
2905 return skb;
2906 }
2907 #endif
2908
2909 /**
2910 * netdev_rx_handler_register - register receive handler
2911 * @dev: device to register a handler for
2912 * @rx_handler: receive handler to register
2913 * @rx_handler_data: data pointer that is used by rx handler
2914 *
2915 * Register a receive hander for a device. This handler will then be
2916 * called from __netif_receive_skb. A negative errno code is returned
2917 * on a failure.
2918 *
2919 * The caller must hold the rtnl_mutex.
2920 */
2921 int netdev_rx_handler_register(struct net_device *dev,
2922 rx_handler_func_t *rx_handler,
2923 void *rx_handler_data)
2924 {
2925 ASSERT_RTNL();
2926
2927 if (dev->rx_handler)
2928 return -EBUSY;
2929
2930 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2931 rcu_assign_pointer(dev->rx_handler, rx_handler);
2932
2933 return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2936
2937 /**
2938 * netdev_rx_handler_unregister - unregister receive handler
2939 * @dev: device to unregister a handler from
2940 *
2941 * Unregister a receive hander from a device.
2942 *
2943 * The caller must hold the rtnl_mutex.
2944 */
2945 void netdev_rx_handler_unregister(struct net_device *dev)
2946 {
2947
2948 ASSERT_RTNL();
2949 rcu_assign_pointer(dev->rx_handler, NULL);
2950 rcu_assign_pointer(dev->rx_handler_data, NULL);
2951 }
2952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2953
2954 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2955 struct net_device *master)
2956 {
2957 if (skb->pkt_type == PACKET_HOST) {
2958 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2959
2960 memcpy(dest, master->dev_addr, ETH_ALEN);
2961 }
2962 }
2963
2964 /* On bonding slaves other than the currently active slave, suppress
2965 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2966 * ARP on active-backup slaves with arp_validate enabled.
2967 */
2968 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2969 {
2970 struct net_device *dev = skb->dev;
2971
2972 if (master->priv_flags & IFF_MASTER_ARPMON)
2973 dev->last_rx = jiffies;
2974
2975 if ((master->priv_flags & IFF_MASTER_ALB) &&
2976 (master->priv_flags & IFF_BRIDGE_PORT)) {
2977 /* Do address unmangle. The local destination address
2978 * will be always the one master has. Provides the right
2979 * functionality in a bridge.
2980 */
2981 skb_bond_set_mac_by_master(skb, master);
2982 }
2983
2984 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2985 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2986 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2987 return 0;
2988
2989 if (master->priv_flags & IFF_MASTER_ALB) {
2990 if (skb->pkt_type != PACKET_BROADCAST &&
2991 skb->pkt_type != PACKET_MULTICAST)
2992 return 0;
2993 }
2994 if (master->priv_flags & IFF_MASTER_8023AD &&
2995 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2996 return 0;
2997
2998 return 1;
2999 }
3000 return 0;
3001 }
3002 EXPORT_SYMBOL(__skb_bond_should_drop);
3003
3004 static int __netif_receive_skb(struct sk_buff *skb)
3005 {
3006 struct packet_type *ptype, *pt_prev;
3007 rx_handler_func_t *rx_handler;
3008 struct net_device *orig_dev;
3009 struct net_device *master;
3010 struct net_device *null_or_orig;
3011 struct net_device *orig_or_bond;
3012 int ret = NET_RX_DROP;
3013 __be16 type;
3014
3015 if (!netdev_tstamp_prequeue)
3016 net_timestamp_check(skb);
3017
3018 trace_netif_receive_skb(skb);
3019
3020 /* if we've gotten here through NAPI, check netpoll */
3021 if (netpoll_receive_skb(skb))
3022 return NET_RX_DROP;
3023
3024 if (!skb->skb_iif)
3025 skb->skb_iif = skb->dev->ifindex;
3026
3027 /*
3028 * bonding note: skbs received on inactive slaves should only
3029 * be delivered to pkt handlers that are exact matches. Also
3030 * the deliver_no_wcard flag will be set. If packet handlers
3031 * are sensitive to duplicate packets these skbs will need to
3032 * be dropped at the handler.
3033 */
3034 null_or_orig = NULL;
3035 orig_dev = skb->dev;
3036 master = ACCESS_ONCE(orig_dev->master);
3037 if (skb->deliver_no_wcard)
3038 null_or_orig = orig_dev;
3039 else if (master) {
3040 if (skb_bond_should_drop(skb, master)) {
3041 skb->deliver_no_wcard = 1;
3042 null_or_orig = orig_dev; /* deliver only exact match */
3043 } else
3044 skb->dev = master;
3045 }
3046
3047 __this_cpu_inc(softnet_data.processed);
3048 skb_reset_network_header(skb);
3049 skb_reset_transport_header(skb);
3050 skb->mac_len = skb->network_header - skb->mac_header;
3051
3052 pt_prev = NULL;
3053
3054 rcu_read_lock();
3055
3056 #ifdef CONFIG_NET_CLS_ACT
3057 if (skb->tc_verd & TC_NCLS) {
3058 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3059 goto ncls;
3060 }
3061 #endif
3062
3063 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3064 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3065 ptype->dev == orig_dev) {
3066 if (pt_prev)
3067 ret = deliver_skb(skb, pt_prev, orig_dev);
3068 pt_prev = ptype;
3069 }
3070 }
3071
3072 #ifdef CONFIG_NET_CLS_ACT
3073 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3074 if (!skb)
3075 goto out;
3076 ncls:
3077 #endif
3078
3079 /* Handle special case of bridge or macvlan */
3080 rx_handler = rcu_dereference(skb->dev->rx_handler);
3081 if (rx_handler) {
3082 if (pt_prev) {
3083 ret = deliver_skb(skb, pt_prev, orig_dev);
3084 pt_prev = NULL;
3085 }
3086 skb = rx_handler(skb);
3087 if (!skb)
3088 goto out;
3089 }
3090
3091 if (vlan_tx_tag_present(skb)) {
3092 if (pt_prev) {
3093 ret = deliver_skb(skb, pt_prev, orig_dev);
3094 pt_prev = NULL;
3095 }
3096 if (vlan_hwaccel_do_receive(&skb)) {
3097 ret = __netif_receive_skb(skb);
3098 goto out;
3099 } else if (unlikely(!skb))
3100 goto out;
3101 }
3102
3103 /*
3104 * Make sure frames received on VLAN interfaces stacked on
3105 * bonding interfaces still make their way to any base bonding
3106 * device that may have registered for a specific ptype. The
3107 * handler may have to adjust skb->dev and orig_dev.
3108 */
3109 orig_or_bond = orig_dev;
3110 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3111 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3112 orig_or_bond = vlan_dev_real_dev(skb->dev);
3113 }
3114
3115 type = skb->protocol;
3116 list_for_each_entry_rcu(ptype,
3117 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3118 if (ptype->type == type && (ptype->dev == null_or_orig ||
3119 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3120 ptype->dev == orig_or_bond)) {
3121 if (pt_prev)
3122 ret = deliver_skb(skb, pt_prev, orig_dev);
3123 pt_prev = ptype;
3124 }
3125 }
3126
3127 if (pt_prev) {
3128 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3129 } else {
3130 atomic_long_inc(&skb->dev->rx_dropped);
3131 kfree_skb(skb);
3132 /* Jamal, now you will not able to escape explaining
3133 * me how you were going to use this. :-)
3134 */
3135 ret = NET_RX_DROP;
3136 }
3137
3138 out:
3139 rcu_read_unlock();
3140 return ret;
3141 }
3142
3143 /**
3144 * netif_receive_skb - process receive buffer from network
3145 * @skb: buffer to process
3146 *
3147 * netif_receive_skb() is the main receive data processing function.
3148 * It always succeeds. The buffer may be dropped during processing
3149 * for congestion control or by the protocol layers.
3150 *
3151 * This function may only be called from softirq context and interrupts
3152 * should be enabled.
3153 *
3154 * Return values (usually ignored):
3155 * NET_RX_SUCCESS: no congestion
3156 * NET_RX_DROP: packet was dropped
3157 */
3158 int netif_receive_skb(struct sk_buff *skb)
3159 {
3160 if (netdev_tstamp_prequeue)
3161 net_timestamp_check(skb);
3162
3163 if (skb_defer_rx_timestamp(skb))
3164 return NET_RX_SUCCESS;
3165
3166 #ifdef CONFIG_RPS
3167 {
3168 struct rps_dev_flow voidflow, *rflow = &voidflow;
3169 int cpu, ret;
3170
3171 rcu_read_lock();
3172
3173 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3174
3175 if (cpu >= 0) {
3176 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3177 rcu_read_unlock();
3178 } else {
3179 rcu_read_unlock();
3180 ret = __netif_receive_skb(skb);
3181 }
3182
3183 return ret;
3184 }
3185 #else
3186 return __netif_receive_skb(skb);
3187 #endif
3188 }
3189 EXPORT_SYMBOL(netif_receive_skb);
3190
3191 /* Network device is going away, flush any packets still pending
3192 * Called with irqs disabled.
3193 */
3194 static void flush_backlog(void *arg)
3195 {
3196 struct net_device *dev = arg;
3197 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3198 struct sk_buff *skb, *tmp;
3199
3200 rps_lock(sd);
3201 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3202 if (skb->dev == dev) {
3203 __skb_unlink(skb, &sd->input_pkt_queue);
3204 kfree_skb(skb);
3205 input_queue_head_incr(sd);
3206 }
3207 }
3208 rps_unlock(sd);
3209
3210 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3211 if (skb->dev == dev) {
3212 __skb_unlink(skb, &sd->process_queue);
3213 kfree_skb(skb);
3214 input_queue_head_incr(sd);
3215 }
3216 }
3217 }
3218
3219 static int napi_gro_complete(struct sk_buff *skb)
3220 {
3221 struct packet_type *ptype;
3222 __be16 type = skb->protocol;
3223 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3224 int err = -ENOENT;
3225
3226 if (NAPI_GRO_CB(skb)->count == 1) {
3227 skb_shinfo(skb)->gso_size = 0;
3228 goto out;
3229 }
3230
3231 rcu_read_lock();
3232 list_for_each_entry_rcu(ptype, head, list) {
3233 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3234 continue;
3235
3236 err = ptype->gro_complete(skb);
3237 break;
3238 }
3239 rcu_read_unlock();
3240
3241 if (err) {
3242 WARN_ON(&ptype->list == head);
3243 kfree_skb(skb);
3244 return NET_RX_SUCCESS;
3245 }
3246
3247 out:
3248 return netif_receive_skb(skb);
3249 }
3250
3251 inline void napi_gro_flush(struct napi_struct *napi)
3252 {
3253 struct sk_buff *skb, *next;
3254
3255 for (skb = napi->gro_list; skb; skb = next) {
3256 next = skb->next;
3257 skb->next = NULL;
3258 napi_gro_complete(skb);
3259 }
3260
3261 napi->gro_count = 0;
3262 napi->gro_list = NULL;
3263 }
3264 EXPORT_SYMBOL(napi_gro_flush);
3265
3266 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3267 {
3268 struct sk_buff **pp = NULL;
3269 struct packet_type *ptype;
3270 __be16 type = skb->protocol;
3271 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3272 int same_flow;
3273 int mac_len;
3274 enum gro_result ret;
3275
3276 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3277 goto normal;
3278
3279 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3280 goto normal;
3281
3282 rcu_read_lock();
3283 list_for_each_entry_rcu(ptype, head, list) {
3284 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3285 continue;
3286
3287 skb_set_network_header(skb, skb_gro_offset(skb));
3288 mac_len = skb->network_header - skb->mac_header;
3289 skb->mac_len = mac_len;
3290 NAPI_GRO_CB(skb)->same_flow = 0;
3291 NAPI_GRO_CB(skb)->flush = 0;
3292 NAPI_GRO_CB(skb)->free = 0;
3293
3294 pp = ptype->gro_receive(&napi->gro_list, skb);
3295 break;
3296 }
3297 rcu_read_unlock();
3298
3299 if (&ptype->list == head)
3300 goto normal;
3301
3302 same_flow = NAPI_GRO_CB(skb)->same_flow;
3303 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3304
3305 if (pp) {
3306 struct sk_buff *nskb = *pp;
3307
3308 *pp = nskb->next;
3309 nskb->next = NULL;
3310 napi_gro_complete(nskb);
3311 napi->gro_count--;
3312 }
3313
3314 if (same_flow)
3315 goto ok;
3316
3317 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3318 goto normal;
3319
3320 napi->gro_count++;
3321 NAPI_GRO_CB(skb)->count = 1;
3322 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3323 skb->next = napi->gro_list;
3324 napi->gro_list = skb;
3325 ret = GRO_HELD;
3326
3327 pull:
3328 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3329 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3330
3331 BUG_ON(skb->end - skb->tail < grow);
3332
3333 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3334
3335 skb->tail += grow;
3336 skb->data_len -= grow;
3337
3338 skb_shinfo(skb)->frags[0].page_offset += grow;
3339 skb_shinfo(skb)->frags[0].size -= grow;
3340
3341 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3342 put_page(skb_shinfo(skb)->frags[0].page);
3343 memmove(skb_shinfo(skb)->frags,
3344 skb_shinfo(skb)->frags + 1,
3345 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3346 }
3347 }
3348
3349 ok:
3350 return ret;
3351
3352 normal:
3353 ret = GRO_NORMAL;
3354 goto pull;
3355 }
3356 EXPORT_SYMBOL(dev_gro_receive);
3357
3358 static inline gro_result_t
3359 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3360 {
3361 struct sk_buff *p;
3362
3363 for (p = napi->gro_list; p; p = p->next) {
3364 unsigned long diffs;
3365
3366 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3367 diffs |= p->vlan_tci ^ skb->vlan_tci;
3368 diffs |= compare_ether_header(skb_mac_header(p),
3369 skb_gro_mac_header(skb));
3370 NAPI_GRO_CB(p)->same_flow = !diffs;
3371 NAPI_GRO_CB(p)->flush = 0;
3372 }
3373
3374 return dev_gro_receive(napi, skb);
3375 }
3376
3377 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3378 {
3379 switch (ret) {
3380 case GRO_NORMAL:
3381 if (netif_receive_skb(skb))
3382 ret = GRO_DROP;
3383 break;
3384
3385 case GRO_DROP:
3386 case GRO_MERGED_FREE:
3387 kfree_skb(skb);
3388 break;
3389
3390 case GRO_HELD:
3391 case GRO_MERGED:
3392 break;
3393 }
3394
3395 return ret;
3396 }
3397 EXPORT_SYMBOL(napi_skb_finish);
3398
3399 void skb_gro_reset_offset(struct sk_buff *skb)
3400 {
3401 NAPI_GRO_CB(skb)->data_offset = 0;
3402 NAPI_GRO_CB(skb)->frag0 = NULL;
3403 NAPI_GRO_CB(skb)->frag0_len = 0;
3404
3405 if (skb->mac_header == skb->tail &&
3406 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3407 NAPI_GRO_CB(skb)->frag0 =
3408 page_address(skb_shinfo(skb)->frags[0].page) +
3409 skb_shinfo(skb)->frags[0].page_offset;
3410 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3411 }
3412 }
3413 EXPORT_SYMBOL(skb_gro_reset_offset);
3414
3415 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3416 {
3417 skb_gro_reset_offset(skb);
3418
3419 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3420 }
3421 EXPORT_SYMBOL(napi_gro_receive);
3422
3423 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3424 {
3425 __skb_pull(skb, skb_headlen(skb));
3426 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3427 skb->vlan_tci = 0;
3428 skb->dev = napi->dev;
3429
3430 napi->skb = skb;
3431 }
3432
3433 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3434 {
3435 struct sk_buff *skb = napi->skb;
3436
3437 if (!skb) {
3438 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3439 if (skb)
3440 napi->skb = skb;
3441 }
3442 return skb;
3443 }
3444 EXPORT_SYMBOL(napi_get_frags);
3445
3446 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3447 gro_result_t ret)
3448 {
3449 switch (ret) {
3450 case GRO_NORMAL:
3451 case GRO_HELD:
3452 skb->protocol = eth_type_trans(skb, skb->dev);
3453
3454 if (ret == GRO_HELD)
3455 skb_gro_pull(skb, -ETH_HLEN);
3456 else if (netif_receive_skb(skb))
3457 ret = GRO_DROP;
3458 break;
3459
3460 case GRO_DROP:
3461 case GRO_MERGED_FREE:
3462 napi_reuse_skb(napi, skb);
3463 break;
3464
3465 case GRO_MERGED:
3466 break;
3467 }
3468
3469 return ret;
3470 }
3471 EXPORT_SYMBOL(napi_frags_finish);
3472
3473 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3474 {
3475 struct sk_buff *skb = napi->skb;
3476 struct ethhdr *eth;
3477 unsigned int hlen;
3478 unsigned int off;
3479
3480 napi->skb = NULL;
3481
3482 skb_reset_mac_header(skb);
3483 skb_gro_reset_offset(skb);
3484
3485 off = skb_gro_offset(skb);
3486 hlen = off + sizeof(*eth);
3487 eth = skb_gro_header_fast(skb, off);
3488 if (skb_gro_header_hard(skb, hlen)) {
3489 eth = skb_gro_header_slow(skb, hlen, off);
3490 if (unlikely(!eth)) {
3491 napi_reuse_skb(napi, skb);
3492 skb = NULL;
3493 goto out;
3494 }
3495 }
3496
3497 skb_gro_pull(skb, sizeof(*eth));
3498
3499 /*
3500 * This works because the only protocols we care about don't require
3501 * special handling. We'll fix it up properly at the end.
3502 */
3503 skb->protocol = eth->h_proto;
3504
3505 out:
3506 return skb;
3507 }
3508 EXPORT_SYMBOL(napi_frags_skb);
3509
3510 gro_result_t napi_gro_frags(struct napi_struct *napi)
3511 {
3512 struct sk_buff *skb = napi_frags_skb(napi);
3513
3514 if (!skb)
3515 return GRO_DROP;
3516
3517 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3518 }
3519 EXPORT_SYMBOL(napi_gro_frags);
3520
3521 /*
3522 * net_rps_action sends any pending IPI's for rps.
3523 * Note: called with local irq disabled, but exits with local irq enabled.
3524 */
3525 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3526 {
3527 #ifdef CONFIG_RPS
3528 struct softnet_data *remsd = sd->rps_ipi_list;
3529
3530 if (remsd) {
3531 sd->rps_ipi_list = NULL;
3532
3533 local_irq_enable();
3534
3535 /* Send pending IPI's to kick RPS processing on remote cpus. */
3536 while (remsd) {
3537 struct softnet_data *next = remsd->rps_ipi_next;
3538
3539 if (cpu_online(remsd->cpu))
3540 __smp_call_function_single(remsd->cpu,
3541 &remsd->csd, 0);
3542 remsd = next;
3543 }
3544 } else
3545 #endif
3546 local_irq_enable();
3547 }
3548
3549 static int process_backlog(struct napi_struct *napi, int quota)
3550 {
3551 int work = 0;
3552 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3553
3554 #ifdef CONFIG_RPS
3555 /* Check if we have pending ipi, its better to send them now,
3556 * not waiting net_rx_action() end.
3557 */
3558 if (sd->rps_ipi_list) {
3559 local_irq_disable();
3560 net_rps_action_and_irq_enable(sd);
3561 }
3562 #endif
3563 napi->weight = weight_p;
3564 local_irq_disable();
3565 while (work < quota) {
3566 struct sk_buff *skb;
3567 unsigned int qlen;
3568
3569 while ((skb = __skb_dequeue(&sd->process_queue))) {
3570 local_irq_enable();
3571 __netif_receive_skb(skb);
3572 local_irq_disable();
3573 input_queue_head_incr(sd);
3574 if (++work >= quota) {
3575 local_irq_enable();
3576 return work;
3577 }
3578 }
3579
3580 rps_lock(sd);
3581 qlen = skb_queue_len(&sd->input_pkt_queue);
3582 if (qlen)
3583 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3584 &sd->process_queue);
3585
3586 if (qlen < quota - work) {
3587 /*
3588 * Inline a custom version of __napi_complete().
3589 * only current cpu owns and manipulates this napi,
3590 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3591 * we can use a plain write instead of clear_bit(),
3592 * and we dont need an smp_mb() memory barrier.
3593 */
3594 list_del(&napi->poll_list);
3595 napi->state = 0;
3596
3597 quota = work + qlen;
3598 }
3599 rps_unlock(sd);
3600 }
3601 local_irq_enable();
3602
3603 return work;
3604 }
3605
3606 /**
3607 * __napi_schedule - schedule for receive
3608 * @n: entry to schedule
3609 *
3610 * The entry's receive function will be scheduled to run
3611 */
3612 void __napi_schedule(struct napi_struct *n)
3613 {
3614 unsigned long flags;
3615
3616 local_irq_save(flags);
3617 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3618 local_irq_restore(flags);
3619 }
3620 EXPORT_SYMBOL(__napi_schedule);
3621
3622 void __napi_complete(struct napi_struct *n)
3623 {
3624 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3625 BUG_ON(n->gro_list);
3626
3627 list_del(&n->poll_list);
3628 smp_mb__before_clear_bit();
3629 clear_bit(NAPI_STATE_SCHED, &n->state);
3630 }
3631 EXPORT_SYMBOL(__napi_complete);
3632
3633 void napi_complete(struct napi_struct *n)
3634 {
3635 unsigned long flags;
3636
3637 /*
3638 * don't let napi dequeue from the cpu poll list
3639 * just in case its running on a different cpu
3640 */
3641 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3642 return;
3643
3644 napi_gro_flush(n);
3645 local_irq_save(flags);
3646 __napi_complete(n);
3647 local_irq_restore(flags);
3648 }
3649 EXPORT_SYMBOL(napi_complete);
3650
3651 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3652 int (*poll)(struct napi_struct *, int), int weight)
3653 {
3654 INIT_LIST_HEAD(&napi->poll_list);
3655 napi->gro_count = 0;
3656 napi->gro_list = NULL;
3657 napi->skb = NULL;
3658 napi->poll = poll;
3659 napi->weight = weight;
3660 list_add(&napi->dev_list, &dev->napi_list);
3661 napi->dev = dev;
3662 #ifdef CONFIG_NETPOLL
3663 spin_lock_init(&napi->poll_lock);
3664 napi->poll_owner = -1;
3665 #endif
3666 set_bit(NAPI_STATE_SCHED, &napi->state);
3667 }
3668 EXPORT_SYMBOL(netif_napi_add);
3669
3670 void netif_napi_del(struct napi_struct *napi)
3671 {
3672 struct sk_buff *skb, *next;
3673
3674 list_del_init(&napi->dev_list);
3675 napi_free_frags(napi);
3676
3677 for (skb = napi->gro_list; skb; skb = next) {
3678 next = skb->next;
3679 skb->next = NULL;
3680 kfree_skb(skb);
3681 }
3682
3683 napi->gro_list = NULL;
3684 napi->gro_count = 0;
3685 }
3686 EXPORT_SYMBOL(netif_napi_del);
3687
3688 static void net_rx_action(struct softirq_action *h)
3689 {
3690 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3691 unsigned long time_limit = jiffies + 2;
3692 int budget = netdev_budget;
3693 void *have;
3694
3695 local_irq_disable();
3696
3697 while (!list_empty(&sd->poll_list)) {
3698 struct napi_struct *n;
3699 int work, weight;
3700
3701 /* If softirq window is exhuasted then punt.
3702 * Allow this to run for 2 jiffies since which will allow
3703 * an average latency of 1.5/HZ.
3704 */
3705 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3706 goto softnet_break;
3707
3708 local_irq_enable();
3709
3710 /* Even though interrupts have been re-enabled, this
3711 * access is safe because interrupts can only add new
3712 * entries to the tail of this list, and only ->poll()
3713 * calls can remove this head entry from the list.
3714 */
3715 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3716
3717 have = netpoll_poll_lock(n);
3718
3719 weight = n->weight;
3720
3721 /* This NAPI_STATE_SCHED test is for avoiding a race
3722 * with netpoll's poll_napi(). Only the entity which
3723 * obtains the lock and sees NAPI_STATE_SCHED set will
3724 * actually make the ->poll() call. Therefore we avoid
3725 * accidently calling ->poll() when NAPI is not scheduled.
3726 */
3727 work = 0;
3728 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3729 work = n->poll(n, weight);
3730 trace_napi_poll(n);
3731 }
3732
3733 WARN_ON_ONCE(work > weight);
3734
3735 budget -= work;
3736
3737 local_irq_disable();
3738
3739 /* Drivers must not modify the NAPI state if they
3740 * consume the entire weight. In such cases this code
3741 * still "owns" the NAPI instance and therefore can
3742 * move the instance around on the list at-will.
3743 */
3744 if (unlikely(work == weight)) {
3745 if (unlikely(napi_disable_pending(n))) {
3746 local_irq_enable();
3747 napi_complete(n);
3748 local_irq_disable();
3749 } else
3750 list_move_tail(&n->poll_list, &sd->poll_list);
3751 }
3752
3753 netpoll_poll_unlock(have);
3754 }
3755 out:
3756 net_rps_action_and_irq_enable(sd);
3757
3758 #ifdef CONFIG_NET_DMA
3759 /*
3760 * There may not be any more sk_buffs coming right now, so push
3761 * any pending DMA copies to hardware
3762 */
3763 dma_issue_pending_all();
3764 #endif
3765
3766 return;
3767
3768 softnet_break:
3769 sd->time_squeeze++;
3770 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3771 goto out;
3772 }
3773
3774 static gifconf_func_t *gifconf_list[NPROTO];
3775
3776 /**
3777 * register_gifconf - register a SIOCGIF handler
3778 * @family: Address family
3779 * @gifconf: Function handler
3780 *
3781 * Register protocol dependent address dumping routines. The handler
3782 * that is passed must not be freed or reused until it has been replaced
3783 * by another handler.
3784 */
3785 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3786 {
3787 if (family >= NPROTO)
3788 return -EINVAL;
3789 gifconf_list[family] = gifconf;
3790 return 0;
3791 }
3792 EXPORT_SYMBOL(register_gifconf);
3793
3794
3795 /*
3796 * Map an interface index to its name (SIOCGIFNAME)
3797 */
3798
3799 /*
3800 * We need this ioctl for efficient implementation of the
3801 * if_indextoname() function required by the IPv6 API. Without
3802 * it, we would have to search all the interfaces to find a
3803 * match. --pb
3804 */
3805
3806 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3807 {
3808 struct net_device *dev;
3809 struct ifreq ifr;
3810
3811 /*
3812 * Fetch the caller's info block.
3813 */
3814
3815 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3816 return -EFAULT;
3817
3818 rcu_read_lock();
3819 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3820 if (!dev) {
3821 rcu_read_unlock();
3822 return -ENODEV;
3823 }
3824
3825 strcpy(ifr.ifr_name, dev->name);
3826 rcu_read_unlock();
3827
3828 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3829 return -EFAULT;
3830 return 0;
3831 }
3832
3833 /*
3834 * Perform a SIOCGIFCONF call. This structure will change
3835 * size eventually, and there is nothing I can do about it.
3836 * Thus we will need a 'compatibility mode'.
3837 */
3838
3839 static int dev_ifconf(struct net *net, char __user *arg)
3840 {
3841 struct ifconf ifc;
3842 struct net_device *dev;
3843 char __user *pos;
3844 int len;
3845 int total;
3846 int i;
3847
3848 /*
3849 * Fetch the caller's info block.
3850 */
3851
3852 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3853 return -EFAULT;
3854
3855 pos = ifc.ifc_buf;
3856 len = ifc.ifc_len;
3857
3858 /*
3859 * Loop over the interfaces, and write an info block for each.
3860 */
3861
3862 total = 0;
3863 for_each_netdev(net, dev) {
3864 for (i = 0; i < NPROTO; i++) {
3865 if (gifconf_list[i]) {
3866 int done;
3867 if (!pos)
3868 done = gifconf_list[i](dev, NULL, 0);
3869 else
3870 done = gifconf_list[i](dev, pos + total,
3871 len - total);
3872 if (done < 0)
3873 return -EFAULT;
3874 total += done;
3875 }
3876 }
3877 }
3878
3879 /*
3880 * All done. Write the updated control block back to the caller.
3881 */
3882 ifc.ifc_len = total;
3883
3884 /*
3885 * Both BSD and Solaris return 0 here, so we do too.
3886 */
3887 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3888 }
3889
3890 #ifdef CONFIG_PROC_FS
3891 /*
3892 * This is invoked by the /proc filesystem handler to display a device
3893 * in detail.
3894 */
3895 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3896 __acquires(RCU)
3897 {
3898 struct net *net = seq_file_net(seq);
3899 loff_t off;
3900 struct net_device *dev;
3901
3902 rcu_read_lock();
3903 if (!*pos)
3904 return SEQ_START_TOKEN;
3905
3906 off = 1;
3907 for_each_netdev_rcu(net, dev)
3908 if (off++ == *pos)
3909 return dev;
3910
3911 return NULL;
3912 }
3913
3914 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3915 {
3916 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3917 first_net_device(seq_file_net(seq)) :
3918 next_net_device((struct net_device *)v);
3919
3920 ++*pos;
3921 return rcu_dereference(dev);
3922 }
3923
3924 void dev_seq_stop(struct seq_file *seq, void *v)
3925 __releases(RCU)
3926 {
3927 rcu_read_unlock();
3928 }
3929
3930 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3931 {
3932 struct rtnl_link_stats64 temp;
3933 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3934
3935 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3936 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3937 dev->name, stats->rx_bytes, stats->rx_packets,
3938 stats->rx_errors,
3939 stats->rx_dropped + stats->rx_missed_errors,
3940 stats->rx_fifo_errors,
3941 stats->rx_length_errors + stats->rx_over_errors +
3942 stats->rx_crc_errors + stats->rx_frame_errors,
3943 stats->rx_compressed, stats->multicast,
3944 stats->tx_bytes, stats->tx_packets,
3945 stats->tx_errors, stats->tx_dropped,
3946 stats->tx_fifo_errors, stats->collisions,
3947 stats->tx_carrier_errors +
3948 stats->tx_aborted_errors +
3949 stats->tx_window_errors +
3950 stats->tx_heartbeat_errors,
3951 stats->tx_compressed);
3952 }
3953
3954 /*
3955 * Called from the PROCfs module. This now uses the new arbitrary sized
3956 * /proc/net interface to create /proc/net/dev
3957 */
3958 static int dev_seq_show(struct seq_file *seq, void *v)
3959 {
3960 if (v == SEQ_START_TOKEN)
3961 seq_puts(seq, "Inter-| Receive "
3962 " | Transmit\n"
3963 " face |bytes packets errs drop fifo frame "
3964 "compressed multicast|bytes packets errs "
3965 "drop fifo colls carrier compressed\n");
3966 else
3967 dev_seq_printf_stats(seq, v);
3968 return 0;
3969 }
3970
3971 static struct softnet_data *softnet_get_online(loff_t *pos)
3972 {
3973 struct softnet_data *sd = NULL;
3974
3975 while (*pos < nr_cpu_ids)
3976 if (cpu_online(*pos)) {
3977 sd = &per_cpu(softnet_data, *pos);
3978 break;
3979 } else
3980 ++*pos;
3981 return sd;
3982 }
3983
3984 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3985 {
3986 return softnet_get_online(pos);
3987 }
3988
3989 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3990 {
3991 ++*pos;
3992 return softnet_get_online(pos);
3993 }
3994
3995 static void softnet_seq_stop(struct seq_file *seq, void *v)
3996 {
3997 }
3998
3999 static int softnet_seq_show(struct seq_file *seq, void *v)
4000 {
4001 struct softnet_data *sd = v;
4002
4003 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4004 sd->processed, sd->dropped, sd->time_squeeze, 0,
4005 0, 0, 0, 0, /* was fastroute */
4006 sd->cpu_collision, sd->received_rps);
4007 return 0;
4008 }
4009
4010 static const struct seq_operations dev_seq_ops = {
4011 .start = dev_seq_start,
4012 .next = dev_seq_next,
4013 .stop = dev_seq_stop,
4014 .show = dev_seq_show,
4015 };
4016
4017 static int dev_seq_open(struct inode *inode, struct file *file)
4018 {
4019 return seq_open_net(inode, file, &dev_seq_ops,
4020 sizeof(struct seq_net_private));
4021 }
4022
4023 static const struct file_operations dev_seq_fops = {
4024 .owner = THIS_MODULE,
4025 .open = dev_seq_open,
4026 .read = seq_read,
4027 .llseek = seq_lseek,
4028 .release = seq_release_net,
4029 };
4030
4031 static const struct seq_operations softnet_seq_ops = {
4032 .start = softnet_seq_start,
4033 .next = softnet_seq_next,
4034 .stop = softnet_seq_stop,
4035 .show = softnet_seq_show,
4036 };
4037
4038 static int softnet_seq_open(struct inode *inode, struct file *file)
4039 {
4040 return seq_open(file, &softnet_seq_ops);
4041 }
4042
4043 static const struct file_operations softnet_seq_fops = {
4044 .owner = THIS_MODULE,
4045 .open = softnet_seq_open,
4046 .read = seq_read,
4047 .llseek = seq_lseek,
4048 .release = seq_release,
4049 };
4050
4051 static void *ptype_get_idx(loff_t pos)
4052 {
4053 struct packet_type *pt = NULL;
4054 loff_t i = 0;
4055 int t;
4056
4057 list_for_each_entry_rcu(pt, &ptype_all, list) {
4058 if (i == pos)
4059 return pt;
4060 ++i;
4061 }
4062
4063 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4064 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4065 if (i == pos)
4066 return pt;
4067 ++i;
4068 }
4069 }
4070 return NULL;
4071 }
4072
4073 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4074 __acquires(RCU)
4075 {
4076 rcu_read_lock();
4077 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4078 }
4079
4080 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4081 {
4082 struct packet_type *pt;
4083 struct list_head *nxt;
4084 int hash;
4085
4086 ++*pos;
4087 if (v == SEQ_START_TOKEN)
4088 return ptype_get_idx(0);
4089
4090 pt = v;
4091 nxt = pt->list.next;
4092 if (pt->type == htons(ETH_P_ALL)) {
4093 if (nxt != &ptype_all)
4094 goto found;
4095 hash = 0;
4096 nxt = ptype_base[0].next;
4097 } else
4098 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4099
4100 while (nxt == &ptype_base[hash]) {
4101 if (++hash >= PTYPE_HASH_SIZE)
4102 return NULL;
4103 nxt = ptype_base[hash].next;
4104 }
4105 found:
4106 return list_entry(nxt, struct packet_type, list);
4107 }
4108
4109 static void ptype_seq_stop(struct seq_file *seq, void *v)
4110 __releases(RCU)
4111 {
4112 rcu_read_unlock();
4113 }
4114
4115 static int ptype_seq_show(struct seq_file *seq, void *v)
4116 {
4117 struct packet_type *pt = v;
4118
4119 if (v == SEQ_START_TOKEN)
4120 seq_puts(seq, "Type Device Function\n");
4121 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4122 if (pt->type == htons(ETH_P_ALL))
4123 seq_puts(seq, "ALL ");
4124 else
4125 seq_printf(seq, "%04x", ntohs(pt->type));
4126
4127 seq_printf(seq, " %-8s %pF\n",
4128 pt->dev ? pt->dev->name : "", pt->func);
4129 }
4130
4131 return 0;
4132 }
4133
4134 static const struct seq_operations ptype_seq_ops = {
4135 .start = ptype_seq_start,
4136 .next = ptype_seq_next,
4137 .stop = ptype_seq_stop,
4138 .show = ptype_seq_show,
4139 };
4140
4141 static int ptype_seq_open(struct inode *inode, struct file *file)
4142 {
4143 return seq_open_net(inode, file, &ptype_seq_ops,
4144 sizeof(struct seq_net_private));
4145 }
4146
4147 static const struct file_operations ptype_seq_fops = {
4148 .owner = THIS_MODULE,
4149 .open = ptype_seq_open,
4150 .read = seq_read,
4151 .llseek = seq_lseek,
4152 .release = seq_release_net,
4153 };
4154
4155
4156 static int __net_init dev_proc_net_init(struct net *net)
4157 {
4158 int rc = -ENOMEM;
4159
4160 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4161 goto out;
4162 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4163 goto out_dev;
4164 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4165 goto out_softnet;
4166
4167 if (wext_proc_init(net))
4168 goto out_ptype;
4169 rc = 0;
4170 out:
4171 return rc;
4172 out_ptype:
4173 proc_net_remove(net, "ptype");
4174 out_softnet:
4175 proc_net_remove(net, "softnet_stat");
4176 out_dev:
4177 proc_net_remove(net, "dev");
4178 goto out;
4179 }
4180
4181 static void __net_exit dev_proc_net_exit(struct net *net)
4182 {
4183 wext_proc_exit(net);
4184
4185 proc_net_remove(net, "ptype");
4186 proc_net_remove(net, "softnet_stat");
4187 proc_net_remove(net, "dev");
4188 }
4189
4190 static struct pernet_operations __net_initdata dev_proc_ops = {
4191 .init = dev_proc_net_init,
4192 .exit = dev_proc_net_exit,
4193 };
4194
4195 static int __init dev_proc_init(void)
4196 {
4197 return register_pernet_subsys(&dev_proc_ops);
4198 }
4199 #else
4200 #define dev_proc_init() 0
4201 #endif /* CONFIG_PROC_FS */
4202
4203
4204 /**
4205 * netdev_set_master - set up master/slave pair
4206 * @slave: slave device
4207 * @master: new master device
4208 *
4209 * Changes the master device of the slave. Pass %NULL to break the
4210 * bonding. The caller must hold the RTNL semaphore. On a failure
4211 * a negative errno code is returned. On success the reference counts
4212 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4213 * function returns zero.
4214 */
4215 int netdev_set_master(struct net_device *slave, struct net_device *master)
4216 {
4217 struct net_device *old = slave->master;
4218
4219 ASSERT_RTNL();
4220
4221 if (master) {
4222 if (old)
4223 return -EBUSY;
4224 dev_hold(master);
4225 }
4226
4227 slave->master = master;
4228
4229 if (old) {
4230 synchronize_net();
4231 dev_put(old);
4232 }
4233 if (master)
4234 slave->flags |= IFF_SLAVE;
4235 else
4236 slave->flags &= ~IFF_SLAVE;
4237
4238 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4239 return 0;
4240 }
4241 EXPORT_SYMBOL(netdev_set_master);
4242
4243 static void dev_change_rx_flags(struct net_device *dev, int flags)
4244 {
4245 const struct net_device_ops *ops = dev->netdev_ops;
4246
4247 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4248 ops->ndo_change_rx_flags(dev, flags);
4249 }
4250
4251 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4252 {
4253 unsigned short old_flags = dev->flags;
4254 uid_t uid;
4255 gid_t gid;
4256
4257 ASSERT_RTNL();
4258
4259 dev->flags |= IFF_PROMISC;
4260 dev->promiscuity += inc;
4261 if (dev->promiscuity == 0) {
4262 /*
4263 * Avoid overflow.
4264 * If inc causes overflow, untouch promisc and return error.
4265 */
4266 if (inc < 0)
4267 dev->flags &= ~IFF_PROMISC;
4268 else {
4269 dev->promiscuity -= inc;
4270 printk(KERN_WARNING "%s: promiscuity touches roof, "
4271 "set promiscuity failed, promiscuity feature "
4272 "of device might be broken.\n", dev->name);
4273 return -EOVERFLOW;
4274 }
4275 }
4276 if (dev->flags != old_flags) {
4277 printk(KERN_INFO "device %s %s promiscuous mode\n",
4278 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4279 "left");
4280 if (audit_enabled) {
4281 current_uid_gid(&uid, &gid);
4282 audit_log(current->audit_context, GFP_ATOMIC,
4283 AUDIT_ANOM_PROMISCUOUS,
4284 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4285 dev->name, (dev->flags & IFF_PROMISC),
4286 (old_flags & IFF_PROMISC),
4287 audit_get_loginuid(current),
4288 uid, gid,
4289 audit_get_sessionid(current));
4290 }
4291
4292 dev_change_rx_flags(dev, IFF_PROMISC);
4293 }
4294 return 0;
4295 }
4296
4297 /**
4298 * dev_set_promiscuity - update promiscuity count on a device
4299 * @dev: device
4300 * @inc: modifier
4301 *
4302 * Add or remove promiscuity from a device. While the count in the device
4303 * remains above zero the interface remains promiscuous. Once it hits zero
4304 * the device reverts back to normal filtering operation. A negative inc
4305 * value is used to drop promiscuity on the device.
4306 * Return 0 if successful or a negative errno code on error.
4307 */
4308 int dev_set_promiscuity(struct net_device *dev, int inc)
4309 {
4310 unsigned short old_flags = dev->flags;
4311 int err;
4312
4313 err = __dev_set_promiscuity(dev, inc);
4314 if (err < 0)
4315 return err;
4316 if (dev->flags != old_flags)
4317 dev_set_rx_mode(dev);
4318 return err;
4319 }
4320 EXPORT_SYMBOL(dev_set_promiscuity);
4321
4322 /**
4323 * dev_set_allmulti - update allmulti count on a device
4324 * @dev: device
4325 * @inc: modifier
4326 *
4327 * Add or remove reception of all multicast frames to a device. While the
4328 * count in the device remains above zero the interface remains listening
4329 * to all interfaces. Once it hits zero the device reverts back to normal
4330 * filtering operation. A negative @inc value is used to drop the counter
4331 * when releasing a resource needing all multicasts.
4332 * Return 0 if successful or a negative errno code on error.
4333 */
4334
4335 int dev_set_allmulti(struct net_device *dev, int inc)
4336 {
4337 unsigned short old_flags = dev->flags;
4338
4339 ASSERT_RTNL();
4340
4341 dev->flags |= IFF_ALLMULTI;
4342 dev->allmulti += inc;
4343 if (dev->allmulti == 0) {
4344 /*
4345 * Avoid overflow.
4346 * If inc causes overflow, untouch allmulti and return error.
4347 */
4348 if (inc < 0)
4349 dev->flags &= ~IFF_ALLMULTI;
4350 else {
4351 dev->allmulti -= inc;
4352 printk(KERN_WARNING "%s: allmulti touches roof, "
4353 "set allmulti failed, allmulti feature of "
4354 "device might be broken.\n", dev->name);
4355 return -EOVERFLOW;
4356 }
4357 }
4358 if (dev->flags ^ old_flags) {
4359 dev_change_rx_flags(dev, IFF_ALLMULTI);
4360 dev_set_rx_mode(dev);
4361 }
4362 return 0;
4363 }
4364 EXPORT_SYMBOL(dev_set_allmulti);
4365
4366 /*
4367 * Upload unicast and multicast address lists to device and
4368 * configure RX filtering. When the device doesn't support unicast
4369 * filtering it is put in promiscuous mode while unicast addresses
4370 * are present.
4371 */
4372 void __dev_set_rx_mode(struct net_device *dev)
4373 {
4374 const struct net_device_ops *ops = dev->netdev_ops;
4375
4376 /* dev_open will call this function so the list will stay sane. */
4377 if (!(dev->flags&IFF_UP))
4378 return;
4379
4380 if (!netif_device_present(dev))
4381 return;
4382
4383 if (ops->ndo_set_rx_mode)
4384 ops->ndo_set_rx_mode(dev);
4385 else {
4386 /* Unicast addresses changes may only happen under the rtnl,
4387 * therefore calling __dev_set_promiscuity here is safe.
4388 */
4389 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4390 __dev_set_promiscuity(dev, 1);
4391 dev->uc_promisc = 1;
4392 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4393 __dev_set_promiscuity(dev, -1);
4394 dev->uc_promisc = 0;
4395 }
4396
4397 if (ops->ndo_set_multicast_list)
4398 ops->ndo_set_multicast_list(dev);
4399 }
4400 }
4401
4402 void dev_set_rx_mode(struct net_device *dev)
4403 {
4404 netif_addr_lock_bh(dev);
4405 __dev_set_rx_mode(dev);
4406 netif_addr_unlock_bh(dev);
4407 }
4408
4409 /**
4410 * dev_get_flags - get flags reported to userspace
4411 * @dev: device
4412 *
4413 * Get the combination of flag bits exported through APIs to userspace.
4414 */
4415 unsigned dev_get_flags(const struct net_device *dev)
4416 {
4417 unsigned flags;
4418
4419 flags = (dev->flags & ~(IFF_PROMISC |
4420 IFF_ALLMULTI |
4421 IFF_RUNNING |
4422 IFF_LOWER_UP |
4423 IFF_DORMANT)) |
4424 (dev->gflags & (IFF_PROMISC |
4425 IFF_ALLMULTI));
4426
4427 if (netif_running(dev)) {
4428 if (netif_oper_up(dev))
4429 flags |= IFF_RUNNING;
4430 if (netif_carrier_ok(dev))
4431 flags |= IFF_LOWER_UP;
4432 if (netif_dormant(dev))
4433 flags |= IFF_DORMANT;
4434 }
4435
4436 return flags;
4437 }
4438 EXPORT_SYMBOL(dev_get_flags);
4439
4440 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4441 {
4442 int old_flags = dev->flags;
4443 int ret;
4444
4445 ASSERT_RTNL();
4446
4447 /*
4448 * Set the flags on our device.
4449 */
4450
4451 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4452 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4453 IFF_AUTOMEDIA)) |
4454 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4455 IFF_ALLMULTI));
4456
4457 /*
4458 * Load in the correct multicast list now the flags have changed.
4459 */
4460
4461 if ((old_flags ^ flags) & IFF_MULTICAST)
4462 dev_change_rx_flags(dev, IFF_MULTICAST);
4463
4464 dev_set_rx_mode(dev);
4465
4466 /*
4467 * Have we downed the interface. We handle IFF_UP ourselves
4468 * according to user attempts to set it, rather than blindly
4469 * setting it.
4470 */
4471
4472 ret = 0;
4473 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4474 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4475
4476 if (!ret)
4477 dev_set_rx_mode(dev);
4478 }
4479
4480 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4481 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4482
4483 dev->gflags ^= IFF_PROMISC;
4484 dev_set_promiscuity(dev, inc);
4485 }
4486
4487 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4488 is important. Some (broken) drivers set IFF_PROMISC, when
4489 IFF_ALLMULTI is requested not asking us and not reporting.
4490 */
4491 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4492 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4493
4494 dev->gflags ^= IFF_ALLMULTI;
4495 dev_set_allmulti(dev, inc);
4496 }
4497
4498 return ret;
4499 }
4500
4501 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4502 {
4503 unsigned int changes = dev->flags ^ old_flags;
4504
4505 if (changes & IFF_UP) {
4506 if (dev->flags & IFF_UP)
4507 call_netdevice_notifiers(NETDEV_UP, dev);
4508 else
4509 call_netdevice_notifiers(NETDEV_DOWN, dev);
4510 }
4511
4512 if (dev->flags & IFF_UP &&
4513 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4514 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4515 }
4516
4517 /**
4518 * dev_change_flags - change device settings
4519 * @dev: device
4520 * @flags: device state flags
4521 *
4522 * Change settings on device based state flags. The flags are
4523 * in the userspace exported format.
4524 */
4525 int dev_change_flags(struct net_device *dev, unsigned flags)
4526 {
4527 int ret, changes;
4528 int old_flags = dev->flags;
4529
4530 ret = __dev_change_flags(dev, flags);
4531 if (ret < 0)
4532 return ret;
4533
4534 changes = old_flags ^ dev->flags;
4535 if (changes)
4536 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4537
4538 __dev_notify_flags(dev, old_flags);
4539 return ret;
4540 }
4541 EXPORT_SYMBOL(dev_change_flags);
4542
4543 /**
4544 * dev_set_mtu - Change maximum transfer unit
4545 * @dev: device
4546 * @new_mtu: new transfer unit
4547 *
4548 * Change the maximum transfer size of the network device.
4549 */
4550 int dev_set_mtu(struct net_device *dev, int new_mtu)
4551 {
4552 const struct net_device_ops *ops = dev->netdev_ops;
4553 int err;
4554
4555 if (new_mtu == dev->mtu)
4556 return 0;
4557
4558 /* MTU must be positive. */
4559 if (new_mtu < 0)
4560 return -EINVAL;
4561
4562 if (!netif_device_present(dev))
4563 return -ENODEV;
4564
4565 err = 0;
4566 if (ops->ndo_change_mtu)
4567 err = ops->ndo_change_mtu(dev, new_mtu);
4568 else
4569 dev->mtu = new_mtu;
4570
4571 if (!err && dev->flags & IFF_UP)
4572 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4573 return err;
4574 }
4575 EXPORT_SYMBOL(dev_set_mtu);
4576
4577 /**
4578 * dev_set_mac_address - Change Media Access Control Address
4579 * @dev: device
4580 * @sa: new address
4581 *
4582 * Change the hardware (MAC) address of the device
4583 */
4584 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4585 {
4586 const struct net_device_ops *ops = dev->netdev_ops;
4587 int err;
4588
4589 if (!ops->ndo_set_mac_address)
4590 return -EOPNOTSUPP;
4591 if (sa->sa_family != dev->type)
4592 return -EINVAL;
4593 if (!netif_device_present(dev))
4594 return -ENODEV;
4595 err = ops->ndo_set_mac_address(dev, sa);
4596 if (!err)
4597 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4598 return err;
4599 }
4600 EXPORT_SYMBOL(dev_set_mac_address);
4601
4602 /*
4603 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4604 */
4605 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4606 {
4607 int err;
4608 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4609
4610 if (!dev)
4611 return -ENODEV;
4612
4613 switch (cmd) {
4614 case SIOCGIFFLAGS: /* Get interface flags */
4615 ifr->ifr_flags = (short) dev_get_flags(dev);
4616 return 0;
4617
4618 case SIOCGIFMETRIC: /* Get the metric on the interface
4619 (currently unused) */
4620 ifr->ifr_metric = 0;
4621 return 0;
4622
4623 case SIOCGIFMTU: /* Get the MTU of a device */
4624 ifr->ifr_mtu = dev->mtu;
4625 return 0;
4626
4627 case SIOCGIFHWADDR:
4628 if (!dev->addr_len)
4629 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4630 else
4631 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4632 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4633 ifr->ifr_hwaddr.sa_family = dev->type;
4634 return 0;
4635
4636 case SIOCGIFSLAVE:
4637 err = -EINVAL;
4638 break;
4639
4640 case SIOCGIFMAP:
4641 ifr->ifr_map.mem_start = dev->mem_start;
4642 ifr->ifr_map.mem_end = dev->mem_end;
4643 ifr->ifr_map.base_addr = dev->base_addr;
4644 ifr->ifr_map.irq = dev->irq;
4645 ifr->ifr_map.dma = dev->dma;
4646 ifr->ifr_map.port = dev->if_port;
4647 return 0;
4648
4649 case SIOCGIFINDEX:
4650 ifr->ifr_ifindex = dev->ifindex;
4651 return 0;
4652
4653 case SIOCGIFTXQLEN:
4654 ifr->ifr_qlen = dev->tx_queue_len;
4655 return 0;
4656
4657 default:
4658 /* dev_ioctl() should ensure this case
4659 * is never reached
4660 */
4661 WARN_ON(1);
4662 err = -EINVAL;
4663 break;
4664
4665 }
4666 return err;
4667 }
4668
4669 /*
4670 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4671 */
4672 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4673 {
4674 int err;
4675 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4676 const struct net_device_ops *ops;
4677
4678 if (!dev)
4679 return -ENODEV;
4680
4681 ops = dev->netdev_ops;
4682
4683 switch (cmd) {
4684 case SIOCSIFFLAGS: /* Set interface flags */
4685 return dev_change_flags(dev, ifr->ifr_flags);
4686
4687 case SIOCSIFMETRIC: /* Set the metric on the interface
4688 (currently unused) */
4689 return -EOPNOTSUPP;
4690
4691 case SIOCSIFMTU: /* Set the MTU of a device */
4692 return dev_set_mtu(dev, ifr->ifr_mtu);
4693
4694 case SIOCSIFHWADDR:
4695 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4696
4697 case SIOCSIFHWBROADCAST:
4698 if (ifr->ifr_hwaddr.sa_family != dev->type)
4699 return -EINVAL;
4700 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4701 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4702 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4703 return 0;
4704
4705 case SIOCSIFMAP:
4706 if (ops->ndo_set_config) {
4707 if (!netif_device_present(dev))
4708 return -ENODEV;
4709 return ops->ndo_set_config(dev, &ifr->ifr_map);
4710 }
4711 return -EOPNOTSUPP;
4712
4713 case SIOCADDMULTI:
4714 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4715 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4716 return -EINVAL;
4717 if (!netif_device_present(dev))
4718 return -ENODEV;
4719 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4720
4721 case SIOCDELMULTI:
4722 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4723 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4724 return -EINVAL;
4725 if (!netif_device_present(dev))
4726 return -ENODEV;
4727 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4728
4729 case SIOCSIFTXQLEN:
4730 if (ifr->ifr_qlen < 0)
4731 return -EINVAL;
4732 dev->tx_queue_len = ifr->ifr_qlen;
4733 return 0;
4734
4735 case SIOCSIFNAME:
4736 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4737 return dev_change_name(dev, ifr->ifr_newname);
4738
4739 /*
4740 * Unknown or private ioctl
4741 */
4742 default:
4743 if ((cmd >= SIOCDEVPRIVATE &&
4744 cmd <= SIOCDEVPRIVATE + 15) ||
4745 cmd == SIOCBONDENSLAVE ||
4746 cmd == SIOCBONDRELEASE ||
4747 cmd == SIOCBONDSETHWADDR ||
4748 cmd == SIOCBONDSLAVEINFOQUERY ||
4749 cmd == SIOCBONDINFOQUERY ||
4750 cmd == SIOCBONDCHANGEACTIVE ||
4751 cmd == SIOCGMIIPHY ||
4752 cmd == SIOCGMIIREG ||
4753 cmd == SIOCSMIIREG ||
4754 cmd == SIOCBRADDIF ||
4755 cmd == SIOCBRDELIF ||
4756 cmd == SIOCSHWTSTAMP ||
4757 cmd == SIOCWANDEV) {
4758 err = -EOPNOTSUPP;
4759 if (ops->ndo_do_ioctl) {
4760 if (netif_device_present(dev))
4761 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4762 else
4763 err = -ENODEV;
4764 }
4765 } else
4766 err = -EINVAL;
4767
4768 }
4769 return err;
4770 }
4771
4772 /*
4773 * This function handles all "interface"-type I/O control requests. The actual
4774 * 'doing' part of this is dev_ifsioc above.
4775 */
4776
4777 /**
4778 * dev_ioctl - network device ioctl
4779 * @net: the applicable net namespace
4780 * @cmd: command to issue
4781 * @arg: pointer to a struct ifreq in user space
4782 *
4783 * Issue ioctl functions to devices. This is normally called by the
4784 * user space syscall interfaces but can sometimes be useful for
4785 * other purposes. The return value is the return from the syscall if
4786 * positive or a negative errno code on error.
4787 */
4788
4789 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4790 {
4791 struct ifreq ifr;
4792 int ret;
4793 char *colon;
4794
4795 /* One special case: SIOCGIFCONF takes ifconf argument
4796 and requires shared lock, because it sleeps writing
4797 to user space.
4798 */
4799
4800 if (cmd == SIOCGIFCONF) {
4801 rtnl_lock();
4802 ret = dev_ifconf(net, (char __user *) arg);
4803 rtnl_unlock();
4804 return ret;
4805 }
4806 if (cmd == SIOCGIFNAME)
4807 return dev_ifname(net, (struct ifreq __user *)arg);
4808
4809 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4810 return -EFAULT;
4811
4812 ifr.ifr_name[IFNAMSIZ-1] = 0;
4813
4814 colon = strchr(ifr.ifr_name, ':');
4815 if (colon)
4816 *colon = 0;
4817
4818 /*
4819 * See which interface the caller is talking about.
4820 */
4821
4822 switch (cmd) {
4823 /*
4824 * These ioctl calls:
4825 * - can be done by all.
4826 * - atomic and do not require locking.
4827 * - return a value
4828 */
4829 case SIOCGIFFLAGS:
4830 case SIOCGIFMETRIC:
4831 case SIOCGIFMTU:
4832 case SIOCGIFHWADDR:
4833 case SIOCGIFSLAVE:
4834 case SIOCGIFMAP:
4835 case SIOCGIFINDEX:
4836 case SIOCGIFTXQLEN:
4837 dev_load(net, ifr.ifr_name);
4838 rcu_read_lock();
4839 ret = dev_ifsioc_locked(net, &ifr, cmd);
4840 rcu_read_unlock();
4841 if (!ret) {
4842 if (colon)
4843 *colon = ':';
4844 if (copy_to_user(arg, &ifr,
4845 sizeof(struct ifreq)))
4846 ret = -EFAULT;
4847 }
4848 return ret;
4849
4850 case SIOCETHTOOL:
4851 dev_load(net, ifr.ifr_name);
4852 rtnl_lock();
4853 ret = dev_ethtool(net, &ifr);
4854 rtnl_unlock();
4855 if (!ret) {
4856 if (colon)
4857 *colon = ':';
4858 if (copy_to_user(arg, &ifr,
4859 sizeof(struct ifreq)))
4860 ret = -EFAULT;
4861 }
4862 return ret;
4863
4864 /*
4865 * These ioctl calls:
4866 * - require superuser power.
4867 * - require strict serialization.
4868 * - return a value
4869 */
4870 case SIOCGMIIPHY:
4871 case SIOCGMIIREG:
4872 case SIOCSIFNAME:
4873 if (!capable(CAP_NET_ADMIN))
4874 return -EPERM;
4875 dev_load(net, ifr.ifr_name);
4876 rtnl_lock();
4877 ret = dev_ifsioc(net, &ifr, cmd);
4878 rtnl_unlock();
4879 if (!ret) {
4880 if (colon)
4881 *colon = ':';
4882 if (copy_to_user(arg, &ifr,
4883 sizeof(struct ifreq)))
4884 ret = -EFAULT;
4885 }
4886 return ret;
4887
4888 /*
4889 * These ioctl calls:
4890 * - require superuser power.
4891 * - require strict serialization.
4892 * - do not return a value
4893 */
4894 case SIOCSIFFLAGS:
4895 case SIOCSIFMETRIC:
4896 case SIOCSIFMTU:
4897 case SIOCSIFMAP:
4898 case SIOCSIFHWADDR:
4899 case SIOCSIFSLAVE:
4900 case SIOCADDMULTI:
4901 case SIOCDELMULTI:
4902 case SIOCSIFHWBROADCAST:
4903 case SIOCSIFTXQLEN:
4904 case SIOCSMIIREG:
4905 case SIOCBONDENSLAVE:
4906 case SIOCBONDRELEASE:
4907 case SIOCBONDSETHWADDR:
4908 case SIOCBONDCHANGEACTIVE:
4909 case SIOCBRADDIF:
4910 case SIOCBRDELIF:
4911 case SIOCSHWTSTAMP:
4912 if (!capable(CAP_NET_ADMIN))
4913 return -EPERM;
4914 /* fall through */
4915 case SIOCBONDSLAVEINFOQUERY:
4916 case SIOCBONDINFOQUERY:
4917 dev_load(net, ifr.ifr_name);
4918 rtnl_lock();
4919 ret = dev_ifsioc(net, &ifr, cmd);
4920 rtnl_unlock();
4921 return ret;
4922
4923 case SIOCGIFMEM:
4924 /* Get the per device memory space. We can add this but
4925 * currently do not support it */
4926 case SIOCSIFMEM:
4927 /* Set the per device memory buffer space.
4928 * Not applicable in our case */
4929 case SIOCSIFLINK:
4930 return -EINVAL;
4931
4932 /*
4933 * Unknown or private ioctl.
4934 */
4935 default:
4936 if (cmd == SIOCWANDEV ||
4937 (cmd >= SIOCDEVPRIVATE &&
4938 cmd <= SIOCDEVPRIVATE + 15)) {
4939 dev_load(net, ifr.ifr_name);
4940 rtnl_lock();
4941 ret = dev_ifsioc(net, &ifr, cmd);
4942 rtnl_unlock();
4943 if (!ret && copy_to_user(arg, &ifr,
4944 sizeof(struct ifreq)))
4945 ret = -EFAULT;
4946 return ret;
4947 }
4948 /* Take care of Wireless Extensions */
4949 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4950 return wext_handle_ioctl(net, &ifr, cmd, arg);
4951 return -EINVAL;
4952 }
4953 }
4954
4955
4956 /**
4957 * dev_new_index - allocate an ifindex
4958 * @net: the applicable net namespace
4959 *
4960 * Returns a suitable unique value for a new device interface
4961 * number. The caller must hold the rtnl semaphore or the
4962 * dev_base_lock to be sure it remains unique.
4963 */
4964 static int dev_new_index(struct net *net)
4965 {
4966 static int ifindex;
4967 for (;;) {
4968 if (++ifindex <= 0)
4969 ifindex = 1;
4970 if (!__dev_get_by_index(net, ifindex))
4971 return ifindex;
4972 }
4973 }
4974
4975 /* Delayed registration/unregisteration */
4976 static LIST_HEAD(net_todo_list);
4977
4978 static void net_set_todo(struct net_device *dev)
4979 {
4980 list_add_tail(&dev->todo_list, &net_todo_list);
4981 }
4982
4983 static void rollback_registered_many(struct list_head *head)
4984 {
4985 struct net_device *dev, *tmp;
4986
4987 BUG_ON(dev_boot_phase);
4988 ASSERT_RTNL();
4989
4990 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4991 /* Some devices call without registering
4992 * for initialization unwind. Remove those
4993 * devices and proceed with the remaining.
4994 */
4995 if (dev->reg_state == NETREG_UNINITIALIZED) {
4996 pr_debug("unregister_netdevice: device %s/%p never "
4997 "was registered\n", dev->name, dev);
4998
4999 WARN_ON(1);
5000 list_del(&dev->unreg_list);
5001 continue;
5002 }
5003
5004 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5005 }
5006
5007 /* If device is running, close it first. */
5008 dev_close_many(head);
5009
5010 list_for_each_entry(dev, head, unreg_list) {
5011 /* And unlink it from device chain. */
5012 unlist_netdevice(dev);
5013
5014 dev->reg_state = NETREG_UNREGISTERING;
5015 }
5016
5017 synchronize_net();
5018
5019 list_for_each_entry(dev, head, unreg_list) {
5020 /* Shutdown queueing discipline. */
5021 dev_shutdown(dev);
5022
5023
5024 /* Notify protocols, that we are about to destroy
5025 this device. They should clean all the things.
5026 */
5027 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5028
5029 if (!dev->rtnl_link_ops ||
5030 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5031 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5032
5033 /*
5034 * Flush the unicast and multicast chains
5035 */
5036 dev_uc_flush(dev);
5037 dev_mc_flush(dev);
5038
5039 if (dev->netdev_ops->ndo_uninit)
5040 dev->netdev_ops->ndo_uninit(dev);
5041
5042 /* Notifier chain MUST detach us from master device. */
5043 WARN_ON(dev->master);
5044
5045 /* Remove entries from kobject tree */
5046 netdev_unregister_kobject(dev);
5047 }
5048
5049 /* Process any work delayed until the end of the batch */
5050 dev = list_first_entry(head, struct net_device, unreg_list);
5051 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5052
5053 rcu_barrier();
5054
5055 list_for_each_entry(dev, head, unreg_list)
5056 dev_put(dev);
5057 }
5058
5059 static void rollback_registered(struct net_device *dev)
5060 {
5061 LIST_HEAD(single);
5062
5063 list_add(&dev->unreg_list, &single);
5064 rollback_registered_many(&single);
5065 }
5066
5067 unsigned long netdev_fix_features(unsigned long features, const char *name)
5068 {
5069 /* Fix illegal SG+CSUM combinations. */
5070 if ((features & NETIF_F_SG) &&
5071 !(features & NETIF_F_ALL_CSUM)) {
5072 if (name)
5073 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5074 "checksum feature.\n", name);
5075 features &= ~NETIF_F_SG;
5076 }
5077
5078 /* TSO requires that SG is present as well. */
5079 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5080 if (name)
5081 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5082 "SG feature.\n", name);
5083 features &= ~NETIF_F_TSO;
5084 }
5085
5086 if (features & NETIF_F_UFO) {
5087 /* maybe split UFO into V4 and V6? */
5088 if (!((features & NETIF_F_GEN_CSUM) ||
5089 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5090 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5091 if (name)
5092 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5093 "since no checksum offload features.\n",
5094 name);
5095 features &= ~NETIF_F_UFO;
5096 }
5097
5098 if (!(features & NETIF_F_SG)) {
5099 if (name)
5100 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5101 "since no NETIF_F_SG feature.\n", name);
5102 features &= ~NETIF_F_UFO;
5103 }
5104 }
5105
5106 return features;
5107 }
5108 EXPORT_SYMBOL(netdev_fix_features);
5109
5110 /**
5111 * netif_stacked_transfer_operstate - transfer operstate
5112 * @rootdev: the root or lower level device to transfer state from
5113 * @dev: the device to transfer operstate to
5114 *
5115 * Transfer operational state from root to device. This is normally
5116 * called when a stacking relationship exists between the root
5117 * device and the device(a leaf device).
5118 */
5119 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5120 struct net_device *dev)
5121 {
5122 if (rootdev->operstate == IF_OPER_DORMANT)
5123 netif_dormant_on(dev);
5124 else
5125 netif_dormant_off(dev);
5126
5127 if (netif_carrier_ok(rootdev)) {
5128 if (!netif_carrier_ok(dev))
5129 netif_carrier_on(dev);
5130 } else {
5131 if (netif_carrier_ok(dev))
5132 netif_carrier_off(dev);
5133 }
5134 }
5135 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5136
5137 #ifdef CONFIG_RPS
5138 static int netif_alloc_rx_queues(struct net_device *dev)
5139 {
5140 unsigned int i, count = dev->num_rx_queues;
5141 struct netdev_rx_queue *rx;
5142
5143 BUG_ON(count < 1);
5144
5145 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5146 if (!rx) {
5147 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5148 return -ENOMEM;
5149 }
5150 dev->_rx = rx;
5151
5152 for (i = 0; i < count; i++)
5153 rx[i].dev = dev;
5154 return 0;
5155 }
5156 #endif
5157
5158 static void netdev_init_one_queue(struct net_device *dev,
5159 struct netdev_queue *queue, void *_unused)
5160 {
5161 /* Initialize queue lock */
5162 spin_lock_init(&queue->_xmit_lock);
5163 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5164 queue->xmit_lock_owner = -1;
5165 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5166 queue->dev = dev;
5167 }
5168
5169 static int netif_alloc_netdev_queues(struct net_device *dev)
5170 {
5171 unsigned int count = dev->num_tx_queues;
5172 struct netdev_queue *tx;
5173
5174 BUG_ON(count < 1);
5175
5176 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5177 if (!tx) {
5178 pr_err("netdev: Unable to allocate %u tx queues.\n",
5179 count);
5180 return -ENOMEM;
5181 }
5182 dev->_tx = tx;
5183
5184 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5185 spin_lock_init(&dev->tx_global_lock);
5186
5187 return 0;
5188 }
5189
5190 /**
5191 * register_netdevice - register a network device
5192 * @dev: device to register
5193 *
5194 * Take a completed network device structure and add it to the kernel
5195 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5196 * chain. 0 is returned on success. A negative errno code is returned
5197 * on a failure to set up the device, or if the name is a duplicate.
5198 *
5199 * Callers must hold the rtnl semaphore. You may want
5200 * register_netdev() instead of this.
5201 *
5202 * BUGS:
5203 * The locking appears insufficient to guarantee two parallel registers
5204 * will not get the same name.
5205 */
5206
5207 int register_netdevice(struct net_device *dev)
5208 {
5209 int ret;
5210 struct net *net = dev_net(dev);
5211
5212 BUG_ON(dev_boot_phase);
5213 ASSERT_RTNL();
5214
5215 might_sleep();
5216
5217 /* When net_device's are persistent, this will be fatal. */
5218 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5219 BUG_ON(!net);
5220
5221 spin_lock_init(&dev->addr_list_lock);
5222 netdev_set_addr_lockdep_class(dev);
5223
5224 dev->iflink = -1;
5225
5226 /* Init, if this function is available */
5227 if (dev->netdev_ops->ndo_init) {
5228 ret = dev->netdev_ops->ndo_init(dev);
5229 if (ret) {
5230 if (ret > 0)
5231 ret = -EIO;
5232 goto out;
5233 }
5234 }
5235
5236 ret = dev_get_valid_name(dev, dev->name, 0);
5237 if (ret)
5238 goto err_uninit;
5239
5240 dev->ifindex = dev_new_index(net);
5241 if (dev->iflink == -1)
5242 dev->iflink = dev->ifindex;
5243
5244 /* Fix illegal checksum combinations */
5245 if ((dev->features & NETIF_F_HW_CSUM) &&
5246 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5247 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5248 dev->name);
5249 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5250 }
5251
5252 if ((dev->features & NETIF_F_NO_CSUM) &&
5253 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5254 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5255 dev->name);
5256 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5257 }
5258
5259 dev->features = netdev_fix_features(dev->features, dev->name);
5260
5261 /* Enable software GSO if SG is supported. */
5262 if (dev->features & NETIF_F_SG)
5263 dev->features |= NETIF_F_GSO;
5264
5265 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5266 * vlan_dev_init() will do the dev->features check, so these features
5267 * are enabled only if supported by underlying device.
5268 */
5269 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5270
5271 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5272 ret = notifier_to_errno(ret);
5273 if (ret)
5274 goto err_uninit;
5275
5276 ret = netdev_register_kobject(dev);
5277 if (ret)
5278 goto err_uninit;
5279 dev->reg_state = NETREG_REGISTERED;
5280
5281 /*
5282 * Default initial state at registry is that the
5283 * device is present.
5284 */
5285
5286 set_bit(__LINK_STATE_PRESENT, &dev->state);
5287
5288 dev_init_scheduler(dev);
5289 dev_hold(dev);
5290 list_netdevice(dev);
5291
5292 /* Notify protocols, that a new device appeared. */
5293 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5294 ret = notifier_to_errno(ret);
5295 if (ret) {
5296 rollback_registered(dev);
5297 dev->reg_state = NETREG_UNREGISTERED;
5298 }
5299 /*
5300 * Prevent userspace races by waiting until the network
5301 * device is fully setup before sending notifications.
5302 */
5303 if (!dev->rtnl_link_ops ||
5304 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5305 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5306
5307 out:
5308 return ret;
5309
5310 err_uninit:
5311 if (dev->netdev_ops->ndo_uninit)
5312 dev->netdev_ops->ndo_uninit(dev);
5313 goto out;
5314 }
5315 EXPORT_SYMBOL(register_netdevice);
5316
5317 /**
5318 * init_dummy_netdev - init a dummy network device for NAPI
5319 * @dev: device to init
5320 *
5321 * This takes a network device structure and initialize the minimum
5322 * amount of fields so it can be used to schedule NAPI polls without
5323 * registering a full blown interface. This is to be used by drivers
5324 * that need to tie several hardware interfaces to a single NAPI
5325 * poll scheduler due to HW limitations.
5326 */
5327 int init_dummy_netdev(struct net_device *dev)
5328 {
5329 /* Clear everything. Note we don't initialize spinlocks
5330 * are they aren't supposed to be taken by any of the
5331 * NAPI code and this dummy netdev is supposed to be
5332 * only ever used for NAPI polls
5333 */
5334 memset(dev, 0, sizeof(struct net_device));
5335
5336 /* make sure we BUG if trying to hit standard
5337 * register/unregister code path
5338 */
5339 dev->reg_state = NETREG_DUMMY;
5340
5341 /* NAPI wants this */
5342 INIT_LIST_HEAD(&dev->napi_list);
5343
5344 /* a dummy interface is started by default */
5345 set_bit(__LINK_STATE_PRESENT, &dev->state);
5346 set_bit(__LINK_STATE_START, &dev->state);
5347
5348 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5349 * because users of this 'device' dont need to change
5350 * its refcount.
5351 */
5352
5353 return 0;
5354 }
5355 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5356
5357
5358 /**
5359 * register_netdev - register a network device
5360 * @dev: device to register
5361 *
5362 * Take a completed network device structure and add it to the kernel
5363 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5364 * chain. 0 is returned on success. A negative errno code is returned
5365 * on a failure to set up the device, or if the name is a duplicate.
5366 *
5367 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5368 * and expands the device name if you passed a format string to
5369 * alloc_netdev.
5370 */
5371 int register_netdev(struct net_device *dev)
5372 {
5373 int err;
5374
5375 rtnl_lock();
5376
5377 /*
5378 * If the name is a format string the caller wants us to do a
5379 * name allocation.
5380 */
5381 if (strchr(dev->name, '%')) {
5382 err = dev_alloc_name(dev, dev->name);
5383 if (err < 0)
5384 goto out;
5385 }
5386
5387 err = register_netdevice(dev);
5388 out:
5389 rtnl_unlock();
5390 return err;
5391 }
5392 EXPORT_SYMBOL(register_netdev);
5393
5394 int netdev_refcnt_read(const struct net_device *dev)
5395 {
5396 int i, refcnt = 0;
5397
5398 for_each_possible_cpu(i)
5399 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5400 return refcnt;
5401 }
5402 EXPORT_SYMBOL(netdev_refcnt_read);
5403
5404 /*
5405 * netdev_wait_allrefs - wait until all references are gone.
5406 *
5407 * This is called when unregistering network devices.
5408 *
5409 * Any protocol or device that holds a reference should register
5410 * for netdevice notification, and cleanup and put back the
5411 * reference if they receive an UNREGISTER event.
5412 * We can get stuck here if buggy protocols don't correctly
5413 * call dev_put.
5414 */
5415 static void netdev_wait_allrefs(struct net_device *dev)
5416 {
5417 unsigned long rebroadcast_time, warning_time;
5418 int refcnt;
5419
5420 linkwatch_forget_dev(dev);
5421
5422 rebroadcast_time = warning_time = jiffies;
5423 refcnt = netdev_refcnt_read(dev);
5424
5425 while (refcnt != 0) {
5426 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5427 rtnl_lock();
5428
5429 /* Rebroadcast unregister notification */
5430 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5431 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5432 * should have already handle it the first time */
5433
5434 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5435 &dev->state)) {
5436 /* We must not have linkwatch events
5437 * pending on unregister. If this
5438 * happens, we simply run the queue
5439 * unscheduled, resulting in a noop
5440 * for this device.
5441 */
5442 linkwatch_run_queue();
5443 }
5444
5445 __rtnl_unlock();
5446
5447 rebroadcast_time = jiffies;
5448 }
5449
5450 msleep(250);
5451
5452 refcnt = netdev_refcnt_read(dev);
5453
5454 if (time_after(jiffies, warning_time + 10 * HZ)) {
5455 printk(KERN_EMERG "unregister_netdevice: "
5456 "waiting for %s to become free. Usage "
5457 "count = %d\n",
5458 dev->name, refcnt);
5459 warning_time = jiffies;
5460 }
5461 }
5462 }
5463
5464 /* The sequence is:
5465 *
5466 * rtnl_lock();
5467 * ...
5468 * register_netdevice(x1);
5469 * register_netdevice(x2);
5470 * ...
5471 * unregister_netdevice(y1);
5472 * unregister_netdevice(y2);
5473 * ...
5474 * rtnl_unlock();
5475 * free_netdev(y1);
5476 * free_netdev(y2);
5477 *
5478 * We are invoked by rtnl_unlock().
5479 * This allows us to deal with problems:
5480 * 1) We can delete sysfs objects which invoke hotplug
5481 * without deadlocking with linkwatch via keventd.
5482 * 2) Since we run with the RTNL semaphore not held, we can sleep
5483 * safely in order to wait for the netdev refcnt to drop to zero.
5484 *
5485 * We must not return until all unregister events added during
5486 * the interval the lock was held have been completed.
5487 */
5488 void netdev_run_todo(void)
5489 {
5490 struct list_head list;
5491
5492 /* Snapshot list, allow later requests */
5493 list_replace_init(&net_todo_list, &list);
5494
5495 __rtnl_unlock();
5496
5497 while (!list_empty(&list)) {
5498 struct net_device *dev
5499 = list_first_entry(&list, struct net_device, todo_list);
5500 list_del(&dev->todo_list);
5501
5502 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5503 printk(KERN_ERR "network todo '%s' but state %d\n",
5504 dev->name, dev->reg_state);
5505 dump_stack();
5506 continue;
5507 }
5508
5509 dev->reg_state = NETREG_UNREGISTERED;
5510
5511 on_each_cpu(flush_backlog, dev, 1);
5512
5513 netdev_wait_allrefs(dev);
5514
5515 /* paranoia */
5516 BUG_ON(netdev_refcnt_read(dev));
5517 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5518 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5519 WARN_ON(dev->dn_ptr);
5520
5521 if (dev->destructor)
5522 dev->destructor(dev);
5523
5524 /* Free network device */
5525 kobject_put(&dev->dev.kobj);
5526 }
5527 }
5528
5529 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5530 * fields in the same order, with only the type differing.
5531 */
5532 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5533 const struct net_device_stats *netdev_stats)
5534 {
5535 #if BITS_PER_LONG == 64
5536 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5537 memcpy(stats64, netdev_stats, sizeof(*stats64));
5538 #else
5539 size_t i, n = sizeof(*stats64) / sizeof(u64);
5540 const unsigned long *src = (const unsigned long *)netdev_stats;
5541 u64 *dst = (u64 *)stats64;
5542
5543 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5544 sizeof(*stats64) / sizeof(u64));
5545 for (i = 0; i < n; i++)
5546 dst[i] = src[i];
5547 #endif
5548 }
5549
5550 /**
5551 * dev_get_stats - get network device statistics
5552 * @dev: device to get statistics from
5553 * @storage: place to store stats
5554 *
5555 * Get network statistics from device. Return @storage.
5556 * The device driver may provide its own method by setting
5557 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5558 * otherwise the internal statistics structure is used.
5559 */
5560 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5561 struct rtnl_link_stats64 *storage)
5562 {
5563 const struct net_device_ops *ops = dev->netdev_ops;
5564
5565 if (ops->ndo_get_stats64) {
5566 memset(storage, 0, sizeof(*storage));
5567 ops->ndo_get_stats64(dev, storage);
5568 } else if (ops->ndo_get_stats) {
5569 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5570 } else {
5571 netdev_stats_to_stats64(storage, &dev->stats);
5572 }
5573 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5574 return storage;
5575 }
5576 EXPORT_SYMBOL(dev_get_stats);
5577
5578 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5579 {
5580 struct netdev_queue *queue = dev_ingress_queue(dev);
5581
5582 #ifdef CONFIG_NET_CLS_ACT
5583 if (queue)
5584 return queue;
5585 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5586 if (!queue)
5587 return NULL;
5588 netdev_init_one_queue(dev, queue, NULL);
5589 queue->qdisc = &noop_qdisc;
5590 queue->qdisc_sleeping = &noop_qdisc;
5591 rcu_assign_pointer(dev->ingress_queue, queue);
5592 #endif
5593 return queue;
5594 }
5595
5596 /**
5597 * alloc_netdev_mqs - allocate network device
5598 * @sizeof_priv: size of private data to allocate space for
5599 * @name: device name format string
5600 * @setup: callback to initialize device
5601 * @txqs: the number of TX subqueues to allocate
5602 * @rxqs: the number of RX subqueues to allocate
5603 *
5604 * Allocates a struct net_device with private data area for driver use
5605 * and performs basic initialization. Also allocates subquue structs
5606 * for each queue on the device.
5607 */
5608 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5609 void (*setup)(struct net_device *),
5610 unsigned int txqs, unsigned int rxqs)
5611 {
5612 struct net_device *dev;
5613 size_t alloc_size;
5614 struct net_device *p;
5615
5616 BUG_ON(strlen(name) >= sizeof(dev->name));
5617
5618 if (txqs < 1) {
5619 pr_err("alloc_netdev: Unable to allocate device "
5620 "with zero queues.\n");
5621 return NULL;
5622 }
5623
5624 #ifdef CONFIG_RPS
5625 if (rxqs < 1) {
5626 pr_err("alloc_netdev: Unable to allocate device "
5627 "with zero RX queues.\n");
5628 return NULL;
5629 }
5630 #endif
5631
5632 alloc_size = sizeof(struct net_device);
5633 if (sizeof_priv) {
5634 /* ensure 32-byte alignment of private area */
5635 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5636 alloc_size += sizeof_priv;
5637 }
5638 /* ensure 32-byte alignment of whole construct */
5639 alloc_size += NETDEV_ALIGN - 1;
5640
5641 p = kzalloc(alloc_size, GFP_KERNEL);
5642 if (!p) {
5643 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5644 return NULL;
5645 }
5646
5647 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5648 dev->padded = (char *)dev - (char *)p;
5649
5650 dev->pcpu_refcnt = alloc_percpu(int);
5651 if (!dev->pcpu_refcnt)
5652 goto free_p;
5653
5654 if (dev_addr_init(dev))
5655 goto free_pcpu;
5656
5657 dev_mc_init(dev);
5658 dev_uc_init(dev);
5659
5660 dev_net_set(dev, &init_net);
5661
5662 dev->num_tx_queues = txqs;
5663 dev->real_num_tx_queues = txqs;
5664 if (netif_alloc_netdev_queues(dev))
5665 goto free_pcpu;
5666
5667 #ifdef CONFIG_RPS
5668 dev->num_rx_queues = rxqs;
5669 dev->real_num_rx_queues = rxqs;
5670 if (netif_alloc_rx_queues(dev))
5671 goto free_pcpu;
5672 #endif
5673
5674 dev->gso_max_size = GSO_MAX_SIZE;
5675
5676 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5677 dev->ethtool_ntuple_list.count = 0;
5678 INIT_LIST_HEAD(&dev->napi_list);
5679 INIT_LIST_HEAD(&dev->unreg_list);
5680 INIT_LIST_HEAD(&dev->link_watch_list);
5681 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5682 setup(dev);
5683 strcpy(dev->name, name);
5684 return dev;
5685
5686 free_pcpu:
5687 free_percpu(dev->pcpu_refcnt);
5688 kfree(dev->_tx);
5689 #ifdef CONFIG_RPS
5690 kfree(dev->_rx);
5691 #endif
5692
5693 free_p:
5694 kfree(p);
5695 return NULL;
5696 }
5697 EXPORT_SYMBOL(alloc_netdev_mqs);
5698
5699 /**
5700 * free_netdev - free network device
5701 * @dev: device
5702 *
5703 * This function does the last stage of destroying an allocated device
5704 * interface. The reference to the device object is released.
5705 * If this is the last reference then it will be freed.
5706 */
5707 void free_netdev(struct net_device *dev)
5708 {
5709 struct napi_struct *p, *n;
5710
5711 release_net(dev_net(dev));
5712
5713 kfree(dev->_tx);
5714 #ifdef CONFIG_RPS
5715 kfree(dev->_rx);
5716 #endif
5717
5718 kfree(rcu_dereference_raw(dev->ingress_queue));
5719
5720 /* Flush device addresses */
5721 dev_addr_flush(dev);
5722
5723 /* Clear ethtool n-tuple list */
5724 ethtool_ntuple_flush(dev);
5725
5726 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5727 netif_napi_del(p);
5728
5729 free_percpu(dev->pcpu_refcnt);
5730 dev->pcpu_refcnt = NULL;
5731
5732 /* Compatibility with error handling in drivers */
5733 if (dev->reg_state == NETREG_UNINITIALIZED) {
5734 kfree((char *)dev - dev->padded);
5735 return;
5736 }
5737
5738 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5739 dev->reg_state = NETREG_RELEASED;
5740
5741 /* will free via device release */
5742 put_device(&dev->dev);
5743 }
5744 EXPORT_SYMBOL(free_netdev);
5745
5746 /**
5747 * synchronize_net - Synchronize with packet receive processing
5748 *
5749 * Wait for packets currently being received to be done.
5750 * Does not block later packets from starting.
5751 */
5752 void synchronize_net(void)
5753 {
5754 might_sleep();
5755 synchronize_rcu();
5756 }
5757 EXPORT_SYMBOL(synchronize_net);
5758
5759 /**
5760 * unregister_netdevice_queue - remove device from the kernel
5761 * @dev: device
5762 * @head: list
5763 *
5764 * This function shuts down a device interface and removes it
5765 * from the kernel tables.
5766 * If head not NULL, device is queued to be unregistered later.
5767 *
5768 * Callers must hold the rtnl semaphore. You may want
5769 * unregister_netdev() instead of this.
5770 */
5771
5772 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5773 {
5774 ASSERT_RTNL();
5775
5776 if (head) {
5777 list_move_tail(&dev->unreg_list, head);
5778 } else {
5779 rollback_registered(dev);
5780 /* Finish processing unregister after unlock */
5781 net_set_todo(dev);
5782 }
5783 }
5784 EXPORT_SYMBOL(unregister_netdevice_queue);
5785
5786 /**
5787 * unregister_netdevice_many - unregister many devices
5788 * @head: list of devices
5789 */
5790 void unregister_netdevice_many(struct list_head *head)
5791 {
5792 struct net_device *dev;
5793
5794 if (!list_empty(head)) {
5795 rollback_registered_many(head);
5796 list_for_each_entry(dev, head, unreg_list)
5797 net_set_todo(dev);
5798 }
5799 }
5800 EXPORT_SYMBOL(unregister_netdevice_many);
5801
5802 /**
5803 * unregister_netdev - remove device from the kernel
5804 * @dev: device
5805 *
5806 * This function shuts down a device interface and removes it
5807 * from the kernel tables.
5808 *
5809 * This is just a wrapper for unregister_netdevice that takes
5810 * the rtnl semaphore. In general you want to use this and not
5811 * unregister_netdevice.
5812 */
5813 void unregister_netdev(struct net_device *dev)
5814 {
5815 rtnl_lock();
5816 unregister_netdevice(dev);
5817 rtnl_unlock();
5818 }
5819 EXPORT_SYMBOL(unregister_netdev);
5820
5821 /**
5822 * dev_change_net_namespace - move device to different nethost namespace
5823 * @dev: device
5824 * @net: network namespace
5825 * @pat: If not NULL name pattern to try if the current device name
5826 * is already taken in the destination network namespace.
5827 *
5828 * This function shuts down a device interface and moves it
5829 * to a new network namespace. On success 0 is returned, on
5830 * a failure a netagive errno code is returned.
5831 *
5832 * Callers must hold the rtnl semaphore.
5833 */
5834
5835 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5836 {
5837 int err;
5838
5839 ASSERT_RTNL();
5840
5841 /* Don't allow namespace local devices to be moved. */
5842 err = -EINVAL;
5843 if (dev->features & NETIF_F_NETNS_LOCAL)
5844 goto out;
5845
5846 /* Ensure the device has been registrered */
5847 err = -EINVAL;
5848 if (dev->reg_state != NETREG_REGISTERED)
5849 goto out;
5850
5851 /* Get out if there is nothing todo */
5852 err = 0;
5853 if (net_eq(dev_net(dev), net))
5854 goto out;
5855
5856 /* Pick the destination device name, and ensure
5857 * we can use it in the destination network namespace.
5858 */
5859 err = -EEXIST;
5860 if (__dev_get_by_name(net, dev->name)) {
5861 /* We get here if we can't use the current device name */
5862 if (!pat)
5863 goto out;
5864 if (dev_get_valid_name(dev, pat, 1))
5865 goto out;
5866 }
5867
5868 /*
5869 * And now a mini version of register_netdevice unregister_netdevice.
5870 */
5871
5872 /* If device is running close it first. */
5873 dev_close(dev);
5874
5875 /* And unlink it from device chain */
5876 err = -ENODEV;
5877 unlist_netdevice(dev);
5878
5879 synchronize_net();
5880
5881 /* Shutdown queueing discipline. */
5882 dev_shutdown(dev);
5883
5884 /* Notify protocols, that we are about to destroy
5885 this device. They should clean all the things.
5886
5887 Note that dev->reg_state stays at NETREG_REGISTERED.
5888 This is wanted because this way 8021q and macvlan know
5889 the device is just moving and can keep their slaves up.
5890 */
5891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5892 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5893
5894 /*
5895 * Flush the unicast and multicast chains
5896 */
5897 dev_uc_flush(dev);
5898 dev_mc_flush(dev);
5899
5900 /* Actually switch the network namespace */
5901 dev_net_set(dev, net);
5902
5903 /* If there is an ifindex conflict assign a new one */
5904 if (__dev_get_by_index(net, dev->ifindex)) {
5905 int iflink = (dev->iflink == dev->ifindex);
5906 dev->ifindex = dev_new_index(net);
5907 if (iflink)
5908 dev->iflink = dev->ifindex;
5909 }
5910
5911 /* Fixup kobjects */
5912 err = device_rename(&dev->dev, dev->name);
5913 WARN_ON(err);
5914
5915 /* Add the device back in the hashes */
5916 list_netdevice(dev);
5917
5918 /* Notify protocols, that a new device appeared. */
5919 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5920
5921 /*
5922 * Prevent userspace races by waiting until the network
5923 * device is fully setup before sending notifications.
5924 */
5925 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5926
5927 synchronize_net();
5928 err = 0;
5929 out:
5930 return err;
5931 }
5932 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5933
5934 static int dev_cpu_callback(struct notifier_block *nfb,
5935 unsigned long action,
5936 void *ocpu)
5937 {
5938 struct sk_buff **list_skb;
5939 struct sk_buff *skb;
5940 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5941 struct softnet_data *sd, *oldsd;
5942
5943 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5944 return NOTIFY_OK;
5945
5946 local_irq_disable();
5947 cpu = smp_processor_id();
5948 sd = &per_cpu(softnet_data, cpu);
5949 oldsd = &per_cpu(softnet_data, oldcpu);
5950
5951 /* Find end of our completion_queue. */
5952 list_skb = &sd->completion_queue;
5953 while (*list_skb)
5954 list_skb = &(*list_skb)->next;
5955 /* Append completion queue from offline CPU. */
5956 *list_skb = oldsd->completion_queue;
5957 oldsd->completion_queue = NULL;
5958
5959 /* Append output queue from offline CPU. */
5960 if (oldsd->output_queue) {
5961 *sd->output_queue_tailp = oldsd->output_queue;
5962 sd->output_queue_tailp = oldsd->output_queue_tailp;
5963 oldsd->output_queue = NULL;
5964 oldsd->output_queue_tailp = &oldsd->output_queue;
5965 }
5966
5967 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5968 local_irq_enable();
5969
5970 /* Process offline CPU's input_pkt_queue */
5971 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5972 netif_rx(skb);
5973 input_queue_head_incr(oldsd);
5974 }
5975 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5976 netif_rx(skb);
5977 input_queue_head_incr(oldsd);
5978 }
5979
5980 return NOTIFY_OK;
5981 }
5982
5983
5984 /**
5985 * netdev_increment_features - increment feature set by one
5986 * @all: current feature set
5987 * @one: new feature set
5988 * @mask: mask feature set
5989 *
5990 * Computes a new feature set after adding a device with feature set
5991 * @one to the master device with current feature set @all. Will not
5992 * enable anything that is off in @mask. Returns the new feature set.
5993 */
5994 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5995 unsigned long mask)
5996 {
5997 /* If device needs checksumming, downgrade to it. */
5998 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5999 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6000 else if (mask & NETIF_F_ALL_CSUM) {
6001 /* If one device supports v4/v6 checksumming, set for all. */
6002 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6003 !(all & NETIF_F_GEN_CSUM)) {
6004 all &= ~NETIF_F_ALL_CSUM;
6005 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6006 }
6007
6008 /* If one device supports hw checksumming, set for all. */
6009 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6010 all &= ~NETIF_F_ALL_CSUM;
6011 all |= NETIF_F_HW_CSUM;
6012 }
6013 }
6014
6015 one |= NETIF_F_ALL_CSUM;
6016
6017 one |= all & NETIF_F_ONE_FOR_ALL;
6018 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6019 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6020
6021 return all;
6022 }
6023 EXPORT_SYMBOL(netdev_increment_features);
6024
6025 static struct hlist_head *netdev_create_hash(void)
6026 {
6027 int i;
6028 struct hlist_head *hash;
6029
6030 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6031 if (hash != NULL)
6032 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6033 INIT_HLIST_HEAD(&hash[i]);
6034
6035 return hash;
6036 }
6037
6038 /* Initialize per network namespace state */
6039 static int __net_init netdev_init(struct net *net)
6040 {
6041 INIT_LIST_HEAD(&net->dev_base_head);
6042
6043 net->dev_name_head = netdev_create_hash();
6044 if (net->dev_name_head == NULL)
6045 goto err_name;
6046
6047 net->dev_index_head = netdev_create_hash();
6048 if (net->dev_index_head == NULL)
6049 goto err_idx;
6050
6051 return 0;
6052
6053 err_idx:
6054 kfree(net->dev_name_head);
6055 err_name:
6056 return -ENOMEM;
6057 }
6058
6059 /**
6060 * netdev_drivername - network driver for the device
6061 * @dev: network device
6062 * @buffer: buffer for resulting name
6063 * @len: size of buffer
6064 *
6065 * Determine network driver for device.
6066 */
6067 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6068 {
6069 const struct device_driver *driver;
6070 const struct device *parent;
6071
6072 if (len <= 0 || !buffer)
6073 return buffer;
6074 buffer[0] = 0;
6075
6076 parent = dev->dev.parent;
6077
6078 if (!parent)
6079 return buffer;
6080
6081 driver = parent->driver;
6082 if (driver && driver->name)
6083 strlcpy(buffer, driver->name, len);
6084 return buffer;
6085 }
6086
6087 static int __netdev_printk(const char *level, const struct net_device *dev,
6088 struct va_format *vaf)
6089 {
6090 int r;
6091
6092 if (dev && dev->dev.parent)
6093 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6094 netdev_name(dev), vaf);
6095 else if (dev)
6096 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6097 else
6098 r = printk("%s(NULL net_device): %pV", level, vaf);
6099
6100 return r;
6101 }
6102
6103 int netdev_printk(const char *level, const struct net_device *dev,
6104 const char *format, ...)
6105 {
6106 struct va_format vaf;
6107 va_list args;
6108 int r;
6109
6110 va_start(args, format);
6111
6112 vaf.fmt = format;
6113 vaf.va = &args;
6114
6115 r = __netdev_printk(level, dev, &vaf);
6116 va_end(args);
6117
6118 return r;
6119 }
6120 EXPORT_SYMBOL(netdev_printk);
6121
6122 #define define_netdev_printk_level(func, level) \
6123 int func(const struct net_device *dev, const char *fmt, ...) \
6124 { \
6125 int r; \
6126 struct va_format vaf; \
6127 va_list args; \
6128 \
6129 va_start(args, fmt); \
6130 \
6131 vaf.fmt = fmt; \
6132 vaf.va = &args; \
6133 \
6134 r = __netdev_printk(level, dev, &vaf); \
6135 va_end(args); \
6136 \
6137 return r; \
6138 } \
6139 EXPORT_SYMBOL(func);
6140
6141 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6142 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6143 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6144 define_netdev_printk_level(netdev_err, KERN_ERR);
6145 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6146 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6147 define_netdev_printk_level(netdev_info, KERN_INFO);
6148
6149 static void __net_exit netdev_exit(struct net *net)
6150 {
6151 kfree(net->dev_name_head);
6152 kfree(net->dev_index_head);
6153 }
6154
6155 static struct pernet_operations __net_initdata netdev_net_ops = {
6156 .init = netdev_init,
6157 .exit = netdev_exit,
6158 };
6159
6160 static void __net_exit default_device_exit(struct net *net)
6161 {
6162 struct net_device *dev, *aux;
6163 /*
6164 * Push all migratable network devices back to the
6165 * initial network namespace
6166 */
6167 rtnl_lock();
6168 for_each_netdev_safe(net, dev, aux) {
6169 int err;
6170 char fb_name[IFNAMSIZ];
6171
6172 /* Ignore unmoveable devices (i.e. loopback) */
6173 if (dev->features & NETIF_F_NETNS_LOCAL)
6174 continue;
6175
6176 /* Leave virtual devices for the generic cleanup */
6177 if (dev->rtnl_link_ops)
6178 continue;
6179
6180 /* Push remaing network devices to init_net */
6181 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6182 err = dev_change_net_namespace(dev, &init_net, fb_name);
6183 if (err) {
6184 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6185 __func__, dev->name, err);
6186 BUG();
6187 }
6188 }
6189 rtnl_unlock();
6190 }
6191
6192 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6193 {
6194 /* At exit all network devices most be removed from a network
6195 * namespace. Do this in the reverse order of registration.
6196 * Do this across as many network namespaces as possible to
6197 * improve batching efficiency.
6198 */
6199 struct net_device *dev;
6200 struct net *net;
6201 LIST_HEAD(dev_kill_list);
6202
6203 rtnl_lock();
6204 list_for_each_entry(net, net_list, exit_list) {
6205 for_each_netdev_reverse(net, dev) {
6206 if (dev->rtnl_link_ops)
6207 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6208 else
6209 unregister_netdevice_queue(dev, &dev_kill_list);
6210 }
6211 }
6212 unregister_netdevice_many(&dev_kill_list);
6213 rtnl_unlock();
6214 }
6215
6216 static struct pernet_operations __net_initdata default_device_ops = {
6217 .exit = default_device_exit,
6218 .exit_batch = default_device_exit_batch,
6219 };
6220
6221 /*
6222 * Initialize the DEV module. At boot time this walks the device list and
6223 * unhooks any devices that fail to initialise (normally hardware not
6224 * present) and leaves us with a valid list of present and active devices.
6225 *
6226 */
6227
6228 /*
6229 * This is called single threaded during boot, so no need
6230 * to take the rtnl semaphore.
6231 */
6232 static int __init net_dev_init(void)
6233 {
6234 int i, rc = -ENOMEM;
6235
6236 BUG_ON(!dev_boot_phase);
6237
6238 if (dev_proc_init())
6239 goto out;
6240
6241 if (netdev_kobject_init())
6242 goto out;
6243
6244 INIT_LIST_HEAD(&ptype_all);
6245 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6246 INIT_LIST_HEAD(&ptype_base[i]);
6247
6248 if (register_pernet_subsys(&netdev_net_ops))
6249 goto out;
6250
6251 /*
6252 * Initialise the packet receive queues.
6253 */
6254
6255 for_each_possible_cpu(i) {
6256 struct softnet_data *sd = &per_cpu(softnet_data, i);
6257
6258 memset(sd, 0, sizeof(*sd));
6259 skb_queue_head_init(&sd->input_pkt_queue);
6260 skb_queue_head_init(&sd->process_queue);
6261 sd->completion_queue = NULL;
6262 INIT_LIST_HEAD(&sd->poll_list);
6263 sd->output_queue = NULL;
6264 sd->output_queue_tailp = &sd->output_queue;
6265 #ifdef CONFIG_RPS
6266 sd->csd.func = rps_trigger_softirq;
6267 sd->csd.info = sd;
6268 sd->csd.flags = 0;
6269 sd->cpu = i;
6270 #endif
6271
6272 sd->backlog.poll = process_backlog;
6273 sd->backlog.weight = weight_p;
6274 sd->backlog.gro_list = NULL;
6275 sd->backlog.gro_count = 0;
6276 }
6277
6278 dev_boot_phase = 0;
6279
6280 /* The loopback device is special if any other network devices
6281 * is present in a network namespace the loopback device must
6282 * be present. Since we now dynamically allocate and free the
6283 * loopback device ensure this invariant is maintained by
6284 * keeping the loopback device as the first device on the
6285 * list of network devices. Ensuring the loopback devices
6286 * is the first device that appears and the last network device
6287 * that disappears.
6288 */
6289 if (register_pernet_device(&loopback_net_ops))
6290 goto out;
6291
6292 if (register_pernet_device(&default_device_ops))
6293 goto out;
6294
6295 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6296 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6297
6298 hotcpu_notifier(dev_cpu_callback, 0);
6299 dst_init();
6300 dev_mcast_init();
6301 rc = 0;
6302 out:
6303 return rc;
6304 }
6305
6306 subsys_initcall(net_dev_init);
6307
6308 static int __init initialize_hashrnd(void)
6309 {
6310 get_random_bytes(&hashrnd, sizeof(hashrnd));
6311 return 0;
6312 }
6313
6314 late_initcall_sync(initialize_hashrnd);
6315
This page took 0.163731 seconds and 6 git commands to generate.