Merge tag 'iwlwifi-next-for-kalle-2016-07-11' of git://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237
238 dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254
255 dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 else
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 struct packet_offload *elem;
477
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
506 spin_lock(&offload_lock);
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 spin_unlock(&offload_lock);
518 }
519
520 /**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 __dev_remove_offload(po);
535
536 synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542 Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
627 if (__dev_get_by_name(&init_net, name))
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634 }
635
636 /*
637 * Saves at boot time configured settings for any netdevice.
638 */
639 int __init netdev_boot_setup(char *str)
640 {
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667 Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
684 return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
730
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 struct net_device *dev;
779
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
782 if (dev)
783 dev_hold(dev);
784 rcu_read_unlock();
785 return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
805
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
808 return dev;
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 struct net_device *dev;
853
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
856 if (dev)
857 dev_hold(dev);
858 rcu_read_unlock();
859 return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 struct net_device *dev;
876 unsigned int seq;
877
878 retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895 }
896
897 /**
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
908 *
909 */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
913 {
914 struct net_device *dev;
915
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
919 return dev;
920
921 return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 struct net_device *dev;
928
929 ASSERT_RTNL();
930 for_each_netdev(net, dev)
931 if (dev->type == type)
932 return dev;
933
934 return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 struct net_device *dev, *ret = NULL;
941
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
963 */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
967 {
968 struct net_device *dev, *ret;
969
970 ASSERT_RTNL();
971
972 ret = NULL;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
975 ret = dev;
976 break;
977 }
978 }
979 return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
990 */
991 bool dev_valid_name(const char *name)
992 {
993 if (*name == '\0')
994 return false;
995 if (strlen(name) >= IFNAMSIZ)
996 return false;
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
998 return false;
999
1000 while (*name) {
1001 if (*name == '/' || *name == ':' || isspace(*name))
1002 return false;
1003 name++;
1004 }
1005 return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1022 */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 int i = 0;
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1046
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1066 return i;
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073 }
1074
1075 /**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
1107 {
1108 char buf[IFNAMSIZ];
1109 int ret;
1110
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120 {
1121 BUG_ON(!net);
1122
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1148 int err = 0;
1149 int ret;
1150 struct net *net;
1151
1152 ASSERT_RTNL();
1153 BUG_ON(!dev_net(dev));
1154
1155 net = dev_net(dev);
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
1159 write_seqcount_begin(&devnet_rename_seq);
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1163 return 0;
1164 }
1165
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168 err = dev_get_valid_name(net, dev, newname);
1169 if (err < 0) {
1170 write_seqcount_end(&devnet_rename_seq);
1171 return err;
1172 }
1173
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1186 return ret;
1187 }
1188
1189 write_seqcount_end(&devnet_rename_seq);
1190
1191 netdev_adjacent_rename_links(dev, oldname);
1192
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1202
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
1209 err = ret;
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1215 goto rollback;
1216 } else {
1217 pr_err("%s: name change rollback failed: %d\n",
1218 dev->name, ret);
1219 }
1220 }
1221
1222 return err;
1223 }
1224
1225 /**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1230 *
1231 * Set ifalias for a device,
1232 */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 char *new_ifalias;
1236
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
1242 if (!len) {
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1245 return 0;
1246 }
1247
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
1250 return -ENOMEM;
1251 dev->ifalias = new_ifalias;
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255 }
1256
1257
1258 /**
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 const struct net_device_ops *ops = dev->netdev_ops;
1312 int ret;
1313
1314 ASSERT_RTNL();
1315
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
1323 netpoll_poll_disable(dev);
1324
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1330 set_bit(__LINK_STATE_START, &dev->state);
1331
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1334
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1337
1338 netpoll_poll_enable(dev);
1339
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1345 dev_activate(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1347 }
1348
1349 return ret;
1350 }
1351
1352 /**
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1355 *
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1363 */
1364 int dev_open(struct net_device *dev)
1365 {
1366 int ret;
1367
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 struct net_device *dev;
1385
1386 ASSERT_RTNL();
1387 might_sleep();
1388
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1392
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1404 }
1405
1406 dev_deactivate_many(head);
1407
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 int retval;
1431 LIST_HEAD(single);
1432
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
1436
1437 return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 struct net_device *dev, *tmp;
1443
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1448
1449 __dev_close_many(head);
1450
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 if (unlink)
1455 list_del_init(&dev->close_list);
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471 int dev_close(struct net_device *dev)
1472 {
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1475
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1478 list_del(&single);
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1497
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1500
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511 {
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1532 */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 struct net_device *dev;
1537 struct net_device *last;
1538 struct net *net;
1539 int err;
1540
1541 rtnl_lock();
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1543 if (err)
1544 goto unlock;
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1556
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 }
1559 }
1560
1561 unlock:
1562 rtnl_unlock();
1563 return err;
1564
1565 rollback:
1566 last = dev;
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
1570 goto outroll;
1571
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 }
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 }
1579 }
1580
1581 outroll:
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1583 goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1599 */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 struct net_device *dev;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 }
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 }
1621 }
1622 unlock:
1623 rtnl_unlock();
1624 return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1641 {
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1651 *
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1654 */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669 static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675 static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685 static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691 static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1701 */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
1712 static_key_slow_dec(&netstamp_needed);
1713 return;
1714 }
1715 #endif
1716 static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727 #endif
1728 static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 skb->tstamp.tv64 = 0;
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
1776 skb->priority = 0;
1777 skb->protocol = eth_type_trans(skb, dev);
1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1779
1780 return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
1784 /**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
1792 * NET_RX_DROP (packet was dropped, but freed)
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803 {
1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1805 }
1806 EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
1808 static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811 {
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816 }
1817
1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
1820 struct net_device *orig_dev,
1821 __be16 type,
1822 struct list_head *ptype_list)
1823 {
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
1830 deliver_skb(skb, pt_prev, orig_dev);
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834 }
1835
1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837 {
1838 if (!ptype->af_packet_priv || !skb->sk)
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847 }
1848
1849 /*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1855 {
1856 struct packet_type *ptype;
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
1859 struct list_head *ptype_list = &ptype_all;
1860
1861 rcu_read_lock();
1862 again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
1869
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1875
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
1880
1881 net_timestamp_set(skb2);
1882
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1895 }
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1905 }
1906 out_unlock:
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1909 rcu_read_unlock();
1910 }
1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1912
1913 /**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1927 {
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949 }
1950
1951 #ifdef CONFIG_XPS
1952 static DEFINE_MUTEX(xps_map_mutex);
1953 #define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
1958 {
1959 struct xps_map *map = NULL;
1960 int pos;
1961
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1964
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1973 }
1974 break;
1975 }
1976 }
1977
1978 return map;
1979 }
1980
1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1982 {
1983 struct xps_dev_maps *dev_maps;
1984 int cpu, i;
1985 bool active = false;
1986
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1989
1990 if (!dev_maps)
1991 goto out_no_maps;
1992
1993 for_each_possible_cpu(cpu) {
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1997 }
1998 if (i == dev->num_tx_queues)
1999 active = true;
2000 }
2001
2002 if (!active) {
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2005 }
2006
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2010
2011 out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2013 }
2014
2015 static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2017 {
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2021
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2026 }
2027
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2032
2033 alloc_len = map->alloc_len * 2;
2034 }
2035
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2041
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2046
2047 return new_map;
2048 }
2049
2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
2052 {
2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2054 struct xps_map *map, *new_map;
2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
2058
2059 mutex_lock(&xps_map_mutex);
2060
2061 dev_maps = xmap_dereference(dev->xps_maps);
2062
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2067
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
2072 return -ENOMEM;
2073 }
2074
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2077
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2081
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 }
2084
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2087
2088 for_each_possible_cpu(cpu) {
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2092
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2096
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
2099 #ifdef CONFIG_NUMA
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
2104 #endif
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2109 }
2110
2111 }
2112
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
2115 /* Cleanup old maps */
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2122 }
2123
2124 kfree_rcu(dev_maps, rcu);
2125 }
2126
2127 dev_maps = new_dev_maps;
2128 active = true;
2129
2130 out_no_new_maps:
2131 /* update Tx queue numa node */
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2135
2136 if (!dev_maps)
2137 goto out_no_maps;
2138
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2143
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2146 }
2147
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2152 }
2153
2154 out_no_maps:
2155 mutex_unlock(&xps_map_mutex);
2156
2157 return 0;
2158 error:
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2166 }
2167
2168 mutex_unlock(&xps_map_mutex);
2169
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2172 }
2173 EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175 #endif
2176 /*
2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179 */
2180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2181 {
2182 int rc;
2183
2184 if (txq < 1 || txq > dev->num_tx_queues)
2185 return -EINVAL;
2186
2187 if (dev->reg_state == NETREG_REGISTERED ||
2188 dev->reg_state == NETREG_UNREGISTERING) {
2189 ASSERT_RTNL();
2190
2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192 txq);
2193 if (rc)
2194 return rc;
2195
2196 if (dev->num_tc)
2197 netif_setup_tc(dev, txq);
2198
2199 if (txq < dev->real_num_tx_queues) {
2200 qdisc_reset_all_tx_gt(dev, txq);
2201 #ifdef CONFIG_XPS
2202 netif_reset_xps_queues_gt(dev, txq);
2203 #endif
2204 }
2205 }
2206
2207 dev->real_num_tx_queues = txq;
2208 return 0;
2209 }
2210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2211
2212 #ifdef CONFIG_SYSFS
2213 /**
2214 * netif_set_real_num_rx_queues - set actual number of RX queues used
2215 * @dev: Network device
2216 * @rxq: Actual number of RX queues
2217 *
2218 * This must be called either with the rtnl_lock held or before
2219 * registration of the net device. Returns 0 on success, or a
2220 * negative error code. If called before registration, it always
2221 * succeeds.
2222 */
2223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224 {
2225 int rc;
2226
2227 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 return -EINVAL;
2229
2230 if (dev->reg_state == NETREG_REGISTERED) {
2231 ASSERT_RTNL();
2232
2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234 rxq);
2235 if (rc)
2236 return rc;
2237 }
2238
2239 dev->real_num_rx_queues = rxq;
2240 return 0;
2241 }
2242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243 #endif
2244
2245 /**
2246 * netif_get_num_default_rss_queues - default number of RSS queues
2247 *
2248 * This routine should set an upper limit on the number of RSS queues
2249 * used by default by multiqueue devices.
2250 */
2251 int netif_get_num_default_rss_queues(void)
2252 {
2253 return is_kdump_kernel() ?
2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2255 }
2256 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
2258 static void __netif_reschedule(struct Qdisc *q)
2259 {
2260 struct softnet_data *sd;
2261 unsigned long flags;
2262
2263 local_irq_save(flags);
2264 sd = this_cpu_ptr(&softnet_data);
2265 q->next_sched = NULL;
2266 *sd->output_queue_tailp = q;
2267 sd->output_queue_tailp = &q->next_sched;
2268 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269 local_irq_restore(flags);
2270 }
2271
2272 void __netif_schedule(struct Qdisc *q)
2273 {
2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275 __netif_reschedule(q);
2276 }
2277 EXPORT_SYMBOL(__netif_schedule);
2278
2279 struct dev_kfree_skb_cb {
2280 enum skb_free_reason reason;
2281 };
2282
2283 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2284 {
2285 return (struct dev_kfree_skb_cb *)skb->cb;
2286 }
2287
2288 void netif_schedule_queue(struct netdev_queue *txq)
2289 {
2290 rcu_read_lock();
2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294 __netif_schedule(q);
2295 }
2296 rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL(netif_schedule_queue);
2299
2300 /**
2301 * netif_wake_subqueue - allow sending packets on subqueue
2302 * @dev: network device
2303 * @queue_index: sub queue index
2304 *
2305 * Resume individual transmit queue of a device with multiple transmit queues.
2306 */
2307 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308 {
2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 struct Qdisc *q;
2313
2314 rcu_read_lock();
2315 q = rcu_dereference(txq->qdisc);
2316 __netif_schedule(q);
2317 rcu_read_unlock();
2318 }
2319 }
2320 EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323 {
2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 struct Qdisc *q;
2326
2327 rcu_read_lock();
2328 q = rcu_dereference(dev_queue->qdisc);
2329 __netif_schedule(q);
2330 rcu_read_unlock();
2331 }
2332 }
2333 EXPORT_SYMBOL(netif_tx_wake_queue);
2334
2335 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2336 {
2337 unsigned long flags;
2338
2339 if (likely(atomic_read(&skb->users) == 1)) {
2340 smp_rmb();
2341 atomic_set(&skb->users, 0);
2342 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343 return;
2344 }
2345 get_kfree_skb_cb(skb)->reason = reason;
2346 local_irq_save(flags);
2347 skb->next = __this_cpu_read(softnet_data.completion_queue);
2348 __this_cpu_write(softnet_data.completion_queue, skb);
2349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350 local_irq_restore(flags);
2351 }
2352 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2353
2354 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2355 {
2356 if (in_irq() || irqs_disabled())
2357 __dev_kfree_skb_irq(skb, reason);
2358 else
2359 dev_kfree_skb(skb);
2360 }
2361 EXPORT_SYMBOL(__dev_kfree_skb_any);
2362
2363
2364 /**
2365 * netif_device_detach - mark device as removed
2366 * @dev: network device
2367 *
2368 * Mark device as removed from system and therefore no longer available.
2369 */
2370 void netif_device_detach(struct net_device *dev)
2371 {
2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373 netif_running(dev)) {
2374 netif_tx_stop_all_queues(dev);
2375 }
2376 }
2377 EXPORT_SYMBOL(netif_device_detach);
2378
2379 /**
2380 * netif_device_attach - mark device as attached
2381 * @dev: network device
2382 *
2383 * Mark device as attached from system and restart if needed.
2384 */
2385 void netif_device_attach(struct net_device *dev)
2386 {
2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388 netif_running(dev)) {
2389 netif_tx_wake_all_queues(dev);
2390 __netdev_watchdog_up(dev);
2391 }
2392 }
2393 EXPORT_SYMBOL(netif_device_attach);
2394
2395 /*
2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397 * to be used as a distribution range.
2398 */
2399 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400 unsigned int num_tx_queues)
2401 {
2402 u32 hash;
2403 u16 qoffset = 0;
2404 u16 qcount = num_tx_queues;
2405
2406 if (skb_rx_queue_recorded(skb)) {
2407 hash = skb_get_rx_queue(skb);
2408 while (unlikely(hash >= num_tx_queues))
2409 hash -= num_tx_queues;
2410 return hash;
2411 }
2412
2413 if (dev->num_tc) {
2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415 qoffset = dev->tc_to_txq[tc].offset;
2416 qcount = dev->tc_to_txq[tc].count;
2417 }
2418
2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420 }
2421 EXPORT_SYMBOL(__skb_tx_hash);
2422
2423 static void skb_warn_bad_offload(const struct sk_buff *skb)
2424 {
2425 static const netdev_features_t null_features;
2426 struct net_device *dev = skb->dev;
2427 const char *name = "";
2428
2429 if (!net_ratelimit())
2430 return;
2431
2432 if (dev) {
2433 if (dev->dev.parent)
2434 name = dev_driver_string(dev->dev.parent);
2435 else
2436 name = netdev_name(dev);
2437 }
2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439 "gso_type=%d ip_summed=%d\n",
2440 name, dev ? &dev->features : &null_features,
2441 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444 }
2445
2446 /*
2447 * Invalidate hardware checksum when packet is to be mangled, and
2448 * complete checksum manually on outgoing path.
2449 */
2450 int skb_checksum_help(struct sk_buff *skb)
2451 {
2452 __wsum csum;
2453 int ret = 0, offset;
2454
2455 if (skb->ip_summed == CHECKSUM_COMPLETE)
2456 goto out_set_summed;
2457
2458 if (unlikely(skb_shinfo(skb)->gso_size)) {
2459 skb_warn_bad_offload(skb);
2460 return -EINVAL;
2461 }
2462
2463 /* Before computing a checksum, we should make sure no frag could
2464 * be modified by an external entity : checksum could be wrong.
2465 */
2466 if (skb_has_shared_frag(skb)) {
2467 ret = __skb_linearize(skb);
2468 if (ret)
2469 goto out;
2470 }
2471
2472 offset = skb_checksum_start_offset(skb);
2473 BUG_ON(offset >= skb_headlen(skb));
2474 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476 offset += skb->csum_offset;
2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479 if (skb_cloned(skb) &&
2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482 if (ret)
2483 goto out;
2484 }
2485
2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2487 out_set_summed:
2488 skb->ip_summed = CHECKSUM_NONE;
2489 out:
2490 return ret;
2491 }
2492 EXPORT_SYMBOL(skb_checksum_help);
2493
2494 /* skb_csum_offload_check - Driver helper function to determine if a device
2495 * with limited checksum offload capabilities is able to offload the checksum
2496 * for a given packet.
2497 *
2498 * Arguments:
2499 * skb - sk_buff for the packet in question
2500 * spec - contains the description of what device can offload
2501 * csum_encapped - returns true if the checksum being offloaded is
2502 * encpasulated. That is it is checksum for the transport header
2503 * in the inner headers.
2504 * checksum_help - when set indicates that helper function should
2505 * call skb_checksum_help if offload checks fail
2506 *
2507 * Returns:
2508 * true: Packet has passed the checksum checks and should be offloadable to
2509 * the device (a driver may still need to check for additional
2510 * restrictions of its device)
2511 * false: Checksum is not offloadable. If checksum_help was set then
2512 * skb_checksum_help was called to resolve checksum for non-GSO
2513 * packets and when IP protocol is not SCTP
2514 */
2515 bool __skb_csum_offload_chk(struct sk_buff *skb,
2516 const struct skb_csum_offl_spec *spec,
2517 bool *csum_encapped,
2518 bool csum_help)
2519 {
2520 struct iphdr *iph;
2521 struct ipv6hdr *ipv6;
2522 void *nhdr;
2523 int protocol;
2524 u8 ip_proto;
2525
2526 if (skb->protocol == htons(ETH_P_8021Q) ||
2527 skb->protocol == htons(ETH_P_8021AD)) {
2528 if (!spec->vlan_okay)
2529 goto need_help;
2530 }
2531
2532 /* We check whether the checksum refers to a transport layer checksum in
2533 * the outermost header or an encapsulated transport layer checksum that
2534 * corresponds to the inner headers of the skb. If the checksum is for
2535 * something else in the packet we need help.
2536 */
2537 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2538 /* Non-encapsulated checksum */
2539 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2540 nhdr = skb_network_header(skb);
2541 *csum_encapped = false;
2542 if (spec->no_not_encapped)
2543 goto need_help;
2544 } else if (skb->encapsulation && spec->encap_okay &&
2545 skb_checksum_start_offset(skb) ==
2546 skb_inner_transport_offset(skb)) {
2547 /* Encapsulated checksum */
2548 *csum_encapped = true;
2549 switch (skb->inner_protocol_type) {
2550 case ENCAP_TYPE_ETHER:
2551 protocol = eproto_to_ipproto(skb->inner_protocol);
2552 break;
2553 case ENCAP_TYPE_IPPROTO:
2554 protocol = skb->inner_protocol;
2555 break;
2556 }
2557 nhdr = skb_inner_network_header(skb);
2558 } else {
2559 goto need_help;
2560 }
2561
2562 switch (protocol) {
2563 case IPPROTO_IP:
2564 if (!spec->ipv4_okay)
2565 goto need_help;
2566 iph = nhdr;
2567 ip_proto = iph->protocol;
2568 if (iph->ihl != 5 && !spec->ip_options_okay)
2569 goto need_help;
2570 break;
2571 case IPPROTO_IPV6:
2572 if (!spec->ipv6_okay)
2573 goto need_help;
2574 if (spec->no_encapped_ipv6 && *csum_encapped)
2575 goto need_help;
2576 ipv6 = nhdr;
2577 nhdr += sizeof(*ipv6);
2578 ip_proto = ipv6->nexthdr;
2579 break;
2580 default:
2581 goto need_help;
2582 }
2583
2584 ip_proto_again:
2585 switch (ip_proto) {
2586 case IPPROTO_TCP:
2587 if (!spec->tcp_okay ||
2588 skb->csum_offset != offsetof(struct tcphdr, check))
2589 goto need_help;
2590 break;
2591 case IPPROTO_UDP:
2592 if (!spec->udp_okay ||
2593 skb->csum_offset != offsetof(struct udphdr, check))
2594 goto need_help;
2595 break;
2596 case IPPROTO_SCTP:
2597 if (!spec->sctp_okay ||
2598 skb->csum_offset != offsetof(struct sctphdr, checksum))
2599 goto cant_help;
2600 break;
2601 case NEXTHDR_HOP:
2602 case NEXTHDR_ROUTING:
2603 case NEXTHDR_DEST: {
2604 u8 *opthdr = nhdr;
2605
2606 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2607 goto need_help;
2608
2609 ip_proto = opthdr[0];
2610 nhdr += (opthdr[1] + 1) << 3;
2611
2612 goto ip_proto_again;
2613 }
2614 default:
2615 goto need_help;
2616 }
2617
2618 /* Passed the tests for offloading checksum */
2619 return true;
2620
2621 need_help:
2622 if (csum_help && !skb_shinfo(skb)->gso_size)
2623 skb_checksum_help(skb);
2624 cant_help:
2625 return false;
2626 }
2627 EXPORT_SYMBOL(__skb_csum_offload_chk);
2628
2629 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2630 {
2631 __be16 type = skb->protocol;
2632
2633 /* Tunnel gso handlers can set protocol to ethernet. */
2634 if (type == htons(ETH_P_TEB)) {
2635 struct ethhdr *eth;
2636
2637 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2638 return 0;
2639
2640 eth = (struct ethhdr *)skb_mac_header(skb);
2641 type = eth->h_proto;
2642 }
2643
2644 return __vlan_get_protocol(skb, type, depth);
2645 }
2646
2647 /**
2648 * skb_mac_gso_segment - mac layer segmentation handler.
2649 * @skb: buffer to segment
2650 * @features: features for the output path (see dev->features)
2651 */
2652 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2653 netdev_features_t features)
2654 {
2655 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2656 struct packet_offload *ptype;
2657 int vlan_depth = skb->mac_len;
2658 __be16 type = skb_network_protocol(skb, &vlan_depth);
2659
2660 if (unlikely(!type))
2661 return ERR_PTR(-EINVAL);
2662
2663 __skb_pull(skb, vlan_depth);
2664
2665 rcu_read_lock();
2666 list_for_each_entry_rcu(ptype, &offload_base, list) {
2667 if (ptype->type == type && ptype->callbacks.gso_segment) {
2668 segs = ptype->callbacks.gso_segment(skb, features);
2669 break;
2670 }
2671 }
2672 rcu_read_unlock();
2673
2674 __skb_push(skb, skb->data - skb_mac_header(skb));
2675
2676 return segs;
2677 }
2678 EXPORT_SYMBOL(skb_mac_gso_segment);
2679
2680
2681 /* openvswitch calls this on rx path, so we need a different check.
2682 */
2683 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2684 {
2685 if (tx_path)
2686 return skb->ip_summed != CHECKSUM_PARTIAL;
2687 else
2688 return skb->ip_summed == CHECKSUM_NONE;
2689 }
2690
2691 /**
2692 * __skb_gso_segment - Perform segmentation on skb.
2693 * @skb: buffer to segment
2694 * @features: features for the output path (see dev->features)
2695 * @tx_path: whether it is called in TX path
2696 *
2697 * This function segments the given skb and returns a list of segments.
2698 *
2699 * It may return NULL if the skb requires no segmentation. This is
2700 * only possible when GSO is used for verifying header integrity.
2701 *
2702 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2703 */
2704 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2705 netdev_features_t features, bool tx_path)
2706 {
2707 if (unlikely(skb_needs_check(skb, tx_path))) {
2708 int err;
2709
2710 skb_warn_bad_offload(skb);
2711
2712 err = skb_cow_head(skb, 0);
2713 if (err < 0)
2714 return ERR_PTR(err);
2715 }
2716
2717 /* Only report GSO partial support if it will enable us to
2718 * support segmentation on this frame without needing additional
2719 * work.
2720 */
2721 if (features & NETIF_F_GSO_PARTIAL) {
2722 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2723 struct net_device *dev = skb->dev;
2724
2725 partial_features |= dev->features & dev->gso_partial_features;
2726 if (!skb_gso_ok(skb, features | partial_features))
2727 features &= ~NETIF_F_GSO_PARTIAL;
2728 }
2729
2730 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2731 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2732
2733 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2734 SKB_GSO_CB(skb)->encap_level = 0;
2735
2736 skb_reset_mac_header(skb);
2737 skb_reset_mac_len(skb);
2738
2739 return skb_mac_gso_segment(skb, features);
2740 }
2741 EXPORT_SYMBOL(__skb_gso_segment);
2742
2743 /* Take action when hardware reception checksum errors are detected. */
2744 #ifdef CONFIG_BUG
2745 void netdev_rx_csum_fault(struct net_device *dev)
2746 {
2747 if (net_ratelimit()) {
2748 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2749 dump_stack();
2750 }
2751 }
2752 EXPORT_SYMBOL(netdev_rx_csum_fault);
2753 #endif
2754
2755 /* Actually, we should eliminate this check as soon as we know, that:
2756 * 1. IOMMU is present and allows to map all the memory.
2757 * 2. No high memory really exists on this machine.
2758 */
2759
2760 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2761 {
2762 #ifdef CONFIG_HIGHMEM
2763 int i;
2764 if (!(dev->features & NETIF_F_HIGHDMA)) {
2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 if (PageHighMem(skb_frag_page(frag)))
2768 return 1;
2769 }
2770 }
2771
2772 if (PCI_DMA_BUS_IS_PHYS) {
2773 struct device *pdev = dev->dev.parent;
2774
2775 if (!pdev)
2776 return 0;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2779 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2780 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2781 return 1;
2782 }
2783 }
2784 #endif
2785 return 0;
2786 }
2787
2788 /* If MPLS offload request, verify we are testing hardware MPLS features
2789 * instead of standard features for the netdev.
2790 */
2791 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795 {
2796 if (eth_p_mpls(type))
2797 features &= skb->dev->mpls_features;
2798
2799 return features;
2800 }
2801 #else
2802 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2803 netdev_features_t features,
2804 __be16 type)
2805 {
2806 return features;
2807 }
2808 #endif
2809
2810 static netdev_features_t harmonize_features(struct sk_buff *skb,
2811 netdev_features_t features)
2812 {
2813 int tmp;
2814 __be16 type;
2815
2816 type = skb_network_protocol(skb, &tmp);
2817 features = net_mpls_features(skb, features, type);
2818
2819 if (skb->ip_summed != CHECKSUM_NONE &&
2820 !can_checksum_protocol(features, type)) {
2821 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2822 } else if (illegal_highdma(skb->dev, skb)) {
2823 features &= ~NETIF_F_SG;
2824 }
2825
2826 return features;
2827 }
2828
2829 netdev_features_t passthru_features_check(struct sk_buff *skb,
2830 struct net_device *dev,
2831 netdev_features_t features)
2832 {
2833 return features;
2834 }
2835 EXPORT_SYMBOL(passthru_features_check);
2836
2837 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2838 struct net_device *dev,
2839 netdev_features_t features)
2840 {
2841 return vlan_features_check(skb, features);
2842 }
2843
2844 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2845 struct net_device *dev,
2846 netdev_features_t features)
2847 {
2848 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2849
2850 if (gso_segs > dev->gso_max_segs)
2851 return features & ~NETIF_F_GSO_MASK;
2852
2853 /* Support for GSO partial features requires software
2854 * intervention before we can actually process the packets
2855 * so we need to strip support for any partial features now
2856 * and we can pull them back in after we have partially
2857 * segmented the frame.
2858 */
2859 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2860 features &= ~dev->gso_partial_features;
2861
2862 /* Make sure to clear the IPv4 ID mangling feature if the
2863 * IPv4 header has the potential to be fragmented.
2864 */
2865 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2866 struct iphdr *iph = skb->encapsulation ?
2867 inner_ip_hdr(skb) : ip_hdr(skb);
2868
2869 if (!(iph->frag_off & htons(IP_DF)))
2870 features &= ~NETIF_F_TSO_MANGLEID;
2871 }
2872
2873 return features;
2874 }
2875
2876 netdev_features_t netif_skb_features(struct sk_buff *skb)
2877 {
2878 struct net_device *dev = skb->dev;
2879 netdev_features_t features = dev->features;
2880
2881 if (skb_is_gso(skb))
2882 features = gso_features_check(skb, dev, features);
2883
2884 /* If encapsulation offload request, verify we are testing
2885 * hardware encapsulation features instead of standard
2886 * features for the netdev
2887 */
2888 if (skb->encapsulation)
2889 features &= dev->hw_enc_features;
2890
2891 if (skb_vlan_tagged(skb))
2892 features = netdev_intersect_features(features,
2893 dev->vlan_features |
2894 NETIF_F_HW_VLAN_CTAG_TX |
2895 NETIF_F_HW_VLAN_STAG_TX);
2896
2897 if (dev->netdev_ops->ndo_features_check)
2898 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2899 features);
2900 else
2901 features &= dflt_features_check(skb, dev, features);
2902
2903 return harmonize_features(skb, features);
2904 }
2905 EXPORT_SYMBOL(netif_skb_features);
2906
2907 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2908 struct netdev_queue *txq, bool more)
2909 {
2910 unsigned int len;
2911 int rc;
2912
2913 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2914 dev_queue_xmit_nit(skb, dev);
2915
2916 len = skb->len;
2917 trace_net_dev_start_xmit(skb, dev);
2918 rc = netdev_start_xmit(skb, dev, txq, more);
2919 trace_net_dev_xmit(skb, rc, dev, len);
2920
2921 return rc;
2922 }
2923
2924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2925 struct netdev_queue *txq, int *ret)
2926 {
2927 struct sk_buff *skb = first;
2928 int rc = NETDEV_TX_OK;
2929
2930 while (skb) {
2931 struct sk_buff *next = skb->next;
2932
2933 skb->next = NULL;
2934 rc = xmit_one(skb, dev, txq, next != NULL);
2935 if (unlikely(!dev_xmit_complete(rc))) {
2936 skb->next = next;
2937 goto out;
2938 }
2939
2940 skb = next;
2941 if (netif_xmit_stopped(txq) && skb) {
2942 rc = NETDEV_TX_BUSY;
2943 break;
2944 }
2945 }
2946
2947 out:
2948 *ret = rc;
2949 return skb;
2950 }
2951
2952 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2953 netdev_features_t features)
2954 {
2955 if (skb_vlan_tag_present(skb) &&
2956 !vlan_hw_offload_capable(features, skb->vlan_proto))
2957 skb = __vlan_hwaccel_push_inside(skb);
2958 return skb;
2959 }
2960
2961 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2962 {
2963 netdev_features_t features;
2964
2965 features = netif_skb_features(skb);
2966 skb = validate_xmit_vlan(skb, features);
2967 if (unlikely(!skb))
2968 goto out_null;
2969
2970 if (netif_needs_gso(skb, features)) {
2971 struct sk_buff *segs;
2972
2973 segs = skb_gso_segment(skb, features);
2974 if (IS_ERR(segs)) {
2975 goto out_kfree_skb;
2976 } else if (segs) {
2977 consume_skb(skb);
2978 skb = segs;
2979 }
2980 } else {
2981 if (skb_needs_linearize(skb, features) &&
2982 __skb_linearize(skb))
2983 goto out_kfree_skb;
2984
2985 /* If packet is not checksummed and device does not
2986 * support checksumming for this protocol, complete
2987 * checksumming here.
2988 */
2989 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2990 if (skb->encapsulation)
2991 skb_set_inner_transport_header(skb,
2992 skb_checksum_start_offset(skb));
2993 else
2994 skb_set_transport_header(skb,
2995 skb_checksum_start_offset(skb));
2996 if (!(features & NETIF_F_CSUM_MASK) &&
2997 skb_checksum_help(skb))
2998 goto out_kfree_skb;
2999 }
3000 }
3001
3002 return skb;
3003
3004 out_kfree_skb:
3005 kfree_skb(skb);
3006 out_null:
3007 atomic_long_inc(&dev->tx_dropped);
3008 return NULL;
3009 }
3010
3011 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3012 {
3013 struct sk_buff *next, *head = NULL, *tail;
3014
3015 for (; skb != NULL; skb = next) {
3016 next = skb->next;
3017 skb->next = NULL;
3018
3019 /* in case skb wont be segmented, point to itself */
3020 skb->prev = skb;
3021
3022 skb = validate_xmit_skb(skb, dev);
3023 if (!skb)
3024 continue;
3025
3026 if (!head)
3027 head = skb;
3028 else
3029 tail->next = skb;
3030 /* If skb was segmented, skb->prev points to
3031 * the last segment. If not, it still contains skb.
3032 */
3033 tail = skb->prev;
3034 }
3035 return head;
3036 }
3037
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3046 */
3047 if (shinfo->gso_size) {
3048 unsigned int hdr_len;
3049 u16 gso_segs = shinfo->gso_segs;
3050
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054 /* + transport layer */
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3057 else
3058 hdr_len += sizeof(struct udphdr);
3059
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 shinfo->gso_size);
3063
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065 }
3066 }
3067
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3071 {
3072 spinlock_t *root_lock = qdisc_lock(q);
3073 struct sk_buff *to_free = NULL;
3074 bool contended;
3075 int rc;
3076
3077 qdisc_calculate_pkt_len(skb, q);
3078 /*
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
3081 * This permits qdisc->running owner to get the lock more
3082 * often and dequeue packets faster.
3083 */
3084 contended = qdisc_is_running(q);
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3087
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090 __qdisc_drop(skb, &to_free);
3091 rc = NET_XMIT_DROP;
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093 qdisc_run_begin(q)) {
3094 /*
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3098 */
3099
3100 qdisc_bstats_update(q, skb);
3101
3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3105 contended = false;
3106 }
3107 __qdisc_run(q);
3108 } else
3109 qdisc_run_end(q);
3110
3111 rc = NET_XMIT_SUCCESS;
3112 } else {
3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3117 contended = false;
3118 }
3119 __qdisc_run(q);
3120 }
3121 }
3122 spin_unlock(root_lock);
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
3127 return rc;
3128 }
3129
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135 if (!skb->priority && skb->sk && map) {
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3141 }
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149
3150 /**
3151 * dev_loopback_xmit - loop back @skb
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
3154 * @skb: buffer to transmit
3155 */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3163 skb_dst_force(skb);
3164 netif_rx_ni(skb);
3165 return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3175
3176 if (!cl)
3177 return skb;
3178
3179 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3180 * earlier by the caller.
3181 */
3182 qdisc_bstats_cpu_update(cl->q, skb);
3183
3184 switch (tc_classify(skb, cl, &cl_res, false)) {
3185 case TC_ACT_OK:
3186 case TC_ACT_RECLASSIFY:
3187 skb->tc_index = TC_H_MIN(cl_res.classid);
3188 break;
3189 case TC_ACT_SHOT:
3190 qdisc_qstats_cpu_drop(cl->q);
3191 *ret = NET_XMIT_DROP;
3192 kfree_skb(skb);
3193 return NULL;
3194 case TC_ACT_STOLEN:
3195 case TC_ACT_QUEUED:
3196 *ret = NET_XMIT_SUCCESS;
3197 consume_skb(skb);
3198 return NULL;
3199 case TC_ACT_REDIRECT:
3200 /* No need to push/pop skb's mac_header here on egress! */
3201 skb_do_redirect(skb);
3202 *ret = NET_XMIT_SUCCESS;
3203 return NULL;
3204 default:
3205 break;
3206 }
3207
3208 return skb;
3209 }
3210 #endif /* CONFIG_NET_EGRESS */
3211
3212 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3213 {
3214 #ifdef CONFIG_XPS
3215 struct xps_dev_maps *dev_maps;
3216 struct xps_map *map;
3217 int queue_index = -1;
3218
3219 rcu_read_lock();
3220 dev_maps = rcu_dereference(dev->xps_maps);
3221 if (dev_maps) {
3222 map = rcu_dereference(
3223 dev_maps->cpu_map[skb->sender_cpu - 1]);
3224 if (map) {
3225 if (map->len == 1)
3226 queue_index = map->queues[0];
3227 else
3228 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3229 map->len)];
3230 if (unlikely(queue_index >= dev->real_num_tx_queues))
3231 queue_index = -1;
3232 }
3233 }
3234 rcu_read_unlock();
3235
3236 return queue_index;
3237 #else
3238 return -1;
3239 #endif
3240 }
3241
3242 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3243 {
3244 struct sock *sk = skb->sk;
3245 int queue_index = sk_tx_queue_get(sk);
3246
3247 if (queue_index < 0 || skb->ooo_okay ||
3248 queue_index >= dev->real_num_tx_queues) {
3249 int new_index = get_xps_queue(dev, skb);
3250 if (new_index < 0)
3251 new_index = skb_tx_hash(dev, skb);
3252
3253 if (queue_index != new_index && sk &&
3254 sk_fullsock(sk) &&
3255 rcu_access_pointer(sk->sk_dst_cache))
3256 sk_tx_queue_set(sk, new_index);
3257
3258 queue_index = new_index;
3259 }
3260
3261 return queue_index;
3262 }
3263
3264 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3265 struct sk_buff *skb,
3266 void *accel_priv)
3267 {
3268 int queue_index = 0;
3269
3270 #ifdef CONFIG_XPS
3271 u32 sender_cpu = skb->sender_cpu - 1;
3272
3273 if (sender_cpu >= (u32)NR_CPUS)
3274 skb->sender_cpu = raw_smp_processor_id() + 1;
3275 #endif
3276
3277 if (dev->real_num_tx_queues != 1) {
3278 const struct net_device_ops *ops = dev->netdev_ops;
3279 if (ops->ndo_select_queue)
3280 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281 __netdev_pick_tx);
3282 else
3283 queue_index = __netdev_pick_tx(dev, skb);
3284
3285 if (!accel_priv)
3286 queue_index = netdev_cap_txqueue(dev, queue_index);
3287 }
3288
3289 skb_set_queue_mapping(skb, queue_index);
3290 return netdev_get_tx_queue(dev, queue_index);
3291 }
3292
3293 /**
3294 * __dev_queue_xmit - transmit a buffer
3295 * @skb: buffer to transmit
3296 * @accel_priv: private data used for L2 forwarding offload
3297 *
3298 * Queue a buffer for transmission to a network device. The caller must
3299 * have set the device and priority and built the buffer before calling
3300 * this function. The function can be called from an interrupt.
3301 *
3302 * A negative errno code is returned on a failure. A success does not
3303 * guarantee the frame will be transmitted as it may be dropped due
3304 * to congestion or traffic shaping.
3305 *
3306 * -----------------------------------------------------------------------------------
3307 * I notice this method can also return errors from the queue disciplines,
3308 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3309 * be positive.
3310 *
3311 * Regardless of the return value, the skb is consumed, so it is currently
3312 * difficult to retry a send to this method. (You can bump the ref count
3313 * before sending to hold a reference for retry if you are careful.)
3314 *
3315 * When calling this method, interrupts MUST be enabled. This is because
3316 * the BH enable code must have IRQs enabled so that it will not deadlock.
3317 * --BLG
3318 */
3319 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3320 {
3321 struct net_device *dev = skb->dev;
3322 struct netdev_queue *txq;
3323 struct Qdisc *q;
3324 int rc = -ENOMEM;
3325
3326 skb_reset_mac_header(skb);
3327
3328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330
3331 /* Disable soft irqs for various locks below. Also
3332 * stops preemption for RCU.
3333 */
3334 rcu_read_lock_bh();
3335
3336 skb_update_prio(skb);
3337
3338 qdisc_pkt_len_init(skb);
3339 #ifdef CONFIG_NET_CLS_ACT
3340 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3341 # ifdef CONFIG_NET_EGRESS
3342 if (static_key_false(&egress_needed)) {
3343 skb = sch_handle_egress(skb, &rc, dev);
3344 if (!skb)
3345 goto out;
3346 }
3347 # endif
3348 #endif
3349 /* If device/qdisc don't need skb->dst, release it right now while
3350 * its hot in this cpu cache.
3351 */
3352 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353 skb_dst_drop(skb);
3354 else
3355 skb_dst_force(skb);
3356
3357 #ifdef CONFIG_NET_SWITCHDEV
3358 /* Don't forward if offload device already forwarded */
3359 if (skb->offload_fwd_mark &&
3360 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3361 consume_skb(skb);
3362 rc = NET_XMIT_SUCCESS;
3363 goto out;
3364 }
3365 #endif
3366
3367 txq = netdev_pick_tx(dev, skb, accel_priv);
3368 q = rcu_dereference_bh(txq->qdisc);
3369
3370 trace_net_dev_queue(skb);
3371 if (q->enqueue) {
3372 rc = __dev_xmit_skb(skb, q, dev, txq);
3373 goto out;
3374 }
3375
3376 /* The device has no queue. Common case for software devices:
3377 loopback, all the sorts of tunnels...
3378
3379 Really, it is unlikely that netif_tx_lock protection is necessary
3380 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3381 counters.)
3382 However, it is possible, that they rely on protection
3383 made by us here.
3384
3385 Check this and shot the lock. It is not prone from deadlocks.
3386 Either shot noqueue qdisc, it is even simpler 8)
3387 */
3388 if (dev->flags & IFF_UP) {
3389 int cpu = smp_processor_id(); /* ok because BHs are off */
3390
3391 if (txq->xmit_lock_owner != cpu) {
3392 if (unlikely(__this_cpu_read(xmit_recursion) >
3393 XMIT_RECURSION_LIMIT))
3394 goto recursion_alert;
3395
3396 skb = validate_xmit_skb(skb, dev);
3397 if (!skb)
3398 goto out;
3399
3400 HARD_TX_LOCK(dev, txq, cpu);
3401
3402 if (!netif_xmit_stopped(txq)) {
3403 __this_cpu_inc(xmit_recursion);
3404 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3405 __this_cpu_dec(xmit_recursion);
3406 if (dev_xmit_complete(rc)) {
3407 HARD_TX_UNLOCK(dev, txq);
3408 goto out;
3409 }
3410 }
3411 HARD_TX_UNLOCK(dev, txq);
3412 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3413 dev->name);
3414 } else {
3415 /* Recursion is detected! It is possible,
3416 * unfortunately
3417 */
3418 recursion_alert:
3419 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3420 dev->name);
3421 }
3422 }
3423
3424 rc = -ENETDOWN;
3425 rcu_read_unlock_bh();
3426
3427 atomic_long_inc(&dev->tx_dropped);
3428 kfree_skb_list(skb);
3429 return rc;
3430 out:
3431 rcu_read_unlock_bh();
3432 return rc;
3433 }
3434
3435 int dev_queue_xmit(struct sk_buff *skb)
3436 {
3437 return __dev_queue_xmit(skb, NULL);
3438 }
3439 EXPORT_SYMBOL(dev_queue_xmit);
3440
3441 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3442 {
3443 return __dev_queue_xmit(skb, accel_priv);
3444 }
3445 EXPORT_SYMBOL(dev_queue_xmit_accel);
3446
3447
3448 /*=======================================================================
3449 Receiver routines
3450 =======================================================================*/
3451
3452 int netdev_max_backlog __read_mostly = 1000;
3453 EXPORT_SYMBOL(netdev_max_backlog);
3454
3455 int netdev_tstamp_prequeue __read_mostly = 1;
3456 int netdev_budget __read_mostly = 300;
3457 int weight_p __read_mostly = 64; /* old backlog weight */
3458
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461 struct napi_struct *napi)
3462 {
3463 list_add_tail(&napi->poll_list, &sd->poll_list);
3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465 }
3466
3467 #ifdef CONFIG_RPS
3468
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3474
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477
3478 static struct rps_dev_flow *
3479 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3480 struct rps_dev_flow *rflow, u16 next_cpu)
3481 {
3482 if (next_cpu < nr_cpu_ids) {
3483 #ifdef CONFIG_RFS_ACCEL
3484 struct netdev_rx_queue *rxqueue;
3485 struct rps_dev_flow_table *flow_table;
3486 struct rps_dev_flow *old_rflow;
3487 u32 flow_id;
3488 u16 rxq_index;
3489 int rc;
3490
3491 /* Should we steer this flow to a different hardware queue? */
3492 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3493 !(dev->features & NETIF_F_NTUPLE))
3494 goto out;
3495 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3496 if (rxq_index == skb_get_rx_queue(skb))
3497 goto out;
3498
3499 rxqueue = dev->_rx + rxq_index;
3500 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3501 if (!flow_table)
3502 goto out;
3503 flow_id = skb_get_hash(skb) & flow_table->mask;
3504 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3505 rxq_index, flow_id);
3506 if (rc < 0)
3507 goto out;
3508 old_rflow = rflow;
3509 rflow = &flow_table->flows[flow_id];
3510 rflow->filter = rc;
3511 if (old_rflow->filter == rflow->filter)
3512 old_rflow->filter = RPS_NO_FILTER;
3513 out:
3514 #endif
3515 rflow->last_qtail =
3516 per_cpu(softnet_data, next_cpu).input_queue_head;
3517 }
3518
3519 rflow->cpu = next_cpu;
3520 return rflow;
3521 }
3522
3523 /*
3524 * get_rps_cpu is called from netif_receive_skb and returns the target
3525 * CPU from the RPS map of the receiving queue for a given skb.
3526 * rcu_read_lock must be held on entry.
3527 */
3528 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3529 struct rps_dev_flow **rflowp)
3530 {
3531 const struct rps_sock_flow_table *sock_flow_table;
3532 struct netdev_rx_queue *rxqueue = dev->_rx;
3533 struct rps_dev_flow_table *flow_table;
3534 struct rps_map *map;
3535 int cpu = -1;
3536 u32 tcpu;
3537 u32 hash;
3538
3539 if (skb_rx_queue_recorded(skb)) {
3540 u16 index = skb_get_rx_queue(skb);
3541
3542 if (unlikely(index >= dev->real_num_rx_queues)) {
3543 WARN_ONCE(dev->real_num_rx_queues > 1,
3544 "%s received packet on queue %u, but number "
3545 "of RX queues is %u\n",
3546 dev->name, index, dev->real_num_rx_queues);
3547 goto done;
3548 }
3549 rxqueue += index;
3550 }
3551
3552 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3553
3554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3555 map = rcu_dereference(rxqueue->rps_map);
3556 if (!flow_table && !map)
3557 goto done;
3558
3559 skb_reset_network_header(skb);
3560 hash = skb_get_hash(skb);
3561 if (!hash)
3562 goto done;
3563
3564 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3565 if (flow_table && sock_flow_table) {
3566 struct rps_dev_flow *rflow;
3567 u32 next_cpu;
3568 u32 ident;
3569
3570 /* First check into global flow table if there is a match */
3571 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3572 if ((ident ^ hash) & ~rps_cpu_mask)
3573 goto try_rps;
3574
3575 next_cpu = ident & rps_cpu_mask;
3576
3577 /* OK, now we know there is a match,
3578 * we can look at the local (per receive queue) flow table
3579 */
3580 rflow = &flow_table->flows[hash & flow_table->mask];
3581 tcpu = rflow->cpu;
3582
3583 /*
3584 * If the desired CPU (where last recvmsg was done) is
3585 * different from current CPU (one in the rx-queue flow
3586 * table entry), switch if one of the following holds:
3587 * - Current CPU is unset (>= nr_cpu_ids).
3588 * - Current CPU is offline.
3589 * - The current CPU's queue tail has advanced beyond the
3590 * last packet that was enqueued using this table entry.
3591 * This guarantees that all previous packets for the flow
3592 * have been dequeued, thus preserving in order delivery.
3593 */
3594 if (unlikely(tcpu != next_cpu) &&
3595 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3596 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3597 rflow->last_qtail)) >= 0)) {
3598 tcpu = next_cpu;
3599 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3600 }
3601
3602 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3603 *rflowp = rflow;
3604 cpu = tcpu;
3605 goto done;
3606 }
3607 }
3608
3609 try_rps:
3610
3611 if (map) {
3612 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3613 if (cpu_online(tcpu)) {
3614 cpu = tcpu;
3615 goto done;
3616 }
3617 }
3618
3619 done:
3620 return cpu;
3621 }
3622
3623 #ifdef CONFIG_RFS_ACCEL
3624
3625 /**
3626 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3627 * @dev: Device on which the filter was set
3628 * @rxq_index: RX queue index
3629 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3630 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3631 *
3632 * Drivers that implement ndo_rx_flow_steer() should periodically call
3633 * this function for each installed filter and remove the filters for
3634 * which it returns %true.
3635 */
3636 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3637 u32 flow_id, u16 filter_id)
3638 {
3639 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3640 struct rps_dev_flow_table *flow_table;
3641 struct rps_dev_flow *rflow;
3642 bool expire = true;
3643 unsigned int cpu;
3644
3645 rcu_read_lock();
3646 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3647 if (flow_table && flow_id <= flow_table->mask) {
3648 rflow = &flow_table->flows[flow_id];
3649 cpu = ACCESS_ONCE(rflow->cpu);
3650 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3651 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3652 rflow->last_qtail) <
3653 (int)(10 * flow_table->mask)))
3654 expire = false;
3655 }
3656 rcu_read_unlock();
3657 return expire;
3658 }
3659 EXPORT_SYMBOL(rps_may_expire_flow);
3660
3661 #endif /* CONFIG_RFS_ACCEL */
3662
3663 /* Called from hardirq (IPI) context */
3664 static void rps_trigger_softirq(void *data)
3665 {
3666 struct softnet_data *sd = data;
3667
3668 ____napi_schedule(sd, &sd->backlog);
3669 sd->received_rps++;
3670 }
3671
3672 #endif /* CONFIG_RPS */
3673
3674 /*
3675 * Check if this softnet_data structure is another cpu one
3676 * If yes, queue it to our IPI list and return 1
3677 * If no, return 0
3678 */
3679 static int rps_ipi_queued(struct softnet_data *sd)
3680 {
3681 #ifdef CONFIG_RPS
3682 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3683
3684 if (sd != mysd) {
3685 sd->rps_ipi_next = mysd->rps_ipi_list;
3686 mysd->rps_ipi_list = sd;
3687
3688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3689 return 1;
3690 }
3691 #endif /* CONFIG_RPS */
3692 return 0;
3693 }
3694
3695 #ifdef CONFIG_NET_FLOW_LIMIT
3696 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3697 #endif
3698
3699 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3700 {
3701 #ifdef CONFIG_NET_FLOW_LIMIT
3702 struct sd_flow_limit *fl;
3703 struct softnet_data *sd;
3704 unsigned int old_flow, new_flow;
3705
3706 if (qlen < (netdev_max_backlog >> 1))
3707 return false;
3708
3709 sd = this_cpu_ptr(&softnet_data);
3710
3711 rcu_read_lock();
3712 fl = rcu_dereference(sd->flow_limit);
3713 if (fl) {
3714 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3715 old_flow = fl->history[fl->history_head];
3716 fl->history[fl->history_head] = new_flow;
3717
3718 fl->history_head++;
3719 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3720
3721 if (likely(fl->buckets[old_flow]))
3722 fl->buckets[old_flow]--;
3723
3724 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3725 fl->count++;
3726 rcu_read_unlock();
3727 return true;
3728 }
3729 }
3730 rcu_read_unlock();
3731 #endif
3732 return false;
3733 }
3734
3735 /*
3736 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3737 * queue (may be a remote CPU queue).
3738 */
3739 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3740 unsigned int *qtail)
3741 {
3742 struct softnet_data *sd;
3743 unsigned long flags;
3744 unsigned int qlen;
3745
3746 sd = &per_cpu(softnet_data, cpu);
3747
3748 local_irq_save(flags);
3749
3750 rps_lock(sd);
3751 if (!netif_running(skb->dev))
3752 goto drop;
3753 qlen = skb_queue_len(&sd->input_pkt_queue);
3754 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3755 if (qlen) {
3756 enqueue:
3757 __skb_queue_tail(&sd->input_pkt_queue, skb);
3758 input_queue_tail_incr_save(sd, qtail);
3759 rps_unlock(sd);
3760 local_irq_restore(flags);
3761 return NET_RX_SUCCESS;
3762 }
3763
3764 /* Schedule NAPI for backlog device
3765 * We can use non atomic operation since we own the queue lock
3766 */
3767 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3768 if (!rps_ipi_queued(sd))
3769 ____napi_schedule(sd, &sd->backlog);
3770 }
3771 goto enqueue;
3772 }
3773
3774 drop:
3775 sd->dropped++;
3776 rps_unlock(sd);
3777
3778 local_irq_restore(flags);
3779
3780 atomic_long_inc(&skb->dev->rx_dropped);
3781 kfree_skb(skb);
3782 return NET_RX_DROP;
3783 }
3784
3785 static int netif_rx_internal(struct sk_buff *skb)
3786 {
3787 int ret;
3788
3789 net_timestamp_check(netdev_tstamp_prequeue, skb);
3790
3791 trace_netif_rx(skb);
3792 #ifdef CONFIG_RPS
3793 if (static_key_false(&rps_needed)) {
3794 struct rps_dev_flow voidflow, *rflow = &voidflow;
3795 int cpu;
3796
3797 preempt_disable();
3798 rcu_read_lock();
3799
3800 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3801 if (cpu < 0)
3802 cpu = smp_processor_id();
3803
3804 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3805
3806 rcu_read_unlock();
3807 preempt_enable();
3808 } else
3809 #endif
3810 {
3811 unsigned int qtail;
3812 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3813 put_cpu();
3814 }
3815 return ret;
3816 }
3817
3818 /**
3819 * netif_rx - post buffer to the network code
3820 * @skb: buffer to post
3821 *
3822 * This function receives a packet from a device driver and queues it for
3823 * the upper (protocol) levels to process. It always succeeds. The buffer
3824 * may be dropped during processing for congestion control or by the
3825 * protocol layers.
3826 *
3827 * return values:
3828 * NET_RX_SUCCESS (no congestion)
3829 * NET_RX_DROP (packet was dropped)
3830 *
3831 */
3832
3833 int netif_rx(struct sk_buff *skb)
3834 {
3835 trace_netif_rx_entry(skb);
3836
3837 return netif_rx_internal(skb);
3838 }
3839 EXPORT_SYMBOL(netif_rx);
3840
3841 int netif_rx_ni(struct sk_buff *skb)
3842 {
3843 int err;
3844
3845 trace_netif_rx_ni_entry(skb);
3846
3847 preempt_disable();
3848 err = netif_rx_internal(skb);
3849 if (local_softirq_pending())
3850 do_softirq();
3851 preempt_enable();
3852
3853 return err;
3854 }
3855 EXPORT_SYMBOL(netif_rx_ni);
3856
3857 static void net_tx_action(struct softirq_action *h)
3858 {
3859 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3860
3861 if (sd->completion_queue) {
3862 struct sk_buff *clist;
3863
3864 local_irq_disable();
3865 clist = sd->completion_queue;
3866 sd->completion_queue = NULL;
3867 local_irq_enable();
3868
3869 while (clist) {
3870 struct sk_buff *skb = clist;
3871 clist = clist->next;
3872
3873 WARN_ON(atomic_read(&skb->users));
3874 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3875 trace_consume_skb(skb);
3876 else
3877 trace_kfree_skb(skb, net_tx_action);
3878
3879 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3880 __kfree_skb(skb);
3881 else
3882 __kfree_skb_defer(skb);
3883 }
3884
3885 __kfree_skb_flush();
3886 }
3887
3888 if (sd->output_queue) {
3889 struct Qdisc *head;
3890
3891 local_irq_disable();
3892 head = sd->output_queue;
3893 sd->output_queue = NULL;
3894 sd->output_queue_tailp = &sd->output_queue;
3895 local_irq_enable();
3896
3897 while (head) {
3898 struct Qdisc *q = head;
3899 spinlock_t *root_lock;
3900
3901 head = head->next_sched;
3902
3903 root_lock = qdisc_lock(q);
3904 spin_lock(root_lock);
3905 /* We need to make sure head->next_sched is read
3906 * before clearing __QDISC_STATE_SCHED
3907 */
3908 smp_mb__before_atomic();
3909 clear_bit(__QDISC_STATE_SCHED, &q->state);
3910 qdisc_run(q);
3911 spin_unlock(root_lock);
3912 }
3913 }
3914 }
3915
3916 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3917 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3918 /* This hook is defined here for ATM LANE */
3919 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3920 unsigned char *addr) __read_mostly;
3921 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3922 #endif
3923
3924 static inline struct sk_buff *
3925 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3926 struct net_device *orig_dev)
3927 {
3928 #ifdef CONFIG_NET_CLS_ACT
3929 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3930 struct tcf_result cl_res;
3931
3932 /* If there's at least one ingress present somewhere (so
3933 * we get here via enabled static key), remaining devices
3934 * that are not configured with an ingress qdisc will bail
3935 * out here.
3936 */
3937 if (!cl)
3938 return skb;
3939 if (*pt_prev) {
3940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3941 *pt_prev = NULL;
3942 }
3943
3944 qdisc_skb_cb(skb)->pkt_len = skb->len;
3945 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3946 qdisc_bstats_cpu_update(cl->q, skb);
3947
3948 switch (tc_classify(skb, cl, &cl_res, false)) {
3949 case TC_ACT_OK:
3950 case TC_ACT_RECLASSIFY:
3951 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 break;
3953 case TC_ACT_SHOT:
3954 qdisc_qstats_cpu_drop(cl->q);
3955 kfree_skb(skb);
3956 return NULL;
3957 case TC_ACT_STOLEN:
3958 case TC_ACT_QUEUED:
3959 consume_skb(skb);
3960 return NULL;
3961 case TC_ACT_REDIRECT:
3962 /* skb_mac_header check was done by cls/act_bpf, so
3963 * we can safely push the L2 header back before
3964 * redirecting to another netdev
3965 */
3966 __skb_push(skb, skb->mac_len);
3967 skb_do_redirect(skb);
3968 return NULL;
3969 default:
3970 break;
3971 }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973 return skb;
3974 }
3975
3976 /**
3977 * netdev_rx_handler_register - register receive handler
3978 * @dev: device to register a handler for
3979 * @rx_handler: receive handler to register
3980 * @rx_handler_data: data pointer that is used by rx handler
3981 *
3982 * Register a receive handler for a device. This handler will then be
3983 * called from __netif_receive_skb. A negative errno code is returned
3984 * on a failure.
3985 *
3986 * The caller must hold the rtnl_mutex.
3987 *
3988 * For a general description of rx_handler, see enum rx_handler_result.
3989 */
3990 int netdev_rx_handler_register(struct net_device *dev,
3991 rx_handler_func_t *rx_handler,
3992 void *rx_handler_data)
3993 {
3994 ASSERT_RTNL();
3995
3996 if (dev->rx_handler)
3997 return -EBUSY;
3998
3999 /* Note: rx_handler_data must be set before rx_handler */
4000 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4001 rcu_assign_pointer(dev->rx_handler, rx_handler);
4002
4003 return 0;
4004 }
4005 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4006
4007 /**
4008 * netdev_rx_handler_unregister - unregister receive handler
4009 * @dev: device to unregister a handler from
4010 *
4011 * Unregister a receive handler from a device.
4012 *
4013 * The caller must hold the rtnl_mutex.
4014 */
4015 void netdev_rx_handler_unregister(struct net_device *dev)
4016 {
4017
4018 ASSERT_RTNL();
4019 RCU_INIT_POINTER(dev->rx_handler, NULL);
4020 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4021 * section has a guarantee to see a non NULL rx_handler_data
4022 * as well.
4023 */
4024 synchronize_net();
4025 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4026 }
4027 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4028
4029 /*
4030 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4031 * the special handling of PFMEMALLOC skbs.
4032 */
4033 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4034 {
4035 switch (skb->protocol) {
4036 case htons(ETH_P_ARP):
4037 case htons(ETH_P_IP):
4038 case htons(ETH_P_IPV6):
4039 case htons(ETH_P_8021Q):
4040 case htons(ETH_P_8021AD):
4041 return true;
4042 default:
4043 return false;
4044 }
4045 }
4046
4047 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4048 int *ret, struct net_device *orig_dev)
4049 {
4050 #ifdef CONFIG_NETFILTER_INGRESS
4051 if (nf_hook_ingress_active(skb)) {
4052 if (*pt_prev) {
4053 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4054 *pt_prev = NULL;
4055 }
4056
4057 return nf_hook_ingress(skb);
4058 }
4059 #endif /* CONFIG_NETFILTER_INGRESS */
4060 return 0;
4061 }
4062
4063 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4064 {
4065 struct packet_type *ptype, *pt_prev;
4066 rx_handler_func_t *rx_handler;
4067 struct net_device *orig_dev;
4068 bool deliver_exact = false;
4069 int ret = NET_RX_DROP;
4070 __be16 type;
4071
4072 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4073
4074 trace_netif_receive_skb(skb);
4075
4076 orig_dev = skb->dev;
4077
4078 skb_reset_network_header(skb);
4079 if (!skb_transport_header_was_set(skb))
4080 skb_reset_transport_header(skb);
4081 skb_reset_mac_len(skb);
4082
4083 pt_prev = NULL;
4084
4085 another_round:
4086 skb->skb_iif = skb->dev->ifindex;
4087
4088 __this_cpu_inc(softnet_data.processed);
4089
4090 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4091 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4092 skb = skb_vlan_untag(skb);
4093 if (unlikely(!skb))
4094 goto out;
4095 }
4096
4097 #ifdef CONFIG_NET_CLS_ACT
4098 if (skb->tc_verd & TC_NCLS) {
4099 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4100 goto ncls;
4101 }
4102 #endif
4103
4104 if (pfmemalloc)
4105 goto skip_taps;
4106
4107 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4108 if (pt_prev)
4109 ret = deliver_skb(skb, pt_prev, orig_dev);
4110 pt_prev = ptype;
4111 }
4112
4113 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4114 if (pt_prev)
4115 ret = deliver_skb(skb, pt_prev, orig_dev);
4116 pt_prev = ptype;
4117 }
4118
4119 skip_taps:
4120 #ifdef CONFIG_NET_INGRESS
4121 if (static_key_false(&ingress_needed)) {
4122 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4123 if (!skb)
4124 goto out;
4125
4126 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4127 goto out;
4128 }
4129 #endif
4130 #ifdef CONFIG_NET_CLS_ACT
4131 skb->tc_verd = 0;
4132 ncls:
4133 #endif
4134 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4135 goto drop;
4136
4137 if (skb_vlan_tag_present(skb)) {
4138 if (pt_prev) {
4139 ret = deliver_skb(skb, pt_prev, orig_dev);
4140 pt_prev = NULL;
4141 }
4142 if (vlan_do_receive(&skb))
4143 goto another_round;
4144 else if (unlikely(!skb))
4145 goto out;
4146 }
4147
4148 rx_handler = rcu_dereference(skb->dev->rx_handler);
4149 if (rx_handler) {
4150 if (pt_prev) {
4151 ret = deliver_skb(skb, pt_prev, orig_dev);
4152 pt_prev = NULL;
4153 }
4154 switch (rx_handler(&skb)) {
4155 case RX_HANDLER_CONSUMED:
4156 ret = NET_RX_SUCCESS;
4157 goto out;
4158 case RX_HANDLER_ANOTHER:
4159 goto another_round;
4160 case RX_HANDLER_EXACT:
4161 deliver_exact = true;
4162 case RX_HANDLER_PASS:
4163 break;
4164 default:
4165 BUG();
4166 }
4167 }
4168
4169 if (unlikely(skb_vlan_tag_present(skb))) {
4170 if (skb_vlan_tag_get_id(skb))
4171 skb->pkt_type = PACKET_OTHERHOST;
4172 /* Note: we might in the future use prio bits
4173 * and set skb->priority like in vlan_do_receive()
4174 * For the time being, just ignore Priority Code Point
4175 */
4176 skb->vlan_tci = 0;
4177 }
4178
4179 type = skb->protocol;
4180
4181 /* deliver only exact match when indicated */
4182 if (likely(!deliver_exact)) {
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &ptype_base[ntohs(type) &
4185 PTYPE_HASH_MASK]);
4186 }
4187
4188 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 &orig_dev->ptype_specific);
4190
4191 if (unlikely(skb->dev != orig_dev)) {
4192 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193 &skb->dev->ptype_specific);
4194 }
4195
4196 if (pt_prev) {
4197 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4198 goto drop;
4199 else
4200 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4201 } else {
4202 drop:
4203 if (!deliver_exact)
4204 atomic_long_inc(&skb->dev->rx_dropped);
4205 else
4206 atomic_long_inc(&skb->dev->rx_nohandler);
4207 kfree_skb(skb);
4208 /* Jamal, now you will not able to escape explaining
4209 * me how you were going to use this. :-)
4210 */
4211 ret = NET_RX_DROP;
4212 }
4213
4214 out:
4215 return ret;
4216 }
4217
4218 static int __netif_receive_skb(struct sk_buff *skb)
4219 {
4220 int ret;
4221
4222 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4223 unsigned long pflags = current->flags;
4224
4225 /*
4226 * PFMEMALLOC skbs are special, they should
4227 * - be delivered to SOCK_MEMALLOC sockets only
4228 * - stay away from userspace
4229 * - have bounded memory usage
4230 *
4231 * Use PF_MEMALLOC as this saves us from propagating the allocation
4232 * context down to all allocation sites.
4233 */
4234 current->flags |= PF_MEMALLOC;
4235 ret = __netif_receive_skb_core(skb, true);
4236 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4237 } else
4238 ret = __netif_receive_skb_core(skb, false);
4239
4240 return ret;
4241 }
4242
4243 static int netif_receive_skb_internal(struct sk_buff *skb)
4244 {
4245 int ret;
4246
4247 net_timestamp_check(netdev_tstamp_prequeue, skb);
4248
4249 if (skb_defer_rx_timestamp(skb))
4250 return NET_RX_SUCCESS;
4251
4252 rcu_read_lock();
4253
4254 #ifdef CONFIG_RPS
4255 if (static_key_false(&rps_needed)) {
4256 struct rps_dev_flow voidflow, *rflow = &voidflow;
4257 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4258
4259 if (cpu >= 0) {
4260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4261 rcu_read_unlock();
4262 return ret;
4263 }
4264 }
4265 #endif
4266 ret = __netif_receive_skb(skb);
4267 rcu_read_unlock();
4268 return ret;
4269 }
4270
4271 /**
4272 * netif_receive_skb - process receive buffer from network
4273 * @skb: buffer to process
4274 *
4275 * netif_receive_skb() is the main receive data processing function.
4276 * It always succeeds. The buffer may be dropped during processing
4277 * for congestion control or by the protocol layers.
4278 *
4279 * This function may only be called from softirq context and interrupts
4280 * should be enabled.
4281 *
4282 * Return values (usually ignored):
4283 * NET_RX_SUCCESS: no congestion
4284 * NET_RX_DROP: packet was dropped
4285 */
4286 int netif_receive_skb(struct sk_buff *skb)
4287 {
4288 trace_netif_receive_skb_entry(skb);
4289
4290 return netif_receive_skb_internal(skb);
4291 }
4292 EXPORT_SYMBOL(netif_receive_skb);
4293
4294 /* Network device is going away, flush any packets still pending
4295 * Called with irqs disabled.
4296 */
4297 static void flush_backlog(void *arg)
4298 {
4299 struct net_device *dev = arg;
4300 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4301 struct sk_buff *skb, *tmp;
4302
4303 rps_lock(sd);
4304 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4305 if (skb->dev == dev) {
4306 __skb_unlink(skb, &sd->input_pkt_queue);
4307 kfree_skb(skb);
4308 input_queue_head_incr(sd);
4309 }
4310 }
4311 rps_unlock(sd);
4312
4313 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4314 if (skb->dev == dev) {
4315 __skb_unlink(skb, &sd->process_queue);
4316 kfree_skb(skb);
4317 input_queue_head_incr(sd);
4318 }
4319 }
4320 }
4321
4322 static int napi_gro_complete(struct sk_buff *skb)
4323 {
4324 struct packet_offload *ptype;
4325 __be16 type = skb->protocol;
4326 struct list_head *head = &offload_base;
4327 int err = -ENOENT;
4328
4329 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
4331 if (NAPI_GRO_CB(skb)->count == 1) {
4332 skb_shinfo(skb)->gso_size = 0;
4333 goto out;
4334 }
4335
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(ptype, head, list) {
4338 if (ptype->type != type || !ptype->callbacks.gro_complete)
4339 continue;
4340
4341 err = ptype->callbacks.gro_complete(skb, 0);
4342 break;
4343 }
4344 rcu_read_unlock();
4345
4346 if (err) {
4347 WARN_ON(&ptype->list == head);
4348 kfree_skb(skb);
4349 return NET_RX_SUCCESS;
4350 }
4351
4352 out:
4353 return netif_receive_skb_internal(skb);
4354 }
4355
4356 /* napi->gro_list contains packets ordered by age.
4357 * youngest packets at the head of it.
4358 * Complete skbs in reverse order to reduce latencies.
4359 */
4360 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4361 {
4362 struct sk_buff *skb, *prev = NULL;
4363
4364 /* scan list and build reverse chain */
4365 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366 skb->prev = prev;
4367 prev = skb;
4368 }
4369
4370 for (skb = prev; skb; skb = prev) {
4371 skb->next = NULL;
4372
4373 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374 return;
4375
4376 prev = skb->prev;
4377 napi_gro_complete(skb);
4378 napi->gro_count--;
4379 }
4380
4381 napi->gro_list = NULL;
4382 }
4383 EXPORT_SYMBOL(napi_gro_flush);
4384
4385 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386 {
4387 struct sk_buff *p;
4388 unsigned int maclen = skb->dev->hard_header_len;
4389 u32 hash = skb_get_hash_raw(skb);
4390
4391 for (p = napi->gro_list; p; p = p->next) {
4392 unsigned long diffs;
4393
4394 NAPI_GRO_CB(p)->flush = 0;
4395
4396 if (hash != skb_get_hash_raw(p)) {
4397 NAPI_GRO_CB(p)->same_flow = 0;
4398 continue;
4399 }
4400
4401 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402 diffs |= p->vlan_tci ^ skb->vlan_tci;
4403 diffs |= skb_metadata_dst_cmp(p, skb);
4404 if (maclen == ETH_HLEN)
4405 diffs |= compare_ether_header(skb_mac_header(p),
4406 skb_mac_header(skb));
4407 else if (!diffs)
4408 diffs = memcmp(skb_mac_header(p),
4409 skb_mac_header(skb),
4410 maclen);
4411 NAPI_GRO_CB(p)->same_flow = !diffs;
4412 }
4413 }
4414
4415 static void skb_gro_reset_offset(struct sk_buff *skb)
4416 {
4417 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418 const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420 NAPI_GRO_CB(skb)->data_offset = 0;
4421 NAPI_GRO_CB(skb)->frag0 = NULL;
4422 NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425 pinfo->nr_frags &&
4426 !PageHighMem(skb_frag_page(frag0))) {
4427 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4429 }
4430 }
4431
4432 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4433 {
4434 struct skb_shared_info *pinfo = skb_shinfo(skb);
4435
4436 BUG_ON(skb->end - skb->tail < grow);
4437
4438 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4439
4440 skb->data_len -= grow;
4441 skb->tail += grow;
4442
4443 pinfo->frags[0].page_offset += grow;
4444 skb_frag_size_sub(&pinfo->frags[0], grow);
4445
4446 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4447 skb_frag_unref(skb, 0);
4448 memmove(pinfo->frags, pinfo->frags + 1,
4449 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4450 }
4451 }
4452
4453 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4454 {
4455 struct sk_buff **pp = NULL;
4456 struct packet_offload *ptype;
4457 __be16 type = skb->protocol;
4458 struct list_head *head = &offload_base;
4459 int same_flow;
4460 enum gro_result ret;
4461 int grow;
4462
4463 if (!(skb->dev->features & NETIF_F_GRO))
4464 goto normal;
4465
4466 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4467 goto normal;
4468
4469 gro_list_prepare(napi, skb);
4470
4471 rcu_read_lock();
4472 list_for_each_entry_rcu(ptype, head, list) {
4473 if (ptype->type != type || !ptype->callbacks.gro_receive)
4474 continue;
4475
4476 skb_set_network_header(skb, skb_gro_offset(skb));
4477 skb_reset_mac_len(skb);
4478 NAPI_GRO_CB(skb)->same_flow = 0;
4479 NAPI_GRO_CB(skb)->flush = 0;
4480 NAPI_GRO_CB(skb)->free = 0;
4481 NAPI_GRO_CB(skb)->encap_mark = 0;
4482 NAPI_GRO_CB(skb)->is_fou = 0;
4483 NAPI_GRO_CB(skb)->is_atomic = 1;
4484 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4485
4486 /* Setup for GRO checksum validation */
4487 switch (skb->ip_summed) {
4488 case CHECKSUM_COMPLETE:
4489 NAPI_GRO_CB(skb)->csum = skb->csum;
4490 NAPI_GRO_CB(skb)->csum_valid = 1;
4491 NAPI_GRO_CB(skb)->csum_cnt = 0;
4492 break;
4493 case CHECKSUM_UNNECESSARY:
4494 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4495 NAPI_GRO_CB(skb)->csum_valid = 0;
4496 break;
4497 default:
4498 NAPI_GRO_CB(skb)->csum_cnt = 0;
4499 NAPI_GRO_CB(skb)->csum_valid = 0;
4500 }
4501
4502 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4503 break;
4504 }
4505 rcu_read_unlock();
4506
4507 if (&ptype->list == head)
4508 goto normal;
4509
4510 same_flow = NAPI_GRO_CB(skb)->same_flow;
4511 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4512
4513 if (pp) {
4514 struct sk_buff *nskb = *pp;
4515
4516 *pp = nskb->next;
4517 nskb->next = NULL;
4518 napi_gro_complete(nskb);
4519 napi->gro_count--;
4520 }
4521
4522 if (same_flow)
4523 goto ok;
4524
4525 if (NAPI_GRO_CB(skb)->flush)
4526 goto normal;
4527
4528 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4529 struct sk_buff *nskb = napi->gro_list;
4530
4531 /* locate the end of the list to select the 'oldest' flow */
4532 while (nskb->next) {
4533 pp = &nskb->next;
4534 nskb = *pp;
4535 }
4536 *pp = NULL;
4537 nskb->next = NULL;
4538 napi_gro_complete(nskb);
4539 } else {
4540 napi->gro_count++;
4541 }
4542 NAPI_GRO_CB(skb)->count = 1;
4543 NAPI_GRO_CB(skb)->age = jiffies;
4544 NAPI_GRO_CB(skb)->last = skb;
4545 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4546 skb->next = napi->gro_list;
4547 napi->gro_list = skb;
4548 ret = GRO_HELD;
4549
4550 pull:
4551 grow = skb_gro_offset(skb) - skb_headlen(skb);
4552 if (grow > 0)
4553 gro_pull_from_frag0(skb, grow);
4554 ok:
4555 return ret;
4556
4557 normal:
4558 ret = GRO_NORMAL;
4559 goto pull;
4560 }
4561
4562 struct packet_offload *gro_find_receive_by_type(__be16 type)
4563 {
4564 struct list_head *offload_head = &offload_base;
4565 struct packet_offload *ptype;
4566
4567 list_for_each_entry_rcu(ptype, offload_head, list) {
4568 if (ptype->type != type || !ptype->callbacks.gro_receive)
4569 continue;
4570 return ptype;
4571 }
4572 return NULL;
4573 }
4574 EXPORT_SYMBOL(gro_find_receive_by_type);
4575
4576 struct packet_offload *gro_find_complete_by_type(__be16 type)
4577 {
4578 struct list_head *offload_head = &offload_base;
4579 struct packet_offload *ptype;
4580
4581 list_for_each_entry_rcu(ptype, offload_head, list) {
4582 if (ptype->type != type || !ptype->callbacks.gro_complete)
4583 continue;
4584 return ptype;
4585 }
4586 return NULL;
4587 }
4588 EXPORT_SYMBOL(gro_find_complete_by_type);
4589
4590 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4591 {
4592 switch (ret) {
4593 case GRO_NORMAL:
4594 if (netif_receive_skb_internal(skb))
4595 ret = GRO_DROP;
4596 break;
4597
4598 case GRO_DROP:
4599 kfree_skb(skb);
4600 break;
4601
4602 case GRO_MERGED_FREE:
4603 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4604 skb_dst_drop(skb);
4605 kmem_cache_free(skbuff_head_cache, skb);
4606 } else {
4607 __kfree_skb(skb);
4608 }
4609 break;
4610
4611 case GRO_HELD:
4612 case GRO_MERGED:
4613 break;
4614 }
4615
4616 return ret;
4617 }
4618
4619 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4620 {
4621 skb_mark_napi_id(skb, napi);
4622 trace_napi_gro_receive_entry(skb);
4623
4624 skb_gro_reset_offset(skb);
4625
4626 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4627 }
4628 EXPORT_SYMBOL(napi_gro_receive);
4629
4630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4631 {
4632 if (unlikely(skb->pfmemalloc)) {
4633 consume_skb(skb);
4634 return;
4635 }
4636 __skb_pull(skb, skb_headlen(skb));
4637 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4638 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4639 skb->vlan_tci = 0;
4640 skb->dev = napi->dev;
4641 skb->skb_iif = 0;
4642 skb->encapsulation = 0;
4643 skb_shinfo(skb)->gso_type = 0;
4644 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4645
4646 napi->skb = skb;
4647 }
4648
4649 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4650 {
4651 struct sk_buff *skb = napi->skb;
4652
4653 if (!skb) {
4654 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4655 if (skb) {
4656 napi->skb = skb;
4657 skb_mark_napi_id(skb, napi);
4658 }
4659 }
4660 return skb;
4661 }
4662 EXPORT_SYMBOL(napi_get_frags);
4663
4664 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4665 struct sk_buff *skb,
4666 gro_result_t ret)
4667 {
4668 switch (ret) {
4669 case GRO_NORMAL:
4670 case GRO_HELD:
4671 __skb_push(skb, ETH_HLEN);
4672 skb->protocol = eth_type_trans(skb, skb->dev);
4673 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4674 ret = GRO_DROP;
4675 break;
4676
4677 case GRO_DROP:
4678 case GRO_MERGED_FREE:
4679 napi_reuse_skb(napi, skb);
4680 break;
4681
4682 case GRO_MERGED:
4683 break;
4684 }
4685
4686 return ret;
4687 }
4688
4689 /* Upper GRO stack assumes network header starts at gro_offset=0
4690 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4691 * We copy ethernet header into skb->data to have a common layout.
4692 */
4693 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4694 {
4695 struct sk_buff *skb = napi->skb;
4696 const struct ethhdr *eth;
4697 unsigned int hlen = sizeof(*eth);
4698
4699 napi->skb = NULL;
4700
4701 skb_reset_mac_header(skb);
4702 skb_gro_reset_offset(skb);
4703
4704 eth = skb_gro_header_fast(skb, 0);
4705 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4706 eth = skb_gro_header_slow(skb, hlen, 0);
4707 if (unlikely(!eth)) {
4708 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4709 __func__, napi->dev->name);
4710 napi_reuse_skb(napi, skb);
4711 return NULL;
4712 }
4713 } else {
4714 gro_pull_from_frag0(skb, hlen);
4715 NAPI_GRO_CB(skb)->frag0 += hlen;
4716 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4717 }
4718 __skb_pull(skb, hlen);
4719
4720 /*
4721 * This works because the only protocols we care about don't require
4722 * special handling.
4723 * We'll fix it up properly in napi_frags_finish()
4724 */
4725 skb->protocol = eth->h_proto;
4726
4727 return skb;
4728 }
4729
4730 gro_result_t napi_gro_frags(struct napi_struct *napi)
4731 {
4732 struct sk_buff *skb = napi_frags_skb(napi);
4733
4734 if (!skb)
4735 return GRO_DROP;
4736
4737 trace_napi_gro_frags_entry(skb);
4738
4739 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4740 }
4741 EXPORT_SYMBOL(napi_gro_frags);
4742
4743 /* Compute the checksum from gro_offset and return the folded value
4744 * after adding in any pseudo checksum.
4745 */
4746 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4747 {
4748 __wsum wsum;
4749 __sum16 sum;
4750
4751 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4752
4753 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4754 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4755 if (likely(!sum)) {
4756 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4757 !skb->csum_complete_sw)
4758 netdev_rx_csum_fault(skb->dev);
4759 }
4760
4761 NAPI_GRO_CB(skb)->csum = wsum;
4762 NAPI_GRO_CB(skb)->csum_valid = 1;
4763
4764 return sum;
4765 }
4766 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4767
4768 /*
4769 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4770 * Note: called with local irq disabled, but exits with local irq enabled.
4771 */
4772 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4773 {
4774 #ifdef CONFIG_RPS
4775 struct softnet_data *remsd = sd->rps_ipi_list;
4776
4777 if (remsd) {
4778 sd->rps_ipi_list = NULL;
4779
4780 local_irq_enable();
4781
4782 /* Send pending IPI's to kick RPS processing on remote cpus. */
4783 while (remsd) {
4784 struct softnet_data *next = remsd->rps_ipi_next;
4785
4786 if (cpu_online(remsd->cpu))
4787 smp_call_function_single_async(remsd->cpu,
4788 &remsd->csd);
4789 remsd = next;
4790 }
4791 } else
4792 #endif
4793 local_irq_enable();
4794 }
4795
4796 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4797 {
4798 #ifdef CONFIG_RPS
4799 return sd->rps_ipi_list != NULL;
4800 #else
4801 return false;
4802 #endif
4803 }
4804
4805 static int process_backlog(struct napi_struct *napi, int quota)
4806 {
4807 int work = 0;
4808 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4809
4810 /* Check if we have pending ipi, its better to send them now,
4811 * not waiting net_rx_action() end.
4812 */
4813 if (sd_has_rps_ipi_waiting(sd)) {
4814 local_irq_disable();
4815 net_rps_action_and_irq_enable(sd);
4816 }
4817
4818 napi->weight = weight_p;
4819 local_irq_disable();
4820 while (1) {
4821 struct sk_buff *skb;
4822
4823 while ((skb = __skb_dequeue(&sd->process_queue))) {
4824 rcu_read_lock();
4825 local_irq_enable();
4826 __netif_receive_skb(skb);
4827 rcu_read_unlock();
4828 local_irq_disable();
4829 input_queue_head_incr(sd);
4830 if (++work >= quota) {
4831 local_irq_enable();
4832 return work;
4833 }
4834 }
4835
4836 rps_lock(sd);
4837 if (skb_queue_empty(&sd->input_pkt_queue)) {
4838 /*
4839 * Inline a custom version of __napi_complete().
4840 * only current cpu owns and manipulates this napi,
4841 * and NAPI_STATE_SCHED is the only possible flag set
4842 * on backlog.
4843 * We can use a plain write instead of clear_bit(),
4844 * and we dont need an smp_mb() memory barrier.
4845 */
4846 napi->state = 0;
4847 rps_unlock(sd);
4848
4849 break;
4850 }
4851
4852 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4853 &sd->process_queue);
4854 rps_unlock(sd);
4855 }
4856 local_irq_enable();
4857
4858 return work;
4859 }
4860
4861 /**
4862 * __napi_schedule - schedule for receive
4863 * @n: entry to schedule
4864 *
4865 * The entry's receive function will be scheduled to run.
4866 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4867 */
4868 void __napi_schedule(struct napi_struct *n)
4869 {
4870 unsigned long flags;
4871
4872 local_irq_save(flags);
4873 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4874 local_irq_restore(flags);
4875 }
4876 EXPORT_SYMBOL(__napi_schedule);
4877
4878 /**
4879 * __napi_schedule_irqoff - schedule for receive
4880 * @n: entry to schedule
4881 *
4882 * Variant of __napi_schedule() assuming hard irqs are masked
4883 */
4884 void __napi_schedule_irqoff(struct napi_struct *n)
4885 {
4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 }
4888 EXPORT_SYMBOL(__napi_schedule_irqoff);
4889
4890 void __napi_complete(struct napi_struct *n)
4891 {
4892 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4893
4894 list_del_init(&n->poll_list);
4895 smp_mb__before_atomic();
4896 clear_bit(NAPI_STATE_SCHED, &n->state);
4897 }
4898 EXPORT_SYMBOL(__napi_complete);
4899
4900 void napi_complete_done(struct napi_struct *n, int work_done)
4901 {
4902 unsigned long flags;
4903
4904 /*
4905 * don't let napi dequeue from the cpu poll list
4906 * just in case its running on a different cpu
4907 */
4908 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4909 return;
4910
4911 if (n->gro_list) {
4912 unsigned long timeout = 0;
4913
4914 if (work_done)
4915 timeout = n->dev->gro_flush_timeout;
4916
4917 if (timeout)
4918 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4919 HRTIMER_MODE_REL_PINNED);
4920 else
4921 napi_gro_flush(n, false);
4922 }
4923 if (likely(list_empty(&n->poll_list))) {
4924 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4925 } else {
4926 /* If n->poll_list is not empty, we need to mask irqs */
4927 local_irq_save(flags);
4928 __napi_complete(n);
4929 local_irq_restore(flags);
4930 }
4931 }
4932 EXPORT_SYMBOL(napi_complete_done);
4933
4934 /* must be called under rcu_read_lock(), as we dont take a reference */
4935 static struct napi_struct *napi_by_id(unsigned int napi_id)
4936 {
4937 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4938 struct napi_struct *napi;
4939
4940 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4941 if (napi->napi_id == napi_id)
4942 return napi;
4943
4944 return NULL;
4945 }
4946
4947 #if defined(CONFIG_NET_RX_BUSY_POLL)
4948 #define BUSY_POLL_BUDGET 8
4949 bool sk_busy_loop(struct sock *sk, int nonblock)
4950 {
4951 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4952 int (*busy_poll)(struct napi_struct *dev);
4953 struct napi_struct *napi;
4954 int rc = false;
4955
4956 rcu_read_lock();
4957
4958 napi = napi_by_id(sk->sk_napi_id);
4959 if (!napi)
4960 goto out;
4961
4962 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4963 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4964
4965 do {
4966 rc = 0;
4967 local_bh_disable();
4968 if (busy_poll) {
4969 rc = busy_poll(napi);
4970 } else if (napi_schedule_prep(napi)) {
4971 void *have = netpoll_poll_lock(napi);
4972
4973 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4974 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4975 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4976 if (rc == BUSY_POLL_BUDGET) {
4977 napi_complete_done(napi, rc);
4978 napi_schedule(napi);
4979 }
4980 }
4981 netpoll_poll_unlock(have);
4982 }
4983 if (rc > 0)
4984 __NET_ADD_STATS(sock_net(sk),
4985 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4986 local_bh_enable();
4987
4988 if (rc == LL_FLUSH_FAILED)
4989 break; /* permanent failure */
4990
4991 cpu_relax();
4992 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4993 !need_resched() && !busy_loop_timeout(end_time));
4994
4995 rc = !skb_queue_empty(&sk->sk_receive_queue);
4996 out:
4997 rcu_read_unlock();
4998 return rc;
4999 }
5000 EXPORT_SYMBOL(sk_busy_loop);
5001
5002 #endif /* CONFIG_NET_RX_BUSY_POLL */
5003
5004 void napi_hash_add(struct napi_struct *napi)
5005 {
5006 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5007 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5008 return;
5009
5010 spin_lock(&napi_hash_lock);
5011
5012 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5013 do {
5014 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5015 napi_gen_id = NR_CPUS + 1;
5016 } while (napi_by_id(napi_gen_id));
5017 napi->napi_id = napi_gen_id;
5018
5019 hlist_add_head_rcu(&napi->napi_hash_node,
5020 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5021
5022 spin_unlock(&napi_hash_lock);
5023 }
5024 EXPORT_SYMBOL_GPL(napi_hash_add);
5025
5026 /* Warning : caller is responsible to make sure rcu grace period
5027 * is respected before freeing memory containing @napi
5028 */
5029 bool napi_hash_del(struct napi_struct *napi)
5030 {
5031 bool rcu_sync_needed = false;
5032
5033 spin_lock(&napi_hash_lock);
5034
5035 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5036 rcu_sync_needed = true;
5037 hlist_del_rcu(&napi->napi_hash_node);
5038 }
5039 spin_unlock(&napi_hash_lock);
5040 return rcu_sync_needed;
5041 }
5042 EXPORT_SYMBOL_GPL(napi_hash_del);
5043
5044 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5045 {
5046 struct napi_struct *napi;
5047
5048 napi = container_of(timer, struct napi_struct, timer);
5049 if (napi->gro_list)
5050 napi_schedule(napi);
5051
5052 return HRTIMER_NORESTART;
5053 }
5054
5055 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5056 int (*poll)(struct napi_struct *, int), int weight)
5057 {
5058 INIT_LIST_HEAD(&napi->poll_list);
5059 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5060 napi->timer.function = napi_watchdog;
5061 napi->gro_count = 0;
5062 napi->gro_list = NULL;
5063 napi->skb = NULL;
5064 napi->poll = poll;
5065 if (weight > NAPI_POLL_WEIGHT)
5066 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5067 weight, dev->name);
5068 napi->weight = weight;
5069 list_add(&napi->dev_list, &dev->napi_list);
5070 napi->dev = dev;
5071 #ifdef CONFIG_NETPOLL
5072 spin_lock_init(&napi->poll_lock);
5073 napi->poll_owner = -1;
5074 #endif
5075 set_bit(NAPI_STATE_SCHED, &napi->state);
5076 napi_hash_add(napi);
5077 }
5078 EXPORT_SYMBOL(netif_napi_add);
5079
5080 void napi_disable(struct napi_struct *n)
5081 {
5082 might_sleep();
5083 set_bit(NAPI_STATE_DISABLE, &n->state);
5084
5085 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5086 msleep(1);
5087 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5088 msleep(1);
5089
5090 hrtimer_cancel(&n->timer);
5091
5092 clear_bit(NAPI_STATE_DISABLE, &n->state);
5093 }
5094 EXPORT_SYMBOL(napi_disable);
5095
5096 /* Must be called in process context */
5097 void netif_napi_del(struct napi_struct *napi)
5098 {
5099 might_sleep();
5100 if (napi_hash_del(napi))
5101 synchronize_net();
5102 list_del_init(&napi->dev_list);
5103 napi_free_frags(napi);
5104
5105 kfree_skb_list(napi->gro_list);
5106 napi->gro_list = NULL;
5107 napi->gro_count = 0;
5108 }
5109 EXPORT_SYMBOL(netif_napi_del);
5110
5111 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5112 {
5113 void *have;
5114 int work, weight;
5115
5116 list_del_init(&n->poll_list);
5117
5118 have = netpoll_poll_lock(n);
5119
5120 weight = n->weight;
5121
5122 /* This NAPI_STATE_SCHED test is for avoiding a race
5123 * with netpoll's poll_napi(). Only the entity which
5124 * obtains the lock and sees NAPI_STATE_SCHED set will
5125 * actually make the ->poll() call. Therefore we avoid
5126 * accidentally calling ->poll() when NAPI is not scheduled.
5127 */
5128 work = 0;
5129 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5130 work = n->poll(n, weight);
5131 trace_napi_poll(n, work, weight);
5132 }
5133
5134 WARN_ON_ONCE(work > weight);
5135
5136 if (likely(work < weight))
5137 goto out_unlock;
5138
5139 /* Drivers must not modify the NAPI state if they
5140 * consume the entire weight. In such cases this code
5141 * still "owns" the NAPI instance and therefore can
5142 * move the instance around on the list at-will.
5143 */
5144 if (unlikely(napi_disable_pending(n))) {
5145 napi_complete(n);
5146 goto out_unlock;
5147 }
5148
5149 if (n->gro_list) {
5150 /* flush too old packets
5151 * If HZ < 1000, flush all packets.
5152 */
5153 napi_gro_flush(n, HZ >= 1000);
5154 }
5155
5156 /* Some drivers may have called napi_schedule
5157 * prior to exhausting their budget.
5158 */
5159 if (unlikely(!list_empty(&n->poll_list))) {
5160 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5161 n->dev ? n->dev->name : "backlog");
5162 goto out_unlock;
5163 }
5164
5165 list_add_tail(&n->poll_list, repoll);
5166
5167 out_unlock:
5168 netpoll_poll_unlock(have);
5169
5170 return work;
5171 }
5172
5173 static void net_rx_action(struct softirq_action *h)
5174 {
5175 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5176 unsigned long time_limit = jiffies + 2;
5177 int budget = netdev_budget;
5178 LIST_HEAD(list);
5179 LIST_HEAD(repoll);
5180
5181 local_irq_disable();
5182 list_splice_init(&sd->poll_list, &list);
5183 local_irq_enable();
5184
5185 for (;;) {
5186 struct napi_struct *n;
5187
5188 if (list_empty(&list)) {
5189 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5190 return;
5191 break;
5192 }
5193
5194 n = list_first_entry(&list, struct napi_struct, poll_list);
5195 budget -= napi_poll(n, &repoll);
5196
5197 /* If softirq window is exhausted then punt.
5198 * Allow this to run for 2 jiffies since which will allow
5199 * an average latency of 1.5/HZ.
5200 */
5201 if (unlikely(budget <= 0 ||
5202 time_after_eq(jiffies, time_limit))) {
5203 sd->time_squeeze++;
5204 break;
5205 }
5206 }
5207
5208 __kfree_skb_flush();
5209 local_irq_disable();
5210
5211 list_splice_tail_init(&sd->poll_list, &list);
5212 list_splice_tail(&repoll, &list);
5213 list_splice(&list, &sd->poll_list);
5214 if (!list_empty(&sd->poll_list))
5215 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5216
5217 net_rps_action_and_irq_enable(sd);
5218 }
5219
5220 struct netdev_adjacent {
5221 struct net_device *dev;
5222
5223 /* upper master flag, there can only be one master device per list */
5224 bool master;
5225
5226 /* counter for the number of times this device was added to us */
5227 u16 ref_nr;
5228
5229 /* private field for the users */
5230 void *private;
5231
5232 struct list_head list;
5233 struct rcu_head rcu;
5234 };
5235
5236 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5237 struct list_head *adj_list)
5238 {
5239 struct netdev_adjacent *adj;
5240
5241 list_for_each_entry(adj, adj_list, list) {
5242 if (adj->dev == adj_dev)
5243 return adj;
5244 }
5245 return NULL;
5246 }
5247
5248 /**
5249 * netdev_has_upper_dev - Check if device is linked to an upper device
5250 * @dev: device
5251 * @upper_dev: upper device to check
5252 *
5253 * Find out if a device is linked to specified upper device and return true
5254 * in case it is. Note that this checks only immediate upper device,
5255 * not through a complete stack of devices. The caller must hold the RTNL lock.
5256 */
5257 bool netdev_has_upper_dev(struct net_device *dev,
5258 struct net_device *upper_dev)
5259 {
5260 ASSERT_RTNL();
5261
5262 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5263 }
5264 EXPORT_SYMBOL(netdev_has_upper_dev);
5265
5266 /**
5267 * netdev_has_any_upper_dev - Check if device is linked to some device
5268 * @dev: device
5269 *
5270 * Find out if a device is linked to an upper device and return true in case
5271 * it is. The caller must hold the RTNL lock.
5272 */
5273 static bool netdev_has_any_upper_dev(struct net_device *dev)
5274 {
5275 ASSERT_RTNL();
5276
5277 return !list_empty(&dev->all_adj_list.upper);
5278 }
5279
5280 /**
5281 * netdev_master_upper_dev_get - Get master upper device
5282 * @dev: device
5283 *
5284 * Find a master upper device and return pointer to it or NULL in case
5285 * it's not there. The caller must hold the RTNL lock.
5286 */
5287 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5288 {
5289 struct netdev_adjacent *upper;
5290
5291 ASSERT_RTNL();
5292
5293 if (list_empty(&dev->adj_list.upper))
5294 return NULL;
5295
5296 upper = list_first_entry(&dev->adj_list.upper,
5297 struct netdev_adjacent, list);
5298 if (likely(upper->master))
5299 return upper->dev;
5300 return NULL;
5301 }
5302 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5303
5304 void *netdev_adjacent_get_private(struct list_head *adj_list)
5305 {
5306 struct netdev_adjacent *adj;
5307
5308 adj = list_entry(adj_list, struct netdev_adjacent, list);
5309
5310 return adj->private;
5311 }
5312 EXPORT_SYMBOL(netdev_adjacent_get_private);
5313
5314 /**
5315 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5316 * @dev: device
5317 * @iter: list_head ** of the current position
5318 *
5319 * Gets the next device from the dev's upper list, starting from iter
5320 * position. The caller must hold RCU read lock.
5321 */
5322 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5323 struct list_head **iter)
5324 {
5325 struct netdev_adjacent *upper;
5326
5327 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5328
5329 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5330
5331 if (&upper->list == &dev->adj_list.upper)
5332 return NULL;
5333
5334 *iter = &upper->list;
5335
5336 return upper->dev;
5337 }
5338 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5339
5340 /**
5341 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5342 * @dev: device
5343 * @iter: list_head ** of the current position
5344 *
5345 * Gets the next device from the dev's upper list, starting from iter
5346 * position. The caller must hold RCU read lock.
5347 */
5348 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5349 struct list_head **iter)
5350 {
5351 struct netdev_adjacent *upper;
5352
5353 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5354
5355 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5356
5357 if (&upper->list == &dev->all_adj_list.upper)
5358 return NULL;
5359
5360 *iter = &upper->list;
5361
5362 return upper->dev;
5363 }
5364 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5365
5366 /**
5367 * netdev_lower_get_next_private - Get the next ->private from the
5368 * lower neighbour list
5369 * @dev: device
5370 * @iter: list_head ** of the current position
5371 *
5372 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5373 * list, starting from iter position. The caller must hold either hold the
5374 * RTNL lock or its own locking that guarantees that the neighbour lower
5375 * list will remain unchanged.
5376 */
5377 void *netdev_lower_get_next_private(struct net_device *dev,
5378 struct list_head **iter)
5379 {
5380 struct netdev_adjacent *lower;
5381
5382 lower = list_entry(*iter, struct netdev_adjacent, list);
5383
5384 if (&lower->list == &dev->adj_list.lower)
5385 return NULL;
5386
5387 *iter = lower->list.next;
5388
5389 return lower->private;
5390 }
5391 EXPORT_SYMBOL(netdev_lower_get_next_private);
5392
5393 /**
5394 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5395 * lower neighbour list, RCU
5396 * variant
5397 * @dev: device
5398 * @iter: list_head ** of the current position
5399 *
5400 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401 * list, starting from iter position. The caller must hold RCU read lock.
5402 */
5403 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5404 struct list_head **iter)
5405 {
5406 struct netdev_adjacent *lower;
5407
5408 WARN_ON_ONCE(!rcu_read_lock_held());
5409
5410 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5411
5412 if (&lower->list == &dev->adj_list.lower)
5413 return NULL;
5414
5415 *iter = &lower->list;
5416
5417 return lower->private;
5418 }
5419 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5420
5421 /**
5422 * netdev_lower_get_next - Get the next device from the lower neighbour
5423 * list
5424 * @dev: device
5425 * @iter: list_head ** of the current position
5426 *
5427 * Gets the next netdev_adjacent from the dev's lower neighbour
5428 * list, starting from iter position. The caller must hold RTNL lock or
5429 * its own locking that guarantees that the neighbour lower
5430 * list will remain unchanged.
5431 */
5432 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5433 {
5434 struct netdev_adjacent *lower;
5435
5436 lower = list_entry(*iter, struct netdev_adjacent, list);
5437
5438 if (&lower->list == &dev->adj_list.lower)
5439 return NULL;
5440
5441 *iter = lower->list.next;
5442
5443 return lower->dev;
5444 }
5445 EXPORT_SYMBOL(netdev_lower_get_next);
5446
5447 /**
5448 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5449 * @dev: device
5450 * @iter: list_head ** of the current position
5451 *
5452 * Gets the next netdev_adjacent from the dev's all lower neighbour
5453 * list, starting from iter position. The caller must hold RTNL lock or
5454 * its own locking that guarantees that the neighbour all lower
5455 * list will remain unchanged.
5456 */
5457 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5458 {
5459 struct netdev_adjacent *lower;
5460
5461 lower = list_entry(*iter, struct netdev_adjacent, list);
5462
5463 if (&lower->list == &dev->all_adj_list.lower)
5464 return NULL;
5465
5466 *iter = lower->list.next;
5467
5468 return lower->dev;
5469 }
5470 EXPORT_SYMBOL(netdev_all_lower_get_next);
5471
5472 /**
5473 * netdev_all_lower_get_next_rcu - Get the next device from all
5474 * lower neighbour list, RCU variant
5475 * @dev: device
5476 * @iter: list_head ** of the current position
5477 *
5478 * Gets the next netdev_adjacent from the dev's all lower neighbour
5479 * list, starting from iter position. The caller must hold RCU read lock.
5480 */
5481 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5482 struct list_head **iter)
5483 {
5484 struct netdev_adjacent *lower;
5485
5486 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5487 struct netdev_adjacent, list);
5488
5489 return lower ? lower->dev : NULL;
5490 }
5491 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5492
5493 /**
5494 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5495 * lower neighbour list, RCU
5496 * variant
5497 * @dev: device
5498 *
5499 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5500 * list. The caller must hold RCU read lock.
5501 */
5502 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5503 {
5504 struct netdev_adjacent *lower;
5505
5506 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5507 struct netdev_adjacent, list);
5508 if (lower)
5509 return lower->private;
5510 return NULL;
5511 }
5512 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5513
5514 /**
5515 * netdev_master_upper_dev_get_rcu - Get master upper device
5516 * @dev: device
5517 *
5518 * Find a master upper device and return pointer to it or NULL in case
5519 * it's not there. The caller must hold the RCU read lock.
5520 */
5521 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5522 {
5523 struct netdev_adjacent *upper;
5524
5525 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5526 struct netdev_adjacent, list);
5527 if (upper && likely(upper->master))
5528 return upper->dev;
5529 return NULL;
5530 }
5531 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5532
5533 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5534 struct net_device *adj_dev,
5535 struct list_head *dev_list)
5536 {
5537 char linkname[IFNAMSIZ+7];
5538 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5539 "upper_%s" : "lower_%s", adj_dev->name);
5540 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5541 linkname);
5542 }
5543 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5544 char *name,
5545 struct list_head *dev_list)
5546 {
5547 char linkname[IFNAMSIZ+7];
5548 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5549 "upper_%s" : "lower_%s", name);
5550 sysfs_remove_link(&(dev->dev.kobj), linkname);
5551 }
5552
5553 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5554 struct net_device *adj_dev,
5555 struct list_head *dev_list)
5556 {
5557 return (dev_list == &dev->adj_list.upper ||
5558 dev_list == &dev->adj_list.lower) &&
5559 net_eq(dev_net(dev), dev_net(adj_dev));
5560 }
5561
5562 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5563 struct net_device *adj_dev,
5564 struct list_head *dev_list,
5565 void *private, bool master)
5566 {
5567 struct netdev_adjacent *adj;
5568 int ret;
5569
5570 adj = __netdev_find_adj(adj_dev, dev_list);
5571
5572 if (adj) {
5573 adj->ref_nr++;
5574 return 0;
5575 }
5576
5577 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5578 if (!adj)
5579 return -ENOMEM;
5580
5581 adj->dev = adj_dev;
5582 adj->master = master;
5583 adj->ref_nr = 1;
5584 adj->private = private;
5585 dev_hold(adj_dev);
5586
5587 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5588 adj_dev->name, dev->name, adj_dev->name);
5589
5590 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5591 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5592 if (ret)
5593 goto free_adj;
5594 }
5595
5596 /* Ensure that master link is always the first item in list. */
5597 if (master) {
5598 ret = sysfs_create_link(&(dev->dev.kobj),
5599 &(adj_dev->dev.kobj), "master");
5600 if (ret)
5601 goto remove_symlinks;
5602
5603 list_add_rcu(&adj->list, dev_list);
5604 } else {
5605 list_add_tail_rcu(&adj->list, dev_list);
5606 }
5607
5608 return 0;
5609
5610 remove_symlinks:
5611 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5612 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5613 free_adj:
5614 kfree(adj);
5615 dev_put(adj_dev);
5616
5617 return ret;
5618 }
5619
5620 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5621 struct net_device *adj_dev,
5622 struct list_head *dev_list)
5623 {
5624 struct netdev_adjacent *adj;
5625
5626 adj = __netdev_find_adj(adj_dev, dev_list);
5627
5628 if (!adj) {
5629 pr_err("tried to remove device %s from %s\n",
5630 dev->name, adj_dev->name);
5631 BUG();
5632 }
5633
5634 if (adj->ref_nr > 1) {
5635 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5636 adj->ref_nr-1);
5637 adj->ref_nr--;
5638 return;
5639 }
5640
5641 if (adj->master)
5642 sysfs_remove_link(&(dev->dev.kobj), "master");
5643
5644 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5645 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5646
5647 list_del_rcu(&adj->list);
5648 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5649 adj_dev->name, dev->name, adj_dev->name);
5650 dev_put(adj_dev);
5651 kfree_rcu(adj, rcu);
5652 }
5653
5654 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5655 struct net_device *upper_dev,
5656 struct list_head *up_list,
5657 struct list_head *down_list,
5658 void *private, bool master)
5659 {
5660 int ret;
5661
5662 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5663 master);
5664 if (ret)
5665 return ret;
5666
5667 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5668 false);
5669 if (ret) {
5670 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5671 return ret;
5672 }
5673
5674 return 0;
5675 }
5676
5677 static int __netdev_adjacent_dev_link(struct net_device *dev,
5678 struct net_device *upper_dev)
5679 {
5680 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5681 &dev->all_adj_list.upper,
5682 &upper_dev->all_adj_list.lower,
5683 NULL, false);
5684 }
5685
5686 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5687 struct net_device *upper_dev,
5688 struct list_head *up_list,
5689 struct list_head *down_list)
5690 {
5691 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5692 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5693 }
5694
5695 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5696 struct net_device *upper_dev)
5697 {
5698 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5699 &dev->all_adj_list.upper,
5700 &upper_dev->all_adj_list.lower);
5701 }
5702
5703 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5704 struct net_device *upper_dev,
5705 void *private, bool master)
5706 {
5707 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5708
5709 if (ret)
5710 return ret;
5711
5712 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5713 &dev->adj_list.upper,
5714 &upper_dev->adj_list.lower,
5715 private, master);
5716 if (ret) {
5717 __netdev_adjacent_dev_unlink(dev, upper_dev);
5718 return ret;
5719 }
5720
5721 return 0;
5722 }
5723
5724 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5725 struct net_device *upper_dev)
5726 {
5727 __netdev_adjacent_dev_unlink(dev, upper_dev);
5728 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5729 &dev->adj_list.upper,
5730 &upper_dev->adj_list.lower);
5731 }
5732
5733 static int __netdev_upper_dev_link(struct net_device *dev,
5734 struct net_device *upper_dev, bool master,
5735 void *upper_priv, void *upper_info)
5736 {
5737 struct netdev_notifier_changeupper_info changeupper_info;
5738 struct netdev_adjacent *i, *j, *to_i, *to_j;
5739 int ret = 0;
5740
5741 ASSERT_RTNL();
5742
5743 if (dev == upper_dev)
5744 return -EBUSY;
5745
5746 /* To prevent loops, check if dev is not upper device to upper_dev. */
5747 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5748 return -EBUSY;
5749
5750 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5751 return -EEXIST;
5752
5753 if (master && netdev_master_upper_dev_get(dev))
5754 return -EBUSY;
5755
5756 changeupper_info.upper_dev = upper_dev;
5757 changeupper_info.master = master;
5758 changeupper_info.linking = true;
5759 changeupper_info.upper_info = upper_info;
5760
5761 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5762 &changeupper_info.info);
5763 ret = notifier_to_errno(ret);
5764 if (ret)
5765 return ret;
5766
5767 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5768 master);
5769 if (ret)
5770 return ret;
5771
5772 /* Now that we linked these devs, make all the upper_dev's
5773 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5774 * versa, and don't forget the devices itself. All of these
5775 * links are non-neighbours.
5776 */
5777 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5778 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5779 pr_debug("Interlinking %s with %s, non-neighbour\n",
5780 i->dev->name, j->dev->name);
5781 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5782 if (ret)
5783 goto rollback_mesh;
5784 }
5785 }
5786
5787 /* add dev to every upper_dev's upper device */
5788 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5789 pr_debug("linking %s's upper device %s with %s\n",
5790 upper_dev->name, i->dev->name, dev->name);
5791 ret = __netdev_adjacent_dev_link(dev, i->dev);
5792 if (ret)
5793 goto rollback_upper_mesh;
5794 }
5795
5796 /* add upper_dev to every dev's lower device */
5797 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5798 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5799 i->dev->name, upper_dev->name);
5800 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5801 if (ret)
5802 goto rollback_lower_mesh;
5803 }
5804
5805 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5806 &changeupper_info.info);
5807 ret = notifier_to_errno(ret);
5808 if (ret)
5809 goto rollback_lower_mesh;
5810
5811 return 0;
5812
5813 rollback_lower_mesh:
5814 to_i = i;
5815 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5816 if (i == to_i)
5817 break;
5818 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5819 }
5820
5821 i = NULL;
5822
5823 rollback_upper_mesh:
5824 to_i = i;
5825 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5826 if (i == to_i)
5827 break;
5828 __netdev_adjacent_dev_unlink(dev, i->dev);
5829 }
5830
5831 i = j = NULL;
5832
5833 rollback_mesh:
5834 to_i = i;
5835 to_j = j;
5836 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5837 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5838 if (i == to_i && j == to_j)
5839 break;
5840 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5841 }
5842 if (i == to_i)
5843 break;
5844 }
5845
5846 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5847
5848 return ret;
5849 }
5850
5851 /**
5852 * netdev_upper_dev_link - Add a link to the upper device
5853 * @dev: device
5854 * @upper_dev: new upper device
5855 *
5856 * Adds a link to device which is upper to this one. The caller must hold
5857 * the RTNL lock. On a failure a negative errno code is returned.
5858 * On success the reference counts are adjusted and the function
5859 * returns zero.
5860 */
5861 int netdev_upper_dev_link(struct net_device *dev,
5862 struct net_device *upper_dev)
5863 {
5864 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5865 }
5866 EXPORT_SYMBOL(netdev_upper_dev_link);
5867
5868 /**
5869 * netdev_master_upper_dev_link - Add a master link to the upper device
5870 * @dev: device
5871 * @upper_dev: new upper device
5872 * @upper_priv: upper device private
5873 * @upper_info: upper info to be passed down via notifier
5874 *
5875 * Adds a link to device which is upper to this one. In this case, only
5876 * one master upper device can be linked, although other non-master devices
5877 * might be linked as well. The caller must hold the RTNL lock.
5878 * On a failure a negative errno code is returned. On success the reference
5879 * counts are adjusted and the function returns zero.
5880 */
5881 int netdev_master_upper_dev_link(struct net_device *dev,
5882 struct net_device *upper_dev,
5883 void *upper_priv, void *upper_info)
5884 {
5885 return __netdev_upper_dev_link(dev, upper_dev, true,
5886 upper_priv, upper_info);
5887 }
5888 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5889
5890 /**
5891 * netdev_upper_dev_unlink - Removes a link to upper device
5892 * @dev: device
5893 * @upper_dev: new upper device
5894 *
5895 * Removes a link to device which is upper to this one. The caller must hold
5896 * the RTNL lock.
5897 */
5898 void netdev_upper_dev_unlink(struct net_device *dev,
5899 struct net_device *upper_dev)
5900 {
5901 struct netdev_notifier_changeupper_info changeupper_info;
5902 struct netdev_adjacent *i, *j;
5903 ASSERT_RTNL();
5904
5905 changeupper_info.upper_dev = upper_dev;
5906 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5907 changeupper_info.linking = false;
5908
5909 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5910 &changeupper_info.info);
5911
5912 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5913
5914 /* Here is the tricky part. We must remove all dev's lower
5915 * devices from all upper_dev's upper devices and vice
5916 * versa, to maintain the graph relationship.
5917 */
5918 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5919 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5920 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5921
5922 /* remove also the devices itself from lower/upper device
5923 * list
5924 */
5925 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5926 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5927
5928 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5929 __netdev_adjacent_dev_unlink(dev, i->dev);
5930
5931 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5932 &changeupper_info.info);
5933 }
5934 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5935
5936 /**
5937 * netdev_bonding_info_change - Dispatch event about slave change
5938 * @dev: device
5939 * @bonding_info: info to dispatch
5940 *
5941 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5942 * The caller must hold the RTNL lock.
5943 */
5944 void netdev_bonding_info_change(struct net_device *dev,
5945 struct netdev_bonding_info *bonding_info)
5946 {
5947 struct netdev_notifier_bonding_info info;
5948
5949 memcpy(&info.bonding_info, bonding_info,
5950 sizeof(struct netdev_bonding_info));
5951 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5952 &info.info);
5953 }
5954 EXPORT_SYMBOL(netdev_bonding_info_change);
5955
5956 static void netdev_adjacent_add_links(struct net_device *dev)
5957 {
5958 struct netdev_adjacent *iter;
5959
5960 struct net *net = dev_net(dev);
5961
5962 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5963 if (!net_eq(net, dev_net(iter->dev)))
5964 continue;
5965 netdev_adjacent_sysfs_add(iter->dev, dev,
5966 &iter->dev->adj_list.lower);
5967 netdev_adjacent_sysfs_add(dev, iter->dev,
5968 &dev->adj_list.upper);
5969 }
5970
5971 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5972 if (!net_eq(net, dev_net(iter->dev)))
5973 continue;
5974 netdev_adjacent_sysfs_add(iter->dev, dev,
5975 &iter->dev->adj_list.upper);
5976 netdev_adjacent_sysfs_add(dev, iter->dev,
5977 &dev->adj_list.lower);
5978 }
5979 }
5980
5981 static void netdev_adjacent_del_links(struct net_device *dev)
5982 {
5983 struct netdev_adjacent *iter;
5984
5985 struct net *net = dev_net(dev);
5986
5987 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5988 if (!net_eq(net, dev_net(iter->dev)))
5989 continue;
5990 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5991 &iter->dev->adj_list.lower);
5992 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5993 &dev->adj_list.upper);
5994 }
5995
5996 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5997 if (!net_eq(net, dev_net(iter->dev)))
5998 continue;
5999 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6000 &iter->dev->adj_list.upper);
6001 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6002 &dev->adj_list.lower);
6003 }
6004 }
6005
6006 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6007 {
6008 struct netdev_adjacent *iter;
6009
6010 struct net *net = dev_net(dev);
6011
6012 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6013 if (!net_eq(net, dev_net(iter->dev)))
6014 continue;
6015 netdev_adjacent_sysfs_del(iter->dev, oldname,
6016 &iter->dev->adj_list.lower);
6017 netdev_adjacent_sysfs_add(iter->dev, dev,
6018 &iter->dev->adj_list.lower);
6019 }
6020
6021 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6022 if (!net_eq(net, dev_net(iter->dev)))
6023 continue;
6024 netdev_adjacent_sysfs_del(iter->dev, oldname,
6025 &iter->dev->adj_list.upper);
6026 netdev_adjacent_sysfs_add(iter->dev, dev,
6027 &iter->dev->adj_list.upper);
6028 }
6029 }
6030
6031 void *netdev_lower_dev_get_private(struct net_device *dev,
6032 struct net_device *lower_dev)
6033 {
6034 struct netdev_adjacent *lower;
6035
6036 if (!lower_dev)
6037 return NULL;
6038 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6039 if (!lower)
6040 return NULL;
6041
6042 return lower->private;
6043 }
6044 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6045
6046
6047 int dev_get_nest_level(struct net_device *dev,
6048 bool (*type_check)(const struct net_device *dev))
6049 {
6050 struct net_device *lower = NULL;
6051 struct list_head *iter;
6052 int max_nest = -1;
6053 int nest;
6054
6055 ASSERT_RTNL();
6056
6057 netdev_for_each_lower_dev(dev, lower, iter) {
6058 nest = dev_get_nest_level(lower, type_check);
6059 if (max_nest < nest)
6060 max_nest = nest;
6061 }
6062
6063 if (type_check(dev))
6064 max_nest++;
6065
6066 return max_nest;
6067 }
6068 EXPORT_SYMBOL(dev_get_nest_level);
6069
6070 /**
6071 * netdev_lower_change - Dispatch event about lower device state change
6072 * @lower_dev: device
6073 * @lower_state_info: state to dispatch
6074 *
6075 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6076 * The caller must hold the RTNL lock.
6077 */
6078 void netdev_lower_state_changed(struct net_device *lower_dev,
6079 void *lower_state_info)
6080 {
6081 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6082
6083 ASSERT_RTNL();
6084 changelowerstate_info.lower_state_info = lower_state_info;
6085 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6086 &changelowerstate_info.info);
6087 }
6088 EXPORT_SYMBOL(netdev_lower_state_changed);
6089
6090 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6091 struct neighbour *n)
6092 {
6093 struct net_device *lower_dev, *stop_dev;
6094 struct list_head *iter;
6095 int err;
6096
6097 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6098 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6099 continue;
6100 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6101 if (err) {
6102 stop_dev = lower_dev;
6103 goto rollback;
6104 }
6105 }
6106 return 0;
6107
6108 rollback:
6109 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6110 if (lower_dev == stop_dev)
6111 break;
6112 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6113 continue;
6114 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6115 }
6116 return err;
6117 }
6118 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6119
6120 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6121 struct neighbour *n)
6122 {
6123 struct net_device *lower_dev;
6124 struct list_head *iter;
6125
6126 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6127 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6128 continue;
6129 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6130 }
6131 }
6132 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6133
6134 static void dev_change_rx_flags(struct net_device *dev, int flags)
6135 {
6136 const struct net_device_ops *ops = dev->netdev_ops;
6137
6138 if (ops->ndo_change_rx_flags)
6139 ops->ndo_change_rx_flags(dev, flags);
6140 }
6141
6142 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6143 {
6144 unsigned int old_flags = dev->flags;
6145 kuid_t uid;
6146 kgid_t gid;
6147
6148 ASSERT_RTNL();
6149
6150 dev->flags |= IFF_PROMISC;
6151 dev->promiscuity += inc;
6152 if (dev->promiscuity == 0) {
6153 /*
6154 * Avoid overflow.
6155 * If inc causes overflow, untouch promisc and return error.
6156 */
6157 if (inc < 0)
6158 dev->flags &= ~IFF_PROMISC;
6159 else {
6160 dev->promiscuity -= inc;
6161 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6162 dev->name);
6163 return -EOVERFLOW;
6164 }
6165 }
6166 if (dev->flags != old_flags) {
6167 pr_info("device %s %s promiscuous mode\n",
6168 dev->name,
6169 dev->flags & IFF_PROMISC ? "entered" : "left");
6170 if (audit_enabled) {
6171 current_uid_gid(&uid, &gid);
6172 audit_log(current->audit_context, GFP_ATOMIC,
6173 AUDIT_ANOM_PROMISCUOUS,
6174 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6175 dev->name, (dev->flags & IFF_PROMISC),
6176 (old_flags & IFF_PROMISC),
6177 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6178 from_kuid(&init_user_ns, uid),
6179 from_kgid(&init_user_ns, gid),
6180 audit_get_sessionid(current));
6181 }
6182
6183 dev_change_rx_flags(dev, IFF_PROMISC);
6184 }
6185 if (notify)
6186 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6187 return 0;
6188 }
6189
6190 /**
6191 * dev_set_promiscuity - update promiscuity count on a device
6192 * @dev: device
6193 * @inc: modifier
6194 *
6195 * Add or remove promiscuity from a device. While the count in the device
6196 * remains above zero the interface remains promiscuous. Once it hits zero
6197 * the device reverts back to normal filtering operation. A negative inc
6198 * value is used to drop promiscuity on the device.
6199 * Return 0 if successful or a negative errno code on error.
6200 */
6201 int dev_set_promiscuity(struct net_device *dev, int inc)
6202 {
6203 unsigned int old_flags = dev->flags;
6204 int err;
6205
6206 err = __dev_set_promiscuity(dev, inc, true);
6207 if (err < 0)
6208 return err;
6209 if (dev->flags != old_flags)
6210 dev_set_rx_mode(dev);
6211 return err;
6212 }
6213 EXPORT_SYMBOL(dev_set_promiscuity);
6214
6215 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6216 {
6217 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6218
6219 ASSERT_RTNL();
6220
6221 dev->flags |= IFF_ALLMULTI;
6222 dev->allmulti += inc;
6223 if (dev->allmulti == 0) {
6224 /*
6225 * Avoid overflow.
6226 * If inc causes overflow, untouch allmulti and return error.
6227 */
6228 if (inc < 0)
6229 dev->flags &= ~IFF_ALLMULTI;
6230 else {
6231 dev->allmulti -= inc;
6232 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6233 dev->name);
6234 return -EOVERFLOW;
6235 }
6236 }
6237 if (dev->flags ^ old_flags) {
6238 dev_change_rx_flags(dev, IFF_ALLMULTI);
6239 dev_set_rx_mode(dev);
6240 if (notify)
6241 __dev_notify_flags(dev, old_flags,
6242 dev->gflags ^ old_gflags);
6243 }
6244 return 0;
6245 }
6246
6247 /**
6248 * dev_set_allmulti - update allmulti count on a device
6249 * @dev: device
6250 * @inc: modifier
6251 *
6252 * Add or remove reception of all multicast frames to a device. While the
6253 * count in the device remains above zero the interface remains listening
6254 * to all interfaces. Once it hits zero the device reverts back to normal
6255 * filtering operation. A negative @inc value is used to drop the counter
6256 * when releasing a resource needing all multicasts.
6257 * Return 0 if successful or a negative errno code on error.
6258 */
6259
6260 int dev_set_allmulti(struct net_device *dev, int inc)
6261 {
6262 return __dev_set_allmulti(dev, inc, true);
6263 }
6264 EXPORT_SYMBOL(dev_set_allmulti);
6265
6266 /*
6267 * Upload unicast and multicast address lists to device and
6268 * configure RX filtering. When the device doesn't support unicast
6269 * filtering it is put in promiscuous mode while unicast addresses
6270 * are present.
6271 */
6272 void __dev_set_rx_mode(struct net_device *dev)
6273 {
6274 const struct net_device_ops *ops = dev->netdev_ops;
6275
6276 /* dev_open will call this function so the list will stay sane. */
6277 if (!(dev->flags&IFF_UP))
6278 return;
6279
6280 if (!netif_device_present(dev))
6281 return;
6282
6283 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6284 /* Unicast addresses changes may only happen under the rtnl,
6285 * therefore calling __dev_set_promiscuity here is safe.
6286 */
6287 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6288 __dev_set_promiscuity(dev, 1, false);
6289 dev->uc_promisc = true;
6290 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6291 __dev_set_promiscuity(dev, -1, false);
6292 dev->uc_promisc = false;
6293 }
6294 }
6295
6296 if (ops->ndo_set_rx_mode)
6297 ops->ndo_set_rx_mode(dev);
6298 }
6299
6300 void dev_set_rx_mode(struct net_device *dev)
6301 {
6302 netif_addr_lock_bh(dev);
6303 __dev_set_rx_mode(dev);
6304 netif_addr_unlock_bh(dev);
6305 }
6306
6307 /**
6308 * dev_get_flags - get flags reported to userspace
6309 * @dev: device
6310 *
6311 * Get the combination of flag bits exported through APIs to userspace.
6312 */
6313 unsigned int dev_get_flags(const struct net_device *dev)
6314 {
6315 unsigned int flags;
6316
6317 flags = (dev->flags & ~(IFF_PROMISC |
6318 IFF_ALLMULTI |
6319 IFF_RUNNING |
6320 IFF_LOWER_UP |
6321 IFF_DORMANT)) |
6322 (dev->gflags & (IFF_PROMISC |
6323 IFF_ALLMULTI));
6324
6325 if (netif_running(dev)) {
6326 if (netif_oper_up(dev))
6327 flags |= IFF_RUNNING;
6328 if (netif_carrier_ok(dev))
6329 flags |= IFF_LOWER_UP;
6330 if (netif_dormant(dev))
6331 flags |= IFF_DORMANT;
6332 }
6333
6334 return flags;
6335 }
6336 EXPORT_SYMBOL(dev_get_flags);
6337
6338 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6339 {
6340 unsigned int old_flags = dev->flags;
6341 int ret;
6342
6343 ASSERT_RTNL();
6344
6345 /*
6346 * Set the flags on our device.
6347 */
6348
6349 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6350 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6351 IFF_AUTOMEDIA)) |
6352 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6353 IFF_ALLMULTI));
6354
6355 /*
6356 * Load in the correct multicast list now the flags have changed.
6357 */
6358
6359 if ((old_flags ^ flags) & IFF_MULTICAST)
6360 dev_change_rx_flags(dev, IFF_MULTICAST);
6361
6362 dev_set_rx_mode(dev);
6363
6364 /*
6365 * Have we downed the interface. We handle IFF_UP ourselves
6366 * according to user attempts to set it, rather than blindly
6367 * setting it.
6368 */
6369
6370 ret = 0;
6371 if ((old_flags ^ flags) & IFF_UP)
6372 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6373
6374 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6375 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6376 unsigned int old_flags = dev->flags;
6377
6378 dev->gflags ^= IFF_PROMISC;
6379
6380 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6381 if (dev->flags != old_flags)
6382 dev_set_rx_mode(dev);
6383 }
6384
6385 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6386 is important. Some (broken) drivers set IFF_PROMISC, when
6387 IFF_ALLMULTI is requested not asking us and not reporting.
6388 */
6389 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6390 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6391
6392 dev->gflags ^= IFF_ALLMULTI;
6393 __dev_set_allmulti(dev, inc, false);
6394 }
6395
6396 return ret;
6397 }
6398
6399 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6400 unsigned int gchanges)
6401 {
6402 unsigned int changes = dev->flags ^ old_flags;
6403
6404 if (gchanges)
6405 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6406
6407 if (changes & IFF_UP) {
6408 if (dev->flags & IFF_UP)
6409 call_netdevice_notifiers(NETDEV_UP, dev);
6410 else
6411 call_netdevice_notifiers(NETDEV_DOWN, dev);
6412 }
6413
6414 if (dev->flags & IFF_UP &&
6415 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6416 struct netdev_notifier_change_info change_info;
6417
6418 change_info.flags_changed = changes;
6419 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6420 &change_info.info);
6421 }
6422 }
6423
6424 /**
6425 * dev_change_flags - change device settings
6426 * @dev: device
6427 * @flags: device state flags
6428 *
6429 * Change settings on device based state flags. The flags are
6430 * in the userspace exported format.
6431 */
6432 int dev_change_flags(struct net_device *dev, unsigned int flags)
6433 {
6434 int ret;
6435 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6436
6437 ret = __dev_change_flags(dev, flags);
6438 if (ret < 0)
6439 return ret;
6440
6441 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6442 __dev_notify_flags(dev, old_flags, changes);
6443 return ret;
6444 }
6445 EXPORT_SYMBOL(dev_change_flags);
6446
6447 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6448 {
6449 const struct net_device_ops *ops = dev->netdev_ops;
6450
6451 if (ops->ndo_change_mtu)
6452 return ops->ndo_change_mtu(dev, new_mtu);
6453
6454 dev->mtu = new_mtu;
6455 return 0;
6456 }
6457
6458 /**
6459 * dev_set_mtu - Change maximum transfer unit
6460 * @dev: device
6461 * @new_mtu: new transfer unit
6462 *
6463 * Change the maximum transfer size of the network device.
6464 */
6465 int dev_set_mtu(struct net_device *dev, int new_mtu)
6466 {
6467 int err, orig_mtu;
6468
6469 if (new_mtu == dev->mtu)
6470 return 0;
6471
6472 /* MTU must be positive. */
6473 if (new_mtu < 0)
6474 return -EINVAL;
6475
6476 if (!netif_device_present(dev))
6477 return -ENODEV;
6478
6479 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6480 err = notifier_to_errno(err);
6481 if (err)
6482 return err;
6483
6484 orig_mtu = dev->mtu;
6485 err = __dev_set_mtu(dev, new_mtu);
6486
6487 if (!err) {
6488 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6489 err = notifier_to_errno(err);
6490 if (err) {
6491 /* setting mtu back and notifying everyone again,
6492 * so that they have a chance to revert changes.
6493 */
6494 __dev_set_mtu(dev, orig_mtu);
6495 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6496 }
6497 }
6498 return err;
6499 }
6500 EXPORT_SYMBOL(dev_set_mtu);
6501
6502 /**
6503 * dev_set_group - Change group this device belongs to
6504 * @dev: device
6505 * @new_group: group this device should belong to
6506 */
6507 void dev_set_group(struct net_device *dev, int new_group)
6508 {
6509 dev->group = new_group;
6510 }
6511 EXPORT_SYMBOL(dev_set_group);
6512
6513 /**
6514 * dev_set_mac_address - Change Media Access Control Address
6515 * @dev: device
6516 * @sa: new address
6517 *
6518 * Change the hardware (MAC) address of the device
6519 */
6520 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6521 {
6522 const struct net_device_ops *ops = dev->netdev_ops;
6523 int err;
6524
6525 if (!ops->ndo_set_mac_address)
6526 return -EOPNOTSUPP;
6527 if (sa->sa_family != dev->type)
6528 return -EINVAL;
6529 if (!netif_device_present(dev))
6530 return -ENODEV;
6531 err = ops->ndo_set_mac_address(dev, sa);
6532 if (err)
6533 return err;
6534 dev->addr_assign_type = NET_ADDR_SET;
6535 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6536 add_device_randomness(dev->dev_addr, dev->addr_len);
6537 return 0;
6538 }
6539 EXPORT_SYMBOL(dev_set_mac_address);
6540
6541 /**
6542 * dev_change_carrier - Change device carrier
6543 * @dev: device
6544 * @new_carrier: new value
6545 *
6546 * Change device carrier
6547 */
6548 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6549 {
6550 const struct net_device_ops *ops = dev->netdev_ops;
6551
6552 if (!ops->ndo_change_carrier)
6553 return -EOPNOTSUPP;
6554 if (!netif_device_present(dev))
6555 return -ENODEV;
6556 return ops->ndo_change_carrier(dev, new_carrier);
6557 }
6558 EXPORT_SYMBOL(dev_change_carrier);
6559
6560 /**
6561 * dev_get_phys_port_id - Get device physical port ID
6562 * @dev: device
6563 * @ppid: port ID
6564 *
6565 * Get device physical port ID
6566 */
6567 int dev_get_phys_port_id(struct net_device *dev,
6568 struct netdev_phys_item_id *ppid)
6569 {
6570 const struct net_device_ops *ops = dev->netdev_ops;
6571
6572 if (!ops->ndo_get_phys_port_id)
6573 return -EOPNOTSUPP;
6574 return ops->ndo_get_phys_port_id(dev, ppid);
6575 }
6576 EXPORT_SYMBOL(dev_get_phys_port_id);
6577
6578 /**
6579 * dev_get_phys_port_name - Get device physical port name
6580 * @dev: device
6581 * @name: port name
6582 * @len: limit of bytes to copy to name
6583 *
6584 * Get device physical port name
6585 */
6586 int dev_get_phys_port_name(struct net_device *dev,
6587 char *name, size_t len)
6588 {
6589 const struct net_device_ops *ops = dev->netdev_ops;
6590
6591 if (!ops->ndo_get_phys_port_name)
6592 return -EOPNOTSUPP;
6593 return ops->ndo_get_phys_port_name(dev, name, len);
6594 }
6595 EXPORT_SYMBOL(dev_get_phys_port_name);
6596
6597 /**
6598 * dev_change_proto_down - update protocol port state information
6599 * @dev: device
6600 * @proto_down: new value
6601 *
6602 * This info can be used by switch drivers to set the phys state of the
6603 * port.
6604 */
6605 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6606 {
6607 const struct net_device_ops *ops = dev->netdev_ops;
6608
6609 if (!ops->ndo_change_proto_down)
6610 return -EOPNOTSUPP;
6611 if (!netif_device_present(dev))
6612 return -ENODEV;
6613 return ops->ndo_change_proto_down(dev, proto_down);
6614 }
6615 EXPORT_SYMBOL(dev_change_proto_down);
6616
6617 /**
6618 * dev_new_index - allocate an ifindex
6619 * @net: the applicable net namespace
6620 *
6621 * Returns a suitable unique value for a new device interface
6622 * number. The caller must hold the rtnl semaphore or the
6623 * dev_base_lock to be sure it remains unique.
6624 */
6625 static int dev_new_index(struct net *net)
6626 {
6627 int ifindex = net->ifindex;
6628 for (;;) {
6629 if (++ifindex <= 0)
6630 ifindex = 1;
6631 if (!__dev_get_by_index(net, ifindex))
6632 return net->ifindex = ifindex;
6633 }
6634 }
6635
6636 /* Delayed registration/unregisteration */
6637 static LIST_HEAD(net_todo_list);
6638 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6639
6640 static void net_set_todo(struct net_device *dev)
6641 {
6642 list_add_tail(&dev->todo_list, &net_todo_list);
6643 dev_net(dev)->dev_unreg_count++;
6644 }
6645
6646 static void rollback_registered_many(struct list_head *head)
6647 {
6648 struct net_device *dev, *tmp;
6649 LIST_HEAD(close_head);
6650
6651 BUG_ON(dev_boot_phase);
6652 ASSERT_RTNL();
6653
6654 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6655 /* Some devices call without registering
6656 * for initialization unwind. Remove those
6657 * devices and proceed with the remaining.
6658 */
6659 if (dev->reg_state == NETREG_UNINITIALIZED) {
6660 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6661 dev->name, dev);
6662
6663 WARN_ON(1);
6664 list_del(&dev->unreg_list);
6665 continue;
6666 }
6667 dev->dismantle = true;
6668 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6669 }
6670
6671 /* If device is running, close it first. */
6672 list_for_each_entry(dev, head, unreg_list)
6673 list_add_tail(&dev->close_list, &close_head);
6674 dev_close_many(&close_head, true);
6675
6676 list_for_each_entry(dev, head, unreg_list) {
6677 /* And unlink it from device chain. */
6678 unlist_netdevice(dev);
6679
6680 dev->reg_state = NETREG_UNREGISTERING;
6681 on_each_cpu(flush_backlog, dev, 1);
6682 }
6683
6684 synchronize_net();
6685
6686 list_for_each_entry(dev, head, unreg_list) {
6687 struct sk_buff *skb = NULL;
6688
6689 /* Shutdown queueing discipline. */
6690 dev_shutdown(dev);
6691
6692
6693 /* Notify protocols, that we are about to destroy
6694 this device. They should clean all the things.
6695 */
6696 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6697
6698 if (!dev->rtnl_link_ops ||
6699 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6700 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6701 GFP_KERNEL);
6702
6703 /*
6704 * Flush the unicast and multicast chains
6705 */
6706 dev_uc_flush(dev);
6707 dev_mc_flush(dev);
6708
6709 if (dev->netdev_ops->ndo_uninit)
6710 dev->netdev_ops->ndo_uninit(dev);
6711
6712 if (skb)
6713 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6714
6715 /* Notifier chain MUST detach us all upper devices. */
6716 WARN_ON(netdev_has_any_upper_dev(dev));
6717
6718 /* Remove entries from kobject tree */
6719 netdev_unregister_kobject(dev);
6720 #ifdef CONFIG_XPS
6721 /* Remove XPS queueing entries */
6722 netif_reset_xps_queues_gt(dev, 0);
6723 #endif
6724 }
6725
6726 synchronize_net();
6727
6728 list_for_each_entry(dev, head, unreg_list)
6729 dev_put(dev);
6730 }
6731
6732 static void rollback_registered(struct net_device *dev)
6733 {
6734 LIST_HEAD(single);
6735
6736 list_add(&dev->unreg_list, &single);
6737 rollback_registered_many(&single);
6738 list_del(&single);
6739 }
6740
6741 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6742 struct net_device *upper, netdev_features_t features)
6743 {
6744 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6745 netdev_features_t feature;
6746 int feature_bit;
6747
6748 for_each_netdev_feature(&upper_disables, feature_bit) {
6749 feature = __NETIF_F_BIT(feature_bit);
6750 if (!(upper->wanted_features & feature)
6751 && (features & feature)) {
6752 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6753 &feature, upper->name);
6754 features &= ~feature;
6755 }
6756 }
6757
6758 return features;
6759 }
6760
6761 static void netdev_sync_lower_features(struct net_device *upper,
6762 struct net_device *lower, netdev_features_t features)
6763 {
6764 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6765 netdev_features_t feature;
6766 int feature_bit;
6767
6768 for_each_netdev_feature(&upper_disables, feature_bit) {
6769 feature = __NETIF_F_BIT(feature_bit);
6770 if (!(features & feature) && (lower->features & feature)) {
6771 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6772 &feature, lower->name);
6773 lower->wanted_features &= ~feature;
6774 netdev_update_features(lower);
6775
6776 if (unlikely(lower->features & feature))
6777 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6778 &feature, lower->name);
6779 }
6780 }
6781 }
6782
6783 static netdev_features_t netdev_fix_features(struct net_device *dev,
6784 netdev_features_t features)
6785 {
6786 /* Fix illegal checksum combinations */
6787 if ((features & NETIF_F_HW_CSUM) &&
6788 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6789 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6790 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6791 }
6792
6793 /* TSO requires that SG is present as well. */
6794 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6795 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6796 features &= ~NETIF_F_ALL_TSO;
6797 }
6798
6799 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6800 !(features & NETIF_F_IP_CSUM)) {
6801 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6802 features &= ~NETIF_F_TSO;
6803 features &= ~NETIF_F_TSO_ECN;
6804 }
6805
6806 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6807 !(features & NETIF_F_IPV6_CSUM)) {
6808 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6809 features &= ~NETIF_F_TSO6;
6810 }
6811
6812 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6813 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6814 features &= ~NETIF_F_TSO_MANGLEID;
6815
6816 /* TSO ECN requires that TSO is present as well. */
6817 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6818 features &= ~NETIF_F_TSO_ECN;
6819
6820 /* Software GSO depends on SG. */
6821 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6822 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6823 features &= ~NETIF_F_GSO;
6824 }
6825
6826 /* UFO needs SG and checksumming */
6827 if (features & NETIF_F_UFO) {
6828 /* maybe split UFO into V4 and V6? */
6829 if (!(features & NETIF_F_HW_CSUM) &&
6830 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6831 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6832 netdev_dbg(dev,
6833 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6834 features &= ~NETIF_F_UFO;
6835 }
6836
6837 if (!(features & NETIF_F_SG)) {
6838 netdev_dbg(dev,
6839 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6840 features &= ~NETIF_F_UFO;
6841 }
6842 }
6843
6844 /* GSO partial features require GSO partial be set */
6845 if ((features & dev->gso_partial_features) &&
6846 !(features & NETIF_F_GSO_PARTIAL)) {
6847 netdev_dbg(dev,
6848 "Dropping partially supported GSO features since no GSO partial.\n");
6849 features &= ~dev->gso_partial_features;
6850 }
6851
6852 #ifdef CONFIG_NET_RX_BUSY_POLL
6853 if (dev->netdev_ops->ndo_busy_poll)
6854 features |= NETIF_F_BUSY_POLL;
6855 else
6856 #endif
6857 features &= ~NETIF_F_BUSY_POLL;
6858
6859 return features;
6860 }
6861
6862 int __netdev_update_features(struct net_device *dev)
6863 {
6864 struct net_device *upper, *lower;
6865 netdev_features_t features;
6866 struct list_head *iter;
6867 int err = -1;
6868
6869 ASSERT_RTNL();
6870
6871 features = netdev_get_wanted_features(dev);
6872
6873 if (dev->netdev_ops->ndo_fix_features)
6874 features = dev->netdev_ops->ndo_fix_features(dev, features);
6875
6876 /* driver might be less strict about feature dependencies */
6877 features = netdev_fix_features(dev, features);
6878
6879 /* some features can't be enabled if they're off an an upper device */
6880 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6881 features = netdev_sync_upper_features(dev, upper, features);
6882
6883 if (dev->features == features)
6884 goto sync_lower;
6885
6886 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6887 &dev->features, &features);
6888
6889 if (dev->netdev_ops->ndo_set_features)
6890 err = dev->netdev_ops->ndo_set_features(dev, features);
6891 else
6892 err = 0;
6893
6894 if (unlikely(err < 0)) {
6895 netdev_err(dev,
6896 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6897 err, &features, &dev->features);
6898 /* return non-0 since some features might have changed and
6899 * it's better to fire a spurious notification than miss it
6900 */
6901 return -1;
6902 }
6903
6904 sync_lower:
6905 /* some features must be disabled on lower devices when disabled
6906 * on an upper device (think: bonding master or bridge)
6907 */
6908 netdev_for_each_lower_dev(dev, lower, iter)
6909 netdev_sync_lower_features(dev, lower, features);
6910
6911 if (!err)
6912 dev->features = features;
6913
6914 return err < 0 ? 0 : 1;
6915 }
6916
6917 /**
6918 * netdev_update_features - recalculate device features
6919 * @dev: the device to check
6920 *
6921 * Recalculate dev->features set and send notifications if it
6922 * has changed. Should be called after driver or hardware dependent
6923 * conditions might have changed that influence the features.
6924 */
6925 void netdev_update_features(struct net_device *dev)
6926 {
6927 if (__netdev_update_features(dev))
6928 netdev_features_change(dev);
6929 }
6930 EXPORT_SYMBOL(netdev_update_features);
6931
6932 /**
6933 * netdev_change_features - recalculate device features
6934 * @dev: the device to check
6935 *
6936 * Recalculate dev->features set and send notifications even
6937 * if they have not changed. Should be called instead of
6938 * netdev_update_features() if also dev->vlan_features might
6939 * have changed to allow the changes to be propagated to stacked
6940 * VLAN devices.
6941 */
6942 void netdev_change_features(struct net_device *dev)
6943 {
6944 __netdev_update_features(dev);
6945 netdev_features_change(dev);
6946 }
6947 EXPORT_SYMBOL(netdev_change_features);
6948
6949 /**
6950 * netif_stacked_transfer_operstate - transfer operstate
6951 * @rootdev: the root or lower level device to transfer state from
6952 * @dev: the device to transfer operstate to
6953 *
6954 * Transfer operational state from root to device. This is normally
6955 * called when a stacking relationship exists between the root
6956 * device and the device(a leaf device).
6957 */
6958 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6959 struct net_device *dev)
6960 {
6961 if (rootdev->operstate == IF_OPER_DORMANT)
6962 netif_dormant_on(dev);
6963 else
6964 netif_dormant_off(dev);
6965
6966 if (netif_carrier_ok(rootdev)) {
6967 if (!netif_carrier_ok(dev))
6968 netif_carrier_on(dev);
6969 } else {
6970 if (netif_carrier_ok(dev))
6971 netif_carrier_off(dev);
6972 }
6973 }
6974 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6975
6976 #ifdef CONFIG_SYSFS
6977 static int netif_alloc_rx_queues(struct net_device *dev)
6978 {
6979 unsigned int i, count = dev->num_rx_queues;
6980 struct netdev_rx_queue *rx;
6981 size_t sz = count * sizeof(*rx);
6982
6983 BUG_ON(count < 1);
6984
6985 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986 if (!rx) {
6987 rx = vzalloc(sz);
6988 if (!rx)
6989 return -ENOMEM;
6990 }
6991 dev->_rx = rx;
6992
6993 for (i = 0; i < count; i++)
6994 rx[i].dev = dev;
6995 return 0;
6996 }
6997 #endif
6998
6999 static void netdev_init_one_queue(struct net_device *dev,
7000 struct netdev_queue *queue, void *_unused)
7001 {
7002 /* Initialize queue lock */
7003 spin_lock_init(&queue->_xmit_lock);
7004 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7005 queue->xmit_lock_owner = -1;
7006 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7007 queue->dev = dev;
7008 #ifdef CONFIG_BQL
7009 dql_init(&queue->dql, HZ);
7010 #endif
7011 }
7012
7013 static void netif_free_tx_queues(struct net_device *dev)
7014 {
7015 kvfree(dev->_tx);
7016 }
7017
7018 static int netif_alloc_netdev_queues(struct net_device *dev)
7019 {
7020 unsigned int count = dev->num_tx_queues;
7021 struct netdev_queue *tx;
7022 size_t sz = count * sizeof(*tx);
7023
7024 if (count < 1 || count > 0xffff)
7025 return -EINVAL;
7026
7027 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7028 if (!tx) {
7029 tx = vzalloc(sz);
7030 if (!tx)
7031 return -ENOMEM;
7032 }
7033 dev->_tx = tx;
7034
7035 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7036 spin_lock_init(&dev->tx_global_lock);
7037
7038 return 0;
7039 }
7040
7041 void netif_tx_stop_all_queues(struct net_device *dev)
7042 {
7043 unsigned int i;
7044
7045 for (i = 0; i < dev->num_tx_queues; i++) {
7046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7047 netif_tx_stop_queue(txq);
7048 }
7049 }
7050 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7051
7052 /**
7053 * register_netdevice - register a network device
7054 * @dev: device to register
7055 *
7056 * Take a completed network device structure and add it to the kernel
7057 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7058 * chain. 0 is returned on success. A negative errno code is returned
7059 * on a failure to set up the device, or if the name is a duplicate.
7060 *
7061 * Callers must hold the rtnl semaphore. You may want
7062 * register_netdev() instead of this.
7063 *
7064 * BUGS:
7065 * The locking appears insufficient to guarantee two parallel registers
7066 * will not get the same name.
7067 */
7068
7069 int register_netdevice(struct net_device *dev)
7070 {
7071 int ret;
7072 struct net *net = dev_net(dev);
7073
7074 BUG_ON(dev_boot_phase);
7075 ASSERT_RTNL();
7076
7077 might_sleep();
7078
7079 /* When net_device's are persistent, this will be fatal. */
7080 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7081 BUG_ON(!net);
7082
7083 spin_lock_init(&dev->addr_list_lock);
7084 netdev_set_addr_lockdep_class(dev);
7085
7086 ret = dev_get_valid_name(net, dev, dev->name);
7087 if (ret < 0)
7088 goto out;
7089
7090 /* Init, if this function is available */
7091 if (dev->netdev_ops->ndo_init) {
7092 ret = dev->netdev_ops->ndo_init(dev);
7093 if (ret) {
7094 if (ret > 0)
7095 ret = -EIO;
7096 goto out;
7097 }
7098 }
7099
7100 if (((dev->hw_features | dev->features) &
7101 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7102 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7103 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7104 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7105 ret = -EINVAL;
7106 goto err_uninit;
7107 }
7108
7109 ret = -EBUSY;
7110 if (!dev->ifindex)
7111 dev->ifindex = dev_new_index(net);
7112 else if (__dev_get_by_index(net, dev->ifindex))
7113 goto err_uninit;
7114
7115 /* Transfer changeable features to wanted_features and enable
7116 * software offloads (GSO and GRO).
7117 */
7118 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7119 dev->features |= NETIF_F_SOFT_FEATURES;
7120 dev->wanted_features = dev->features & dev->hw_features;
7121
7122 if (!(dev->flags & IFF_LOOPBACK))
7123 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7124
7125 /* If IPv4 TCP segmentation offload is supported we should also
7126 * allow the device to enable segmenting the frame with the option
7127 * of ignoring a static IP ID value. This doesn't enable the
7128 * feature itself but allows the user to enable it later.
7129 */
7130 if (dev->hw_features & NETIF_F_TSO)
7131 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7132 if (dev->vlan_features & NETIF_F_TSO)
7133 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7134 if (dev->mpls_features & NETIF_F_TSO)
7135 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7136 if (dev->hw_enc_features & NETIF_F_TSO)
7137 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7138
7139 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7140 */
7141 dev->vlan_features |= NETIF_F_HIGHDMA;
7142
7143 /* Make NETIF_F_SG inheritable to tunnel devices.
7144 */
7145 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7146
7147 /* Make NETIF_F_SG inheritable to MPLS.
7148 */
7149 dev->mpls_features |= NETIF_F_SG;
7150
7151 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7152 ret = notifier_to_errno(ret);
7153 if (ret)
7154 goto err_uninit;
7155
7156 ret = netdev_register_kobject(dev);
7157 if (ret)
7158 goto err_uninit;
7159 dev->reg_state = NETREG_REGISTERED;
7160
7161 __netdev_update_features(dev);
7162
7163 /*
7164 * Default initial state at registry is that the
7165 * device is present.
7166 */
7167
7168 set_bit(__LINK_STATE_PRESENT, &dev->state);
7169
7170 linkwatch_init_dev(dev);
7171
7172 dev_init_scheduler(dev);
7173 dev_hold(dev);
7174 list_netdevice(dev);
7175 add_device_randomness(dev->dev_addr, dev->addr_len);
7176
7177 /* If the device has permanent device address, driver should
7178 * set dev_addr and also addr_assign_type should be set to
7179 * NET_ADDR_PERM (default value).
7180 */
7181 if (dev->addr_assign_type == NET_ADDR_PERM)
7182 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7183
7184 /* Notify protocols, that a new device appeared. */
7185 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7186 ret = notifier_to_errno(ret);
7187 if (ret) {
7188 rollback_registered(dev);
7189 dev->reg_state = NETREG_UNREGISTERED;
7190 }
7191 /*
7192 * Prevent userspace races by waiting until the network
7193 * device is fully setup before sending notifications.
7194 */
7195 if (!dev->rtnl_link_ops ||
7196 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7198
7199 out:
7200 return ret;
7201
7202 err_uninit:
7203 if (dev->netdev_ops->ndo_uninit)
7204 dev->netdev_ops->ndo_uninit(dev);
7205 goto out;
7206 }
7207 EXPORT_SYMBOL(register_netdevice);
7208
7209 /**
7210 * init_dummy_netdev - init a dummy network device for NAPI
7211 * @dev: device to init
7212 *
7213 * This takes a network device structure and initialize the minimum
7214 * amount of fields so it can be used to schedule NAPI polls without
7215 * registering a full blown interface. This is to be used by drivers
7216 * that need to tie several hardware interfaces to a single NAPI
7217 * poll scheduler due to HW limitations.
7218 */
7219 int init_dummy_netdev(struct net_device *dev)
7220 {
7221 /* Clear everything. Note we don't initialize spinlocks
7222 * are they aren't supposed to be taken by any of the
7223 * NAPI code and this dummy netdev is supposed to be
7224 * only ever used for NAPI polls
7225 */
7226 memset(dev, 0, sizeof(struct net_device));
7227
7228 /* make sure we BUG if trying to hit standard
7229 * register/unregister code path
7230 */
7231 dev->reg_state = NETREG_DUMMY;
7232
7233 /* NAPI wants this */
7234 INIT_LIST_HEAD(&dev->napi_list);
7235
7236 /* a dummy interface is started by default */
7237 set_bit(__LINK_STATE_PRESENT, &dev->state);
7238 set_bit(__LINK_STATE_START, &dev->state);
7239
7240 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7241 * because users of this 'device' dont need to change
7242 * its refcount.
7243 */
7244
7245 return 0;
7246 }
7247 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7248
7249
7250 /**
7251 * register_netdev - register a network device
7252 * @dev: device to register
7253 *
7254 * Take a completed network device structure and add it to the kernel
7255 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7256 * chain. 0 is returned on success. A negative errno code is returned
7257 * on a failure to set up the device, or if the name is a duplicate.
7258 *
7259 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7260 * and expands the device name if you passed a format string to
7261 * alloc_netdev.
7262 */
7263 int register_netdev(struct net_device *dev)
7264 {
7265 int err;
7266
7267 rtnl_lock();
7268 err = register_netdevice(dev);
7269 rtnl_unlock();
7270 return err;
7271 }
7272 EXPORT_SYMBOL(register_netdev);
7273
7274 int netdev_refcnt_read(const struct net_device *dev)
7275 {
7276 int i, refcnt = 0;
7277
7278 for_each_possible_cpu(i)
7279 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7280 return refcnt;
7281 }
7282 EXPORT_SYMBOL(netdev_refcnt_read);
7283
7284 /**
7285 * netdev_wait_allrefs - wait until all references are gone.
7286 * @dev: target net_device
7287 *
7288 * This is called when unregistering network devices.
7289 *
7290 * Any protocol or device that holds a reference should register
7291 * for netdevice notification, and cleanup and put back the
7292 * reference if they receive an UNREGISTER event.
7293 * We can get stuck here if buggy protocols don't correctly
7294 * call dev_put.
7295 */
7296 static void netdev_wait_allrefs(struct net_device *dev)
7297 {
7298 unsigned long rebroadcast_time, warning_time;
7299 int refcnt;
7300
7301 linkwatch_forget_dev(dev);
7302
7303 rebroadcast_time = warning_time = jiffies;
7304 refcnt = netdev_refcnt_read(dev);
7305
7306 while (refcnt != 0) {
7307 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7308 rtnl_lock();
7309
7310 /* Rebroadcast unregister notification */
7311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7312
7313 __rtnl_unlock();
7314 rcu_barrier();
7315 rtnl_lock();
7316
7317 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7318 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7319 &dev->state)) {
7320 /* We must not have linkwatch events
7321 * pending on unregister. If this
7322 * happens, we simply run the queue
7323 * unscheduled, resulting in a noop
7324 * for this device.
7325 */
7326 linkwatch_run_queue();
7327 }
7328
7329 __rtnl_unlock();
7330
7331 rebroadcast_time = jiffies;
7332 }
7333
7334 msleep(250);
7335
7336 refcnt = netdev_refcnt_read(dev);
7337
7338 if (time_after(jiffies, warning_time + 10 * HZ)) {
7339 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7340 dev->name, refcnt);
7341 warning_time = jiffies;
7342 }
7343 }
7344 }
7345
7346 /* The sequence is:
7347 *
7348 * rtnl_lock();
7349 * ...
7350 * register_netdevice(x1);
7351 * register_netdevice(x2);
7352 * ...
7353 * unregister_netdevice(y1);
7354 * unregister_netdevice(y2);
7355 * ...
7356 * rtnl_unlock();
7357 * free_netdev(y1);
7358 * free_netdev(y2);
7359 *
7360 * We are invoked by rtnl_unlock().
7361 * This allows us to deal with problems:
7362 * 1) We can delete sysfs objects which invoke hotplug
7363 * without deadlocking with linkwatch via keventd.
7364 * 2) Since we run with the RTNL semaphore not held, we can sleep
7365 * safely in order to wait for the netdev refcnt to drop to zero.
7366 *
7367 * We must not return until all unregister events added during
7368 * the interval the lock was held have been completed.
7369 */
7370 void netdev_run_todo(void)
7371 {
7372 struct list_head list;
7373
7374 /* Snapshot list, allow later requests */
7375 list_replace_init(&net_todo_list, &list);
7376
7377 __rtnl_unlock();
7378
7379
7380 /* Wait for rcu callbacks to finish before next phase */
7381 if (!list_empty(&list))
7382 rcu_barrier();
7383
7384 while (!list_empty(&list)) {
7385 struct net_device *dev
7386 = list_first_entry(&list, struct net_device, todo_list);
7387 list_del(&dev->todo_list);
7388
7389 rtnl_lock();
7390 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7391 __rtnl_unlock();
7392
7393 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7394 pr_err("network todo '%s' but state %d\n",
7395 dev->name, dev->reg_state);
7396 dump_stack();
7397 continue;
7398 }
7399
7400 dev->reg_state = NETREG_UNREGISTERED;
7401
7402 netdev_wait_allrefs(dev);
7403
7404 /* paranoia */
7405 BUG_ON(netdev_refcnt_read(dev));
7406 BUG_ON(!list_empty(&dev->ptype_all));
7407 BUG_ON(!list_empty(&dev->ptype_specific));
7408 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7409 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7410 WARN_ON(dev->dn_ptr);
7411
7412 if (dev->destructor)
7413 dev->destructor(dev);
7414
7415 /* Report a network device has been unregistered */
7416 rtnl_lock();
7417 dev_net(dev)->dev_unreg_count--;
7418 __rtnl_unlock();
7419 wake_up(&netdev_unregistering_wq);
7420
7421 /* Free network device */
7422 kobject_put(&dev->dev.kobj);
7423 }
7424 }
7425
7426 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7427 * all the same fields in the same order as net_device_stats, with only
7428 * the type differing, but rtnl_link_stats64 may have additional fields
7429 * at the end for newer counters.
7430 */
7431 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7432 const struct net_device_stats *netdev_stats)
7433 {
7434 #if BITS_PER_LONG == 64
7435 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7436 memcpy(stats64, netdev_stats, sizeof(*stats64));
7437 /* zero out counters that only exist in rtnl_link_stats64 */
7438 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7439 sizeof(*stats64) - sizeof(*netdev_stats));
7440 #else
7441 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7442 const unsigned long *src = (const unsigned long *)netdev_stats;
7443 u64 *dst = (u64 *)stats64;
7444
7445 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7446 for (i = 0; i < n; i++)
7447 dst[i] = src[i];
7448 /* zero out counters that only exist in rtnl_link_stats64 */
7449 memset((char *)stats64 + n * sizeof(u64), 0,
7450 sizeof(*stats64) - n * sizeof(u64));
7451 #endif
7452 }
7453 EXPORT_SYMBOL(netdev_stats_to_stats64);
7454
7455 /**
7456 * dev_get_stats - get network device statistics
7457 * @dev: device to get statistics from
7458 * @storage: place to store stats
7459 *
7460 * Get network statistics from device. Return @storage.
7461 * The device driver may provide its own method by setting
7462 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7463 * otherwise the internal statistics structure is used.
7464 */
7465 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7466 struct rtnl_link_stats64 *storage)
7467 {
7468 const struct net_device_ops *ops = dev->netdev_ops;
7469
7470 if (ops->ndo_get_stats64) {
7471 memset(storage, 0, sizeof(*storage));
7472 ops->ndo_get_stats64(dev, storage);
7473 } else if (ops->ndo_get_stats) {
7474 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7475 } else {
7476 netdev_stats_to_stats64(storage, &dev->stats);
7477 }
7478 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7479 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7480 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7481 return storage;
7482 }
7483 EXPORT_SYMBOL(dev_get_stats);
7484
7485 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7486 {
7487 struct netdev_queue *queue = dev_ingress_queue(dev);
7488
7489 #ifdef CONFIG_NET_CLS_ACT
7490 if (queue)
7491 return queue;
7492 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7493 if (!queue)
7494 return NULL;
7495 netdev_init_one_queue(dev, queue, NULL);
7496 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7497 queue->qdisc_sleeping = &noop_qdisc;
7498 rcu_assign_pointer(dev->ingress_queue, queue);
7499 #endif
7500 return queue;
7501 }
7502
7503 static const struct ethtool_ops default_ethtool_ops;
7504
7505 void netdev_set_default_ethtool_ops(struct net_device *dev,
7506 const struct ethtool_ops *ops)
7507 {
7508 if (dev->ethtool_ops == &default_ethtool_ops)
7509 dev->ethtool_ops = ops;
7510 }
7511 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7512
7513 void netdev_freemem(struct net_device *dev)
7514 {
7515 char *addr = (char *)dev - dev->padded;
7516
7517 kvfree(addr);
7518 }
7519
7520 /**
7521 * alloc_netdev_mqs - allocate network device
7522 * @sizeof_priv: size of private data to allocate space for
7523 * @name: device name format string
7524 * @name_assign_type: origin of device name
7525 * @setup: callback to initialize device
7526 * @txqs: the number of TX subqueues to allocate
7527 * @rxqs: the number of RX subqueues to allocate
7528 *
7529 * Allocates a struct net_device with private data area for driver use
7530 * and performs basic initialization. Also allocates subqueue structs
7531 * for each queue on the device.
7532 */
7533 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7534 unsigned char name_assign_type,
7535 void (*setup)(struct net_device *),
7536 unsigned int txqs, unsigned int rxqs)
7537 {
7538 struct net_device *dev;
7539 size_t alloc_size;
7540 struct net_device *p;
7541
7542 BUG_ON(strlen(name) >= sizeof(dev->name));
7543
7544 if (txqs < 1) {
7545 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7546 return NULL;
7547 }
7548
7549 #ifdef CONFIG_SYSFS
7550 if (rxqs < 1) {
7551 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7552 return NULL;
7553 }
7554 #endif
7555
7556 alloc_size = sizeof(struct net_device);
7557 if (sizeof_priv) {
7558 /* ensure 32-byte alignment of private area */
7559 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7560 alloc_size += sizeof_priv;
7561 }
7562 /* ensure 32-byte alignment of whole construct */
7563 alloc_size += NETDEV_ALIGN - 1;
7564
7565 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7566 if (!p)
7567 p = vzalloc(alloc_size);
7568 if (!p)
7569 return NULL;
7570
7571 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7572 dev->padded = (char *)dev - (char *)p;
7573
7574 dev->pcpu_refcnt = alloc_percpu(int);
7575 if (!dev->pcpu_refcnt)
7576 goto free_dev;
7577
7578 if (dev_addr_init(dev))
7579 goto free_pcpu;
7580
7581 dev_mc_init(dev);
7582 dev_uc_init(dev);
7583
7584 dev_net_set(dev, &init_net);
7585
7586 dev->gso_max_size = GSO_MAX_SIZE;
7587 dev->gso_max_segs = GSO_MAX_SEGS;
7588
7589 INIT_LIST_HEAD(&dev->napi_list);
7590 INIT_LIST_HEAD(&dev->unreg_list);
7591 INIT_LIST_HEAD(&dev->close_list);
7592 INIT_LIST_HEAD(&dev->link_watch_list);
7593 INIT_LIST_HEAD(&dev->adj_list.upper);
7594 INIT_LIST_HEAD(&dev->adj_list.lower);
7595 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7596 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7597 INIT_LIST_HEAD(&dev->ptype_all);
7598 INIT_LIST_HEAD(&dev->ptype_specific);
7599 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7600 setup(dev);
7601
7602 if (!dev->tx_queue_len) {
7603 dev->priv_flags |= IFF_NO_QUEUE;
7604 dev->tx_queue_len = 1;
7605 }
7606
7607 dev->num_tx_queues = txqs;
7608 dev->real_num_tx_queues = txqs;
7609 if (netif_alloc_netdev_queues(dev))
7610 goto free_all;
7611
7612 #ifdef CONFIG_SYSFS
7613 dev->num_rx_queues = rxqs;
7614 dev->real_num_rx_queues = rxqs;
7615 if (netif_alloc_rx_queues(dev))
7616 goto free_all;
7617 #endif
7618
7619 strcpy(dev->name, name);
7620 dev->name_assign_type = name_assign_type;
7621 dev->group = INIT_NETDEV_GROUP;
7622 if (!dev->ethtool_ops)
7623 dev->ethtool_ops = &default_ethtool_ops;
7624
7625 nf_hook_ingress_init(dev);
7626
7627 return dev;
7628
7629 free_all:
7630 free_netdev(dev);
7631 return NULL;
7632
7633 free_pcpu:
7634 free_percpu(dev->pcpu_refcnt);
7635 free_dev:
7636 netdev_freemem(dev);
7637 return NULL;
7638 }
7639 EXPORT_SYMBOL(alloc_netdev_mqs);
7640
7641 /**
7642 * free_netdev - free network device
7643 * @dev: device
7644 *
7645 * This function does the last stage of destroying an allocated device
7646 * interface. The reference to the device object is released.
7647 * If this is the last reference then it will be freed.
7648 * Must be called in process context.
7649 */
7650 void free_netdev(struct net_device *dev)
7651 {
7652 struct napi_struct *p, *n;
7653
7654 might_sleep();
7655 netif_free_tx_queues(dev);
7656 #ifdef CONFIG_SYSFS
7657 kvfree(dev->_rx);
7658 #endif
7659
7660 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7661
7662 /* Flush device addresses */
7663 dev_addr_flush(dev);
7664
7665 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7666 netif_napi_del(p);
7667
7668 free_percpu(dev->pcpu_refcnt);
7669 dev->pcpu_refcnt = NULL;
7670
7671 /* Compatibility with error handling in drivers */
7672 if (dev->reg_state == NETREG_UNINITIALIZED) {
7673 netdev_freemem(dev);
7674 return;
7675 }
7676
7677 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7678 dev->reg_state = NETREG_RELEASED;
7679
7680 /* will free via device release */
7681 put_device(&dev->dev);
7682 }
7683 EXPORT_SYMBOL(free_netdev);
7684
7685 /**
7686 * synchronize_net - Synchronize with packet receive processing
7687 *
7688 * Wait for packets currently being received to be done.
7689 * Does not block later packets from starting.
7690 */
7691 void synchronize_net(void)
7692 {
7693 might_sleep();
7694 if (rtnl_is_locked())
7695 synchronize_rcu_expedited();
7696 else
7697 synchronize_rcu();
7698 }
7699 EXPORT_SYMBOL(synchronize_net);
7700
7701 /**
7702 * unregister_netdevice_queue - remove device from the kernel
7703 * @dev: device
7704 * @head: list
7705 *
7706 * This function shuts down a device interface and removes it
7707 * from the kernel tables.
7708 * If head not NULL, device is queued to be unregistered later.
7709 *
7710 * Callers must hold the rtnl semaphore. You may want
7711 * unregister_netdev() instead of this.
7712 */
7713
7714 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7715 {
7716 ASSERT_RTNL();
7717
7718 if (head) {
7719 list_move_tail(&dev->unreg_list, head);
7720 } else {
7721 rollback_registered(dev);
7722 /* Finish processing unregister after unlock */
7723 net_set_todo(dev);
7724 }
7725 }
7726 EXPORT_SYMBOL(unregister_netdevice_queue);
7727
7728 /**
7729 * unregister_netdevice_many - unregister many devices
7730 * @head: list of devices
7731 *
7732 * Note: As most callers use a stack allocated list_head,
7733 * we force a list_del() to make sure stack wont be corrupted later.
7734 */
7735 void unregister_netdevice_many(struct list_head *head)
7736 {
7737 struct net_device *dev;
7738
7739 if (!list_empty(head)) {
7740 rollback_registered_many(head);
7741 list_for_each_entry(dev, head, unreg_list)
7742 net_set_todo(dev);
7743 list_del(head);
7744 }
7745 }
7746 EXPORT_SYMBOL(unregister_netdevice_many);
7747
7748 /**
7749 * unregister_netdev - remove device from the kernel
7750 * @dev: device
7751 *
7752 * This function shuts down a device interface and removes it
7753 * from the kernel tables.
7754 *
7755 * This is just a wrapper for unregister_netdevice that takes
7756 * the rtnl semaphore. In general you want to use this and not
7757 * unregister_netdevice.
7758 */
7759 void unregister_netdev(struct net_device *dev)
7760 {
7761 rtnl_lock();
7762 unregister_netdevice(dev);
7763 rtnl_unlock();
7764 }
7765 EXPORT_SYMBOL(unregister_netdev);
7766
7767 /**
7768 * dev_change_net_namespace - move device to different nethost namespace
7769 * @dev: device
7770 * @net: network namespace
7771 * @pat: If not NULL name pattern to try if the current device name
7772 * is already taken in the destination network namespace.
7773 *
7774 * This function shuts down a device interface and moves it
7775 * to a new network namespace. On success 0 is returned, on
7776 * a failure a netagive errno code is returned.
7777 *
7778 * Callers must hold the rtnl semaphore.
7779 */
7780
7781 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7782 {
7783 int err;
7784
7785 ASSERT_RTNL();
7786
7787 /* Don't allow namespace local devices to be moved. */
7788 err = -EINVAL;
7789 if (dev->features & NETIF_F_NETNS_LOCAL)
7790 goto out;
7791
7792 /* Ensure the device has been registrered */
7793 if (dev->reg_state != NETREG_REGISTERED)
7794 goto out;
7795
7796 /* Get out if there is nothing todo */
7797 err = 0;
7798 if (net_eq(dev_net(dev), net))
7799 goto out;
7800
7801 /* Pick the destination device name, and ensure
7802 * we can use it in the destination network namespace.
7803 */
7804 err = -EEXIST;
7805 if (__dev_get_by_name(net, dev->name)) {
7806 /* We get here if we can't use the current device name */
7807 if (!pat)
7808 goto out;
7809 if (dev_get_valid_name(net, dev, pat) < 0)
7810 goto out;
7811 }
7812
7813 /*
7814 * And now a mini version of register_netdevice unregister_netdevice.
7815 */
7816
7817 /* If device is running close it first. */
7818 dev_close(dev);
7819
7820 /* And unlink it from device chain */
7821 err = -ENODEV;
7822 unlist_netdevice(dev);
7823
7824 synchronize_net();
7825
7826 /* Shutdown queueing discipline. */
7827 dev_shutdown(dev);
7828
7829 /* Notify protocols, that we are about to destroy
7830 this device. They should clean all the things.
7831
7832 Note that dev->reg_state stays at NETREG_REGISTERED.
7833 This is wanted because this way 8021q and macvlan know
7834 the device is just moving and can keep their slaves up.
7835 */
7836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7837 rcu_barrier();
7838 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7839 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7840
7841 /*
7842 * Flush the unicast and multicast chains
7843 */
7844 dev_uc_flush(dev);
7845 dev_mc_flush(dev);
7846
7847 /* Send a netdev-removed uevent to the old namespace */
7848 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7849 netdev_adjacent_del_links(dev);
7850
7851 /* Actually switch the network namespace */
7852 dev_net_set(dev, net);
7853
7854 /* If there is an ifindex conflict assign a new one */
7855 if (__dev_get_by_index(net, dev->ifindex))
7856 dev->ifindex = dev_new_index(net);
7857
7858 /* Send a netdev-add uevent to the new namespace */
7859 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7860 netdev_adjacent_add_links(dev);
7861
7862 /* Fixup kobjects */
7863 err = device_rename(&dev->dev, dev->name);
7864 WARN_ON(err);
7865
7866 /* Add the device back in the hashes */
7867 list_netdevice(dev);
7868
7869 /* Notify protocols, that a new device appeared. */
7870 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7871
7872 /*
7873 * Prevent userspace races by waiting until the network
7874 * device is fully setup before sending notifications.
7875 */
7876 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7877
7878 synchronize_net();
7879 err = 0;
7880 out:
7881 return err;
7882 }
7883 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7884
7885 static int dev_cpu_callback(struct notifier_block *nfb,
7886 unsigned long action,
7887 void *ocpu)
7888 {
7889 struct sk_buff **list_skb;
7890 struct sk_buff *skb;
7891 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7892 struct softnet_data *sd, *oldsd;
7893
7894 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7895 return NOTIFY_OK;
7896
7897 local_irq_disable();
7898 cpu = smp_processor_id();
7899 sd = &per_cpu(softnet_data, cpu);
7900 oldsd = &per_cpu(softnet_data, oldcpu);
7901
7902 /* Find end of our completion_queue. */
7903 list_skb = &sd->completion_queue;
7904 while (*list_skb)
7905 list_skb = &(*list_skb)->next;
7906 /* Append completion queue from offline CPU. */
7907 *list_skb = oldsd->completion_queue;
7908 oldsd->completion_queue = NULL;
7909
7910 /* Append output queue from offline CPU. */
7911 if (oldsd->output_queue) {
7912 *sd->output_queue_tailp = oldsd->output_queue;
7913 sd->output_queue_tailp = oldsd->output_queue_tailp;
7914 oldsd->output_queue = NULL;
7915 oldsd->output_queue_tailp = &oldsd->output_queue;
7916 }
7917 /* Append NAPI poll list from offline CPU, with one exception :
7918 * process_backlog() must be called by cpu owning percpu backlog.
7919 * We properly handle process_queue & input_pkt_queue later.
7920 */
7921 while (!list_empty(&oldsd->poll_list)) {
7922 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7923 struct napi_struct,
7924 poll_list);
7925
7926 list_del_init(&napi->poll_list);
7927 if (napi->poll == process_backlog)
7928 napi->state = 0;
7929 else
7930 ____napi_schedule(sd, napi);
7931 }
7932
7933 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7934 local_irq_enable();
7935
7936 /* Process offline CPU's input_pkt_queue */
7937 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7938 netif_rx_ni(skb);
7939 input_queue_head_incr(oldsd);
7940 }
7941 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7942 netif_rx_ni(skb);
7943 input_queue_head_incr(oldsd);
7944 }
7945
7946 return NOTIFY_OK;
7947 }
7948
7949
7950 /**
7951 * netdev_increment_features - increment feature set by one
7952 * @all: current feature set
7953 * @one: new feature set
7954 * @mask: mask feature set
7955 *
7956 * Computes a new feature set after adding a device with feature set
7957 * @one to the master device with current feature set @all. Will not
7958 * enable anything that is off in @mask. Returns the new feature set.
7959 */
7960 netdev_features_t netdev_increment_features(netdev_features_t all,
7961 netdev_features_t one, netdev_features_t mask)
7962 {
7963 if (mask & NETIF_F_HW_CSUM)
7964 mask |= NETIF_F_CSUM_MASK;
7965 mask |= NETIF_F_VLAN_CHALLENGED;
7966
7967 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7968 all &= one | ~NETIF_F_ALL_FOR_ALL;
7969
7970 /* If one device supports hw checksumming, set for all. */
7971 if (all & NETIF_F_HW_CSUM)
7972 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7973
7974 return all;
7975 }
7976 EXPORT_SYMBOL(netdev_increment_features);
7977
7978 static struct hlist_head * __net_init netdev_create_hash(void)
7979 {
7980 int i;
7981 struct hlist_head *hash;
7982
7983 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7984 if (hash != NULL)
7985 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7986 INIT_HLIST_HEAD(&hash[i]);
7987
7988 return hash;
7989 }
7990
7991 /* Initialize per network namespace state */
7992 static int __net_init netdev_init(struct net *net)
7993 {
7994 if (net != &init_net)
7995 INIT_LIST_HEAD(&net->dev_base_head);
7996
7997 net->dev_name_head = netdev_create_hash();
7998 if (net->dev_name_head == NULL)
7999 goto err_name;
8000
8001 net->dev_index_head = netdev_create_hash();
8002 if (net->dev_index_head == NULL)
8003 goto err_idx;
8004
8005 return 0;
8006
8007 err_idx:
8008 kfree(net->dev_name_head);
8009 err_name:
8010 return -ENOMEM;
8011 }
8012
8013 /**
8014 * netdev_drivername - network driver for the device
8015 * @dev: network device
8016 *
8017 * Determine network driver for device.
8018 */
8019 const char *netdev_drivername(const struct net_device *dev)
8020 {
8021 const struct device_driver *driver;
8022 const struct device *parent;
8023 const char *empty = "";
8024
8025 parent = dev->dev.parent;
8026 if (!parent)
8027 return empty;
8028
8029 driver = parent->driver;
8030 if (driver && driver->name)
8031 return driver->name;
8032 return empty;
8033 }
8034
8035 static void __netdev_printk(const char *level, const struct net_device *dev,
8036 struct va_format *vaf)
8037 {
8038 if (dev && dev->dev.parent) {
8039 dev_printk_emit(level[1] - '0',
8040 dev->dev.parent,
8041 "%s %s %s%s: %pV",
8042 dev_driver_string(dev->dev.parent),
8043 dev_name(dev->dev.parent),
8044 netdev_name(dev), netdev_reg_state(dev),
8045 vaf);
8046 } else if (dev) {
8047 printk("%s%s%s: %pV",
8048 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8049 } else {
8050 printk("%s(NULL net_device): %pV", level, vaf);
8051 }
8052 }
8053
8054 void netdev_printk(const char *level, const struct net_device *dev,
8055 const char *format, ...)
8056 {
8057 struct va_format vaf;
8058 va_list args;
8059
8060 va_start(args, format);
8061
8062 vaf.fmt = format;
8063 vaf.va = &args;
8064
8065 __netdev_printk(level, dev, &vaf);
8066
8067 va_end(args);
8068 }
8069 EXPORT_SYMBOL(netdev_printk);
8070
8071 #define define_netdev_printk_level(func, level) \
8072 void func(const struct net_device *dev, const char *fmt, ...) \
8073 { \
8074 struct va_format vaf; \
8075 va_list args; \
8076 \
8077 va_start(args, fmt); \
8078 \
8079 vaf.fmt = fmt; \
8080 vaf.va = &args; \
8081 \
8082 __netdev_printk(level, dev, &vaf); \
8083 \
8084 va_end(args); \
8085 } \
8086 EXPORT_SYMBOL(func);
8087
8088 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8089 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8090 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8091 define_netdev_printk_level(netdev_err, KERN_ERR);
8092 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8093 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8094 define_netdev_printk_level(netdev_info, KERN_INFO);
8095
8096 static void __net_exit netdev_exit(struct net *net)
8097 {
8098 kfree(net->dev_name_head);
8099 kfree(net->dev_index_head);
8100 }
8101
8102 static struct pernet_operations __net_initdata netdev_net_ops = {
8103 .init = netdev_init,
8104 .exit = netdev_exit,
8105 };
8106
8107 static void __net_exit default_device_exit(struct net *net)
8108 {
8109 struct net_device *dev, *aux;
8110 /*
8111 * Push all migratable network devices back to the
8112 * initial network namespace
8113 */
8114 rtnl_lock();
8115 for_each_netdev_safe(net, dev, aux) {
8116 int err;
8117 char fb_name[IFNAMSIZ];
8118
8119 /* Ignore unmoveable devices (i.e. loopback) */
8120 if (dev->features & NETIF_F_NETNS_LOCAL)
8121 continue;
8122
8123 /* Leave virtual devices for the generic cleanup */
8124 if (dev->rtnl_link_ops)
8125 continue;
8126
8127 /* Push remaining network devices to init_net */
8128 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8129 err = dev_change_net_namespace(dev, &init_net, fb_name);
8130 if (err) {
8131 pr_emerg("%s: failed to move %s to init_net: %d\n",
8132 __func__, dev->name, err);
8133 BUG();
8134 }
8135 }
8136 rtnl_unlock();
8137 }
8138
8139 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8140 {
8141 /* Return with the rtnl_lock held when there are no network
8142 * devices unregistering in any network namespace in net_list.
8143 */
8144 struct net *net;
8145 bool unregistering;
8146 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8147
8148 add_wait_queue(&netdev_unregistering_wq, &wait);
8149 for (;;) {
8150 unregistering = false;
8151 rtnl_lock();
8152 list_for_each_entry(net, net_list, exit_list) {
8153 if (net->dev_unreg_count > 0) {
8154 unregistering = true;
8155 break;
8156 }
8157 }
8158 if (!unregistering)
8159 break;
8160 __rtnl_unlock();
8161
8162 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8163 }
8164 remove_wait_queue(&netdev_unregistering_wq, &wait);
8165 }
8166
8167 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8168 {
8169 /* At exit all network devices most be removed from a network
8170 * namespace. Do this in the reverse order of registration.
8171 * Do this across as many network namespaces as possible to
8172 * improve batching efficiency.
8173 */
8174 struct net_device *dev;
8175 struct net *net;
8176 LIST_HEAD(dev_kill_list);
8177
8178 /* To prevent network device cleanup code from dereferencing
8179 * loopback devices or network devices that have been freed
8180 * wait here for all pending unregistrations to complete,
8181 * before unregistring the loopback device and allowing the
8182 * network namespace be freed.
8183 *
8184 * The netdev todo list containing all network devices
8185 * unregistrations that happen in default_device_exit_batch
8186 * will run in the rtnl_unlock() at the end of
8187 * default_device_exit_batch.
8188 */
8189 rtnl_lock_unregistering(net_list);
8190 list_for_each_entry(net, net_list, exit_list) {
8191 for_each_netdev_reverse(net, dev) {
8192 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8193 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8194 else
8195 unregister_netdevice_queue(dev, &dev_kill_list);
8196 }
8197 }
8198 unregister_netdevice_many(&dev_kill_list);
8199 rtnl_unlock();
8200 }
8201
8202 static struct pernet_operations __net_initdata default_device_ops = {
8203 .exit = default_device_exit,
8204 .exit_batch = default_device_exit_batch,
8205 };
8206
8207 /*
8208 * Initialize the DEV module. At boot time this walks the device list and
8209 * unhooks any devices that fail to initialise (normally hardware not
8210 * present) and leaves us with a valid list of present and active devices.
8211 *
8212 */
8213
8214 /*
8215 * This is called single threaded during boot, so no need
8216 * to take the rtnl semaphore.
8217 */
8218 static int __init net_dev_init(void)
8219 {
8220 int i, rc = -ENOMEM;
8221
8222 BUG_ON(!dev_boot_phase);
8223
8224 if (dev_proc_init())
8225 goto out;
8226
8227 if (netdev_kobject_init())
8228 goto out;
8229
8230 INIT_LIST_HEAD(&ptype_all);
8231 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8232 INIT_LIST_HEAD(&ptype_base[i]);
8233
8234 INIT_LIST_HEAD(&offload_base);
8235
8236 if (register_pernet_subsys(&netdev_net_ops))
8237 goto out;
8238
8239 /*
8240 * Initialise the packet receive queues.
8241 */
8242
8243 for_each_possible_cpu(i) {
8244 struct softnet_data *sd = &per_cpu(softnet_data, i);
8245
8246 skb_queue_head_init(&sd->input_pkt_queue);
8247 skb_queue_head_init(&sd->process_queue);
8248 INIT_LIST_HEAD(&sd->poll_list);
8249 sd->output_queue_tailp = &sd->output_queue;
8250 #ifdef CONFIG_RPS
8251 sd->csd.func = rps_trigger_softirq;
8252 sd->csd.info = sd;
8253 sd->cpu = i;
8254 #endif
8255
8256 sd->backlog.poll = process_backlog;
8257 sd->backlog.weight = weight_p;
8258 }
8259
8260 dev_boot_phase = 0;
8261
8262 /* The loopback device is special if any other network devices
8263 * is present in a network namespace the loopback device must
8264 * be present. Since we now dynamically allocate and free the
8265 * loopback device ensure this invariant is maintained by
8266 * keeping the loopback device as the first device on the
8267 * list of network devices. Ensuring the loopback devices
8268 * is the first device that appears and the last network device
8269 * that disappears.
8270 */
8271 if (register_pernet_device(&loopback_net_ops))
8272 goto out;
8273
8274 if (register_pernet_device(&default_device_ops))
8275 goto out;
8276
8277 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8278 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8279
8280 hotcpu_notifier(dev_cpu_callback, 0);
8281 dst_subsys_init();
8282 rc = 0;
8283 out:
8284 return rc;
8285 }
8286
8287 subsys_initcall(net_dev_init);
This page took 0.2027 seconds and 6 git commands to generate.