net: remove useless comments in net/core/dev.c
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 if (!netif_device_present(dev))
1144 return -ENODEV;
1145
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1148 if (ret)
1149 return ret;
1150
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1165 dev_activate(dev);
1166 }
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1174 *
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1179 *
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1182 */
1183 int dev_open(struct net_device *dev)
1184 {
1185 int ret;
1186
1187 if (dev->flags & IFF_UP)
1188 return 0;
1189
1190 ret = __dev_open(dev);
1191 if (ret < 0)
1192 return ret;
1193
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 struct net_device *dev;
1204
1205 ASSERT_RTNL();
1206 might_sleep();
1207
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210
1211 clear_bit(__LINK_STATE_START, &dev->state);
1212
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1215 *
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1218 */
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 }
1221
1222 dev_deactivate_many(head);
1223
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1226
1227 /*
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1230 *
1231 * We allow it to be called even after a DETACH hot-plug
1232 * event.
1233 */
1234 if (ops->ndo_stop)
1235 ops->ndo_stop(dev);
1236
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 int retval;
1247 LIST_HEAD(single);
1248
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1251 list_del(&single);
1252 return retval;
1253 }
1254
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1259
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1263
1264 __dev_close_many(head);
1265
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 }
1270
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285 int dev_close(struct net_device *dev)
1286 {
1287 LIST_HEAD(single);
1288
1289 list_add(&dev->unreg_list, &single);
1290 dev_close_many(&single);
1291 list_del(&single);
1292 return 0;
1293 }
1294 EXPORT_SYMBOL(dev_close);
1295
1296
1297 /**
1298 * dev_disable_lro - disable Large Receive Offload on a device
1299 * @dev: device
1300 *
1301 * Disable Large Receive Offload (LRO) on a net device. Must be
1302 * called under RTNL. This is needed if received packets may be
1303 * forwarded to another interface.
1304 */
1305 void dev_disable_lro(struct net_device *dev)
1306 {
1307 u32 flags;
1308
1309 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 flags = dev->ethtool_ops->get_flags(dev);
1311 else
1312 flags = ethtool_op_get_flags(dev);
1313
1314 if (!(flags & ETH_FLAG_LRO))
1315 return;
1316
1317 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 WARN_ON(dev->features & NETIF_F_LRO);
1319 }
1320 EXPORT_SYMBOL(dev_disable_lro);
1321
1322
1323 static int dev_boot_phase = 1;
1324
1325 /**
1326 * register_netdevice_notifier - register a network notifier block
1327 * @nb: notifier
1328 *
1329 * Register a notifier to be called when network device events occur.
1330 * The notifier passed is linked into the kernel structures and must
1331 * not be reused until it has been unregistered. A negative errno code
1332 * is returned on a failure.
1333 *
1334 * When registered all registration and up events are replayed
1335 * to the new notifier to allow device to have a race free
1336 * view of the network device list.
1337 */
1338
1339 int register_netdevice_notifier(struct notifier_block *nb)
1340 {
1341 struct net_device *dev;
1342 struct net_device *last;
1343 struct net *net;
1344 int err;
1345
1346 rtnl_lock();
1347 err = raw_notifier_chain_register(&netdev_chain, nb);
1348 if (err)
1349 goto unlock;
1350 if (dev_boot_phase)
1351 goto unlock;
1352 for_each_net(net) {
1353 for_each_netdev(net, dev) {
1354 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1355 err = notifier_to_errno(err);
1356 if (err)
1357 goto rollback;
1358
1359 if (!(dev->flags & IFF_UP))
1360 continue;
1361
1362 nb->notifier_call(nb, NETDEV_UP, dev);
1363 }
1364 }
1365
1366 unlock:
1367 rtnl_unlock();
1368 return err;
1369
1370 rollback:
1371 last = dev;
1372 for_each_net(net) {
1373 for_each_netdev(net, dev) {
1374 if (dev == last)
1375 break;
1376
1377 if (dev->flags & IFF_UP) {
1378 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1379 nb->notifier_call(nb, NETDEV_DOWN, dev);
1380 }
1381 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1382 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1383 }
1384 }
1385
1386 raw_notifier_chain_unregister(&netdev_chain, nb);
1387 goto unlock;
1388 }
1389 EXPORT_SYMBOL(register_netdevice_notifier);
1390
1391 /**
1392 * unregister_netdevice_notifier - unregister a network notifier block
1393 * @nb: notifier
1394 *
1395 * Unregister a notifier previously registered by
1396 * register_netdevice_notifier(). The notifier is unlinked into the
1397 * kernel structures and may then be reused. A negative errno code
1398 * is returned on a failure.
1399 */
1400
1401 int unregister_netdevice_notifier(struct notifier_block *nb)
1402 {
1403 int err;
1404
1405 rtnl_lock();
1406 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1407 rtnl_unlock();
1408 return err;
1409 }
1410 EXPORT_SYMBOL(unregister_netdevice_notifier);
1411
1412 /**
1413 * call_netdevice_notifiers - call all network notifier blocks
1414 * @val: value passed unmodified to notifier function
1415 * @dev: net_device pointer passed unmodified to notifier function
1416 *
1417 * Call all network notifier blocks. Parameters and return value
1418 * are as for raw_notifier_call_chain().
1419 */
1420
1421 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1422 {
1423 ASSERT_RTNL();
1424 return raw_notifier_call_chain(&netdev_chain, val, dev);
1425 }
1426
1427 /* When > 0 there are consumers of rx skb time stamps */
1428 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1429
1430 void net_enable_timestamp(void)
1431 {
1432 atomic_inc(&netstamp_needed);
1433 }
1434 EXPORT_SYMBOL(net_enable_timestamp);
1435
1436 void net_disable_timestamp(void)
1437 {
1438 atomic_dec(&netstamp_needed);
1439 }
1440 EXPORT_SYMBOL(net_disable_timestamp);
1441
1442 static inline void net_timestamp_set(struct sk_buff *skb)
1443 {
1444 if (atomic_read(&netstamp_needed))
1445 __net_timestamp(skb);
1446 else
1447 skb->tstamp.tv64 = 0;
1448 }
1449
1450 static inline void net_timestamp_check(struct sk_buff *skb)
1451 {
1452 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 }
1455
1456 /**
1457 * dev_forward_skb - loopback an skb to another netif
1458 *
1459 * @dev: destination network device
1460 * @skb: buffer to forward
1461 *
1462 * return values:
1463 * NET_RX_SUCCESS (no congestion)
1464 * NET_RX_DROP (packet was dropped, but freed)
1465 *
1466 * dev_forward_skb can be used for injecting an skb from the
1467 * start_xmit function of one device into the receive queue
1468 * of another device.
1469 *
1470 * The receiving device may be in another namespace, so
1471 * we have to clear all information in the skb that could
1472 * impact namespace isolation.
1473 */
1474 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1475 {
1476 skb_orphan(skb);
1477 nf_reset(skb);
1478
1479 if (unlikely(!(dev->flags & IFF_UP) ||
1480 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1481 atomic_long_inc(&dev->rx_dropped);
1482 kfree_skb(skb);
1483 return NET_RX_DROP;
1484 }
1485 skb_set_dev(skb, dev);
1486 skb->tstamp.tv64 = 0;
1487 skb->pkt_type = PACKET_HOST;
1488 skb->protocol = eth_type_trans(skb, dev);
1489 return netif_rx(skb);
1490 }
1491 EXPORT_SYMBOL_GPL(dev_forward_skb);
1492
1493 static inline int deliver_skb(struct sk_buff *skb,
1494 struct packet_type *pt_prev,
1495 struct net_device *orig_dev)
1496 {
1497 atomic_inc(&skb->users);
1498 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1499 }
1500
1501 /*
1502 * Support routine. Sends outgoing frames to any network
1503 * taps currently in use.
1504 */
1505
1506 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1507 {
1508 struct packet_type *ptype;
1509 struct sk_buff *skb2 = NULL;
1510 struct packet_type *pt_prev = NULL;
1511
1512 rcu_read_lock();
1513 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1514 /* Never send packets back to the socket
1515 * they originated from - MvS (miquels@drinkel.ow.org)
1516 */
1517 if ((ptype->dev == dev || !ptype->dev) &&
1518 (ptype->af_packet_priv == NULL ||
1519 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1520 if (pt_prev) {
1521 deliver_skb(skb2, pt_prev, skb->dev);
1522 pt_prev = ptype;
1523 continue;
1524 }
1525
1526 skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 net_timestamp_set(skb2);
1531
1532 /* skb->nh should be correctly
1533 set by sender, so that the second statement is
1534 just protection against buggy protocols.
1535 */
1536 skb_reset_mac_header(skb2);
1537
1538 if (skb_network_header(skb2) < skb2->data ||
1539 skb2->network_header > skb2->tail) {
1540 if (net_ratelimit())
1541 printk(KERN_CRIT "protocol %04x is "
1542 "buggy, dev %s\n",
1543 ntohs(skb2->protocol),
1544 dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 pt_prev = ptype;
1551 }
1552 }
1553 if (pt_prev)
1554 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1555 rcu_read_unlock();
1556 }
1557
1558 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1559 * @dev: Network device
1560 * @txq: number of queues available
1561 *
1562 * If real_num_tx_queues is changed the tc mappings may no longer be
1563 * valid. To resolve this verify the tc mapping remains valid and if
1564 * not NULL the mapping. With no priorities mapping to this
1565 * offset/count pair it will no longer be used. In the worst case TC0
1566 * is invalid nothing can be done so disable priority mappings. If is
1567 * expected that drivers will fix this mapping if they can before
1568 * calling netif_set_real_num_tx_queues.
1569 */
1570 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1571 {
1572 int i;
1573 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1574
1575 /* If TC0 is invalidated disable TC mapping */
1576 if (tc->offset + tc->count > txq) {
1577 pr_warning("Number of in use tx queues changed "
1578 "invalidating tc mappings. Priority "
1579 "traffic classification disabled!\n");
1580 dev->num_tc = 0;
1581 return;
1582 }
1583
1584 /* Invalidated prio to tc mappings set to TC0 */
1585 for (i = 1; i < TC_BITMASK + 1; i++) {
1586 int q = netdev_get_prio_tc_map(dev, i);
1587
1588 tc = &dev->tc_to_txq[q];
1589 if (tc->offset + tc->count > txq) {
1590 pr_warning("Number of in use tx queues "
1591 "changed. Priority %i to tc "
1592 "mapping %i is no longer valid "
1593 "setting map to 0\n",
1594 i, q);
1595 netdev_set_prio_tc_map(dev, i, 0);
1596 }
1597 }
1598 }
1599
1600 /*
1601 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1602 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1603 */
1604 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1605 {
1606 int rc;
1607
1608 if (txq < 1 || txq > dev->num_tx_queues)
1609 return -EINVAL;
1610
1611 if (dev->reg_state == NETREG_REGISTERED ||
1612 dev->reg_state == NETREG_UNREGISTERING) {
1613 ASSERT_RTNL();
1614
1615 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1616 txq);
1617 if (rc)
1618 return rc;
1619
1620 if (dev->num_tc)
1621 netif_setup_tc(dev, txq);
1622
1623 if (txq < dev->real_num_tx_queues)
1624 qdisc_reset_all_tx_gt(dev, txq);
1625 }
1626
1627 dev->real_num_tx_queues = txq;
1628 return 0;
1629 }
1630 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1631
1632 #ifdef CONFIG_RPS
1633 /**
1634 * netif_set_real_num_rx_queues - set actual number of RX queues used
1635 * @dev: Network device
1636 * @rxq: Actual number of RX queues
1637 *
1638 * This must be called either with the rtnl_lock held or before
1639 * registration of the net device. Returns 0 on success, or a
1640 * negative error code. If called before registration, it always
1641 * succeeds.
1642 */
1643 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1644 {
1645 int rc;
1646
1647 if (rxq < 1 || rxq > dev->num_rx_queues)
1648 return -EINVAL;
1649
1650 if (dev->reg_state == NETREG_REGISTERED) {
1651 ASSERT_RTNL();
1652
1653 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1654 rxq);
1655 if (rc)
1656 return rc;
1657 }
1658
1659 dev->real_num_rx_queues = rxq;
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1663 #endif
1664
1665 static inline void __netif_reschedule(struct Qdisc *q)
1666 {
1667 struct softnet_data *sd;
1668 unsigned long flags;
1669
1670 local_irq_save(flags);
1671 sd = &__get_cpu_var(softnet_data);
1672 q->next_sched = NULL;
1673 *sd->output_queue_tailp = q;
1674 sd->output_queue_tailp = &q->next_sched;
1675 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1676 local_irq_restore(flags);
1677 }
1678
1679 void __netif_schedule(struct Qdisc *q)
1680 {
1681 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1682 __netif_reschedule(q);
1683 }
1684 EXPORT_SYMBOL(__netif_schedule);
1685
1686 void dev_kfree_skb_irq(struct sk_buff *skb)
1687 {
1688 if (atomic_dec_and_test(&skb->users)) {
1689 struct softnet_data *sd;
1690 unsigned long flags;
1691
1692 local_irq_save(flags);
1693 sd = &__get_cpu_var(softnet_data);
1694 skb->next = sd->completion_queue;
1695 sd->completion_queue = skb;
1696 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1697 local_irq_restore(flags);
1698 }
1699 }
1700 EXPORT_SYMBOL(dev_kfree_skb_irq);
1701
1702 void dev_kfree_skb_any(struct sk_buff *skb)
1703 {
1704 if (in_irq() || irqs_disabled())
1705 dev_kfree_skb_irq(skb);
1706 else
1707 dev_kfree_skb(skb);
1708 }
1709 EXPORT_SYMBOL(dev_kfree_skb_any);
1710
1711
1712 /**
1713 * netif_device_detach - mark device as removed
1714 * @dev: network device
1715 *
1716 * Mark device as removed from system and therefore no longer available.
1717 */
1718 void netif_device_detach(struct net_device *dev)
1719 {
1720 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1721 netif_running(dev)) {
1722 netif_tx_stop_all_queues(dev);
1723 }
1724 }
1725 EXPORT_SYMBOL(netif_device_detach);
1726
1727 /**
1728 * netif_device_attach - mark device as attached
1729 * @dev: network device
1730 *
1731 * Mark device as attached from system and restart if needed.
1732 */
1733 void netif_device_attach(struct net_device *dev)
1734 {
1735 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1736 netif_running(dev)) {
1737 netif_tx_wake_all_queues(dev);
1738 __netdev_watchdog_up(dev);
1739 }
1740 }
1741 EXPORT_SYMBOL(netif_device_attach);
1742
1743 /**
1744 * skb_dev_set -- assign a new device to a buffer
1745 * @skb: buffer for the new device
1746 * @dev: network device
1747 *
1748 * If an skb is owned by a device already, we have to reset
1749 * all data private to the namespace a device belongs to
1750 * before assigning it a new device.
1751 */
1752 #ifdef CONFIG_NET_NS
1753 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1754 {
1755 skb_dst_drop(skb);
1756 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1757 secpath_reset(skb);
1758 nf_reset(skb);
1759 skb_init_secmark(skb);
1760 skb->mark = 0;
1761 skb->priority = 0;
1762 skb->nf_trace = 0;
1763 skb->ipvs_property = 0;
1764 #ifdef CONFIG_NET_SCHED
1765 skb->tc_index = 0;
1766 #endif
1767 }
1768 skb->dev = dev;
1769 }
1770 EXPORT_SYMBOL(skb_set_dev);
1771 #endif /* CONFIG_NET_NS */
1772
1773 /*
1774 * Invalidate hardware checksum when packet is to be mangled, and
1775 * complete checksum manually on outgoing path.
1776 */
1777 int skb_checksum_help(struct sk_buff *skb)
1778 {
1779 __wsum csum;
1780 int ret = 0, offset;
1781
1782 if (skb->ip_summed == CHECKSUM_COMPLETE)
1783 goto out_set_summed;
1784
1785 if (unlikely(skb_shinfo(skb)->gso_size)) {
1786 /* Let GSO fix up the checksum. */
1787 goto out_set_summed;
1788 }
1789
1790 offset = skb_checksum_start_offset(skb);
1791 BUG_ON(offset >= skb_headlen(skb));
1792 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1793
1794 offset += skb->csum_offset;
1795 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1796
1797 if (skb_cloned(skb) &&
1798 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1799 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1800 if (ret)
1801 goto out;
1802 }
1803
1804 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1805 out_set_summed:
1806 skb->ip_summed = CHECKSUM_NONE;
1807 out:
1808 return ret;
1809 }
1810 EXPORT_SYMBOL(skb_checksum_help);
1811
1812 /**
1813 * skb_gso_segment - Perform segmentation on skb.
1814 * @skb: buffer to segment
1815 * @features: features for the output path (see dev->features)
1816 *
1817 * This function segments the given skb and returns a list of segments.
1818 *
1819 * It may return NULL if the skb requires no segmentation. This is
1820 * only possible when GSO is used for verifying header integrity.
1821 */
1822 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1823 {
1824 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1825 struct packet_type *ptype;
1826 __be16 type = skb->protocol;
1827 int vlan_depth = ETH_HLEN;
1828 int err;
1829
1830 while (type == htons(ETH_P_8021Q)) {
1831 struct vlan_hdr *vh;
1832
1833 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1834 return ERR_PTR(-EINVAL);
1835
1836 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1837 type = vh->h_vlan_encapsulated_proto;
1838 vlan_depth += VLAN_HLEN;
1839 }
1840
1841 skb_reset_mac_header(skb);
1842 skb->mac_len = skb->network_header - skb->mac_header;
1843 __skb_pull(skb, skb->mac_len);
1844
1845 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1846 struct net_device *dev = skb->dev;
1847 struct ethtool_drvinfo info = {};
1848
1849 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1850 dev->ethtool_ops->get_drvinfo(dev, &info);
1851
1852 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1853 info.driver, dev ? dev->features : 0L,
1854 skb->sk ? skb->sk->sk_route_caps : 0L,
1855 skb->len, skb->data_len, skb->ip_summed);
1856
1857 if (skb_header_cloned(skb) &&
1858 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1859 return ERR_PTR(err);
1860 }
1861
1862 rcu_read_lock();
1863 list_for_each_entry_rcu(ptype,
1864 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1865 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1866 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1867 err = ptype->gso_send_check(skb);
1868 segs = ERR_PTR(err);
1869 if (err || skb_gso_ok(skb, features))
1870 break;
1871 __skb_push(skb, (skb->data -
1872 skb_network_header(skb)));
1873 }
1874 segs = ptype->gso_segment(skb, features);
1875 break;
1876 }
1877 }
1878 rcu_read_unlock();
1879
1880 __skb_push(skb, skb->data - skb_mac_header(skb));
1881
1882 return segs;
1883 }
1884 EXPORT_SYMBOL(skb_gso_segment);
1885
1886 /* Take action when hardware reception checksum errors are detected. */
1887 #ifdef CONFIG_BUG
1888 void netdev_rx_csum_fault(struct net_device *dev)
1889 {
1890 if (net_ratelimit()) {
1891 printk(KERN_ERR "%s: hw csum failure.\n",
1892 dev ? dev->name : "<unknown>");
1893 dump_stack();
1894 }
1895 }
1896 EXPORT_SYMBOL(netdev_rx_csum_fault);
1897 #endif
1898
1899 /* Actually, we should eliminate this check as soon as we know, that:
1900 * 1. IOMMU is present and allows to map all the memory.
1901 * 2. No high memory really exists on this machine.
1902 */
1903
1904 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1905 {
1906 #ifdef CONFIG_HIGHMEM
1907 int i;
1908 if (!(dev->features & NETIF_F_HIGHDMA)) {
1909 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1910 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1911 return 1;
1912 }
1913
1914 if (PCI_DMA_BUS_IS_PHYS) {
1915 struct device *pdev = dev->dev.parent;
1916
1917 if (!pdev)
1918 return 0;
1919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1920 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1921 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1922 return 1;
1923 }
1924 }
1925 #endif
1926 return 0;
1927 }
1928
1929 struct dev_gso_cb {
1930 void (*destructor)(struct sk_buff *skb);
1931 };
1932
1933 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1934
1935 static void dev_gso_skb_destructor(struct sk_buff *skb)
1936 {
1937 struct dev_gso_cb *cb;
1938
1939 do {
1940 struct sk_buff *nskb = skb->next;
1941
1942 skb->next = nskb->next;
1943 nskb->next = NULL;
1944 kfree_skb(nskb);
1945 } while (skb->next);
1946
1947 cb = DEV_GSO_CB(skb);
1948 if (cb->destructor)
1949 cb->destructor(skb);
1950 }
1951
1952 /**
1953 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1954 * @skb: buffer to segment
1955 * @features: device features as applicable to this skb
1956 *
1957 * This function segments the given skb and stores the list of segments
1958 * in skb->next.
1959 */
1960 static int dev_gso_segment(struct sk_buff *skb, int features)
1961 {
1962 struct sk_buff *segs;
1963
1964 segs = skb_gso_segment(skb, features);
1965
1966 /* Verifying header integrity only. */
1967 if (!segs)
1968 return 0;
1969
1970 if (IS_ERR(segs))
1971 return PTR_ERR(segs);
1972
1973 skb->next = segs;
1974 DEV_GSO_CB(skb)->destructor = skb->destructor;
1975 skb->destructor = dev_gso_skb_destructor;
1976
1977 return 0;
1978 }
1979
1980 /*
1981 * Try to orphan skb early, right before transmission by the device.
1982 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1983 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1984 */
1985 static inline void skb_orphan_try(struct sk_buff *skb)
1986 {
1987 struct sock *sk = skb->sk;
1988
1989 if (sk && !skb_shinfo(skb)->tx_flags) {
1990 /* skb_tx_hash() wont be able to get sk.
1991 * We copy sk_hash into skb->rxhash
1992 */
1993 if (!skb->rxhash)
1994 skb->rxhash = sk->sk_hash;
1995 skb_orphan(skb);
1996 }
1997 }
1998
1999 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2000 {
2001 return ((features & NETIF_F_GEN_CSUM) ||
2002 ((features & NETIF_F_V4_CSUM) &&
2003 protocol == htons(ETH_P_IP)) ||
2004 ((features & NETIF_F_V6_CSUM) &&
2005 protocol == htons(ETH_P_IPV6)) ||
2006 ((features & NETIF_F_FCOE_CRC) &&
2007 protocol == htons(ETH_P_FCOE)));
2008 }
2009
2010 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2011 {
2012 if (!can_checksum_protocol(features, protocol)) {
2013 features &= ~NETIF_F_ALL_CSUM;
2014 features &= ~NETIF_F_SG;
2015 } else if (illegal_highdma(skb->dev, skb)) {
2016 features &= ~NETIF_F_SG;
2017 }
2018
2019 return features;
2020 }
2021
2022 u32 netif_skb_features(struct sk_buff *skb)
2023 {
2024 __be16 protocol = skb->protocol;
2025 u32 features = skb->dev->features;
2026
2027 if (protocol == htons(ETH_P_8021Q)) {
2028 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2029 protocol = veh->h_vlan_encapsulated_proto;
2030 } else if (!vlan_tx_tag_present(skb)) {
2031 return harmonize_features(skb, protocol, features);
2032 }
2033
2034 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2035
2036 if (protocol != htons(ETH_P_8021Q)) {
2037 return harmonize_features(skb, protocol, features);
2038 } else {
2039 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2040 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2041 return harmonize_features(skb, protocol, features);
2042 }
2043 }
2044 EXPORT_SYMBOL(netif_skb_features);
2045
2046 /*
2047 * Returns true if either:
2048 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2049 * 2. skb is fragmented and the device does not support SG, or if
2050 * at least one of fragments is in highmem and device does not
2051 * support DMA from it.
2052 */
2053 static inline int skb_needs_linearize(struct sk_buff *skb,
2054 int features)
2055 {
2056 return skb_is_nonlinear(skb) &&
2057 ((skb_has_frag_list(skb) &&
2058 !(features & NETIF_F_FRAGLIST)) ||
2059 (skb_shinfo(skb)->nr_frags &&
2060 !(features & NETIF_F_SG)));
2061 }
2062
2063 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2064 struct netdev_queue *txq)
2065 {
2066 const struct net_device_ops *ops = dev->netdev_ops;
2067 int rc = NETDEV_TX_OK;
2068
2069 if (likely(!skb->next)) {
2070 u32 features;
2071
2072 /*
2073 * If device doesnt need skb->dst, release it right now while
2074 * its hot in this cpu cache
2075 */
2076 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2077 skb_dst_drop(skb);
2078
2079 if (!list_empty(&ptype_all))
2080 dev_queue_xmit_nit(skb, dev);
2081
2082 skb_orphan_try(skb);
2083
2084 features = netif_skb_features(skb);
2085
2086 if (vlan_tx_tag_present(skb) &&
2087 !(features & NETIF_F_HW_VLAN_TX)) {
2088 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2089 if (unlikely(!skb))
2090 goto out;
2091
2092 skb->vlan_tci = 0;
2093 }
2094
2095 if (netif_needs_gso(skb, features)) {
2096 if (unlikely(dev_gso_segment(skb, features)))
2097 goto out_kfree_skb;
2098 if (skb->next)
2099 goto gso;
2100 } else {
2101 if (skb_needs_linearize(skb, features) &&
2102 __skb_linearize(skb))
2103 goto out_kfree_skb;
2104
2105 /* If packet is not checksummed and device does not
2106 * support checksumming for this protocol, complete
2107 * checksumming here.
2108 */
2109 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2110 skb_set_transport_header(skb,
2111 skb_checksum_start_offset(skb));
2112 if (!(features & NETIF_F_ALL_CSUM) &&
2113 skb_checksum_help(skb))
2114 goto out_kfree_skb;
2115 }
2116 }
2117
2118 rc = ops->ndo_start_xmit(skb, dev);
2119 trace_net_dev_xmit(skb, rc);
2120 if (rc == NETDEV_TX_OK)
2121 txq_trans_update(txq);
2122 return rc;
2123 }
2124
2125 gso:
2126 do {
2127 struct sk_buff *nskb = skb->next;
2128
2129 skb->next = nskb->next;
2130 nskb->next = NULL;
2131
2132 /*
2133 * If device doesnt need nskb->dst, release it right now while
2134 * its hot in this cpu cache
2135 */
2136 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2137 skb_dst_drop(nskb);
2138
2139 rc = ops->ndo_start_xmit(nskb, dev);
2140 trace_net_dev_xmit(nskb, rc);
2141 if (unlikely(rc != NETDEV_TX_OK)) {
2142 if (rc & ~NETDEV_TX_MASK)
2143 goto out_kfree_gso_skb;
2144 nskb->next = skb->next;
2145 skb->next = nskb;
2146 return rc;
2147 }
2148 txq_trans_update(txq);
2149 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2150 return NETDEV_TX_BUSY;
2151 } while (skb->next);
2152
2153 out_kfree_gso_skb:
2154 if (likely(skb->next == NULL))
2155 skb->destructor = DEV_GSO_CB(skb)->destructor;
2156 out_kfree_skb:
2157 kfree_skb(skb);
2158 out:
2159 return rc;
2160 }
2161
2162 static u32 hashrnd __read_mostly;
2163
2164 /*
2165 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2166 * to be used as a distribution range.
2167 */
2168 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2169 unsigned int num_tx_queues)
2170 {
2171 u32 hash;
2172 u16 qoffset = 0;
2173 u16 qcount = num_tx_queues;
2174
2175 if (skb_rx_queue_recorded(skb)) {
2176 hash = skb_get_rx_queue(skb);
2177 while (unlikely(hash >= num_tx_queues))
2178 hash -= num_tx_queues;
2179 return hash;
2180 }
2181
2182 if (dev->num_tc) {
2183 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2184 qoffset = dev->tc_to_txq[tc].offset;
2185 qcount = dev->tc_to_txq[tc].count;
2186 }
2187
2188 if (skb->sk && skb->sk->sk_hash)
2189 hash = skb->sk->sk_hash;
2190 else
2191 hash = (__force u16) skb->protocol ^ skb->rxhash;
2192 hash = jhash_1word(hash, hashrnd);
2193
2194 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2195 }
2196 EXPORT_SYMBOL(__skb_tx_hash);
2197
2198 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2199 {
2200 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2201 if (net_ratelimit()) {
2202 pr_warning("%s selects TX queue %d, but "
2203 "real number of TX queues is %d\n",
2204 dev->name, queue_index, dev->real_num_tx_queues);
2205 }
2206 return 0;
2207 }
2208 return queue_index;
2209 }
2210
2211 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2212 {
2213 #ifdef CONFIG_XPS
2214 struct xps_dev_maps *dev_maps;
2215 struct xps_map *map;
2216 int queue_index = -1;
2217
2218 rcu_read_lock();
2219 dev_maps = rcu_dereference(dev->xps_maps);
2220 if (dev_maps) {
2221 map = rcu_dereference(
2222 dev_maps->cpu_map[raw_smp_processor_id()]);
2223 if (map) {
2224 if (map->len == 1)
2225 queue_index = map->queues[0];
2226 else {
2227 u32 hash;
2228 if (skb->sk && skb->sk->sk_hash)
2229 hash = skb->sk->sk_hash;
2230 else
2231 hash = (__force u16) skb->protocol ^
2232 skb->rxhash;
2233 hash = jhash_1word(hash, hashrnd);
2234 queue_index = map->queues[
2235 ((u64)hash * map->len) >> 32];
2236 }
2237 if (unlikely(queue_index >= dev->real_num_tx_queues))
2238 queue_index = -1;
2239 }
2240 }
2241 rcu_read_unlock();
2242
2243 return queue_index;
2244 #else
2245 return -1;
2246 #endif
2247 }
2248
2249 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2250 struct sk_buff *skb)
2251 {
2252 int queue_index;
2253 const struct net_device_ops *ops = dev->netdev_ops;
2254
2255 if (dev->real_num_tx_queues == 1)
2256 queue_index = 0;
2257 else if (ops->ndo_select_queue) {
2258 queue_index = ops->ndo_select_queue(dev, skb);
2259 queue_index = dev_cap_txqueue(dev, queue_index);
2260 } else {
2261 struct sock *sk = skb->sk;
2262 queue_index = sk_tx_queue_get(sk);
2263
2264 if (queue_index < 0 || skb->ooo_okay ||
2265 queue_index >= dev->real_num_tx_queues) {
2266 int old_index = queue_index;
2267
2268 queue_index = get_xps_queue(dev, skb);
2269 if (queue_index < 0)
2270 queue_index = skb_tx_hash(dev, skb);
2271
2272 if (queue_index != old_index && sk) {
2273 struct dst_entry *dst =
2274 rcu_dereference_check(sk->sk_dst_cache, 1);
2275
2276 if (dst && skb_dst(skb) == dst)
2277 sk_tx_queue_set(sk, queue_index);
2278 }
2279 }
2280 }
2281
2282 skb_set_queue_mapping(skb, queue_index);
2283 return netdev_get_tx_queue(dev, queue_index);
2284 }
2285
2286 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2287 struct net_device *dev,
2288 struct netdev_queue *txq)
2289 {
2290 spinlock_t *root_lock = qdisc_lock(q);
2291 bool contended;
2292 int rc;
2293
2294 qdisc_skb_cb(skb)->pkt_len = skb->len;
2295 qdisc_calculate_pkt_len(skb, q);
2296 /*
2297 * Heuristic to force contended enqueues to serialize on a
2298 * separate lock before trying to get qdisc main lock.
2299 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2300 * and dequeue packets faster.
2301 */
2302 contended = qdisc_is_running(q);
2303 if (unlikely(contended))
2304 spin_lock(&q->busylock);
2305
2306 spin_lock(root_lock);
2307 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2308 kfree_skb(skb);
2309 rc = NET_XMIT_DROP;
2310 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2311 qdisc_run_begin(q)) {
2312 /*
2313 * This is a work-conserving queue; there are no old skbs
2314 * waiting to be sent out; and the qdisc is not running -
2315 * xmit the skb directly.
2316 */
2317 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2318 skb_dst_force(skb);
2319
2320 qdisc_bstats_update(q, skb);
2321
2322 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2323 if (unlikely(contended)) {
2324 spin_unlock(&q->busylock);
2325 contended = false;
2326 }
2327 __qdisc_run(q);
2328 } else
2329 qdisc_run_end(q);
2330
2331 rc = NET_XMIT_SUCCESS;
2332 } else {
2333 skb_dst_force(skb);
2334 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2335 if (qdisc_run_begin(q)) {
2336 if (unlikely(contended)) {
2337 spin_unlock(&q->busylock);
2338 contended = false;
2339 }
2340 __qdisc_run(q);
2341 }
2342 }
2343 spin_unlock(root_lock);
2344 if (unlikely(contended))
2345 spin_unlock(&q->busylock);
2346 return rc;
2347 }
2348
2349 static DEFINE_PER_CPU(int, xmit_recursion);
2350 #define RECURSION_LIMIT 10
2351
2352 /**
2353 * dev_queue_xmit - transmit a buffer
2354 * @skb: buffer to transmit
2355 *
2356 * Queue a buffer for transmission to a network device. The caller must
2357 * have set the device and priority and built the buffer before calling
2358 * this function. The function can be called from an interrupt.
2359 *
2360 * A negative errno code is returned on a failure. A success does not
2361 * guarantee the frame will be transmitted as it may be dropped due
2362 * to congestion or traffic shaping.
2363 *
2364 * -----------------------------------------------------------------------------------
2365 * I notice this method can also return errors from the queue disciplines,
2366 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2367 * be positive.
2368 *
2369 * Regardless of the return value, the skb is consumed, so it is currently
2370 * difficult to retry a send to this method. (You can bump the ref count
2371 * before sending to hold a reference for retry if you are careful.)
2372 *
2373 * When calling this method, interrupts MUST be enabled. This is because
2374 * the BH enable code must have IRQs enabled so that it will not deadlock.
2375 * --BLG
2376 */
2377 int dev_queue_xmit(struct sk_buff *skb)
2378 {
2379 struct net_device *dev = skb->dev;
2380 struct netdev_queue *txq;
2381 struct Qdisc *q;
2382 int rc = -ENOMEM;
2383
2384 /* Disable soft irqs for various locks below. Also
2385 * stops preemption for RCU.
2386 */
2387 rcu_read_lock_bh();
2388
2389 txq = dev_pick_tx(dev, skb);
2390 q = rcu_dereference_bh(txq->qdisc);
2391
2392 #ifdef CONFIG_NET_CLS_ACT
2393 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2394 #endif
2395 trace_net_dev_queue(skb);
2396 if (q->enqueue) {
2397 rc = __dev_xmit_skb(skb, q, dev, txq);
2398 goto out;
2399 }
2400
2401 /* The device has no queue. Common case for software devices:
2402 loopback, all the sorts of tunnels...
2403
2404 Really, it is unlikely that netif_tx_lock protection is necessary
2405 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2406 counters.)
2407 However, it is possible, that they rely on protection
2408 made by us here.
2409
2410 Check this and shot the lock. It is not prone from deadlocks.
2411 Either shot noqueue qdisc, it is even simpler 8)
2412 */
2413 if (dev->flags & IFF_UP) {
2414 int cpu = smp_processor_id(); /* ok because BHs are off */
2415
2416 if (txq->xmit_lock_owner != cpu) {
2417
2418 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2419 goto recursion_alert;
2420
2421 HARD_TX_LOCK(dev, txq, cpu);
2422
2423 if (!netif_tx_queue_stopped(txq)) {
2424 __this_cpu_inc(xmit_recursion);
2425 rc = dev_hard_start_xmit(skb, dev, txq);
2426 __this_cpu_dec(xmit_recursion);
2427 if (dev_xmit_complete(rc)) {
2428 HARD_TX_UNLOCK(dev, txq);
2429 goto out;
2430 }
2431 }
2432 HARD_TX_UNLOCK(dev, txq);
2433 if (net_ratelimit())
2434 printk(KERN_CRIT "Virtual device %s asks to "
2435 "queue packet!\n", dev->name);
2436 } else {
2437 /* Recursion is detected! It is possible,
2438 * unfortunately
2439 */
2440 recursion_alert:
2441 if (net_ratelimit())
2442 printk(KERN_CRIT "Dead loop on virtual device "
2443 "%s, fix it urgently!\n", dev->name);
2444 }
2445 }
2446
2447 rc = -ENETDOWN;
2448 rcu_read_unlock_bh();
2449
2450 kfree_skb(skb);
2451 return rc;
2452 out:
2453 rcu_read_unlock_bh();
2454 return rc;
2455 }
2456 EXPORT_SYMBOL(dev_queue_xmit);
2457
2458
2459 /*=======================================================================
2460 Receiver routines
2461 =======================================================================*/
2462
2463 int netdev_max_backlog __read_mostly = 1000;
2464 int netdev_tstamp_prequeue __read_mostly = 1;
2465 int netdev_budget __read_mostly = 300;
2466 int weight_p __read_mostly = 64; /* old backlog weight */
2467
2468 /* Called with irq disabled */
2469 static inline void ____napi_schedule(struct softnet_data *sd,
2470 struct napi_struct *napi)
2471 {
2472 list_add_tail(&napi->poll_list, &sd->poll_list);
2473 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2474 }
2475
2476 /*
2477 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2478 * and src/dst port numbers. Returns a non-zero hash number on success
2479 * and 0 on failure.
2480 */
2481 __u32 __skb_get_rxhash(struct sk_buff *skb)
2482 {
2483 int nhoff, hash = 0, poff;
2484 struct ipv6hdr *ip6;
2485 struct iphdr *ip;
2486 u8 ip_proto;
2487 u32 addr1, addr2, ihl;
2488 union {
2489 u32 v32;
2490 u16 v16[2];
2491 } ports;
2492
2493 nhoff = skb_network_offset(skb);
2494
2495 switch (skb->protocol) {
2496 case __constant_htons(ETH_P_IP):
2497 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2498 goto done;
2499
2500 ip = (struct iphdr *) (skb->data + nhoff);
2501 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2502 ip_proto = 0;
2503 else
2504 ip_proto = ip->protocol;
2505 addr1 = (__force u32) ip->saddr;
2506 addr2 = (__force u32) ip->daddr;
2507 ihl = ip->ihl;
2508 break;
2509 case __constant_htons(ETH_P_IPV6):
2510 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2511 goto done;
2512
2513 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2514 ip_proto = ip6->nexthdr;
2515 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2516 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2517 ihl = (40 >> 2);
2518 break;
2519 default:
2520 goto done;
2521 }
2522
2523 ports.v32 = 0;
2524 poff = proto_ports_offset(ip_proto);
2525 if (poff >= 0) {
2526 nhoff += ihl * 4 + poff;
2527 if (pskb_may_pull(skb, nhoff + 4)) {
2528 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2529 if (ports.v16[1] < ports.v16[0])
2530 swap(ports.v16[0], ports.v16[1]);
2531 }
2532 }
2533
2534 /* get a consistent hash (same value on both flow directions) */
2535 if (addr2 < addr1)
2536 swap(addr1, addr2);
2537
2538 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2539 if (!hash)
2540 hash = 1;
2541
2542 done:
2543 return hash;
2544 }
2545 EXPORT_SYMBOL(__skb_get_rxhash);
2546
2547 #ifdef CONFIG_RPS
2548
2549 /* One global table that all flow-based protocols share. */
2550 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2551 EXPORT_SYMBOL(rps_sock_flow_table);
2552
2553 static struct rps_dev_flow *
2554 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2555 struct rps_dev_flow *rflow, u16 next_cpu)
2556 {
2557 u16 tcpu;
2558
2559 tcpu = rflow->cpu = next_cpu;
2560 if (tcpu != RPS_NO_CPU) {
2561 #ifdef CONFIG_RFS_ACCEL
2562 struct netdev_rx_queue *rxqueue;
2563 struct rps_dev_flow_table *flow_table;
2564 struct rps_dev_flow *old_rflow;
2565 u32 flow_id;
2566 u16 rxq_index;
2567 int rc;
2568
2569 /* Should we steer this flow to a different hardware queue? */
2570 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2571 !(dev->features & NETIF_F_NTUPLE))
2572 goto out;
2573 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2574 if (rxq_index == skb_get_rx_queue(skb))
2575 goto out;
2576
2577 rxqueue = dev->_rx + rxq_index;
2578 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2579 if (!flow_table)
2580 goto out;
2581 flow_id = skb->rxhash & flow_table->mask;
2582 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2583 rxq_index, flow_id);
2584 if (rc < 0)
2585 goto out;
2586 old_rflow = rflow;
2587 rflow = &flow_table->flows[flow_id];
2588 rflow->cpu = next_cpu;
2589 rflow->filter = rc;
2590 if (old_rflow->filter == rflow->filter)
2591 old_rflow->filter = RPS_NO_FILTER;
2592 out:
2593 #endif
2594 rflow->last_qtail =
2595 per_cpu(softnet_data, tcpu).input_queue_head;
2596 }
2597
2598 return rflow;
2599 }
2600
2601 /*
2602 * get_rps_cpu is called from netif_receive_skb and returns the target
2603 * CPU from the RPS map of the receiving queue for a given skb.
2604 * rcu_read_lock must be held on entry.
2605 */
2606 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2607 struct rps_dev_flow **rflowp)
2608 {
2609 struct netdev_rx_queue *rxqueue;
2610 struct rps_map *map;
2611 struct rps_dev_flow_table *flow_table;
2612 struct rps_sock_flow_table *sock_flow_table;
2613 int cpu = -1;
2614 u16 tcpu;
2615
2616 if (skb_rx_queue_recorded(skb)) {
2617 u16 index = skb_get_rx_queue(skb);
2618 if (unlikely(index >= dev->real_num_rx_queues)) {
2619 WARN_ONCE(dev->real_num_rx_queues > 1,
2620 "%s received packet on queue %u, but number "
2621 "of RX queues is %u\n",
2622 dev->name, index, dev->real_num_rx_queues);
2623 goto done;
2624 }
2625 rxqueue = dev->_rx + index;
2626 } else
2627 rxqueue = dev->_rx;
2628
2629 map = rcu_dereference(rxqueue->rps_map);
2630 if (map) {
2631 if (map->len == 1 &&
2632 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2633 tcpu = map->cpus[0];
2634 if (cpu_online(tcpu))
2635 cpu = tcpu;
2636 goto done;
2637 }
2638 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2639 goto done;
2640 }
2641
2642 skb_reset_network_header(skb);
2643 if (!skb_get_rxhash(skb))
2644 goto done;
2645
2646 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2647 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2648 if (flow_table && sock_flow_table) {
2649 u16 next_cpu;
2650 struct rps_dev_flow *rflow;
2651
2652 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2653 tcpu = rflow->cpu;
2654
2655 next_cpu = sock_flow_table->ents[skb->rxhash &
2656 sock_flow_table->mask];
2657
2658 /*
2659 * If the desired CPU (where last recvmsg was done) is
2660 * different from current CPU (one in the rx-queue flow
2661 * table entry), switch if one of the following holds:
2662 * - Current CPU is unset (equal to RPS_NO_CPU).
2663 * - Current CPU is offline.
2664 * - The current CPU's queue tail has advanced beyond the
2665 * last packet that was enqueued using this table entry.
2666 * This guarantees that all previous packets for the flow
2667 * have been dequeued, thus preserving in order delivery.
2668 */
2669 if (unlikely(tcpu != next_cpu) &&
2670 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2671 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2672 rflow->last_qtail)) >= 0))
2673 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2674
2675 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2676 *rflowp = rflow;
2677 cpu = tcpu;
2678 goto done;
2679 }
2680 }
2681
2682 if (map) {
2683 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2684
2685 if (cpu_online(tcpu)) {
2686 cpu = tcpu;
2687 goto done;
2688 }
2689 }
2690
2691 done:
2692 return cpu;
2693 }
2694
2695 #ifdef CONFIG_RFS_ACCEL
2696
2697 /**
2698 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2699 * @dev: Device on which the filter was set
2700 * @rxq_index: RX queue index
2701 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2702 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2703 *
2704 * Drivers that implement ndo_rx_flow_steer() should periodically call
2705 * this function for each installed filter and remove the filters for
2706 * which it returns %true.
2707 */
2708 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2709 u32 flow_id, u16 filter_id)
2710 {
2711 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2712 struct rps_dev_flow_table *flow_table;
2713 struct rps_dev_flow *rflow;
2714 bool expire = true;
2715 int cpu;
2716
2717 rcu_read_lock();
2718 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2719 if (flow_table && flow_id <= flow_table->mask) {
2720 rflow = &flow_table->flows[flow_id];
2721 cpu = ACCESS_ONCE(rflow->cpu);
2722 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2723 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2724 rflow->last_qtail) <
2725 (int)(10 * flow_table->mask)))
2726 expire = false;
2727 }
2728 rcu_read_unlock();
2729 return expire;
2730 }
2731 EXPORT_SYMBOL(rps_may_expire_flow);
2732
2733 #endif /* CONFIG_RFS_ACCEL */
2734
2735 /* Called from hardirq (IPI) context */
2736 static void rps_trigger_softirq(void *data)
2737 {
2738 struct softnet_data *sd = data;
2739
2740 ____napi_schedule(sd, &sd->backlog);
2741 sd->received_rps++;
2742 }
2743
2744 #endif /* CONFIG_RPS */
2745
2746 /*
2747 * Check if this softnet_data structure is another cpu one
2748 * If yes, queue it to our IPI list and return 1
2749 * If no, return 0
2750 */
2751 static int rps_ipi_queued(struct softnet_data *sd)
2752 {
2753 #ifdef CONFIG_RPS
2754 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2755
2756 if (sd != mysd) {
2757 sd->rps_ipi_next = mysd->rps_ipi_list;
2758 mysd->rps_ipi_list = sd;
2759
2760 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2761 return 1;
2762 }
2763 #endif /* CONFIG_RPS */
2764 return 0;
2765 }
2766
2767 /*
2768 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2769 * queue (may be a remote CPU queue).
2770 */
2771 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2772 unsigned int *qtail)
2773 {
2774 struct softnet_data *sd;
2775 unsigned long flags;
2776
2777 sd = &per_cpu(softnet_data, cpu);
2778
2779 local_irq_save(flags);
2780
2781 rps_lock(sd);
2782 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2783 if (skb_queue_len(&sd->input_pkt_queue)) {
2784 enqueue:
2785 __skb_queue_tail(&sd->input_pkt_queue, skb);
2786 input_queue_tail_incr_save(sd, qtail);
2787 rps_unlock(sd);
2788 local_irq_restore(flags);
2789 return NET_RX_SUCCESS;
2790 }
2791
2792 /* Schedule NAPI for backlog device
2793 * We can use non atomic operation since we own the queue lock
2794 */
2795 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2796 if (!rps_ipi_queued(sd))
2797 ____napi_schedule(sd, &sd->backlog);
2798 }
2799 goto enqueue;
2800 }
2801
2802 sd->dropped++;
2803 rps_unlock(sd);
2804
2805 local_irq_restore(flags);
2806
2807 atomic_long_inc(&skb->dev->rx_dropped);
2808 kfree_skb(skb);
2809 return NET_RX_DROP;
2810 }
2811
2812 /**
2813 * netif_rx - post buffer to the network code
2814 * @skb: buffer to post
2815 *
2816 * This function receives a packet from a device driver and queues it for
2817 * the upper (protocol) levels to process. It always succeeds. The buffer
2818 * may be dropped during processing for congestion control or by the
2819 * protocol layers.
2820 *
2821 * return values:
2822 * NET_RX_SUCCESS (no congestion)
2823 * NET_RX_DROP (packet was dropped)
2824 *
2825 */
2826
2827 int netif_rx(struct sk_buff *skb)
2828 {
2829 int ret;
2830
2831 /* if netpoll wants it, pretend we never saw it */
2832 if (netpoll_rx(skb))
2833 return NET_RX_DROP;
2834
2835 if (netdev_tstamp_prequeue)
2836 net_timestamp_check(skb);
2837
2838 trace_netif_rx(skb);
2839 #ifdef CONFIG_RPS
2840 {
2841 struct rps_dev_flow voidflow, *rflow = &voidflow;
2842 int cpu;
2843
2844 preempt_disable();
2845 rcu_read_lock();
2846
2847 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2848 if (cpu < 0)
2849 cpu = smp_processor_id();
2850
2851 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2852
2853 rcu_read_unlock();
2854 preempt_enable();
2855 }
2856 #else
2857 {
2858 unsigned int qtail;
2859 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2860 put_cpu();
2861 }
2862 #endif
2863 return ret;
2864 }
2865 EXPORT_SYMBOL(netif_rx);
2866
2867 int netif_rx_ni(struct sk_buff *skb)
2868 {
2869 int err;
2870
2871 preempt_disable();
2872 err = netif_rx(skb);
2873 if (local_softirq_pending())
2874 do_softirq();
2875 preempt_enable();
2876
2877 return err;
2878 }
2879 EXPORT_SYMBOL(netif_rx_ni);
2880
2881 static void net_tx_action(struct softirq_action *h)
2882 {
2883 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2884
2885 if (sd->completion_queue) {
2886 struct sk_buff *clist;
2887
2888 local_irq_disable();
2889 clist = sd->completion_queue;
2890 sd->completion_queue = NULL;
2891 local_irq_enable();
2892
2893 while (clist) {
2894 struct sk_buff *skb = clist;
2895 clist = clist->next;
2896
2897 WARN_ON(atomic_read(&skb->users));
2898 trace_kfree_skb(skb, net_tx_action);
2899 __kfree_skb(skb);
2900 }
2901 }
2902
2903 if (sd->output_queue) {
2904 struct Qdisc *head;
2905
2906 local_irq_disable();
2907 head = sd->output_queue;
2908 sd->output_queue = NULL;
2909 sd->output_queue_tailp = &sd->output_queue;
2910 local_irq_enable();
2911
2912 while (head) {
2913 struct Qdisc *q = head;
2914 spinlock_t *root_lock;
2915
2916 head = head->next_sched;
2917
2918 root_lock = qdisc_lock(q);
2919 if (spin_trylock(root_lock)) {
2920 smp_mb__before_clear_bit();
2921 clear_bit(__QDISC_STATE_SCHED,
2922 &q->state);
2923 qdisc_run(q);
2924 spin_unlock(root_lock);
2925 } else {
2926 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2927 &q->state)) {
2928 __netif_reschedule(q);
2929 } else {
2930 smp_mb__before_clear_bit();
2931 clear_bit(__QDISC_STATE_SCHED,
2932 &q->state);
2933 }
2934 }
2935 }
2936 }
2937 }
2938
2939 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2940 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2941 /* This hook is defined here for ATM LANE */
2942 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2943 unsigned char *addr) __read_mostly;
2944 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2945 #endif
2946
2947 #ifdef CONFIG_NET_CLS_ACT
2948 /* TODO: Maybe we should just force sch_ingress to be compiled in
2949 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2950 * a compare and 2 stores extra right now if we dont have it on
2951 * but have CONFIG_NET_CLS_ACT
2952 * NOTE: This doesnt stop any functionality; if you dont have
2953 * the ingress scheduler, you just cant add policies on ingress.
2954 *
2955 */
2956 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2957 {
2958 struct net_device *dev = skb->dev;
2959 u32 ttl = G_TC_RTTL(skb->tc_verd);
2960 int result = TC_ACT_OK;
2961 struct Qdisc *q;
2962
2963 if (unlikely(MAX_RED_LOOP < ttl++)) {
2964 if (net_ratelimit())
2965 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2966 skb->skb_iif, dev->ifindex);
2967 return TC_ACT_SHOT;
2968 }
2969
2970 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2971 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2972
2973 q = rxq->qdisc;
2974 if (q != &noop_qdisc) {
2975 spin_lock(qdisc_lock(q));
2976 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2977 result = qdisc_enqueue_root(skb, q);
2978 spin_unlock(qdisc_lock(q));
2979 }
2980
2981 return result;
2982 }
2983
2984 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2985 struct packet_type **pt_prev,
2986 int *ret, struct net_device *orig_dev)
2987 {
2988 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2989
2990 if (!rxq || rxq->qdisc == &noop_qdisc)
2991 goto out;
2992
2993 if (*pt_prev) {
2994 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2995 *pt_prev = NULL;
2996 }
2997
2998 switch (ing_filter(skb, rxq)) {
2999 case TC_ACT_SHOT:
3000 case TC_ACT_STOLEN:
3001 kfree_skb(skb);
3002 return NULL;
3003 }
3004
3005 out:
3006 skb->tc_verd = 0;
3007 return skb;
3008 }
3009 #endif
3010
3011 /**
3012 * netdev_rx_handler_register - register receive handler
3013 * @dev: device to register a handler for
3014 * @rx_handler: receive handler to register
3015 * @rx_handler_data: data pointer that is used by rx handler
3016 *
3017 * Register a receive hander for a device. This handler will then be
3018 * called from __netif_receive_skb. A negative errno code is returned
3019 * on a failure.
3020 *
3021 * The caller must hold the rtnl_mutex.
3022 *
3023 * For a general description of rx_handler, see enum rx_handler_result.
3024 */
3025 int netdev_rx_handler_register(struct net_device *dev,
3026 rx_handler_func_t *rx_handler,
3027 void *rx_handler_data)
3028 {
3029 ASSERT_RTNL();
3030
3031 if (dev->rx_handler)
3032 return -EBUSY;
3033
3034 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3035 rcu_assign_pointer(dev->rx_handler, rx_handler);
3036
3037 return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3040
3041 /**
3042 * netdev_rx_handler_unregister - unregister receive handler
3043 * @dev: device to unregister a handler from
3044 *
3045 * Unregister a receive hander from a device.
3046 *
3047 * The caller must hold the rtnl_mutex.
3048 */
3049 void netdev_rx_handler_unregister(struct net_device *dev)
3050 {
3051
3052 ASSERT_RTNL();
3053 rcu_assign_pointer(dev->rx_handler, NULL);
3054 rcu_assign_pointer(dev->rx_handler_data, NULL);
3055 }
3056 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3057
3058 static void vlan_on_bond_hook(struct sk_buff *skb)
3059 {
3060 /*
3061 * Make sure ARP frames received on VLAN interfaces stacked on
3062 * bonding interfaces still make their way to any base bonding
3063 * device that may have registered for a specific ptype.
3064 */
3065 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3066 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3067 skb->protocol == htons(ETH_P_ARP)) {
3068 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3069
3070 if (!skb2)
3071 return;
3072 skb2->dev = vlan_dev_real_dev(skb->dev);
3073 netif_rx(skb2);
3074 }
3075 }
3076
3077 static int __netif_receive_skb(struct sk_buff *skb)
3078 {
3079 struct packet_type *ptype, *pt_prev;
3080 rx_handler_func_t *rx_handler;
3081 struct net_device *orig_dev;
3082 struct net_device *null_or_dev;
3083 bool deliver_exact = false;
3084 int ret = NET_RX_DROP;
3085 __be16 type;
3086
3087 if (!netdev_tstamp_prequeue)
3088 net_timestamp_check(skb);
3089
3090 trace_netif_receive_skb(skb);
3091
3092 /* if we've gotten here through NAPI, check netpoll */
3093 if (netpoll_receive_skb(skb))
3094 return NET_RX_DROP;
3095
3096 if (!skb->skb_iif)
3097 skb->skb_iif = skb->dev->ifindex;
3098 orig_dev = skb->dev;
3099
3100 skb_reset_network_header(skb);
3101 skb_reset_transport_header(skb);
3102 skb->mac_len = skb->network_header - skb->mac_header;
3103
3104 pt_prev = NULL;
3105
3106 rcu_read_lock();
3107
3108 another_round:
3109
3110 __this_cpu_inc(softnet_data.processed);
3111
3112 #ifdef CONFIG_NET_CLS_ACT
3113 if (skb->tc_verd & TC_NCLS) {
3114 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3115 goto ncls;
3116 }
3117 #endif
3118
3119 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3120 if (!ptype->dev || ptype->dev == skb->dev) {
3121 if (pt_prev)
3122 ret = deliver_skb(skb, pt_prev, orig_dev);
3123 pt_prev = ptype;
3124 }
3125 }
3126
3127 #ifdef CONFIG_NET_CLS_ACT
3128 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3129 if (!skb)
3130 goto out;
3131 ncls:
3132 #endif
3133
3134 rx_handler = rcu_dereference(skb->dev->rx_handler);
3135 if (rx_handler) {
3136 if (pt_prev) {
3137 ret = deliver_skb(skb, pt_prev, orig_dev);
3138 pt_prev = NULL;
3139 }
3140 switch (rx_handler(&skb)) {
3141 case RX_HANDLER_CONSUMED:
3142 goto out;
3143 case RX_HANDLER_ANOTHER:
3144 goto another_round;
3145 case RX_HANDLER_EXACT:
3146 deliver_exact = true;
3147 case RX_HANDLER_PASS:
3148 break;
3149 default:
3150 BUG();
3151 }
3152 }
3153
3154 if (vlan_tx_tag_present(skb)) {
3155 if (pt_prev) {
3156 ret = deliver_skb(skb, pt_prev, orig_dev);
3157 pt_prev = NULL;
3158 }
3159 if (vlan_hwaccel_do_receive(&skb)) {
3160 ret = __netif_receive_skb(skb);
3161 goto out;
3162 } else if (unlikely(!skb))
3163 goto out;
3164 }
3165
3166 vlan_on_bond_hook(skb);
3167
3168 /* deliver only exact match when indicated */
3169 null_or_dev = deliver_exact ? skb->dev : NULL;
3170
3171 type = skb->protocol;
3172 list_for_each_entry_rcu(ptype,
3173 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3174 if (ptype->type == type &&
3175 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3176 ptype->dev == orig_dev)) {
3177 if (pt_prev)
3178 ret = deliver_skb(skb, pt_prev, orig_dev);
3179 pt_prev = ptype;
3180 }
3181 }
3182
3183 if (pt_prev) {
3184 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3185 } else {
3186 atomic_long_inc(&skb->dev->rx_dropped);
3187 kfree_skb(skb);
3188 /* Jamal, now you will not able to escape explaining
3189 * me how you were going to use this. :-)
3190 */
3191 ret = NET_RX_DROP;
3192 }
3193
3194 out:
3195 rcu_read_unlock();
3196 return ret;
3197 }
3198
3199 /**
3200 * netif_receive_skb - process receive buffer from network
3201 * @skb: buffer to process
3202 *
3203 * netif_receive_skb() is the main receive data processing function.
3204 * It always succeeds. The buffer may be dropped during processing
3205 * for congestion control or by the protocol layers.
3206 *
3207 * This function may only be called from softirq context and interrupts
3208 * should be enabled.
3209 *
3210 * Return values (usually ignored):
3211 * NET_RX_SUCCESS: no congestion
3212 * NET_RX_DROP: packet was dropped
3213 */
3214 int netif_receive_skb(struct sk_buff *skb)
3215 {
3216 if (netdev_tstamp_prequeue)
3217 net_timestamp_check(skb);
3218
3219 if (skb_defer_rx_timestamp(skb))
3220 return NET_RX_SUCCESS;
3221
3222 #ifdef CONFIG_RPS
3223 {
3224 struct rps_dev_flow voidflow, *rflow = &voidflow;
3225 int cpu, ret;
3226
3227 rcu_read_lock();
3228
3229 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3230
3231 if (cpu >= 0) {
3232 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3233 rcu_read_unlock();
3234 } else {
3235 rcu_read_unlock();
3236 ret = __netif_receive_skb(skb);
3237 }
3238
3239 return ret;
3240 }
3241 #else
3242 return __netif_receive_skb(skb);
3243 #endif
3244 }
3245 EXPORT_SYMBOL(netif_receive_skb);
3246
3247 /* Network device is going away, flush any packets still pending
3248 * Called with irqs disabled.
3249 */
3250 static void flush_backlog(void *arg)
3251 {
3252 struct net_device *dev = arg;
3253 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3254 struct sk_buff *skb, *tmp;
3255
3256 rps_lock(sd);
3257 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3258 if (skb->dev == dev) {
3259 __skb_unlink(skb, &sd->input_pkt_queue);
3260 kfree_skb(skb);
3261 input_queue_head_incr(sd);
3262 }
3263 }
3264 rps_unlock(sd);
3265
3266 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3267 if (skb->dev == dev) {
3268 __skb_unlink(skb, &sd->process_queue);
3269 kfree_skb(skb);
3270 input_queue_head_incr(sd);
3271 }
3272 }
3273 }
3274
3275 static int napi_gro_complete(struct sk_buff *skb)
3276 {
3277 struct packet_type *ptype;
3278 __be16 type = skb->protocol;
3279 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3280 int err = -ENOENT;
3281
3282 if (NAPI_GRO_CB(skb)->count == 1) {
3283 skb_shinfo(skb)->gso_size = 0;
3284 goto out;
3285 }
3286
3287 rcu_read_lock();
3288 list_for_each_entry_rcu(ptype, head, list) {
3289 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3290 continue;
3291
3292 err = ptype->gro_complete(skb);
3293 break;
3294 }
3295 rcu_read_unlock();
3296
3297 if (err) {
3298 WARN_ON(&ptype->list == head);
3299 kfree_skb(skb);
3300 return NET_RX_SUCCESS;
3301 }
3302
3303 out:
3304 return netif_receive_skb(skb);
3305 }
3306
3307 inline void napi_gro_flush(struct napi_struct *napi)
3308 {
3309 struct sk_buff *skb, *next;
3310
3311 for (skb = napi->gro_list; skb; skb = next) {
3312 next = skb->next;
3313 skb->next = NULL;
3314 napi_gro_complete(skb);
3315 }
3316
3317 napi->gro_count = 0;
3318 napi->gro_list = NULL;
3319 }
3320 EXPORT_SYMBOL(napi_gro_flush);
3321
3322 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3323 {
3324 struct sk_buff **pp = NULL;
3325 struct packet_type *ptype;
3326 __be16 type = skb->protocol;
3327 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3328 int same_flow;
3329 int mac_len;
3330 enum gro_result ret;
3331
3332 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3333 goto normal;
3334
3335 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3336 goto normal;
3337
3338 rcu_read_lock();
3339 list_for_each_entry_rcu(ptype, head, list) {
3340 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3341 continue;
3342
3343 skb_set_network_header(skb, skb_gro_offset(skb));
3344 mac_len = skb->network_header - skb->mac_header;
3345 skb->mac_len = mac_len;
3346 NAPI_GRO_CB(skb)->same_flow = 0;
3347 NAPI_GRO_CB(skb)->flush = 0;
3348 NAPI_GRO_CB(skb)->free = 0;
3349
3350 pp = ptype->gro_receive(&napi->gro_list, skb);
3351 break;
3352 }
3353 rcu_read_unlock();
3354
3355 if (&ptype->list == head)
3356 goto normal;
3357
3358 same_flow = NAPI_GRO_CB(skb)->same_flow;
3359 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3360
3361 if (pp) {
3362 struct sk_buff *nskb = *pp;
3363
3364 *pp = nskb->next;
3365 nskb->next = NULL;
3366 napi_gro_complete(nskb);
3367 napi->gro_count--;
3368 }
3369
3370 if (same_flow)
3371 goto ok;
3372
3373 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3374 goto normal;
3375
3376 napi->gro_count++;
3377 NAPI_GRO_CB(skb)->count = 1;
3378 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3379 skb->next = napi->gro_list;
3380 napi->gro_list = skb;
3381 ret = GRO_HELD;
3382
3383 pull:
3384 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3385 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3386
3387 BUG_ON(skb->end - skb->tail < grow);
3388
3389 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3390
3391 skb->tail += grow;
3392 skb->data_len -= grow;
3393
3394 skb_shinfo(skb)->frags[0].page_offset += grow;
3395 skb_shinfo(skb)->frags[0].size -= grow;
3396
3397 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3398 put_page(skb_shinfo(skb)->frags[0].page);
3399 memmove(skb_shinfo(skb)->frags,
3400 skb_shinfo(skb)->frags + 1,
3401 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3402 }
3403 }
3404
3405 ok:
3406 return ret;
3407
3408 normal:
3409 ret = GRO_NORMAL;
3410 goto pull;
3411 }
3412 EXPORT_SYMBOL(dev_gro_receive);
3413
3414 static inline gro_result_t
3415 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3416 {
3417 struct sk_buff *p;
3418
3419 for (p = napi->gro_list; p; p = p->next) {
3420 unsigned long diffs;
3421
3422 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3423 diffs |= p->vlan_tci ^ skb->vlan_tci;
3424 diffs |= compare_ether_header(skb_mac_header(p),
3425 skb_gro_mac_header(skb));
3426 NAPI_GRO_CB(p)->same_flow = !diffs;
3427 NAPI_GRO_CB(p)->flush = 0;
3428 }
3429
3430 return dev_gro_receive(napi, skb);
3431 }
3432
3433 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3434 {
3435 switch (ret) {
3436 case GRO_NORMAL:
3437 if (netif_receive_skb(skb))
3438 ret = GRO_DROP;
3439 break;
3440
3441 case GRO_DROP:
3442 case GRO_MERGED_FREE:
3443 kfree_skb(skb);
3444 break;
3445
3446 case GRO_HELD:
3447 case GRO_MERGED:
3448 break;
3449 }
3450
3451 return ret;
3452 }
3453 EXPORT_SYMBOL(napi_skb_finish);
3454
3455 void skb_gro_reset_offset(struct sk_buff *skb)
3456 {
3457 NAPI_GRO_CB(skb)->data_offset = 0;
3458 NAPI_GRO_CB(skb)->frag0 = NULL;
3459 NAPI_GRO_CB(skb)->frag0_len = 0;
3460
3461 if (skb->mac_header == skb->tail &&
3462 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3463 NAPI_GRO_CB(skb)->frag0 =
3464 page_address(skb_shinfo(skb)->frags[0].page) +
3465 skb_shinfo(skb)->frags[0].page_offset;
3466 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3467 }
3468 }
3469 EXPORT_SYMBOL(skb_gro_reset_offset);
3470
3471 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3472 {
3473 skb_gro_reset_offset(skb);
3474
3475 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3476 }
3477 EXPORT_SYMBOL(napi_gro_receive);
3478
3479 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3480 {
3481 __skb_pull(skb, skb_headlen(skb));
3482 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3483 skb->vlan_tci = 0;
3484 skb->dev = napi->dev;
3485 skb->skb_iif = 0;
3486
3487 napi->skb = skb;
3488 }
3489
3490 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3491 {
3492 struct sk_buff *skb = napi->skb;
3493
3494 if (!skb) {
3495 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3496 if (skb)
3497 napi->skb = skb;
3498 }
3499 return skb;
3500 }
3501 EXPORT_SYMBOL(napi_get_frags);
3502
3503 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3504 gro_result_t ret)
3505 {
3506 switch (ret) {
3507 case GRO_NORMAL:
3508 case GRO_HELD:
3509 skb->protocol = eth_type_trans(skb, skb->dev);
3510
3511 if (ret == GRO_HELD)
3512 skb_gro_pull(skb, -ETH_HLEN);
3513 else if (netif_receive_skb(skb))
3514 ret = GRO_DROP;
3515 break;
3516
3517 case GRO_DROP:
3518 case GRO_MERGED_FREE:
3519 napi_reuse_skb(napi, skb);
3520 break;
3521
3522 case GRO_MERGED:
3523 break;
3524 }
3525
3526 return ret;
3527 }
3528 EXPORT_SYMBOL(napi_frags_finish);
3529
3530 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3531 {
3532 struct sk_buff *skb = napi->skb;
3533 struct ethhdr *eth;
3534 unsigned int hlen;
3535 unsigned int off;
3536
3537 napi->skb = NULL;
3538
3539 skb_reset_mac_header(skb);
3540 skb_gro_reset_offset(skb);
3541
3542 off = skb_gro_offset(skb);
3543 hlen = off + sizeof(*eth);
3544 eth = skb_gro_header_fast(skb, off);
3545 if (skb_gro_header_hard(skb, hlen)) {
3546 eth = skb_gro_header_slow(skb, hlen, off);
3547 if (unlikely(!eth)) {
3548 napi_reuse_skb(napi, skb);
3549 skb = NULL;
3550 goto out;
3551 }
3552 }
3553
3554 skb_gro_pull(skb, sizeof(*eth));
3555
3556 /*
3557 * This works because the only protocols we care about don't require
3558 * special handling. We'll fix it up properly at the end.
3559 */
3560 skb->protocol = eth->h_proto;
3561
3562 out:
3563 return skb;
3564 }
3565 EXPORT_SYMBOL(napi_frags_skb);
3566
3567 gro_result_t napi_gro_frags(struct napi_struct *napi)
3568 {
3569 struct sk_buff *skb = napi_frags_skb(napi);
3570
3571 if (!skb)
3572 return GRO_DROP;
3573
3574 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3575 }
3576 EXPORT_SYMBOL(napi_gro_frags);
3577
3578 /*
3579 * net_rps_action sends any pending IPI's for rps.
3580 * Note: called with local irq disabled, but exits with local irq enabled.
3581 */
3582 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3583 {
3584 #ifdef CONFIG_RPS
3585 struct softnet_data *remsd = sd->rps_ipi_list;
3586
3587 if (remsd) {
3588 sd->rps_ipi_list = NULL;
3589
3590 local_irq_enable();
3591
3592 /* Send pending IPI's to kick RPS processing on remote cpus. */
3593 while (remsd) {
3594 struct softnet_data *next = remsd->rps_ipi_next;
3595
3596 if (cpu_online(remsd->cpu))
3597 __smp_call_function_single(remsd->cpu,
3598 &remsd->csd, 0);
3599 remsd = next;
3600 }
3601 } else
3602 #endif
3603 local_irq_enable();
3604 }
3605
3606 static int process_backlog(struct napi_struct *napi, int quota)
3607 {
3608 int work = 0;
3609 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3610
3611 #ifdef CONFIG_RPS
3612 /* Check if we have pending ipi, its better to send them now,
3613 * not waiting net_rx_action() end.
3614 */
3615 if (sd->rps_ipi_list) {
3616 local_irq_disable();
3617 net_rps_action_and_irq_enable(sd);
3618 }
3619 #endif
3620 napi->weight = weight_p;
3621 local_irq_disable();
3622 while (work < quota) {
3623 struct sk_buff *skb;
3624 unsigned int qlen;
3625
3626 while ((skb = __skb_dequeue(&sd->process_queue))) {
3627 local_irq_enable();
3628 __netif_receive_skb(skb);
3629 local_irq_disable();
3630 input_queue_head_incr(sd);
3631 if (++work >= quota) {
3632 local_irq_enable();
3633 return work;
3634 }
3635 }
3636
3637 rps_lock(sd);
3638 qlen = skb_queue_len(&sd->input_pkt_queue);
3639 if (qlen)
3640 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3641 &sd->process_queue);
3642
3643 if (qlen < quota - work) {
3644 /*
3645 * Inline a custom version of __napi_complete().
3646 * only current cpu owns and manipulates this napi,
3647 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3648 * we can use a plain write instead of clear_bit(),
3649 * and we dont need an smp_mb() memory barrier.
3650 */
3651 list_del(&napi->poll_list);
3652 napi->state = 0;
3653
3654 quota = work + qlen;
3655 }
3656 rps_unlock(sd);
3657 }
3658 local_irq_enable();
3659
3660 return work;
3661 }
3662
3663 /**
3664 * __napi_schedule - schedule for receive
3665 * @n: entry to schedule
3666 *
3667 * The entry's receive function will be scheduled to run
3668 */
3669 void __napi_schedule(struct napi_struct *n)
3670 {
3671 unsigned long flags;
3672
3673 local_irq_save(flags);
3674 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3675 local_irq_restore(flags);
3676 }
3677 EXPORT_SYMBOL(__napi_schedule);
3678
3679 void __napi_complete(struct napi_struct *n)
3680 {
3681 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3682 BUG_ON(n->gro_list);
3683
3684 list_del(&n->poll_list);
3685 smp_mb__before_clear_bit();
3686 clear_bit(NAPI_STATE_SCHED, &n->state);
3687 }
3688 EXPORT_SYMBOL(__napi_complete);
3689
3690 void napi_complete(struct napi_struct *n)
3691 {
3692 unsigned long flags;
3693
3694 /*
3695 * don't let napi dequeue from the cpu poll list
3696 * just in case its running on a different cpu
3697 */
3698 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3699 return;
3700
3701 napi_gro_flush(n);
3702 local_irq_save(flags);
3703 __napi_complete(n);
3704 local_irq_restore(flags);
3705 }
3706 EXPORT_SYMBOL(napi_complete);
3707
3708 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3709 int (*poll)(struct napi_struct *, int), int weight)
3710 {
3711 INIT_LIST_HEAD(&napi->poll_list);
3712 napi->gro_count = 0;
3713 napi->gro_list = NULL;
3714 napi->skb = NULL;
3715 napi->poll = poll;
3716 napi->weight = weight;
3717 list_add(&napi->dev_list, &dev->napi_list);
3718 napi->dev = dev;
3719 #ifdef CONFIG_NETPOLL
3720 spin_lock_init(&napi->poll_lock);
3721 napi->poll_owner = -1;
3722 #endif
3723 set_bit(NAPI_STATE_SCHED, &napi->state);
3724 }
3725 EXPORT_SYMBOL(netif_napi_add);
3726
3727 void netif_napi_del(struct napi_struct *napi)
3728 {
3729 struct sk_buff *skb, *next;
3730
3731 list_del_init(&napi->dev_list);
3732 napi_free_frags(napi);
3733
3734 for (skb = napi->gro_list; skb; skb = next) {
3735 next = skb->next;
3736 skb->next = NULL;
3737 kfree_skb(skb);
3738 }
3739
3740 napi->gro_list = NULL;
3741 napi->gro_count = 0;
3742 }
3743 EXPORT_SYMBOL(netif_napi_del);
3744
3745 static void net_rx_action(struct softirq_action *h)
3746 {
3747 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3748 unsigned long time_limit = jiffies + 2;
3749 int budget = netdev_budget;
3750 void *have;
3751
3752 local_irq_disable();
3753
3754 while (!list_empty(&sd->poll_list)) {
3755 struct napi_struct *n;
3756 int work, weight;
3757
3758 /* If softirq window is exhuasted then punt.
3759 * Allow this to run for 2 jiffies since which will allow
3760 * an average latency of 1.5/HZ.
3761 */
3762 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3763 goto softnet_break;
3764
3765 local_irq_enable();
3766
3767 /* Even though interrupts have been re-enabled, this
3768 * access is safe because interrupts can only add new
3769 * entries to the tail of this list, and only ->poll()
3770 * calls can remove this head entry from the list.
3771 */
3772 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3773
3774 have = netpoll_poll_lock(n);
3775
3776 weight = n->weight;
3777
3778 /* This NAPI_STATE_SCHED test is for avoiding a race
3779 * with netpoll's poll_napi(). Only the entity which
3780 * obtains the lock and sees NAPI_STATE_SCHED set will
3781 * actually make the ->poll() call. Therefore we avoid
3782 * accidently calling ->poll() when NAPI is not scheduled.
3783 */
3784 work = 0;
3785 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3786 work = n->poll(n, weight);
3787 trace_napi_poll(n);
3788 }
3789
3790 WARN_ON_ONCE(work > weight);
3791
3792 budget -= work;
3793
3794 local_irq_disable();
3795
3796 /* Drivers must not modify the NAPI state if they
3797 * consume the entire weight. In such cases this code
3798 * still "owns" the NAPI instance and therefore can
3799 * move the instance around on the list at-will.
3800 */
3801 if (unlikely(work == weight)) {
3802 if (unlikely(napi_disable_pending(n))) {
3803 local_irq_enable();
3804 napi_complete(n);
3805 local_irq_disable();
3806 } else
3807 list_move_tail(&n->poll_list, &sd->poll_list);
3808 }
3809
3810 netpoll_poll_unlock(have);
3811 }
3812 out:
3813 net_rps_action_and_irq_enable(sd);
3814
3815 #ifdef CONFIG_NET_DMA
3816 /*
3817 * There may not be any more sk_buffs coming right now, so push
3818 * any pending DMA copies to hardware
3819 */
3820 dma_issue_pending_all();
3821 #endif
3822
3823 return;
3824
3825 softnet_break:
3826 sd->time_squeeze++;
3827 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3828 goto out;
3829 }
3830
3831 static gifconf_func_t *gifconf_list[NPROTO];
3832
3833 /**
3834 * register_gifconf - register a SIOCGIF handler
3835 * @family: Address family
3836 * @gifconf: Function handler
3837 *
3838 * Register protocol dependent address dumping routines. The handler
3839 * that is passed must not be freed or reused until it has been replaced
3840 * by another handler.
3841 */
3842 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3843 {
3844 if (family >= NPROTO)
3845 return -EINVAL;
3846 gifconf_list[family] = gifconf;
3847 return 0;
3848 }
3849 EXPORT_SYMBOL(register_gifconf);
3850
3851
3852 /*
3853 * Map an interface index to its name (SIOCGIFNAME)
3854 */
3855
3856 /*
3857 * We need this ioctl for efficient implementation of the
3858 * if_indextoname() function required by the IPv6 API. Without
3859 * it, we would have to search all the interfaces to find a
3860 * match. --pb
3861 */
3862
3863 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3864 {
3865 struct net_device *dev;
3866 struct ifreq ifr;
3867
3868 /*
3869 * Fetch the caller's info block.
3870 */
3871
3872 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3873 return -EFAULT;
3874
3875 rcu_read_lock();
3876 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3877 if (!dev) {
3878 rcu_read_unlock();
3879 return -ENODEV;
3880 }
3881
3882 strcpy(ifr.ifr_name, dev->name);
3883 rcu_read_unlock();
3884
3885 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3886 return -EFAULT;
3887 return 0;
3888 }
3889
3890 /*
3891 * Perform a SIOCGIFCONF call. This structure will change
3892 * size eventually, and there is nothing I can do about it.
3893 * Thus we will need a 'compatibility mode'.
3894 */
3895
3896 static int dev_ifconf(struct net *net, char __user *arg)
3897 {
3898 struct ifconf ifc;
3899 struct net_device *dev;
3900 char __user *pos;
3901 int len;
3902 int total;
3903 int i;
3904
3905 /*
3906 * Fetch the caller's info block.
3907 */
3908
3909 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3910 return -EFAULT;
3911
3912 pos = ifc.ifc_buf;
3913 len = ifc.ifc_len;
3914
3915 /*
3916 * Loop over the interfaces, and write an info block for each.
3917 */
3918
3919 total = 0;
3920 for_each_netdev(net, dev) {
3921 for (i = 0; i < NPROTO; i++) {
3922 if (gifconf_list[i]) {
3923 int done;
3924 if (!pos)
3925 done = gifconf_list[i](dev, NULL, 0);
3926 else
3927 done = gifconf_list[i](dev, pos + total,
3928 len - total);
3929 if (done < 0)
3930 return -EFAULT;
3931 total += done;
3932 }
3933 }
3934 }
3935
3936 /*
3937 * All done. Write the updated control block back to the caller.
3938 */
3939 ifc.ifc_len = total;
3940
3941 /*
3942 * Both BSD and Solaris return 0 here, so we do too.
3943 */
3944 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3945 }
3946
3947 #ifdef CONFIG_PROC_FS
3948 /*
3949 * This is invoked by the /proc filesystem handler to display a device
3950 * in detail.
3951 */
3952 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3953 __acquires(RCU)
3954 {
3955 struct net *net = seq_file_net(seq);
3956 loff_t off;
3957 struct net_device *dev;
3958
3959 rcu_read_lock();
3960 if (!*pos)
3961 return SEQ_START_TOKEN;
3962
3963 off = 1;
3964 for_each_netdev_rcu(net, dev)
3965 if (off++ == *pos)
3966 return dev;
3967
3968 return NULL;
3969 }
3970
3971 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3972 {
3973 struct net_device *dev = v;
3974
3975 if (v == SEQ_START_TOKEN)
3976 dev = first_net_device_rcu(seq_file_net(seq));
3977 else
3978 dev = next_net_device_rcu(dev);
3979
3980 ++*pos;
3981 return dev;
3982 }
3983
3984 void dev_seq_stop(struct seq_file *seq, void *v)
3985 __releases(RCU)
3986 {
3987 rcu_read_unlock();
3988 }
3989
3990 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3991 {
3992 struct rtnl_link_stats64 temp;
3993 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3994
3995 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3996 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3997 dev->name, stats->rx_bytes, stats->rx_packets,
3998 stats->rx_errors,
3999 stats->rx_dropped + stats->rx_missed_errors,
4000 stats->rx_fifo_errors,
4001 stats->rx_length_errors + stats->rx_over_errors +
4002 stats->rx_crc_errors + stats->rx_frame_errors,
4003 stats->rx_compressed, stats->multicast,
4004 stats->tx_bytes, stats->tx_packets,
4005 stats->tx_errors, stats->tx_dropped,
4006 stats->tx_fifo_errors, stats->collisions,
4007 stats->tx_carrier_errors +
4008 stats->tx_aborted_errors +
4009 stats->tx_window_errors +
4010 stats->tx_heartbeat_errors,
4011 stats->tx_compressed);
4012 }
4013
4014 /*
4015 * Called from the PROCfs module. This now uses the new arbitrary sized
4016 * /proc/net interface to create /proc/net/dev
4017 */
4018 static int dev_seq_show(struct seq_file *seq, void *v)
4019 {
4020 if (v == SEQ_START_TOKEN)
4021 seq_puts(seq, "Inter-| Receive "
4022 " | Transmit\n"
4023 " face |bytes packets errs drop fifo frame "
4024 "compressed multicast|bytes packets errs "
4025 "drop fifo colls carrier compressed\n");
4026 else
4027 dev_seq_printf_stats(seq, v);
4028 return 0;
4029 }
4030
4031 static struct softnet_data *softnet_get_online(loff_t *pos)
4032 {
4033 struct softnet_data *sd = NULL;
4034
4035 while (*pos < nr_cpu_ids)
4036 if (cpu_online(*pos)) {
4037 sd = &per_cpu(softnet_data, *pos);
4038 break;
4039 } else
4040 ++*pos;
4041 return sd;
4042 }
4043
4044 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4045 {
4046 return softnet_get_online(pos);
4047 }
4048
4049 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4050 {
4051 ++*pos;
4052 return softnet_get_online(pos);
4053 }
4054
4055 static void softnet_seq_stop(struct seq_file *seq, void *v)
4056 {
4057 }
4058
4059 static int softnet_seq_show(struct seq_file *seq, void *v)
4060 {
4061 struct softnet_data *sd = v;
4062
4063 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4064 sd->processed, sd->dropped, sd->time_squeeze, 0,
4065 0, 0, 0, 0, /* was fastroute */
4066 sd->cpu_collision, sd->received_rps);
4067 return 0;
4068 }
4069
4070 static const struct seq_operations dev_seq_ops = {
4071 .start = dev_seq_start,
4072 .next = dev_seq_next,
4073 .stop = dev_seq_stop,
4074 .show = dev_seq_show,
4075 };
4076
4077 static int dev_seq_open(struct inode *inode, struct file *file)
4078 {
4079 return seq_open_net(inode, file, &dev_seq_ops,
4080 sizeof(struct seq_net_private));
4081 }
4082
4083 static const struct file_operations dev_seq_fops = {
4084 .owner = THIS_MODULE,
4085 .open = dev_seq_open,
4086 .read = seq_read,
4087 .llseek = seq_lseek,
4088 .release = seq_release_net,
4089 };
4090
4091 static const struct seq_operations softnet_seq_ops = {
4092 .start = softnet_seq_start,
4093 .next = softnet_seq_next,
4094 .stop = softnet_seq_stop,
4095 .show = softnet_seq_show,
4096 };
4097
4098 static int softnet_seq_open(struct inode *inode, struct file *file)
4099 {
4100 return seq_open(file, &softnet_seq_ops);
4101 }
4102
4103 static const struct file_operations softnet_seq_fops = {
4104 .owner = THIS_MODULE,
4105 .open = softnet_seq_open,
4106 .read = seq_read,
4107 .llseek = seq_lseek,
4108 .release = seq_release,
4109 };
4110
4111 static void *ptype_get_idx(loff_t pos)
4112 {
4113 struct packet_type *pt = NULL;
4114 loff_t i = 0;
4115 int t;
4116
4117 list_for_each_entry_rcu(pt, &ptype_all, list) {
4118 if (i == pos)
4119 return pt;
4120 ++i;
4121 }
4122
4123 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4124 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4125 if (i == pos)
4126 return pt;
4127 ++i;
4128 }
4129 }
4130 return NULL;
4131 }
4132
4133 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4134 __acquires(RCU)
4135 {
4136 rcu_read_lock();
4137 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4138 }
4139
4140 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4141 {
4142 struct packet_type *pt;
4143 struct list_head *nxt;
4144 int hash;
4145
4146 ++*pos;
4147 if (v == SEQ_START_TOKEN)
4148 return ptype_get_idx(0);
4149
4150 pt = v;
4151 nxt = pt->list.next;
4152 if (pt->type == htons(ETH_P_ALL)) {
4153 if (nxt != &ptype_all)
4154 goto found;
4155 hash = 0;
4156 nxt = ptype_base[0].next;
4157 } else
4158 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4159
4160 while (nxt == &ptype_base[hash]) {
4161 if (++hash >= PTYPE_HASH_SIZE)
4162 return NULL;
4163 nxt = ptype_base[hash].next;
4164 }
4165 found:
4166 return list_entry(nxt, struct packet_type, list);
4167 }
4168
4169 static void ptype_seq_stop(struct seq_file *seq, void *v)
4170 __releases(RCU)
4171 {
4172 rcu_read_unlock();
4173 }
4174
4175 static int ptype_seq_show(struct seq_file *seq, void *v)
4176 {
4177 struct packet_type *pt = v;
4178
4179 if (v == SEQ_START_TOKEN)
4180 seq_puts(seq, "Type Device Function\n");
4181 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4182 if (pt->type == htons(ETH_P_ALL))
4183 seq_puts(seq, "ALL ");
4184 else
4185 seq_printf(seq, "%04x", ntohs(pt->type));
4186
4187 seq_printf(seq, " %-8s %pF\n",
4188 pt->dev ? pt->dev->name : "", pt->func);
4189 }
4190
4191 return 0;
4192 }
4193
4194 static const struct seq_operations ptype_seq_ops = {
4195 .start = ptype_seq_start,
4196 .next = ptype_seq_next,
4197 .stop = ptype_seq_stop,
4198 .show = ptype_seq_show,
4199 };
4200
4201 static int ptype_seq_open(struct inode *inode, struct file *file)
4202 {
4203 return seq_open_net(inode, file, &ptype_seq_ops,
4204 sizeof(struct seq_net_private));
4205 }
4206
4207 static const struct file_operations ptype_seq_fops = {
4208 .owner = THIS_MODULE,
4209 .open = ptype_seq_open,
4210 .read = seq_read,
4211 .llseek = seq_lseek,
4212 .release = seq_release_net,
4213 };
4214
4215
4216 static int __net_init dev_proc_net_init(struct net *net)
4217 {
4218 int rc = -ENOMEM;
4219
4220 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4221 goto out;
4222 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4223 goto out_dev;
4224 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4225 goto out_softnet;
4226
4227 if (wext_proc_init(net))
4228 goto out_ptype;
4229 rc = 0;
4230 out:
4231 return rc;
4232 out_ptype:
4233 proc_net_remove(net, "ptype");
4234 out_softnet:
4235 proc_net_remove(net, "softnet_stat");
4236 out_dev:
4237 proc_net_remove(net, "dev");
4238 goto out;
4239 }
4240
4241 static void __net_exit dev_proc_net_exit(struct net *net)
4242 {
4243 wext_proc_exit(net);
4244
4245 proc_net_remove(net, "ptype");
4246 proc_net_remove(net, "softnet_stat");
4247 proc_net_remove(net, "dev");
4248 }
4249
4250 static struct pernet_operations __net_initdata dev_proc_ops = {
4251 .init = dev_proc_net_init,
4252 .exit = dev_proc_net_exit,
4253 };
4254
4255 static int __init dev_proc_init(void)
4256 {
4257 return register_pernet_subsys(&dev_proc_ops);
4258 }
4259 #else
4260 #define dev_proc_init() 0
4261 #endif /* CONFIG_PROC_FS */
4262
4263
4264 /**
4265 * netdev_set_master - set up master pointer
4266 * @slave: slave device
4267 * @master: new master device
4268 *
4269 * Changes the master device of the slave. Pass %NULL to break the
4270 * bonding. The caller must hold the RTNL semaphore. On a failure
4271 * a negative errno code is returned. On success the reference counts
4272 * are adjusted and the function returns zero.
4273 */
4274 int netdev_set_master(struct net_device *slave, struct net_device *master)
4275 {
4276 struct net_device *old = slave->master;
4277
4278 ASSERT_RTNL();
4279
4280 if (master) {
4281 if (old)
4282 return -EBUSY;
4283 dev_hold(master);
4284 }
4285
4286 slave->master = master;
4287
4288 if (old) {
4289 synchronize_net();
4290 dev_put(old);
4291 }
4292 return 0;
4293 }
4294 EXPORT_SYMBOL(netdev_set_master);
4295
4296 /**
4297 * netdev_set_bond_master - set up bonding master/slave pair
4298 * @slave: slave device
4299 * @master: new master device
4300 *
4301 * Changes the master device of the slave. Pass %NULL to break the
4302 * bonding. The caller must hold the RTNL semaphore. On a failure
4303 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4304 * to the routing socket and the function returns zero.
4305 */
4306 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4307 {
4308 int err;
4309
4310 ASSERT_RTNL();
4311
4312 err = netdev_set_master(slave, master);
4313 if (err)
4314 return err;
4315 if (master)
4316 slave->flags |= IFF_SLAVE;
4317 else
4318 slave->flags &= ~IFF_SLAVE;
4319
4320 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4321 return 0;
4322 }
4323 EXPORT_SYMBOL(netdev_set_bond_master);
4324
4325 static void dev_change_rx_flags(struct net_device *dev, int flags)
4326 {
4327 const struct net_device_ops *ops = dev->netdev_ops;
4328
4329 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4330 ops->ndo_change_rx_flags(dev, flags);
4331 }
4332
4333 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4334 {
4335 unsigned short old_flags = dev->flags;
4336 uid_t uid;
4337 gid_t gid;
4338
4339 ASSERT_RTNL();
4340
4341 dev->flags |= IFF_PROMISC;
4342 dev->promiscuity += inc;
4343 if (dev->promiscuity == 0) {
4344 /*
4345 * Avoid overflow.
4346 * If inc causes overflow, untouch promisc and return error.
4347 */
4348 if (inc < 0)
4349 dev->flags &= ~IFF_PROMISC;
4350 else {
4351 dev->promiscuity -= inc;
4352 printk(KERN_WARNING "%s: promiscuity touches roof, "
4353 "set promiscuity failed, promiscuity feature "
4354 "of device might be broken.\n", dev->name);
4355 return -EOVERFLOW;
4356 }
4357 }
4358 if (dev->flags != old_flags) {
4359 printk(KERN_INFO "device %s %s promiscuous mode\n",
4360 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4361 "left");
4362 if (audit_enabled) {
4363 current_uid_gid(&uid, &gid);
4364 audit_log(current->audit_context, GFP_ATOMIC,
4365 AUDIT_ANOM_PROMISCUOUS,
4366 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4367 dev->name, (dev->flags & IFF_PROMISC),
4368 (old_flags & IFF_PROMISC),
4369 audit_get_loginuid(current),
4370 uid, gid,
4371 audit_get_sessionid(current));
4372 }
4373
4374 dev_change_rx_flags(dev, IFF_PROMISC);
4375 }
4376 return 0;
4377 }
4378
4379 /**
4380 * dev_set_promiscuity - update promiscuity count on a device
4381 * @dev: device
4382 * @inc: modifier
4383 *
4384 * Add or remove promiscuity from a device. While the count in the device
4385 * remains above zero the interface remains promiscuous. Once it hits zero
4386 * the device reverts back to normal filtering operation. A negative inc
4387 * value is used to drop promiscuity on the device.
4388 * Return 0 if successful or a negative errno code on error.
4389 */
4390 int dev_set_promiscuity(struct net_device *dev, int inc)
4391 {
4392 unsigned short old_flags = dev->flags;
4393 int err;
4394
4395 err = __dev_set_promiscuity(dev, inc);
4396 if (err < 0)
4397 return err;
4398 if (dev->flags != old_flags)
4399 dev_set_rx_mode(dev);
4400 return err;
4401 }
4402 EXPORT_SYMBOL(dev_set_promiscuity);
4403
4404 /**
4405 * dev_set_allmulti - update allmulti count on a device
4406 * @dev: device
4407 * @inc: modifier
4408 *
4409 * Add or remove reception of all multicast frames to a device. While the
4410 * count in the device remains above zero the interface remains listening
4411 * to all interfaces. Once it hits zero the device reverts back to normal
4412 * filtering operation. A negative @inc value is used to drop the counter
4413 * when releasing a resource needing all multicasts.
4414 * Return 0 if successful or a negative errno code on error.
4415 */
4416
4417 int dev_set_allmulti(struct net_device *dev, int inc)
4418 {
4419 unsigned short old_flags = dev->flags;
4420
4421 ASSERT_RTNL();
4422
4423 dev->flags |= IFF_ALLMULTI;
4424 dev->allmulti += inc;
4425 if (dev->allmulti == 0) {
4426 /*
4427 * Avoid overflow.
4428 * If inc causes overflow, untouch allmulti and return error.
4429 */
4430 if (inc < 0)
4431 dev->flags &= ~IFF_ALLMULTI;
4432 else {
4433 dev->allmulti -= inc;
4434 printk(KERN_WARNING "%s: allmulti touches roof, "
4435 "set allmulti failed, allmulti feature of "
4436 "device might be broken.\n", dev->name);
4437 return -EOVERFLOW;
4438 }
4439 }
4440 if (dev->flags ^ old_flags) {
4441 dev_change_rx_flags(dev, IFF_ALLMULTI);
4442 dev_set_rx_mode(dev);
4443 }
4444 return 0;
4445 }
4446 EXPORT_SYMBOL(dev_set_allmulti);
4447
4448 /*
4449 * Upload unicast and multicast address lists to device and
4450 * configure RX filtering. When the device doesn't support unicast
4451 * filtering it is put in promiscuous mode while unicast addresses
4452 * are present.
4453 */
4454 void __dev_set_rx_mode(struct net_device *dev)
4455 {
4456 const struct net_device_ops *ops = dev->netdev_ops;
4457
4458 /* dev_open will call this function so the list will stay sane. */
4459 if (!(dev->flags&IFF_UP))
4460 return;
4461
4462 if (!netif_device_present(dev))
4463 return;
4464
4465 if (ops->ndo_set_rx_mode)
4466 ops->ndo_set_rx_mode(dev);
4467 else {
4468 /* Unicast addresses changes may only happen under the rtnl,
4469 * therefore calling __dev_set_promiscuity here is safe.
4470 */
4471 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4472 __dev_set_promiscuity(dev, 1);
4473 dev->uc_promisc = 1;
4474 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4475 __dev_set_promiscuity(dev, -1);
4476 dev->uc_promisc = 0;
4477 }
4478
4479 if (ops->ndo_set_multicast_list)
4480 ops->ndo_set_multicast_list(dev);
4481 }
4482 }
4483
4484 void dev_set_rx_mode(struct net_device *dev)
4485 {
4486 netif_addr_lock_bh(dev);
4487 __dev_set_rx_mode(dev);
4488 netif_addr_unlock_bh(dev);
4489 }
4490
4491 /**
4492 * dev_get_flags - get flags reported to userspace
4493 * @dev: device
4494 *
4495 * Get the combination of flag bits exported through APIs to userspace.
4496 */
4497 unsigned dev_get_flags(const struct net_device *dev)
4498 {
4499 unsigned flags;
4500
4501 flags = (dev->flags & ~(IFF_PROMISC |
4502 IFF_ALLMULTI |
4503 IFF_RUNNING |
4504 IFF_LOWER_UP |
4505 IFF_DORMANT)) |
4506 (dev->gflags & (IFF_PROMISC |
4507 IFF_ALLMULTI));
4508
4509 if (netif_running(dev)) {
4510 if (netif_oper_up(dev))
4511 flags |= IFF_RUNNING;
4512 if (netif_carrier_ok(dev))
4513 flags |= IFF_LOWER_UP;
4514 if (netif_dormant(dev))
4515 flags |= IFF_DORMANT;
4516 }
4517
4518 return flags;
4519 }
4520 EXPORT_SYMBOL(dev_get_flags);
4521
4522 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4523 {
4524 int old_flags = dev->flags;
4525 int ret;
4526
4527 ASSERT_RTNL();
4528
4529 /*
4530 * Set the flags on our device.
4531 */
4532
4533 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4534 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4535 IFF_AUTOMEDIA)) |
4536 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4537 IFF_ALLMULTI));
4538
4539 /*
4540 * Load in the correct multicast list now the flags have changed.
4541 */
4542
4543 if ((old_flags ^ flags) & IFF_MULTICAST)
4544 dev_change_rx_flags(dev, IFF_MULTICAST);
4545
4546 dev_set_rx_mode(dev);
4547
4548 /*
4549 * Have we downed the interface. We handle IFF_UP ourselves
4550 * according to user attempts to set it, rather than blindly
4551 * setting it.
4552 */
4553
4554 ret = 0;
4555 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4556 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4557
4558 if (!ret)
4559 dev_set_rx_mode(dev);
4560 }
4561
4562 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4563 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4564
4565 dev->gflags ^= IFF_PROMISC;
4566 dev_set_promiscuity(dev, inc);
4567 }
4568
4569 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4570 is important. Some (broken) drivers set IFF_PROMISC, when
4571 IFF_ALLMULTI is requested not asking us and not reporting.
4572 */
4573 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4574 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4575
4576 dev->gflags ^= IFF_ALLMULTI;
4577 dev_set_allmulti(dev, inc);
4578 }
4579
4580 return ret;
4581 }
4582
4583 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4584 {
4585 unsigned int changes = dev->flags ^ old_flags;
4586
4587 if (changes & IFF_UP) {
4588 if (dev->flags & IFF_UP)
4589 call_netdevice_notifiers(NETDEV_UP, dev);
4590 else
4591 call_netdevice_notifiers(NETDEV_DOWN, dev);
4592 }
4593
4594 if (dev->flags & IFF_UP &&
4595 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4596 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4597 }
4598
4599 /**
4600 * dev_change_flags - change device settings
4601 * @dev: device
4602 * @flags: device state flags
4603 *
4604 * Change settings on device based state flags. The flags are
4605 * in the userspace exported format.
4606 */
4607 int dev_change_flags(struct net_device *dev, unsigned flags)
4608 {
4609 int ret, changes;
4610 int old_flags = dev->flags;
4611
4612 ret = __dev_change_flags(dev, flags);
4613 if (ret < 0)
4614 return ret;
4615
4616 changes = old_flags ^ dev->flags;
4617 if (changes)
4618 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4619
4620 __dev_notify_flags(dev, old_flags);
4621 return ret;
4622 }
4623 EXPORT_SYMBOL(dev_change_flags);
4624
4625 /**
4626 * dev_set_mtu - Change maximum transfer unit
4627 * @dev: device
4628 * @new_mtu: new transfer unit
4629 *
4630 * Change the maximum transfer size of the network device.
4631 */
4632 int dev_set_mtu(struct net_device *dev, int new_mtu)
4633 {
4634 const struct net_device_ops *ops = dev->netdev_ops;
4635 int err;
4636
4637 if (new_mtu == dev->mtu)
4638 return 0;
4639
4640 /* MTU must be positive. */
4641 if (new_mtu < 0)
4642 return -EINVAL;
4643
4644 if (!netif_device_present(dev))
4645 return -ENODEV;
4646
4647 err = 0;
4648 if (ops->ndo_change_mtu)
4649 err = ops->ndo_change_mtu(dev, new_mtu);
4650 else
4651 dev->mtu = new_mtu;
4652
4653 if (!err && dev->flags & IFF_UP)
4654 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4655 return err;
4656 }
4657 EXPORT_SYMBOL(dev_set_mtu);
4658
4659 /**
4660 * dev_set_group - Change group this device belongs to
4661 * @dev: device
4662 * @new_group: group this device should belong to
4663 */
4664 void dev_set_group(struct net_device *dev, int new_group)
4665 {
4666 dev->group = new_group;
4667 }
4668 EXPORT_SYMBOL(dev_set_group);
4669
4670 /**
4671 * dev_set_mac_address - Change Media Access Control Address
4672 * @dev: device
4673 * @sa: new address
4674 *
4675 * Change the hardware (MAC) address of the device
4676 */
4677 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4678 {
4679 const struct net_device_ops *ops = dev->netdev_ops;
4680 int err;
4681
4682 if (!ops->ndo_set_mac_address)
4683 return -EOPNOTSUPP;
4684 if (sa->sa_family != dev->type)
4685 return -EINVAL;
4686 if (!netif_device_present(dev))
4687 return -ENODEV;
4688 err = ops->ndo_set_mac_address(dev, sa);
4689 if (!err)
4690 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4691 return err;
4692 }
4693 EXPORT_SYMBOL(dev_set_mac_address);
4694
4695 /*
4696 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4697 */
4698 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4699 {
4700 int err;
4701 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4702
4703 if (!dev)
4704 return -ENODEV;
4705
4706 switch (cmd) {
4707 case SIOCGIFFLAGS: /* Get interface flags */
4708 ifr->ifr_flags = (short) dev_get_flags(dev);
4709 return 0;
4710
4711 case SIOCGIFMETRIC: /* Get the metric on the interface
4712 (currently unused) */
4713 ifr->ifr_metric = 0;
4714 return 0;
4715
4716 case SIOCGIFMTU: /* Get the MTU of a device */
4717 ifr->ifr_mtu = dev->mtu;
4718 return 0;
4719
4720 case SIOCGIFHWADDR:
4721 if (!dev->addr_len)
4722 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4723 else
4724 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4725 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4726 ifr->ifr_hwaddr.sa_family = dev->type;
4727 return 0;
4728
4729 case SIOCGIFSLAVE:
4730 err = -EINVAL;
4731 break;
4732
4733 case SIOCGIFMAP:
4734 ifr->ifr_map.mem_start = dev->mem_start;
4735 ifr->ifr_map.mem_end = dev->mem_end;
4736 ifr->ifr_map.base_addr = dev->base_addr;
4737 ifr->ifr_map.irq = dev->irq;
4738 ifr->ifr_map.dma = dev->dma;
4739 ifr->ifr_map.port = dev->if_port;
4740 return 0;
4741
4742 case SIOCGIFINDEX:
4743 ifr->ifr_ifindex = dev->ifindex;
4744 return 0;
4745
4746 case SIOCGIFTXQLEN:
4747 ifr->ifr_qlen = dev->tx_queue_len;
4748 return 0;
4749
4750 default:
4751 /* dev_ioctl() should ensure this case
4752 * is never reached
4753 */
4754 WARN_ON(1);
4755 err = -EINVAL;
4756 break;
4757
4758 }
4759 return err;
4760 }
4761
4762 /*
4763 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4764 */
4765 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4766 {
4767 int err;
4768 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4769 const struct net_device_ops *ops;
4770
4771 if (!dev)
4772 return -ENODEV;
4773
4774 ops = dev->netdev_ops;
4775
4776 switch (cmd) {
4777 case SIOCSIFFLAGS: /* Set interface flags */
4778 return dev_change_flags(dev, ifr->ifr_flags);
4779
4780 case SIOCSIFMETRIC: /* Set the metric on the interface
4781 (currently unused) */
4782 return -EOPNOTSUPP;
4783
4784 case SIOCSIFMTU: /* Set the MTU of a device */
4785 return dev_set_mtu(dev, ifr->ifr_mtu);
4786
4787 case SIOCSIFHWADDR:
4788 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4789
4790 case SIOCSIFHWBROADCAST:
4791 if (ifr->ifr_hwaddr.sa_family != dev->type)
4792 return -EINVAL;
4793 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4794 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4795 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4796 return 0;
4797
4798 case SIOCSIFMAP:
4799 if (ops->ndo_set_config) {
4800 if (!netif_device_present(dev))
4801 return -ENODEV;
4802 return ops->ndo_set_config(dev, &ifr->ifr_map);
4803 }
4804 return -EOPNOTSUPP;
4805
4806 case SIOCADDMULTI:
4807 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4808 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4809 return -EINVAL;
4810 if (!netif_device_present(dev))
4811 return -ENODEV;
4812 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4813
4814 case SIOCDELMULTI:
4815 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4816 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4817 return -EINVAL;
4818 if (!netif_device_present(dev))
4819 return -ENODEV;
4820 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4821
4822 case SIOCSIFTXQLEN:
4823 if (ifr->ifr_qlen < 0)
4824 return -EINVAL;
4825 dev->tx_queue_len = ifr->ifr_qlen;
4826 return 0;
4827
4828 case SIOCSIFNAME:
4829 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4830 return dev_change_name(dev, ifr->ifr_newname);
4831
4832 /*
4833 * Unknown or private ioctl
4834 */
4835 default:
4836 if ((cmd >= SIOCDEVPRIVATE &&
4837 cmd <= SIOCDEVPRIVATE + 15) ||
4838 cmd == SIOCBONDENSLAVE ||
4839 cmd == SIOCBONDRELEASE ||
4840 cmd == SIOCBONDSETHWADDR ||
4841 cmd == SIOCBONDSLAVEINFOQUERY ||
4842 cmd == SIOCBONDINFOQUERY ||
4843 cmd == SIOCBONDCHANGEACTIVE ||
4844 cmd == SIOCGMIIPHY ||
4845 cmd == SIOCGMIIREG ||
4846 cmd == SIOCSMIIREG ||
4847 cmd == SIOCBRADDIF ||
4848 cmd == SIOCBRDELIF ||
4849 cmd == SIOCSHWTSTAMP ||
4850 cmd == SIOCWANDEV) {
4851 err = -EOPNOTSUPP;
4852 if (ops->ndo_do_ioctl) {
4853 if (netif_device_present(dev))
4854 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4855 else
4856 err = -ENODEV;
4857 }
4858 } else
4859 err = -EINVAL;
4860
4861 }
4862 return err;
4863 }
4864
4865 /*
4866 * This function handles all "interface"-type I/O control requests. The actual
4867 * 'doing' part of this is dev_ifsioc above.
4868 */
4869
4870 /**
4871 * dev_ioctl - network device ioctl
4872 * @net: the applicable net namespace
4873 * @cmd: command to issue
4874 * @arg: pointer to a struct ifreq in user space
4875 *
4876 * Issue ioctl functions to devices. This is normally called by the
4877 * user space syscall interfaces but can sometimes be useful for
4878 * other purposes. The return value is the return from the syscall if
4879 * positive or a negative errno code on error.
4880 */
4881
4882 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4883 {
4884 struct ifreq ifr;
4885 int ret;
4886 char *colon;
4887
4888 /* One special case: SIOCGIFCONF takes ifconf argument
4889 and requires shared lock, because it sleeps writing
4890 to user space.
4891 */
4892
4893 if (cmd == SIOCGIFCONF) {
4894 rtnl_lock();
4895 ret = dev_ifconf(net, (char __user *) arg);
4896 rtnl_unlock();
4897 return ret;
4898 }
4899 if (cmd == SIOCGIFNAME)
4900 return dev_ifname(net, (struct ifreq __user *)arg);
4901
4902 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4903 return -EFAULT;
4904
4905 ifr.ifr_name[IFNAMSIZ-1] = 0;
4906
4907 colon = strchr(ifr.ifr_name, ':');
4908 if (colon)
4909 *colon = 0;
4910
4911 /*
4912 * See which interface the caller is talking about.
4913 */
4914
4915 switch (cmd) {
4916 /*
4917 * These ioctl calls:
4918 * - can be done by all.
4919 * - atomic and do not require locking.
4920 * - return a value
4921 */
4922 case SIOCGIFFLAGS:
4923 case SIOCGIFMETRIC:
4924 case SIOCGIFMTU:
4925 case SIOCGIFHWADDR:
4926 case SIOCGIFSLAVE:
4927 case SIOCGIFMAP:
4928 case SIOCGIFINDEX:
4929 case SIOCGIFTXQLEN:
4930 dev_load(net, ifr.ifr_name);
4931 rcu_read_lock();
4932 ret = dev_ifsioc_locked(net, &ifr, cmd);
4933 rcu_read_unlock();
4934 if (!ret) {
4935 if (colon)
4936 *colon = ':';
4937 if (copy_to_user(arg, &ifr,
4938 sizeof(struct ifreq)))
4939 ret = -EFAULT;
4940 }
4941 return ret;
4942
4943 case SIOCETHTOOL:
4944 dev_load(net, ifr.ifr_name);
4945 rtnl_lock();
4946 ret = dev_ethtool(net, &ifr);
4947 rtnl_unlock();
4948 if (!ret) {
4949 if (colon)
4950 *colon = ':';
4951 if (copy_to_user(arg, &ifr,
4952 sizeof(struct ifreq)))
4953 ret = -EFAULT;
4954 }
4955 return ret;
4956
4957 /*
4958 * These ioctl calls:
4959 * - require superuser power.
4960 * - require strict serialization.
4961 * - return a value
4962 */
4963 case SIOCGMIIPHY:
4964 case SIOCGMIIREG:
4965 case SIOCSIFNAME:
4966 if (!capable(CAP_NET_ADMIN))
4967 return -EPERM;
4968 dev_load(net, ifr.ifr_name);
4969 rtnl_lock();
4970 ret = dev_ifsioc(net, &ifr, cmd);
4971 rtnl_unlock();
4972 if (!ret) {
4973 if (colon)
4974 *colon = ':';
4975 if (copy_to_user(arg, &ifr,
4976 sizeof(struct ifreq)))
4977 ret = -EFAULT;
4978 }
4979 return ret;
4980
4981 /*
4982 * These ioctl calls:
4983 * - require superuser power.
4984 * - require strict serialization.
4985 * - do not return a value
4986 */
4987 case SIOCSIFFLAGS:
4988 case SIOCSIFMETRIC:
4989 case SIOCSIFMTU:
4990 case SIOCSIFMAP:
4991 case SIOCSIFHWADDR:
4992 case SIOCSIFSLAVE:
4993 case SIOCADDMULTI:
4994 case SIOCDELMULTI:
4995 case SIOCSIFHWBROADCAST:
4996 case SIOCSIFTXQLEN:
4997 case SIOCSMIIREG:
4998 case SIOCBONDENSLAVE:
4999 case SIOCBONDRELEASE:
5000 case SIOCBONDSETHWADDR:
5001 case SIOCBONDCHANGEACTIVE:
5002 case SIOCBRADDIF:
5003 case SIOCBRDELIF:
5004 case SIOCSHWTSTAMP:
5005 if (!capable(CAP_NET_ADMIN))
5006 return -EPERM;
5007 /* fall through */
5008 case SIOCBONDSLAVEINFOQUERY:
5009 case SIOCBONDINFOQUERY:
5010 dev_load(net, ifr.ifr_name);
5011 rtnl_lock();
5012 ret = dev_ifsioc(net, &ifr, cmd);
5013 rtnl_unlock();
5014 return ret;
5015
5016 case SIOCGIFMEM:
5017 /* Get the per device memory space. We can add this but
5018 * currently do not support it */
5019 case SIOCSIFMEM:
5020 /* Set the per device memory buffer space.
5021 * Not applicable in our case */
5022 case SIOCSIFLINK:
5023 return -EINVAL;
5024
5025 /*
5026 * Unknown or private ioctl.
5027 */
5028 default:
5029 if (cmd == SIOCWANDEV ||
5030 (cmd >= SIOCDEVPRIVATE &&
5031 cmd <= SIOCDEVPRIVATE + 15)) {
5032 dev_load(net, ifr.ifr_name);
5033 rtnl_lock();
5034 ret = dev_ifsioc(net, &ifr, cmd);
5035 rtnl_unlock();
5036 if (!ret && copy_to_user(arg, &ifr,
5037 sizeof(struct ifreq)))
5038 ret = -EFAULT;
5039 return ret;
5040 }
5041 /* Take care of Wireless Extensions */
5042 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5043 return wext_handle_ioctl(net, &ifr, cmd, arg);
5044 return -EINVAL;
5045 }
5046 }
5047
5048
5049 /**
5050 * dev_new_index - allocate an ifindex
5051 * @net: the applicable net namespace
5052 *
5053 * Returns a suitable unique value for a new device interface
5054 * number. The caller must hold the rtnl semaphore or the
5055 * dev_base_lock to be sure it remains unique.
5056 */
5057 static int dev_new_index(struct net *net)
5058 {
5059 static int ifindex;
5060 for (;;) {
5061 if (++ifindex <= 0)
5062 ifindex = 1;
5063 if (!__dev_get_by_index(net, ifindex))
5064 return ifindex;
5065 }
5066 }
5067
5068 /* Delayed registration/unregisteration */
5069 static LIST_HEAD(net_todo_list);
5070
5071 static void net_set_todo(struct net_device *dev)
5072 {
5073 list_add_tail(&dev->todo_list, &net_todo_list);
5074 }
5075
5076 static void rollback_registered_many(struct list_head *head)
5077 {
5078 struct net_device *dev, *tmp;
5079
5080 BUG_ON(dev_boot_phase);
5081 ASSERT_RTNL();
5082
5083 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5084 /* Some devices call without registering
5085 * for initialization unwind. Remove those
5086 * devices and proceed with the remaining.
5087 */
5088 if (dev->reg_state == NETREG_UNINITIALIZED) {
5089 pr_debug("unregister_netdevice: device %s/%p never "
5090 "was registered\n", dev->name, dev);
5091
5092 WARN_ON(1);
5093 list_del(&dev->unreg_list);
5094 continue;
5095 }
5096
5097 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5098 }
5099
5100 /* If device is running, close it first. */
5101 dev_close_many(head);
5102
5103 list_for_each_entry(dev, head, unreg_list) {
5104 /* And unlink it from device chain. */
5105 unlist_netdevice(dev);
5106
5107 dev->reg_state = NETREG_UNREGISTERING;
5108 }
5109
5110 synchronize_net();
5111
5112 list_for_each_entry(dev, head, unreg_list) {
5113 /* Shutdown queueing discipline. */
5114 dev_shutdown(dev);
5115
5116
5117 /* Notify protocols, that we are about to destroy
5118 this device. They should clean all the things.
5119 */
5120 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5121
5122 if (!dev->rtnl_link_ops ||
5123 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5124 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5125
5126 /*
5127 * Flush the unicast and multicast chains
5128 */
5129 dev_uc_flush(dev);
5130 dev_mc_flush(dev);
5131
5132 if (dev->netdev_ops->ndo_uninit)
5133 dev->netdev_ops->ndo_uninit(dev);
5134
5135 /* Notifier chain MUST detach us from master device. */
5136 WARN_ON(dev->master);
5137
5138 /* Remove entries from kobject tree */
5139 netdev_unregister_kobject(dev);
5140 }
5141
5142 /* Process any work delayed until the end of the batch */
5143 dev = list_first_entry(head, struct net_device, unreg_list);
5144 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5145
5146 rcu_barrier();
5147
5148 list_for_each_entry(dev, head, unreg_list)
5149 dev_put(dev);
5150 }
5151
5152 static void rollback_registered(struct net_device *dev)
5153 {
5154 LIST_HEAD(single);
5155
5156 list_add(&dev->unreg_list, &single);
5157 rollback_registered_many(&single);
5158 list_del(&single);
5159 }
5160
5161 u32 netdev_fix_features(struct net_device *dev, u32 features)
5162 {
5163 /* Fix illegal checksum combinations */
5164 if ((features & NETIF_F_HW_CSUM) &&
5165 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5166 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5167 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5168 }
5169
5170 if ((features & NETIF_F_NO_CSUM) &&
5171 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5172 netdev_info(dev, "mixed no checksumming and other settings.\n");
5173 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5174 }
5175
5176 /* Fix illegal SG+CSUM combinations. */
5177 if ((features & NETIF_F_SG) &&
5178 !(features & NETIF_F_ALL_CSUM)) {
5179 netdev_info(dev,
5180 "Dropping NETIF_F_SG since no checksum feature.\n");
5181 features &= ~NETIF_F_SG;
5182 }
5183
5184 /* TSO requires that SG is present as well. */
5185 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5186 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5187 features &= ~NETIF_F_TSO;
5188 }
5189
5190 /* Software GSO depends on SG. */
5191 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5192 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5193 features &= ~NETIF_F_GSO;
5194 }
5195
5196 /* UFO needs SG and checksumming */
5197 if (features & NETIF_F_UFO) {
5198 /* maybe split UFO into V4 and V6? */
5199 if (!((features & NETIF_F_GEN_CSUM) ||
5200 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5201 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5202 netdev_info(dev,
5203 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5204 features &= ~NETIF_F_UFO;
5205 }
5206
5207 if (!(features & NETIF_F_SG)) {
5208 netdev_info(dev,
5209 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5210 features &= ~NETIF_F_UFO;
5211 }
5212 }
5213
5214 return features;
5215 }
5216 EXPORT_SYMBOL(netdev_fix_features);
5217
5218 void netdev_update_features(struct net_device *dev)
5219 {
5220 u32 features;
5221 int err = 0;
5222
5223 features = netdev_get_wanted_features(dev);
5224
5225 if (dev->netdev_ops->ndo_fix_features)
5226 features = dev->netdev_ops->ndo_fix_features(dev, features);
5227
5228 /* driver might be less strict about feature dependencies */
5229 features = netdev_fix_features(dev, features);
5230
5231 if (dev->features == features)
5232 return;
5233
5234 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5235 dev->features, features);
5236
5237 if (dev->netdev_ops->ndo_set_features)
5238 err = dev->netdev_ops->ndo_set_features(dev, features);
5239
5240 if (!err)
5241 dev->features = features;
5242 else if (err < 0)
5243 netdev_err(dev,
5244 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5245 err, features, dev->features);
5246 }
5247 EXPORT_SYMBOL(netdev_update_features);
5248
5249 /**
5250 * netif_stacked_transfer_operstate - transfer operstate
5251 * @rootdev: the root or lower level device to transfer state from
5252 * @dev: the device to transfer operstate to
5253 *
5254 * Transfer operational state from root to device. This is normally
5255 * called when a stacking relationship exists between the root
5256 * device and the device(a leaf device).
5257 */
5258 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5259 struct net_device *dev)
5260 {
5261 if (rootdev->operstate == IF_OPER_DORMANT)
5262 netif_dormant_on(dev);
5263 else
5264 netif_dormant_off(dev);
5265
5266 if (netif_carrier_ok(rootdev)) {
5267 if (!netif_carrier_ok(dev))
5268 netif_carrier_on(dev);
5269 } else {
5270 if (netif_carrier_ok(dev))
5271 netif_carrier_off(dev);
5272 }
5273 }
5274 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5275
5276 #ifdef CONFIG_RPS
5277 static int netif_alloc_rx_queues(struct net_device *dev)
5278 {
5279 unsigned int i, count = dev->num_rx_queues;
5280 struct netdev_rx_queue *rx;
5281
5282 BUG_ON(count < 1);
5283
5284 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5285 if (!rx) {
5286 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5287 return -ENOMEM;
5288 }
5289 dev->_rx = rx;
5290
5291 for (i = 0; i < count; i++)
5292 rx[i].dev = dev;
5293 return 0;
5294 }
5295 #endif
5296
5297 static void netdev_init_one_queue(struct net_device *dev,
5298 struct netdev_queue *queue, void *_unused)
5299 {
5300 /* Initialize queue lock */
5301 spin_lock_init(&queue->_xmit_lock);
5302 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5303 queue->xmit_lock_owner = -1;
5304 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5305 queue->dev = dev;
5306 }
5307
5308 static int netif_alloc_netdev_queues(struct net_device *dev)
5309 {
5310 unsigned int count = dev->num_tx_queues;
5311 struct netdev_queue *tx;
5312
5313 BUG_ON(count < 1);
5314
5315 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5316 if (!tx) {
5317 pr_err("netdev: Unable to allocate %u tx queues.\n",
5318 count);
5319 return -ENOMEM;
5320 }
5321 dev->_tx = tx;
5322
5323 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5324 spin_lock_init(&dev->tx_global_lock);
5325
5326 return 0;
5327 }
5328
5329 /**
5330 * register_netdevice - register a network device
5331 * @dev: device to register
5332 *
5333 * Take a completed network device structure and add it to the kernel
5334 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5335 * chain. 0 is returned on success. A negative errno code is returned
5336 * on a failure to set up the device, or if the name is a duplicate.
5337 *
5338 * Callers must hold the rtnl semaphore. You may want
5339 * register_netdev() instead of this.
5340 *
5341 * BUGS:
5342 * The locking appears insufficient to guarantee two parallel registers
5343 * will not get the same name.
5344 */
5345
5346 int register_netdevice(struct net_device *dev)
5347 {
5348 int ret;
5349 struct net *net = dev_net(dev);
5350
5351 BUG_ON(dev_boot_phase);
5352 ASSERT_RTNL();
5353
5354 might_sleep();
5355
5356 /* When net_device's are persistent, this will be fatal. */
5357 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5358 BUG_ON(!net);
5359
5360 spin_lock_init(&dev->addr_list_lock);
5361 netdev_set_addr_lockdep_class(dev);
5362
5363 dev->iflink = -1;
5364
5365 /* Init, if this function is available */
5366 if (dev->netdev_ops->ndo_init) {
5367 ret = dev->netdev_ops->ndo_init(dev);
5368 if (ret) {
5369 if (ret > 0)
5370 ret = -EIO;
5371 goto out;
5372 }
5373 }
5374
5375 ret = dev_get_valid_name(dev, dev->name, 0);
5376 if (ret)
5377 goto err_uninit;
5378
5379 dev->ifindex = dev_new_index(net);
5380 if (dev->iflink == -1)
5381 dev->iflink = dev->ifindex;
5382
5383 /* Transfer changeable features to wanted_features and enable
5384 * software offloads (GSO and GRO).
5385 */
5386 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5387 dev->features |= NETIF_F_SOFT_FEATURES;
5388 dev->wanted_features = dev->features & dev->hw_features;
5389
5390 /* Avoid warning from netdev_fix_features() for GSO without SG */
5391 if (!(dev->wanted_features & NETIF_F_SG)) {
5392 dev->wanted_features &= ~NETIF_F_GSO;
5393 dev->features &= ~NETIF_F_GSO;
5394 }
5395
5396 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5397 * vlan_dev_init() will do the dev->features check, so these features
5398 * are enabled only if supported by underlying device.
5399 */
5400 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5401
5402 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5403 ret = notifier_to_errno(ret);
5404 if (ret)
5405 goto err_uninit;
5406
5407 ret = netdev_register_kobject(dev);
5408 if (ret)
5409 goto err_uninit;
5410 dev->reg_state = NETREG_REGISTERED;
5411
5412 netdev_update_features(dev);
5413
5414 /*
5415 * Default initial state at registry is that the
5416 * device is present.
5417 */
5418
5419 set_bit(__LINK_STATE_PRESENT, &dev->state);
5420
5421 dev_init_scheduler(dev);
5422 dev_hold(dev);
5423 list_netdevice(dev);
5424
5425 /* Notify protocols, that a new device appeared. */
5426 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5427 ret = notifier_to_errno(ret);
5428 if (ret) {
5429 rollback_registered(dev);
5430 dev->reg_state = NETREG_UNREGISTERED;
5431 }
5432 /*
5433 * Prevent userspace races by waiting until the network
5434 * device is fully setup before sending notifications.
5435 */
5436 if (!dev->rtnl_link_ops ||
5437 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5438 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5439
5440 out:
5441 return ret;
5442
5443 err_uninit:
5444 if (dev->netdev_ops->ndo_uninit)
5445 dev->netdev_ops->ndo_uninit(dev);
5446 goto out;
5447 }
5448 EXPORT_SYMBOL(register_netdevice);
5449
5450 /**
5451 * init_dummy_netdev - init a dummy network device for NAPI
5452 * @dev: device to init
5453 *
5454 * This takes a network device structure and initialize the minimum
5455 * amount of fields so it can be used to schedule NAPI polls without
5456 * registering a full blown interface. This is to be used by drivers
5457 * that need to tie several hardware interfaces to a single NAPI
5458 * poll scheduler due to HW limitations.
5459 */
5460 int init_dummy_netdev(struct net_device *dev)
5461 {
5462 /* Clear everything. Note we don't initialize spinlocks
5463 * are they aren't supposed to be taken by any of the
5464 * NAPI code and this dummy netdev is supposed to be
5465 * only ever used for NAPI polls
5466 */
5467 memset(dev, 0, sizeof(struct net_device));
5468
5469 /* make sure we BUG if trying to hit standard
5470 * register/unregister code path
5471 */
5472 dev->reg_state = NETREG_DUMMY;
5473
5474 /* NAPI wants this */
5475 INIT_LIST_HEAD(&dev->napi_list);
5476
5477 /* a dummy interface is started by default */
5478 set_bit(__LINK_STATE_PRESENT, &dev->state);
5479 set_bit(__LINK_STATE_START, &dev->state);
5480
5481 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5482 * because users of this 'device' dont need to change
5483 * its refcount.
5484 */
5485
5486 return 0;
5487 }
5488 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5489
5490
5491 /**
5492 * register_netdev - register a network device
5493 * @dev: device to register
5494 *
5495 * Take a completed network device structure and add it to the kernel
5496 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5497 * chain. 0 is returned on success. A negative errno code is returned
5498 * on a failure to set up the device, or if the name is a duplicate.
5499 *
5500 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5501 * and expands the device name if you passed a format string to
5502 * alloc_netdev.
5503 */
5504 int register_netdev(struct net_device *dev)
5505 {
5506 int err;
5507
5508 rtnl_lock();
5509
5510 /*
5511 * If the name is a format string the caller wants us to do a
5512 * name allocation.
5513 */
5514 if (strchr(dev->name, '%')) {
5515 err = dev_alloc_name(dev, dev->name);
5516 if (err < 0)
5517 goto out;
5518 }
5519
5520 err = register_netdevice(dev);
5521 out:
5522 rtnl_unlock();
5523 return err;
5524 }
5525 EXPORT_SYMBOL(register_netdev);
5526
5527 int netdev_refcnt_read(const struct net_device *dev)
5528 {
5529 int i, refcnt = 0;
5530
5531 for_each_possible_cpu(i)
5532 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5533 return refcnt;
5534 }
5535 EXPORT_SYMBOL(netdev_refcnt_read);
5536
5537 /*
5538 * netdev_wait_allrefs - wait until all references are gone.
5539 *
5540 * This is called when unregistering network devices.
5541 *
5542 * Any protocol or device that holds a reference should register
5543 * for netdevice notification, and cleanup and put back the
5544 * reference if they receive an UNREGISTER event.
5545 * We can get stuck here if buggy protocols don't correctly
5546 * call dev_put.
5547 */
5548 static void netdev_wait_allrefs(struct net_device *dev)
5549 {
5550 unsigned long rebroadcast_time, warning_time;
5551 int refcnt;
5552
5553 linkwatch_forget_dev(dev);
5554
5555 rebroadcast_time = warning_time = jiffies;
5556 refcnt = netdev_refcnt_read(dev);
5557
5558 while (refcnt != 0) {
5559 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5560 rtnl_lock();
5561
5562 /* Rebroadcast unregister notification */
5563 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5564 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5565 * should have already handle it the first time */
5566
5567 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5568 &dev->state)) {
5569 /* We must not have linkwatch events
5570 * pending on unregister. If this
5571 * happens, we simply run the queue
5572 * unscheduled, resulting in a noop
5573 * for this device.
5574 */
5575 linkwatch_run_queue();
5576 }
5577
5578 __rtnl_unlock();
5579
5580 rebroadcast_time = jiffies;
5581 }
5582
5583 msleep(250);
5584
5585 refcnt = netdev_refcnt_read(dev);
5586
5587 if (time_after(jiffies, warning_time + 10 * HZ)) {
5588 printk(KERN_EMERG "unregister_netdevice: "
5589 "waiting for %s to become free. Usage "
5590 "count = %d\n",
5591 dev->name, refcnt);
5592 warning_time = jiffies;
5593 }
5594 }
5595 }
5596
5597 /* The sequence is:
5598 *
5599 * rtnl_lock();
5600 * ...
5601 * register_netdevice(x1);
5602 * register_netdevice(x2);
5603 * ...
5604 * unregister_netdevice(y1);
5605 * unregister_netdevice(y2);
5606 * ...
5607 * rtnl_unlock();
5608 * free_netdev(y1);
5609 * free_netdev(y2);
5610 *
5611 * We are invoked by rtnl_unlock().
5612 * This allows us to deal with problems:
5613 * 1) We can delete sysfs objects which invoke hotplug
5614 * without deadlocking with linkwatch via keventd.
5615 * 2) Since we run with the RTNL semaphore not held, we can sleep
5616 * safely in order to wait for the netdev refcnt to drop to zero.
5617 *
5618 * We must not return until all unregister events added during
5619 * the interval the lock was held have been completed.
5620 */
5621 void netdev_run_todo(void)
5622 {
5623 struct list_head list;
5624
5625 /* Snapshot list, allow later requests */
5626 list_replace_init(&net_todo_list, &list);
5627
5628 __rtnl_unlock();
5629
5630 while (!list_empty(&list)) {
5631 struct net_device *dev
5632 = list_first_entry(&list, struct net_device, todo_list);
5633 list_del(&dev->todo_list);
5634
5635 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5636 printk(KERN_ERR "network todo '%s' but state %d\n",
5637 dev->name, dev->reg_state);
5638 dump_stack();
5639 continue;
5640 }
5641
5642 dev->reg_state = NETREG_UNREGISTERED;
5643
5644 on_each_cpu(flush_backlog, dev, 1);
5645
5646 netdev_wait_allrefs(dev);
5647
5648 /* paranoia */
5649 BUG_ON(netdev_refcnt_read(dev));
5650 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5651 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5652 WARN_ON(dev->dn_ptr);
5653
5654 if (dev->destructor)
5655 dev->destructor(dev);
5656
5657 /* Free network device */
5658 kobject_put(&dev->dev.kobj);
5659 }
5660 }
5661
5662 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5663 * fields in the same order, with only the type differing.
5664 */
5665 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5666 const struct net_device_stats *netdev_stats)
5667 {
5668 #if BITS_PER_LONG == 64
5669 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5670 memcpy(stats64, netdev_stats, sizeof(*stats64));
5671 #else
5672 size_t i, n = sizeof(*stats64) / sizeof(u64);
5673 const unsigned long *src = (const unsigned long *)netdev_stats;
5674 u64 *dst = (u64 *)stats64;
5675
5676 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5677 sizeof(*stats64) / sizeof(u64));
5678 for (i = 0; i < n; i++)
5679 dst[i] = src[i];
5680 #endif
5681 }
5682
5683 /**
5684 * dev_get_stats - get network device statistics
5685 * @dev: device to get statistics from
5686 * @storage: place to store stats
5687 *
5688 * Get network statistics from device. Return @storage.
5689 * The device driver may provide its own method by setting
5690 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5691 * otherwise the internal statistics structure is used.
5692 */
5693 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5694 struct rtnl_link_stats64 *storage)
5695 {
5696 const struct net_device_ops *ops = dev->netdev_ops;
5697
5698 if (ops->ndo_get_stats64) {
5699 memset(storage, 0, sizeof(*storage));
5700 ops->ndo_get_stats64(dev, storage);
5701 } else if (ops->ndo_get_stats) {
5702 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5703 } else {
5704 netdev_stats_to_stats64(storage, &dev->stats);
5705 }
5706 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5707 return storage;
5708 }
5709 EXPORT_SYMBOL(dev_get_stats);
5710
5711 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5712 {
5713 struct netdev_queue *queue = dev_ingress_queue(dev);
5714
5715 #ifdef CONFIG_NET_CLS_ACT
5716 if (queue)
5717 return queue;
5718 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5719 if (!queue)
5720 return NULL;
5721 netdev_init_one_queue(dev, queue, NULL);
5722 queue->qdisc = &noop_qdisc;
5723 queue->qdisc_sleeping = &noop_qdisc;
5724 rcu_assign_pointer(dev->ingress_queue, queue);
5725 #endif
5726 return queue;
5727 }
5728
5729 /**
5730 * alloc_netdev_mqs - allocate network device
5731 * @sizeof_priv: size of private data to allocate space for
5732 * @name: device name format string
5733 * @setup: callback to initialize device
5734 * @txqs: the number of TX subqueues to allocate
5735 * @rxqs: the number of RX subqueues to allocate
5736 *
5737 * Allocates a struct net_device with private data area for driver use
5738 * and performs basic initialization. Also allocates subquue structs
5739 * for each queue on the device.
5740 */
5741 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5742 void (*setup)(struct net_device *),
5743 unsigned int txqs, unsigned int rxqs)
5744 {
5745 struct net_device *dev;
5746 size_t alloc_size;
5747 struct net_device *p;
5748
5749 BUG_ON(strlen(name) >= sizeof(dev->name));
5750
5751 if (txqs < 1) {
5752 pr_err("alloc_netdev: Unable to allocate device "
5753 "with zero queues.\n");
5754 return NULL;
5755 }
5756
5757 #ifdef CONFIG_RPS
5758 if (rxqs < 1) {
5759 pr_err("alloc_netdev: Unable to allocate device "
5760 "with zero RX queues.\n");
5761 return NULL;
5762 }
5763 #endif
5764
5765 alloc_size = sizeof(struct net_device);
5766 if (sizeof_priv) {
5767 /* ensure 32-byte alignment of private area */
5768 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5769 alloc_size += sizeof_priv;
5770 }
5771 /* ensure 32-byte alignment of whole construct */
5772 alloc_size += NETDEV_ALIGN - 1;
5773
5774 p = kzalloc(alloc_size, GFP_KERNEL);
5775 if (!p) {
5776 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5777 return NULL;
5778 }
5779
5780 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5781 dev->padded = (char *)dev - (char *)p;
5782
5783 dev->pcpu_refcnt = alloc_percpu(int);
5784 if (!dev->pcpu_refcnt)
5785 goto free_p;
5786
5787 if (dev_addr_init(dev))
5788 goto free_pcpu;
5789
5790 dev_mc_init(dev);
5791 dev_uc_init(dev);
5792
5793 dev_net_set(dev, &init_net);
5794
5795 dev->gso_max_size = GSO_MAX_SIZE;
5796
5797 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5798 dev->ethtool_ntuple_list.count = 0;
5799 INIT_LIST_HEAD(&dev->napi_list);
5800 INIT_LIST_HEAD(&dev->unreg_list);
5801 INIT_LIST_HEAD(&dev->link_watch_list);
5802 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5803 setup(dev);
5804
5805 dev->num_tx_queues = txqs;
5806 dev->real_num_tx_queues = txqs;
5807 if (netif_alloc_netdev_queues(dev))
5808 goto free_all;
5809
5810 #ifdef CONFIG_RPS
5811 dev->num_rx_queues = rxqs;
5812 dev->real_num_rx_queues = rxqs;
5813 if (netif_alloc_rx_queues(dev))
5814 goto free_all;
5815 #endif
5816
5817 strcpy(dev->name, name);
5818 dev->group = INIT_NETDEV_GROUP;
5819 return dev;
5820
5821 free_all:
5822 free_netdev(dev);
5823 return NULL;
5824
5825 free_pcpu:
5826 free_percpu(dev->pcpu_refcnt);
5827 kfree(dev->_tx);
5828 #ifdef CONFIG_RPS
5829 kfree(dev->_rx);
5830 #endif
5831
5832 free_p:
5833 kfree(p);
5834 return NULL;
5835 }
5836 EXPORT_SYMBOL(alloc_netdev_mqs);
5837
5838 /**
5839 * free_netdev - free network device
5840 * @dev: device
5841 *
5842 * This function does the last stage of destroying an allocated device
5843 * interface. The reference to the device object is released.
5844 * If this is the last reference then it will be freed.
5845 */
5846 void free_netdev(struct net_device *dev)
5847 {
5848 struct napi_struct *p, *n;
5849
5850 release_net(dev_net(dev));
5851
5852 kfree(dev->_tx);
5853 #ifdef CONFIG_RPS
5854 kfree(dev->_rx);
5855 #endif
5856
5857 kfree(rcu_dereference_raw(dev->ingress_queue));
5858
5859 /* Flush device addresses */
5860 dev_addr_flush(dev);
5861
5862 /* Clear ethtool n-tuple list */
5863 ethtool_ntuple_flush(dev);
5864
5865 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5866 netif_napi_del(p);
5867
5868 free_percpu(dev->pcpu_refcnt);
5869 dev->pcpu_refcnt = NULL;
5870
5871 /* Compatibility with error handling in drivers */
5872 if (dev->reg_state == NETREG_UNINITIALIZED) {
5873 kfree((char *)dev - dev->padded);
5874 return;
5875 }
5876
5877 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5878 dev->reg_state = NETREG_RELEASED;
5879
5880 /* will free via device release */
5881 put_device(&dev->dev);
5882 }
5883 EXPORT_SYMBOL(free_netdev);
5884
5885 /**
5886 * synchronize_net - Synchronize with packet receive processing
5887 *
5888 * Wait for packets currently being received to be done.
5889 * Does not block later packets from starting.
5890 */
5891 void synchronize_net(void)
5892 {
5893 might_sleep();
5894 synchronize_rcu();
5895 }
5896 EXPORT_SYMBOL(synchronize_net);
5897
5898 /**
5899 * unregister_netdevice_queue - remove device from the kernel
5900 * @dev: device
5901 * @head: list
5902 *
5903 * This function shuts down a device interface and removes it
5904 * from the kernel tables.
5905 * If head not NULL, device is queued to be unregistered later.
5906 *
5907 * Callers must hold the rtnl semaphore. You may want
5908 * unregister_netdev() instead of this.
5909 */
5910
5911 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5912 {
5913 ASSERT_RTNL();
5914
5915 if (head) {
5916 list_move_tail(&dev->unreg_list, head);
5917 } else {
5918 rollback_registered(dev);
5919 /* Finish processing unregister after unlock */
5920 net_set_todo(dev);
5921 }
5922 }
5923 EXPORT_SYMBOL(unregister_netdevice_queue);
5924
5925 /**
5926 * unregister_netdevice_many - unregister many devices
5927 * @head: list of devices
5928 */
5929 void unregister_netdevice_many(struct list_head *head)
5930 {
5931 struct net_device *dev;
5932
5933 if (!list_empty(head)) {
5934 rollback_registered_many(head);
5935 list_for_each_entry(dev, head, unreg_list)
5936 net_set_todo(dev);
5937 }
5938 }
5939 EXPORT_SYMBOL(unregister_netdevice_many);
5940
5941 /**
5942 * unregister_netdev - remove device from the kernel
5943 * @dev: device
5944 *
5945 * This function shuts down a device interface and removes it
5946 * from the kernel tables.
5947 *
5948 * This is just a wrapper for unregister_netdevice that takes
5949 * the rtnl semaphore. In general you want to use this and not
5950 * unregister_netdevice.
5951 */
5952 void unregister_netdev(struct net_device *dev)
5953 {
5954 rtnl_lock();
5955 unregister_netdevice(dev);
5956 rtnl_unlock();
5957 }
5958 EXPORT_SYMBOL(unregister_netdev);
5959
5960 /**
5961 * dev_change_net_namespace - move device to different nethost namespace
5962 * @dev: device
5963 * @net: network namespace
5964 * @pat: If not NULL name pattern to try if the current device name
5965 * is already taken in the destination network namespace.
5966 *
5967 * This function shuts down a device interface and moves it
5968 * to a new network namespace. On success 0 is returned, on
5969 * a failure a netagive errno code is returned.
5970 *
5971 * Callers must hold the rtnl semaphore.
5972 */
5973
5974 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5975 {
5976 int err;
5977
5978 ASSERT_RTNL();
5979
5980 /* Don't allow namespace local devices to be moved. */
5981 err = -EINVAL;
5982 if (dev->features & NETIF_F_NETNS_LOCAL)
5983 goto out;
5984
5985 /* Ensure the device has been registrered */
5986 err = -EINVAL;
5987 if (dev->reg_state != NETREG_REGISTERED)
5988 goto out;
5989
5990 /* Get out if there is nothing todo */
5991 err = 0;
5992 if (net_eq(dev_net(dev), net))
5993 goto out;
5994
5995 /* Pick the destination device name, and ensure
5996 * we can use it in the destination network namespace.
5997 */
5998 err = -EEXIST;
5999 if (__dev_get_by_name(net, dev->name)) {
6000 /* We get here if we can't use the current device name */
6001 if (!pat)
6002 goto out;
6003 if (dev_get_valid_name(dev, pat, 1))
6004 goto out;
6005 }
6006
6007 /*
6008 * And now a mini version of register_netdevice unregister_netdevice.
6009 */
6010
6011 /* If device is running close it first. */
6012 dev_close(dev);
6013
6014 /* And unlink it from device chain */
6015 err = -ENODEV;
6016 unlist_netdevice(dev);
6017
6018 synchronize_net();
6019
6020 /* Shutdown queueing discipline. */
6021 dev_shutdown(dev);
6022
6023 /* Notify protocols, that we are about to destroy
6024 this device. They should clean all the things.
6025
6026 Note that dev->reg_state stays at NETREG_REGISTERED.
6027 This is wanted because this way 8021q and macvlan know
6028 the device is just moving and can keep their slaves up.
6029 */
6030 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6031 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6032
6033 /*
6034 * Flush the unicast and multicast chains
6035 */
6036 dev_uc_flush(dev);
6037 dev_mc_flush(dev);
6038
6039 /* Actually switch the network namespace */
6040 dev_net_set(dev, net);
6041
6042 /* If there is an ifindex conflict assign a new one */
6043 if (__dev_get_by_index(net, dev->ifindex)) {
6044 int iflink = (dev->iflink == dev->ifindex);
6045 dev->ifindex = dev_new_index(net);
6046 if (iflink)
6047 dev->iflink = dev->ifindex;
6048 }
6049
6050 /* Fixup kobjects */
6051 err = device_rename(&dev->dev, dev->name);
6052 WARN_ON(err);
6053
6054 /* Add the device back in the hashes */
6055 list_netdevice(dev);
6056
6057 /* Notify protocols, that a new device appeared. */
6058 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6059
6060 /*
6061 * Prevent userspace races by waiting until the network
6062 * device is fully setup before sending notifications.
6063 */
6064 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6065
6066 synchronize_net();
6067 err = 0;
6068 out:
6069 return err;
6070 }
6071 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6072
6073 static int dev_cpu_callback(struct notifier_block *nfb,
6074 unsigned long action,
6075 void *ocpu)
6076 {
6077 struct sk_buff **list_skb;
6078 struct sk_buff *skb;
6079 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6080 struct softnet_data *sd, *oldsd;
6081
6082 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6083 return NOTIFY_OK;
6084
6085 local_irq_disable();
6086 cpu = smp_processor_id();
6087 sd = &per_cpu(softnet_data, cpu);
6088 oldsd = &per_cpu(softnet_data, oldcpu);
6089
6090 /* Find end of our completion_queue. */
6091 list_skb = &sd->completion_queue;
6092 while (*list_skb)
6093 list_skb = &(*list_skb)->next;
6094 /* Append completion queue from offline CPU. */
6095 *list_skb = oldsd->completion_queue;
6096 oldsd->completion_queue = NULL;
6097
6098 /* Append output queue from offline CPU. */
6099 if (oldsd->output_queue) {
6100 *sd->output_queue_tailp = oldsd->output_queue;
6101 sd->output_queue_tailp = oldsd->output_queue_tailp;
6102 oldsd->output_queue = NULL;
6103 oldsd->output_queue_tailp = &oldsd->output_queue;
6104 }
6105
6106 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6107 local_irq_enable();
6108
6109 /* Process offline CPU's input_pkt_queue */
6110 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6111 netif_rx(skb);
6112 input_queue_head_incr(oldsd);
6113 }
6114 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6115 netif_rx(skb);
6116 input_queue_head_incr(oldsd);
6117 }
6118
6119 return NOTIFY_OK;
6120 }
6121
6122
6123 /**
6124 * netdev_increment_features - increment feature set by one
6125 * @all: current feature set
6126 * @one: new feature set
6127 * @mask: mask feature set
6128 *
6129 * Computes a new feature set after adding a device with feature set
6130 * @one to the master device with current feature set @all. Will not
6131 * enable anything that is off in @mask. Returns the new feature set.
6132 */
6133 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6134 {
6135 /* If device needs checksumming, downgrade to it. */
6136 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6137 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6138 else if (mask & NETIF_F_ALL_CSUM) {
6139 /* If one device supports v4/v6 checksumming, set for all. */
6140 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6141 !(all & NETIF_F_GEN_CSUM)) {
6142 all &= ~NETIF_F_ALL_CSUM;
6143 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6144 }
6145
6146 /* If one device supports hw checksumming, set for all. */
6147 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6148 all &= ~NETIF_F_ALL_CSUM;
6149 all |= NETIF_F_HW_CSUM;
6150 }
6151 }
6152
6153 one |= NETIF_F_ALL_CSUM;
6154
6155 one |= all & NETIF_F_ONE_FOR_ALL;
6156 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6157 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6158
6159 return all;
6160 }
6161 EXPORT_SYMBOL(netdev_increment_features);
6162
6163 static struct hlist_head *netdev_create_hash(void)
6164 {
6165 int i;
6166 struct hlist_head *hash;
6167
6168 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6169 if (hash != NULL)
6170 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6171 INIT_HLIST_HEAD(&hash[i]);
6172
6173 return hash;
6174 }
6175
6176 /* Initialize per network namespace state */
6177 static int __net_init netdev_init(struct net *net)
6178 {
6179 INIT_LIST_HEAD(&net->dev_base_head);
6180
6181 net->dev_name_head = netdev_create_hash();
6182 if (net->dev_name_head == NULL)
6183 goto err_name;
6184
6185 net->dev_index_head = netdev_create_hash();
6186 if (net->dev_index_head == NULL)
6187 goto err_idx;
6188
6189 return 0;
6190
6191 err_idx:
6192 kfree(net->dev_name_head);
6193 err_name:
6194 return -ENOMEM;
6195 }
6196
6197 /**
6198 * netdev_drivername - network driver for the device
6199 * @dev: network device
6200 * @buffer: buffer for resulting name
6201 * @len: size of buffer
6202 *
6203 * Determine network driver for device.
6204 */
6205 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6206 {
6207 const struct device_driver *driver;
6208 const struct device *parent;
6209
6210 if (len <= 0 || !buffer)
6211 return buffer;
6212 buffer[0] = 0;
6213
6214 parent = dev->dev.parent;
6215
6216 if (!parent)
6217 return buffer;
6218
6219 driver = parent->driver;
6220 if (driver && driver->name)
6221 strlcpy(buffer, driver->name, len);
6222 return buffer;
6223 }
6224
6225 static int __netdev_printk(const char *level, const struct net_device *dev,
6226 struct va_format *vaf)
6227 {
6228 int r;
6229
6230 if (dev && dev->dev.parent)
6231 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6232 netdev_name(dev), vaf);
6233 else if (dev)
6234 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6235 else
6236 r = printk("%s(NULL net_device): %pV", level, vaf);
6237
6238 return r;
6239 }
6240
6241 int netdev_printk(const char *level, const struct net_device *dev,
6242 const char *format, ...)
6243 {
6244 struct va_format vaf;
6245 va_list args;
6246 int r;
6247
6248 va_start(args, format);
6249
6250 vaf.fmt = format;
6251 vaf.va = &args;
6252
6253 r = __netdev_printk(level, dev, &vaf);
6254 va_end(args);
6255
6256 return r;
6257 }
6258 EXPORT_SYMBOL(netdev_printk);
6259
6260 #define define_netdev_printk_level(func, level) \
6261 int func(const struct net_device *dev, const char *fmt, ...) \
6262 { \
6263 int r; \
6264 struct va_format vaf; \
6265 va_list args; \
6266 \
6267 va_start(args, fmt); \
6268 \
6269 vaf.fmt = fmt; \
6270 vaf.va = &args; \
6271 \
6272 r = __netdev_printk(level, dev, &vaf); \
6273 va_end(args); \
6274 \
6275 return r; \
6276 } \
6277 EXPORT_SYMBOL(func);
6278
6279 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6280 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6281 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6282 define_netdev_printk_level(netdev_err, KERN_ERR);
6283 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6284 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6285 define_netdev_printk_level(netdev_info, KERN_INFO);
6286
6287 static void __net_exit netdev_exit(struct net *net)
6288 {
6289 kfree(net->dev_name_head);
6290 kfree(net->dev_index_head);
6291 }
6292
6293 static struct pernet_operations __net_initdata netdev_net_ops = {
6294 .init = netdev_init,
6295 .exit = netdev_exit,
6296 };
6297
6298 static void __net_exit default_device_exit(struct net *net)
6299 {
6300 struct net_device *dev, *aux;
6301 /*
6302 * Push all migratable network devices back to the
6303 * initial network namespace
6304 */
6305 rtnl_lock();
6306 for_each_netdev_safe(net, dev, aux) {
6307 int err;
6308 char fb_name[IFNAMSIZ];
6309
6310 /* Ignore unmoveable devices (i.e. loopback) */
6311 if (dev->features & NETIF_F_NETNS_LOCAL)
6312 continue;
6313
6314 /* Leave virtual devices for the generic cleanup */
6315 if (dev->rtnl_link_ops)
6316 continue;
6317
6318 /* Push remaing network devices to init_net */
6319 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6320 err = dev_change_net_namespace(dev, &init_net, fb_name);
6321 if (err) {
6322 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6323 __func__, dev->name, err);
6324 BUG();
6325 }
6326 }
6327 rtnl_unlock();
6328 }
6329
6330 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6331 {
6332 /* At exit all network devices most be removed from a network
6333 * namespace. Do this in the reverse order of registration.
6334 * Do this across as many network namespaces as possible to
6335 * improve batching efficiency.
6336 */
6337 struct net_device *dev;
6338 struct net *net;
6339 LIST_HEAD(dev_kill_list);
6340
6341 rtnl_lock();
6342 list_for_each_entry(net, net_list, exit_list) {
6343 for_each_netdev_reverse(net, dev) {
6344 if (dev->rtnl_link_ops)
6345 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6346 else
6347 unregister_netdevice_queue(dev, &dev_kill_list);
6348 }
6349 }
6350 unregister_netdevice_many(&dev_kill_list);
6351 list_del(&dev_kill_list);
6352 rtnl_unlock();
6353 }
6354
6355 static struct pernet_operations __net_initdata default_device_ops = {
6356 .exit = default_device_exit,
6357 .exit_batch = default_device_exit_batch,
6358 };
6359
6360 /*
6361 * Initialize the DEV module. At boot time this walks the device list and
6362 * unhooks any devices that fail to initialise (normally hardware not
6363 * present) and leaves us with a valid list of present and active devices.
6364 *
6365 */
6366
6367 /*
6368 * This is called single threaded during boot, so no need
6369 * to take the rtnl semaphore.
6370 */
6371 static int __init net_dev_init(void)
6372 {
6373 int i, rc = -ENOMEM;
6374
6375 BUG_ON(!dev_boot_phase);
6376
6377 if (dev_proc_init())
6378 goto out;
6379
6380 if (netdev_kobject_init())
6381 goto out;
6382
6383 INIT_LIST_HEAD(&ptype_all);
6384 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6385 INIT_LIST_HEAD(&ptype_base[i]);
6386
6387 if (register_pernet_subsys(&netdev_net_ops))
6388 goto out;
6389
6390 /*
6391 * Initialise the packet receive queues.
6392 */
6393
6394 for_each_possible_cpu(i) {
6395 struct softnet_data *sd = &per_cpu(softnet_data, i);
6396
6397 memset(sd, 0, sizeof(*sd));
6398 skb_queue_head_init(&sd->input_pkt_queue);
6399 skb_queue_head_init(&sd->process_queue);
6400 sd->completion_queue = NULL;
6401 INIT_LIST_HEAD(&sd->poll_list);
6402 sd->output_queue = NULL;
6403 sd->output_queue_tailp = &sd->output_queue;
6404 #ifdef CONFIG_RPS
6405 sd->csd.func = rps_trigger_softirq;
6406 sd->csd.info = sd;
6407 sd->csd.flags = 0;
6408 sd->cpu = i;
6409 #endif
6410
6411 sd->backlog.poll = process_backlog;
6412 sd->backlog.weight = weight_p;
6413 sd->backlog.gro_list = NULL;
6414 sd->backlog.gro_count = 0;
6415 }
6416
6417 dev_boot_phase = 0;
6418
6419 /* The loopback device is special if any other network devices
6420 * is present in a network namespace the loopback device must
6421 * be present. Since we now dynamically allocate and free the
6422 * loopback device ensure this invariant is maintained by
6423 * keeping the loopback device as the first device on the
6424 * list of network devices. Ensuring the loopback devices
6425 * is the first device that appears and the last network device
6426 * that disappears.
6427 */
6428 if (register_pernet_device(&loopback_net_ops))
6429 goto out;
6430
6431 if (register_pernet_device(&default_device_ops))
6432 goto out;
6433
6434 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6435 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6436
6437 hotcpu_notifier(dev_cpu_callback, 0);
6438 dst_init();
6439 dev_mcast_init();
6440 rc = 0;
6441 out:
6442 return rc;
6443 }
6444
6445 subsys_initcall(net_dev_init);
6446
6447 static int __init initialize_hashrnd(void)
6448 {
6449 get_random_bytes(&hashrnd, sizeof(hashrnd));
6450 return 0;
6451 }
6452
6453 late_initcall_sync(initialize_hashrnd);
6454
This page took 0.159497 seconds and 6 git commands to generate.