phy: add RTBI mode for m88e1111
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <linux/if_bridge.h>
104 #include <linux/if_macvlan.h>
105 #include <net/dst.h>
106 #include <net/pkt_sched.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <linux/highmem.h>
110 #include <linux/init.h>
111 #include <linux/kmod.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/wext.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 /*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169 #define PTYPE_HASH_SIZE (16)
170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly; /* Taps */
175
176 /*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 /* Device list insertion */
210 static int list_netdevice(struct net_device *dev)
211 {
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228 static void unlist_netdevice(struct net_device *dev)
229 {
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238 }
239
240 /*
241 * Our notifier list
242 */
243
244 static RAW_NOTIFIER_HEAD(netdev_chain);
245
246 /*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251 DEFINE_PER_CPU(struct softnet_data, softnet_data);
252 EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254 #ifdef CONFIG_LOCKDEP
255 /*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259 static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277 static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299 {
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307 }
308
309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311 {
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317 }
318
319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327 }
328 #else
329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331 {
332 }
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 }
336 #endif
337
338 /*******************************************************************************
339
340 Protocol management and registration routines
341
342 *******************************************************************************/
343
344 /*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360 /**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373 void dev_add_pack(struct packet_type *pt)
374 {
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385 }
386 EXPORT_SYMBOL(dev_add_pack);
387
388 /**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401 void __dev_remove_pack(struct packet_type *pt)
402 {
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421 out:
422 spin_unlock_bh(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425
426 /**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445
446 /******************************************************************************
447
448 Device Boot-time Settings Routines
449
450 *******************************************************************************/
451
452 /* Boot time configuration table */
453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455 /**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464 static int netdev_boot_setup_add(char *name, struct ifmap *map)
465 {
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480 }
481
482 /**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491 int netdev_boot_setup_check(struct net_device *dev)
492 {
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507 }
508 EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511 /**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521 unsigned long netdev_boot_base(const char *prefix, int unit)
522 {
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540 }
541
542 /*
543 * Saves at boot time configured settings for any netdevice.
544 */
545 int __init netdev_boot_setup(char *str)
546 {
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567 }
568
569 __setup("netdev=", netdev_boot_setup);
570
571 /*******************************************************************************
572
573 Device Interface Subroutines
574
575 *******************************************************************************/
576
577 /**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589 struct net_device *__dev_get_by_name(struct net *net, const char *name)
590 {
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600 }
601 EXPORT_SYMBOL(__dev_get_by_name);
602
603 /**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616 {
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626 }
627 EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629 /**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641 struct net_device *dev_get_by_name(struct net *net, const char *name)
642 {
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651 }
652 EXPORT_SYMBOL(dev_get_by_name);
653
654 /**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667 {
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_index);
679
680 /**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692 {
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706 /**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717 struct net_device *dev_get_by_index(struct net *net, int ifindex)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_index);
729
730 /**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746 {
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(dev_getbyhwaddr);
759
760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786 /**
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
800 {
801 struct net_device *dev, *ret;
802
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
810 }
811 }
812 rcu_read_unlock();
813 return ret;
814 }
815 EXPORT_SYMBOL(dev_get_by_flags);
816
817 /**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
824 */
825 int dev_valid_name(const char *name)
826 {
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
840 }
841 EXPORT_SYMBOL(dev_valid_name);
842
843 /**
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859 {
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
880
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907 }
908
909 /**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923 int dev_alloc_name(struct net_device *dev, const char *name)
924 {
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935 }
936 EXPORT_SYMBOL(dev_alloc_name);
937
938 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940 {
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952 }
953
954 /**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
962 int dev_change_name(struct net_device *dev, const char *newname)
963 {
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
968
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
971
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
984
985 rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
995 }
996
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1006
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1020 }
1021 }
1022
1023 return err;
1024 }
1025
1026 /**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1031 *
1032 * Set ifalias for a device,
1033 */
1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035 {
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055 }
1056
1057
1058 /**
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064 void netdev_features_change(struct net_device *dev)
1065 {
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067 }
1068 EXPORT_SYMBOL(netdev_features_change);
1069
1070 /**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078 void netdev_state_change(struct net_device *dev)
1079 {
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084 }
1085 EXPORT_SYMBOL(netdev_state_change);
1086
1087 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088 {
1089 call_netdevice_notifiers(event, dev);
1090 }
1091 EXPORT_SYMBOL(netdev_bonding_change);
1092
1093 /**
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
1103 void dev_load(struct net *net, const char *name)
1104 {
1105 struct net_device *dev;
1106
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1110
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1113 }
1114 EXPORT_SYMBOL(dev_load);
1115
1116 /**
1117 * dev_open - prepare an interface for use.
1118 * @dev: device to open
1119 *
1120 * Takes a device from down to up state. The device's private open
1121 * function is invoked and then the multicast lists are loaded. Finally
1122 * the device is moved into the up state and a %NETDEV_UP message is
1123 * sent to the netdev notifier chain.
1124 *
1125 * Calling this function on an active interface is a nop. On a failure
1126 * a negative errno code is returned.
1127 */
1128 int dev_open(struct net_device *dev)
1129 {
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it already up?
1137 */
1138
1139 if (dev->flags & IFF_UP)
1140 return 0;
1141
1142 /*
1143 * Is it even present?
1144 */
1145 if (!netif_device_present(dev))
1146 return -ENODEV;
1147
1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1149 ret = notifier_to_errno(ret);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Call device private open method
1155 */
1156 set_bit(__LINK_STATE_START, &dev->state);
1157
1158 if (ops->ndo_validate_addr)
1159 ret = ops->ndo_validate_addr(dev);
1160
1161 if (!ret && ops->ndo_open)
1162 ret = ops->ndo_open(dev);
1163
1164 /*
1165 * If it went open OK then:
1166 */
1167
1168 if (ret)
1169 clear_bit(__LINK_STATE_START, &dev->state);
1170 else {
1171 /*
1172 * Set the flags.
1173 */
1174 dev->flags |= IFF_UP;
1175
1176 /*
1177 * Enable NET_DMA
1178 */
1179 net_dmaengine_get();
1180
1181 /*
1182 * Initialize multicasting status
1183 */
1184 dev_set_rx_mode(dev);
1185
1186 /*
1187 * Wakeup transmit queue engine
1188 */
1189 dev_activate(dev);
1190
1191 /*
1192 * ... and announce new interface.
1193 */
1194 call_netdevice_notifiers(NETDEV_UP, dev);
1195 }
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 /**
1202 * dev_close - shutdown an interface.
1203 * @dev: device to shutdown
1204 *
1205 * This function moves an active device into down state. A
1206 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1207 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1208 * chain.
1209 */
1210 int dev_close(struct net_device *dev)
1211 {
1212 const struct net_device_ops *ops = dev->netdev_ops;
1213 ASSERT_RTNL();
1214
1215 might_sleep();
1216
1217 if (!(dev->flags & IFF_UP))
1218 return 0;
1219
1220 /*
1221 * Tell people we are going down, so that they can
1222 * prepare to death, when device is still operating.
1223 */
1224 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1225
1226 clear_bit(__LINK_STATE_START, &dev->state);
1227
1228 /* Synchronize to scheduled poll. We cannot touch poll list,
1229 * it can be even on different cpu. So just clear netif_running().
1230 *
1231 * dev->stop() will invoke napi_disable() on all of it's
1232 * napi_struct instances on this device.
1233 */
1234 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1235
1236 dev_deactivate(dev);
1237
1238 /*
1239 * Call the device specific close. This cannot fail.
1240 * Only if device is UP
1241 *
1242 * We allow it to be called even after a DETACH hot-plug
1243 * event.
1244 */
1245 if (ops->ndo_stop)
1246 ops->ndo_stop(dev);
1247
1248 /*
1249 * Device is now down.
1250 */
1251
1252 dev->flags &= ~IFF_UP;
1253
1254 /*
1255 * Tell people we are down
1256 */
1257 call_netdevice_notifiers(NETDEV_DOWN, dev);
1258
1259 /*
1260 * Shutdown NET_DMA
1261 */
1262 net_dmaengine_put();
1263
1264 return 0;
1265 }
1266 EXPORT_SYMBOL(dev_close);
1267
1268
1269 /**
1270 * dev_disable_lro - disable Large Receive Offload on a device
1271 * @dev: device
1272 *
1273 * Disable Large Receive Offload (LRO) on a net device. Must be
1274 * called under RTNL. This is needed if received packets may be
1275 * forwarded to another interface.
1276 */
1277 void dev_disable_lro(struct net_device *dev)
1278 {
1279 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1280 dev->ethtool_ops->set_flags) {
1281 u32 flags = dev->ethtool_ops->get_flags(dev);
1282 if (flags & ETH_FLAG_LRO) {
1283 flags &= ~ETH_FLAG_LRO;
1284 dev->ethtool_ops->set_flags(dev, flags);
1285 }
1286 }
1287 WARN_ON(dev->features & NETIF_F_LRO);
1288 }
1289 EXPORT_SYMBOL(dev_disable_lro);
1290
1291
1292 static int dev_boot_phase = 1;
1293
1294 /*
1295 * Device change register/unregister. These are not inline or static
1296 * as we export them to the world.
1297 */
1298
1299 /**
1300 * register_netdevice_notifier - register a network notifier block
1301 * @nb: notifier
1302 *
1303 * Register a notifier to be called when network device events occur.
1304 * The notifier passed is linked into the kernel structures and must
1305 * not be reused until it has been unregistered. A negative errno code
1306 * is returned on a failure.
1307 *
1308 * When registered all registration and up events are replayed
1309 * to the new notifier to allow device to have a race free
1310 * view of the network device list.
1311 */
1312
1313 int register_netdevice_notifier(struct notifier_block *nb)
1314 {
1315 struct net_device *dev;
1316 struct net_device *last;
1317 struct net *net;
1318 int err;
1319
1320 rtnl_lock();
1321 err = raw_notifier_chain_register(&netdev_chain, nb);
1322 if (err)
1323 goto unlock;
1324 if (dev_boot_phase)
1325 goto unlock;
1326 for_each_net(net) {
1327 for_each_netdev(net, dev) {
1328 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1329 err = notifier_to_errno(err);
1330 if (err)
1331 goto rollback;
1332
1333 if (!(dev->flags & IFF_UP))
1334 continue;
1335
1336 nb->notifier_call(nb, NETDEV_UP, dev);
1337 }
1338 }
1339
1340 unlock:
1341 rtnl_unlock();
1342 return err;
1343
1344 rollback:
1345 last = dev;
1346 for_each_net(net) {
1347 for_each_netdev(net, dev) {
1348 if (dev == last)
1349 break;
1350
1351 if (dev->flags & IFF_UP) {
1352 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1353 nb->notifier_call(nb, NETDEV_DOWN, dev);
1354 }
1355 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1356 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1357 }
1358 }
1359
1360 raw_notifier_chain_unregister(&netdev_chain, nb);
1361 goto unlock;
1362 }
1363 EXPORT_SYMBOL(register_netdevice_notifier);
1364
1365 /**
1366 * unregister_netdevice_notifier - unregister a network notifier block
1367 * @nb: notifier
1368 *
1369 * Unregister a notifier previously registered by
1370 * register_netdevice_notifier(). The notifier is unlinked into the
1371 * kernel structures and may then be reused. A negative errno code
1372 * is returned on a failure.
1373 */
1374
1375 int unregister_netdevice_notifier(struct notifier_block *nb)
1376 {
1377 int err;
1378
1379 rtnl_lock();
1380 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1381 rtnl_unlock();
1382 return err;
1383 }
1384 EXPORT_SYMBOL(unregister_netdevice_notifier);
1385
1386 /**
1387 * call_netdevice_notifiers - call all network notifier blocks
1388 * @val: value passed unmodified to notifier function
1389 * @dev: net_device pointer passed unmodified to notifier function
1390 *
1391 * Call all network notifier blocks. Parameters and return value
1392 * are as for raw_notifier_call_chain().
1393 */
1394
1395 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1396 {
1397 return raw_notifier_call_chain(&netdev_chain, val, dev);
1398 }
1399
1400 /* When > 0 there are consumers of rx skb time stamps */
1401 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1402
1403 void net_enable_timestamp(void)
1404 {
1405 atomic_inc(&netstamp_needed);
1406 }
1407 EXPORT_SYMBOL(net_enable_timestamp);
1408
1409 void net_disable_timestamp(void)
1410 {
1411 atomic_dec(&netstamp_needed);
1412 }
1413 EXPORT_SYMBOL(net_disable_timestamp);
1414
1415 static inline void net_timestamp(struct sk_buff *skb)
1416 {
1417 if (atomic_read(&netstamp_needed))
1418 __net_timestamp(skb);
1419 else
1420 skb->tstamp.tv64 = 0;
1421 }
1422
1423 /**
1424 * dev_forward_skb - loopback an skb to another netif
1425 *
1426 * @dev: destination network device
1427 * @skb: buffer to forward
1428 *
1429 * return values:
1430 * NET_RX_SUCCESS (no congestion)
1431 * NET_RX_DROP (packet was dropped)
1432 *
1433 * dev_forward_skb can be used for injecting an skb from the
1434 * start_xmit function of one device into the receive queue
1435 * of another device.
1436 *
1437 * The receiving device may be in another namespace, so
1438 * we have to clear all information in the skb that could
1439 * impact namespace isolation.
1440 */
1441 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1442 {
1443 skb_orphan(skb);
1444
1445 if (!(dev->flags & IFF_UP))
1446 return NET_RX_DROP;
1447
1448 if (skb->len > (dev->mtu + dev->hard_header_len))
1449 return NET_RX_DROP;
1450
1451 skb_dst_drop(skb);
1452 skb->tstamp.tv64 = 0;
1453 skb->pkt_type = PACKET_HOST;
1454 skb->protocol = eth_type_trans(skb, dev);
1455 skb->mark = 0;
1456 secpath_reset(skb);
1457 nf_reset(skb);
1458 return netif_rx(skb);
1459 }
1460 EXPORT_SYMBOL_GPL(dev_forward_skb);
1461
1462 /*
1463 * Support routine. Sends outgoing frames to any network
1464 * taps currently in use.
1465 */
1466
1467 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1468 {
1469 struct packet_type *ptype;
1470
1471 #ifdef CONFIG_NET_CLS_ACT
1472 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1473 net_timestamp(skb);
1474 #else
1475 net_timestamp(skb);
1476 #endif
1477
1478 rcu_read_lock();
1479 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1480 /* Never send packets back to the socket
1481 * they originated from - MvS (miquels@drinkel.ow.org)
1482 */
1483 if ((ptype->dev == dev || !ptype->dev) &&
1484 (ptype->af_packet_priv == NULL ||
1485 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1486 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1487 if (!skb2)
1488 break;
1489
1490 /* skb->nh should be correctly
1491 set by sender, so that the second statement is
1492 just protection against buggy protocols.
1493 */
1494 skb_reset_mac_header(skb2);
1495
1496 if (skb_network_header(skb2) < skb2->data ||
1497 skb2->network_header > skb2->tail) {
1498 if (net_ratelimit())
1499 printk(KERN_CRIT "protocol %04x is "
1500 "buggy, dev %s\n",
1501 skb2->protocol, dev->name);
1502 skb_reset_network_header(skb2);
1503 }
1504
1505 skb2->transport_header = skb2->network_header;
1506 skb2->pkt_type = PACKET_OUTGOING;
1507 ptype->func(skb2, skb->dev, ptype, skb->dev);
1508 }
1509 }
1510 rcu_read_unlock();
1511 }
1512
1513
1514 static inline void __netif_reschedule(struct Qdisc *q)
1515 {
1516 struct softnet_data *sd;
1517 unsigned long flags;
1518
1519 local_irq_save(flags);
1520 sd = &__get_cpu_var(softnet_data);
1521 q->next_sched = sd->output_queue;
1522 sd->output_queue = q;
1523 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1524 local_irq_restore(flags);
1525 }
1526
1527 void __netif_schedule(struct Qdisc *q)
1528 {
1529 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1530 __netif_reschedule(q);
1531 }
1532 EXPORT_SYMBOL(__netif_schedule);
1533
1534 void dev_kfree_skb_irq(struct sk_buff *skb)
1535 {
1536 if (atomic_dec_and_test(&skb->users)) {
1537 struct softnet_data *sd;
1538 unsigned long flags;
1539
1540 local_irq_save(flags);
1541 sd = &__get_cpu_var(softnet_data);
1542 skb->next = sd->completion_queue;
1543 sd->completion_queue = skb;
1544 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1545 local_irq_restore(flags);
1546 }
1547 }
1548 EXPORT_SYMBOL(dev_kfree_skb_irq);
1549
1550 void dev_kfree_skb_any(struct sk_buff *skb)
1551 {
1552 if (in_irq() || irqs_disabled())
1553 dev_kfree_skb_irq(skb);
1554 else
1555 dev_kfree_skb(skb);
1556 }
1557 EXPORT_SYMBOL(dev_kfree_skb_any);
1558
1559
1560 /**
1561 * netif_device_detach - mark device as removed
1562 * @dev: network device
1563 *
1564 * Mark device as removed from system and therefore no longer available.
1565 */
1566 void netif_device_detach(struct net_device *dev)
1567 {
1568 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1569 netif_running(dev)) {
1570 netif_tx_stop_all_queues(dev);
1571 }
1572 }
1573 EXPORT_SYMBOL(netif_device_detach);
1574
1575 /**
1576 * netif_device_attach - mark device as attached
1577 * @dev: network device
1578 *
1579 * Mark device as attached from system and restart if needed.
1580 */
1581 void netif_device_attach(struct net_device *dev)
1582 {
1583 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1584 netif_running(dev)) {
1585 netif_tx_wake_all_queues(dev);
1586 __netdev_watchdog_up(dev);
1587 }
1588 }
1589 EXPORT_SYMBOL(netif_device_attach);
1590
1591 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1592 {
1593 return ((features & NETIF_F_GEN_CSUM) ||
1594 ((features & NETIF_F_IP_CSUM) &&
1595 protocol == htons(ETH_P_IP)) ||
1596 ((features & NETIF_F_IPV6_CSUM) &&
1597 protocol == htons(ETH_P_IPV6)) ||
1598 ((features & NETIF_F_FCOE_CRC) &&
1599 protocol == htons(ETH_P_FCOE)));
1600 }
1601
1602 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1603 {
1604 if (can_checksum_protocol(dev->features, skb->protocol))
1605 return true;
1606
1607 if (skb->protocol == htons(ETH_P_8021Q)) {
1608 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1609 if (can_checksum_protocol(dev->features & dev->vlan_features,
1610 veh->h_vlan_encapsulated_proto))
1611 return true;
1612 }
1613
1614 return false;
1615 }
1616
1617 /*
1618 * Invalidate hardware checksum when packet is to be mangled, and
1619 * complete checksum manually on outgoing path.
1620 */
1621 int skb_checksum_help(struct sk_buff *skb)
1622 {
1623 __wsum csum;
1624 int ret = 0, offset;
1625
1626 if (skb->ip_summed == CHECKSUM_COMPLETE)
1627 goto out_set_summed;
1628
1629 if (unlikely(skb_shinfo(skb)->gso_size)) {
1630 /* Let GSO fix up the checksum. */
1631 goto out_set_summed;
1632 }
1633
1634 offset = skb->csum_start - skb_headroom(skb);
1635 BUG_ON(offset >= skb_headlen(skb));
1636 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1637
1638 offset += skb->csum_offset;
1639 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1640
1641 if (skb_cloned(skb) &&
1642 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1643 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1644 if (ret)
1645 goto out;
1646 }
1647
1648 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1649 out_set_summed:
1650 skb->ip_summed = CHECKSUM_NONE;
1651 out:
1652 return ret;
1653 }
1654 EXPORT_SYMBOL(skb_checksum_help);
1655
1656 /**
1657 * skb_gso_segment - Perform segmentation on skb.
1658 * @skb: buffer to segment
1659 * @features: features for the output path (see dev->features)
1660 *
1661 * This function segments the given skb and returns a list of segments.
1662 *
1663 * It may return NULL if the skb requires no segmentation. This is
1664 * only possible when GSO is used for verifying header integrity.
1665 */
1666 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1667 {
1668 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1669 struct packet_type *ptype;
1670 __be16 type = skb->protocol;
1671 int err;
1672
1673 skb_reset_mac_header(skb);
1674 skb->mac_len = skb->network_header - skb->mac_header;
1675 __skb_pull(skb, skb->mac_len);
1676
1677 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1678 struct net_device *dev = skb->dev;
1679 struct ethtool_drvinfo info = {};
1680
1681 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1682 dev->ethtool_ops->get_drvinfo(dev, &info);
1683
1684 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1685 "ip_summed=%d",
1686 info.driver, dev ? dev->features : 0L,
1687 skb->sk ? skb->sk->sk_route_caps : 0L,
1688 skb->len, skb->data_len, skb->ip_summed);
1689
1690 if (skb_header_cloned(skb) &&
1691 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1692 return ERR_PTR(err);
1693 }
1694
1695 rcu_read_lock();
1696 list_for_each_entry_rcu(ptype,
1697 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1698 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1699 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1700 err = ptype->gso_send_check(skb);
1701 segs = ERR_PTR(err);
1702 if (err || skb_gso_ok(skb, features))
1703 break;
1704 __skb_push(skb, (skb->data -
1705 skb_network_header(skb)));
1706 }
1707 segs = ptype->gso_segment(skb, features);
1708 break;
1709 }
1710 }
1711 rcu_read_unlock();
1712
1713 __skb_push(skb, skb->data - skb_mac_header(skb));
1714
1715 return segs;
1716 }
1717 EXPORT_SYMBOL(skb_gso_segment);
1718
1719 /* Take action when hardware reception checksum errors are detected. */
1720 #ifdef CONFIG_BUG
1721 void netdev_rx_csum_fault(struct net_device *dev)
1722 {
1723 if (net_ratelimit()) {
1724 printk(KERN_ERR "%s: hw csum failure.\n",
1725 dev ? dev->name : "<unknown>");
1726 dump_stack();
1727 }
1728 }
1729 EXPORT_SYMBOL(netdev_rx_csum_fault);
1730 #endif
1731
1732 /* Actually, we should eliminate this check as soon as we know, that:
1733 * 1. IOMMU is present and allows to map all the memory.
1734 * 2. No high memory really exists on this machine.
1735 */
1736
1737 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1738 {
1739 #ifdef CONFIG_HIGHMEM
1740 int i;
1741
1742 if (dev->features & NETIF_F_HIGHDMA)
1743 return 0;
1744
1745 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1746 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1747 return 1;
1748
1749 #endif
1750 return 0;
1751 }
1752
1753 struct dev_gso_cb {
1754 void (*destructor)(struct sk_buff *skb);
1755 };
1756
1757 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1758
1759 static void dev_gso_skb_destructor(struct sk_buff *skb)
1760 {
1761 struct dev_gso_cb *cb;
1762
1763 do {
1764 struct sk_buff *nskb = skb->next;
1765
1766 skb->next = nskb->next;
1767 nskb->next = NULL;
1768 kfree_skb(nskb);
1769 } while (skb->next);
1770
1771 cb = DEV_GSO_CB(skb);
1772 if (cb->destructor)
1773 cb->destructor(skb);
1774 }
1775
1776 /**
1777 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1778 * @skb: buffer to segment
1779 *
1780 * This function segments the given skb and stores the list of segments
1781 * in skb->next.
1782 */
1783 static int dev_gso_segment(struct sk_buff *skb)
1784 {
1785 struct net_device *dev = skb->dev;
1786 struct sk_buff *segs;
1787 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1788 NETIF_F_SG : 0);
1789
1790 segs = skb_gso_segment(skb, features);
1791
1792 /* Verifying header integrity only. */
1793 if (!segs)
1794 return 0;
1795
1796 if (IS_ERR(segs))
1797 return PTR_ERR(segs);
1798
1799 skb->next = segs;
1800 DEV_GSO_CB(skb)->destructor = skb->destructor;
1801 skb->destructor = dev_gso_skb_destructor;
1802
1803 return 0;
1804 }
1805
1806 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1807 struct netdev_queue *txq)
1808 {
1809 const struct net_device_ops *ops = dev->netdev_ops;
1810 int rc = NETDEV_TX_OK;
1811
1812 if (likely(!skb->next)) {
1813 if (!list_empty(&ptype_all))
1814 dev_queue_xmit_nit(skb, dev);
1815
1816 if (netif_needs_gso(dev, skb)) {
1817 if (unlikely(dev_gso_segment(skb)))
1818 goto out_kfree_skb;
1819 if (skb->next)
1820 goto gso;
1821 }
1822
1823 /*
1824 * If device doesnt need skb->dst, release it right now while
1825 * its hot in this cpu cache
1826 */
1827 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1828 skb_dst_drop(skb);
1829
1830 rc = ops->ndo_start_xmit(skb, dev);
1831 if (rc == NETDEV_TX_OK)
1832 txq_trans_update(txq);
1833 /*
1834 * TODO: if skb_orphan() was called by
1835 * dev->hard_start_xmit() (for example, the unmodified
1836 * igb driver does that; bnx2 doesn't), then
1837 * skb_tx_software_timestamp() will be unable to send
1838 * back the time stamp.
1839 *
1840 * How can this be prevented? Always create another
1841 * reference to the socket before calling
1842 * dev->hard_start_xmit()? Prevent that skb_orphan()
1843 * does anything in dev->hard_start_xmit() by clearing
1844 * the skb destructor before the call and restoring it
1845 * afterwards, then doing the skb_orphan() ourselves?
1846 */
1847 return rc;
1848 }
1849
1850 gso:
1851 do {
1852 struct sk_buff *nskb = skb->next;
1853
1854 skb->next = nskb->next;
1855 nskb->next = NULL;
1856
1857 /*
1858 * If device doesnt need nskb->dst, release it right now while
1859 * its hot in this cpu cache
1860 */
1861 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1862 skb_dst_drop(nskb);
1863
1864 rc = ops->ndo_start_xmit(nskb, dev);
1865 if (unlikely(rc != NETDEV_TX_OK)) {
1866 if (rc & ~NETDEV_TX_MASK)
1867 goto out_kfree_gso_skb;
1868 nskb->next = skb->next;
1869 skb->next = nskb;
1870 return rc;
1871 }
1872 txq_trans_update(txq);
1873 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1874 return NETDEV_TX_BUSY;
1875 } while (skb->next);
1876
1877 out_kfree_gso_skb:
1878 if (likely(skb->next == NULL))
1879 skb->destructor = DEV_GSO_CB(skb)->destructor;
1880 out_kfree_skb:
1881 kfree_skb(skb);
1882 return rc;
1883 }
1884
1885 static u32 skb_tx_hashrnd;
1886
1887 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1888 {
1889 u32 hash;
1890
1891 if (skb_rx_queue_recorded(skb)) {
1892 hash = skb_get_rx_queue(skb);
1893 while (unlikely(hash >= dev->real_num_tx_queues))
1894 hash -= dev->real_num_tx_queues;
1895 return hash;
1896 }
1897
1898 if (skb->sk && skb->sk->sk_hash)
1899 hash = skb->sk->sk_hash;
1900 else
1901 hash = skb->protocol;
1902
1903 hash = jhash_1word(hash, skb_tx_hashrnd);
1904
1905 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1906 }
1907 EXPORT_SYMBOL(skb_tx_hash);
1908
1909 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1910 {
1911 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1912 if (net_ratelimit()) {
1913 WARN(1, "%s selects TX queue %d, but "
1914 "real number of TX queues is %d\n",
1915 dev->name, queue_index,
1916 dev->real_num_tx_queues);
1917 }
1918 return 0;
1919 }
1920 return queue_index;
1921 }
1922
1923 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1924 struct sk_buff *skb)
1925 {
1926 u16 queue_index;
1927 struct sock *sk = skb->sk;
1928
1929 if (sk_tx_queue_recorded(sk)) {
1930 queue_index = sk_tx_queue_get(sk);
1931 } else {
1932 const struct net_device_ops *ops = dev->netdev_ops;
1933
1934 if (ops->ndo_select_queue) {
1935 queue_index = ops->ndo_select_queue(dev, skb);
1936 queue_index = dev_cap_txqueue(dev, queue_index);
1937 } else {
1938 queue_index = 0;
1939 if (dev->real_num_tx_queues > 1)
1940 queue_index = skb_tx_hash(dev, skb);
1941
1942 if (sk && sk->sk_dst_cache)
1943 sk_tx_queue_set(sk, queue_index);
1944 }
1945 }
1946
1947 skb_set_queue_mapping(skb, queue_index);
1948 return netdev_get_tx_queue(dev, queue_index);
1949 }
1950
1951 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1952 struct net_device *dev,
1953 struct netdev_queue *txq)
1954 {
1955 spinlock_t *root_lock = qdisc_lock(q);
1956 int rc;
1957
1958 spin_lock(root_lock);
1959 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1960 kfree_skb(skb);
1961 rc = NET_XMIT_DROP;
1962 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1963 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1964 /*
1965 * This is a work-conserving queue; there are no old skbs
1966 * waiting to be sent out; and the qdisc is not running -
1967 * xmit the skb directly.
1968 */
1969 __qdisc_update_bstats(q, skb->len);
1970 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1971 __qdisc_run(q);
1972 else
1973 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1974
1975 rc = NET_XMIT_SUCCESS;
1976 } else {
1977 rc = qdisc_enqueue_root(skb, q);
1978 qdisc_run(q);
1979 }
1980 spin_unlock(root_lock);
1981
1982 return rc;
1983 }
1984
1985 /**
1986 * dev_queue_xmit - transmit a buffer
1987 * @skb: buffer to transmit
1988 *
1989 * Queue a buffer for transmission to a network device. The caller must
1990 * have set the device and priority and built the buffer before calling
1991 * this function. The function can be called from an interrupt.
1992 *
1993 * A negative errno code is returned on a failure. A success does not
1994 * guarantee the frame will be transmitted as it may be dropped due
1995 * to congestion or traffic shaping.
1996 *
1997 * -----------------------------------------------------------------------------------
1998 * I notice this method can also return errors from the queue disciplines,
1999 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2000 * be positive.
2001 *
2002 * Regardless of the return value, the skb is consumed, so it is currently
2003 * difficult to retry a send to this method. (You can bump the ref count
2004 * before sending to hold a reference for retry if you are careful.)
2005 *
2006 * When calling this method, interrupts MUST be enabled. This is because
2007 * the BH enable code must have IRQs enabled so that it will not deadlock.
2008 * --BLG
2009 */
2010 int dev_queue_xmit(struct sk_buff *skb)
2011 {
2012 struct net_device *dev = skb->dev;
2013 struct netdev_queue *txq;
2014 struct Qdisc *q;
2015 int rc = -ENOMEM;
2016
2017 /* GSO will handle the following emulations directly. */
2018 if (netif_needs_gso(dev, skb))
2019 goto gso;
2020
2021 if (skb_has_frags(skb) &&
2022 !(dev->features & NETIF_F_FRAGLIST) &&
2023 __skb_linearize(skb))
2024 goto out_kfree_skb;
2025
2026 /* Fragmented skb is linearized if device does not support SG,
2027 * or if at least one of fragments is in highmem and device
2028 * does not support DMA from it.
2029 */
2030 if (skb_shinfo(skb)->nr_frags &&
2031 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
2032 __skb_linearize(skb))
2033 goto out_kfree_skb;
2034
2035 /* If packet is not checksummed and device does not support
2036 * checksumming for this protocol, complete checksumming here.
2037 */
2038 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2039 skb_set_transport_header(skb, skb->csum_start -
2040 skb_headroom(skb));
2041 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2042 goto out_kfree_skb;
2043 }
2044
2045 gso:
2046 /* Disable soft irqs for various locks below. Also
2047 * stops preemption for RCU.
2048 */
2049 rcu_read_lock_bh();
2050
2051 txq = dev_pick_tx(dev, skb);
2052 q = rcu_dereference(txq->qdisc);
2053
2054 #ifdef CONFIG_NET_CLS_ACT
2055 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2056 #endif
2057 if (q->enqueue) {
2058 rc = __dev_xmit_skb(skb, q, dev, txq);
2059 goto out;
2060 }
2061
2062 /* The device has no queue. Common case for software devices:
2063 loopback, all the sorts of tunnels...
2064
2065 Really, it is unlikely that netif_tx_lock protection is necessary
2066 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2067 counters.)
2068 However, it is possible, that they rely on protection
2069 made by us here.
2070
2071 Check this and shot the lock. It is not prone from deadlocks.
2072 Either shot noqueue qdisc, it is even simpler 8)
2073 */
2074 if (dev->flags & IFF_UP) {
2075 int cpu = smp_processor_id(); /* ok because BHs are off */
2076
2077 if (txq->xmit_lock_owner != cpu) {
2078
2079 HARD_TX_LOCK(dev, txq, cpu);
2080
2081 if (!netif_tx_queue_stopped(txq)) {
2082 rc = dev_hard_start_xmit(skb, dev, txq);
2083 if (dev_xmit_complete(rc)) {
2084 HARD_TX_UNLOCK(dev, txq);
2085 goto out;
2086 }
2087 }
2088 HARD_TX_UNLOCK(dev, txq);
2089 if (net_ratelimit())
2090 printk(KERN_CRIT "Virtual device %s asks to "
2091 "queue packet!\n", dev->name);
2092 } else {
2093 /* Recursion is detected! It is possible,
2094 * unfortunately */
2095 if (net_ratelimit())
2096 printk(KERN_CRIT "Dead loop on virtual device "
2097 "%s, fix it urgently!\n", dev->name);
2098 }
2099 }
2100
2101 rc = -ENETDOWN;
2102 rcu_read_unlock_bh();
2103
2104 out_kfree_skb:
2105 kfree_skb(skb);
2106 return rc;
2107 out:
2108 rcu_read_unlock_bh();
2109 return rc;
2110 }
2111 EXPORT_SYMBOL(dev_queue_xmit);
2112
2113
2114 /*=======================================================================
2115 Receiver routines
2116 =======================================================================*/
2117
2118 int netdev_max_backlog __read_mostly = 1000;
2119 int netdev_budget __read_mostly = 300;
2120 int weight_p __read_mostly = 64; /* old backlog weight */
2121
2122 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2123
2124
2125 /**
2126 * netif_rx - post buffer to the network code
2127 * @skb: buffer to post
2128 *
2129 * This function receives a packet from a device driver and queues it for
2130 * the upper (protocol) levels to process. It always succeeds. The buffer
2131 * may be dropped during processing for congestion control or by the
2132 * protocol layers.
2133 *
2134 * return values:
2135 * NET_RX_SUCCESS (no congestion)
2136 * NET_RX_DROP (packet was dropped)
2137 *
2138 */
2139
2140 int netif_rx(struct sk_buff *skb)
2141 {
2142 struct softnet_data *queue;
2143 unsigned long flags;
2144
2145 /* if netpoll wants it, pretend we never saw it */
2146 if (netpoll_rx(skb))
2147 return NET_RX_DROP;
2148
2149 if (!skb->tstamp.tv64)
2150 net_timestamp(skb);
2151
2152 /*
2153 * The code is rearranged so that the path is the most
2154 * short when CPU is congested, but is still operating.
2155 */
2156 local_irq_save(flags);
2157 queue = &__get_cpu_var(softnet_data);
2158
2159 __get_cpu_var(netdev_rx_stat).total++;
2160 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2161 if (queue->input_pkt_queue.qlen) {
2162 enqueue:
2163 __skb_queue_tail(&queue->input_pkt_queue, skb);
2164 local_irq_restore(flags);
2165 return NET_RX_SUCCESS;
2166 }
2167
2168 napi_schedule(&queue->backlog);
2169 goto enqueue;
2170 }
2171
2172 __get_cpu_var(netdev_rx_stat).dropped++;
2173 local_irq_restore(flags);
2174
2175 kfree_skb(skb);
2176 return NET_RX_DROP;
2177 }
2178 EXPORT_SYMBOL(netif_rx);
2179
2180 int netif_rx_ni(struct sk_buff *skb)
2181 {
2182 int err;
2183
2184 preempt_disable();
2185 err = netif_rx(skb);
2186 if (local_softirq_pending())
2187 do_softirq();
2188 preempt_enable();
2189
2190 return err;
2191 }
2192 EXPORT_SYMBOL(netif_rx_ni);
2193
2194 static void net_tx_action(struct softirq_action *h)
2195 {
2196 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2197
2198 if (sd->completion_queue) {
2199 struct sk_buff *clist;
2200
2201 local_irq_disable();
2202 clist = sd->completion_queue;
2203 sd->completion_queue = NULL;
2204 local_irq_enable();
2205
2206 while (clist) {
2207 struct sk_buff *skb = clist;
2208 clist = clist->next;
2209
2210 WARN_ON(atomic_read(&skb->users));
2211 __kfree_skb(skb);
2212 }
2213 }
2214
2215 if (sd->output_queue) {
2216 struct Qdisc *head;
2217
2218 local_irq_disable();
2219 head = sd->output_queue;
2220 sd->output_queue = NULL;
2221 local_irq_enable();
2222
2223 while (head) {
2224 struct Qdisc *q = head;
2225 spinlock_t *root_lock;
2226
2227 head = head->next_sched;
2228
2229 root_lock = qdisc_lock(q);
2230 if (spin_trylock(root_lock)) {
2231 smp_mb__before_clear_bit();
2232 clear_bit(__QDISC_STATE_SCHED,
2233 &q->state);
2234 qdisc_run(q);
2235 spin_unlock(root_lock);
2236 } else {
2237 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2238 &q->state)) {
2239 __netif_reschedule(q);
2240 } else {
2241 smp_mb__before_clear_bit();
2242 clear_bit(__QDISC_STATE_SCHED,
2243 &q->state);
2244 }
2245 }
2246 }
2247 }
2248 }
2249
2250 static inline int deliver_skb(struct sk_buff *skb,
2251 struct packet_type *pt_prev,
2252 struct net_device *orig_dev)
2253 {
2254 atomic_inc(&skb->users);
2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256 }
2257
2258 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2259
2260 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2261 /* This hook is defined here for ATM LANE */
2262 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2263 unsigned char *addr) __read_mostly;
2264 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2265 #endif
2266
2267 /*
2268 * If bridge module is loaded call bridging hook.
2269 * returns NULL if packet was consumed.
2270 */
2271 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2272 struct sk_buff *skb) __read_mostly;
2273 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2274
2275 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2276 struct packet_type **pt_prev, int *ret,
2277 struct net_device *orig_dev)
2278 {
2279 struct net_bridge_port *port;
2280
2281 if (skb->pkt_type == PACKET_LOOPBACK ||
2282 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2283 return skb;
2284
2285 if (*pt_prev) {
2286 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2287 *pt_prev = NULL;
2288 }
2289
2290 return br_handle_frame_hook(port, skb);
2291 }
2292 #else
2293 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2294 #endif
2295
2296 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2297 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2298 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2299
2300 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2301 struct packet_type **pt_prev,
2302 int *ret,
2303 struct net_device *orig_dev)
2304 {
2305 if (skb->dev->macvlan_port == NULL)
2306 return skb;
2307
2308 if (*pt_prev) {
2309 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2310 *pt_prev = NULL;
2311 }
2312 return macvlan_handle_frame_hook(skb);
2313 }
2314 #else
2315 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2316 #endif
2317
2318 #ifdef CONFIG_NET_CLS_ACT
2319 /* TODO: Maybe we should just force sch_ingress to be compiled in
2320 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2321 * a compare and 2 stores extra right now if we dont have it on
2322 * but have CONFIG_NET_CLS_ACT
2323 * NOTE: This doesnt stop any functionality; if you dont have
2324 * the ingress scheduler, you just cant add policies on ingress.
2325 *
2326 */
2327 static int ing_filter(struct sk_buff *skb)
2328 {
2329 struct net_device *dev = skb->dev;
2330 u32 ttl = G_TC_RTTL(skb->tc_verd);
2331 struct netdev_queue *rxq;
2332 int result = TC_ACT_OK;
2333 struct Qdisc *q;
2334
2335 if (MAX_RED_LOOP < ttl++) {
2336 printk(KERN_WARNING
2337 "Redir loop detected Dropping packet (%d->%d)\n",
2338 skb->skb_iif, dev->ifindex);
2339 return TC_ACT_SHOT;
2340 }
2341
2342 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2343 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2344
2345 rxq = &dev->rx_queue;
2346
2347 q = rxq->qdisc;
2348 if (q != &noop_qdisc) {
2349 spin_lock(qdisc_lock(q));
2350 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2351 result = qdisc_enqueue_root(skb, q);
2352 spin_unlock(qdisc_lock(q));
2353 }
2354
2355 return result;
2356 }
2357
2358 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2359 struct packet_type **pt_prev,
2360 int *ret, struct net_device *orig_dev)
2361 {
2362 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2363 goto out;
2364
2365 if (*pt_prev) {
2366 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2367 *pt_prev = NULL;
2368 } else {
2369 /* Huh? Why does turning on AF_PACKET affect this? */
2370 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2371 }
2372
2373 switch (ing_filter(skb)) {
2374 case TC_ACT_SHOT:
2375 case TC_ACT_STOLEN:
2376 kfree_skb(skb);
2377 return NULL;
2378 }
2379
2380 out:
2381 skb->tc_verd = 0;
2382 return skb;
2383 }
2384 #endif
2385
2386 /*
2387 * netif_nit_deliver - deliver received packets to network taps
2388 * @skb: buffer
2389 *
2390 * This function is used to deliver incoming packets to network
2391 * taps. It should be used when the normal netif_receive_skb path
2392 * is bypassed, for example because of VLAN acceleration.
2393 */
2394 void netif_nit_deliver(struct sk_buff *skb)
2395 {
2396 struct packet_type *ptype;
2397
2398 if (list_empty(&ptype_all))
2399 return;
2400
2401 skb_reset_network_header(skb);
2402 skb_reset_transport_header(skb);
2403 skb->mac_len = skb->network_header - skb->mac_header;
2404
2405 rcu_read_lock();
2406 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2407 if (!ptype->dev || ptype->dev == skb->dev)
2408 deliver_skb(skb, ptype, skb->dev);
2409 }
2410 rcu_read_unlock();
2411 }
2412
2413 /**
2414 * netif_receive_skb - process receive buffer from network
2415 * @skb: buffer to process
2416 *
2417 * netif_receive_skb() is the main receive data processing function.
2418 * It always succeeds. The buffer may be dropped during processing
2419 * for congestion control or by the protocol layers.
2420 *
2421 * This function may only be called from softirq context and interrupts
2422 * should be enabled.
2423 *
2424 * Return values (usually ignored):
2425 * NET_RX_SUCCESS: no congestion
2426 * NET_RX_DROP: packet was dropped
2427 */
2428 int netif_receive_skb(struct sk_buff *skb)
2429 {
2430 struct packet_type *ptype, *pt_prev;
2431 struct net_device *orig_dev;
2432 struct net_device *null_or_orig;
2433 struct net_device *null_or_bond;
2434 int ret = NET_RX_DROP;
2435 __be16 type;
2436
2437 if (!skb->tstamp.tv64)
2438 net_timestamp(skb);
2439
2440 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2441 return NET_RX_SUCCESS;
2442
2443 /* if we've gotten here through NAPI, check netpoll */
2444 if (netpoll_receive_skb(skb))
2445 return NET_RX_DROP;
2446
2447 if (!skb->skb_iif)
2448 skb->skb_iif = skb->dev->ifindex;
2449
2450 null_or_orig = NULL;
2451 orig_dev = skb->dev;
2452 if (orig_dev->master) {
2453 if (skb_bond_should_drop(skb))
2454 null_or_orig = orig_dev; /* deliver only exact match */
2455 else
2456 skb->dev = orig_dev->master;
2457 }
2458
2459 __get_cpu_var(netdev_rx_stat).total++;
2460
2461 skb_reset_network_header(skb);
2462 skb_reset_transport_header(skb);
2463 skb->mac_len = skb->network_header - skb->mac_header;
2464
2465 pt_prev = NULL;
2466
2467 rcu_read_lock();
2468
2469 #ifdef CONFIG_NET_CLS_ACT
2470 if (skb->tc_verd & TC_NCLS) {
2471 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2472 goto ncls;
2473 }
2474 #endif
2475
2476 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2477 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2478 ptype->dev == orig_dev) {
2479 if (pt_prev)
2480 ret = deliver_skb(skb, pt_prev, orig_dev);
2481 pt_prev = ptype;
2482 }
2483 }
2484
2485 #ifdef CONFIG_NET_CLS_ACT
2486 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2487 if (!skb)
2488 goto out;
2489 ncls:
2490 #endif
2491
2492 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2493 if (!skb)
2494 goto out;
2495 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2496 if (!skb)
2497 goto out;
2498
2499 /*
2500 * Make sure frames received on VLAN interfaces stacked on
2501 * bonding interfaces still make their way to any base bonding
2502 * device that may have registered for a specific ptype. The
2503 * handler may have to adjust skb->dev and orig_dev.
2504 */
2505 null_or_bond = NULL;
2506 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2507 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2508 null_or_bond = vlan_dev_real_dev(skb->dev);
2509 }
2510
2511 type = skb->protocol;
2512 list_for_each_entry_rcu(ptype,
2513 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2514 if (ptype->type == type && (ptype->dev == null_or_orig ||
2515 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2516 ptype->dev == null_or_bond)) {
2517 if (pt_prev)
2518 ret = deliver_skb(skb, pt_prev, orig_dev);
2519 pt_prev = ptype;
2520 }
2521 }
2522
2523 if (pt_prev) {
2524 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2525 } else {
2526 kfree_skb(skb);
2527 /* Jamal, now you will not able to escape explaining
2528 * me how you were going to use this. :-)
2529 */
2530 ret = NET_RX_DROP;
2531 }
2532
2533 out:
2534 rcu_read_unlock();
2535 return ret;
2536 }
2537 EXPORT_SYMBOL(netif_receive_skb);
2538
2539 /* Network device is going away, flush any packets still pending */
2540 static void flush_backlog(void *arg)
2541 {
2542 struct net_device *dev = arg;
2543 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2544 struct sk_buff *skb, *tmp;
2545
2546 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2547 if (skb->dev == dev) {
2548 __skb_unlink(skb, &queue->input_pkt_queue);
2549 kfree_skb(skb);
2550 }
2551 }
2552
2553 static int napi_gro_complete(struct sk_buff *skb)
2554 {
2555 struct packet_type *ptype;
2556 __be16 type = skb->protocol;
2557 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2558 int err = -ENOENT;
2559
2560 if (NAPI_GRO_CB(skb)->count == 1) {
2561 skb_shinfo(skb)->gso_size = 0;
2562 goto out;
2563 }
2564
2565 rcu_read_lock();
2566 list_for_each_entry_rcu(ptype, head, list) {
2567 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2568 continue;
2569
2570 err = ptype->gro_complete(skb);
2571 break;
2572 }
2573 rcu_read_unlock();
2574
2575 if (err) {
2576 WARN_ON(&ptype->list == head);
2577 kfree_skb(skb);
2578 return NET_RX_SUCCESS;
2579 }
2580
2581 out:
2582 return netif_receive_skb(skb);
2583 }
2584
2585 static void napi_gro_flush(struct napi_struct *napi)
2586 {
2587 struct sk_buff *skb, *next;
2588
2589 for (skb = napi->gro_list; skb; skb = next) {
2590 next = skb->next;
2591 skb->next = NULL;
2592 napi_gro_complete(skb);
2593 }
2594
2595 napi->gro_count = 0;
2596 napi->gro_list = NULL;
2597 }
2598
2599 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2600 {
2601 struct sk_buff **pp = NULL;
2602 struct packet_type *ptype;
2603 __be16 type = skb->protocol;
2604 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2605 int same_flow;
2606 int mac_len;
2607 enum gro_result ret;
2608
2609 if (!(skb->dev->features & NETIF_F_GRO))
2610 goto normal;
2611
2612 if (skb_is_gso(skb) || skb_has_frags(skb))
2613 goto normal;
2614
2615 rcu_read_lock();
2616 list_for_each_entry_rcu(ptype, head, list) {
2617 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2618 continue;
2619
2620 skb_set_network_header(skb, skb_gro_offset(skb));
2621 mac_len = skb->network_header - skb->mac_header;
2622 skb->mac_len = mac_len;
2623 NAPI_GRO_CB(skb)->same_flow = 0;
2624 NAPI_GRO_CB(skb)->flush = 0;
2625 NAPI_GRO_CB(skb)->free = 0;
2626
2627 pp = ptype->gro_receive(&napi->gro_list, skb);
2628 break;
2629 }
2630 rcu_read_unlock();
2631
2632 if (&ptype->list == head)
2633 goto normal;
2634
2635 same_flow = NAPI_GRO_CB(skb)->same_flow;
2636 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2637
2638 if (pp) {
2639 struct sk_buff *nskb = *pp;
2640
2641 *pp = nskb->next;
2642 nskb->next = NULL;
2643 napi_gro_complete(nskb);
2644 napi->gro_count--;
2645 }
2646
2647 if (same_flow)
2648 goto ok;
2649
2650 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2651 goto normal;
2652
2653 napi->gro_count++;
2654 NAPI_GRO_CB(skb)->count = 1;
2655 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2656 skb->next = napi->gro_list;
2657 napi->gro_list = skb;
2658 ret = GRO_HELD;
2659
2660 pull:
2661 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2662 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2663
2664 BUG_ON(skb->end - skb->tail < grow);
2665
2666 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2667
2668 skb->tail += grow;
2669 skb->data_len -= grow;
2670
2671 skb_shinfo(skb)->frags[0].page_offset += grow;
2672 skb_shinfo(skb)->frags[0].size -= grow;
2673
2674 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2675 put_page(skb_shinfo(skb)->frags[0].page);
2676 memmove(skb_shinfo(skb)->frags,
2677 skb_shinfo(skb)->frags + 1,
2678 --skb_shinfo(skb)->nr_frags);
2679 }
2680 }
2681
2682 ok:
2683 return ret;
2684
2685 normal:
2686 ret = GRO_NORMAL;
2687 goto pull;
2688 }
2689 EXPORT_SYMBOL(dev_gro_receive);
2690
2691 static gro_result_t
2692 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2693 {
2694 struct sk_buff *p;
2695
2696 if (netpoll_rx_on(skb))
2697 return GRO_NORMAL;
2698
2699 for (p = napi->gro_list; p; p = p->next) {
2700 NAPI_GRO_CB(p)->same_flow =
2701 (p->dev == skb->dev) &&
2702 !compare_ether_header(skb_mac_header(p),
2703 skb_gro_mac_header(skb));
2704 NAPI_GRO_CB(p)->flush = 0;
2705 }
2706
2707 return dev_gro_receive(napi, skb);
2708 }
2709
2710 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2711 {
2712 switch (ret) {
2713 case GRO_NORMAL:
2714 if (netif_receive_skb(skb))
2715 ret = GRO_DROP;
2716 break;
2717
2718 case GRO_DROP:
2719 case GRO_MERGED_FREE:
2720 kfree_skb(skb);
2721 break;
2722
2723 case GRO_HELD:
2724 case GRO_MERGED:
2725 break;
2726 }
2727
2728 return ret;
2729 }
2730 EXPORT_SYMBOL(napi_skb_finish);
2731
2732 void skb_gro_reset_offset(struct sk_buff *skb)
2733 {
2734 NAPI_GRO_CB(skb)->data_offset = 0;
2735 NAPI_GRO_CB(skb)->frag0 = NULL;
2736 NAPI_GRO_CB(skb)->frag0_len = 0;
2737
2738 if (skb->mac_header == skb->tail &&
2739 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2740 NAPI_GRO_CB(skb)->frag0 =
2741 page_address(skb_shinfo(skb)->frags[0].page) +
2742 skb_shinfo(skb)->frags[0].page_offset;
2743 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2744 }
2745 }
2746 EXPORT_SYMBOL(skb_gro_reset_offset);
2747
2748 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2749 {
2750 skb_gro_reset_offset(skb);
2751
2752 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2753 }
2754 EXPORT_SYMBOL(napi_gro_receive);
2755
2756 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2757 {
2758 __skb_pull(skb, skb_headlen(skb));
2759 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2760
2761 napi->skb = skb;
2762 }
2763 EXPORT_SYMBOL(napi_reuse_skb);
2764
2765 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2766 {
2767 struct sk_buff *skb = napi->skb;
2768
2769 if (!skb) {
2770 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2771 if (skb)
2772 napi->skb = skb;
2773 }
2774 return skb;
2775 }
2776 EXPORT_SYMBOL(napi_get_frags);
2777
2778 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2779 gro_result_t ret)
2780 {
2781 switch (ret) {
2782 case GRO_NORMAL:
2783 case GRO_HELD:
2784 skb->protocol = eth_type_trans(skb, napi->dev);
2785
2786 if (ret == GRO_HELD)
2787 skb_gro_pull(skb, -ETH_HLEN);
2788 else if (netif_receive_skb(skb))
2789 ret = GRO_DROP;
2790 break;
2791
2792 case GRO_DROP:
2793 case GRO_MERGED_FREE:
2794 napi_reuse_skb(napi, skb);
2795 break;
2796
2797 case GRO_MERGED:
2798 break;
2799 }
2800
2801 return ret;
2802 }
2803 EXPORT_SYMBOL(napi_frags_finish);
2804
2805 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2806 {
2807 struct sk_buff *skb = napi->skb;
2808 struct ethhdr *eth;
2809 unsigned int hlen;
2810 unsigned int off;
2811
2812 napi->skb = NULL;
2813
2814 skb_reset_mac_header(skb);
2815 skb_gro_reset_offset(skb);
2816
2817 off = skb_gro_offset(skb);
2818 hlen = off + sizeof(*eth);
2819 eth = skb_gro_header_fast(skb, off);
2820 if (skb_gro_header_hard(skb, hlen)) {
2821 eth = skb_gro_header_slow(skb, hlen, off);
2822 if (unlikely(!eth)) {
2823 napi_reuse_skb(napi, skb);
2824 skb = NULL;
2825 goto out;
2826 }
2827 }
2828
2829 skb_gro_pull(skb, sizeof(*eth));
2830
2831 /*
2832 * This works because the only protocols we care about don't require
2833 * special handling. We'll fix it up properly at the end.
2834 */
2835 skb->protocol = eth->h_proto;
2836
2837 out:
2838 return skb;
2839 }
2840 EXPORT_SYMBOL(napi_frags_skb);
2841
2842 gro_result_t napi_gro_frags(struct napi_struct *napi)
2843 {
2844 struct sk_buff *skb = napi_frags_skb(napi);
2845
2846 if (!skb)
2847 return GRO_DROP;
2848
2849 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2850 }
2851 EXPORT_SYMBOL(napi_gro_frags);
2852
2853 static int process_backlog(struct napi_struct *napi, int quota)
2854 {
2855 int work = 0;
2856 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2857 unsigned long start_time = jiffies;
2858
2859 napi->weight = weight_p;
2860 do {
2861 struct sk_buff *skb;
2862
2863 local_irq_disable();
2864 skb = __skb_dequeue(&queue->input_pkt_queue);
2865 if (!skb) {
2866 __napi_complete(napi);
2867 local_irq_enable();
2868 break;
2869 }
2870 local_irq_enable();
2871
2872 netif_receive_skb(skb);
2873 } while (++work < quota && jiffies == start_time);
2874
2875 return work;
2876 }
2877
2878 /**
2879 * __napi_schedule - schedule for receive
2880 * @n: entry to schedule
2881 *
2882 * The entry's receive function will be scheduled to run
2883 */
2884 void __napi_schedule(struct napi_struct *n)
2885 {
2886 unsigned long flags;
2887
2888 local_irq_save(flags);
2889 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2890 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2891 local_irq_restore(flags);
2892 }
2893 EXPORT_SYMBOL(__napi_schedule);
2894
2895 void __napi_complete(struct napi_struct *n)
2896 {
2897 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2898 BUG_ON(n->gro_list);
2899
2900 list_del(&n->poll_list);
2901 smp_mb__before_clear_bit();
2902 clear_bit(NAPI_STATE_SCHED, &n->state);
2903 }
2904 EXPORT_SYMBOL(__napi_complete);
2905
2906 void napi_complete(struct napi_struct *n)
2907 {
2908 unsigned long flags;
2909
2910 /*
2911 * don't let napi dequeue from the cpu poll list
2912 * just in case its running on a different cpu
2913 */
2914 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2915 return;
2916
2917 napi_gro_flush(n);
2918 local_irq_save(flags);
2919 __napi_complete(n);
2920 local_irq_restore(flags);
2921 }
2922 EXPORT_SYMBOL(napi_complete);
2923
2924 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2925 int (*poll)(struct napi_struct *, int), int weight)
2926 {
2927 INIT_LIST_HEAD(&napi->poll_list);
2928 napi->gro_count = 0;
2929 napi->gro_list = NULL;
2930 napi->skb = NULL;
2931 napi->poll = poll;
2932 napi->weight = weight;
2933 list_add(&napi->dev_list, &dev->napi_list);
2934 napi->dev = dev;
2935 #ifdef CONFIG_NETPOLL
2936 spin_lock_init(&napi->poll_lock);
2937 napi->poll_owner = -1;
2938 #endif
2939 set_bit(NAPI_STATE_SCHED, &napi->state);
2940 }
2941 EXPORT_SYMBOL(netif_napi_add);
2942
2943 void netif_napi_del(struct napi_struct *napi)
2944 {
2945 struct sk_buff *skb, *next;
2946
2947 list_del_init(&napi->dev_list);
2948 napi_free_frags(napi);
2949
2950 for (skb = napi->gro_list; skb; skb = next) {
2951 next = skb->next;
2952 skb->next = NULL;
2953 kfree_skb(skb);
2954 }
2955
2956 napi->gro_list = NULL;
2957 napi->gro_count = 0;
2958 }
2959 EXPORT_SYMBOL(netif_napi_del);
2960
2961
2962 static void net_rx_action(struct softirq_action *h)
2963 {
2964 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2965 unsigned long time_limit = jiffies + 2;
2966 int budget = netdev_budget;
2967 void *have;
2968
2969 local_irq_disable();
2970
2971 while (!list_empty(list)) {
2972 struct napi_struct *n;
2973 int work, weight;
2974
2975 /* If softirq window is exhuasted then punt.
2976 * Allow this to run for 2 jiffies since which will allow
2977 * an average latency of 1.5/HZ.
2978 */
2979 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2980 goto softnet_break;
2981
2982 local_irq_enable();
2983
2984 /* Even though interrupts have been re-enabled, this
2985 * access is safe because interrupts can only add new
2986 * entries to the tail of this list, and only ->poll()
2987 * calls can remove this head entry from the list.
2988 */
2989 n = list_entry(list->next, struct napi_struct, poll_list);
2990
2991 have = netpoll_poll_lock(n);
2992
2993 weight = n->weight;
2994
2995 /* This NAPI_STATE_SCHED test is for avoiding a race
2996 * with netpoll's poll_napi(). Only the entity which
2997 * obtains the lock and sees NAPI_STATE_SCHED set will
2998 * actually make the ->poll() call. Therefore we avoid
2999 * accidently calling ->poll() when NAPI is not scheduled.
3000 */
3001 work = 0;
3002 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3003 work = n->poll(n, weight);
3004 trace_napi_poll(n);
3005 }
3006
3007 WARN_ON_ONCE(work > weight);
3008
3009 budget -= work;
3010
3011 local_irq_disable();
3012
3013 /* Drivers must not modify the NAPI state if they
3014 * consume the entire weight. In such cases this code
3015 * still "owns" the NAPI instance and therefore can
3016 * move the instance around on the list at-will.
3017 */
3018 if (unlikely(work == weight)) {
3019 if (unlikely(napi_disable_pending(n))) {
3020 local_irq_enable();
3021 napi_complete(n);
3022 local_irq_disable();
3023 } else
3024 list_move_tail(&n->poll_list, list);
3025 }
3026
3027 netpoll_poll_unlock(have);
3028 }
3029 out:
3030 local_irq_enable();
3031
3032 #ifdef CONFIG_NET_DMA
3033 /*
3034 * There may not be any more sk_buffs coming right now, so push
3035 * any pending DMA copies to hardware
3036 */
3037 dma_issue_pending_all();
3038 #endif
3039
3040 return;
3041
3042 softnet_break:
3043 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3044 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3045 goto out;
3046 }
3047
3048 static gifconf_func_t *gifconf_list[NPROTO];
3049
3050 /**
3051 * register_gifconf - register a SIOCGIF handler
3052 * @family: Address family
3053 * @gifconf: Function handler
3054 *
3055 * Register protocol dependent address dumping routines. The handler
3056 * that is passed must not be freed or reused until it has been replaced
3057 * by another handler.
3058 */
3059 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3060 {
3061 if (family >= NPROTO)
3062 return -EINVAL;
3063 gifconf_list[family] = gifconf;
3064 return 0;
3065 }
3066 EXPORT_SYMBOL(register_gifconf);
3067
3068
3069 /*
3070 * Map an interface index to its name (SIOCGIFNAME)
3071 */
3072
3073 /*
3074 * We need this ioctl for efficient implementation of the
3075 * if_indextoname() function required by the IPv6 API. Without
3076 * it, we would have to search all the interfaces to find a
3077 * match. --pb
3078 */
3079
3080 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3081 {
3082 struct net_device *dev;
3083 struct ifreq ifr;
3084
3085 /*
3086 * Fetch the caller's info block.
3087 */
3088
3089 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3090 return -EFAULT;
3091
3092 rcu_read_lock();
3093 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3094 if (!dev) {
3095 rcu_read_unlock();
3096 return -ENODEV;
3097 }
3098
3099 strcpy(ifr.ifr_name, dev->name);
3100 rcu_read_unlock();
3101
3102 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3103 return -EFAULT;
3104 return 0;
3105 }
3106
3107 /*
3108 * Perform a SIOCGIFCONF call. This structure will change
3109 * size eventually, and there is nothing I can do about it.
3110 * Thus we will need a 'compatibility mode'.
3111 */
3112
3113 static int dev_ifconf(struct net *net, char __user *arg)
3114 {
3115 struct ifconf ifc;
3116 struct net_device *dev;
3117 char __user *pos;
3118 int len;
3119 int total;
3120 int i;
3121
3122 /*
3123 * Fetch the caller's info block.
3124 */
3125
3126 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3127 return -EFAULT;
3128
3129 pos = ifc.ifc_buf;
3130 len = ifc.ifc_len;
3131
3132 /*
3133 * Loop over the interfaces, and write an info block for each.
3134 */
3135
3136 total = 0;
3137 for_each_netdev(net, dev) {
3138 for (i = 0; i < NPROTO; i++) {
3139 if (gifconf_list[i]) {
3140 int done;
3141 if (!pos)
3142 done = gifconf_list[i](dev, NULL, 0);
3143 else
3144 done = gifconf_list[i](dev, pos + total,
3145 len - total);
3146 if (done < 0)
3147 return -EFAULT;
3148 total += done;
3149 }
3150 }
3151 }
3152
3153 /*
3154 * All done. Write the updated control block back to the caller.
3155 */
3156 ifc.ifc_len = total;
3157
3158 /*
3159 * Both BSD and Solaris return 0 here, so we do too.
3160 */
3161 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3162 }
3163
3164 #ifdef CONFIG_PROC_FS
3165 /*
3166 * This is invoked by the /proc filesystem handler to display a device
3167 * in detail.
3168 */
3169 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3170 __acquires(RCU)
3171 {
3172 struct net *net = seq_file_net(seq);
3173 loff_t off;
3174 struct net_device *dev;
3175
3176 rcu_read_lock();
3177 if (!*pos)
3178 return SEQ_START_TOKEN;
3179
3180 off = 1;
3181 for_each_netdev_rcu(net, dev)
3182 if (off++ == *pos)
3183 return dev;
3184
3185 return NULL;
3186 }
3187
3188 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3189 {
3190 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3191 first_net_device(seq_file_net(seq)) :
3192 next_net_device((struct net_device *)v);
3193
3194 ++*pos;
3195 return rcu_dereference(dev);
3196 }
3197
3198 void dev_seq_stop(struct seq_file *seq, void *v)
3199 __releases(RCU)
3200 {
3201 rcu_read_unlock();
3202 }
3203
3204 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3205 {
3206 const struct net_device_stats *stats = dev_get_stats(dev);
3207
3208 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3209 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3210 dev->name, stats->rx_bytes, stats->rx_packets,
3211 stats->rx_errors,
3212 stats->rx_dropped + stats->rx_missed_errors,
3213 stats->rx_fifo_errors,
3214 stats->rx_length_errors + stats->rx_over_errors +
3215 stats->rx_crc_errors + stats->rx_frame_errors,
3216 stats->rx_compressed, stats->multicast,
3217 stats->tx_bytes, stats->tx_packets,
3218 stats->tx_errors, stats->tx_dropped,
3219 stats->tx_fifo_errors, stats->collisions,
3220 stats->tx_carrier_errors +
3221 stats->tx_aborted_errors +
3222 stats->tx_window_errors +
3223 stats->tx_heartbeat_errors,
3224 stats->tx_compressed);
3225 }
3226
3227 /*
3228 * Called from the PROCfs module. This now uses the new arbitrary sized
3229 * /proc/net interface to create /proc/net/dev
3230 */
3231 static int dev_seq_show(struct seq_file *seq, void *v)
3232 {
3233 if (v == SEQ_START_TOKEN)
3234 seq_puts(seq, "Inter-| Receive "
3235 " | Transmit\n"
3236 " face |bytes packets errs drop fifo frame "
3237 "compressed multicast|bytes packets errs "
3238 "drop fifo colls carrier compressed\n");
3239 else
3240 dev_seq_printf_stats(seq, v);
3241 return 0;
3242 }
3243
3244 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3245 {
3246 struct netif_rx_stats *rc = NULL;
3247
3248 while (*pos < nr_cpu_ids)
3249 if (cpu_online(*pos)) {
3250 rc = &per_cpu(netdev_rx_stat, *pos);
3251 break;
3252 } else
3253 ++*pos;
3254 return rc;
3255 }
3256
3257 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3258 {
3259 return softnet_get_online(pos);
3260 }
3261
3262 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3263 {
3264 ++*pos;
3265 return softnet_get_online(pos);
3266 }
3267
3268 static void softnet_seq_stop(struct seq_file *seq, void *v)
3269 {
3270 }
3271
3272 static int softnet_seq_show(struct seq_file *seq, void *v)
3273 {
3274 struct netif_rx_stats *s = v;
3275
3276 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3277 s->total, s->dropped, s->time_squeeze, 0,
3278 0, 0, 0, 0, /* was fastroute */
3279 s->cpu_collision);
3280 return 0;
3281 }
3282
3283 static const struct seq_operations dev_seq_ops = {
3284 .start = dev_seq_start,
3285 .next = dev_seq_next,
3286 .stop = dev_seq_stop,
3287 .show = dev_seq_show,
3288 };
3289
3290 static int dev_seq_open(struct inode *inode, struct file *file)
3291 {
3292 return seq_open_net(inode, file, &dev_seq_ops,
3293 sizeof(struct seq_net_private));
3294 }
3295
3296 static const struct file_operations dev_seq_fops = {
3297 .owner = THIS_MODULE,
3298 .open = dev_seq_open,
3299 .read = seq_read,
3300 .llseek = seq_lseek,
3301 .release = seq_release_net,
3302 };
3303
3304 static const struct seq_operations softnet_seq_ops = {
3305 .start = softnet_seq_start,
3306 .next = softnet_seq_next,
3307 .stop = softnet_seq_stop,
3308 .show = softnet_seq_show,
3309 };
3310
3311 static int softnet_seq_open(struct inode *inode, struct file *file)
3312 {
3313 return seq_open(file, &softnet_seq_ops);
3314 }
3315
3316 static const struct file_operations softnet_seq_fops = {
3317 .owner = THIS_MODULE,
3318 .open = softnet_seq_open,
3319 .read = seq_read,
3320 .llseek = seq_lseek,
3321 .release = seq_release,
3322 };
3323
3324 static void *ptype_get_idx(loff_t pos)
3325 {
3326 struct packet_type *pt = NULL;
3327 loff_t i = 0;
3328 int t;
3329
3330 list_for_each_entry_rcu(pt, &ptype_all, list) {
3331 if (i == pos)
3332 return pt;
3333 ++i;
3334 }
3335
3336 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3337 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3338 if (i == pos)
3339 return pt;
3340 ++i;
3341 }
3342 }
3343 return NULL;
3344 }
3345
3346 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3347 __acquires(RCU)
3348 {
3349 rcu_read_lock();
3350 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3351 }
3352
3353 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3354 {
3355 struct packet_type *pt;
3356 struct list_head *nxt;
3357 int hash;
3358
3359 ++*pos;
3360 if (v == SEQ_START_TOKEN)
3361 return ptype_get_idx(0);
3362
3363 pt = v;
3364 nxt = pt->list.next;
3365 if (pt->type == htons(ETH_P_ALL)) {
3366 if (nxt != &ptype_all)
3367 goto found;
3368 hash = 0;
3369 nxt = ptype_base[0].next;
3370 } else
3371 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3372
3373 while (nxt == &ptype_base[hash]) {
3374 if (++hash >= PTYPE_HASH_SIZE)
3375 return NULL;
3376 nxt = ptype_base[hash].next;
3377 }
3378 found:
3379 return list_entry(nxt, struct packet_type, list);
3380 }
3381
3382 static void ptype_seq_stop(struct seq_file *seq, void *v)
3383 __releases(RCU)
3384 {
3385 rcu_read_unlock();
3386 }
3387
3388 static int ptype_seq_show(struct seq_file *seq, void *v)
3389 {
3390 struct packet_type *pt = v;
3391
3392 if (v == SEQ_START_TOKEN)
3393 seq_puts(seq, "Type Device Function\n");
3394 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3395 if (pt->type == htons(ETH_P_ALL))
3396 seq_puts(seq, "ALL ");
3397 else
3398 seq_printf(seq, "%04x", ntohs(pt->type));
3399
3400 seq_printf(seq, " %-8s %pF\n",
3401 pt->dev ? pt->dev->name : "", pt->func);
3402 }
3403
3404 return 0;
3405 }
3406
3407 static const struct seq_operations ptype_seq_ops = {
3408 .start = ptype_seq_start,
3409 .next = ptype_seq_next,
3410 .stop = ptype_seq_stop,
3411 .show = ptype_seq_show,
3412 };
3413
3414 static int ptype_seq_open(struct inode *inode, struct file *file)
3415 {
3416 return seq_open_net(inode, file, &ptype_seq_ops,
3417 sizeof(struct seq_net_private));
3418 }
3419
3420 static const struct file_operations ptype_seq_fops = {
3421 .owner = THIS_MODULE,
3422 .open = ptype_seq_open,
3423 .read = seq_read,
3424 .llseek = seq_lseek,
3425 .release = seq_release_net,
3426 };
3427
3428
3429 static int __net_init dev_proc_net_init(struct net *net)
3430 {
3431 int rc = -ENOMEM;
3432
3433 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3434 goto out;
3435 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3436 goto out_dev;
3437 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3438 goto out_softnet;
3439
3440 if (wext_proc_init(net))
3441 goto out_ptype;
3442 rc = 0;
3443 out:
3444 return rc;
3445 out_ptype:
3446 proc_net_remove(net, "ptype");
3447 out_softnet:
3448 proc_net_remove(net, "softnet_stat");
3449 out_dev:
3450 proc_net_remove(net, "dev");
3451 goto out;
3452 }
3453
3454 static void __net_exit dev_proc_net_exit(struct net *net)
3455 {
3456 wext_proc_exit(net);
3457
3458 proc_net_remove(net, "ptype");
3459 proc_net_remove(net, "softnet_stat");
3460 proc_net_remove(net, "dev");
3461 }
3462
3463 static struct pernet_operations __net_initdata dev_proc_ops = {
3464 .init = dev_proc_net_init,
3465 .exit = dev_proc_net_exit,
3466 };
3467
3468 static int __init dev_proc_init(void)
3469 {
3470 return register_pernet_subsys(&dev_proc_ops);
3471 }
3472 #else
3473 #define dev_proc_init() 0
3474 #endif /* CONFIG_PROC_FS */
3475
3476
3477 /**
3478 * netdev_set_master - set up master/slave pair
3479 * @slave: slave device
3480 * @master: new master device
3481 *
3482 * Changes the master device of the slave. Pass %NULL to break the
3483 * bonding. The caller must hold the RTNL semaphore. On a failure
3484 * a negative errno code is returned. On success the reference counts
3485 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3486 * function returns zero.
3487 */
3488 int netdev_set_master(struct net_device *slave, struct net_device *master)
3489 {
3490 struct net_device *old = slave->master;
3491
3492 ASSERT_RTNL();
3493
3494 if (master) {
3495 if (old)
3496 return -EBUSY;
3497 dev_hold(master);
3498 }
3499
3500 slave->master = master;
3501
3502 synchronize_net();
3503
3504 if (old)
3505 dev_put(old);
3506
3507 if (master)
3508 slave->flags |= IFF_SLAVE;
3509 else
3510 slave->flags &= ~IFF_SLAVE;
3511
3512 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3513 return 0;
3514 }
3515 EXPORT_SYMBOL(netdev_set_master);
3516
3517 static void dev_change_rx_flags(struct net_device *dev, int flags)
3518 {
3519 const struct net_device_ops *ops = dev->netdev_ops;
3520
3521 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3522 ops->ndo_change_rx_flags(dev, flags);
3523 }
3524
3525 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3526 {
3527 unsigned short old_flags = dev->flags;
3528 uid_t uid;
3529 gid_t gid;
3530
3531 ASSERT_RTNL();
3532
3533 dev->flags |= IFF_PROMISC;
3534 dev->promiscuity += inc;
3535 if (dev->promiscuity == 0) {
3536 /*
3537 * Avoid overflow.
3538 * If inc causes overflow, untouch promisc and return error.
3539 */
3540 if (inc < 0)
3541 dev->flags &= ~IFF_PROMISC;
3542 else {
3543 dev->promiscuity -= inc;
3544 printk(KERN_WARNING "%s: promiscuity touches roof, "
3545 "set promiscuity failed, promiscuity feature "
3546 "of device might be broken.\n", dev->name);
3547 return -EOVERFLOW;
3548 }
3549 }
3550 if (dev->flags != old_flags) {
3551 printk(KERN_INFO "device %s %s promiscuous mode\n",
3552 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3553 "left");
3554 if (audit_enabled) {
3555 current_uid_gid(&uid, &gid);
3556 audit_log(current->audit_context, GFP_ATOMIC,
3557 AUDIT_ANOM_PROMISCUOUS,
3558 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3559 dev->name, (dev->flags & IFF_PROMISC),
3560 (old_flags & IFF_PROMISC),
3561 audit_get_loginuid(current),
3562 uid, gid,
3563 audit_get_sessionid(current));
3564 }
3565
3566 dev_change_rx_flags(dev, IFF_PROMISC);
3567 }
3568 return 0;
3569 }
3570
3571 /**
3572 * dev_set_promiscuity - update promiscuity count on a device
3573 * @dev: device
3574 * @inc: modifier
3575 *
3576 * Add or remove promiscuity from a device. While the count in the device
3577 * remains above zero the interface remains promiscuous. Once it hits zero
3578 * the device reverts back to normal filtering operation. A negative inc
3579 * value is used to drop promiscuity on the device.
3580 * Return 0 if successful or a negative errno code on error.
3581 */
3582 int dev_set_promiscuity(struct net_device *dev, int inc)
3583 {
3584 unsigned short old_flags = dev->flags;
3585 int err;
3586
3587 err = __dev_set_promiscuity(dev, inc);
3588 if (err < 0)
3589 return err;
3590 if (dev->flags != old_flags)
3591 dev_set_rx_mode(dev);
3592 return err;
3593 }
3594 EXPORT_SYMBOL(dev_set_promiscuity);
3595
3596 /**
3597 * dev_set_allmulti - update allmulti count on a device
3598 * @dev: device
3599 * @inc: modifier
3600 *
3601 * Add or remove reception of all multicast frames to a device. While the
3602 * count in the device remains above zero the interface remains listening
3603 * to all interfaces. Once it hits zero the device reverts back to normal
3604 * filtering operation. A negative @inc value is used to drop the counter
3605 * when releasing a resource needing all multicasts.
3606 * Return 0 if successful or a negative errno code on error.
3607 */
3608
3609 int dev_set_allmulti(struct net_device *dev, int inc)
3610 {
3611 unsigned short old_flags = dev->flags;
3612
3613 ASSERT_RTNL();
3614
3615 dev->flags |= IFF_ALLMULTI;
3616 dev->allmulti += inc;
3617 if (dev->allmulti == 0) {
3618 /*
3619 * Avoid overflow.
3620 * If inc causes overflow, untouch allmulti and return error.
3621 */
3622 if (inc < 0)
3623 dev->flags &= ~IFF_ALLMULTI;
3624 else {
3625 dev->allmulti -= inc;
3626 printk(KERN_WARNING "%s: allmulti touches roof, "
3627 "set allmulti failed, allmulti feature of "
3628 "device might be broken.\n", dev->name);
3629 return -EOVERFLOW;
3630 }
3631 }
3632 if (dev->flags ^ old_flags) {
3633 dev_change_rx_flags(dev, IFF_ALLMULTI);
3634 dev_set_rx_mode(dev);
3635 }
3636 return 0;
3637 }
3638 EXPORT_SYMBOL(dev_set_allmulti);
3639
3640 /*
3641 * Upload unicast and multicast address lists to device and
3642 * configure RX filtering. When the device doesn't support unicast
3643 * filtering it is put in promiscuous mode while unicast addresses
3644 * are present.
3645 */
3646 void __dev_set_rx_mode(struct net_device *dev)
3647 {
3648 const struct net_device_ops *ops = dev->netdev_ops;
3649
3650 /* dev_open will call this function so the list will stay sane. */
3651 if (!(dev->flags&IFF_UP))
3652 return;
3653
3654 if (!netif_device_present(dev))
3655 return;
3656
3657 if (ops->ndo_set_rx_mode)
3658 ops->ndo_set_rx_mode(dev);
3659 else {
3660 /* Unicast addresses changes may only happen under the rtnl,
3661 * therefore calling __dev_set_promiscuity here is safe.
3662 */
3663 if (dev->uc.count > 0 && !dev->uc_promisc) {
3664 __dev_set_promiscuity(dev, 1);
3665 dev->uc_promisc = 1;
3666 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3667 __dev_set_promiscuity(dev, -1);
3668 dev->uc_promisc = 0;
3669 }
3670
3671 if (ops->ndo_set_multicast_list)
3672 ops->ndo_set_multicast_list(dev);
3673 }
3674 }
3675
3676 void dev_set_rx_mode(struct net_device *dev)
3677 {
3678 netif_addr_lock_bh(dev);
3679 __dev_set_rx_mode(dev);
3680 netif_addr_unlock_bh(dev);
3681 }
3682
3683 /* hw addresses list handling functions */
3684
3685 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3686 int addr_len, unsigned char addr_type)
3687 {
3688 struct netdev_hw_addr *ha;
3689 int alloc_size;
3690
3691 if (addr_len > MAX_ADDR_LEN)
3692 return -EINVAL;
3693
3694 list_for_each_entry(ha, &list->list, list) {
3695 if (!memcmp(ha->addr, addr, addr_len) &&
3696 ha->type == addr_type) {
3697 ha->refcount++;
3698 return 0;
3699 }
3700 }
3701
3702
3703 alloc_size = sizeof(*ha);
3704 if (alloc_size < L1_CACHE_BYTES)
3705 alloc_size = L1_CACHE_BYTES;
3706 ha = kmalloc(alloc_size, GFP_ATOMIC);
3707 if (!ha)
3708 return -ENOMEM;
3709 memcpy(ha->addr, addr, addr_len);
3710 ha->type = addr_type;
3711 ha->refcount = 1;
3712 ha->synced = false;
3713 list_add_tail_rcu(&ha->list, &list->list);
3714 list->count++;
3715 return 0;
3716 }
3717
3718 static void ha_rcu_free(struct rcu_head *head)
3719 {
3720 struct netdev_hw_addr *ha;
3721
3722 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3723 kfree(ha);
3724 }
3725
3726 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3727 int addr_len, unsigned char addr_type)
3728 {
3729 struct netdev_hw_addr *ha;
3730
3731 list_for_each_entry(ha, &list->list, list) {
3732 if (!memcmp(ha->addr, addr, addr_len) &&
3733 (ha->type == addr_type || !addr_type)) {
3734 if (--ha->refcount)
3735 return 0;
3736 list_del_rcu(&ha->list);
3737 call_rcu(&ha->rcu_head, ha_rcu_free);
3738 list->count--;
3739 return 0;
3740 }
3741 }
3742 return -ENOENT;
3743 }
3744
3745 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3746 struct netdev_hw_addr_list *from_list,
3747 int addr_len,
3748 unsigned char addr_type)
3749 {
3750 int err;
3751 struct netdev_hw_addr *ha, *ha2;
3752 unsigned char type;
3753
3754 list_for_each_entry(ha, &from_list->list, list) {
3755 type = addr_type ? addr_type : ha->type;
3756 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3757 if (err)
3758 goto unroll;
3759 }
3760 return 0;
3761
3762 unroll:
3763 list_for_each_entry(ha2, &from_list->list, list) {
3764 if (ha2 == ha)
3765 break;
3766 type = addr_type ? addr_type : ha2->type;
3767 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3768 }
3769 return err;
3770 }
3771
3772 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3773 struct netdev_hw_addr_list *from_list,
3774 int addr_len,
3775 unsigned char addr_type)
3776 {
3777 struct netdev_hw_addr *ha;
3778 unsigned char type;
3779
3780 list_for_each_entry(ha, &from_list->list, list) {
3781 type = addr_type ? addr_type : ha->type;
3782 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3783 }
3784 }
3785
3786 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3787 struct netdev_hw_addr_list *from_list,
3788 int addr_len)
3789 {
3790 int err = 0;
3791 struct netdev_hw_addr *ha, *tmp;
3792
3793 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3794 if (!ha->synced) {
3795 err = __hw_addr_add(to_list, ha->addr,
3796 addr_len, ha->type);
3797 if (err)
3798 break;
3799 ha->synced = true;
3800 ha->refcount++;
3801 } else if (ha->refcount == 1) {
3802 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3803 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3804 }
3805 }
3806 return err;
3807 }
3808
3809 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3810 struct netdev_hw_addr_list *from_list,
3811 int addr_len)
3812 {
3813 struct netdev_hw_addr *ha, *tmp;
3814
3815 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3816 if (ha->synced) {
3817 __hw_addr_del(to_list, ha->addr,
3818 addr_len, ha->type);
3819 ha->synced = false;
3820 __hw_addr_del(from_list, ha->addr,
3821 addr_len, ha->type);
3822 }
3823 }
3824 }
3825
3826 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3827 {
3828 struct netdev_hw_addr *ha, *tmp;
3829
3830 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3831 list_del_rcu(&ha->list);
3832 call_rcu(&ha->rcu_head, ha_rcu_free);
3833 }
3834 list->count = 0;
3835 }
3836
3837 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3838 {
3839 INIT_LIST_HEAD(&list->list);
3840 list->count = 0;
3841 }
3842
3843 /* Device addresses handling functions */
3844
3845 static void dev_addr_flush(struct net_device *dev)
3846 {
3847 /* rtnl_mutex must be held here */
3848
3849 __hw_addr_flush(&dev->dev_addrs);
3850 dev->dev_addr = NULL;
3851 }
3852
3853 static int dev_addr_init(struct net_device *dev)
3854 {
3855 unsigned char addr[MAX_ADDR_LEN];
3856 struct netdev_hw_addr *ha;
3857 int err;
3858
3859 /* rtnl_mutex must be held here */
3860
3861 __hw_addr_init(&dev->dev_addrs);
3862 memset(addr, 0, sizeof(addr));
3863 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3864 NETDEV_HW_ADDR_T_LAN);
3865 if (!err) {
3866 /*
3867 * Get the first (previously created) address from the list
3868 * and set dev_addr pointer to this location.
3869 */
3870 ha = list_first_entry(&dev->dev_addrs.list,
3871 struct netdev_hw_addr, list);
3872 dev->dev_addr = ha->addr;
3873 }
3874 return err;
3875 }
3876
3877 /**
3878 * dev_addr_add - Add a device address
3879 * @dev: device
3880 * @addr: address to add
3881 * @addr_type: address type
3882 *
3883 * Add a device address to the device or increase the reference count if
3884 * it already exists.
3885 *
3886 * The caller must hold the rtnl_mutex.
3887 */
3888 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3889 unsigned char addr_type)
3890 {
3891 int err;
3892
3893 ASSERT_RTNL();
3894
3895 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3896 if (!err)
3897 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3898 return err;
3899 }
3900 EXPORT_SYMBOL(dev_addr_add);
3901
3902 /**
3903 * dev_addr_del - Release a device address.
3904 * @dev: device
3905 * @addr: address to delete
3906 * @addr_type: address type
3907 *
3908 * Release reference to a device address and remove it from the device
3909 * if the reference count drops to zero.
3910 *
3911 * The caller must hold the rtnl_mutex.
3912 */
3913 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3914 unsigned char addr_type)
3915 {
3916 int err;
3917 struct netdev_hw_addr *ha;
3918
3919 ASSERT_RTNL();
3920
3921 /*
3922 * We can not remove the first address from the list because
3923 * dev->dev_addr points to that.
3924 */
3925 ha = list_first_entry(&dev->dev_addrs.list,
3926 struct netdev_hw_addr, list);
3927 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3928 return -ENOENT;
3929
3930 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3931 addr_type);
3932 if (!err)
3933 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3934 return err;
3935 }
3936 EXPORT_SYMBOL(dev_addr_del);
3937
3938 /**
3939 * dev_addr_add_multiple - Add device addresses from another device
3940 * @to_dev: device to which addresses will be added
3941 * @from_dev: device from which addresses will be added
3942 * @addr_type: address type - 0 means type will be used from from_dev
3943 *
3944 * Add device addresses of the one device to another.
3945 **
3946 * The caller must hold the rtnl_mutex.
3947 */
3948 int dev_addr_add_multiple(struct net_device *to_dev,
3949 struct net_device *from_dev,
3950 unsigned char addr_type)
3951 {
3952 int err;
3953
3954 ASSERT_RTNL();
3955
3956 if (from_dev->addr_len != to_dev->addr_len)
3957 return -EINVAL;
3958 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3959 to_dev->addr_len, addr_type);
3960 if (!err)
3961 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3962 return err;
3963 }
3964 EXPORT_SYMBOL(dev_addr_add_multiple);
3965
3966 /**
3967 * dev_addr_del_multiple - Delete device addresses by another device
3968 * @to_dev: device where the addresses will be deleted
3969 * @from_dev: device by which addresses the addresses will be deleted
3970 * @addr_type: address type - 0 means type will used from from_dev
3971 *
3972 * Deletes addresses in to device by the list of addresses in from device.
3973 *
3974 * The caller must hold the rtnl_mutex.
3975 */
3976 int dev_addr_del_multiple(struct net_device *to_dev,
3977 struct net_device *from_dev,
3978 unsigned char addr_type)
3979 {
3980 ASSERT_RTNL();
3981
3982 if (from_dev->addr_len != to_dev->addr_len)
3983 return -EINVAL;
3984 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3985 to_dev->addr_len, addr_type);
3986 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3987 return 0;
3988 }
3989 EXPORT_SYMBOL(dev_addr_del_multiple);
3990
3991 /* multicast addresses handling functions */
3992
3993 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3994 void *addr, int alen, int glbl)
3995 {
3996 struct dev_addr_list *da;
3997
3998 for (; (da = *list) != NULL; list = &da->next) {
3999 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4000 alen == da->da_addrlen) {
4001 if (glbl) {
4002 int old_glbl = da->da_gusers;
4003 da->da_gusers = 0;
4004 if (old_glbl == 0)
4005 break;
4006 }
4007 if (--da->da_users)
4008 return 0;
4009
4010 *list = da->next;
4011 kfree(da);
4012 (*count)--;
4013 return 0;
4014 }
4015 }
4016 return -ENOENT;
4017 }
4018
4019 int __dev_addr_add(struct dev_addr_list **list, int *count,
4020 void *addr, int alen, int glbl)
4021 {
4022 struct dev_addr_list *da;
4023
4024 for (da = *list; da != NULL; da = da->next) {
4025 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4026 da->da_addrlen == alen) {
4027 if (glbl) {
4028 int old_glbl = da->da_gusers;
4029 da->da_gusers = 1;
4030 if (old_glbl)
4031 return 0;
4032 }
4033 da->da_users++;
4034 return 0;
4035 }
4036 }
4037
4038 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4039 if (da == NULL)
4040 return -ENOMEM;
4041 memcpy(da->da_addr, addr, alen);
4042 da->da_addrlen = alen;
4043 da->da_users = 1;
4044 da->da_gusers = glbl ? 1 : 0;
4045 da->next = *list;
4046 *list = da;
4047 (*count)++;
4048 return 0;
4049 }
4050
4051 /**
4052 * dev_unicast_delete - Release secondary unicast address.
4053 * @dev: device
4054 * @addr: address to delete
4055 *
4056 * Release reference to a secondary unicast address and remove it
4057 * from the device if the reference count drops to zero.
4058 *
4059 * The caller must hold the rtnl_mutex.
4060 */
4061 int dev_unicast_delete(struct net_device *dev, void *addr)
4062 {
4063 int err;
4064
4065 ASSERT_RTNL();
4066
4067 netif_addr_lock_bh(dev);
4068 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4069 NETDEV_HW_ADDR_T_UNICAST);
4070 if (!err)
4071 __dev_set_rx_mode(dev);
4072 netif_addr_unlock_bh(dev);
4073 return err;
4074 }
4075 EXPORT_SYMBOL(dev_unicast_delete);
4076
4077 /**
4078 * dev_unicast_add - add a secondary unicast address
4079 * @dev: device
4080 * @addr: address to add
4081 *
4082 * Add a secondary unicast address to the device or increase
4083 * the reference count if it already exists.
4084 *
4085 * The caller must hold the rtnl_mutex.
4086 */
4087 int dev_unicast_add(struct net_device *dev, void *addr)
4088 {
4089 int err;
4090
4091 ASSERT_RTNL();
4092
4093 netif_addr_lock_bh(dev);
4094 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4095 NETDEV_HW_ADDR_T_UNICAST);
4096 if (!err)
4097 __dev_set_rx_mode(dev);
4098 netif_addr_unlock_bh(dev);
4099 return err;
4100 }
4101 EXPORT_SYMBOL(dev_unicast_add);
4102
4103 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4104 struct dev_addr_list **from, int *from_count)
4105 {
4106 struct dev_addr_list *da, *next;
4107 int err = 0;
4108
4109 da = *from;
4110 while (da != NULL) {
4111 next = da->next;
4112 if (!da->da_synced) {
4113 err = __dev_addr_add(to, to_count,
4114 da->da_addr, da->da_addrlen, 0);
4115 if (err < 0)
4116 break;
4117 da->da_synced = 1;
4118 da->da_users++;
4119 } else if (da->da_users == 1) {
4120 __dev_addr_delete(to, to_count,
4121 da->da_addr, da->da_addrlen, 0);
4122 __dev_addr_delete(from, from_count,
4123 da->da_addr, da->da_addrlen, 0);
4124 }
4125 da = next;
4126 }
4127 return err;
4128 }
4129 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4130
4131 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4132 struct dev_addr_list **from, int *from_count)
4133 {
4134 struct dev_addr_list *da, *next;
4135
4136 da = *from;
4137 while (da != NULL) {
4138 next = da->next;
4139 if (da->da_synced) {
4140 __dev_addr_delete(to, to_count,
4141 da->da_addr, da->da_addrlen, 0);
4142 da->da_synced = 0;
4143 __dev_addr_delete(from, from_count,
4144 da->da_addr, da->da_addrlen, 0);
4145 }
4146 da = next;
4147 }
4148 }
4149 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4150
4151 /**
4152 * dev_unicast_sync - Synchronize device's unicast list to another device
4153 * @to: destination device
4154 * @from: source device
4155 *
4156 * Add newly added addresses to the destination device and release
4157 * addresses that have no users left. The source device must be
4158 * locked by netif_tx_lock_bh.
4159 *
4160 * This function is intended to be called from the dev->set_rx_mode
4161 * function of layered software devices.
4162 */
4163 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4164 {
4165 int err = 0;
4166
4167 if (to->addr_len != from->addr_len)
4168 return -EINVAL;
4169
4170 netif_addr_lock_bh(to);
4171 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4172 if (!err)
4173 __dev_set_rx_mode(to);
4174 netif_addr_unlock_bh(to);
4175 return err;
4176 }
4177 EXPORT_SYMBOL(dev_unicast_sync);
4178
4179 /**
4180 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4181 * @to: destination device
4182 * @from: source device
4183 *
4184 * Remove all addresses that were added to the destination device by
4185 * dev_unicast_sync(). This function is intended to be called from the
4186 * dev->stop function of layered software devices.
4187 */
4188 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4189 {
4190 if (to->addr_len != from->addr_len)
4191 return;
4192
4193 netif_addr_lock_bh(from);
4194 netif_addr_lock(to);
4195 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4196 __dev_set_rx_mode(to);
4197 netif_addr_unlock(to);
4198 netif_addr_unlock_bh(from);
4199 }
4200 EXPORT_SYMBOL(dev_unicast_unsync);
4201
4202 static void dev_unicast_flush(struct net_device *dev)
4203 {
4204 netif_addr_lock_bh(dev);
4205 __hw_addr_flush(&dev->uc);
4206 netif_addr_unlock_bh(dev);
4207 }
4208
4209 static void dev_unicast_init(struct net_device *dev)
4210 {
4211 __hw_addr_init(&dev->uc);
4212 }
4213
4214
4215 static void __dev_addr_discard(struct dev_addr_list **list)
4216 {
4217 struct dev_addr_list *tmp;
4218
4219 while (*list != NULL) {
4220 tmp = *list;
4221 *list = tmp->next;
4222 if (tmp->da_users > tmp->da_gusers)
4223 printk("__dev_addr_discard: address leakage! "
4224 "da_users=%d\n", tmp->da_users);
4225 kfree(tmp);
4226 }
4227 }
4228
4229 static void dev_addr_discard(struct net_device *dev)
4230 {
4231 netif_addr_lock_bh(dev);
4232
4233 __dev_addr_discard(&dev->mc_list);
4234 dev->mc_count = 0;
4235
4236 netif_addr_unlock_bh(dev);
4237 }
4238
4239 /**
4240 * dev_get_flags - get flags reported to userspace
4241 * @dev: device
4242 *
4243 * Get the combination of flag bits exported through APIs to userspace.
4244 */
4245 unsigned dev_get_flags(const struct net_device *dev)
4246 {
4247 unsigned flags;
4248
4249 flags = (dev->flags & ~(IFF_PROMISC |
4250 IFF_ALLMULTI |
4251 IFF_RUNNING |
4252 IFF_LOWER_UP |
4253 IFF_DORMANT)) |
4254 (dev->gflags & (IFF_PROMISC |
4255 IFF_ALLMULTI));
4256
4257 if (netif_running(dev)) {
4258 if (netif_oper_up(dev))
4259 flags |= IFF_RUNNING;
4260 if (netif_carrier_ok(dev))
4261 flags |= IFF_LOWER_UP;
4262 if (netif_dormant(dev))
4263 flags |= IFF_DORMANT;
4264 }
4265
4266 return flags;
4267 }
4268 EXPORT_SYMBOL(dev_get_flags);
4269
4270 /**
4271 * dev_change_flags - change device settings
4272 * @dev: device
4273 * @flags: device state flags
4274 *
4275 * Change settings on device based state flags. The flags are
4276 * in the userspace exported format.
4277 */
4278 int dev_change_flags(struct net_device *dev, unsigned flags)
4279 {
4280 int ret, changes;
4281 int old_flags = dev->flags;
4282
4283 ASSERT_RTNL();
4284
4285 /*
4286 * Set the flags on our device.
4287 */
4288
4289 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4290 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4291 IFF_AUTOMEDIA)) |
4292 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4293 IFF_ALLMULTI));
4294
4295 /*
4296 * Load in the correct multicast list now the flags have changed.
4297 */
4298
4299 if ((old_flags ^ flags) & IFF_MULTICAST)
4300 dev_change_rx_flags(dev, IFF_MULTICAST);
4301
4302 dev_set_rx_mode(dev);
4303
4304 /*
4305 * Have we downed the interface. We handle IFF_UP ourselves
4306 * according to user attempts to set it, rather than blindly
4307 * setting it.
4308 */
4309
4310 ret = 0;
4311 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4312 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4313
4314 if (!ret)
4315 dev_set_rx_mode(dev);
4316 }
4317
4318 if (dev->flags & IFF_UP &&
4319 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4320 IFF_VOLATILE)))
4321 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4322
4323 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4324 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4325
4326 dev->gflags ^= IFF_PROMISC;
4327 dev_set_promiscuity(dev, inc);
4328 }
4329
4330 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4331 is important. Some (broken) drivers set IFF_PROMISC, when
4332 IFF_ALLMULTI is requested not asking us and not reporting.
4333 */
4334 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4335 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4336
4337 dev->gflags ^= IFF_ALLMULTI;
4338 dev_set_allmulti(dev, inc);
4339 }
4340
4341 /* Exclude state transition flags, already notified */
4342 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4343 if (changes)
4344 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4345
4346 return ret;
4347 }
4348 EXPORT_SYMBOL(dev_change_flags);
4349
4350 /**
4351 * dev_set_mtu - Change maximum transfer unit
4352 * @dev: device
4353 * @new_mtu: new transfer unit
4354 *
4355 * Change the maximum transfer size of the network device.
4356 */
4357 int dev_set_mtu(struct net_device *dev, int new_mtu)
4358 {
4359 const struct net_device_ops *ops = dev->netdev_ops;
4360 int err;
4361
4362 if (new_mtu == dev->mtu)
4363 return 0;
4364
4365 /* MTU must be positive. */
4366 if (new_mtu < 0)
4367 return -EINVAL;
4368
4369 if (!netif_device_present(dev))
4370 return -ENODEV;
4371
4372 err = 0;
4373 if (ops->ndo_change_mtu)
4374 err = ops->ndo_change_mtu(dev, new_mtu);
4375 else
4376 dev->mtu = new_mtu;
4377
4378 if (!err && dev->flags & IFF_UP)
4379 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4380 return err;
4381 }
4382 EXPORT_SYMBOL(dev_set_mtu);
4383
4384 /**
4385 * dev_set_mac_address - Change Media Access Control Address
4386 * @dev: device
4387 * @sa: new address
4388 *
4389 * Change the hardware (MAC) address of the device
4390 */
4391 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4392 {
4393 const struct net_device_ops *ops = dev->netdev_ops;
4394 int err;
4395
4396 if (!ops->ndo_set_mac_address)
4397 return -EOPNOTSUPP;
4398 if (sa->sa_family != dev->type)
4399 return -EINVAL;
4400 if (!netif_device_present(dev))
4401 return -ENODEV;
4402 err = ops->ndo_set_mac_address(dev, sa);
4403 if (!err)
4404 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4405 return err;
4406 }
4407 EXPORT_SYMBOL(dev_set_mac_address);
4408
4409 /*
4410 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4411 */
4412 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4413 {
4414 int err;
4415 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4416
4417 if (!dev)
4418 return -ENODEV;
4419
4420 switch (cmd) {
4421 case SIOCGIFFLAGS: /* Get interface flags */
4422 ifr->ifr_flags = (short) dev_get_flags(dev);
4423 return 0;
4424
4425 case SIOCGIFMETRIC: /* Get the metric on the interface
4426 (currently unused) */
4427 ifr->ifr_metric = 0;
4428 return 0;
4429
4430 case SIOCGIFMTU: /* Get the MTU of a device */
4431 ifr->ifr_mtu = dev->mtu;
4432 return 0;
4433
4434 case SIOCGIFHWADDR:
4435 if (!dev->addr_len)
4436 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4437 else
4438 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4439 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4440 ifr->ifr_hwaddr.sa_family = dev->type;
4441 return 0;
4442
4443 case SIOCGIFSLAVE:
4444 err = -EINVAL;
4445 break;
4446
4447 case SIOCGIFMAP:
4448 ifr->ifr_map.mem_start = dev->mem_start;
4449 ifr->ifr_map.mem_end = dev->mem_end;
4450 ifr->ifr_map.base_addr = dev->base_addr;
4451 ifr->ifr_map.irq = dev->irq;
4452 ifr->ifr_map.dma = dev->dma;
4453 ifr->ifr_map.port = dev->if_port;
4454 return 0;
4455
4456 case SIOCGIFINDEX:
4457 ifr->ifr_ifindex = dev->ifindex;
4458 return 0;
4459
4460 case SIOCGIFTXQLEN:
4461 ifr->ifr_qlen = dev->tx_queue_len;
4462 return 0;
4463
4464 default:
4465 /* dev_ioctl() should ensure this case
4466 * is never reached
4467 */
4468 WARN_ON(1);
4469 err = -EINVAL;
4470 break;
4471
4472 }
4473 return err;
4474 }
4475
4476 /*
4477 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4478 */
4479 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4480 {
4481 int err;
4482 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4483 const struct net_device_ops *ops;
4484
4485 if (!dev)
4486 return -ENODEV;
4487
4488 ops = dev->netdev_ops;
4489
4490 switch (cmd) {
4491 case SIOCSIFFLAGS: /* Set interface flags */
4492 return dev_change_flags(dev, ifr->ifr_flags);
4493
4494 case SIOCSIFMETRIC: /* Set the metric on the interface
4495 (currently unused) */
4496 return -EOPNOTSUPP;
4497
4498 case SIOCSIFMTU: /* Set the MTU of a device */
4499 return dev_set_mtu(dev, ifr->ifr_mtu);
4500
4501 case SIOCSIFHWADDR:
4502 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4503
4504 case SIOCSIFHWBROADCAST:
4505 if (ifr->ifr_hwaddr.sa_family != dev->type)
4506 return -EINVAL;
4507 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4508 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4509 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4510 return 0;
4511
4512 case SIOCSIFMAP:
4513 if (ops->ndo_set_config) {
4514 if (!netif_device_present(dev))
4515 return -ENODEV;
4516 return ops->ndo_set_config(dev, &ifr->ifr_map);
4517 }
4518 return -EOPNOTSUPP;
4519
4520 case SIOCADDMULTI:
4521 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4522 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4523 return -EINVAL;
4524 if (!netif_device_present(dev))
4525 return -ENODEV;
4526 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4527 dev->addr_len, 1);
4528
4529 case SIOCDELMULTI:
4530 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4531 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4532 return -EINVAL;
4533 if (!netif_device_present(dev))
4534 return -ENODEV;
4535 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4536 dev->addr_len, 1);
4537
4538 case SIOCSIFTXQLEN:
4539 if (ifr->ifr_qlen < 0)
4540 return -EINVAL;
4541 dev->tx_queue_len = ifr->ifr_qlen;
4542 return 0;
4543
4544 case SIOCSIFNAME:
4545 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4546 return dev_change_name(dev, ifr->ifr_newname);
4547
4548 /*
4549 * Unknown or private ioctl
4550 */
4551 default:
4552 if ((cmd >= SIOCDEVPRIVATE &&
4553 cmd <= SIOCDEVPRIVATE + 15) ||
4554 cmd == SIOCBONDENSLAVE ||
4555 cmd == SIOCBONDRELEASE ||
4556 cmd == SIOCBONDSETHWADDR ||
4557 cmd == SIOCBONDSLAVEINFOQUERY ||
4558 cmd == SIOCBONDINFOQUERY ||
4559 cmd == SIOCBONDCHANGEACTIVE ||
4560 cmd == SIOCGMIIPHY ||
4561 cmd == SIOCGMIIREG ||
4562 cmd == SIOCSMIIREG ||
4563 cmd == SIOCBRADDIF ||
4564 cmd == SIOCBRDELIF ||
4565 cmd == SIOCSHWTSTAMP ||
4566 cmd == SIOCWANDEV) {
4567 err = -EOPNOTSUPP;
4568 if (ops->ndo_do_ioctl) {
4569 if (netif_device_present(dev))
4570 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4571 else
4572 err = -ENODEV;
4573 }
4574 } else
4575 err = -EINVAL;
4576
4577 }
4578 return err;
4579 }
4580
4581 /*
4582 * This function handles all "interface"-type I/O control requests. The actual
4583 * 'doing' part of this is dev_ifsioc above.
4584 */
4585
4586 /**
4587 * dev_ioctl - network device ioctl
4588 * @net: the applicable net namespace
4589 * @cmd: command to issue
4590 * @arg: pointer to a struct ifreq in user space
4591 *
4592 * Issue ioctl functions to devices. This is normally called by the
4593 * user space syscall interfaces but can sometimes be useful for
4594 * other purposes. The return value is the return from the syscall if
4595 * positive or a negative errno code on error.
4596 */
4597
4598 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4599 {
4600 struct ifreq ifr;
4601 int ret;
4602 char *colon;
4603
4604 /* One special case: SIOCGIFCONF takes ifconf argument
4605 and requires shared lock, because it sleeps writing
4606 to user space.
4607 */
4608
4609 if (cmd == SIOCGIFCONF) {
4610 rtnl_lock();
4611 ret = dev_ifconf(net, (char __user *) arg);
4612 rtnl_unlock();
4613 return ret;
4614 }
4615 if (cmd == SIOCGIFNAME)
4616 return dev_ifname(net, (struct ifreq __user *)arg);
4617
4618 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4619 return -EFAULT;
4620
4621 ifr.ifr_name[IFNAMSIZ-1] = 0;
4622
4623 colon = strchr(ifr.ifr_name, ':');
4624 if (colon)
4625 *colon = 0;
4626
4627 /*
4628 * See which interface the caller is talking about.
4629 */
4630
4631 switch (cmd) {
4632 /*
4633 * These ioctl calls:
4634 * - can be done by all.
4635 * - atomic and do not require locking.
4636 * - return a value
4637 */
4638 case SIOCGIFFLAGS:
4639 case SIOCGIFMETRIC:
4640 case SIOCGIFMTU:
4641 case SIOCGIFHWADDR:
4642 case SIOCGIFSLAVE:
4643 case SIOCGIFMAP:
4644 case SIOCGIFINDEX:
4645 case SIOCGIFTXQLEN:
4646 dev_load(net, ifr.ifr_name);
4647 rcu_read_lock();
4648 ret = dev_ifsioc_locked(net, &ifr, cmd);
4649 rcu_read_unlock();
4650 if (!ret) {
4651 if (colon)
4652 *colon = ':';
4653 if (copy_to_user(arg, &ifr,
4654 sizeof(struct ifreq)))
4655 ret = -EFAULT;
4656 }
4657 return ret;
4658
4659 case SIOCETHTOOL:
4660 dev_load(net, ifr.ifr_name);
4661 rtnl_lock();
4662 ret = dev_ethtool(net, &ifr);
4663 rtnl_unlock();
4664 if (!ret) {
4665 if (colon)
4666 *colon = ':';
4667 if (copy_to_user(arg, &ifr,
4668 sizeof(struct ifreq)))
4669 ret = -EFAULT;
4670 }
4671 return ret;
4672
4673 /*
4674 * These ioctl calls:
4675 * - require superuser power.
4676 * - require strict serialization.
4677 * - return a value
4678 */
4679 case SIOCGMIIPHY:
4680 case SIOCGMIIREG:
4681 case SIOCSIFNAME:
4682 if (!capable(CAP_NET_ADMIN))
4683 return -EPERM;
4684 dev_load(net, ifr.ifr_name);
4685 rtnl_lock();
4686 ret = dev_ifsioc(net, &ifr, cmd);
4687 rtnl_unlock();
4688 if (!ret) {
4689 if (colon)
4690 *colon = ':';
4691 if (copy_to_user(arg, &ifr,
4692 sizeof(struct ifreq)))
4693 ret = -EFAULT;
4694 }
4695 return ret;
4696
4697 /*
4698 * These ioctl calls:
4699 * - require superuser power.
4700 * - require strict serialization.
4701 * - do not return a value
4702 */
4703 case SIOCSIFFLAGS:
4704 case SIOCSIFMETRIC:
4705 case SIOCSIFMTU:
4706 case SIOCSIFMAP:
4707 case SIOCSIFHWADDR:
4708 case SIOCSIFSLAVE:
4709 case SIOCADDMULTI:
4710 case SIOCDELMULTI:
4711 case SIOCSIFHWBROADCAST:
4712 case SIOCSIFTXQLEN:
4713 case SIOCSMIIREG:
4714 case SIOCBONDENSLAVE:
4715 case SIOCBONDRELEASE:
4716 case SIOCBONDSETHWADDR:
4717 case SIOCBONDCHANGEACTIVE:
4718 case SIOCBRADDIF:
4719 case SIOCBRDELIF:
4720 case SIOCSHWTSTAMP:
4721 if (!capable(CAP_NET_ADMIN))
4722 return -EPERM;
4723 /* fall through */
4724 case SIOCBONDSLAVEINFOQUERY:
4725 case SIOCBONDINFOQUERY:
4726 dev_load(net, ifr.ifr_name);
4727 rtnl_lock();
4728 ret = dev_ifsioc(net, &ifr, cmd);
4729 rtnl_unlock();
4730 return ret;
4731
4732 case SIOCGIFMEM:
4733 /* Get the per device memory space. We can add this but
4734 * currently do not support it */
4735 case SIOCSIFMEM:
4736 /* Set the per device memory buffer space.
4737 * Not applicable in our case */
4738 case SIOCSIFLINK:
4739 return -EINVAL;
4740
4741 /*
4742 * Unknown or private ioctl.
4743 */
4744 default:
4745 if (cmd == SIOCWANDEV ||
4746 (cmd >= SIOCDEVPRIVATE &&
4747 cmd <= SIOCDEVPRIVATE + 15)) {
4748 dev_load(net, ifr.ifr_name);
4749 rtnl_lock();
4750 ret = dev_ifsioc(net, &ifr, cmd);
4751 rtnl_unlock();
4752 if (!ret && copy_to_user(arg, &ifr,
4753 sizeof(struct ifreq)))
4754 ret = -EFAULT;
4755 return ret;
4756 }
4757 /* Take care of Wireless Extensions */
4758 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4759 return wext_handle_ioctl(net, &ifr, cmd, arg);
4760 return -EINVAL;
4761 }
4762 }
4763
4764
4765 /**
4766 * dev_new_index - allocate an ifindex
4767 * @net: the applicable net namespace
4768 *
4769 * Returns a suitable unique value for a new device interface
4770 * number. The caller must hold the rtnl semaphore or the
4771 * dev_base_lock to be sure it remains unique.
4772 */
4773 static int dev_new_index(struct net *net)
4774 {
4775 static int ifindex;
4776 for (;;) {
4777 if (++ifindex <= 0)
4778 ifindex = 1;
4779 if (!__dev_get_by_index(net, ifindex))
4780 return ifindex;
4781 }
4782 }
4783
4784 /* Delayed registration/unregisteration */
4785 static LIST_HEAD(net_todo_list);
4786
4787 static void net_set_todo(struct net_device *dev)
4788 {
4789 list_add_tail(&dev->todo_list, &net_todo_list);
4790 }
4791
4792 static void rollback_registered_many(struct list_head *head)
4793 {
4794 struct net_device *dev, *tmp;
4795
4796 BUG_ON(dev_boot_phase);
4797 ASSERT_RTNL();
4798
4799 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4800 /* Some devices call without registering
4801 * for initialization unwind. Remove those
4802 * devices and proceed with the remaining.
4803 */
4804 if (dev->reg_state == NETREG_UNINITIALIZED) {
4805 pr_debug("unregister_netdevice: device %s/%p never "
4806 "was registered\n", dev->name, dev);
4807
4808 WARN_ON(1);
4809 list_del(&dev->unreg_list);
4810 continue;
4811 }
4812
4813 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4814
4815 /* If device is running, close it first. */
4816 dev_close(dev);
4817
4818 /* And unlink it from device chain. */
4819 unlist_netdevice(dev);
4820
4821 dev->reg_state = NETREG_UNREGISTERING;
4822 }
4823
4824 synchronize_net();
4825
4826 list_for_each_entry(dev, head, unreg_list) {
4827 /* Shutdown queueing discipline. */
4828 dev_shutdown(dev);
4829
4830
4831 /* Notify protocols, that we are about to destroy
4832 this device. They should clean all the things.
4833 */
4834 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4835
4836 /*
4837 * Flush the unicast and multicast chains
4838 */
4839 dev_unicast_flush(dev);
4840 dev_addr_discard(dev);
4841
4842 if (dev->netdev_ops->ndo_uninit)
4843 dev->netdev_ops->ndo_uninit(dev);
4844
4845 /* Notifier chain MUST detach us from master device. */
4846 WARN_ON(dev->master);
4847
4848 /* Remove entries from kobject tree */
4849 netdev_unregister_kobject(dev);
4850 }
4851
4852 /* Process any work delayed until the end of the batch */
4853 dev = list_entry(head->next, struct net_device, unreg_list);
4854 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4855
4856 synchronize_net();
4857
4858 list_for_each_entry(dev, head, unreg_list)
4859 dev_put(dev);
4860 }
4861
4862 static void rollback_registered(struct net_device *dev)
4863 {
4864 LIST_HEAD(single);
4865
4866 list_add(&dev->unreg_list, &single);
4867 rollback_registered_many(&single);
4868 }
4869
4870 static void __netdev_init_queue_locks_one(struct net_device *dev,
4871 struct netdev_queue *dev_queue,
4872 void *_unused)
4873 {
4874 spin_lock_init(&dev_queue->_xmit_lock);
4875 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4876 dev_queue->xmit_lock_owner = -1;
4877 }
4878
4879 static void netdev_init_queue_locks(struct net_device *dev)
4880 {
4881 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4882 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4883 }
4884
4885 unsigned long netdev_fix_features(unsigned long features, const char *name)
4886 {
4887 /* Fix illegal SG+CSUM combinations. */
4888 if ((features & NETIF_F_SG) &&
4889 !(features & NETIF_F_ALL_CSUM)) {
4890 if (name)
4891 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4892 "checksum feature.\n", name);
4893 features &= ~NETIF_F_SG;
4894 }
4895
4896 /* TSO requires that SG is present as well. */
4897 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4898 if (name)
4899 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4900 "SG feature.\n", name);
4901 features &= ~NETIF_F_TSO;
4902 }
4903
4904 if (features & NETIF_F_UFO) {
4905 if (!(features & NETIF_F_GEN_CSUM)) {
4906 if (name)
4907 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4908 "since no NETIF_F_HW_CSUM feature.\n",
4909 name);
4910 features &= ~NETIF_F_UFO;
4911 }
4912
4913 if (!(features & NETIF_F_SG)) {
4914 if (name)
4915 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4916 "since no NETIF_F_SG feature.\n", name);
4917 features &= ~NETIF_F_UFO;
4918 }
4919 }
4920
4921 return features;
4922 }
4923 EXPORT_SYMBOL(netdev_fix_features);
4924
4925 /**
4926 * netif_stacked_transfer_operstate - transfer operstate
4927 * @rootdev: the root or lower level device to transfer state from
4928 * @dev: the device to transfer operstate to
4929 *
4930 * Transfer operational state from root to device. This is normally
4931 * called when a stacking relationship exists between the root
4932 * device and the device(a leaf device).
4933 */
4934 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4935 struct net_device *dev)
4936 {
4937 if (rootdev->operstate == IF_OPER_DORMANT)
4938 netif_dormant_on(dev);
4939 else
4940 netif_dormant_off(dev);
4941
4942 if (netif_carrier_ok(rootdev)) {
4943 if (!netif_carrier_ok(dev))
4944 netif_carrier_on(dev);
4945 } else {
4946 if (netif_carrier_ok(dev))
4947 netif_carrier_off(dev);
4948 }
4949 }
4950 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4951
4952 /**
4953 * register_netdevice - register a network device
4954 * @dev: device to register
4955 *
4956 * Take a completed network device structure and add it to the kernel
4957 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4958 * chain. 0 is returned on success. A negative errno code is returned
4959 * on a failure to set up the device, or if the name is a duplicate.
4960 *
4961 * Callers must hold the rtnl semaphore. You may want
4962 * register_netdev() instead of this.
4963 *
4964 * BUGS:
4965 * The locking appears insufficient to guarantee two parallel registers
4966 * will not get the same name.
4967 */
4968
4969 int register_netdevice(struct net_device *dev)
4970 {
4971 int ret;
4972 struct net *net = dev_net(dev);
4973
4974 BUG_ON(dev_boot_phase);
4975 ASSERT_RTNL();
4976
4977 might_sleep();
4978
4979 /* When net_device's are persistent, this will be fatal. */
4980 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4981 BUG_ON(!net);
4982
4983 spin_lock_init(&dev->addr_list_lock);
4984 netdev_set_addr_lockdep_class(dev);
4985 netdev_init_queue_locks(dev);
4986
4987 dev->iflink = -1;
4988
4989 /* Init, if this function is available */
4990 if (dev->netdev_ops->ndo_init) {
4991 ret = dev->netdev_ops->ndo_init(dev);
4992 if (ret) {
4993 if (ret > 0)
4994 ret = -EIO;
4995 goto out;
4996 }
4997 }
4998
4999 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5000 if (ret)
5001 goto err_uninit;
5002
5003 dev->ifindex = dev_new_index(net);
5004 if (dev->iflink == -1)
5005 dev->iflink = dev->ifindex;
5006
5007 /* Fix illegal checksum combinations */
5008 if ((dev->features & NETIF_F_HW_CSUM) &&
5009 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5010 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5011 dev->name);
5012 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5013 }
5014
5015 if ((dev->features & NETIF_F_NO_CSUM) &&
5016 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5017 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5018 dev->name);
5019 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5020 }
5021
5022 dev->features = netdev_fix_features(dev->features, dev->name);
5023
5024 /* Enable software GSO if SG is supported. */
5025 if (dev->features & NETIF_F_SG)
5026 dev->features |= NETIF_F_GSO;
5027
5028 netdev_initialize_kobject(dev);
5029
5030 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5031 ret = notifier_to_errno(ret);
5032 if (ret)
5033 goto err_uninit;
5034
5035 ret = netdev_register_kobject(dev);
5036 if (ret)
5037 goto err_uninit;
5038 dev->reg_state = NETREG_REGISTERED;
5039
5040 /*
5041 * Default initial state at registry is that the
5042 * device is present.
5043 */
5044
5045 set_bit(__LINK_STATE_PRESENT, &dev->state);
5046
5047 dev_init_scheduler(dev);
5048 dev_hold(dev);
5049 list_netdevice(dev);
5050
5051 /* Notify protocols, that a new device appeared. */
5052 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5053 ret = notifier_to_errno(ret);
5054 if (ret) {
5055 rollback_registered(dev);
5056 dev->reg_state = NETREG_UNREGISTERED;
5057 }
5058 /*
5059 * Prevent userspace races by waiting until the network
5060 * device is fully setup before sending notifications.
5061 */
5062 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5063
5064 out:
5065 return ret;
5066
5067 err_uninit:
5068 if (dev->netdev_ops->ndo_uninit)
5069 dev->netdev_ops->ndo_uninit(dev);
5070 goto out;
5071 }
5072 EXPORT_SYMBOL(register_netdevice);
5073
5074 /**
5075 * init_dummy_netdev - init a dummy network device for NAPI
5076 * @dev: device to init
5077 *
5078 * This takes a network device structure and initialize the minimum
5079 * amount of fields so it can be used to schedule NAPI polls without
5080 * registering a full blown interface. This is to be used by drivers
5081 * that need to tie several hardware interfaces to a single NAPI
5082 * poll scheduler due to HW limitations.
5083 */
5084 int init_dummy_netdev(struct net_device *dev)
5085 {
5086 /* Clear everything. Note we don't initialize spinlocks
5087 * are they aren't supposed to be taken by any of the
5088 * NAPI code and this dummy netdev is supposed to be
5089 * only ever used for NAPI polls
5090 */
5091 memset(dev, 0, sizeof(struct net_device));
5092
5093 /* make sure we BUG if trying to hit standard
5094 * register/unregister code path
5095 */
5096 dev->reg_state = NETREG_DUMMY;
5097
5098 /* initialize the ref count */
5099 atomic_set(&dev->refcnt, 1);
5100
5101 /* NAPI wants this */
5102 INIT_LIST_HEAD(&dev->napi_list);
5103
5104 /* a dummy interface is started by default */
5105 set_bit(__LINK_STATE_PRESENT, &dev->state);
5106 set_bit(__LINK_STATE_START, &dev->state);
5107
5108 return 0;
5109 }
5110 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5111
5112
5113 /**
5114 * register_netdev - register a network device
5115 * @dev: device to register
5116 *
5117 * Take a completed network device structure and add it to the kernel
5118 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5119 * chain. 0 is returned on success. A negative errno code is returned
5120 * on a failure to set up the device, or if the name is a duplicate.
5121 *
5122 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5123 * and expands the device name if you passed a format string to
5124 * alloc_netdev.
5125 */
5126 int register_netdev(struct net_device *dev)
5127 {
5128 int err;
5129
5130 rtnl_lock();
5131
5132 /*
5133 * If the name is a format string the caller wants us to do a
5134 * name allocation.
5135 */
5136 if (strchr(dev->name, '%')) {
5137 err = dev_alloc_name(dev, dev->name);
5138 if (err < 0)
5139 goto out;
5140 }
5141
5142 err = register_netdevice(dev);
5143 out:
5144 rtnl_unlock();
5145 return err;
5146 }
5147 EXPORT_SYMBOL(register_netdev);
5148
5149 /*
5150 * netdev_wait_allrefs - wait until all references are gone.
5151 *
5152 * This is called when unregistering network devices.
5153 *
5154 * Any protocol or device that holds a reference should register
5155 * for netdevice notification, and cleanup and put back the
5156 * reference if they receive an UNREGISTER event.
5157 * We can get stuck here if buggy protocols don't correctly
5158 * call dev_put.
5159 */
5160 static void netdev_wait_allrefs(struct net_device *dev)
5161 {
5162 unsigned long rebroadcast_time, warning_time;
5163
5164 linkwatch_forget_dev(dev);
5165
5166 rebroadcast_time = warning_time = jiffies;
5167 while (atomic_read(&dev->refcnt) != 0) {
5168 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5169 rtnl_lock();
5170
5171 /* Rebroadcast unregister notification */
5172 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5173 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5174 * should have already handle it the first time */
5175
5176 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5177 &dev->state)) {
5178 /* We must not have linkwatch events
5179 * pending on unregister. If this
5180 * happens, we simply run the queue
5181 * unscheduled, resulting in a noop
5182 * for this device.
5183 */
5184 linkwatch_run_queue();
5185 }
5186
5187 __rtnl_unlock();
5188
5189 rebroadcast_time = jiffies;
5190 }
5191
5192 msleep(250);
5193
5194 if (time_after(jiffies, warning_time + 10 * HZ)) {
5195 printk(KERN_EMERG "unregister_netdevice: "
5196 "waiting for %s to become free. Usage "
5197 "count = %d\n",
5198 dev->name, atomic_read(&dev->refcnt));
5199 warning_time = jiffies;
5200 }
5201 }
5202 }
5203
5204 /* The sequence is:
5205 *
5206 * rtnl_lock();
5207 * ...
5208 * register_netdevice(x1);
5209 * register_netdevice(x2);
5210 * ...
5211 * unregister_netdevice(y1);
5212 * unregister_netdevice(y2);
5213 * ...
5214 * rtnl_unlock();
5215 * free_netdev(y1);
5216 * free_netdev(y2);
5217 *
5218 * We are invoked by rtnl_unlock().
5219 * This allows us to deal with problems:
5220 * 1) We can delete sysfs objects which invoke hotplug
5221 * without deadlocking with linkwatch via keventd.
5222 * 2) Since we run with the RTNL semaphore not held, we can sleep
5223 * safely in order to wait for the netdev refcnt to drop to zero.
5224 *
5225 * We must not return until all unregister events added during
5226 * the interval the lock was held have been completed.
5227 */
5228 void netdev_run_todo(void)
5229 {
5230 struct list_head list;
5231
5232 /* Snapshot list, allow later requests */
5233 list_replace_init(&net_todo_list, &list);
5234
5235 __rtnl_unlock();
5236
5237 while (!list_empty(&list)) {
5238 struct net_device *dev
5239 = list_entry(list.next, struct net_device, todo_list);
5240 list_del(&dev->todo_list);
5241
5242 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5243 printk(KERN_ERR "network todo '%s' but state %d\n",
5244 dev->name, dev->reg_state);
5245 dump_stack();
5246 continue;
5247 }
5248
5249 dev->reg_state = NETREG_UNREGISTERED;
5250
5251 on_each_cpu(flush_backlog, dev, 1);
5252
5253 netdev_wait_allrefs(dev);
5254
5255 /* paranoia */
5256 BUG_ON(atomic_read(&dev->refcnt));
5257 WARN_ON(dev->ip_ptr);
5258 WARN_ON(dev->ip6_ptr);
5259 WARN_ON(dev->dn_ptr);
5260
5261 if (dev->destructor)
5262 dev->destructor(dev);
5263
5264 /* Free network device */
5265 kobject_put(&dev->dev.kobj);
5266 }
5267 }
5268
5269 /**
5270 * dev_txq_stats_fold - fold tx_queues stats
5271 * @dev: device to get statistics from
5272 * @stats: struct net_device_stats to hold results
5273 */
5274 void dev_txq_stats_fold(const struct net_device *dev,
5275 struct net_device_stats *stats)
5276 {
5277 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5278 unsigned int i;
5279 struct netdev_queue *txq;
5280
5281 for (i = 0; i < dev->num_tx_queues; i++) {
5282 txq = netdev_get_tx_queue(dev, i);
5283 tx_bytes += txq->tx_bytes;
5284 tx_packets += txq->tx_packets;
5285 tx_dropped += txq->tx_dropped;
5286 }
5287 if (tx_bytes || tx_packets || tx_dropped) {
5288 stats->tx_bytes = tx_bytes;
5289 stats->tx_packets = tx_packets;
5290 stats->tx_dropped = tx_dropped;
5291 }
5292 }
5293 EXPORT_SYMBOL(dev_txq_stats_fold);
5294
5295 /**
5296 * dev_get_stats - get network device statistics
5297 * @dev: device to get statistics from
5298 *
5299 * Get network statistics from device. The device driver may provide
5300 * its own method by setting dev->netdev_ops->get_stats; otherwise
5301 * the internal statistics structure is used.
5302 */
5303 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5304 {
5305 const struct net_device_ops *ops = dev->netdev_ops;
5306
5307 if (ops->ndo_get_stats)
5308 return ops->ndo_get_stats(dev);
5309
5310 dev_txq_stats_fold(dev, &dev->stats);
5311 return &dev->stats;
5312 }
5313 EXPORT_SYMBOL(dev_get_stats);
5314
5315 static void netdev_init_one_queue(struct net_device *dev,
5316 struct netdev_queue *queue,
5317 void *_unused)
5318 {
5319 queue->dev = dev;
5320 }
5321
5322 static void netdev_init_queues(struct net_device *dev)
5323 {
5324 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5325 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5326 spin_lock_init(&dev->tx_global_lock);
5327 }
5328
5329 /**
5330 * alloc_netdev_mq - allocate network device
5331 * @sizeof_priv: size of private data to allocate space for
5332 * @name: device name format string
5333 * @setup: callback to initialize device
5334 * @queue_count: the number of subqueues to allocate
5335 *
5336 * Allocates a struct net_device with private data area for driver use
5337 * and performs basic initialization. Also allocates subquue structs
5338 * for each queue on the device at the end of the netdevice.
5339 */
5340 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5341 void (*setup)(struct net_device *), unsigned int queue_count)
5342 {
5343 struct netdev_queue *tx;
5344 struct net_device *dev;
5345 size_t alloc_size;
5346 struct net_device *p;
5347
5348 BUG_ON(strlen(name) >= sizeof(dev->name));
5349
5350 alloc_size = sizeof(struct net_device);
5351 if (sizeof_priv) {
5352 /* ensure 32-byte alignment of private area */
5353 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5354 alloc_size += sizeof_priv;
5355 }
5356 /* ensure 32-byte alignment of whole construct */
5357 alloc_size += NETDEV_ALIGN - 1;
5358
5359 p = kzalloc(alloc_size, GFP_KERNEL);
5360 if (!p) {
5361 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5362 return NULL;
5363 }
5364
5365 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5366 if (!tx) {
5367 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5368 "tx qdiscs.\n");
5369 goto free_p;
5370 }
5371
5372 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5373 dev->padded = (char *)dev - (char *)p;
5374
5375 if (dev_addr_init(dev))
5376 goto free_tx;
5377
5378 dev_unicast_init(dev);
5379
5380 dev_net_set(dev, &init_net);
5381
5382 dev->_tx = tx;
5383 dev->num_tx_queues = queue_count;
5384 dev->real_num_tx_queues = queue_count;
5385
5386 dev->gso_max_size = GSO_MAX_SIZE;
5387
5388 netdev_init_queues(dev);
5389
5390 INIT_LIST_HEAD(&dev->napi_list);
5391 INIT_LIST_HEAD(&dev->unreg_list);
5392 INIT_LIST_HEAD(&dev->link_watch_list);
5393 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5394 setup(dev);
5395 strcpy(dev->name, name);
5396 return dev;
5397
5398 free_tx:
5399 kfree(tx);
5400
5401 free_p:
5402 kfree(p);
5403 return NULL;
5404 }
5405 EXPORT_SYMBOL(alloc_netdev_mq);
5406
5407 /**
5408 * free_netdev - free network device
5409 * @dev: device
5410 *
5411 * This function does the last stage of destroying an allocated device
5412 * interface. The reference to the device object is released.
5413 * If this is the last reference then it will be freed.
5414 */
5415 void free_netdev(struct net_device *dev)
5416 {
5417 struct napi_struct *p, *n;
5418
5419 release_net(dev_net(dev));
5420
5421 kfree(dev->_tx);
5422
5423 /* Flush device addresses */
5424 dev_addr_flush(dev);
5425
5426 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5427 netif_napi_del(p);
5428
5429 /* Compatibility with error handling in drivers */
5430 if (dev->reg_state == NETREG_UNINITIALIZED) {
5431 kfree((char *)dev - dev->padded);
5432 return;
5433 }
5434
5435 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5436 dev->reg_state = NETREG_RELEASED;
5437
5438 /* will free via device release */
5439 put_device(&dev->dev);
5440 }
5441 EXPORT_SYMBOL(free_netdev);
5442
5443 /**
5444 * synchronize_net - Synchronize with packet receive processing
5445 *
5446 * Wait for packets currently being received to be done.
5447 * Does not block later packets from starting.
5448 */
5449 void synchronize_net(void)
5450 {
5451 might_sleep();
5452 synchronize_rcu();
5453 }
5454 EXPORT_SYMBOL(synchronize_net);
5455
5456 /**
5457 * unregister_netdevice_queue - remove device from the kernel
5458 * @dev: device
5459 * @head: list
5460 *
5461 * This function shuts down a device interface and removes it
5462 * from the kernel tables.
5463 * If head not NULL, device is queued to be unregistered later.
5464 *
5465 * Callers must hold the rtnl semaphore. You may want
5466 * unregister_netdev() instead of this.
5467 */
5468
5469 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5470 {
5471 ASSERT_RTNL();
5472
5473 if (head) {
5474 list_move_tail(&dev->unreg_list, head);
5475 } else {
5476 rollback_registered(dev);
5477 /* Finish processing unregister after unlock */
5478 net_set_todo(dev);
5479 }
5480 }
5481 EXPORT_SYMBOL(unregister_netdevice_queue);
5482
5483 /**
5484 * unregister_netdevice_many - unregister many devices
5485 * @head: list of devices
5486 */
5487 void unregister_netdevice_many(struct list_head *head)
5488 {
5489 struct net_device *dev;
5490
5491 if (!list_empty(head)) {
5492 rollback_registered_many(head);
5493 list_for_each_entry(dev, head, unreg_list)
5494 net_set_todo(dev);
5495 }
5496 }
5497 EXPORT_SYMBOL(unregister_netdevice_many);
5498
5499 /**
5500 * unregister_netdev - remove device from the kernel
5501 * @dev: device
5502 *
5503 * This function shuts down a device interface and removes it
5504 * from the kernel tables.
5505 *
5506 * This is just a wrapper for unregister_netdevice that takes
5507 * the rtnl semaphore. In general you want to use this and not
5508 * unregister_netdevice.
5509 */
5510 void unregister_netdev(struct net_device *dev)
5511 {
5512 rtnl_lock();
5513 unregister_netdevice(dev);
5514 rtnl_unlock();
5515 }
5516 EXPORT_SYMBOL(unregister_netdev);
5517
5518 /**
5519 * dev_change_net_namespace - move device to different nethost namespace
5520 * @dev: device
5521 * @net: network namespace
5522 * @pat: If not NULL name pattern to try if the current device name
5523 * is already taken in the destination network namespace.
5524 *
5525 * This function shuts down a device interface and moves it
5526 * to a new network namespace. On success 0 is returned, on
5527 * a failure a netagive errno code is returned.
5528 *
5529 * Callers must hold the rtnl semaphore.
5530 */
5531
5532 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5533 {
5534 int err;
5535
5536 ASSERT_RTNL();
5537
5538 /* Don't allow namespace local devices to be moved. */
5539 err = -EINVAL;
5540 if (dev->features & NETIF_F_NETNS_LOCAL)
5541 goto out;
5542
5543 #ifdef CONFIG_SYSFS
5544 /* Don't allow real devices to be moved when sysfs
5545 * is enabled.
5546 */
5547 err = -EINVAL;
5548 if (dev->dev.parent)
5549 goto out;
5550 #endif
5551
5552 /* Ensure the device has been registrered */
5553 err = -EINVAL;
5554 if (dev->reg_state != NETREG_REGISTERED)
5555 goto out;
5556
5557 /* Get out if there is nothing todo */
5558 err = 0;
5559 if (net_eq(dev_net(dev), net))
5560 goto out;
5561
5562 /* Pick the destination device name, and ensure
5563 * we can use it in the destination network namespace.
5564 */
5565 err = -EEXIST;
5566 if (__dev_get_by_name(net, dev->name)) {
5567 /* We get here if we can't use the current device name */
5568 if (!pat)
5569 goto out;
5570 if (dev_get_valid_name(net, pat, dev->name, 1))
5571 goto out;
5572 }
5573
5574 /*
5575 * And now a mini version of register_netdevice unregister_netdevice.
5576 */
5577
5578 /* If device is running close it first. */
5579 dev_close(dev);
5580
5581 /* And unlink it from device chain */
5582 err = -ENODEV;
5583 unlist_netdevice(dev);
5584
5585 synchronize_net();
5586
5587 /* Shutdown queueing discipline. */
5588 dev_shutdown(dev);
5589
5590 /* Notify protocols, that we are about to destroy
5591 this device. They should clean all the things.
5592 */
5593 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5594 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5595
5596 /*
5597 * Flush the unicast and multicast chains
5598 */
5599 dev_unicast_flush(dev);
5600 dev_addr_discard(dev);
5601
5602 netdev_unregister_kobject(dev);
5603
5604 /* Actually switch the network namespace */
5605 dev_net_set(dev, net);
5606
5607 /* If there is an ifindex conflict assign a new one */
5608 if (__dev_get_by_index(net, dev->ifindex)) {
5609 int iflink = (dev->iflink == dev->ifindex);
5610 dev->ifindex = dev_new_index(net);
5611 if (iflink)
5612 dev->iflink = dev->ifindex;
5613 }
5614
5615 /* Fixup kobjects */
5616 err = netdev_register_kobject(dev);
5617 WARN_ON(err);
5618
5619 /* Add the device back in the hashes */
5620 list_netdevice(dev);
5621
5622 /* Notify protocols, that a new device appeared. */
5623 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5624
5625 /*
5626 * Prevent userspace races by waiting until the network
5627 * device is fully setup before sending notifications.
5628 */
5629 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5630
5631 synchronize_net();
5632 err = 0;
5633 out:
5634 return err;
5635 }
5636 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5637
5638 static int dev_cpu_callback(struct notifier_block *nfb,
5639 unsigned long action,
5640 void *ocpu)
5641 {
5642 struct sk_buff **list_skb;
5643 struct Qdisc **list_net;
5644 struct sk_buff *skb;
5645 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5646 struct softnet_data *sd, *oldsd;
5647
5648 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5649 return NOTIFY_OK;
5650
5651 local_irq_disable();
5652 cpu = smp_processor_id();
5653 sd = &per_cpu(softnet_data, cpu);
5654 oldsd = &per_cpu(softnet_data, oldcpu);
5655
5656 /* Find end of our completion_queue. */
5657 list_skb = &sd->completion_queue;
5658 while (*list_skb)
5659 list_skb = &(*list_skb)->next;
5660 /* Append completion queue from offline CPU. */
5661 *list_skb = oldsd->completion_queue;
5662 oldsd->completion_queue = NULL;
5663
5664 /* Find end of our output_queue. */
5665 list_net = &sd->output_queue;
5666 while (*list_net)
5667 list_net = &(*list_net)->next_sched;
5668 /* Append output queue from offline CPU. */
5669 *list_net = oldsd->output_queue;
5670 oldsd->output_queue = NULL;
5671
5672 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5673 local_irq_enable();
5674
5675 /* Process offline CPU's input_pkt_queue */
5676 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5677 netif_rx(skb);
5678
5679 return NOTIFY_OK;
5680 }
5681
5682
5683 /**
5684 * netdev_increment_features - increment feature set by one
5685 * @all: current feature set
5686 * @one: new feature set
5687 * @mask: mask feature set
5688 *
5689 * Computes a new feature set after adding a device with feature set
5690 * @one to the master device with current feature set @all. Will not
5691 * enable anything that is off in @mask. Returns the new feature set.
5692 */
5693 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5694 unsigned long mask)
5695 {
5696 /* If device needs checksumming, downgrade to it. */
5697 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5698 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5699 else if (mask & NETIF_F_ALL_CSUM) {
5700 /* If one device supports v4/v6 checksumming, set for all. */
5701 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5702 !(all & NETIF_F_GEN_CSUM)) {
5703 all &= ~NETIF_F_ALL_CSUM;
5704 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5705 }
5706
5707 /* If one device supports hw checksumming, set for all. */
5708 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5709 all &= ~NETIF_F_ALL_CSUM;
5710 all |= NETIF_F_HW_CSUM;
5711 }
5712 }
5713
5714 one |= NETIF_F_ALL_CSUM;
5715
5716 one |= all & NETIF_F_ONE_FOR_ALL;
5717 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5718 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5719
5720 return all;
5721 }
5722 EXPORT_SYMBOL(netdev_increment_features);
5723
5724 static struct hlist_head *netdev_create_hash(void)
5725 {
5726 int i;
5727 struct hlist_head *hash;
5728
5729 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5730 if (hash != NULL)
5731 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5732 INIT_HLIST_HEAD(&hash[i]);
5733
5734 return hash;
5735 }
5736
5737 /* Initialize per network namespace state */
5738 static int __net_init netdev_init(struct net *net)
5739 {
5740 INIT_LIST_HEAD(&net->dev_base_head);
5741
5742 net->dev_name_head = netdev_create_hash();
5743 if (net->dev_name_head == NULL)
5744 goto err_name;
5745
5746 net->dev_index_head = netdev_create_hash();
5747 if (net->dev_index_head == NULL)
5748 goto err_idx;
5749
5750 return 0;
5751
5752 err_idx:
5753 kfree(net->dev_name_head);
5754 err_name:
5755 return -ENOMEM;
5756 }
5757
5758 /**
5759 * netdev_drivername - network driver for the device
5760 * @dev: network device
5761 * @buffer: buffer for resulting name
5762 * @len: size of buffer
5763 *
5764 * Determine network driver for device.
5765 */
5766 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5767 {
5768 const struct device_driver *driver;
5769 const struct device *parent;
5770
5771 if (len <= 0 || !buffer)
5772 return buffer;
5773 buffer[0] = 0;
5774
5775 parent = dev->dev.parent;
5776
5777 if (!parent)
5778 return buffer;
5779
5780 driver = parent->driver;
5781 if (driver && driver->name)
5782 strlcpy(buffer, driver->name, len);
5783 return buffer;
5784 }
5785
5786 static void __net_exit netdev_exit(struct net *net)
5787 {
5788 kfree(net->dev_name_head);
5789 kfree(net->dev_index_head);
5790 }
5791
5792 static struct pernet_operations __net_initdata netdev_net_ops = {
5793 .init = netdev_init,
5794 .exit = netdev_exit,
5795 };
5796
5797 static void __net_exit default_device_exit(struct net *net)
5798 {
5799 struct net_device *dev, *aux;
5800 /*
5801 * Push all migratable network devices back to the
5802 * initial network namespace
5803 */
5804 rtnl_lock();
5805 for_each_netdev_safe(net, dev, aux) {
5806 int err;
5807 char fb_name[IFNAMSIZ];
5808
5809 /* Ignore unmoveable devices (i.e. loopback) */
5810 if (dev->features & NETIF_F_NETNS_LOCAL)
5811 continue;
5812
5813 /* Leave virtual devices for the generic cleanup */
5814 if (dev->rtnl_link_ops)
5815 continue;
5816
5817 /* Push remaing network devices to init_net */
5818 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5819 err = dev_change_net_namespace(dev, &init_net, fb_name);
5820 if (err) {
5821 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5822 __func__, dev->name, err);
5823 BUG();
5824 }
5825 }
5826 rtnl_unlock();
5827 }
5828
5829 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5830 {
5831 /* At exit all network devices most be removed from a network
5832 * namespace. Do this in the reverse order of registeration.
5833 * Do this across as many network namespaces as possible to
5834 * improve batching efficiency.
5835 */
5836 struct net_device *dev;
5837 struct net *net;
5838 LIST_HEAD(dev_kill_list);
5839
5840 rtnl_lock();
5841 list_for_each_entry(net, net_list, exit_list) {
5842 for_each_netdev_reverse(net, dev) {
5843 if (dev->rtnl_link_ops)
5844 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5845 else
5846 unregister_netdevice_queue(dev, &dev_kill_list);
5847 }
5848 }
5849 unregister_netdevice_many(&dev_kill_list);
5850 rtnl_unlock();
5851 }
5852
5853 static struct pernet_operations __net_initdata default_device_ops = {
5854 .exit = default_device_exit,
5855 .exit_batch = default_device_exit_batch,
5856 };
5857
5858 /*
5859 * Initialize the DEV module. At boot time this walks the device list and
5860 * unhooks any devices that fail to initialise (normally hardware not
5861 * present) and leaves us with a valid list of present and active devices.
5862 *
5863 */
5864
5865 /*
5866 * This is called single threaded during boot, so no need
5867 * to take the rtnl semaphore.
5868 */
5869 static int __init net_dev_init(void)
5870 {
5871 int i, rc = -ENOMEM;
5872
5873 BUG_ON(!dev_boot_phase);
5874
5875 if (dev_proc_init())
5876 goto out;
5877
5878 if (netdev_kobject_init())
5879 goto out;
5880
5881 INIT_LIST_HEAD(&ptype_all);
5882 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5883 INIT_LIST_HEAD(&ptype_base[i]);
5884
5885 if (register_pernet_subsys(&netdev_net_ops))
5886 goto out;
5887
5888 /*
5889 * Initialise the packet receive queues.
5890 */
5891
5892 for_each_possible_cpu(i) {
5893 struct softnet_data *queue;
5894
5895 queue = &per_cpu(softnet_data, i);
5896 skb_queue_head_init(&queue->input_pkt_queue);
5897 queue->completion_queue = NULL;
5898 INIT_LIST_HEAD(&queue->poll_list);
5899
5900 queue->backlog.poll = process_backlog;
5901 queue->backlog.weight = weight_p;
5902 queue->backlog.gro_list = NULL;
5903 queue->backlog.gro_count = 0;
5904 }
5905
5906 dev_boot_phase = 0;
5907
5908 /* The loopback device is special if any other network devices
5909 * is present in a network namespace the loopback device must
5910 * be present. Since we now dynamically allocate and free the
5911 * loopback device ensure this invariant is maintained by
5912 * keeping the loopback device as the first device on the
5913 * list of network devices. Ensuring the loopback devices
5914 * is the first device that appears and the last network device
5915 * that disappears.
5916 */
5917 if (register_pernet_device(&loopback_net_ops))
5918 goto out;
5919
5920 if (register_pernet_device(&default_device_ops))
5921 goto out;
5922
5923 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5924 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5925
5926 hotcpu_notifier(dev_cpu_callback, 0);
5927 dst_init();
5928 dev_mcast_init();
5929 rc = 0;
5930 out:
5931 return rc;
5932 }
5933
5934 subsys_initcall(net_dev_init);
5935
5936 static int __init initialize_hashrnd(void)
5937 {
5938 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5939 return 0;
5940 }
5941
5942 late_initcall_sync(initialize_hashrnd);
5943
This page took 0.154498 seconds and 6 git commands to generate.