Merge git://git.infradead.org/battery-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 /*
1144 * Is it even present?
1145 */
1146 if (!netif_device_present(dev))
1147 return -ENODEV;
1148
1149 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1150 ret = notifier_to_errno(ret);
1151 if (ret)
1152 return ret;
1153
1154 /*
1155 * Call device private open method
1156 */
1157 set_bit(__LINK_STATE_START, &dev->state);
1158
1159 if (ops->ndo_validate_addr)
1160 ret = ops->ndo_validate_addr(dev);
1161
1162 if (!ret && ops->ndo_open)
1163 ret = ops->ndo_open(dev);
1164
1165 /*
1166 * If it went open OK then:
1167 */
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 /*
1173 * Set the flags.
1174 */
1175 dev->flags |= IFF_UP;
1176
1177 /*
1178 * Enable NET_DMA
1179 */
1180 net_dmaengine_get();
1181
1182 /*
1183 * Initialize multicasting status
1184 */
1185 dev_set_rx_mode(dev);
1186
1187 /*
1188 * Wakeup transmit queue engine
1189 */
1190 dev_activate(dev);
1191 }
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * dev_open - prepare an interface for use.
1198 * @dev: device to open
1199 *
1200 * Takes a device from down to up state. The device's private open
1201 * function is invoked and then the multicast lists are loaded. Finally
1202 * the device is moved into the up state and a %NETDEV_UP message is
1203 * sent to the netdev notifier chain.
1204 *
1205 * Calling this function on an active interface is a nop. On a failure
1206 * a negative errno code is returned.
1207 */
1208 int dev_open(struct net_device *dev)
1209 {
1210 int ret;
1211
1212 /*
1213 * Is it already up?
1214 */
1215 if (dev->flags & IFF_UP)
1216 return 0;
1217
1218 /*
1219 * Open device
1220 */
1221 ret = __dev_open(dev);
1222 if (ret < 0)
1223 return ret;
1224
1225 /*
1226 * ... and announce new interface.
1227 */
1228 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1229 call_netdevice_notifiers(NETDEV_UP, dev);
1230
1231 return ret;
1232 }
1233 EXPORT_SYMBOL(dev_open);
1234
1235 static int __dev_close_many(struct list_head *head)
1236 {
1237 struct net_device *dev;
1238
1239 ASSERT_RTNL();
1240 might_sleep();
1241
1242 list_for_each_entry(dev, head, unreg_list) {
1243 /*
1244 * Tell people we are going down, so that they can
1245 * prepare to death, when device is still operating.
1246 */
1247 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1248
1249 clear_bit(__LINK_STATE_START, &dev->state);
1250
1251 /* Synchronize to scheduled poll. We cannot touch poll list, it
1252 * can be even on different cpu. So just clear netif_running().
1253 *
1254 * dev->stop() will invoke napi_disable() on all of it's
1255 * napi_struct instances on this device.
1256 */
1257 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1258 }
1259
1260 dev_deactivate_many(head);
1261
1262 list_for_each_entry(dev, head, unreg_list) {
1263 const struct net_device_ops *ops = dev->netdev_ops;
1264
1265 /*
1266 * Call the device specific close. This cannot fail.
1267 * Only if device is UP
1268 *
1269 * We allow it to be called even after a DETACH hot-plug
1270 * event.
1271 */
1272 if (ops->ndo_stop)
1273 ops->ndo_stop(dev);
1274
1275 /*
1276 * Device is now down.
1277 */
1278
1279 dev->flags &= ~IFF_UP;
1280
1281 /*
1282 * Shutdown NET_DMA
1283 */
1284 net_dmaengine_put();
1285 }
1286
1287 return 0;
1288 }
1289
1290 static int __dev_close(struct net_device *dev)
1291 {
1292 int retval;
1293 LIST_HEAD(single);
1294
1295 list_add(&dev->unreg_list, &single);
1296 retval = __dev_close_many(&single);
1297 list_del(&single);
1298 return retval;
1299 }
1300
1301 static int dev_close_many(struct list_head *head)
1302 {
1303 struct net_device *dev, *tmp;
1304 LIST_HEAD(tmp_list);
1305
1306 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1307 if (!(dev->flags & IFF_UP))
1308 list_move(&dev->unreg_list, &tmp_list);
1309
1310 __dev_close_many(head);
1311
1312 /*
1313 * Tell people we are down
1314 */
1315 list_for_each_entry(dev, head, unreg_list) {
1316 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1317 call_netdevice_notifiers(NETDEV_DOWN, dev);
1318 }
1319
1320 /* rollback_registered_many needs the complete original list */
1321 list_splice(&tmp_list, head);
1322 return 0;
1323 }
1324
1325 /**
1326 * dev_close - shutdown an interface.
1327 * @dev: device to shutdown
1328 *
1329 * This function moves an active device into down state. A
1330 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1331 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1332 * chain.
1333 */
1334 int dev_close(struct net_device *dev)
1335 {
1336 LIST_HEAD(single);
1337
1338 list_add(&dev->unreg_list, &single);
1339 dev_close_many(&single);
1340 list_del(&single);
1341 return 0;
1342 }
1343 EXPORT_SYMBOL(dev_close);
1344
1345
1346 /**
1347 * dev_disable_lro - disable Large Receive Offload on a device
1348 * @dev: device
1349 *
1350 * Disable Large Receive Offload (LRO) on a net device. Must be
1351 * called under RTNL. This is needed if received packets may be
1352 * forwarded to another interface.
1353 */
1354 void dev_disable_lro(struct net_device *dev)
1355 {
1356 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1357 dev->ethtool_ops->set_flags) {
1358 u32 flags = dev->ethtool_ops->get_flags(dev);
1359 if (flags & ETH_FLAG_LRO) {
1360 flags &= ~ETH_FLAG_LRO;
1361 dev->ethtool_ops->set_flags(dev, flags);
1362 }
1363 }
1364 WARN_ON(dev->features & NETIF_F_LRO);
1365 }
1366 EXPORT_SYMBOL(dev_disable_lro);
1367
1368
1369 static int dev_boot_phase = 1;
1370
1371 /*
1372 * Device change register/unregister. These are not inline or static
1373 * as we export them to the world.
1374 */
1375
1376 /**
1377 * register_netdevice_notifier - register a network notifier block
1378 * @nb: notifier
1379 *
1380 * Register a notifier to be called when network device events occur.
1381 * The notifier passed is linked into the kernel structures and must
1382 * not be reused until it has been unregistered. A negative errno code
1383 * is returned on a failure.
1384 *
1385 * When registered all registration and up events are replayed
1386 * to the new notifier to allow device to have a race free
1387 * view of the network device list.
1388 */
1389
1390 int register_netdevice_notifier(struct notifier_block *nb)
1391 {
1392 struct net_device *dev;
1393 struct net_device *last;
1394 struct net *net;
1395 int err;
1396
1397 rtnl_lock();
1398 err = raw_notifier_chain_register(&netdev_chain, nb);
1399 if (err)
1400 goto unlock;
1401 if (dev_boot_phase)
1402 goto unlock;
1403 for_each_net(net) {
1404 for_each_netdev(net, dev) {
1405 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1406 err = notifier_to_errno(err);
1407 if (err)
1408 goto rollback;
1409
1410 if (!(dev->flags & IFF_UP))
1411 continue;
1412
1413 nb->notifier_call(nb, NETDEV_UP, dev);
1414 }
1415 }
1416
1417 unlock:
1418 rtnl_unlock();
1419 return err;
1420
1421 rollback:
1422 last = dev;
1423 for_each_net(net) {
1424 for_each_netdev(net, dev) {
1425 if (dev == last)
1426 break;
1427
1428 if (dev->flags & IFF_UP) {
1429 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1430 nb->notifier_call(nb, NETDEV_DOWN, dev);
1431 }
1432 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1433 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1434 }
1435 }
1436
1437 raw_notifier_chain_unregister(&netdev_chain, nb);
1438 goto unlock;
1439 }
1440 EXPORT_SYMBOL(register_netdevice_notifier);
1441
1442 /**
1443 * unregister_netdevice_notifier - unregister a network notifier block
1444 * @nb: notifier
1445 *
1446 * Unregister a notifier previously registered by
1447 * register_netdevice_notifier(). The notifier is unlinked into the
1448 * kernel structures and may then be reused. A negative errno code
1449 * is returned on a failure.
1450 */
1451
1452 int unregister_netdevice_notifier(struct notifier_block *nb)
1453 {
1454 int err;
1455
1456 rtnl_lock();
1457 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1458 rtnl_unlock();
1459 return err;
1460 }
1461 EXPORT_SYMBOL(unregister_netdevice_notifier);
1462
1463 /**
1464 * call_netdevice_notifiers - call all network notifier blocks
1465 * @val: value passed unmodified to notifier function
1466 * @dev: net_device pointer passed unmodified to notifier function
1467 *
1468 * Call all network notifier blocks. Parameters and return value
1469 * are as for raw_notifier_call_chain().
1470 */
1471
1472 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1473 {
1474 ASSERT_RTNL();
1475 return raw_notifier_call_chain(&netdev_chain, val, dev);
1476 }
1477
1478 /* When > 0 there are consumers of rx skb time stamps */
1479 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1480
1481 void net_enable_timestamp(void)
1482 {
1483 atomic_inc(&netstamp_needed);
1484 }
1485 EXPORT_SYMBOL(net_enable_timestamp);
1486
1487 void net_disable_timestamp(void)
1488 {
1489 atomic_dec(&netstamp_needed);
1490 }
1491 EXPORT_SYMBOL(net_disable_timestamp);
1492
1493 static inline void net_timestamp_set(struct sk_buff *skb)
1494 {
1495 if (atomic_read(&netstamp_needed))
1496 __net_timestamp(skb);
1497 else
1498 skb->tstamp.tv64 = 0;
1499 }
1500
1501 static inline void net_timestamp_check(struct sk_buff *skb)
1502 {
1503 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1504 __net_timestamp(skb);
1505 }
1506
1507 /**
1508 * dev_forward_skb - loopback an skb to another netif
1509 *
1510 * @dev: destination network device
1511 * @skb: buffer to forward
1512 *
1513 * return values:
1514 * NET_RX_SUCCESS (no congestion)
1515 * NET_RX_DROP (packet was dropped, but freed)
1516 *
1517 * dev_forward_skb can be used for injecting an skb from the
1518 * start_xmit function of one device into the receive queue
1519 * of another device.
1520 *
1521 * The receiving device may be in another namespace, so
1522 * we have to clear all information in the skb that could
1523 * impact namespace isolation.
1524 */
1525 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1526 {
1527 skb_orphan(skb);
1528 nf_reset(skb);
1529
1530 if (unlikely(!(dev->flags & IFF_UP) ||
1531 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1532 atomic_long_inc(&dev->rx_dropped);
1533 kfree_skb(skb);
1534 return NET_RX_DROP;
1535 }
1536 skb_set_dev(skb, dev);
1537 skb->tstamp.tv64 = 0;
1538 skb->pkt_type = PACKET_HOST;
1539 skb->protocol = eth_type_trans(skb, dev);
1540 return netif_rx(skb);
1541 }
1542 EXPORT_SYMBOL_GPL(dev_forward_skb);
1543
1544 static inline int deliver_skb(struct sk_buff *skb,
1545 struct packet_type *pt_prev,
1546 struct net_device *orig_dev)
1547 {
1548 atomic_inc(&skb->users);
1549 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1550 }
1551
1552 /*
1553 * Support routine. Sends outgoing frames to any network
1554 * taps currently in use.
1555 */
1556
1557 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1558 {
1559 struct packet_type *ptype;
1560 struct sk_buff *skb2 = NULL;
1561 struct packet_type *pt_prev = NULL;
1562
1563 rcu_read_lock();
1564 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1565 /* Never send packets back to the socket
1566 * they originated from - MvS (miquels@drinkel.ow.org)
1567 */
1568 if ((ptype->dev == dev || !ptype->dev) &&
1569 (ptype->af_packet_priv == NULL ||
1570 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1571 if (pt_prev) {
1572 deliver_skb(skb2, pt_prev, skb->dev);
1573 pt_prev = ptype;
1574 continue;
1575 }
1576
1577 skb2 = skb_clone(skb, GFP_ATOMIC);
1578 if (!skb2)
1579 break;
1580
1581 net_timestamp_set(skb2);
1582
1583 /* skb->nh should be correctly
1584 set by sender, so that the second statement is
1585 just protection against buggy protocols.
1586 */
1587 skb_reset_mac_header(skb2);
1588
1589 if (skb_network_header(skb2) < skb2->data ||
1590 skb2->network_header > skb2->tail) {
1591 if (net_ratelimit())
1592 printk(KERN_CRIT "protocol %04x is "
1593 "buggy, dev %s\n",
1594 ntohs(skb2->protocol),
1595 dev->name);
1596 skb_reset_network_header(skb2);
1597 }
1598
1599 skb2->transport_header = skb2->network_header;
1600 skb2->pkt_type = PACKET_OUTGOING;
1601 pt_prev = ptype;
1602 }
1603 }
1604 if (pt_prev)
1605 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1606 rcu_read_unlock();
1607 }
1608
1609 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1610 * @dev: Network device
1611 * @txq: number of queues available
1612 *
1613 * If real_num_tx_queues is changed the tc mappings may no longer be
1614 * valid. To resolve this verify the tc mapping remains valid and if
1615 * not NULL the mapping. With no priorities mapping to this
1616 * offset/count pair it will no longer be used. In the worst case TC0
1617 * is invalid nothing can be done so disable priority mappings. If is
1618 * expected that drivers will fix this mapping if they can before
1619 * calling netif_set_real_num_tx_queues.
1620 */
1621 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1622 {
1623 int i;
1624 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1625
1626 /* If TC0 is invalidated disable TC mapping */
1627 if (tc->offset + tc->count > txq) {
1628 pr_warning("Number of in use tx queues changed "
1629 "invalidating tc mappings. Priority "
1630 "traffic classification disabled!\n");
1631 dev->num_tc = 0;
1632 return;
1633 }
1634
1635 /* Invalidated prio to tc mappings set to TC0 */
1636 for (i = 1; i < TC_BITMASK + 1; i++) {
1637 int q = netdev_get_prio_tc_map(dev, i);
1638
1639 tc = &dev->tc_to_txq[q];
1640 if (tc->offset + tc->count > txq) {
1641 pr_warning("Number of in use tx queues "
1642 "changed. Priority %i to tc "
1643 "mapping %i is no longer valid "
1644 "setting map to 0\n",
1645 i, q);
1646 netdev_set_prio_tc_map(dev, i, 0);
1647 }
1648 }
1649 }
1650
1651 /*
1652 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1653 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1654 */
1655 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1656 {
1657 int rc;
1658
1659 if (txq < 1 || txq > dev->num_tx_queues)
1660 return -EINVAL;
1661
1662 if (dev->reg_state == NETREG_REGISTERED ||
1663 dev->reg_state == NETREG_UNREGISTERING) {
1664 ASSERT_RTNL();
1665
1666 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1667 txq);
1668 if (rc)
1669 return rc;
1670
1671 if (dev->num_tc)
1672 netif_setup_tc(dev, txq);
1673
1674 if (txq < dev->real_num_tx_queues)
1675 qdisc_reset_all_tx_gt(dev, txq);
1676 }
1677
1678 dev->real_num_tx_queues = txq;
1679 return 0;
1680 }
1681 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1682
1683 #ifdef CONFIG_RPS
1684 /**
1685 * netif_set_real_num_rx_queues - set actual number of RX queues used
1686 * @dev: Network device
1687 * @rxq: Actual number of RX queues
1688 *
1689 * This must be called either with the rtnl_lock held or before
1690 * registration of the net device. Returns 0 on success, or a
1691 * negative error code. If called before registration, it always
1692 * succeeds.
1693 */
1694 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1695 {
1696 int rc;
1697
1698 if (rxq < 1 || rxq > dev->num_rx_queues)
1699 return -EINVAL;
1700
1701 if (dev->reg_state == NETREG_REGISTERED) {
1702 ASSERT_RTNL();
1703
1704 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1705 rxq);
1706 if (rc)
1707 return rc;
1708 }
1709
1710 dev->real_num_rx_queues = rxq;
1711 return 0;
1712 }
1713 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1714 #endif
1715
1716 static inline void __netif_reschedule(struct Qdisc *q)
1717 {
1718 struct softnet_data *sd;
1719 unsigned long flags;
1720
1721 local_irq_save(flags);
1722 sd = &__get_cpu_var(softnet_data);
1723 q->next_sched = NULL;
1724 *sd->output_queue_tailp = q;
1725 sd->output_queue_tailp = &q->next_sched;
1726 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1727 local_irq_restore(flags);
1728 }
1729
1730 void __netif_schedule(struct Qdisc *q)
1731 {
1732 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1733 __netif_reschedule(q);
1734 }
1735 EXPORT_SYMBOL(__netif_schedule);
1736
1737 void dev_kfree_skb_irq(struct sk_buff *skb)
1738 {
1739 if (atomic_dec_and_test(&skb->users)) {
1740 struct softnet_data *sd;
1741 unsigned long flags;
1742
1743 local_irq_save(flags);
1744 sd = &__get_cpu_var(softnet_data);
1745 skb->next = sd->completion_queue;
1746 sd->completion_queue = skb;
1747 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1748 local_irq_restore(flags);
1749 }
1750 }
1751 EXPORT_SYMBOL(dev_kfree_skb_irq);
1752
1753 void dev_kfree_skb_any(struct sk_buff *skb)
1754 {
1755 if (in_irq() || irqs_disabled())
1756 dev_kfree_skb_irq(skb);
1757 else
1758 dev_kfree_skb(skb);
1759 }
1760 EXPORT_SYMBOL(dev_kfree_skb_any);
1761
1762
1763 /**
1764 * netif_device_detach - mark device as removed
1765 * @dev: network device
1766 *
1767 * Mark device as removed from system and therefore no longer available.
1768 */
1769 void netif_device_detach(struct net_device *dev)
1770 {
1771 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1772 netif_running(dev)) {
1773 netif_tx_stop_all_queues(dev);
1774 }
1775 }
1776 EXPORT_SYMBOL(netif_device_detach);
1777
1778 /**
1779 * netif_device_attach - mark device as attached
1780 * @dev: network device
1781 *
1782 * Mark device as attached from system and restart if needed.
1783 */
1784 void netif_device_attach(struct net_device *dev)
1785 {
1786 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1787 netif_running(dev)) {
1788 netif_tx_wake_all_queues(dev);
1789 __netdev_watchdog_up(dev);
1790 }
1791 }
1792 EXPORT_SYMBOL(netif_device_attach);
1793
1794 /**
1795 * skb_dev_set -- assign a new device to a buffer
1796 * @skb: buffer for the new device
1797 * @dev: network device
1798 *
1799 * If an skb is owned by a device already, we have to reset
1800 * all data private to the namespace a device belongs to
1801 * before assigning it a new device.
1802 */
1803 #ifdef CONFIG_NET_NS
1804 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1805 {
1806 skb_dst_drop(skb);
1807 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1808 secpath_reset(skb);
1809 nf_reset(skb);
1810 skb_init_secmark(skb);
1811 skb->mark = 0;
1812 skb->priority = 0;
1813 skb->nf_trace = 0;
1814 skb->ipvs_property = 0;
1815 #ifdef CONFIG_NET_SCHED
1816 skb->tc_index = 0;
1817 #endif
1818 }
1819 skb->dev = dev;
1820 }
1821 EXPORT_SYMBOL(skb_set_dev);
1822 #endif /* CONFIG_NET_NS */
1823
1824 /*
1825 * Invalidate hardware checksum when packet is to be mangled, and
1826 * complete checksum manually on outgoing path.
1827 */
1828 int skb_checksum_help(struct sk_buff *skb)
1829 {
1830 __wsum csum;
1831 int ret = 0, offset;
1832
1833 if (skb->ip_summed == CHECKSUM_COMPLETE)
1834 goto out_set_summed;
1835
1836 if (unlikely(skb_shinfo(skb)->gso_size)) {
1837 /* Let GSO fix up the checksum. */
1838 goto out_set_summed;
1839 }
1840
1841 offset = skb_checksum_start_offset(skb);
1842 BUG_ON(offset >= skb_headlen(skb));
1843 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1844
1845 offset += skb->csum_offset;
1846 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1847
1848 if (skb_cloned(skb) &&
1849 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1850 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1851 if (ret)
1852 goto out;
1853 }
1854
1855 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1856 out_set_summed:
1857 skb->ip_summed = CHECKSUM_NONE;
1858 out:
1859 return ret;
1860 }
1861 EXPORT_SYMBOL(skb_checksum_help);
1862
1863 /**
1864 * skb_gso_segment - Perform segmentation on skb.
1865 * @skb: buffer to segment
1866 * @features: features for the output path (see dev->features)
1867 *
1868 * This function segments the given skb and returns a list of segments.
1869 *
1870 * It may return NULL if the skb requires no segmentation. This is
1871 * only possible when GSO is used for verifying header integrity.
1872 */
1873 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1874 {
1875 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1876 struct packet_type *ptype;
1877 __be16 type = skb->protocol;
1878 int vlan_depth = ETH_HLEN;
1879 int err;
1880
1881 while (type == htons(ETH_P_8021Q)) {
1882 struct vlan_hdr *vh;
1883
1884 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1885 return ERR_PTR(-EINVAL);
1886
1887 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1888 type = vh->h_vlan_encapsulated_proto;
1889 vlan_depth += VLAN_HLEN;
1890 }
1891
1892 skb_reset_mac_header(skb);
1893 skb->mac_len = skb->network_header - skb->mac_header;
1894 __skb_pull(skb, skb->mac_len);
1895
1896 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1897 struct net_device *dev = skb->dev;
1898 struct ethtool_drvinfo info = {};
1899
1900 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1901 dev->ethtool_ops->get_drvinfo(dev, &info);
1902
1903 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1904 info.driver, dev ? dev->features : 0L,
1905 skb->sk ? skb->sk->sk_route_caps : 0L,
1906 skb->len, skb->data_len, skb->ip_summed);
1907
1908 if (skb_header_cloned(skb) &&
1909 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1910 return ERR_PTR(err);
1911 }
1912
1913 rcu_read_lock();
1914 list_for_each_entry_rcu(ptype,
1915 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1916 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1917 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1918 err = ptype->gso_send_check(skb);
1919 segs = ERR_PTR(err);
1920 if (err || skb_gso_ok(skb, features))
1921 break;
1922 __skb_push(skb, (skb->data -
1923 skb_network_header(skb)));
1924 }
1925 segs = ptype->gso_segment(skb, features);
1926 break;
1927 }
1928 }
1929 rcu_read_unlock();
1930
1931 __skb_push(skb, skb->data - skb_mac_header(skb));
1932
1933 return segs;
1934 }
1935 EXPORT_SYMBOL(skb_gso_segment);
1936
1937 /* Take action when hardware reception checksum errors are detected. */
1938 #ifdef CONFIG_BUG
1939 void netdev_rx_csum_fault(struct net_device *dev)
1940 {
1941 if (net_ratelimit()) {
1942 printk(KERN_ERR "%s: hw csum failure.\n",
1943 dev ? dev->name : "<unknown>");
1944 dump_stack();
1945 }
1946 }
1947 EXPORT_SYMBOL(netdev_rx_csum_fault);
1948 #endif
1949
1950 /* Actually, we should eliminate this check as soon as we know, that:
1951 * 1. IOMMU is present and allows to map all the memory.
1952 * 2. No high memory really exists on this machine.
1953 */
1954
1955 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1956 {
1957 #ifdef CONFIG_HIGHMEM
1958 int i;
1959 if (!(dev->features & NETIF_F_HIGHDMA)) {
1960 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1961 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1962 return 1;
1963 }
1964
1965 if (PCI_DMA_BUS_IS_PHYS) {
1966 struct device *pdev = dev->dev.parent;
1967
1968 if (!pdev)
1969 return 0;
1970 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1971 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1972 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1973 return 1;
1974 }
1975 }
1976 #endif
1977 return 0;
1978 }
1979
1980 struct dev_gso_cb {
1981 void (*destructor)(struct sk_buff *skb);
1982 };
1983
1984 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1985
1986 static void dev_gso_skb_destructor(struct sk_buff *skb)
1987 {
1988 struct dev_gso_cb *cb;
1989
1990 do {
1991 struct sk_buff *nskb = skb->next;
1992
1993 skb->next = nskb->next;
1994 nskb->next = NULL;
1995 kfree_skb(nskb);
1996 } while (skb->next);
1997
1998 cb = DEV_GSO_CB(skb);
1999 if (cb->destructor)
2000 cb->destructor(skb);
2001 }
2002
2003 /**
2004 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2005 * @skb: buffer to segment
2006 * @features: device features as applicable to this skb
2007 *
2008 * This function segments the given skb and stores the list of segments
2009 * in skb->next.
2010 */
2011 static int dev_gso_segment(struct sk_buff *skb, int features)
2012 {
2013 struct sk_buff *segs;
2014
2015 segs = skb_gso_segment(skb, features);
2016
2017 /* Verifying header integrity only. */
2018 if (!segs)
2019 return 0;
2020
2021 if (IS_ERR(segs))
2022 return PTR_ERR(segs);
2023
2024 skb->next = segs;
2025 DEV_GSO_CB(skb)->destructor = skb->destructor;
2026 skb->destructor = dev_gso_skb_destructor;
2027
2028 return 0;
2029 }
2030
2031 /*
2032 * Try to orphan skb early, right before transmission by the device.
2033 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2034 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2035 */
2036 static inline void skb_orphan_try(struct sk_buff *skb)
2037 {
2038 struct sock *sk = skb->sk;
2039
2040 if (sk && !skb_shinfo(skb)->tx_flags) {
2041 /* skb_tx_hash() wont be able to get sk.
2042 * We copy sk_hash into skb->rxhash
2043 */
2044 if (!skb->rxhash)
2045 skb->rxhash = sk->sk_hash;
2046 skb_orphan(skb);
2047 }
2048 }
2049
2050 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2051 {
2052 return ((features & NETIF_F_GEN_CSUM) ||
2053 ((features & NETIF_F_V4_CSUM) &&
2054 protocol == htons(ETH_P_IP)) ||
2055 ((features & NETIF_F_V6_CSUM) &&
2056 protocol == htons(ETH_P_IPV6)) ||
2057 ((features & NETIF_F_FCOE_CRC) &&
2058 protocol == htons(ETH_P_FCOE)));
2059 }
2060
2061 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2062 {
2063 if (!can_checksum_protocol(features, protocol)) {
2064 features &= ~NETIF_F_ALL_CSUM;
2065 features &= ~NETIF_F_SG;
2066 } else if (illegal_highdma(skb->dev, skb)) {
2067 features &= ~NETIF_F_SG;
2068 }
2069
2070 return features;
2071 }
2072
2073 u32 netif_skb_features(struct sk_buff *skb)
2074 {
2075 __be16 protocol = skb->protocol;
2076 u32 features = skb->dev->features;
2077
2078 if (protocol == htons(ETH_P_8021Q)) {
2079 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2080 protocol = veh->h_vlan_encapsulated_proto;
2081 } else if (!vlan_tx_tag_present(skb)) {
2082 return harmonize_features(skb, protocol, features);
2083 }
2084
2085 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2086
2087 if (protocol != htons(ETH_P_8021Q)) {
2088 return harmonize_features(skb, protocol, features);
2089 } else {
2090 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2091 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2092 return harmonize_features(skb, protocol, features);
2093 }
2094 }
2095 EXPORT_SYMBOL(netif_skb_features);
2096
2097 /*
2098 * Returns true if either:
2099 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2100 * 2. skb is fragmented and the device does not support SG, or if
2101 * at least one of fragments is in highmem and device does not
2102 * support DMA from it.
2103 */
2104 static inline int skb_needs_linearize(struct sk_buff *skb,
2105 int features)
2106 {
2107 return skb_is_nonlinear(skb) &&
2108 ((skb_has_frag_list(skb) &&
2109 !(features & NETIF_F_FRAGLIST)) ||
2110 (skb_shinfo(skb)->nr_frags &&
2111 !(features & NETIF_F_SG)));
2112 }
2113
2114 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2115 struct netdev_queue *txq)
2116 {
2117 const struct net_device_ops *ops = dev->netdev_ops;
2118 int rc = NETDEV_TX_OK;
2119
2120 if (likely(!skb->next)) {
2121 u32 features;
2122
2123 /*
2124 * If device doesnt need skb->dst, release it right now while
2125 * its hot in this cpu cache
2126 */
2127 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2128 skb_dst_drop(skb);
2129
2130 if (!list_empty(&ptype_all))
2131 dev_queue_xmit_nit(skb, dev);
2132
2133 skb_orphan_try(skb);
2134
2135 features = netif_skb_features(skb);
2136
2137 if (vlan_tx_tag_present(skb) &&
2138 !(features & NETIF_F_HW_VLAN_TX)) {
2139 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2140 if (unlikely(!skb))
2141 goto out;
2142
2143 skb->vlan_tci = 0;
2144 }
2145
2146 if (netif_needs_gso(skb, features)) {
2147 if (unlikely(dev_gso_segment(skb, features)))
2148 goto out_kfree_skb;
2149 if (skb->next)
2150 goto gso;
2151 } else {
2152 if (skb_needs_linearize(skb, features) &&
2153 __skb_linearize(skb))
2154 goto out_kfree_skb;
2155
2156 /* If packet is not checksummed and device does not
2157 * support checksumming for this protocol, complete
2158 * checksumming here.
2159 */
2160 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2161 skb_set_transport_header(skb,
2162 skb_checksum_start_offset(skb));
2163 if (!(features & NETIF_F_ALL_CSUM) &&
2164 skb_checksum_help(skb))
2165 goto out_kfree_skb;
2166 }
2167 }
2168
2169 rc = ops->ndo_start_xmit(skb, dev);
2170 trace_net_dev_xmit(skb, rc);
2171 if (rc == NETDEV_TX_OK)
2172 txq_trans_update(txq);
2173 return rc;
2174 }
2175
2176 gso:
2177 do {
2178 struct sk_buff *nskb = skb->next;
2179
2180 skb->next = nskb->next;
2181 nskb->next = NULL;
2182
2183 /*
2184 * If device doesnt need nskb->dst, release it right now while
2185 * its hot in this cpu cache
2186 */
2187 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188 skb_dst_drop(nskb);
2189
2190 rc = ops->ndo_start_xmit(nskb, dev);
2191 trace_net_dev_xmit(nskb, rc);
2192 if (unlikely(rc != NETDEV_TX_OK)) {
2193 if (rc & ~NETDEV_TX_MASK)
2194 goto out_kfree_gso_skb;
2195 nskb->next = skb->next;
2196 skb->next = nskb;
2197 return rc;
2198 }
2199 txq_trans_update(txq);
2200 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2201 return NETDEV_TX_BUSY;
2202 } while (skb->next);
2203
2204 out_kfree_gso_skb:
2205 if (likely(skb->next == NULL))
2206 skb->destructor = DEV_GSO_CB(skb)->destructor;
2207 out_kfree_skb:
2208 kfree_skb(skb);
2209 out:
2210 return rc;
2211 }
2212
2213 static u32 hashrnd __read_mostly;
2214
2215 /*
2216 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2217 * to be used as a distribution range.
2218 */
2219 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2220 unsigned int num_tx_queues)
2221 {
2222 u32 hash;
2223 u16 qoffset = 0;
2224 u16 qcount = num_tx_queues;
2225
2226 if (skb_rx_queue_recorded(skb)) {
2227 hash = skb_get_rx_queue(skb);
2228 while (unlikely(hash >= num_tx_queues))
2229 hash -= num_tx_queues;
2230 return hash;
2231 }
2232
2233 if (dev->num_tc) {
2234 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2235 qoffset = dev->tc_to_txq[tc].offset;
2236 qcount = dev->tc_to_txq[tc].count;
2237 }
2238
2239 if (skb->sk && skb->sk->sk_hash)
2240 hash = skb->sk->sk_hash;
2241 else
2242 hash = (__force u16) skb->protocol ^ skb->rxhash;
2243 hash = jhash_1word(hash, hashrnd);
2244
2245 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2246 }
2247 EXPORT_SYMBOL(__skb_tx_hash);
2248
2249 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2250 {
2251 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2252 if (net_ratelimit()) {
2253 pr_warning("%s selects TX queue %d, but "
2254 "real number of TX queues is %d\n",
2255 dev->name, queue_index, dev->real_num_tx_queues);
2256 }
2257 return 0;
2258 }
2259 return queue_index;
2260 }
2261
2262 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2263 {
2264 #ifdef CONFIG_XPS
2265 struct xps_dev_maps *dev_maps;
2266 struct xps_map *map;
2267 int queue_index = -1;
2268
2269 rcu_read_lock();
2270 dev_maps = rcu_dereference(dev->xps_maps);
2271 if (dev_maps) {
2272 map = rcu_dereference(
2273 dev_maps->cpu_map[raw_smp_processor_id()]);
2274 if (map) {
2275 if (map->len == 1)
2276 queue_index = map->queues[0];
2277 else {
2278 u32 hash;
2279 if (skb->sk && skb->sk->sk_hash)
2280 hash = skb->sk->sk_hash;
2281 else
2282 hash = (__force u16) skb->protocol ^
2283 skb->rxhash;
2284 hash = jhash_1word(hash, hashrnd);
2285 queue_index = map->queues[
2286 ((u64)hash * map->len) >> 32];
2287 }
2288 if (unlikely(queue_index >= dev->real_num_tx_queues))
2289 queue_index = -1;
2290 }
2291 }
2292 rcu_read_unlock();
2293
2294 return queue_index;
2295 #else
2296 return -1;
2297 #endif
2298 }
2299
2300 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2301 struct sk_buff *skb)
2302 {
2303 int queue_index;
2304 const struct net_device_ops *ops = dev->netdev_ops;
2305
2306 if (dev->real_num_tx_queues == 1)
2307 queue_index = 0;
2308 else if (ops->ndo_select_queue) {
2309 queue_index = ops->ndo_select_queue(dev, skb);
2310 queue_index = dev_cap_txqueue(dev, queue_index);
2311 } else {
2312 struct sock *sk = skb->sk;
2313 queue_index = sk_tx_queue_get(sk);
2314
2315 if (queue_index < 0 || skb->ooo_okay ||
2316 queue_index >= dev->real_num_tx_queues) {
2317 int old_index = queue_index;
2318
2319 queue_index = get_xps_queue(dev, skb);
2320 if (queue_index < 0)
2321 queue_index = skb_tx_hash(dev, skb);
2322
2323 if (queue_index != old_index && sk) {
2324 struct dst_entry *dst =
2325 rcu_dereference_check(sk->sk_dst_cache, 1);
2326
2327 if (dst && skb_dst(skb) == dst)
2328 sk_tx_queue_set(sk, queue_index);
2329 }
2330 }
2331 }
2332
2333 skb_set_queue_mapping(skb, queue_index);
2334 return netdev_get_tx_queue(dev, queue_index);
2335 }
2336
2337 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2338 struct net_device *dev,
2339 struct netdev_queue *txq)
2340 {
2341 spinlock_t *root_lock = qdisc_lock(q);
2342 bool contended;
2343 int rc;
2344
2345 qdisc_skb_cb(skb)->pkt_len = skb->len;
2346 qdisc_calculate_pkt_len(skb, q);
2347 /*
2348 * Heuristic to force contended enqueues to serialize on a
2349 * separate lock before trying to get qdisc main lock.
2350 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2351 * and dequeue packets faster.
2352 */
2353 contended = qdisc_is_running(q);
2354 if (unlikely(contended))
2355 spin_lock(&q->busylock);
2356
2357 spin_lock(root_lock);
2358 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2359 kfree_skb(skb);
2360 rc = NET_XMIT_DROP;
2361 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2362 qdisc_run_begin(q)) {
2363 /*
2364 * This is a work-conserving queue; there are no old skbs
2365 * waiting to be sent out; and the qdisc is not running -
2366 * xmit the skb directly.
2367 */
2368 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2369 skb_dst_force(skb);
2370
2371 qdisc_bstats_update(q, skb);
2372
2373 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2374 if (unlikely(contended)) {
2375 spin_unlock(&q->busylock);
2376 contended = false;
2377 }
2378 __qdisc_run(q);
2379 } else
2380 qdisc_run_end(q);
2381
2382 rc = NET_XMIT_SUCCESS;
2383 } else {
2384 skb_dst_force(skb);
2385 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2386 if (qdisc_run_begin(q)) {
2387 if (unlikely(contended)) {
2388 spin_unlock(&q->busylock);
2389 contended = false;
2390 }
2391 __qdisc_run(q);
2392 }
2393 }
2394 spin_unlock(root_lock);
2395 if (unlikely(contended))
2396 spin_unlock(&q->busylock);
2397 return rc;
2398 }
2399
2400 static DEFINE_PER_CPU(int, xmit_recursion);
2401 #define RECURSION_LIMIT 10
2402
2403 /**
2404 * dev_queue_xmit - transmit a buffer
2405 * @skb: buffer to transmit
2406 *
2407 * Queue a buffer for transmission to a network device. The caller must
2408 * have set the device and priority and built the buffer before calling
2409 * this function. The function can be called from an interrupt.
2410 *
2411 * A negative errno code is returned on a failure. A success does not
2412 * guarantee the frame will be transmitted as it may be dropped due
2413 * to congestion or traffic shaping.
2414 *
2415 * -----------------------------------------------------------------------------------
2416 * I notice this method can also return errors from the queue disciplines,
2417 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2418 * be positive.
2419 *
2420 * Regardless of the return value, the skb is consumed, so it is currently
2421 * difficult to retry a send to this method. (You can bump the ref count
2422 * before sending to hold a reference for retry if you are careful.)
2423 *
2424 * When calling this method, interrupts MUST be enabled. This is because
2425 * the BH enable code must have IRQs enabled so that it will not deadlock.
2426 * --BLG
2427 */
2428 int dev_queue_xmit(struct sk_buff *skb)
2429 {
2430 struct net_device *dev = skb->dev;
2431 struct netdev_queue *txq;
2432 struct Qdisc *q;
2433 int rc = -ENOMEM;
2434
2435 /* Disable soft irqs for various locks below. Also
2436 * stops preemption for RCU.
2437 */
2438 rcu_read_lock_bh();
2439
2440 txq = dev_pick_tx(dev, skb);
2441 q = rcu_dereference_bh(txq->qdisc);
2442
2443 #ifdef CONFIG_NET_CLS_ACT
2444 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2445 #endif
2446 trace_net_dev_queue(skb);
2447 if (q->enqueue) {
2448 rc = __dev_xmit_skb(skb, q, dev, txq);
2449 goto out;
2450 }
2451
2452 /* The device has no queue. Common case for software devices:
2453 loopback, all the sorts of tunnels...
2454
2455 Really, it is unlikely that netif_tx_lock protection is necessary
2456 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2457 counters.)
2458 However, it is possible, that they rely on protection
2459 made by us here.
2460
2461 Check this and shot the lock. It is not prone from deadlocks.
2462 Either shot noqueue qdisc, it is even simpler 8)
2463 */
2464 if (dev->flags & IFF_UP) {
2465 int cpu = smp_processor_id(); /* ok because BHs are off */
2466
2467 if (txq->xmit_lock_owner != cpu) {
2468
2469 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2470 goto recursion_alert;
2471
2472 HARD_TX_LOCK(dev, txq, cpu);
2473
2474 if (!netif_tx_queue_stopped(txq)) {
2475 __this_cpu_inc(xmit_recursion);
2476 rc = dev_hard_start_xmit(skb, dev, txq);
2477 __this_cpu_dec(xmit_recursion);
2478 if (dev_xmit_complete(rc)) {
2479 HARD_TX_UNLOCK(dev, txq);
2480 goto out;
2481 }
2482 }
2483 HARD_TX_UNLOCK(dev, txq);
2484 if (net_ratelimit())
2485 printk(KERN_CRIT "Virtual device %s asks to "
2486 "queue packet!\n", dev->name);
2487 } else {
2488 /* Recursion is detected! It is possible,
2489 * unfortunately
2490 */
2491 recursion_alert:
2492 if (net_ratelimit())
2493 printk(KERN_CRIT "Dead loop on virtual device "
2494 "%s, fix it urgently!\n", dev->name);
2495 }
2496 }
2497
2498 rc = -ENETDOWN;
2499 rcu_read_unlock_bh();
2500
2501 kfree_skb(skb);
2502 return rc;
2503 out:
2504 rcu_read_unlock_bh();
2505 return rc;
2506 }
2507 EXPORT_SYMBOL(dev_queue_xmit);
2508
2509
2510 /*=======================================================================
2511 Receiver routines
2512 =======================================================================*/
2513
2514 int netdev_max_backlog __read_mostly = 1000;
2515 int netdev_tstamp_prequeue __read_mostly = 1;
2516 int netdev_budget __read_mostly = 300;
2517 int weight_p __read_mostly = 64; /* old backlog weight */
2518
2519 /* Called with irq disabled */
2520 static inline void ____napi_schedule(struct softnet_data *sd,
2521 struct napi_struct *napi)
2522 {
2523 list_add_tail(&napi->poll_list, &sd->poll_list);
2524 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2525 }
2526
2527 /*
2528 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2529 * and src/dst port numbers. Returns a non-zero hash number on success
2530 * and 0 on failure.
2531 */
2532 __u32 __skb_get_rxhash(struct sk_buff *skb)
2533 {
2534 int nhoff, hash = 0, poff;
2535 struct ipv6hdr *ip6;
2536 struct iphdr *ip;
2537 u8 ip_proto;
2538 u32 addr1, addr2, ihl;
2539 union {
2540 u32 v32;
2541 u16 v16[2];
2542 } ports;
2543
2544 nhoff = skb_network_offset(skb);
2545
2546 switch (skb->protocol) {
2547 case __constant_htons(ETH_P_IP):
2548 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2549 goto done;
2550
2551 ip = (struct iphdr *) (skb->data + nhoff);
2552 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2553 ip_proto = 0;
2554 else
2555 ip_proto = ip->protocol;
2556 addr1 = (__force u32) ip->saddr;
2557 addr2 = (__force u32) ip->daddr;
2558 ihl = ip->ihl;
2559 break;
2560 case __constant_htons(ETH_P_IPV6):
2561 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2562 goto done;
2563
2564 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2565 ip_proto = ip6->nexthdr;
2566 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2567 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2568 ihl = (40 >> 2);
2569 break;
2570 default:
2571 goto done;
2572 }
2573
2574 ports.v32 = 0;
2575 poff = proto_ports_offset(ip_proto);
2576 if (poff >= 0) {
2577 nhoff += ihl * 4 + poff;
2578 if (pskb_may_pull(skb, nhoff + 4)) {
2579 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2580 if (ports.v16[1] < ports.v16[0])
2581 swap(ports.v16[0], ports.v16[1]);
2582 }
2583 }
2584
2585 /* get a consistent hash (same value on both flow directions) */
2586 if (addr2 < addr1)
2587 swap(addr1, addr2);
2588
2589 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2590 if (!hash)
2591 hash = 1;
2592
2593 done:
2594 return hash;
2595 }
2596 EXPORT_SYMBOL(__skb_get_rxhash);
2597
2598 #ifdef CONFIG_RPS
2599
2600 /* One global table that all flow-based protocols share. */
2601 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2602 EXPORT_SYMBOL(rps_sock_flow_table);
2603
2604 static struct rps_dev_flow *
2605 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2606 struct rps_dev_flow *rflow, u16 next_cpu)
2607 {
2608 u16 tcpu;
2609
2610 tcpu = rflow->cpu = next_cpu;
2611 if (tcpu != RPS_NO_CPU) {
2612 #ifdef CONFIG_RFS_ACCEL
2613 struct netdev_rx_queue *rxqueue;
2614 struct rps_dev_flow_table *flow_table;
2615 struct rps_dev_flow *old_rflow;
2616 u32 flow_id;
2617 u16 rxq_index;
2618 int rc;
2619
2620 /* Should we steer this flow to a different hardware queue? */
2621 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2622 !(dev->features & NETIF_F_NTUPLE))
2623 goto out;
2624 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2625 if (rxq_index == skb_get_rx_queue(skb))
2626 goto out;
2627
2628 rxqueue = dev->_rx + rxq_index;
2629 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2630 if (!flow_table)
2631 goto out;
2632 flow_id = skb->rxhash & flow_table->mask;
2633 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2634 rxq_index, flow_id);
2635 if (rc < 0)
2636 goto out;
2637 old_rflow = rflow;
2638 rflow = &flow_table->flows[flow_id];
2639 rflow->cpu = next_cpu;
2640 rflow->filter = rc;
2641 if (old_rflow->filter == rflow->filter)
2642 old_rflow->filter = RPS_NO_FILTER;
2643 out:
2644 #endif
2645 rflow->last_qtail =
2646 per_cpu(softnet_data, tcpu).input_queue_head;
2647 }
2648
2649 return rflow;
2650 }
2651
2652 /*
2653 * get_rps_cpu is called from netif_receive_skb and returns the target
2654 * CPU from the RPS map of the receiving queue for a given skb.
2655 * rcu_read_lock must be held on entry.
2656 */
2657 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2658 struct rps_dev_flow **rflowp)
2659 {
2660 struct netdev_rx_queue *rxqueue;
2661 struct rps_map *map;
2662 struct rps_dev_flow_table *flow_table;
2663 struct rps_sock_flow_table *sock_flow_table;
2664 int cpu = -1;
2665 u16 tcpu;
2666
2667 if (skb_rx_queue_recorded(skb)) {
2668 u16 index = skb_get_rx_queue(skb);
2669 if (unlikely(index >= dev->real_num_rx_queues)) {
2670 WARN_ONCE(dev->real_num_rx_queues > 1,
2671 "%s received packet on queue %u, but number "
2672 "of RX queues is %u\n",
2673 dev->name, index, dev->real_num_rx_queues);
2674 goto done;
2675 }
2676 rxqueue = dev->_rx + index;
2677 } else
2678 rxqueue = dev->_rx;
2679
2680 map = rcu_dereference(rxqueue->rps_map);
2681 if (map) {
2682 if (map->len == 1 &&
2683 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2684 tcpu = map->cpus[0];
2685 if (cpu_online(tcpu))
2686 cpu = tcpu;
2687 goto done;
2688 }
2689 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2690 goto done;
2691 }
2692
2693 skb_reset_network_header(skb);
2694 if (!skb_get_rxhash(skb))
2695 goto done;
2696
2697 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2698 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2699 if (flow_table && sock_flow_table) {
2700 u16 next_cpu;
2701 struct rps_dev_flow *rflow;
2702
2703 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2704 tcpu = rflow->cpu;
2705
2706 next_cpu = sock_flow_table->ents[skb->rxhash &
2707 sock_flow_table->mask];
2708
2709 /*
2710 * If the desired CPU (where last recvmsg was done) is
2711 * different from current CPU (one in the rx-queue flow
2712 * table entry), switch if one of the following holds:
2713 * - Current CPU is unset (equal to RPS_NO_CPU).
2714 * - Current CPU is offline.
2715 * - The current CPU's queue tail has advanced beyond the
2716 * last packet that was enqueued using this table entry.
2717 * This guarantees that all previous packets for the flow
2718 * have been dequeued, thus preserving in order delivery.
2719 */
2720 if (unlikely(tcpu != next_cpu) &&
2721 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2722 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2723 rflow->last_qtail)) >= 0))
2724 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2725
2726 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2727 *rflowp = rflow;
2728 cpu = tcpu;
2729 goto done;
2730 }
2731 }
2732
2733 if (map) {
2734 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2735
2736 if (cpu_online(tcpu)) {
2737 cpu = tcpu;
2738 goto done;
2739 }
2740 }
2741
2742 done:
2743 return cpu;
2744 }
2745
2746 #ifdef CONFIG_RFS_ACCEL
2747
2748 /**
2749 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2750 * @dev: Device on which the filter was set
2751 * @rxq_index: RX queue index
2752 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2753 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2754 *
2755 * Drivers that implement ndo_rx_flow_steer() should periodically call
2756 * this function for each installed filter and remove the filters for
2757 * which it returns %true.
2758 */
2759 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2760 u32 flow_id, u16 filter_id)
2761 {
2762 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2763 struct rps_dev_flow_table *flow_table;
2764 struct rps_dev_flow *rflow;
2765 bool expire = true;
2766 int cpu;
2767
2768 rcu_read_lock();
2769 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2770 if (flow_table && flow_id <= flow_table->mask) {
2771 rflow = &flow_table->flows[flow_id];
2772 cpu = ACCESS_ONCE(rflow->cpu);
2773 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2774 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2775 rflow->last_qtail) <
2776 (int)(10 * flow_table->mask)))
2777 expire = false;
2778 }
2779 rcu_read_unlock();
2780 return expire;
2781 }
2782 EXPORT_SYMBOL(rps_may_expire_flow);
2783
2784 #endif /* CONFIG_RFS_ACCEL */
2785
2786 /* Called from hardirq (IPI) context */
2787 static void rps_trigger_softirq(void *data)
2788 {
2789 struct softnet_data *sd = data;
2790
2791 ____napi_schedule(sd, &sd->backlog);
2792 sd->received_rps++;
2793 }
2794
2795 #endif /* CONFIG_RPS */
2796
2797 /*
2798 * Check if this softnet_data structure is another cpu one
2799 * If yes, queue it to our IPI list and return 1
2800 * If no, return 0
2801 */
2802 static int rps_ipi_queued(struct softnet_data *sd)
2803 {
2804 #ifdef CONFIG_RPS
2805 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2806
2807 if (sd != mysd) {
2808 sd->rps_ipi_next = mysd->rps_ipi_list;
2809 mysd->rps_ipi_list = sd;
2810
2811 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2812 return 1;
2813 }
2814 #endif /* CONFIG_RPS */
2815 return 0;
2816 }
2817
2818 /*
2819 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2820 * queue (may be a remote CPU queue).
2821 */
2822 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2823 unsigned int *qtail)
2824 {
2825 struct softnet_data *sd;
2826 unsigned long flags;
2827
2828 sd = &per_cpu(softnet_data, cpu);
2829
2830 local_irq_save(flags);
2831
2832 rps_lock(sd);
2833 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2834 if (skb_queue_len(&sd->input_pkt_queue)) {
2835 enqueue:
2836 __skb_queue_tail(&sd->input_pkt_queue, skb);
2837 input_queue_tail_incr_save(sd, qtail);
2838 rps_unlock(sd);
2839 local_irq_restore(flags);
2840 return NET_RX_SUCCESS;
2841 }
2842
2843 /* Schedule NAPI for backlog device
2844 * We can use non atomic operation since we own the queue lock
2845 */
2846 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2847 if (!rps_ipi_queued(sd))
2848 ____napi_schedule(sd, &sd->backlog);
2849 }
2850 goto enqueue;
2851 }
2852
2853 sd->dropped++;
2854 rps_unlock(sd);
2855
2856 local_irq_restore(flags);
2857
2858 atomic_long_inc(&skb->dev->rx_dropped);
2859 kfree_skb(skb);
2860 return NET_RX_DROP;
2861 }
2862
2863 /**
2864 * netif_rx - post buffer to the network code
2865 * @skb: buffer to post
2866 *
2867 * This function receives a packet from a device driver and queues it for
2868 * the upper (protocol) levels to process. It always succeeds. The buffer
2869 * may be dropped during processing for congestion control or by the
2870 * protocol layers.
2871 *
2872 * return values:
2873 * NET_RX_SUCCESS (no congestion)
2874 * NET_RX_DROP (packet was dropped)
2875 *
2876 */
2877
2878 int netif_rx(struct sk_buff *skb)
2879 {
2880 int ret;
2881
2882 /* if netpoll wants it, pretend we never saw it */
2883 if (netpoll_rx(skb))
2884 return NET_RX_DROP;
2885
2886 if (netdev_tstamp_prequeue)
2887 net_timestamp_check(skb);
2888
2889 trace_netif_rx(skb);
2890 #ifdef CONFIG_RPS
2891 {
2892 struct rps_dev_flow voidflow, *rflow = &voidflow;
2893 int cpu;
2894
2895 preempt_disable();
2896 rcu_read_lock();
2897
2898 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2899 if (cpu < 0)
2900 cpu = smp_processor_id();
2901
2902 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2903
2904 rcu_read_unlock();
2905 preempt_enable();
2906 }
2907 #else
2908 {
2909 unsigned int qtail;
2910 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2911 put_cpu();
2912 }
2913 #endif
2914 return ret;
2915 }
2916 EXPORT_SYMBOL(netif_rx);
2917
2918 int netif_rx_ni(struct sk_buff *skb)
2919 {
2920 int err;
2921
2922 preempt_disable();
2923 err = netif_rx(skb);
2924 if (local_softirq_pending())
2925 do_softirq();
2926 preempt_enable();
2927
2928 return err;
2929 }
2930 EXPORT_SYMBOL(netif_rx_ni);
2931
2932 static void net_tx_action(struct softirq_action *h)
2933 {
2934 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2935
2936 if (sd->completion_queue) {
2937 struct sk_buff *clist;
2938
2939 local_irq_disable();
2940 clist = sd->completion_queue;
2941 sd->completion_queue = NULL;
2942 local_irq_enable();
2943
2944 while (clist) {
2945 struct sk_buff *skb = clist;
2946 clist = clist->next;
2947
2948 WARN_ON(atomic_read(&skb->users));
2949 trace_kfree_skb(skb, net_tx_action);
2950 __kfree_skb(skb);
2951 }
2952 }
2953
2954 if (sd->output_queue) {
2955 struct Qdisc *head;
2956
2957 local_irq_disable();
2958 head = sd->output_queue;
2959 sd->output_queue = NULL;
2960 sd->output_queue_tailp = &sd->output_queue;
2961 local_irq_enable();
2962
2963 while (head) {
2964 struct Qdisc *q = head;
2965 spinlock_t *root_lock;
2966
2967 head = head->next_sched;
2968
2969 root_lock = qdisc_lock(q);
2970 if (spin_trylock(root_lock)) {
2971 smp_mb__before_clear_bit();
2972 clear_bit(__QDISC_STATE_SCHED,
2973 &q->state);
2974 qdisc_run(q);
2975 spin_unlock(root_lock);
2976 } else {
2977 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2978 &q->state)) {
2979 __netif_reschedule(q);
2980 } else {
2981 smp_mb__before_clear_bit();
2982 clear_bit(__QDISC_STATE_SCHED,
2983 &q->state);
2984 }
2985 }
2986 }
2987 }
2988 }
2989
2990 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2991 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2992 /* This hook is defined here for ATM LANE */
2993 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2994 unsigned char *addr) __read_mostly;
2995 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2996 #endif
2997
2998 #ifdef CONFIG_NET_CLS_ACT
2999 /* TODO: Maybe we should just force sch_ingress to be compiled in
3000 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3001 * a compare and 2 stores extra right now if we dont have it on
3002 * but have CONFIG_NET_CLS_ACT
3003 * NOTE: This doesnt stop any functionality; if you dont have
3004 * the ingress scheduler, you just cant add policies on ingress.
3005 *
3006 */
3007 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3008 {
3009 struct net_device *dev = skb->dev;
3010 u32 ttl = G_TC_RTTL(skb->tc_verd);
3011 int result = TC_ACT_OK;
3012 struct Qdisc *q;
3013
3014 if (unlikely(MAX_RED_LOOP < ttl++)) {
3015 if (net_ratelimit())
3016 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3017 skb->skb_iif, dev->ifindex);
3018 return TC_ACT_SHOT;
3019 }
3020
3021 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3022 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3023
3024 q = rxq->qdisc;
3025 if (q != &noop_qdisc) {
3026 spin_lock(qdisc_lock(q));
3027 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3028 result = qdisc_enqueue_root(skb, q);
3029 spin_unlock(qdisc_lock(q));
3030 }
3031
3032 return result;
3033 }
3034
3035 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3036 struct packet_type **pt_prev,
3037 int *ret, struct net_device *orig_dev)
3038 {
3039 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3040
3041 if (!rxq || rxq->qdisc == &noop_qdisc)
3042 goto out;
3043
3044 if (*pt_prev) {
3045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3046 *pt_prev = NULL;
3047 }
3048
3049 switch (ing_filter(skb, rxq)) {
3050 case TC_ACT_SHOT:
3051 case TC_ACT_STOLEN:
3052 kfree_skb(skb);
3053 return NULL;
3054 }
3055
3056 out:
3057 skb->tc_verd = 0;
3058 return skb;
3059 }
3060 #endif
3061
3062 /**
3063 * netdev_rx_handler_register - register receive handler
3064 * @dev: device to register a handler for
3065 * @rx_handler: receive handler to register
3066 * @rx_handler_data: data pointer that is used by rx handler
3067 *
3068 * Register a receive hander for a device. This handler will then be
3069 * called from __netif_receive_skb. A negative errno code is returned
3070 * on a failure.
3071 *
3072 * The caller must hold the rtnl_mutex.
3073 *
3074 * For a general description of rx_handler, see enum rx_handler_result.
3075 */
3076 int netdev_rx_handler_register(struct net_device *dev,
3077 rx_handler_func_t *rx_handler,
3078 void *rx_handler_data)
3079 {
3080 ASSERT_RTNL();
3081
3082 if (dev->rx_handler)
3083 return -EBUSY;
3084
3085 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3086 rcu_assign_pointer(dev->rx_handler, rx_handler);
3087
3088 return 0;
3089 }
3090 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3091
3092 /**
3093 * netdev_rx_handler_unregister - unregister receive handler
3094 * @dev: device to unregister a handler from
3095 *
3096 * Unregister a receive hander from a device.
3097 *
3098 * The caller must hold the rtnl_mutex.
3099 */
3100 void netdev_rx_handler_unregister(struct net_device *dev)
3101 {
3102
3103 ASSERT_RTNL();
3104 rcu_assign_pointer(dev->rx_handler, NULL);
3105 rcu_assign_pointer(dev->rx_handler_data, NULL);
3106 }
3107 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3108
3109 static void vlan_on_bond_hook(struct sk_buff *skb)
3110 {
3111 /*
3112 * Make sure ARP frames received on VLAN interfaces stacked on
3113 * bonding interfaces still make their way to any base bonding
3114 * device that may have registered for a specific ptype.
3115 */
3116 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3117 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3118 skb->protocol == htons(ETH_P_ARP)) {
3119 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3120
3121 if (!skb2)
3122 return;
3123 skb2->dev = vlan_dev_real_dev(skb->dev);
3124 netif_rx(skb2);
3125 }
3126 }
3127
3128 static int __netif_receive_skb(struct sk_buff *skb)
3129 {
3130 struct packet_type *ptype, *pt_prev;
3131 rx_handler_func_t *rx_handler;
3132 struct net_device *orig_dev;
3133 struct net_device *null_or_dev;
3134 bool deliver_exact = false;
3135 int ret = NET_RX_DROP;
3136 __be16 type;
3137
3138 if (!netdev_tstamp_prequeue)
3139 net_timestamp_check(skb);
3140
3141 trace_netif_receive_skb(skb);
3142
3143 /* if we've gotten here through NAPI, check netpoll */
3144 if (netpoll_receive_skb(skb))
3145 return NET_RX_DROP;
3146
3147 if (!skb->skb_iif)
3148 skb->skb_iif = skb->dev->ifindex;
3149 orig_dev = skb->dev;
3150
3151 skb_reset_network_header(skb);
3152 skb_reset_transport_header(skb);
3153 skb->mac_len = skb->network_header - skb->mac_header;
3154
3155 pt_prev = NULL;
3156
3157 rcu_read_lock();
3158
3159 another_round:
3160
3161 __this_cpu_inc(softnet_data.processed);
3162
3163 #ifdef CONFIG_NET_CLS_ACT
3164 if (skb->tc_verd & TC_NCLS) {
3165 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3166 goto ncls;
3167 }
3168 #endif
3169
3170 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3171 if (!ptype->dev || ptype->dev == skb->dev) {
3172 if (pt_prev)
3173 ret = deliver_skb(skb, pt_prev, orig_dev);
3174 pt_prev = ptype;
3175 }
3176 }
3177
3178 #ifdef CONFIG_NET_CLS_ACT
3179 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3180 if (!skb)
3181 goto out;
3182 ncls:
3183 #endif
3184
3185 rx_handler = rcu_dereference(skb->dev->rx_handler);
3186 if (rx_handler) {
3187 if (pt_prev) {
3188 ret = deliver_skb(skb, pt_prev, orig_dev);
3189 pt_prev = NULL;
3190 }
3191 switch (rx_handler(&skb)) {
3192 case RX_HANDLER_CONSUMED:
3193 goto out;
3194 case RX_HANDLER_ANOTHER:
3195 goto another_round;
3196 case RX_HANDLER_EXACT:
3197 deliver_exact = true;
3198 case RX_HANDLER_PASS:
3199 break;
3200 default:
3201 BUG();
3202 }
3203 }
3204
3205 if (vlan_tx_tag_present(skb)) {
3206 if (pt_prev) {
3207 ret = deliver_skb(skb, pt_prev, orig_dev);
3208 pt_prev = NULL;
3209 }
3210 if (vlan_hwaccel_do_receive(&skb)) {
3211 ret = __netif_receive_skb(skb);
3212 goto out;
3213 } else if (unlikely(!skb))
3214 goto out;
3215 }
3216
3217 vlan_on_bond_hook(skb);
3218
3219 /* deliver only exact match when indicated */
3220 null_or_dev = deliver_exact ? skb->dev : NULL;
3221
3222 type = skb->protocol;
3223 list_for_each_entry_rcu(ptype,
3224 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3225 if (ptype->type == type &&
3226 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3227 ptype->dev == orig_dev)) {
3228 if (pt_prev)
3229 ret = deliver_skb(skb, pt_prev, orig_dev);
3230 pt_prev = ptype;
3231 }
3232 }
3233
3234 if (pt_prev) {
3235 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3236 } else {
3237 atomic_long_inc(&skb->dev->rx_dropped);
3238 kfree_skb(skb);
3239 /* Jamal, now you will not able to escape explaining
3240 * me how you were going to use this. :-)
3241 */
3242 ret = NET_RX_DROP;
3243 }
3244
3245 out:
3246 rcu_read_unlock();
3247 return ret;
3248 }
3249
3250 /**
3251 * netif_receive_skb - process receive buffer from network
3252 * @skb: buffer to process
3253 *
3254 * netif_receive_skb() is the main receive data processing function.
3255 * It always succeeds. The buffer may be dropped during processing
3256 * for congestion control or by the protocol layers.
3257 *
3258 * This function may only be called from softirq context and interrupts
3259 * should be enabled.
3260 *
3261 * Return values (usually ignored):
3262 * NET_RX_SUCCESS: no congestion
3263 * NET_RX_DROP: packet was dropped
3264 */
3265 int netif_receive_skb(struct sk_buff *skb)
3266 {
3267 if (netdev_tstamp_prequeue)
3268 net_timestamp_check(skb);
3269
3270 if (skb_defer_rx_timestamp(skb))
3271 return NET_RX_SUCCESS;
3272
3273 #ifdef CONFIG_RPS
3274 {
3275 struct rps_dev_flow voidflow, *rflow = &voidflow;
3276 int cpu, ret;
3277
3278 rcu_read_lock();
3279
3280 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3281
3282 if (cpu >= 0) {
3283 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3284 rcu_read_unlock();
3285 } else {
3286 rcu_read_unlock();
3287 ret = __netif_receive_skb(skb);
3288 }
3289
3290 return ret;
3291 }
3292 #else
3293 return __netif_receive_skb(skb);
3294 #endif
3295 }
3296 EXPORT_SYMBOL(netif_receive_skb);
3297
3298 /* Network device is going away, flush any packets still pending
3299 * Called with irqs disabled.
3300 */
3301 static void flush_backlog(void *arg)
3302 {
3303 struct net_device *dev = arg;
3304 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3305 struct sk_buff *skb, *tmp;
3306
3307 rps_lock(sd);
3308 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3309 if (skb->dev == dev) {
3310 __skb_unlink(skb, &sd->input_pkt_queue);
3311 kfree_skb(skb);
3312 input_queue_head_incr(sd);
3313 }
3314 }
3315 rps_unlock(sd);
3316
3317 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3318 if (skb->dev == dev) {
3319 __skb_unlink(skb, &sd->process_queue);
3320 kfree_skb(skb);
3321 input_queue_head_incr(sd);
3322 }
3323 }
3324 }
3325
3326 static int napi_gro_complete(struct sk_buff *skb)
3327 {
3328 struct packet_type *ptype;
3329 __be16 type = skb->protocol;
3330 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3331 int err = -ENOENT;
3332
3333 if (NAPI_GRO_CB(skb)->count == 1) {
3334 skb_shinfo(skb)->gso_size = 0;
3335 goto out;
3336 }
3337
3338 rcu_read_lock();
3339 list_for_each_entry_rcu(ptype, head, list) {
3340 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3341 continue;
3342
3343 err = ptype->gro_complete(skb);
3344 break;
3345 }
3346 rcu_read_unlock();
3347
3348 if (err) {
3349 WARN_ON(&ptype->list == head);
3350 kfree_skb(skb);
3351 return NET_RX_SUCCESS;
3352 }
3353
3354 out:
3355 return netif_receive_skb(skb);
3356 }
3357
3358 inline void napi_gro_flush(struct napi_struct *napi)
3359 {
3360 struct sk_buff *skb, *next;
3361
3362 for (skb = napi->gro_list; skb; skb = next) {
3363 next = skb->next;
3364 skb->next = NULL;
3365 napi_gro_complete(skb);
3366 }
3367
3368 napi->gro_count = 0;
3369 napi->gro_list = NULL;
3370 }
3371 EXPORT_SYMBOL(napi_gro_flush);
3372
3373 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3374 {
3375 struct sk_buff **pp = NULL;
3376 struct packet_type *ptype;
3377 __be16 type = skb->protocol;
3378 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3379 int same_flow;
3380 int mac_len;
3381 enum gro_result ret;
3382
3383 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3384 goto normal;
3385
3386 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3387 goto normal;
3388
3389 rcu_read_lock();
3390 list_for_each_entry_rcu(ptype, head, list) {
3391 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3392 continue;
3393
3394 skb_set_network_header(skb, skb_gro_offset(skb));
3395 mac_len = skb->network_header - skb->mac_header;
3396 skb->mac_len = mac_len;
3397 NAPI_GRO_CB(skb)->same_flow = 0;
3398 NAPI_GRO_CB(skb)->flush = 0;
3399 NAPI_GRO_CB(skb)->free = 0;
3400
3401 pp = ptype->gro_receive(&napi->gro_list, skb);
3402 break;
3403 }
3404 rcu_read_unlock();
3405
3406 if (&ptype->list == head)
3407 goto normal;
3408
3409 same_flow = NAPI_GRO_CB(skb)->same_flow;
3410 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3411
3412 if (pp) {
3413 struct sk_buff *nskb = *pp;
3414
3415 *pp = nskb->next;
3416 nskb->next = NULL;
3417 napi_gro_complete(nskb);
3418 napi->gro_count--;
3419 }
3420
3421 if (same_flow)
3422 goto ok;
3423
3424 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3425 goto normal;
3426
3427 napi->gro_count++;
3428 NAPI_GRO_CB(skb)->count = 1;
3429 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3430 skb->next = napi->gro_list;
3431 napi->gro_list = skb;
3432 ret = GRO_HELD;
3433
3434 pull:
3435 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3436 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3437
3438 BUG_ON(skb->end - skb->tail < grow);
3439
3440 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3441
3442 skb->tail += grow;
3443 skb->data_len -= grow;
3444
3445 skb_shinfo(skb)->frags[0].page_offset += grow;
3446 skb_shinfo(skb)->frags[0].size -= grow;
3447
3448 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3449 put_page(skb_shinfo(skb)->frags[0].page);
3450 memmove(skb_shinfo(skb)->frags,
3451 skb_shinfo(skb)->frags + 1,
3452 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3453 }
3454 }
3455
3456 ok:
3457 return ret;
3458
3459 normal:
3460 ret = GRO_NORMAL;
3461 goto pull;
3462 }
3463 EXPORT_SYMBOL(dev_gro_receive);
3464
3465 static inline gro_result_t
3466 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3467 {
3468 struct sk_buff *p;
3469
3470 for (p = napi->gro_list; p; p = p->next) {
3471 unsigned long diffs;
3472
3473 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3474 diffs |= p->vlan_tci ^ skb->vlan_tci;
3475 diffs |= compare_ether_header(skb_mac_header(p),
3476 skb_gro_mac_header(skb));
3477 NAPI_GRO_CB(p)->same_flow = !diffs;
3478 NAPI_GRO_CB(p)->flush = 0;
3479 }
3480
3481 return dev_gro_receive(napi, skb);
3482 }
3483
3484 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3485 {
3486 switch (ret) {
3487 case GRO_NORMAL:
3488 if (netif_receive_skb(skb))
3489 ret = GRO_DROP;
3490 break;
3491
3492 case GRO_DROP:
3493 case GRO_MERGED_FREE:
3494 kfree_skb(skb);
3495 break;
3496
3497 case GRO_HELD:
3498 case GRO_MERGED:
3499 break;
3500 }
3501
3502 return ret;
3503 }
3504 EXPORT_SYMBOL(napi_skb_finish);
3505
3506 void skb_gro_reset_offset(struct sk_buff *skb)
3507 {
3508 NAPI_GRO_CB(skb)->data_offset = 0;
3509 NAPI_GRO_CB(skb)->frag0 = NULL;
3510 NAPI_GRO_CB(skb)->frag0_len = 0;
3511
3512 if (skb->mac_header == skb->tail &&
3513 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3514 NAPI_GRO_CB(skb)->frag0 =
3515 page_address(skb_shinfo(skb)->frags[0].page) +
3516 skb_shinfo(skb)->frags[0].page_offset;
3517 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3518 }
3519 }
3520 EXPORT_SYMBOL(skb_gro_reset_offset);
3521
3522 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3523 {
3524 skb_gro_reset_offset(skb);
3525
3526 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3527 }
3528 EXPORT_SYMBOL(napi_gro_receive);
3529
3530 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3531 {
3532 __skb_pull(skb, skb_headlen(skb));
3533 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3534 skb->vlan_tci = 0;
3535 skb->dev = napi->dev;
3536 skb->skb_iif = 0;
3537
3538 napi->skb = skb;
3539 }
3540
3541 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3542 {
3543 struct sk_buff *skb = napi->skb;
3544
3545 if (!skb) {
3546 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3547 if (skb)
3548 napi->skb = skb;
3549 }
3550 return skb;
3551 }
3552 EXPORT_SYMBOL(napi_get_frags);
3553
3554 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3555 gro_result_t ret)
3556 {
3557 switch (ret) {
3558 case GRO_NORMAL:
3559 case GRO_HELD:
3560 skb->protocol = eth_type_trans(skb, skb->dev);
3561
3562 if (ret == GRO_HELD)
3563 skb_gro_pull(skb, -ETH_HLEN);
3564 else if (netif_receive_skb(skb))
3565 ret = GRO_DROP;
3566 break;
3567
3568 case GRO_DROP:
3569 case GRO_MERGED_FREE:
3570 napi_reuse_skb(napi, skb);
3571 break;
3572
3573 case GRO_MERGED:
3574 break;
3575 }
3576
3577 return ret;
3578 }
3579 EXPORT_SYMBOL(napi_frags_finish);
3580
3581 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3582 {
3583 struct sk_buff *skb = napi->skb;
3584 struct ethhdr *eth;
3585 unsigned int hlen;
3586 unsigned int off;
3587
3588 napi->skb = NULL;
3589
3590 skb_reset_mac_header(skb);
3591 skb_gro_reset_offset(skb);
3592
3593 off = skb_gro_offset(skb);
3594 hlen = off + sizeof(*eth);
3595 eth = skb_gro_header_fast(skb, off);
3596 if (skb_gro_header_hard(skb, hlen)) {
3597 eth = skb_gro_header_slow(skb, hlen, off);
3598 if (unlikely(!eth)) {
3599 napi_reuse_skb(napi, skb);
3600 skb = NULL;
3601 goto out;
3602 }
3603 }
3604
3605 skb_gro_pull(skb, sizeof(*eth));
3606
3607 /*
3608 * This works because the only protocols we care about don't require
3609 * special handling. We'll fix it up properly at the end.
3610 */
3611 skb->protocol = eth->h_proto;
3612
3613 out:
3614 return skb;
3615 }
3616 EXPORT_SYMBOL(napi_frags_skb);
3617
3618 gro_result_t napi_gro_frags(struct napi_struct *napi)
3619 {
3620 struct sk_buff *skb = napi_frags_skb(napi);
3621
3622 if (!skb)
3623 return GRO_DROP;
3624
3625 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3626 }
3627 EXPORT_SYMBOL(napi_gro_frags);
3628
3629 /*
3630 * net_rps_action sends any pending IPI's for rps.
3631 * Note: called with local irq disabled, but exits with local irq enabled.
3632 */
3633 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636 struct softnet_data *remsd = sd->rps_ipi_list;
3637
3638 if (remsd) {
3639 sd->rps_ipi_list = NULL;
3640
3641 local_irq_enable();
3642
3643 /* Send pending IPI's to kick RPS processing on remote cpus. */
3644 while (remsd) {
3645 struct softnet_data *next = remsd->rps_ipi_next;
3646
3647 if (cpu_online(remsd->cpu))
3648 __smp_call_function_single(remsd->cpu,
3649 &remsd->csd, 0);
3650 remsd = next;
3651 }
3652 } else
3653 #endif
3654 local_irq_enable();
3655 }
3656
3657 static int process_backlog(struct napi_struct *napi, int quota)
3658 {
3659 int work = 0;
3660 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3661
3662 #ifdef CONFIG_RPS
3663 /* Check if we have pending ipi, its better to send them now,
3664 * not waiting net_rx_action() end.
3665 */
3666 if (sd->rps_ipi_list) {
3667 local_irq_disable();
3668 net_rps_action_and_irq_enable(sd);
3669 }
3670 #endif
3671 napi->weight = weight_p;
3672 local_irq_disable();
3673 while (work < quota) {
3674 struct sk_buff *skb;
3675 unsigned int qlen;
3676
3677 while ((skb = __skb_dequeue(&sd->process_queue))) {
3678 local_irq_enable();
3679 __netif_receive_skb(skb);
3680 local_irq_disable();
3681 input_queue_head_incr(sd);
3682 if (++work >= quota) {
3683 local_irq_enable();
3684 return work;
3685 }
3686 }
3687
3688 rps_lock(sd);
3689 qlen = skb_queue_len(&sd->input_pkt_queue);
3690 if (qlen)
3691 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3692 &sd->process_queue);
3693
3694 if (qlen < quota - work) {
3695 /*
3696 * Inline a custom version of __napi_complete().
3697 * only current cpu owns and manipulates this napi,
3698 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3699 * we can use a plain write instead of clear_bit(),
3700 * and we dont need an smp_mb() memory barrier.
3701 */
3702 list_del(&napi->poll_list);
3703 napi->state = 0;
3704
3705 quota = work + qlen;
3706 }
3707 rps_unlock(sd);
3708 }
3709 local_irq_enable();
3710
3711 return work;
3712 }
3713
3714 /**
3715 * __napi_schedule - schedule for receive
3716 * @n: entry to schedule
3717 *
3718 * The entry's receive function will be scheduled to run
3719 */
3720 void __napi_schedule(struct napi_struct *n)
3721 {
3722 unsigned long flags;
3723
3724 local_irq_save(flags);
3725 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3726 local_irq_restore(flags);
3727 }
3728 EXPORT_SYMBOL(__napi_schedule);
3729
3730 void __napi_complete(struct napi_struct *n)
3731 {
3732 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3733 BUG_ON(n->gro_list);
3734
3735 list_del(&n->poll_list);
3736 smp_mb__before_clear_bit();
3737 clear_bit(NAPI_STATE_SCHED, &n->state);
3738 }
3739 EXPORT_SYMBOL(__napi_complete);
3740
3741 void napi_complete(struct napi_struct *n)
3742 {
3743 unsigned long flags;
3744
3745 /*
3746 * don't let napi dequeue from the cpu poll list
3747 * just in case its running on a different cpu
3748 */
3749 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3750 return;
3751
3752 napi_gro_flush(n);
3753 local_irq_save(flags);
3754 __napi_complete(n);
3755 local_irq_restore(flags);
3756 }
3757 EXPORT_SYMBOL(napi_complete);
3758
3759 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3760 int (*poll)(struct napi_struct *, int), int weight)
3761 {
3762 INIT_LIST_HEAD(&napi->poll_list);
3763 napi->gro_count = 0;
3764 napi->gro_list = NULL;
3765 napi->skb = NULL;
3766 napi->poll = poll;
3767 napi->weight = weight;
3768 list_add(&napi->dev_list, &dev->napi_list);
3769 napi->dev = dev;
3770 #ifdef CONFIG_NETPOLL
3771 spin_lock_init(&napi->poll_lock);
3772 napi->poll_owner = -1;
3773 #endif
3774 set_bit(NAPI_STATE_SCHED, &napi->state);
3775 }
3776 EXPORT_SYMBOL(netif_napi_add);
3777
3778 void netif_napi_del(struct napi_struct *napi)
3779 {
3780 struct sk_buff *skb, *next;
3781
3782 list_del_init(&napi->dev_list);
3783 napi_free_frags(napi);
3784
3785 for (skb = napi->gro_list; skb; skb = next) {
3786 next = skb->next;
3787 skb->next = NULL;
3788 kfree_skb(skb);
3789 }
3790
3791 napi->gro_list = NULL;
3792 napi->gro_count = 0;
3793 }
3794 EXPORT_SYMBOL(netif_napi_del);
3795
3796 static void net_rx_action(struct softirq_action *h)
3797 {
3798 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3799 unsigned long time_limit = jiffies + 2;
3800 int budget = netdev_budget;
3801 void *have;
3802
3803 local_irq_disable();
3804
3805 while (!list_empty(&sd->poll_list)) {
3806 struct napi_struct *n;
3807 int work, weight;
3808
3809 /* If softirq window is exhuasted then punt.
3810 * Allow this to run for 2 jiffies since which will allow
3811 * an average latency of 1.5/HZ.
3812 */
3813 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3814 goto softnet_break;
3815
3816 local_irq_enable();
3817
3818 /* Even though interrupts have been re-enabled, this
3819 * access is safe because interrupts can only add new
3820 * entries to the tail of this list, and only ->poll()
3821 * calls can remove this head entry from the list.
3822 */
3823 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3824
3825 have = netpoll_poll_lock(n);
3826
3827 weight = n->weight;
3828
3829 /* This NAPI_STATE_SCHED test is for avoiding a race
3830 * with netpoll's poll_napi(). Only the entity which
3831 * obtains the lock and sees NAPI_STATE_SCHED set will
3832 * actually make the ->poll() call. Therefore we avoid
3833 * accidently calling ->poll() when NAPI is not scheduled.
3834 */
3835 work = 0;
3836 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3837 work = n->poll(n, weight);
3838 trace_napi_poll(n);
3839 }
3840
3841 WARN_ON_ONCE(work > weight);
3842
3843 budget -= work;
3844
3845 local_irq_disable();
3846
3847 /* Drivers must not modify the NAPI state if they
3848 * consume the entire weight. In such cases this code
3849 * still "owns" the NAPI instance and therefore can
3850 * move the instance around on the list at-will.
3851 */
3852 if (unlikely(work == weight)) {
3853 if (unlikely(napi_disable_pending(n))) {
3854 local_irq_enable();
3855 napi_complete(n);
3856 local_irq_disable();
3857 } else
3858 list_move_tail(&n->poll_list, &sd->poll_list);
3859 }
3860
3861 netpoll_poll_unlock(have);
3862 }
3863 out:
3864 net_rps_action_and_irq_enable(sd);
3865
3866 #ifdef CONFIG_NET_DMA
3867 /*
3868 * There may not be any more sk_buffs coming right now, so push
3869 * any pending DMA copies to hardware
3870 */
3871 dma_issue_pending_all();
3872 #endif
3873
3874 return;
3875
3876 softnet_break:
3877 sd->time_squeeze++;
3878 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3879 goto out;
3880 }
3881
3882 static gifconf_func_t *gifconf_list[NPROTO];
3883
3884 /**
3885 * register_gifconf - register a SIOCGIF handler
3886 * @family: Address family
3887 * @gifconf: Function handler
3888 *
3889 * Register protocol dependent address dumping routines. The handler
3890 * that is passed must not be freed or reused until it has been replaced
3891 * by another handler.
3892 */
3893 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3894 {
3895 if (family >= NPROTO)
3896 return -EINVAL;
3897 gifconf_list[family] = gifconf;
3898 return 0;
3899 }
3900 EXPORT_SYMBOL(register_gifconf);
3901
3902
3903 /*
3904 * Map an interface index to its name (SIOCGIFNAME)
3905 */
3906
3907 /*
3908 * We need this ioctl for efficient implementation of the
3909 * if_indextoname() function required by the IPv6 API. Without
3910 * it, we would have to search all the interfaces to find a
3911 * match. --pb
3912 */
3913
3914 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3915 {
3916 struct net_device *dev;
3917 struct ifreq ifr;
3918
3919 /*
3920 * Fetch the caller's info block.
3921 */
3922
3923 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3924 return -EFAULT;
3925
3926 rcu_read_lock();
3927 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3928 if (!dev) {
3929 rcu_read_unlock();
3930 return -ENODEV;
3931 }
3932
3933 strcpy(ifr.ifr_name, dev->name);
3934 rcu_read_unlock();
3935
3936 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3937 return -EFAULT;
3938 return 0;
3939 }
3940
3941 /*
3942 * Perform a SIOCGIFCONF call. This structure will change
3943 * size eventually, and there is nothing I can do about it.
3944 * Thus we will need a 'compatibility mode'.
3945 */
3946
3947 static int dev_ifconf(struct net *net, char __user *arg)
3948 {
3949 struct ifconf ifc;
3950 struct net_device *dev;
3951 char __user *pos;
3952 int len;
3953 int total;
3954 int i;
3955
3956 /*
3957 * Fetch the caller's info block.
3958 */
3959
3960 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3961 return -EFAULT;
3962
3963 pos = ifc.ifc_buf;
3964 len = ifc.ifc_len;
3965
3966 /*
3967 * Loop over the interfaces, and write an info block for each.
3968 */
3969
3970 total = 0;
3971 for_each_netdev(net, dev) {
3972 for (i = 0; i < NPROTO; i++) {
3973 if (gifconf_list[i]) {
3974 int done;
3975 if (!pos)
3976 done = gifconf_list[i](dev, NULL, 0);
3977 else
3978 done = gifconf_list[i](dev, pos + total,
3979 len - total);
3980 if (done < 0)
3981 return -EFAULT;
3982 total += done;
3983 }
3984 }
3985 }
3986
3987 /*
3988 * All done. Write the updated control block back to the caller.
3989 */
3990 ifc.ifc_len = total;
3991
3992 /*
3993 * Both BSD and Solaris return 0 here, so we do too.
3994 */
3995 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3996 }
3997
3998 #ifdef CONFIG_PROC_FS
3999 /*
4000 * This is invoked by the /proc filesystem handler to display a device
4001 * in detail.
4002 */
4003 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4004 __acquires(RCU)
4005 {
4006 struct net *net = seq_file_net(seq);
4007 loff_t off;
4008 struct net_device *dev;
4009
4010 rcu_read_lock();
4011 if (!*pos)
4012 return SEQ_START_TOKEN;
4013
4014 off = 1;
4015 for_each_netdev_rcu(net, dev)
4016 if (off++ == *pos)
4017 return dev;
4018
4019 return NULL;
4020 }
4021
4022 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4023 {
4024 struct net_device *dev = v;
4025
4026 if (v == SEQ_START_TOKEN)
4027 dev = first_net_device_rcu(seq_file_net(seq));
4028 else
4029 dev = next_net_device_rcu(dev);
4030
4031 ++*pos;
4032 return dev;
4033 }
4034
4035 void dev_seq_stop(struct seq_file *seq, void *v)
4036 __releases(RCU)
4037 {
4038 rcu_read_unlock();
4039 }
4040
4041 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4042 {
4043 struct rtnl_link_stats64 temp;
4044 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4045
4046 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4047 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4048 dev->name, stats->rx_bytes, stats->rx_packets,
4049 stats->rx_errors,
4050 stats->rx_dropped + stats->rx_missed_errors,
4051 stats->rx_fifo_errors,
4052 stats->rx_length_errors + stats->rx_over_errors +
4053 stats->rx_crc_errors + stats->rx_frame_errors,
4054 stats->rx_compressed, stats->multicast,
4055 stats->tx_bytes, stats->tx_packets,
4056 stats->tx_errors, stats->tx_dropped,
4057 stats->tx_fifo_errors, stats->collisions,
4058 stats->tx_carrier_errors +
4059 stats->tx_aborted_errors +
4060 stats->tx_window_errors +
4061 stats->tx_heartbeat_errors,
4062 stats->tx_compressed);
4063 }
4064
4065 /*
4066 * Called from the PROCfs module. This now uses the new arbitrary sized
4067 * /proc/net interface to create /proc/net/dev
4068 */
4069 static int dev_seq_show(struct seq_file *seq, void *v)
4070 {
4071 if (v == SEQ_START_TOKEN)
4072 seq_puts(seq, "Inter-| Receive "
4073 " | Transmit\n"
4074 " face |bytes packets errs drop fifo frame "
4075 "compressed multicast|bytes packets errs "
4076 "drop fifo colls carrier compressed\n");
4077 else
4078 dev_seq_printf_stats(seq, v);
4079 return 0;
4080 }
4081
4082 static struct softnet_data *softnet_get_online(loff_t *pos)
4083 {
4084 struct softnet_data *sd = NULL;
4085
4086 while (*pos < nr_cpu_ids)
4087 if (cpu_online(*pos)) {
4088 sd = &per_cpu(softnet_data, *pos);
4089 break;
4090 } else
4091 ++*pos;
4092 return sd;
4093 }
4094
4095 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4096 {
4097 return softnet_get_online(pos);
4098 }
4099
4100 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4101 {
4102 ++*pos;
4103 return softnet_get_online(pos);
4104 }
4105
4106 static void softnet_seq_stop(struct seq_file *seq, void *v)
4107 {
4108 }
4109
4110 static int softnet_seq_show(struct seq_file *seq, void *v)
4111 {
4112 struct softnet_data *sd = v;
4113
4114 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4115 sd->processed, sd->dropped, sd->time_squeeze, 0,
4116 0, 0, 0, 0, /* was fastroute */
4117 sd->cpu_collision, sd->received_rps);
4118 return 0;
4119 }
4120
4121 static const struct seq_operations dev_seq_ops = {
4122 .start = dev_seq_start,
4123 .next = dev_seq_next,
4124 .stop = dev_seq_stop,
4125 .show = dev_seq_show,
4126 };
4127
4128 static int dev_seq_open(struct inode *inode, struct file *file)
4129 {
4130 return seq_open_net(inode, file, &dev_seq_ops,
4131 sizeof(struct seq_net_private));
4132 }
4133
4134 static const struct file_operations dev_seq_fops = {
4135 .owner = THIS_MODULE,
4136 .open = dev_seq_open,
4137 .read = seq_read,
4138 .llseek = seq_lseek,
4139 .release = seq_release_net,
4140 };
4141
4142 static const struct seq_operations softnet_seq_ops = {
4143 .start = softnet_seq_start,
4144 .next = softnet_seq_next,
4145 .stop = softnet_seq_stop,
4146 .show = softnet_seq_show,
4147 };
4148
4149 static int softnet_seq_open(struct inode *inode, struct file *file)
4150 {
4151 return seq_open(file, &softnet_seq_ops);
4152 }
4153
4154 static const struct file_operations softnet_seq_fops = {
4155 .owner = THIS_MODULE,
4156 .open = softnet_seq_open,
4157 .read = seq_read,
4158 .llseek = seq_lseek,
4159 .release = seq_release,
4160 };
4161
4162 static void *ptype_get_idx(loff_t pos)
4163 {
4164 struct packet_type *pt = NULL;
4165 loff_t i = 0;
4166 int t;
4167
4168 list_for_each_entry_rcu(pt, &ptype_all, list) {
4169 if (i == pos)
4170 return pt;
4171 ++i;
4172 }
4173
4174 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4175 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4176 if (i == pos)
4177 return pt;
4178 ++i;
4179 }
4180 }
4181 return NULL;
4182 }
4183
4184 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4185 __acquires(RCU)
4186 {
4187 rcu_read_lock();
4188 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4189 }
4190
4191 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4192 {
4193 struct packet_type *pt;
4194 struct list_head *nxt;
4195 int hash;
4196
4197 ++*pos;
4198 if (v == SEQ_START_TOKEN)
4199 return ptype_get_idx(0);
4200
4201 pt = v;
4202 nxt = pt->list.next;
4203 if (pt->type == htons(ETH_P_ALL)) {
4204 if (nxt != &ptype_all)
4205 goto found;
4206 hash = 0;
4207 nxt = ptype_base[0].next;
4208 } else
4209 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4210
4211 while (nxt == &ptype_base[hash]) {
4212 if (++hash >= PTYPE_HASH_SIZE)
4213 return NULL;
4214 nxt = ptype_base[hash].next;
4215 }
4216 found:
4217 return list_entry(nxt, struct packet_type, list);
4218 }
4219
4220 static void ptype_seq_stop(struct seq_file *seq, void *v)
4221 __releases(RCU)
4222 {
4223 rcu_read_unlock();
4224 }
4225
4226 static int ptype_seq_show(struct seq_file *seq, void *v)
4227 {
4228 struct packet_type *pt = v;
4229
4230 if (v == SEQ_START_TOKEN)
4231 seq_puts(seq, "Type Device Function\n");
4232 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4233 if (pt->type == htons(ETH_P_ALL))
4234 seq_puts(seq, "ALL ");
4235 else
4236 seq_printf(seq, "%04x", ntohs(pt->type));
4237
4238 seq_printf(seq, " %-8s %pF\n",
4239 pt->dev ? pt->dev->name : "", pt->func);
4240 }
4241
4242 return 0;
4243 }
4244
4245 static const struct seq_operations ptype_seq_ops = {
4246 .start = ptype_seq_start,
4247 .next = ptype_seq_next,
4248 .stop = ptype_seq_stop,
4249 .show = ptype_seq_show,
4250 };
4251
4252 static int ptype_seq_open(struct inode *inode, struct file *file)
4253 {
4254 return seq_open_net(inode, file, &ptype_seq_ops,
4255 sizeof(struct seq_net_private));
4256 }
4257
4258 static const struct file_operations ptype_seq_fops = {
4259 .owner = THIS_MODULE,
4260 .open = ptype_seq_open,
4261 .read = seq_read,
4262 .llseek = seq_lseek,
4263 .release = seq_release_net,
4264 };
4265
4266
4267 static int __net_init dev_proc_net_init(struct net *net)
4268 {
4269 int rc = -ENOMEM;
4270
4271 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4272 goto out;
4273 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4274 goto out_dev;
4275 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4276 goto out_softnet;
4277
4278 if (wext_proc_init(net))
4279 goto out_ptype;
4280 rc = 0;
4281 out:
4282 return rc;
4283 out_ptype:
4284 proc_net_remove(net, "ptype");
4285 out_softnet:
4286 proc_net_remove(net, "softnet_stat");
4287 out_dev:
4288 proc_net_remove(net, "dev");
4289 goto out;
4290 }
4291
4292 static void __net_exit dev_proc_net_exit(struct net *net)
4293 {
4294 wext_proc_exit(net);
4295
4296 proc_net_remove(net, "ptype");
4297 proc_net_remove(net, "softnet_stat");
4298 proc_net_remove(net, "dev");
4299 }
4300
4301 static struct pernet_operations __net_initdata dev_proc_ops = {
4302 .init = dev_proc_net_init,
4303 .exit = dev_proc_net_exit,
4304 };
4305
4306 static int __init dev_proc_init(void)
4307 {
4308 return register_pernet_subsys(&dev_proc_ops);
4309 }
4310 #else
4311 #define dev_proc_init() 0
4312 #endif /* CONFIG_PROC_FS */
4313
4314
4315 /**
4316 * netdev_set_master - set up master pointer
4317 * @slave: slave device
4318 * @master: new master device
4319 *
4320 * Changes the master device of the slave. Pass %NULL to break the
4321 * bonding. The caller must hold the RTNL semaphore. On a failure
4322 * a negative errno code is returned. On success the reference counts
4323 * are adjusted and the function returns zero.
4324 */
4325 int netdev_set_master(struct net_device *slave, struct net_device *master)
4326 {
4327 struct net_device *old = slave->master;
4328
4329 ASSERT_RTNL();
4330
4331 if (master) {
4332 if (old)
4333 return -EBUSY;
4334 dev_hold(master);
4335 }
4336
4337 slave->master = master;
4338
4339 if (old) {
4340 synchronize_net();
4341 dev_put(old);
4342 }
4343 return 0;
4344 }
4345 EXPORT_SYMBOL(netdev_set_master);
4346
4347 /**
4348 * netdev_set_bond_master - set up bonding master/slave pair
4349 * @slave: slave device
4350 * @master: new master device
4351 *
4352 * Changes the master device of the slave. Pass %NULL to break the
4353 * bonding. The caller must hold the RTNL semaphore. On a failure
4354 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4355 * to the routing socket and the function returns zero.
4356 */
4357 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4358 {
4359 int err;
4360
4361 ASSERT_RTNL();
4362
4363 err = netdev_set_master(slave, master);
4364 if (err)
4365 return err;
4366 if (master)
4367 slave->flags |= IFF_SLAVE;
4368 else
4369 slave->flags &= ~IFF_SLAVE;
4370
4371 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4372 return 0;
4373 }
4374 EXPORT_SYMBOL(netdev_set_bond_master);
4375
4376 static void dev_change_rx_flags(struct net_device *dev, int flags)
4377 {
4378 const struct net_device_ops *ops = dev->netdev_ops;
4379
4380 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4381 ops->ndo_change_rx_flags(dev, flags);
4382 }
4383
4384 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4385 {
4386 unsigned short old_flags = dev->flags;
4387 uid_t uid;
4388 gid_t gid;
4389
4390 ASSERT_RTNL();
4391
4392 dev->flags |= IFF_PROMISC;
4393 dev->promiscuity += inc;
4394 if (dev->promiscuity == 0) {
4395 /*
4396 * Avoid overflow.
4397 * If inc causes overflow, untouch promisc and return error.
4398 */
4399 if (inc < 0)
4400 dev->flags &= ~IFF_PROMISC;
4401 else {
4402 dev->promiscuity -= inc;
4403 printk(KERN_WARNING "%s: promiscuity touches roof, "
4404 "set promiscuity failed, promiscuity feature "
4405 "of device might be broken.\n", dev->name);
4406 return -EOVERFLOW;
4407 }
4408 }
4409 if (dev->flags != old_flags) {
4410 printk(KERN_INFO "device %s %s promiscuous mode\n",
4411 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4412 "left");
4413 if (audit_enabled) {
4414 current_uid_gid(&uid, &gid);
4415 audit_log(current->audit_context, GFP_ATOMIC,
4416 AUDIT_ANOM_PROMISCUOUS,
4417 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4418 dev->name, (dev->flags & IFF_PROMISC),
4419 (old_flags & IFF_PROMISC),
4420 audit_get_loginuid(current),
4421 uid, gid,
4422 audit_get_sessionid(current));
4423 }
4424
4425 dev_change_rx_flags(dev, IFF_PROMISC);
4426 }
4427 return 0;
4428 }
4429
4430 /**
4431 * dev_set_promiscuity - update promiscuity count on a device
4432 * @dev: device
4433 * @inc: modifier
4434 *
4435 * Add or remove promiscuity from a device. While the count in the device
4436 * remains above zero the interface remains promiscuous. Once it hits zero
4437 * the device reverts back to normal filtering operation. A negative inc
4438 * value is used to drop promiscuity on the device.
4439 * Return 0 if successful or a negative errno code on error.
4440 */
4441 int dev_set_promiscuity(struct net_device *dev, int inc)
4442 {
4443 unsigned short old_flags = dev->flags;
4444 int err;
4445
4446 err = __dev_set_promiscuity(dev, inc);
4447 if (err < 0)
4448 return err;
4449 if (dev->flags != old_flags)
4450 dev_set_rx_mode(dev);
4451 return err;
4452 }
4453 EXPORT_SYMBOL(dev_set_promiscuity);
4454
4455 /**
4456 * dev_set_allmulti - update allmulti count on a device
4457 * @dev: device
4458 * @inc: modifier
4459 *
4460 * Add or remove reception of all multicast frames to a device. While the
4461 * count in the device remains above zero the interface remains listening
4462 * to all interfaces. Once it hits zero the device reverts back to normal
4463 * filtering operation. A negative @inc value is used to drop the counter
4464 * when releasing a resource needing all multicasts.
4465 * Return 0 if successful or a negative errno code on error.
4466 */
4467
4468 int dev_set_allmulti(struct net_device *dev, int inc)
4469 {
4470 unsigned short old_flags = dev->flags;
4471
4472 ASSERT_RTNL();
4473
4474 dev->flags |= IFF_ALLMULTI;
4475 dev->allmulti += inc;
4476 if (dev->allmulti == 0) {
4477 /*
4478 * Avoid overflow.
4479 * If inc causes overflow, untouch allmulti and return error.
4480 */
4481 if (inc < 0)
4482 dev->flags &= ~IFF_ALLMULTI;
4483 else {
4484 dev->allmulti -= inc;
4485 printk(KERN_WARNING "%s: allmulti touches roof, "
4486 "set allmulti failed, allmulti feature of "
4487 "device might be broken.\n", dev->name);
4488 return -EOVERFLOW;
4489 }
4490 }
4491 if (dev->flags ^ old_flags) {
4492 dev_change_rx_flags(dev, IFF_ALLMULTI);
4493 dev_set_rx_mode(dev);
4494 }
4495 return 0;
4496 }
4497 EXPORT_SYMBOL(dev_set_allmulti);
4498
4499 /*
4500 * Upload unicast and multicast address lists to device and
4501 * configure RX filtering. When the device doesn't support unicast
4502 * filtering it is put in promiscuous mode while unicast addresses
4503 * are present.
4504 */
4505 void __dev_set_rx_mode(struct net_device *dev)
4506 {
4507 const struct net_device_ops *ops = dev->netdev_ops;
4508
4509 /* dev_open will call this function so the list will stay sane. */
4510 if (!(dev->flags&IFF_UP))
4511 return;
4512
4513 if (!netif_device_present(dev))
4514 return;
4515
4516 if (ops->ndo_set_rx_mode)
4517 ops->ndo_set_rx_mode(dev);
4518 else {
4519 /* Unicast addresses changes may only happen under the rtnl,
4520 * therefore calling __dev_set_promiscuity here is safe.
4521 */
4522 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4523 __dev_set_promiscuity(dev, 1);
4524 dev->uc_promisc = 1;
4525 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4526 __dev_set_promiscuity(dev, -1);
4527 dev->uc_promisc = 0;
4528 }
4529
4530 if (ops->ndo_set_multicast_list)
4531 ops->ndo_set_multicast_list(dev);
4532 }
4533 }
4534
4535 void dev_set_rx_mode(struct net_device *dev)
4536 {
4537 netif_addr_lock_bh(dev);
4538 __dev_set_rx_mode(dev);
4539 netif_addr_unlock_bh(dev);
4540 }
4541
4542 /**
4543 * dev_get_flags - get flags reported to userspace
4544 * @dev: device
4545 *
4546 * Get the combination of flag bits exported through APIs to userspace.
4547 */
4548 unsigned dev_get_flags(const struct net_device *dev)
4549 {
4550 unsigned flags;
4551
4552 flags = (dev->flags & ~(IFF_PROMISC |
4553 IFF_ALLMULTI |
4554 IFF_RUNNING |
4555 IFF_LOWER_UP |
4556 IFF_DORMANT)) |
4557 (dev->gflags & (IFF_PROMISC |
4558 IFF_ALLMULTI));
4559
4560 if (netif_running(dev)) {
4561 if (netif_oper_up(dev))
4562 flags |= IFF_RUNNING;
4563 if (netif_carrier_ok(dev))
4564 flags |= IFF_LOWER_UP;
4565 if (netif_dormant(dev))
4566 flags |= IFF_DORMANT;
4567 }
4568
4569 return flags;
4570 }
4571 EXPORT_SYMBOL(dev_get_flags);
4572
4573 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4574 {
4575 int old_flags = dev->flags;
4576 int ret;
4577
4578 ASSERT_RTNL();
4579
4580 /*
4581 * Set the flags on our device.
4582 */
4583
4584 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4585 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4586 IFF_AUTOMEDIA)) |
4587 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4588 IFF_ALLMULTI));
4589
4590 /*
4591 * Load in the correct multicast list now the flags have changed.
4592 */
4593
4594 if ((old_flags ^ flags) & IFF_MULTICAST)
4595 dev_change_rx_flags(dev, IFF_MULTICAST);
4596
4597 dev_set_rx_mode(dev);
4598
4599 /*
4600 * Have we downed the interface. We handle IFF_UP ourselves
4601 * according to user attempts to set it, rather than blindly
4602 * setting it.
4603 */
4604
4605 ret = 0;
4606 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4607 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4608
4609 if (!ret)
4610 dev_set_rx_mode(dev);
4611 }
4612
4613 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4614 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4615
4616 dev->gflags ^= IFF_PROMISC;
4617 dev_set_promiscuity(dev, inc);
4618 }
4619
4620 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4621 is important. Some (broken) drivers set IFF_PROMISC, when
4622 IFF_ALLMULTI is requested not asking us and not reporting.
4623 */
4624 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4625 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4626
4627 dev->gflags ^= IFF_ALLMULTI;
4628 dev_set_allmulti(dev, inc);
4629 }
4630
4631 return ret;
4632 }
4633
4634 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4635 {
4636 unsigned int changes = dev->flags ^ old_flags;
4637
4638 if (changes & IFF_UP) {
4639 if (dev->flags & IFF_UP)
4640 call_netdevice_notifiers(NETDEV_UP, dev);
4641 else
4642 call_netdevice_notifiers(NETDEV_DOWN, dev);
4643 }
4644
4645 if (dev->flags & IFF_UP &&
4646 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4647 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4648 }
4649
4650 /**
4651 * dev_change_flags - change device settings
4652 * @dev: device
4653 * @flags: device state flags
4654 *
4655 * Change settings on device based state flags. The flags are
4656 * in the userspace exported format.
4657 */
4658 int dev_change_flags(struct net_device *dev, unsigned flags)
4659 {
4660 int ret, changes;
4661 int old_flags = dev->flags;
4662
4663 ret = __dev_change_flags(dev, flags);
4664 if (ret < 0)
4665 return ret;
4666
4667 changes = old_flags ^ dev->flags;
4668 if (changes)
4669 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4670
4671 __dev_notify_flags(dev, old_flags);
4672 return ret;
4673 }
4674 EXPORT_SYMBOL(dev_change_flags);
4675
4676 /**
4677 * dev_set_mtu - Change maximum transfer unit
4678 * @dev: device
4679 * @new_mtu: new transfer unit
4680 *
4681 * Change the maximum transfer size of the network device.
4682 */
4683 int dev_set_mtu(struct net_device *dev, int new_mtu)
4684 {
4685 const struct net_device_ops *ops = dev->netdev_ops;
4686 int err;
4687
4688 if (new_mtu == dev->mtu)
4689 return 0;
4690
4691 /* MTU must be positive. */
4692 if (new_mtu < 0)
4693 return -EINVAL;
4694
4695 if (!netif_device_present(dev))
4696 return -ENODEV;
4697
4698 err = 0;
4699 if (ops->ndo_change_mtu)
4700 err = ops->ndo_change_mtu(dev, new_mtu);
4701 else
4702 dev->mtu = new_mtu;
4703
4704 if (!err && dev->flags & IFF_UP)
4705 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4706 return err;
4707 }
4708 EXPORT_SYMBOL(dev_set_mtu);
4709
4710 /**
4711 * dev_set_group - Change group this device belongs to
4712 * @dev: device
4713 * @new_group: group this device should belong to
4714 */
4715 void dev_set_group(struct net_device *dev, int new_group)
4716 {
4717 dev->group = new_group;
4718 }
4719 EXPORT_SYMBOL(dev_set_group);
4720
4721 /**
4722 * dev_set_mac_address - Change Media Access Control Address
4723 * @dev: device
4724 * @sa: new address
4725 *
4726 * Change the hardware (MAC) address of the device
4727 */
4728 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4729 {
4730 const struct net_device_ops *ops = dev->netdev_ops;
4731 int err;
4732
4733 if (!ops->ndo_set_mac_address)
4734 return -EOPNOTSUPP;
4735 if (sa->sa_family != dev->type)
4736 return -EINVAL;
4737 if (!netif_device_present(dev))
4738 return -ENODEV;
4739 err = ops->ndo_set_mac_address(dev, sa);
4740 if (!err)
4741 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4742 return err;
4743 }
4744 EXPORT_SYMBOL(dev_set_mac_address);
4745
4746 /*
4747 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4748 */
4749 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4750 {
4751 int err;
4752 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4753
4754 if (!dev)
4755 return -ENODEV;
4756
4757 switch (cmd) {
4758 case SIOCGIFFLAGS: /* Get interface flags */
4759 ifr->ifr_flags = (short) dev_get_flags(dev);
4760 return 0;
4761
4762 case SIOCGIFMETRIC: /* Get the metric on the interface
4763 (currently unused) */
4764 ifr->ifr_metric = 0;
4765 return 0;
4766
4767 case SIOCGIFMTU: /* Get the MTU of a device */
4768 ifr->ifr_mtu = dev->mtu;
4769 return 0;
4770
4771 case SIOCGIFHWADDR:
4772 if (!dev->addr_len)
4773 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4774 else
4775 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4776 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4777 ifr->ifr_hwaddr.sa_family = dev->type;
4778 return 0;
4779
4780 case SIOCGIFSLAVE:
4781 err = -EINVAL;
4782 break;
4783
4784 case SIOCGIFMAP:
4785 ifr->ifr_map.mem_start = dev->mem_start;
4786 ifr->ifr_map.mem_end = dev->mem_end;
4787 ifr->ifr_map.base_addr = dev->base_addr;
4788 ifr->ifr_map.irq = dev->irq;
4789 ifr->ifr_map.dma = dev->dma;
4790 ifr->ifr_map.port = dev->if_port;
4791 return 0;
4792
4793 case SIOCGIFINDEX:
4794 ifr->ifr_ifindex = dev->ifindex;
4795 return 0;
4796
4797 case SIOCGIFTXQLEN:
4798 ifr->ifr_qlen = dev->tx_queue_len;
4799 return 0;
4800
4801 default:
4802 /* dev_ioctl() should ensure this case
4803 * is never reached
4804 */
4805 WARN_ON(1);
4806 err = -EINVAL;
4807 break;
4808
4809 }
4810 return err;
4811 }
4812
4813 /*
4814 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4815 */
4816 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4817 {
4818 int err;
4819 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4820 const struct net_device_ops *ops;
4821
4822 if (!dev)
4823 return -ENODEV;
4824
4825 ops = dev->netdev_ops;
4826
4827 switch (cmd) {
4828 case SIOCSIFFLAGS: /* Set interface flags */
4829 return dev_change_flags(dev, ifr->ifr_flags);
4830
4831 case SIOCSIFMETRIC: /* Set the metric on the interface
4832 (currently unused) */
4833 return -EOPNOTSUPP;
4834
4835 case SIOCSIFMTU: /* Set the MTU of a device */
4836 return dev_set_mtu(dev, ifr->ifr_mtu);
4837
4838 case SIOCSIFHWADDR:
4839 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4840
4841 case SIOCSIFHWBROADCAST:
4842 if (ifr->ifr_hwaddr.sa_family != dev->type)
4843 return -EINVAL;
4844 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4845 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4846 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4847 return 0;
4848
4849 case SIOCSIFMAP:
4850 if (ops->ndo_set_config) {
4851 if (!netif_device_present(dev))
4852 return -ENODEV;
4853 return ops->ndo_set_config(dev, &ifr->ifr_map);
4854 }
4855 return -EOPNOTSUPP;
4856
4857 case SIOCADDMULTI:
4858 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4859 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4860 return -EINVAL;
4861 if (!netif_device_present(dev))
4862 return -ENODEV;
4863 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4864
4865 case SIOCDELMULTI:
4866 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4867 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4868 return -EINVAL;
4869 if (!netif_device_present(dev))
4870 return -ENODEV;
4871 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4872
4873 case SIOCSIFTXQLEN:
4874 if (ifr->ifr_qlen < 0)
4875 return -EINVAL;
4876 dev->tx_queue_len = ifr->ifr_qlen;
4877 return 0;
4878
4879 case SIOCSIFNAME:
4880 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4881 return dev_change_name(dev, ifr->ifr_newname);
4882
4883 /*
4884 * Unknown or private ioctl
4885 */
4886 default:
4887 if ((cmd >= SIOCDEVPRIVATE &&
4888 cmd <= SIOCDEVPRIVATE + 15) ||
4889 cmd == SIOCBONDENSLAVE ||
4890 cmd == SIOCBONDRELEASE ||
4891 cmd == SIOCBONDSETHWADDR ||
4892 cmd == SIOCBONDSLAVEINFOQUERY ||
4893 cmd == SIOCBONDINFOQUERY ||
4894 cmd == SIOCBONDCHANGEACTIVE ||
4895 cmd == SIOCGMIIPHY ||
4896 cmd == SIOCGMIIREG ||
4897 cmd == SIOCSMIIREG ||
4898 cmd == SIOCBRADDIF ||
4899 cmd == SIOCBRDELIF ||
4900 cmd == SIOCSHWTSTAMP ||
4901 cmd == SIOCWANDEV) {
4902 err = -EOPNOTSUPP;
4903 if (ops->ndo_do_ioctl) {
4904 if (netif_device_present(dev))
4905 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4906 else
4907 err = -ENODEV;
4908 }
4909 } else
4910 err = -EINVAL;
4911
4912 }
4913 return err;
4914 }
4915
4916 /*
4917 * This function handles all "interface"-type I/O control requests. The actual
4918 * 'doing' part of this is dev_ifsioc above.
4919 */
4920
4921 /**
4922 * dev_ioctl - network device ioctl
4923 * @net: the applicable net namespace
4924 * @cmd: command to issue
4925 * @arg: pointer to a struct ifreq in user space
4926 *
4927 * Issue ioctl functions to devices. This is normally called by the
4928 * user space syscall interfaces but can sometimes be useful for
4929 * other purposes. The return value is the return from the syscall if
4930 * positive or a negative errno code on error.
4931 */
4932
4933 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4934 {
4935 struct ifreq ifr;
4936 int ret;
4937 char *colon;
4938
4939 /* One special case: SIOCGIFCONF takes ifconf argument
4940 and requires shared lock, because it sleeps writing
4941 to user space.
4942 */
4943
4944 if (cmd == SIOCGIFCONF) {
4945 rtnl_lock();
4946 ret = dev_ifconf(net, (char __user *) arg);
4947 rtnl_unlock();
4948 return ret;
4949 }
4950 if (cmd == SIOCGIFNAME)
4951 return dev_ifname(net, (struct ifreq __user *)arg);
4952
4953 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4954 return -EFAULT;
4955
4956 ifr.ifr_name[IFNAMSIZ-1] = 0;
4957
4958 colon = strchr(ifr.ifr_name, ':');
4959 if (colon)
4960 *colon = 0;
4961
4962 /*
4963 * See which interface the caller is talking about.
4964 */
4965
4966 switch (cmd) {
4967 /*
4968 * These ioctl calls:
4969 * - can be done by all.
4970 * - atomic and do not require locking.
4971 * - return a value
4972 */
4973 case SIOCGIFFLAGS:
4974 case SIOCGIFMETRIC:
4975 case SIOCGIFMTU:
4976 case SIOCGIFHWADDR:
4977 case SIOCGIFSLAVE:
4978 case SIOCGIFMAP:
4979 case SIOCGIFINDEX:
4980 case SIOCGIFTXQLEN:
4981 dev_load(net, ifr.ifr_name);
4982 rcu_read_lock();
4983 ret = dev_ifsioc_locked(net, &ifr, cmd);
4984 rcu_read_unlock();
4985 if (!ret) {
4986 if (colon)
4987 *colon = ':';
4988 if (copy_to_user(arg, &ifr,
4989 sizeof(struct ifreq)))
4990 ret = -EFAULT;
4991 }
4992 return ret;
4993
4994 case SIOCETHTOOL:
4995 dev_load(net, ifr.ifr_name);
4996 rtnl_lock();
4997 ret = dev_ethtool(net, &ifr);
4998 rtnl_unlock();
4999 if (!ret) {
5000 if (colon)
5001 *colon = ':';
5002 if (copy_to_user(arg, &ifr,
5003 sizeof(struct ifreq)))
5004 ret = -EFAULT;
5005 }
5006 return ret;
5007
5008 /*
5009 * These ioctl calls:
5010 * - require superuser power.
5011 * - require strict serialization.
5012 * - return a value
5013 */
5014 case SIOCGMIIPHY:
5015 case SIOCGMIIREG:
5016 case SIOCSIFNAME:
5017 if (!capable(CAP_NET_ADMIN))
5018 return -EPERM;
5019 dev_load(net, ifr.ifr_name);
5020 rtnl_lock();
5021 ret = dev_ifsioc(net, &ifr, cmd);
5022 rtnl_unlock();
5023 if (!ret) {
5024 if (colon)
5025 *colon = ':';
5026 if (copy_to_user(arg, &ifr,
5027 sizeof(struct ifreq)))
5028 ret = -EFAULT;
5029 }
5030 return ret;
5031
5032 /*
5033 * These ioctl calls:
5034 * - require superuser power.
5035 * - require strict serialization.
5036 * - do not return a value
5037 */
5038 case SIOCSIFFLAGS:
5039 case SIOCSIFMETRIC:
5040 case SIOCSIFMTU:
5041 case SIOCSIFMAP:
5042 case SIOCSIFHWADDR:
5043 case SIOCSIFSLAVE:
5044 case SIOCADDMULTI:
5045 case SIOCDELMULTI:
5046 case SIOCSIFHWBROADCAST:
5047 case SIOCSIFTXQLEN:
5048 case SIOCSMIIREG:
5049 case SIOCBONDENSLAVE:
5050 case SIOCBONDRELEASE:
5051 case SIOCBONDSETHWADDR:
5052 case SIOCBONDCHANGEACTIVE:
5053 case SIOCBRADDIF:
5054 case SIOCBRDELIF:
5055 case SIOCSHWTSTAMP:
5056 if (!capable(CAP_NET_ADMIN))
5057 return -EPERM;
5058 /* fall through */
5059 case SIOCBONDSLAVEINFOQUERY:
5060 case SIOCBONDINFOQUERY:
5061 dev_load(net, ifr.ifr_name);
5062 rtnl_lock();
5063 ret = dev_ifsioc(net, &ifr, cmd);
5064 rtnl_unlock();
5065 return ret;
5066
5067 case SIOCGIFMEM:
5068 /* Get the per device memory space. We can add this but
5069 * currently do not support it */
5070 case SIOCSIFMEM:
5071 /* Set the per device memory buffer space.
5072 * Not applicable in our case */
5073 case SIOCSIFLINK:
5074 return -EINVAL;
5075
5076 /*
5077 * Unknown or private ioctl.
5078 */
5079 default:
5080 if (cmd == SIOCWANDEV ||
5081 (cmd >= SIOCDEVPRIVATE &&
5082 cmd <= SIOCDEVPRIVATE + 15)) {
5083 dev_load(net, ifr.ifr_name);
5084 rtnl_lock();
5085 ret = dev_ifsioc(net, &ifr, cmd);
5086 rtnl_unlock();
5087 if (!ret && copy_to_user(arg, &ifr,
5088 sizeof(struct ifreq)))
5089 ret = -EFAULT;
5090 return ret;
5091 }
5092 /* Take care of Wireless Extensions */
5093 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5094 return wext_handle_ioctl(net, &ifr, cmd, arg);
5095 return -EINVAL;
5096 }
5097 }
5098
5099
5100 /**
5101 * dev_new_index - allocate an ifindex
5102 * @net: the applicable net namespace
5103 *
5104 * Returns a suitable unique value for a new device interface
5105 * number. The caller must hold the rtnl semaphore or the
5106 * dev_base_lock to be sure it remains unique.
5107 */
5108 static int dev_new_index(struct net *net)
5109 {
5110 static int ifindex;
5111 for (;;) {
5112 if (++ifindex <= 0)
5113 ifindex = 1;
5114 if (!__dev_get_by_index(net, ifindex))
5115 return ifindex;
5116 }
5117 }
5118
5119 /* Delayed registration/unregisteration */
5120 static LIST_HEAD(net_todo_list);
5121
5122 static void net_set_todo(struct net_device *dev)
5123 {
5124 list_add_tail(&dev->todo_list, &net_todo_list);
5125 }
5126
5127 static void rollback_registered_many(struct list_head *head)
5128 {
5129 struct net_device *dev, *tmp;
5130
5131 BUG_ON(dev_boot_phase);
5132 ASSERT_RTNL();
5133
5134 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5135 /* Some devices call without registering
5136 * for initialization unwind. Remove those
5137 * devices and proceed with the remaining.
5138 */
5139 if (dev->reg_state == NETREG_UNINITIALIZED) {
5140 pr_debug("unregister_netdevice: device %s/%p never "
5141 "was registered\n", dev->name, dev);
5142
5143 WARN_ON(1);
5144 list_del(&dev->unreg_list);
5145 continue;
5146 }
5147
5148 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5149 }
5150
5151 /* If device is running, close it first. */
5152 dev_close_many(head);
5153
5154 list_for_each_entry(dev, head, unreg_list) {
5155 /* And unlink it from device chain. */
5156 unlist_netdevice(dev);
5157
5158 dev->reg_state = NETREG_UNREGISTERING;
5159 }
5160
5161 synchronize_net();
5162
5163 list_for_each_entry(dev, head, unreg_list) {
5164 /* Shutdown queueing discipline. */
5165 dev_shutdown(dev);
5166
5167
5168 /* Notify protocols, that we are about to destroy
5169 this device. They should clean all the things.
5170 */
5171 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5172
5173 if (!dev->rtnl_link_ops ||
5174 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5175 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5176
5177 /*
5178 * Flush the unicast and multicast chains
5179 */
5180 dev_uc_flush(dev);
5181 dev_mc_flush(dev);
5182
5183 if (dev->netdev_ops->ndo_uninit)
5184 dev->netdev_ops->ndo_uninit(dev);
5185
5186 /* Notifier chain MUST detach us from master device. */
5187 WARN_ON(dev->master);
5188
5189 /* Remove entries from kobject tree */
5190 netdev_unregister_kobject(dev);
5191 }
5192
5193 /* Process any work delayed until the end of the batch */
5194 dev = list_first_entry(head, struct net_device, unreg_list);
5195 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5196
5197 rcu_barrier();
5198
5199 list_for_each_entry(dev, head, unreg_list)
5200 dev_put(dev);
5201 }
5202
5203 static void rollback_registered(struct net_device *dev)
5204 {
5205 LIST_HEAD(single);
5206
5207 list_add(&dev->unreg_list, &single);
5208 rollback_registered_many(&single);
5209 list_del(&single);
5210 }
5211
5212 u32 netdev_fix_features(struct net_device *dev, u32 features)
5213 {
5214 /* Fix illegal checksum combinations */
5215 if ((features & NETIF_F_HW_CSUM) &&
5216 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5217 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5218 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5219 }
5220
5221 if ((features & NETIF_F_NO_CSUM) &&
5222 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5223 netdev_info(dev, "mixed no checksumming and other settings.\n");
5224 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5225 }
5226
5227 /* Fix illegal SG+CSUM combinations. */
5228 if ((features & NETIF_F_SG) &&
5229 !(features & NETIF_F_ALL_CSUM)) {
5230 netdev_info(dev,
5231 "Dropping NETIF_F_SG since no checksum feature.\n");
5232 features &= ~NETIF_F_SG;
5233 }
5234
5235 /* TSO requires that SG is present as well. */
5236 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5237 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5238 features &= ~NETIF_F_TSO;
5239 }
5240
5241 /* Software GSO depends on SG. */
5242 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5243 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5244 features &= ~NETIF_F_GSO;
5245 }
5246
5247 /* UFO needs SG and checksumming */
5248 if (features & NETIF_F_UFO) {
5249 /* maybe split UFO into V4 and V6? */
5250 if (!((features & NETIF_F_GEN_CSUM) ||
5251 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5252 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5253 netdev_info(dev,
5254 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5255 features &= ~NETIF_F_UFO;
5256 }
5257
5258 if (!(features & NETIF_F_SG)) {
5259 netdev_info(dev,
5260 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5261 features &= ~NETIF_F_UFO;
5262 }
5263 }
5264
5265 return features;
5266 }
5267 EXPORT_SYMBOL(netdev_fix_features);
5268
5269 void netdev_update_features(struct net_device *dev)
5270 {
5271 u32 features;
5272 int err = 0;
5273
5274 features = netdev_get_wanted_features(dev);
5275
5276 if (dev->netdev_ops->ndo_fix_features)
5277 features = dev->netdev_ops->ndo_fix_features(dev, features);
5278
5279 /* driver might be less strict about feature dependencies */
5280 features = netdev_fix_features(dev, features);
5281
5282 if (dev->features == features)
5283 return;
5284
5285 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5286 dev->features, features);
5287
5288 if (dev->netdev_ops->ndo_set_features)
5289 err = dev->netdev_ops->ndo_set_features(dev, features);
5290
5291 if (!err)
5292 dev->features = features;
5293 else if (err < 0)
5294 netdev_err(dev,
5295 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5296 err, features, dev->features);
5297 }
5298 EXPORT_SYMBOL(netdev_update_features);
5299
5300 /**
5301 * netif_stacked_transfer_operstate - transfer operstate
5302 * @rootdev: the root or lower level device to transfer state from
5303 * @dev: the device to transfer operstate to
5304 *
5305 * Transfer operational state from root to device. This is normally
5306 * called when a stacking relationship exists between the root
5307 * device and the device(a leaf device).
5308 */
5309 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5310 struct net_device *dev)
5311 {
5312 if (rootdev->operstate == IF_OPER_DORMANT)
5313 netif_dormant_on(dev);
5314 else
5315 netif_dormant_off(dev);
5316
5317 if (netif_carrier_ok(rootdev)) {
5318 if (!netif_carrier_ok(dev))
5319 netif_carrier_on(dev);
5320 } else {
5321 if (netif_carrier_ok(dev))
5322 netif_carrier_off(dev);
5323 }
5324 }
5325 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5326
5327 #ifdef CONFIG_RPS
5328 static int netif_alloc_rx_queues(struct net_device *dev)
5329 {
5330 unsigned int i, count = dev->num_rx_queues;
5331 struct netdev_rx_queue *rx;
5332
5333 BUG_ON(count < 1);
5334
5335 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5336 if (!rx) {
5337 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5338 return -ENOMEM;
5339 }
5340 dev->_rx = rx;
5341
5342 for (i = 0; i < count; i++)
5343 rx[i].dev = dev;
5344 return 0;
5345 }
5346 #endif
5347
5348 static void netdev_init_one_queue(struct net_device *dev,
5349 struct netdev_queue *queue, void *_unused)
5350 {
5351 /* Initialize queue lock */
5352 spin_lock_init(&queue->_xmit_lock);
5353 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5354 queue->xmit_lock_owner = -1;
5355 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5356 queue->dev = dev;
5357 }
5358
5359 static int netif_alloc_netdev_queues(struct net_device *dev)
5360 {
5361 unsigned int count = dev->num_tx_queues;
5362 struct netdev_queue *tx;
5363
5364 BUG_ON(count < 1);
5365
5366 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5367 if (!tx) {
5368 pr_err("netdev: Unable to allocate %u tx queues.\n",
5369 count);
5370 return -ENOMEM;
5371 }
5372 dev->_tx = tx;
5373
5374 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5375 spin_lock_init(&dev->tx_global_lock);
5376
5377 return 0;
5378 }
5379
5380 /**
5381 * register_netdevice - register a network device
5382 * @dev: device to register
5383 *
5384 * Take a completed network device structure and add it to the kernel
5385 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5386 * chain. 0 is returned on success. A negative errno code is returned
5387 * on a failure to set up the device, or if the name is a duplicate.
5388 *
5389 * Callers must hold the rtnl semaphore. You may want
5390 * register_netdev() instead of this.
5391 *
5392 * BUGS:
5393 * The locking appears insufficient to guarantee two parallel registers
5394 * will not get the same name.
5395 */
5396
5397 int register_netdevice(struct net_device *dev)
5398 {
5399 int ret;
5400 struct net *net = dev_net(dev);
5401
5402 BUG_ON(dev_boot_phase);
5403 ASSERT_RTNL();
5404
5405 might_sleep();
5406
5407 /* When net_device's are persistent, this will be fatal. */
5408 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5409 BUG_ON(!net);
5410
5411 spin_lock_init(&dev->addr_list_lock);
5412 netdev_set_addr_lockdep_class(dev);
5413
5414 dev->iflink = -1;
5415
5416 /* Init, if this function is available */
5417 if (dev->netdev_ops->ndo_init) {
5418 ret = dev->netdev_ops->ndo_init(dev);
5419 if (ret) {
5420 if (ret > 0)
5421 ret = -EIO;
5422 goto out;
5423 }
5424 }
5425
5426 ret = dev_get_valid_name(dev, dev->name, 0);
5427 if (ret)
5428 goto err_uninit;
5429
5430 dev->ifindex = dev_new_index(net);
5431 if (dev->iflink == -1)
5432 dev->iflink = dev->ifindex;
5433
5434 /* Transfer changeable features to wanted_features and enable
5435 * software offloads (GSO and GRO).
5436 */
5437 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5438 dev->features |= NETIF_F_SOFT_FEATURES;
5439 dev->wanted_features = dev->features & dev->hw_features;
5440
5441 /* Avoid warning from netdev_fix_features() for GSO without SG */
5442 if (!(dev->wanted_features & NETIF_F_SG)) {
5443 dev->wanted_features &= ~NETIF_F_GSO;
5444 dev->features &= ~NETIF_F_GSO;
5445 }
5446
5447 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5448 * vlan_dev_init() will do the dev->features check, so these features
5449 * are enabled only if supported by underlying device.
5450 */
5451 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5452
5453 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5454 ret = notifier_to_errno(ret);
5455 if (ret)
5456 goto err_uninit;
5457
5458 ret = netdev_register_kobject(dev);
5459 if (ret)
5460 goto err_uninit;
5461 dev->reg_state = NETREG_REGISTERED;
5462
5463 netdev_update_features(dev);
5464
5465 /*
5466 * Default initial state at registry is that the
5467 * device is present.
5468 */
5469
5470 set_bit(__LINK_STATE_PRESENT, &dev->state);
5471
5472 dev_init_scheduler(dev);
5473 dev_hold(dev);
5474 list_netdevice(dev);
5475
5476 /* Notify protocols, that a new device appeared. */
5477 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5478 ret = notifier_to_errno(ret);
5479 if (ret) {
5480 rollback_registered(dev);
5481 dev->reg_state = NETREG_UNREGISTERED;
5482 }
5483 /*
5484 * Prevent userspace races by waiting until the network
5485 * device is fully setup before sending notifications.
5486 */
5487 if (!dev->rtnl_link_ops ||
5488 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5489 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5490
5491 out:
5492 return ret;
5493
5494 err_uninit:
5495 if (dev->netdev_ops->ndo_uninit)
5496 dev->netdev_ops->ndo_uninit(dev);
5497 goto out;
5498 }
5499 EXPORT_SYMBOL(register_netdevice);
5500
5501 /**
5502 * init_dummy_netdev - init a dummy network device for NAPI
5503 * @dev: device to init
5504 *
5505 * This takes a network device structure and initialize the minimum
5506 * amount of fields so it can be used to schedule NAPI polls without
5507 * registering a full blown interface. This is to be used by drivers
5508 * that need to tie several hardware interfaces to a single NAPI
5509 * poll scheduler due to HW limitations.
5510 */
5511 int init_dummy_netdev(struct net_device *dev)
5512 {
5513 /* Clear everything. Note we don't initialize spinlocks
5514 * are they aren't supposed to be taken by any of the
5515 * NAPI code and this dummy netdev is supposed to be
5516 * only ever used for NAPI polls
5517 */
5518 memset(dev, 0, sizeof(struct net_device));
5519
5520 /* make sure we BUG if trying to hit standard
5521 * register/unregister code path
5522 */
5523 dev->reg_state = NETREG_DUMMY;
5524
5525 /* NAPI wants this */
5526 INIT_LIST_HEAD(&dev->napi_list);
5527
5528 /* a dummy interface is started by default */
5529 set_bit(__LINK_STATE_PRESENT, &dev->state);
5530 set_bit(__LINK_STATE_START, &dev->state);
5531
5532 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5533 * because users of this 'device' dont need to change
5534 * its refcount.
5535 */
5536
5537 return 0;
5538 }
5539 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5540
5541
5542 /**
5543 * register_netdev - register a network device
5544 * @dev: device to register
5545 *
5546 * Take a completed network device structure and add it to the kernel
5547 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5548 * chain. 0 is returned on success. A negative errno code is returned
5549 * on a failure to set up the device, or if the name is a duplicate.
5550 *
5551 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5552 * and expands the device name if you passed a format string to
5553 * alloc_netdev.
5554 */
5555 int register_netdev(struct net_device *dev)
5556 {
5557 int err;
5558
5559 rtnl_lock();
5560
5561 /*
5562 * If the name is a format string the caller wants us to do a
5563 * name allocation.
5564 */
5565 if (strchr(dev->name, '%')) {
5566 err = dev_alloc_name(dev, dev->name);
5567 if (err < 0)
5568 goto out;
5569 }
5570
5571 err = register_netdevice(dev);
5572 out:
5573 rtnl_unlock();
5574 return err;
5575 }
5576 EXPORT_SYMBOL(register_netdev);
5577
5578 int netdev_refcnt_read(const struct net_device *dev)
5579 {
5580 int i, refcnt = 0;
5581
5582 for_each_possible_cpu(i)
5583 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5584 return refcnt;
5585 }
5586 EXPORT_SYMBOL(netdev_refcnt_read);
5587
5588 /*
5589 * netdev_wait_allrefs - wait until all references are gone.
5590 *
5591 * This is called when unregistering network devices.
5592 *
5593 * Any protocol or device that holds a reference should register
5594 * for netdevice notification, and cleanup and put back the
5595 * reference if they receive an UNREGISTER event.
5596 * We can get stuck here if buggy protocols don't correctly
5597 * call dev_put.
5598 */
5599 static void netdev_wait_allrefs(struct net_device *dev)
5600 {
5601 unsigned long rebroadcast_time, warning_time;
5602 int refcnt;
5603
5604 linkwatch_forget_dev(dev);
5605
5606 rebroadcast_time = warning_time = jiffies;
5607 refcnt = netdev_refcnt_read(dev);
5608
5609 while (refcnt != 0) {
5610 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5611 rtnl_lock();
5612
5613 /* Rebroadcast unregister notification */
5614 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5615 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5616 * should have already handle it the first time */
5617
5618 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5619 &dev->state)) {
5620 /* We must not have linkwatch events
5621 * pending on unregister. If this
5622 * happens, we simply run the queue
5623 * unscheduled, resulting in a noop
5624 * for this device.
5625 */
5626 linkwatch_run_queue();
5627 }
5628
5629 __rtnl_unlock();
5630
5631 rebroadcast_time = jiffies;
5632 }
5633
5634 msleep(250);
5635
5636 refcnt = netdev_refcnt_read(dev);
5637
5638 if (time_after(jiffies, warning_time + 10 * HZ)) {
5639 printk(KERN_EMERG "unregister_netdevice: "
5640 "waiting for %s to become free. Usage "
5641 "count = %d\n",
5642 dev->name, refcnt);
5643 warning_time = jiffies;
5644 }
5645 }
5646 }
5647
5648 /* The sequence is:
5649 *
5650 * rtnl_lock();
5651 * ...
5652 * register_netdevice(x1);
5653 * register_netdevice(x2);
5654 * ...
5655 * unregister_netdevice(y1);
5656 * unregister_netdevice(y2);
5657 * ...
5658 * rtnl_unlock();
5659 * free_netdev(y1);
5660 * free_netdev(y2);
5661 *
5662 * We are invoked by rtnl_unlock().
5663 * This allows us to deal with problems:
5664 * 1) We can delete sysfs objects which invoke hotplug
5665 * without deadlocking with linkwatch via keventd.
5666 * 2) Since we run with the RTNL semaphore not held, we can sleep
5667 * safely in order to wait for the netdev refcnt to drop to zero.
5668 *
5669 * We must not return until all unregister events added during
5670 * the interval the lock was held have been completed.
5671 */
5672 void netdev_run_todo(void)
5673 {
5674 struct list_head list;
5675
5676 /* Snapshot list, allow later requests */
5677 list_replace_init(&net_todo_list, &list);
5678
5679 __rtnl_unlock();
5680
5681 while (!list_empty(&list)) {
5682 struct net_device *dev
5683 = list_first_entry(&list, struct net_device, todo_list);
5684 list_del(&dev->todo_list);
5685
5686 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5687 printk(KERN_ERR "network todo '%s' but state %d\n",
5688 dev->name, dev->reg_state);
5689 dump_stack();
5690 continue;
5691 }
5692
5693 dev->reg_state = NETREG_UNREGISTERED;
5694
5695 on_each_cpu(flush_backlog, dev, 1);
5696
5697 netdev_wait_allrefs(dev);
5698
5699 /* paranoia */
5700 BUG_ON(netdev_refcnt_read(dev));
5701 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5702 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5703 WARN_ON(dev->dn_ptr);
5704
5705 if (dev->destructor)
5706 dev->destructor(dev);
5707
5708 /* Free network device */
5709 kobject_put(&dev->dev.kobj);
5710 }
5711 }
5712
5713 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5714 * fields in the same order, with only the type differing.
5715 */
5716 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5717 const struct net_device_stats *netdev_stats)
5718 {
5719 #if BITS_PER_LONG == 64
5720 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5721 memcpy(stats64, netdev_stats, sizeof(*stats64));
5722 #else
5723 size_t i, n = sizeof(*stats64) / sizeof(u64);
5724 const unsigned long *src = (const unsigned long *)netdev_stats;
5725 u64 *dst = (u64 *)stats64;
5726
5727 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5728 sizeof(*stats64) / sizeof(u64));
5729 for (i = 0; i < n; i++)
5730 dst[i] = src[i];
5731 #endif
5732 }
5733
5734 /**
5735 * dev_get_stats - get network device statistics
5736 * @dev: device to get statistics from
5737 * @storage: place to store stats
5738 *
5739 * Get network statistics from device. Return @storage.
5740 * The device driver may provide its own method by setting
5741 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5742 * otherwise the internal statistics structure is used.
5743 */
5744 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5745 struct rtnl_link_stats64 *storage)
5746 {
5747 const struct net_device_ops *ops = dev->netdev_ops;
5748
5749 if (ops->ndo_get_stats64) {
5750 memset(storage, 0, sizeof(*storage));
5751 ops->ndo_get_stats64(dev, storage);
5752 } else if (ops->ndo_get_stats) {
5753 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5754 } else {
5755 netdev_stats_to_stats64(storage, &dev->stats);
5756 }
5757 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5758 return storage;
5759 }
5760 EXPORT_SYMBOL(dev_get_stats);
5761
5762 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5763 {
5764 struct netdev_queue *queue = dev_ingress_queue(dev);
5765
5766 #ifdef CONFIG_NET_CLS_ACT
5767 if (queue)
5768 return queue;
5769 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5770 if (!queue)
5771 return NULL;
5772 netdev_init_one_queue(dev, queue, NULL);
5773 queue->qdisc = &noop_qdisc;
5774 queue->qdisc_sleeping = &noop_qdisc;
5775 rcu_assign_pointer(dev->ingress_queue, queue);
5776 #endif
5777 return queue;
5778 }
5779
5780 /**
5781 * alloc_netdev_mqs - allocate network device
5782 * @sizeof_priv: size of private data to allocate space for
5783 * @name: device name format string
5784 * @setup: callback to initialize device
5785 * @txqs: the number of TX subqueues to allocate
5786 * @rxqs: the number of RX subqueues to allocate
5787 *
5788 * Allocates a struct net_device with private data area for driver use
5789 * and performs basic initialization. Also allocates subquue structs
5790 * for each queue on the device.
5791 */
5792 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5793 void (*setup)(struct net_device *),
5794 unsigned int txqs, unsigned int rxqs)
5795 {
5796 struct net_device *dev;
5797 size_t alloc_size;
5798 struct net_device *p;
5799
5800 BUG_ON(strlen(name) >= sizeof(dev->name));
5801
5802 if (txqs < 1) {
5803 pr_err("alloc_netdev: Unable to allocate device "
5804 "with zero queues.\n");
5805 return NULL;
5806 }
5807
5808 #ifdef CONFIG_RPS
5809 if (rxqs < 1) {
5810 pr_err("alloc_netdev: Unable to allocate device "
5811 "with zero RX queues.\n");
5812 return NULL;
5813 }
5814 #endif
5815
5816 alloc_size = sizeof(struct net_device);
5817 if (sizeof_priv) {
5818 /* ensure 32-byte alignment of private area */
5819 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5820 alloc_size += sizeof_priv;
5821 }
5822 /* ensure 32-byte alignment of whole construct */
5823 alloc_size += NETDEV_ALIGN - 1;
5824
5825 p = kzalloc(alloc_size, GFP_KERNEL);
5826 if (!p) {
5827 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5828 return NULL;
5829 }
5830
5831 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5832 dev->padded = (char *)dev - (char *)p;
5833
5834 dev->pcpu_refcnt = alloc_percpu(int);
5835 if (!dev->pcpu_refcnt)
5836 goto free_p;
5837
5838 if (dev_addr_init(dev))
5839 goto free_pcpu;
5840
5841 dev_mc_init(dev);
5842 dev_uc_init(dev);
5843
5844 dev_net_set(dev, &init_net);
5845
5846 dev->gso_max_size = GSO_MAX_SIZE;
5847
5848 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5849 dev->ethtool_ntuple_list.count = 0;
5850 INIT_LIST_HEAD(&dev->napi_list);
5851 INIT_LIST_HEAD(&dev->unreg_list);
5852 INIT_LIST_HEAD(&dev->link_watch_list);
5853 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5854 setup(dev);
5855
5856 dev->num_tx_queues = txqs;
5857 dev->real_num_tx_queues = txqs;
5858 if (netif_alloc_netdev_queues(dev))
5859 goto free_all;
5860
5861 #ifdef CONFIG_RPS
5862 dev->num_rx_queues = rxqs;
5863 dev->real_num_rx_queues = rxqs;
5864 if (netif_alloc_rx_queues(dev))
5865 goto free_all;
5866 #endif
5867
5868 strcpy(dev->name, name);
5869 dev->group = INIT_NETDEV_GROUP;
5870 return dev;
5871
5872 free_all:
5873 free_netdev(dev);
5874 return NULL;
5875
5876 free_pcpu:
5877 free_percpu(dev->pcpu_refcnt);
5878 kfree(dev->_tx);
5879 #ifdef CONFIG_RPS
5880 kfree(dev->_rx);
5881 #endif
5882
5883 free_p:
5884 kfree(p);
5885 return NULL;
5886 }
5887 EXPORT_SYMBOL(alloc_netdev_mqs);
5888
5889 /**
5890 * free_netdev - free network device
5891 * @dev: device
5892 *
5893 * This function does the last stage of destroying an allocated device
5894 * interface. The reference to the device object is released.
5895 * If this is the last reference then it will be freed.
5896 */
5897 void free_netdev(struct net_device *dev)
5898 {
5899 struct napi_struct *p, *n;
5900
5901 release_net(dev_net(dev));
5902
5903 kfree(dev->_tx);
5904 #ifdef CONFIG_RPS
5905 kfree(dev->_rx);
5906 #endif
5907
5908 kfree(rcu_dereference_raw(dev->ingress_queue));
5909
5910 /* Flush device addresses */
5911 dev_addr_flush(dev);
5912
5913 /* Clear ethtool n-tuple list */
5914 ethtool_ntuple_flush(dev);
5915
5916 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5917 netif_napi_del(p);
5918
5919 free_percpu(dev->pcpu_refcnt);
5920 dev->pcpu_refcnt = NULL;
5921
5922 /* Compatibility with error handling in drivers */
5923 if (dev->reg_state == NETREG_UNINITIALIZED) {
5924 kfree((char *)dev - dev->padded);
5925 return;
5926 }
5927
5928 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5929 dev->reg_state = NETREG_RELEASED;
5930
5931 /* will free via device release */
5932 put_device(&dev->dev);
5933 }
5934 EXPORT_SYMBOL(free_netdev);
5935
5936 /**
5937 * synchronize_net - Synchronize with packet receive processing
5938 *
5939 * Wait for packets currently being received to be done.
5940 * Does not block later packets from starting.
5941 */
5942 void synchronize_net(void)
5943 {
5944 might_sleep();
5945 synchronize_rcu();
5946 }
5947 EXPORT_SYMBOL(synchronize_net);
5948
5949 /**
5950 * unregister_netdevice_queue - remove device from the kernel
5951 * @dev: device
5952 * @head: list
5953 *
5954 * This function shuts down a device interface and removes it
5955 * from the kernel tables.
5956 * If head not NULL, device is queued to be unregistered later.
5957 *
5958 * Callers must hold the rtnl semaphore. You may want
5959 * unregister_netdev() instead of this.
5960 */
5961
5962 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5963 {
5964 ASSERT_RTNL();
5965
5966 if (head) {
5967 list_move_tail(&dev->unreg_list, head);
5968 } else {
5969 rollback_registered(dev);
5970 /* Finish processing unregister after unlock */
5971 net_set_todo(dev);
5972 }
5973 }
5974 EXPORT_SYMBOL(unregister_netdevice_queue);
5975
5976 /**
5977 * unregister_netdevice_many - unregister many devices
5978 * @head: list of devices
5979 */
5980 void unregister_netdevice_many(struct list_head *head)
5981 {
5982 struct net_device *dev;
5983
5984 if (!list_empty(head)) {
5985 rollback_registered_many(head);
5986 list_for_each_entry(dev, head, unreg_list)
5987 net_set_todo(dev);
5988 }
5989 }
5990 EXPORT_SYMBOL(unregister_netdevice_many);
5991
5992 /**
5993 * unregister_netdev - remove device from the kernel
5994 * @dev: device
5995 *
5996 * This function shuts down a device interface and removes it
5997 * from the kernel tables.
5998 *
5999 * This is just a wrapper for unregister_netdevice that takes
6000 * the rtnl semaphore. In general you want to use this and not
6001 * unregister_netdevice.
6002 */
6003 void unregister_netdev(struct net_device *dev)
6004 {
6005 rtnl_lock();
6006 unregister_netdevice(dev);
6007 rtnl_unlock();
6008 }
6009 EXPORT_SYMBOL(unregister_netdev);
6010
6011 /**
6012 * dev_change_net_namespace - move device to different nethost namespace
6013 * @dev: device
6014 * @net: network namespace
6015 * @pat: If not NULL name pattern to try if the current device name
6016 * is already taken in the destination network namespace.
6017 *
6018 * This function shuts down a device interface and moves it
6019 * to a new network namespace. On success 0 is returned, on
6020 * a failure a netagive errno code is returned.
6021 *
6022 * Callers must hold the rtnl semaphore.
6023 */
6024
6025 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6026 {
6027 int err;
6028
6029 ASSERT_RTNL();
6030
6031 /* Don't allow namespace local devices to be moved. */
6032 err = -EINVAL;
6033 if (dev->features & NETIF_F_NETNS_LOCAL)
6034 goto out;
6035
6036 /* Ensure the device has been registrered */
6037 err = -EINVAL;
6038 if (dev->reg_state != NETREG_REGISTERED)
6039 goto out;
6040
6041 /* Get out if there is nothing todo */
6042 err = 0;
6043 if (net_eq(dev_net(dev), net))
6044 goto out;
6045
6046 /* Pick the destination device name, and ensure
6047 * we can use it in the destination network namespace.
6048 */
6049 err = -EEXIST;
6050 if (__dev_get_by_name(net, dev->name)) {
6051 /* We get here if we can't use the current device name */
6052 if (!pat)
6053 goto out;
6054 if (dev_get_valid_name(dev, pat, 1))
6055 goto out;
6056 }
6057
6058 /*
6059 * And now a mini version of register_netdevice unregister_netdevice.
6060 */
6061
6062 /* If device is running close it first. */
6063 dev_close(dev);
6064
6065 /* And unlink it from device chain */
6066 err = -ENODEV;
6067 unlist_netdevice(dev);
6068
6069 synchronize_net();
6070
6071 /* Shutdown queueing discipline. */
6072 dev_shutdown(dev);
6073
6074 /* Notify protocols, that we are about to destroy
6075 this device. They should clean all the things.
6076
6077 Note that dev->reg_state stays at NETREG_REGISTERED.
6078 This is wanted because this way 8021q and macvlan know
6079 the device is just moving and can keep their slaves up.
6080 */
6081 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6082 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6083
6084 /*
6085 * Flush the unicast and multicast chains
6086 */
6087 dev_uc_flush(dev);
6088 dev_mc_flush(dev);
6089
6090 /* Actually switch the network namespace */
6091 dev_net_set(dev, net);
6092
6093 /* If there is an ifindex conflict assign a new one */
6094 if (__dev_get_by_index(net, dev->ifindex)) {
6095 int iflink = (dev->iflink == dev->ifindex);
6096 dev->ifindex = dev_new_index(net);
6097 if (iflink)
6098 dev->iflink = dev->ifindex;
6099 }
6100
6101 /* Fixup kobjects */
6102 err = device_rename(&dev->dev, dev->name);
6103 WARN_ON(err);
6104
6105 /* Add the device back in the hashes */
6106 list_netdevice(dev);
6107
6108 /* Notify protocols, that a new device appeared. */
6109 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6110
6111 /*
6112 * Prevent userspace races by waiting until the network
6113 * device is fully setup before sending notifications.
6114 */
6115 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6116
6117 synchronize_net();
6118 err = 0;
6119 out:
6120 return err;
6121 }
6122 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6123
6124 static int dev_cpu_callback(struct notifier_block *nfb,
6125 unsigned long action,
6126 void *ocpu)
6127 {
6128 struct sk_buff **list_skb;
6129 struct sk_buff *skb;
6130 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6131 struct softnet_data *sd, *oldsd;
6132
6133 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6134 return NOTIFY_OK;
6135
6136 local_irq_disable();
6137 cpu = smp_processor_id();
6138 sd = &per_cpu(softnet_data, cpu);
6139 oldsd = &per_cpu(softnet_data, oldcpu);
6140
6141 /* Find end of our completion_queue. */
6142 list_skb = &sd->completion_queue;
6143 while (*list_skb)
6144 list_skb = &(*list_skb)->next;
6145 /* Append completion queue from offline CPU. */
6146 *list_skb = oldsd->completion_queue;
6147 oldsd->completion_queue = NULL;
6148
6149 /* Append output queue from offline CPU. */
6150 if (oldsd->output_queue) {
6151 *sd->output_queue_tailp = oldsd->output_queue;
6152 sd->output_queue_tailp = oldsd->output_queue_tailp;
6153 oldsd->output_queue = NULL;
6154 oldsd->output_queue_tailp = &oldsd->output_queue;
6155 }
6156
6157 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6158 local_irq_enable();
6159
6160 /* Process offline CPU's input_pkt_queue */
6161 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6162 netif_rx(skb);
6163 input_queue_head_incr(oldsd);
6164 }
6165 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6166 netif_rx(skb);
6167 input_queue_head_incr(oldsd);
6168 }
6169
6170 return NOTIFY_OK;
6171 }
6172
6173
6174 /**
6175 * netdev_increment_features - increment feature set by one
6176 * @all: current feature set
6177 * @one: new feature set
6178 * @mask: mask feature set
6179 *
6180 * Computes a new feature set after adding a device with feature set
6181 * @one to the master device with current feature set @all. Will not
6182 * enable anything that is off in @mask. Returns the new feature set.
6183 */
6184 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6185 {
6186 /* If device needs checksumming, downgrade to it. */
6187 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6188 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6189 else if (mask & NETIF_F_ALL_CSUM) {
6190 /* If one device supports v4/v6 checksumming, set for all. */
6191 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6192 !(all & NETIF_F_GEN_CSUM)) {
6193 all &= ~NETIF_F_ALL_CSUM;
6194 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6195 }
6196
6197 /* If one device supports hw checksumming, set for all. */
6198 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6199 all &= ~NETIF_F_ALL_CSUM;
6200 all |= NETIF_F_HW_CSUM;
6201 }
6202 }
6203
6204 one |= NETIF_F_ALL_CSUM;
6205
6206 one |= all & NETIF_F_ONE_FOR_ALL;
6207 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6208 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6209
6210 return all;
6211 }
6212 EXPORT_SYMBOL(netdev_increment_features);
6213
6214 static struct hlist_head *netdev_create_hash(void)
6215 {
6216 int i;
6217 struct hlist_head *hash;
6218
6219 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6220 if (hash != NULL)
6221 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6222 INIT_HLIST_HEAD(&hash[i]);
6223
6224 return hash;
6225 }
6226
6227 /* Initialize per network namespace state */
6228 static int __net_init netdev_init(struct net *net)
6229 {
6230 INIT_LIST_HEAD(&net->dev_base_head);
6231
6232 net->dev_name_head = netdev_create_hash();
6233 if (net->dev_name_head == NULL)
6234 goto err_name;
6235
6236 net->dev_index_head = netdev_create_hash();
6237 if (net->dev_index_head == NULL)
6238 goto err_idx;
6239
6240 return 0;
6241
6242 err_idx:
6243 kfree(net->dev_name_head);
6244 err_name:
6245 return -ENOMEM;
6246 }
6247
6248 /**
6249 * netdev_drivername - network driver for the device
6250 * @dev: network device
6251 * @buffer: buffer for resulting name
6252 * @len: size of buffer
6253 *
6254 * Determine network driver for device.
6255 */
6256 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6257 {
6258 const struct device_driver *driver;
6259 const struct device *parent;
6260
6261 if (len <= 0 || !buffer)
6262 return buffer;
6263 buffer[0] = 0;
6264
6265 parent = dev->dev.parent;
6266
6267 if (!parent)
6268 return buffer;
6269
6270 driver = parent->driver;
6271 if (driver && driver->name)
6272 strlcpy(buffer, driver->name, len);
6273 return buffer;
6274 }
6275
6276 static int __netdev_printk(const char *level, const struct net_device *dev,
6277 struct va_format *vaf)
6278 {
6279 int r;
6280
6281 if (dev && dev->dev.parent)
6282 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6283 netdev_name(dev), vaf);
6284 else if (dev)
6285 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6286 else
6287 r = printk("%s(NULL net_device): %pV", level, vaf);
6288
6289 return r;
6290 }
6291
6292 int netdev_printk(const char *level, const struct net_device *dev,
6293 const char *format, ...)
6294 {
6295 struct va_format vaf;
6296 va_list args;
6297 int r;
6298
6299 va_start(args, format);
6300
6301 vaf.fmt = format;
6302 vaf.va = &args;
6303
6304 r = __netdev_printk(level, dev, &vaf);
6305 va_end(args);
6306
6307 return r;
6308 }
6309 EXPORT_SYMBOL(netdev_printk);
6310
6311 #define define_netdev_printk_level(func, level) \
6312 int func(const struct net_device *dev, const char *fmt, ...) \
6313 { \
6314 int r; \
6315 struct va_format vaf; \
6316 va_list args; \
6317 \
6318 va_start(args, fmt); \
6319 \
6320 vaf.fmt = fmt; \
6321 vaf.va = &args; \
6322 \
6323 r = __netdev_printk(level, dev, &vaf); \
6324 va_end(args); \
6325 \
6326 return r; \
6327 } \
6328 EXPORT_SYMBOL(func);
6329
6330 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6331 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6332 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6333 define_netdev_printk_level(netdev_err, KERN_ERR);
6334 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6335 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6336 define_netdev_printk_level(netdev_info, KERN_INFO);
6337
6338 static void __net_exit netdev_exit(struct net *net)
6339 {
6340 kfree(net->dev_name_head);
6341 kfree(net->dev_index_head);
6342 }
6343
6344 static struct pernet_operations __net_initdata netdev_net_ops = {
6345 .init = netdev_init,
6346 .exit = netdev_exit,
6347 };
6348
6349 static void __net_exit default_device_exit(struct net *net)
6350 {
6351 struct net_device *dev, *aux;
6352 /*
6353 * Push all migratable network devices back to the
6354 * initial network namespace
6355 */
6356 rtnl_lock();
6357 for_each_netdev_safe(net, dev, aux) {
6358 int err;
6359 char fb_name[IFNAMSIZ];
6360
6361 /* Ignore unmoveable devices (i.e. loopback) */
6362 if (dev->features & NETIF_F_NETNS_LOCAL)
6363 continue;
6364
6365 /* Leave virtual devices for the generic cleanup */
6366 if (dev->rtnl_link_ops)
6367 continue;
6368
6369 /* Push remaing network devices to init_net */
6370 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6371 err = dev_change_net_namespace(dev, &init_net, fb_name);
6372 if (err) {
6373 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6374 __func__, dev->name, err);
6375 BUG();
6376 }
6377 }
6378 rtnl_unlock();
6379 }
6380
6381 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6382 {
6383 /* At exit all network devices most be removed from a network
6384 * namespace. Do this in the reverse order of registration.
6385 * Do this across as many network namespaces as possible to
6386 * improve batching efficiency.
6387 */
6388 struct net_device *dev;
6389 struct net *net;
6390 LIST_HEAD(dev_kill_list);
6391
6392 rtnl_lock();
6393 list_for_each_entry(net, net_list, exit_list) {
6394 for_each_netdev_reverse(net, dev) {
6395 if (dev->rtnl_link_ops)
6396 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6397 else
6398 unregister_netdevice_queue(dev, &dev_kill_list);
6399 }
6400 }
6401 unregister_netdevice_many(&dev_kill_list);
6402 list_del(&dev_kill_list);
6403 rtnl_unlock();
6404 }
6405
6406 static struct pernet_operations __net_initdata default_device_ops = {
6407 .exit = default_device_exit,
6408 .exit_batch = default_device_exit_batch,
6409 };
6410
6411 /*
6412 * Initialize the DEV module. At boot time this walks the device list and
6413 * unhooks any devices that fail to initialise (normally hardware not
6414 * present) and leaves us with a valid list of present and active devices.
6415 *
6416 */
6417
6418 /*
6419 * This is called single threaded during boot, so no need
6420 * to take the rtnl semaphore.
6421 */
6422 static int __init net_dev_init(void)
6423 {
6424 int i, rc = -ENOMEM;
6425
6426 BUG_ON(!dev_boot_phase);
6427
6428 if (dev_proc_init())
6429 goto out;
6430
6431 if (netdev_kobject_init())
6432 goto out;
6433
6434 INIT_LIST_HEAD(&ptype_all);
6435 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6436 INIT_LIST_HEAD(&ptype_base[i]);
6437
6438 if (register_pernet_subsys(&netdev_net_ops))
6439 goto out;
6440
6441 /*
6442 * Initialise the packet receive queues.
6443 */
6444
6445 for_each_possible_cpu(i) {
6446 struct softnet_data *sd = &per_cpu(softnet_data, i);
6447
6448 memset(sd, 0, sizeof(*sd));
6449 skb_queue_head_init(&sd->input_pkt_queue);
6450 skb_queue_head_init(&sd->process_queue);
6451 sd->completion_queue = NULL;
6452 INIT_LIST_HEAD(&sd->poll_list);
6453 sd->output_queue = NULL;
6454 sd->output_queue_tailp = &sd->output_queue;
6455 #ifdef CONFIG_RPS
6456 sd->csd.func = rps_trigger_softirq;
6457 sd->csd.info = sd;
6458 sd->csd.flags = 0;
6459 sd->cpu = i;
6460 #endif
6461
6462 sd->backlog.poll = process_backlog;
6463 sd->backlog.weight = weight_p;
6464 sd->backlog.gro_list = NULL;
6465 sd->backlog.gro_count = 0;
6466 }
6467
6468 dev_boot_phase = 0;
6469
6470 /* The loopback device is special if any other network devices
6471 * is present in a network namespace the loopback device must
6472 * be present. Since we now dynamically allocate and free the
6473 * loopback device ensure this invariant is maintained by
6474 * keeping the loopback device as the first device on the
6475 * list of network devices. Ensuring the loopback devices
6476 * is the first device that appears and the last network device
6477 * that disappears.
6478 */
6479 if (register_pernet_device(&loopback_net_ops))
6480 goto out;
6481
6482 if (register_pernet_device(&default_device_ops))
6483 goto out;
6484
6485 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6486 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6487
6488 hotcpu_notifier(dev_cpu_callback, 0);
6489 dst_init();
6490 dev_mcast_init();
6491 rc = 0;
6492 out:
6493 return rc;
6494 }
6495
6496 subsys_initcall(net_dev_init);
6497
6498 static int __init initialize_hashrnd(void)
6499 {
6500 get_random_bytes(&hashrnd, sizeof(hashrnd));
6501 return 0;
6502 }
6503
6504 late_initcall_sync(initialize_hashrnd);
6505
This page took 0.169806 seconds and 6 git commands to generate.