Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 #ifdef CONFIG_NET_CLS_ACT
1340 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1341 net_timestamp(skb);
1342 #else
1343 net_timestamp(skb);
1344 #endif
1345
1346 rcu_read_lock();
1347 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1348 /* Never send packets back to the socket
1349 * they originated from - MvS (miquels@drinkel.ow.org)
1350 */
1351 if ((ptype->dev == dev || !ptype->dev) &&
1352 (ptype->af_packet_priv == NULL ||
1353 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1354 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1355 if (!skb2)
1356 break;
1357
1358 /* skb->nh should be correctly
1359 set by sender, so that the second statement is
1360 just protection against buggy protocols.
1361 */
1362 skb_reset_mac_header(skb2);
1363
1364 if (skb_network_header(skb2) < skb2->data ||
1365 skb2->network_header > skb2->tail) {
1366 if (net_ratelimit())
1367 printk(KERN_CRIT "protocol %04x is "
1368 "buggy, dev %s\n",
1369 skb2->protocol, dev->name);
1370 skb_reset_network_header(skb2);
1371 }
1372
1373 skb2->transport_header = skb2->network_header;
1374 skb2->pkt_type = PACKET_OUTGOING;
1375 ptype->func(skb2, skb->dev, ptype, skb->dev);
1376 }
1377 }
1378 rcu_read_unlock();
1379 }
1380
1381
1382 static inline void __netif_reschedule(struct Qdisc *q)
1383 {
1384 struct softnet_data *sd;
1385 unsigned long flags;
1386
1387 local_irq_save(flags);
1388 sd = &__get_cpu_var(softnet_data);
1389 q->next_sched = sd->output_queue;
1390 sd->output_queue = q;
1391 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1392 local_irq_restore(flags);
1393 }
1394
1395 void __netif_schedule(struct Qdisc *q)
1396 {
1397 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1398 __netif_reschedule(q);
1399 }
1400 EXPORT_SYMBOL(__netif_schedule);
1401
1402 void dev_kfree_skb_irq(struct sk_buff *skb)
1403 {
1404 if (atomic_dec_and_test(&skb->users)) {
1405 struct softnet_data *sd;
1406 unsigned long flags;
1407
1408 local_irq_save(flags);
1409 sd = &__get_cpu_var(softnet_data);
1410 skb->next = sd->completion_queue;
1411 sd->completion_queue = skb;
1412 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1413 local_irq_restore(flags);
1414 }
1415 }
1416 EXPORT_SYMBOL(dev_kfree_skb_irq);
1417
1418 void dev_kfree_skb_any(struct sk_buff *skb)
1419 {
1420 if (in_irq() || irqs_disabled())
1421 dev_kfree_skb_irq(skb);
1422 else
1423 dev_kfree_skb(skb);
1424 }
1425 EXPORT_SYMBOL(dev_kfree_skb_any);
1426
1427
1428 /**
1429 * netif_device_detach - mark device as removed
1430 * @dev: network device
1431 *
1432 * Mark device as removed from system and therefore no longer available.
1433 */
1434 void netif_device_detach(struct net_device *dev)
1435 {
1436 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 netif_running(dev)) {
1438 netif_tx_stop_all_queues(dev);
1439 }
1440 }
1441 EXPORT_SYMBOL(netif_device_detach);
1442
1443 /**
1444 * netif_device_attach - mark device as attached
1445 * @dev: network device
1446 *
1447 * Mark device as attached from system and restart if needed.
1448 */
1449 void netif_device_attach(struct net_device *dev)
1450 {
1451 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1452 netif_running(dev)) {
1453 netif_tx_wake_all_queues(dev);
1454 __netdev_watchdog_up(dev);
1455 }
1456 }
1457 EXPORT_SYMBOL(netif_device_attach);
1458
1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1460 {
1461 return ((features & NETIF_F_GEN_CSUM) ||
1462 ((features & NETIF_F_IP_CSUM) &&
1463 protocol == htons(ETH_P_IP)) ||
1464 ((features & NETIF_F_IPV6_CSUM) &&
1465 protocol == htons(ETH_P_IPV6)) ||
1466 ((features & NETIF_F_FCOE_CRC) &&
1467 protocol == htons(ETH_P_FCOE)));
1468 }
1469
1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1471 {
1472 if (can_checksum_protocol(dev->features, skb->protocol))
1473 return true;
1474
1475 if (skb->protocol == htons(ETH_P_8021Q)) {
1476 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1477 if (can_checksum_protocol(dev->features & dev->vlan_features,
1478 veh->h_vlan_encapsulated_proto))
1479 return true;
1480 }
1481
1482 return false;
1483 }
1484
1485 /*
1486 * Invalidate hardware checksum when packet is to be mangled, and
1487 * complete checksum manually on outgoing path.
1488 */
1489 int skb_checksum_help(struct sk_buff *skb)
1490 {
1491 __wsum csum;
1492 int ret = 0, offset;
1493
1494 if (skb->ip_summed == CHECKSUM_COMPLETE)
1495 goto out_set_summed;
1496
1497 if (unlikely(skb_shinfo(skb)->gso_size)) {
1498 /* Let GSO fix up the checksum. */
1499 goto out_set_summed;
1500 }
1501
1502 offset = skb->csum_start - skb_headroom(skb);
1503 BUG_ON(offset >= skb_headlen(skb));
1504 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1505
1506 offset += skb->csum_offset;
1507 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1508
1509 if (skb_cloned(skb) &&
1510 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1511 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1512 if (ret)
1513 goto out;
1514 }
1515
1516 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1517 out_set_summed:
1518 skb->ip_summed = CHECKSUM_NONE;
1519 out:
1520 return ret;
1521 }
1522
1523 /**
1524 * skb_gso_segment - Perform segmentation on skb.
1525 * @skb: buffer to segment
1526 * @features: features for the output path (see dev->features)
1527 *
1528 * This function segments the given skb and returns a list of segments.
1529 *
1530 * It may return NULL if the skb requires no segmentation. This is
1531 * only possible when GSO is used for verifying header integrity.
1532 */
1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1534 {
1535 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1536 struct packet_type *ptype;
1537 __be16 type = skb->protocol;
1538 int err;
1539
1540 skb_reset_mac_header(skb);
1541 skb->mac_len = skb->network_header - skb->mac_header;
1542 __skb_pull(skb, skb->mac_len);
1543
1544 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1545 struct net_device *dev = skb->dev;
1546 struct ethtool_drvinfo info = {};
1547
1548 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1549 dev->ethtool_ops->get_drvinfo(dev, &info);
1550
1551 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1552 "ip_summed=%d",
1553 info.driver, dev ? dev->features : 0L,
1554 skb->sk ? skb->sk->sk_route_caps : 0L,
1555 skb->len, skb->data_len, skb->ip_summed);
1556
1557 if (skb_header_cloned(skb) &&
1558 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1559 return ERR_PTR(err);
1560 }
1561
1562 rcu_read_lock();
1563 list_for_each_entry_rcu(ptype,
1564 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1565 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1566 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1567 err = ptype->gso_send_check(skb);
1568 segs = ERR_PTR(err);
1569 if (err || skb_gso_ok(skb, features))
1570 break;
1571 __skb_push(skb, (skb->data -
1572 skb_network_header(skb)));
1573 }
1574 segs = ptype->gso_segment(skb, features);
1575 break;
1576 }
1577 }
1578 rcu_read_unlock();
1579
1580 __skb_push(skb, skb->data - skb_mac_header(skb));
1581
1582 return segs;
1583 }
1584
1585 EXPORT_SYMBOL(skb_gso_segment);
1586
1587 /* Take action when hardware reception checksum errors are detected. */
1588 #ifdef CONFIG_BUG
1589 void netdev_rx_csum_fault(struct net_device *dev)
1590 {
1591 if (net_ratelimit()) {
1592 printk(KERN_ERR "%s: hw csum failure.\n",
1593 dev ? dev->name : "<unknown>");
1594 dump_stack();
1595 }
1596 }
1597 EXPORT_SYMBOL(netdev_rx_csum_fault);
1598 #endif
1599
1600 /* Actually, we should eliminate this check as soon as we know, that:
1601 * 1. IOMMU is present and allows to map all the memory.
1602 * 2. No high memory really exists on this machine.
1603 */
1604
1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1606 {
1607 #ifdef CONFIG_HIGHMEM
1608 int i;
1609
1610 if (dev->features & NETIF_F_HIGHDMA)
1611 return 0;
1612
1613 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1614 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1615 return 1;
1616
1617 #endif
1618 return 0;
1619 }
1620
1621 struct dev_gso_cb {
1622 void (*destructor)(struct sk_buff *skb);
1623 };
1624
1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1626
1627 static void dev_gso_skb_destructor(struct sk_buff *skb)
1628 {
1629 struct dev_gso_cb *cb;
1630
1631 do {
1632 struct sk_buff *nskb = skb->next;
1633
1634 skb->next = nskb->next;
1635 nskb->next = NULL;
1636 kfree_skb(nskb);
1637 } while (skb->next);
1638
1639 cb = DEV_GSO_CB(skb);
1640 if (cb->destructor)
1641 cb->destructor(skb);
1642 }
1643
1644 /**
1645 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1646 * @skb: buffer to segment
1647 *
1648 * This function segments the given skb and stores the list of segments
1649 * in skb->next.
1650 */
1651 static int dev_gso_segment(struct sk_buff *skb)
1652 {
1653 struct net_device *dev = skb->dev;
1654 struct sk_buff *segs;
1655 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1656 NETIF_F_SG : 0);
1657
1658 segs = skb_gso_segment(skb, features);
1659
1660 /* Verifying header integrity only. */
1661 if (!segs)
1662 return 0;
1663
1664 if (IS_ERR(segs))
1665 return PTR_ERR(segs);
1666
1667 skb->next = segs;
1668 DEV_GSO_CB(skb)->destructor = skb->destructor;
1669 skb->destructor = dev_gso_skb_destructor;
1670
1671 return 0;
1672 }
1673
1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1675 struct netdev_queue *txq)
1676 {
1677 const struct net_device_ops *ops = dev->netdev_ops;
1678 int rc;
1679
1680 if (likely(!skb->next)) {
1681 if (!list_empty(&ptype_all))
1682 dev_queue_xmit_nit(skb, dev);
1683
1684 if (netif_needs_gso(dev, skb)) {
1685 if (unlikely(dev_gso_segment(skb)))
1686 goto out_kfree_skb;
1687 if (skb->next)
1688 goto gso;
1689 }
1690
1691 rc = ops->ndo_start_xmit(skb, dev);
1692 /*
1693 * TODO: if skb_orphan() was called by
1694 * dev->hard_start_xmit() (for example, the unmodified
1695 * igb driver does that; bnx2 doesn't), then
1696 * skb_tx_software_timestamp() will be unable to send
1697 * back the time stamp.
1698 *
1699 * How can this be prevented? Always create another
1700 * reference to the socket before calling
1701 * dev->hard_start_xmit()? Prevent that skb_orphan()
1702 * does anything in dev->hard_start_xmit() by clearing
1703 * the skb destructor before the call and restoring it
1704 * afterwards, then doing the skb_orphan() ourselves?
1705 */
1706 return rc;
1707 }
1708
1709 gso:
1710 do {
1711 struct sk_buff *nskb = skb->next;
1712
1713 skb->next = nskb->next;
1714 nskb->next = NULL;
1715 rc = ops->ndo_start_xmit(nskb, dev);
1716 if (unlikely(rc)) {
1717 nskb->next = skb->next;
1718 skb->next = nskb;
1719 return rc;
1720 }
1721 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1722 return NETDEV_TX_BUSY;
1723 } while (skb->next);
1724
1725 skb->destructor = DEV_GSO_CB(skb)->destructor;
1726
1727 out_kfree_skb:
1728 kfree_skb(skb);
1729 return 0;
1730 }
1731
1732 static u32 skb_tx_hashrnd;
1733
1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1735 {
1736 u32 hash;
1737
1738 if (skb_rx_queue_recorded(skb))
1739 return skb_get_rx_queue(skb) % dev->real_num_tx_queues;
1740
1741 if (skb->sk && skb->sk->sk_hash)
1742 hash = skb->sk->sk_hash;
1743 else
1744 hash = skb->protocol;
1745
1746 hash = jhash_1word(hash, skb_tx_hashrnd);
1747
1748 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1749 }
1750 EXPORT_SYMBOL(skb_tx_hash);
1751
1752 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1753 struct sk_buff *skb)
1754 {
1755 const struct net_device_ops *ops = dev->netdev_ops;
1756 u16 queue_index = 0;
1757
1758 if (ops->ndo_select_queue)
1759 queue_index = ops->ndo_select_queue(dev, skb);
1760 else if (dev->real_num_tx_queues > 1)
1761 queue_index = skb_tx_hash(dev, skb);
1762
1763 skb_set_queue_mapping(skb, queue_index);
1764 return netdev_get_tx_queue(dev, queue_index);
1765 }
1766
1767 /**
1768 * dev_queue_xmit - transmit a buffer
1769 * @skb: buffer to transmit
1770 *
1771 * Queue a buffer for transmission to a network device. The caller must
1772 * have set the device and priority and built the buffer before calling
1773 * this function. The function can be called from an interrupt.
1774 *
1775 * A negative errno code is returned on a failure. A success does not
1776 * guarantee the frame will be transmitted as it may be dropped due
1777 * to congestion or traffic shaping.
1778 *
1779 * -----------------------------------------------------------------------------------
1780 * I notice this method can also return errors from the queue disciplines,
1781 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1782 * be positive.
1783 *
1784 * Regardless of the return value, the skb is consumed, so it is currently
1785 * difficult to retry a send to this method. (You can bump the ref count
1786 * before sending to hold a reference for retry if you are careful.)
1787 *
1788 * When calling this method, interrupts MUST be enabled. This is because
1789 * the BH enable code must have IRQs enabled so that it will not deadlock.
1790 * --BLG
1791 */
1792 int dev_queue_xmit(struct sk_buff *skb)
1793 {
1794 struct net_device *dev = skb->dev;
1795 struct netdev_queue *txq;
1796 struct Qdisc *q;
1797 int rc = -ENOMEM;
1798
1799 /* GSO will handle the following emulations directly. */
1800 if (netif_needs_gso(dev, skb))
1801 goto gso;
1802
1803 if (skb_shinfo(skb)->frag_list &&
1804 !(dev->features & NETIF_F_FRAGLIST) &&
1805 __skb_linearize(skb))
1806 goto out_kfree_skb;
1807
1808 /* Fragmented skb is linearized if device does not support SG,
1809 * or if at least one of fragments is in highmem and device
1810 * does not support DMA from it.
1811 */
1812 if (skb_shinfo(skb)->nr_frags &&
1813 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1814 __skb_linearize(skb))
1815 goto out_kfree_skb;
1816
1817 /* If packet is not checksummed and device does not support
1818 * checksumming for this protocol, complete checksumming here.
1819 */
1820 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1821 skb_set_transport_header(skb, skb->csum_start -
1822 skb_headroom(skb));
1823 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1824 goto out_kfree_skb;
1825 }
1826
1827 gso:
1828 /* Disable soft irqs for various locks below. Also
1829 * stops preemption for RCU.
1830 */
1831 rcu_read_lock_bh();
1832
1833 txq = dev_pick_tx(dev, skb);
1834 q = rcu_dereference(txq->qdisc);
1835
1836 #ifdef CONFIG_NET_CLS_ACT
1837 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1838 #endif
1839 if (q->enqueue) {
1840 spinlock_t *root_lock = qdisc_lock(q);
1841
1842 spin_lock(root_lock);
1843
1844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1845 kfree_skb(skb);
1846 rc = NET_XMIT_DROP;
1847 } else {
1848 rc = qdisc_enqueue_root(skb, q);
1849 qdisc_run(q);
1850 }
1851 spin_unlock(root_lock);
1852
1853 goto out;
1854 }
1855
1856 /* The device has no queue. Common case for software devices:
1857 loopback, all the sorts of tunnels...
1858
1859 Really, it is unlikely that netif_tx_lock protection is necessary
1860 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1861 counters.)
1862 However, it is possible, that they rely on protection
1863 made by us here.
1864
1865 Check this and shot the lock. It is not prone from deadlocks.
1866 Either shot noqueue qdisc, it is even simpler 8)
1867 */
1868 if (dev->flags & IFF_UP) {
1869 int cpu = smp_processor_id(); /* ok because BHs are off */
1870
1871 if (txq->xmit_lock_owner != cpu) {
1872
1873 HARD_TX_LOCK(dev, txq, cpu);
1874
1875 if (!netif_tx_queue_stopped(txq)) {
1876 rc = 0;
1877 if (!dev_hard_start_xmit(skb, dev, txq)) {
1878 HARD_TX_UNLOCK(dev, txq);
1879 goto out;
1880 }
1881 }
1882 HARD_TX_UNLOCK(dev, txq);
1883 if (net_ratelimit())
1884 printk(KERN_CRIT "Virtual device %s asks to "
1885 "queue packet!\n", dev->name);
1886 } else {
1887 /* Recursion is detected! It is possible,
1888 * unfortunately */
1889 if (net_ratelimit())
1890 printk(KERN_CRIT "Dead loop on virtual device "
1891 "%s, fix it urgently!\n", dev->name);
1892 }
1893 }
1894
1895 rc = -ENETDOWN;
1896 rcu_read_unlock_bh();
1897
1898 out_kfree_skb:
1899 kfree_skb(skb);
1900 return rc;
1901 out:
1902 rcu_read_unlock_bh();
1903 return rc;
1904 }
1905
1906
1907 /*=======================================================================
1908 Receiver routines
1909 =======================================================================*/
1910
1911 int netdev_max_backlog __read_mostly = 1000;
1912 int netdev_budget __read_mostly = 300;
1913 int weight_p __read_mostly = 64; /* old backlog weight */
1914
1915 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1916
1917
1918 /**
1919 * netif_rx - post buffer to the network code
1920 * @skb: buffer to post
1921 *
1922 * This function receives a packet from a device driver and queues it for
1923 * the upper (protocol) levels to process. It always succeeds. The buffer
1924 * may be dropped during processing for congestion control or by the
1925 * protocol layers.
1926 *
1927 * return values:
1928 * NET_RX_SUCCESS (no congestion)
1929 * NET_RX_DROP (packet was dropped)
1930 *
1931 */
1932
1933 int netif_rx(struct sk_buff *skb)
1934 {
1935 struct softnet_data *queue;
1936 unsigned long flags;
1937
1938 /* if netpoll wants it, pretend we never saw it */
1939 if (netpoll_rx(skb))
1940 return NET_RX_DROP;
1941
1942 if (!skb->tstamp.tv64)
1943 net_timestamp(skb);
1944
1945 /*
1946 * The code is rearranged so that the path is the most
1947 * short when CPU is congested, but is still operating.
1948 */
1949 local_irq_save(flags);
1950 queue = &__get_cpu_var(softnet_data);
1951
1952 __get_cpu_var(netdev_rx_stat).total++;
1953 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1954 if (queue->input_pkt_queue.qlen) {
1955 enqueue:
1956 __skb_queue_tail(&queue->input_pkt_queue, skb);
1957 local_irq_restore(flags);
1958 return NET_RX_SUCCESS;
1959 }
1960
1961 napi_schedule(&queue->backlog);
1962 goto enqueue;
1963 }
1964
1965 __get_cpu_var(netdev_rx_stat).dropped++;
1966 local_irq_restore(flags);
1967
1968 kfree_skb(skb);
1969 return NET_RX_DROP;
1970 }
1971
1972 int netif_rx_ni(struct sk_buff *skb)
1973 {
1974 int err;
1975
1976 preempt_disable();
1977 err = netif_rx(skb);
1978 if (local_softirq_pending())
1979 do_softirq();
1980 preempt_enable();
1981
1982 return err;
1983 }
1984
1985 EXPORT_SYMBOL(netif_rx_ni);
1986
1987 static void net_tx_action(struct softirq_action *h)
1988 {
1989 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1990
1991 if (sd->completion_queue) {
1992 struct sk_buff *clist;
1993
1994 local_irq_disable();
1995 clist = sd->completion_queue;
1996 sd->completion_queue = NULL;
1997 local_irq_enable();
1998
1999 while (clist) {
2000 struct sk_buff *skb = clist;
2001 clist = clist->next;
2002
2003 WARN_ON(atomic_read(&skb->users));
2004 __kfree_skb(skb);
2005 }
2006 }
2007
2008 if (sd->output_queue) {
2009 struct Qdisc *head;
2010
2011 local_irq_disable();
2012 head = sd->output_queue;
2013 sd->output_queue = NULL;
2014 local_irq_enable();
2015
2016 while (head) {
2017 struct Qdisc *q = head;
2018 spinlock_t *root_lock;
2019
2020 head = head->next_sched;
2021
2022 root_lock = qdisc_lock(q);
2023 if (spin_trylock(root_lock)) {
2024 smp_mb__before_clear_bit();
2025 clear_bit(__QDISC_STATE_SCHED,
2026 &q->state);
2027 qdisc_run(q);
2028 spin_unlock(root_lock);
2029 } else {
2030 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2031 &q->state)) {
2032 __netif_reschedule(q);
2033 } else {
2034 smp_mb__before_clear_bit();
2035 clear_bit(__QDISC_STATE_SCHED,
2036 &q->state);
2037 }
2038 }
2039 }
2040 }
2041 }
2042
2043 static inline int deliver_skb(struct sk_buff *skb,
2044 struct packet_type *pt_prev,
2045 struct net_device *orig_dev)
2046 {
2047 atomic_inc(&skb->users);
2048 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2049 }
2050
2051 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2052 /* These hooks defined here for ATM */
2053 struct net_bridge;
2054 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2055 unsigned char *addr);
2056 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2057
2058 /*
2059 * If bridge module is loaded call bridging hook.
2060 * returns NULL if packet was consumed.
2061 */
2062 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2063 struct sk_buff *skb) __read_mostly;
2064 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2065 struct packet_type **pt_prev, int *ret,
2066 struct net_device *orig_dev)
2067 {
2068 struct net_bridge_port *port;
2069
2070 if (skb->pkt_type == PACKET_LOOPBACK ||
2071 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2072 return skb;
2073
2074 if (*pt_prev) {
2075 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2076 *pt_prev = NULL;
2077 }
2078
2079 return br_handle_frame_hook(port, skb);
2080 }
2081 #else
2082 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2083 #endif
2084
2085 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2086 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2087 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2088
2089 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2090 struct packet_type **pt_prev,
2091 int *ret,
2092 struct net_device *orig_dev)
2093 {
2094 if (skb->dev->macvlan_port == NULL)
2095 return skb;
2096
2097 if (*pt_prev) {
2098 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2099 *pt_prev = NULL;
2100 }
2101 return macvlan_handle_frame_hook(skb);
2102 }
2103 #else
2104 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2105 #endif
2106
2107 #ifdef CONFIG_NET_CLS_ACT
2108 /* TODO: Maybe we should just force sch_ingress to be compiled in
2109 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2110 * a compare and 2 stores extra right now if we dont have it on
2111 * but have CONFIG_NET_CLS_ACT
2112 * NOTE: This doesnt stop any functionality; if you dont have
2113 * the ingress scheduler, you just cant add policies on ingress.
2114 *
2115 */
2116 static int ing_filter(struct sk_buff *skb)
2117 {
2118 struct net_device *dev = skb->dev;
2119 u32 ttl = G_TC_RTTL(skb->tc_verd);
2120 struct netdev_queue *rxq;
2121 int result = TC_ACT_OK;
2122 struct Qdisc *q;
2123
2124 if (MAX_RED_LOOP < ttl++) {
2125 printk(KERN_WARNING
2126 "Redir loop detected Dropping packet (%d->%d)\n",
2127 skb->iif, dev->ifindex);
2128 return TC_ACT_SHOT;
2129 }
2130
2131 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2132 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2133
2134 rxq = &dev->rx_queue;
2135
2136 q = rxq->qdisc;
2137 if (q != &noop_qdisc) {
2138 spin_lock(qdisc_lock(q));
2139 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2140 result = qdisc_enqueue_root(skb, q);
2141 spin_unlock(qdisc_lock(q));
2142 }
2143
2144 return result;
2145 }
2146
2147 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2148 struct packet_type **pt_prev,
2149 int *ret, struct net_device *orig_dev)
2150 {
2151 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2152 goto out;
2153
2154 if (*pt_prev) {
2155 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2156 *pt_prev = NULL;
2157 } else {
2158 /* Huh? Why does turning on AF_PACKET affect this? */
2159 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2160 }
2161
2162 switch (ing_filter(skb)) {
2163 case TC_ACT_SHOT:
2164 case TC_ACT_STOLEN:
2165 kfree_skb(skb);
2166 return NULL;
2167 }
2168
2169 out:
2170 skb->tc_verd = 0;
2171 return skb;
2172 }
2173 #endif
2174
2175 /*
2176 * netif_nit_deliver - deliver received packets to network taps
2177 * @skb: buffer
2178 *
2179 * This function is used to deliver incoming packets to network
2180 * taps. It should be used when the normal netif_receive_skb path
2181 * is bypassed, for example because of VLAN acceleration.
2182 */
2183 void netif_nit_deliver(struct sk_buff *skb)
2184 {
2185 struct packet_type *ptype;
2186
2187 if (list_empty(&ptype_all))
2188 return;
2189
2190 skb_reset_network_header(skb);
2191 skb_reset_transport_header(skb);
2192 skb->mac_len = skb->network_header - skb->mac_header;
2193
2194 rcu_read_lock();
2195 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2196 if (!ptype->dev || ptype->dev == skb->dev)
2197 deliver_skb(skb, ptype, skb->dev);
2198 }
2199 rcu_read_unlock();
2200 }
2201
2202 /**
2203 * netif_receive_skb - process receive buffer from network
2204 * @skb: buffer to process
2205 *
2206 * netif_receive_skb() is the main receive data processing function.
2207 * It always succeeds. The buffer may be dropped during processing
2208 * for congestion control or by the protocol layers.
2209 *
2210 * This function may only be called from softirq context and interrupts
2211 * should be enabled.
2212 *
2213 * Return values (usually ignored):
2214 * NET_RX_SUCCESS: no congestion
2215 * NET_RX_DROP: packet was dropped
2216 */
2217 int netif_receive_skb(struct sk_buff *skb)
2218 {
2219 struct packet_type *ptype, *pt_prev;
2220 struct net_device *orig_dev;
2221 struct net_device *null_or_orig;
2222 int ret = NET_RX_DROP;
2223 __be16 type;
2224
2225 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2226 return NET_RX_SUCCESS;
2227
2228 /* if we've gotten here through NAPI, check netpoll */
2229 if (netpoll_receive_skb(skb))
2230 return NET_RX_DROP;
2231
2232 if (!skb->tstamp.tv64)
2233 net_timestamp(skb);
2234
2235 if (!skb->iif)
2236 skb->iif = skb->dev->ifindex;
2237
2238 null_or_orig = NULL;
2239 orig_dev = skb->dev;
2240 if (orig_dev->master) {
2241 if (skb_bond_should_drop(skb))
2242 null_or_orig = orig_dev; /* deliver only exact match */
2243 else
2244 skb->dev = orig_dev->master;
2245 }
2246
2247 __get_cpu_var(netdev_rx_stat).total++;
2248
2249 skb_reset_network_header(skb);
2250 skb_reset_transport_header(skb);
2251 skb->mac_len = skb->network_header - skb->mac_header;
2252
2253 pt_prev = NULL;
2254
2255 rcu_read_lock();
2256
2257 #ifdef CONFIG_NET_CLS_ACT
2258 if (skb->tc_verd & TC_NCLS) {
2259 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2260 goto ncls;
2261 }
2262 #endif
2263
2264 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2265 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2266 ptype->dev == orig_dev) {
2267 if (pt_prev)
2268 ret = deliver_skb(skb, pt_prev, orig_dev);
2269 pt_prev = ptype;
2270 }
2271 }
2272
2273 #ifdef CONFIG_NET_CLS_ACT
2274 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2275 if (!skb)
2276 goto out;
2277 ncls:
2278 #endif
2279
2280 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2281 if (!skb)
2282 goto out;
2283 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2284 if (!skb)
2285 goto out;
2286
2287 skb_orphan(skb);
2288
2289 type = skb->protocol;
2290 list_for_each_entry_rcu(ptype,
2291 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2292 if (ptype->type == type &&
2293 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2294 ptype->dev == orig_dev)) {
2295 if (pt_prev)
2296 ret = deliver_skb(skb, pt_prev, orig_dev);
2297 pt_prev = ptype;
2298 }
2299 }
2300
2301 if (pt_prev) {
2302 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2303 } else {
2304 kfree_skb(skb);
2305 /* Jamal, now you will not able to escape explaining
2306 * me how you were going to use this. :-)
2307 */
2308 ret = NET_RX_DROP;
2309 }
2310
2311 out:
2312 rcu_read_unlock();
2313 return ret;
2314 }
2315
2316 /* Network device is going away, flush any packets still pending */
2317 static void flush_backlog(void *arg)
2318 {
2319 struct net_device *dev = arg;
2320 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2321 struct sk_buff *skb, *tmp;
2322
2323 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2324 if (skb->dev == dev) {
2325 __skb_unlink(skb, &queue->input_pkt_queue);
2326 kfree_skb(skb);
2327 }
2328 }
2329
2330 static int napi_gro_complete(struct sk_buff *skb)
2331 {
2332 struct packet_type *ptype;
2333 __be16 type = skb->protocol;
2334 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2335 int err = -ENOENT;
2336
2337 if (NAPI_GRO_CB(skb)->count == 1) {
2338 skb_shinfo(skb)->gso_size = 0;
2339 goto out;
2340 }
2341
2342 rcu_read_lock();
2343 list_for_each_entry_rcu(ptype, head, list) {
2344 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2345 continue;
2346
2347 err = ptype->gro_complete(skb);
2348 break;
2349 }
2350 rcu_read_unlock();
2351
2352 if (err) {
2353 WARN_ON(&ptype->list == head);
2354 kfree_skb(skb);
2355 return NET_RX_SUCCESS;
2356 }
2357
2358 out:
2359 return netif_receive_skb(skb);
2360 }
2361
2362 void napi_gro_flush(struct napi_struct *napi)
2363 {
2364 struct sk_buff *skb, *next;
2365
2366 for (skb = napi->gro_list; skb; skb = next) {
2367 next = skb->next;
2368 skb->next = NULL;
2369 napi_gro_complete(skb);
2370 }
2371
2372 napi->gro_count = 0;
2373 napi->gro_list = NULL;
2374 }
2375 EXPORT_SYMBOL(napi_gro_flush);
2376
2377 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2378 {
2379 unsigned int offset = skb_gro_offset(skb);
2380
2381 hlen += offset;
2382 if (unlikely(skb_headlen(skb) ||
2383 skb_shinfo(skb)->frags[0].size < hlen ||
2384 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2385 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2386
2387 return page_address(skb_shinfo(skb)->frags[0].page) +
2388 skb_shinfo(skb)->frags[0].page_offset + offset;
2389 }
2390 EXPORT_SYMBOL(skb_gro_header);
2391
2392 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2393 {
2394 struct sk_buff **pp = NULL;
2395 struct packet_type *ptype;
2396 __be16 type = skb->protocol;
2397 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2398 int same_flow;
2399 int mac_len;
2400 int ret;
2401
2402 if (!(skb->dev->features & NETIF_F_GRO))
2403 goto normal;
2404
2405 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2406 goto normal;
2407
2408 rcu_read_lock();
2409 list_for_each_entry_rcu(ptype, head, list) {
2410 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2411 continue;
2412
2413 skb_set_network_header(skb, skb_gro_offset(skb));
2414 mac_len = skb->network_header - skb->mac_header;
2415 skb->mac_len = mac_len;
2416 NAPI_GRO_CB(skb)->same_flow = 0;
2417 NAPI_GRO_CB(skb)->flush = 0;
2418 NAPI_GRO_CB(skb)->free = 0;
2419
2420 pp = ptype->gro_receive(&napi->gro_list, skb);
2421 break;
2422 }
2423 rcu_read_unlock();
2424
2425 if (&ptype->list == head)
2426 goto normal;
2427
2428 same_flow = NAPI_GRO_CB(skb)->same_flow;
2429 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2430
2431 if (pp) {
2432 struct sk_buff *nskb = *pp;
2433
2434 *pp = nskb->next;
2435 nskb->next = NULL;
2436 napi_gro_complete(nskb);
2437 napi->gro_count--;
2438 }
2439
2440 if (same_flow)
2441 goto ok;
2442
2443 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2444 goto normal;
2445
2446 napi->gro_count++;
2447 NAPI_GRO_CB(skb)->count = 1;
2448 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2449 skb->next = napi->gro_list;
2450 napi->gro_list = skb;
2451 ret = GRO_HELD;
2452
2453 pull:
2454 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2455 if (napi->gro_list == skb)
2456 napi->gro_list = skb->next;
2457 ret = GRO_DROP;
2458 }
2459
2460 ok:
2461 return ret;
2462
2463 normal:
2464 ret = GRO_NORMAL;
2465 goto pull;
2466 }
2467 EXPORT_SYMBOL(dev_gro_receive);
2468
2469 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2470 {
2471 struct sk_buff *p;
2472
2473 if (netpoll_rx_on(skb))
2474 return GRO_NORMAL;
2475
2476 for (p = napi->gro_list; p; p = p->next) {
2477 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2478 && !compare_ether_header(skb_mac_header(p),
2479 skb_gro_mac_header(skb));
2480 NAPI_GRO_CB(p)->flush = 0;
2481 }
2482
2483 return dev_gro_receive(napi, skb);
2484 }
2485
2486 int napi_skb_finish(int ret, struct sk_buff *skb)
2487 {
2488 int err = NET_RX_SUCCESS;
2489
2490 switch (ret) {
2491 case GRO_NORMAL:
2492 return netif_receive_skb(skb);
2493
2494 case GRO_DROP:
2495 err = NET_RX_DROP;
2496 /* fall through */
2497
2498 case GRO_MERGED_FREE:
2499 kfree_skb(skb);
2500 break;
2501 }
2502
2503 return err;
2504 }
2505 EXPORT_SYMBOL(napi_skb_finish);
2506
2507 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2508 {
2509 skb_gro_reset_offset(skb);
2510
2511 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2512 }
2513 EXPORT_SYMBOL(napi_gro_receive);
2514
2515 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2516 {
2517 __skb_pull(skb, skb_headlen(skb));
2518 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2519
2520 napi->skb = skb;
2521 }
2522 EXPORT_SYMBOL(napi_reuse_skb);
2523
2524 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2525 {
2526 struct net_device *dev = napi->dev;
2527 struct sk_buff *skb = napi->skb;
2528
2529 if (!skb) {
2530 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2531 if (!skb)
2532 goto out;
2533
2534 skb_reserve(skb, NET_IP_ALIGN);
2535
2536 napi->skb = skb;
2537 }
2538
2539 out:
2540 return skb;
2541 }
2542 EXPORT_SYMBOL(napi_get_frags);
2543
2544 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2545 {
2546 int err = NET_RX_SUCCESS;
2547
2548 switch (ret) {
2549 case GRO_NORMAL:
2550 case GRO_HELD:
2551 skb->protocol = eth_type_trans(skb, napi->dev);
2552
2553 if (ret == GRO_NORMAL)
2554 return netif_receive_skb(skb);
2555
2556 skb_gro_pull(skb, -ETH_HLEN);
2557 break;
2558
2559 case GRO_DROP:
2560 err = NET_RX_DROP;
2561 /* fall through */
2562
2563 case GRO_MERGED_FREE:
2564 napi_reuse_skb(napi, skb);
2565 break;
2566 }
2567
2568 return err;
2569 }
2570 EXPORT_SYMBOL(napi_frags_finish);
2571
2572 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2573 {
2574 struct sk_buff *skb = napi->skb;
2575 struct ethhdr *eth;
2576
2577 napi->skb = NULL;
2578
2579 skb_reset_mac_header(skb);
2580 skb_gro_reset_offset(skb);
2581
2582 eth = skb_gro_header(skb, sizeof(*eth));
2583 if (!eth) {
2584 napi_reuse_skb(napi, skb);
2585 skb = NULL;
2586 goto out;
2587 }
2588
2589 skb_gro_pull(skb, sizeof(*eth));
2590
2591 /*
2592 * This works because the only protocols we care about don't require
2593 * special handling. We'll fix it up properly at the end.
2594 */
2595 skb->protocol = eth->h_proto;
2596
2597 out:
2598 return skb;
2599 }
2600 EXPORT_SYMBOL(napi_frags_skb);
2601
2602 int napi_gro_frags(struct napi_struct *napi)
2603 {
2604 struct sk_buff *skb = napi_frags_skb(napi);
2605
2606 if (!skb)
2607 return NET_RX_DROP;
2608
2609 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2610 }
2611 EXPORT_SYMBOL(napi_gro_frags);
2612
2613 static int process_backlog(struct napi_struct *napi, int quota)
2614 {
2615 int work = 0;
2616 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2617 unsigned long start_time = jiffies;
2618
2619 napi->weight = weight_p;
2620 do {
2621 struct sk_buff *skb;
2622
2623 local_irq_disable();
2624 skb = __skb_dequeue(&queue->input_pkt_queue);
2625 if (!skb) {
2626 __napi_complete(napi);
2627 local_irq_enable();
2628 break;
2629 }
2630 local_irq_enable();
2631
2632 netif_receive_skb(skb);
2633 } while (++work < quota && jiffies == start_time);
2634
2635 return work;
2636 }
2637
2638 /**
2639 * __napi_schedule - schedule for receive
2640 * @n: entry to schedule
2641 *
2642 * The entry's receive function will be scheduled to run
2643 */
2644 void __napi_schedule(struct napi_struct *n)
2645 {
2646 unsigned long flags;
2647
2648 local_irq_save(flags);
2649 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2650 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2651 local_irq_restore(flags);
2652 }
2653 EXPORT_SYMBOL(__napi_schedule);
2654
2655 void __napi_complete(struct napi_struct *n)
2656 {
2657 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2658 BUG_ON(n->gro_list);
2659
2660 list_del(&n->poll_list);
2661 smp_mb__before_clear_bit();
2662 clear_bit(NAPI_STATE_SCHED, &n->state);
2663 }
2664 EXPORT_SYMBOL(__napi_complete);
2665
2666 void napi_complete(struct napi_struct *n)
2667 {
2668 unsigned long flags;
2669
2670 /*
2671 * don't let napi dequeue from the cpu poll list
2672 * just in case its running on a different cpu
2673 */
2674 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2675 return;
2676
2677 napi_gro_flush(n);
2678 local_irq_save(flags);
2679 __napi_complete(n);
2680 local_irq_restore(flags);
2681 }
2682 EXPORT_SYMBOL(napi_complete);
2683
2684 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2685 int (*poll)(struct napi_struct *, int), int weight)
2686 {
2687 INIT_LIST_HEAD(&napi->poll_list);
2688 napi->gro_count = 0;
2689 napi->gro_list = NULL;
2690 napi->skb = NULL;
2691 napi->poll = poll;
2692 napi->weight = weight;
2693 list_add(&napi->dev_list, &dev->napi_list);
2694 napi->dev = dev;
2695 #ifdef CONFIG_NETPOLL
2696 spin_lock_init(&napi->poll_lock);
2697 napi->poll_owner = -1;
2698 #endif
2699 set_bit(NAPI_STATE_SCHED, &napi->state);
2700 }
2701 EXPORT_SYMBOL(netif_napi_add);
2702
2703 void netif_napi_del(struct napi_struct *napi)
2704 {
2705 struct sk_buff *skb, *next;
2706
2707 list_del_init(&napi->dev_list);
2708 napi_free_frags(napi);
2709
2710 for (skb = napi->gro_list; skb; skb = next) {
2711 next = skb->next;
2712 skb->next = NULL;
2713 kfree_skb(skb);
2714 }
2715
2716 napi->gro_list = NULL;
2717 napi->gro_count = 0;
2718 }
2719 EXPORT_SYMBOL(netif_napi_del);
2720
2721
2722 static void net_rx_action(struct softirq_action *h)
2723 {
2724 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2725 unsigned long time_limit = jiffies + 2;
2726 int budget = netdev_budget;
2727 void *have;
2728
2729 local_irq_disable();
2730
2731 while (!list_empty(list)) {
2732 struct napi_struct *n;
2733 int work, weight;
2734
2735 /* If softirq window is exhuasted then punt.
2736 * Allow this to run for 2 jiffies since which will allow
2737 * an average latency of 1.5/HZ.
2738 */
2739 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2740 goto softnet_break;
2741
2742 local_irq_enable();
2743
2744 /* Even though interrupts have been re-enabled, this
2745 * access is safe because interrupts can only add new
2746 * entries to the tail of this list, and only ->poll()
2747 * calls can remove this head entry from the list.
2748 */
2749 n = list_entry(list->next, struct napi_struct, poll_list);
2750
2751 have = netpoll_poll_lock(n);
2752
2753 weight = n->weight;
2754
2755 /* This NAPI_STATE_SCHED test is for avoiding a race
2756 * with netpoll's poll_napi(). Only the entity which
2757 * obtains the lock and sees NAPI_STATE_SCHED set will
2758 * actually make the ->poll() call. Therefore we avoid
2759 * accidently calling ->poll() when NAPI is not scheduled.
2760 */
2761 work = 0;
2762 if (test_bit(NAPI_STATE_SCHED, &n->state))
2763 work = n->poll(n, weight);
2764
2765 WARN_ON_ONCE(work > weight);
2766
2767 budget -= work;
2768
2769 local_irq_disable();
2770
2771 /* Drivers must not modify the NAPI state if they
2772 * consume the entire weight. In such cases this code
2773 * still "owns" the NAPI instance and therefore can
2774 * move the instance around on the list at-will.
2775 */
2776 if (unlikely(work == weight)) {
2777 if (unlikely(napi_disable_pending(n)))
2778 __napi_complete(n);
2779 else
2780 list_move_tail(&n->poll_list, list);
2781 }
2782
2783 netpoll_poll_unlock(have);
2784 }
2785 out:
2786 local_irq_enable();
2787
2788 #ifdef CONFIG_NET_DMA
2789 /*
2790 * There may not be any more sk_buffs coming right now, so push
2791 * any pending DMA copies to hardware
2792 */
2793 dma_issue_pending_all();
2794 #endif
2795
2796 return;
2797
2798 softnet_break:
2799 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2800 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2801 goto out;
2802 }
2803
2804 static gifconf_func_t * gifconf_list [NPROTO];
2805
2806 /**
2807 * register_gifconf - register a SIOCGIF handler
2808 * @family: Address family
2809 * @gifconf: Function handler
2810 *
2811 * Register protocol dependent address dumping routines. The handler
2812 * that is passed must not be freed or reused until it has been replaced
2813 * by another handler.
2814 */
2815 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2816 {
2817 if (family >= NPROTO)
2818 return -EINVAL;
2819 gifconf_list[family] = gifconf;
2820 return 0;
2821 }
2822
2823
2824 /*
2825 * Map an interface index to its name (SIOCGIFNAME)
2826 */
2827
2828 /*
2829 * We need this ioctl for efficient implementation of the
2830 * if_indextoname() function required by the IPv6 API. Without
2831 * it, we would have to search all the interfaces to find a
2832 * match. --pb
2833 */
2834
2835 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2836 {
2837 struct net_device *dev;
2838 struct ifreq ifr;
2839
2840 /*
2841 * Fetch the caller's info block.
2842 */
2843
2844 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2845 return -EFAULT;
2846
2847 read_lock(&dev_base_lock);
2848 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2849 if (!dev) {
2850 read_unlock(&dev_base_lock);
2851 return -ENODEV;
2852 }
2853
2854 strcpy(ifr.ifr_name, dev->name);
2855 read_unlock(&dev_base_lock);
2856
2857 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2858 return -EFAULT;
2859 return 0;
2860 }
2861
2862 /*
2863 * Perform a SIOCGIFCONF call. This structure will change
2864 * size eventually, and there is nothing I can do about it.
2865 * Thus we will need a 'compatibility mode'.
2866 */
2867
2868 static int dev_ifconf(struct net *net, char __user *arg)
2869 {
2870 struct ifconf ifc;
2871 struct net_device *dev;
2872 char __user *pos;
2873 int len;
2874 int total;
2875 int i;
2876
2877 /*
2878 * Fetch the caller's info block.
2879 */
2880
2881 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2882 return -EFAULT;
2883
2884 pos = ifc.ifc_buf;
2885 len = ifc.ifc_len;
2886
2887 /*
2888 * Loop over the interfaces, and write an info block for each.
2889 */
2890
2891 total = 0;
2892 for_each_netdev(net, dev) {
2893 for (i = 0; i < NPROTO; i++) {
2894 if (gifconf_list[i]) {
2895 int done;
2896 if (!pos)
2897 done = gifconf_list[i](dev, NULL, 0);
2898 else
2899 done = gifconf_list[i](dev, pos + total,
2900 len - total);
2901 if (done < 0)
2902 return -EFAULT;
2903 total += done;
2904 }
2905 }
2906 }
2907
2908 /*
2909 * All done. Write the updated control block back to the caller.
2910 */
2911 ifc.ifc_len = total;
2912
2913 /*
2914 * Both BSD and Solaris return 0 here, so we do too.
2915 */
2916 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2917 }
2918
2919 #ifdef CONFIG_PROC_FS
2920 /*
2921 * This is invoked by the /proc filesystem handler to display a device
2922 * in detail.
2923 */
2924 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2925 __acquires(dev_base_lock)
2926 {
2927 struct net *net = seq_file_net(seq);
2928 loff_t off;
2929 struct net_device *dev;
2930
2931 read_lock(&dev_base_lock);
2932 if (!*pos)
2933 return SEQ_START_TOKEN;
2934
2935 off = 1;
2936 for_each_netdev(net, dev)
2937 if (off++ == *pos)
2938 return dev;
2939
2940 return NULL;
2941 }
2942
2943 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2944 {
2945 struct net *net = seq_file_net(seq);
2946 ++*pos;
2947 return v == SEQ_START_TOKEN ?
2948 first_net_device(net) : next_net_device((struct net_device *)v);
2949 }
2950
2951 void dev_seq_stop(struct seq_file *seq, void *v)
2952 __releases(dev_base_lock)
2953 {
2954 read_unlock(&dev_base_lock);
2955 }
2956
2957 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2958 {
2959 const struct net_device_stats *stats = dev_get_stats(dev);
2960
2961 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2962 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2963 dev->name, stats->rx_bytes, stats->rx_packets,
2964 stats->rx_errors,
2965 stats->rx_dropped + stats->rx_missed_errors,
2966 stats->rx_fifo_errors,
2967 stats->rx_length_errors + stats->rx_over_errors +
2968 stats->rx_crc_errors + stats->rx_frame_errors,
2969 stats->rx_compressed, stats->multicast,
2970 stats->tx_bytes, stats->tx_packets,
2971 stats->tx_errors, stats->tx_dropped,
2972 stats->tx_fifo_errors, stats->collisions,
2973 stats->tx_carrier_errors +
2974 stats->tx_aborted_errors +
2975 stats->tx_window_errors +
2976 stats->tx_heartbeat_errors,
2977 stats->tx_compressed);
2978 }
2979
2980 /*
2981 * Called from the PROCfs module. This now uses the new arbitrary sized
2982 * /proc/net interface to create /proc/net/dev
2983 */
2984 static int dev_seq_show(struct seq_file *seq, void *v)
2985 {
2986 if (v == SEQ_START_TOKEN)
2987 seq_puts(seq, "Inter-| Receive "
2988 " | Transmit\n"
2989 " face |bytes packets errs drop fifo frame "
2990 "compressed multicast|bytes packets errs "
2991 "drop fifo colls carrier compressed\n");
2992 else
2993 dev_seq_printf_stats(seq, v);
2994 return 0;
2995 }
2996
2997 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2998 {
2999 struct netif_rx_stats *rc = NULL;
3000
3001 while (*pos < nr_cpu_ids)
3002 if (cpu_online(*pos)) {
3003 rc = &per_cpu(netdev_rx_stat, *pos);
3004 break;
3005 } else
3006 ++*pos;
3007 return rc;
3008 }
3009
3010 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3011 {
3012 return softnet_get_online(pos);
3013 }
3014
3015 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3016 {
3017 ++*pos;
3018 return softnet_get_online(pos);
3019 }
3020
3021 static void softnet_seq_stop(struct seq_file *seq, void *v)
3022 {
3023 }
3024
3025 static int softnet_seq_show(struct seq_file *seq, void *v)
3026 {
3027 struct netif_rx_stats *s = v;
3028
3029 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3030 s->total, s->dropped, s->time_squeeze, 0,
3031 0, 0, 0, 0, /* was fastroute */
3032 s->cpu_collision );
3033 return 0;
3034 }
3035
3036 static const struct seq_operations dev_seq_ops = {
3037 .start = dev_seq_start,
3038 .next = dev_seq_next,
3039 .stop = dev_seq_stop,
3040 .show = dev_seq_show,
3041 };
3042
3043 static int dev_seq_open(struct inode *inode, struct file *file)
3044 {
3045 return seq_open_net(inode, file, &dev_seq_ops,
3046 sizeof(struct seq_net_private));
3047 }
3048
3049 static const struct file_operations dev_seq_fops = {
3050 .owner = THIS_MODULE,
3051 .open = dev_seq_open,
3052 .read = seq_read,
3053 .llseek = seq_lseek,
3054 .release = seq_release_net,
3055 };
3056
3057 static const struct seq_operations softnet_seq_ops = {
3058 .start = softnet_seq_start,
3059 .next = softnet_seq_next,
3060 .stop = softnet_seq_stop,
3061 .show = softnet_seq_show,
3062 };
3063
3064 static int softnet_seq_open(struct inode *inode, struct file *file)
3065 {
3066 return seq_open(file, &softnet_seq_ops);
3067 }
3068
3069 static const struct file_operations softnet_seq_fops = {
3070 .owner = THIS_MODULE,
3071 .open = softnet_seq_open,
3072 .read = seq_read,
3073 .llseek = seq_lseek,
3074 .release = seq_release,
3075 };
3076
3077 static void *ptype_get_idx(loff_t pos)
3078 {
3079 struct packet_type *pt = NULL;
3080 loff_t i = 0;
3081 int t;
3082
3083 list_for_each_entry_rcu(pt, &ptype_all, list) {
3084 if (i == pos)
3085 return pt;
3086 ++i;
3087 }
3088
3089 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3090 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3091 if (i == pos)
3092 return pt;
3093 ++i;
3094 }
3095 }
3096 return NULL;
3097 }
3098
3099 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3100 __acquires(RCU)
3101 {
3102 rcu_read_lock();
3103 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3104 }
3105
3106 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3107 {
3108 struct packet_type *pt;
3109 struct list_head *nxt;
3110 int hash;
3111
3112 ++*pos;
3113 if (v == SEQ_START_TOKEN)
3114 return ptype_get_idx(0);
3115
3116 pt = v;
3117 nxt = pt->list.next;
3118 if (pt->type == htons(ETH_P_ALL)) {
3119 if (nxt != &ptype_all)
3120 goto found;
3121 hash = 0;
3122 nxt = ptype_base[0].next;
3123 } else
3124 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3125
3126 while (nxt == &ptype_base[hash]) {
3127 if (++hash >= PTYPE_HASH_SIZE)
3128 return NULL;
3129 nxt = ptype_base[hash].next;
3130 }
3131 found:
3132 return list_entry(nxt, struct packet_type, list);
3133 }
3134
3135 static void ptype_seq_stop(struct seq_file *seq, void *v)
3136 __releases(RCU)
3137 {
3138 rcu_read_unlock();
3139 }
3140
3141 static int ptype_seq_show(struct seq_file *seq, void *v)
3142 {
3143 struct packet_type *pt = v;
3144
3145 if (v == SEQ_START_TOKEN)
3146 seq_puts(seq, "Type Device Function\n");
3147 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3148 if (pt->type == htons(ETH_P_ALL))
3149 seq_puts(seq, "ALL ");
3150 else
3151 seq_printf(seq, "%04x", ntohs(pt->type));
3152
3153 seq_printf(seq, " %-8s %pF\n",
3154 pt->dev ? pt->dev->name : "", pt->func);
3155 }
3156
3157 return 0;
3158 }
3159
3160 static const struct seq_operations ptype_seq_ops = {
3161 .start = ptype_seq_start,
3162 .next = ptype_seq_next,
3163 .stop = ptype_seq_stop,
3164 .show = ptype_seq_show,
3165 };
3166
3167 static int ptype_seq_open(struct inode *inode, struct file *file)
3168 {
3169 return seq_open_net(inode, file, &ptype_seq_ops,
3170 sizeof(struct seq_net_private));
3171 }
3172
3173 static const struct file_operations ptype_seq_fops = {
3174 .owner = THIS_MODULE,
3175 .open = ptype_seq_open,
3176 .read = seq_read,
3177 .llseek = seq_lseek,
3178 .release = seq_release_net,
3179 };
3180
3181
3182 static int __net_init dev_proc_net_init(struct net *net)
3183 {
3184 int rc = -ENOMEM;
3185
3186 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3187 goto out;
3188 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3189 goto out_dev;
3190 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3191 goto out_softnet;
3192
3193 if (wext_proc_init(net))
3194 goto out_ptype;
3195 rc = 0;
3196 out:
3197 return rc;
3198 out_ptype:
3199 proc_net_remove(net, "ptype");
3200 out_softnet:
3201 proc_net_remove(net, "softnet_stat");
3202 out_dev:
3203 proc_net_remove(net, "dev");
3204 goto out;
3205 }
3206
3207 static void __net_exit dev_proc_net_exit(struct net *net)
3208 {
3209 wext_proc_exit(net);
3210
3211 proc_net_remove(net, "ptype");
3212 proc_net_remove(net, "softnet_stat");
3213 proc_net_remove(net, "dev");
3214 }
3215
3216 static struct pernet_operations __net_initdata dev_proc_ops = {
3217 .init = dev_proc_net_init,
3218 .exit = dev_proc_net_exit,
3219 };
3220
3221 static int __init dev_proc_init(void)
3222 {
3223 return register_pernet_subsys(&dev_proc_ops);
3224 }
3225 #else
3226 #define dev_proc_init() 0
3227 #endif /* CONFIG_PROC_FS */
3228
3229
3230 /**
3231 * netdev_set_master - set up master/slave pair
3232 * @slave: slave device
3233 * @master: new master device
3234 *
3235 * Changes the master device of the slave. Pass %NULL to break the
3236 * bonding. The caller must hold the RTNL semaphore. On a failure
3237 * a negative errno code is returned. On success the reference counts
3238 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3239 * function returns zero.
3240 */
3241 int netdev_set_master(struct net_device *slave, struct net_device *master)
3242 {
3243 struct net_device *old = slave->master;
3244
3245 ASSERT_RTNL();
3246
3247 if (master) {
3248 if (old)
3249 return -EBUSY;
3250 dev_hold(master);
3251 }
3252
3253 slave->master = master;
3254
3255 synchronize_net();
3256
3257 if (old)
3258 dev_put(old);
3259
3260 if (master)
3261 slave->flags |= IFF_SLAVE;
3262 else
3263 slave->flags &= ~IFF_SLAVE;
3264
3265 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3266 return 0;
3267 }
3268
3269 static void dev_change_rx_flags(struct net_device *dev, int flags)
3270 {
3271 const struct net_device_ops *ops = dev->netdev_ops;
3272
3273 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3274 ops->ndo_change_rx_flags(dev, flags);
3275 }
3276
3277 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3278 {
3279 unsigned short old_flags = dev->flags;
3280 uid_t uid;
3281 gid_t gid;
3282
3283 ASSERT_RTNL();
3284
3285 dev->flags |= IFF_PROMISC;
3286 dev->promiscuity += inc;
3287 if (dev->promiscuity == 0) {
3288 /*
3289 * Avoid overflow.
3290 * If inc causes overflow, untouch promisc and return error.
3291 */
3292 if (inc < 0)
3293 dev->flags &= ~IFF_PROMISC;
3294 else {
3295 dev->promiscuity -= inc;
3296 printk(KERN_WARNING "%s: promiscuity touches roof, "
3297 "set promiscuity failed, promiscuity feature "
3298 "of device might be broken.\n", dev->name);
3299 return -EOVERFLOW;
3300 }
3301 }
3302 if (dev->flags != old_flags) {
3303 printk(KERN_INFO "device %s %s promiscuous mode\n",
3304 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3305 "left");
3306 if (audit_enabled) {
3307 current_uid_gid(&uid, &gid);
3308 audit_log(current->audit_context, GFP_ATOMIC,
3309 AUDIT_ANOM_PROMISCUOUS,
3310 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3311 dev->name, (dev->flags & IFF_PROMISC),
3312 (old_flags & IFF_PROMISC),
3313 audit_get_loginuid(current),
3314 uid, gid,
3315 audit_get_sessionid(current));
3316 }
3317
3318 dev_change_rx_flags(dev, IFF_PROMISC);
3319 }
3320 return 0;
3321 }
3322
3323 /**
3324 * dev_set_promiscuity - update promiscuity count on a device
3325 * @dev: device
3326 * @inc: modifier
3327 *
3328 * Add or remove promiscuity from a device. While the count in the device
3329 * remains above zero the interface remains promiscuous. Once it hits zero
3330 * the device reverts back to normal filtering operation. A negative inc
3331 * value is used to drop promiscuity on the device.
3332 * Return 0 if successful or a negative errno code on error.
3333 */
3334 int dev_set_promiscuity(struct net_device *dev, int inc)
3335 {
3336 unsigned short old_flags = dev->flags;
3337 int err;
3338
3339 err = __dev_set_promiscuity(dev, inc);
3340 if (err < 0)
3341 return err;
3342 if (dev->flags != old_flags)
3343 dev_set_rx_mode(dev);
3344 return err;
3345 }
3346
3347 /**
3348 * dev_set_allmulti - update allmulti count on a device
3349 * @dev: device
3350 * @inc: modifier
3351 *
3352 * Add or remove reception of all multicast frames to a device. While the
3353 * count in the device remains above zero the interface remains listening
3354 * to all interfaces. Once it hits zero the device reverts back to normal
3355 * filtering operation. A negative @inc value is used to drop the counter
3356 * when releasing a resource needing all multicasts.
3357 * Return 0 if successful or a negative errno code on error.
3358 */
3359
3360 int dev_set_allmulti(struct net_device *dev, int inc)
3361 {
3362 unsigned short old_flags = dev->flags;
3363
3364 ASSERT_RTNL();
3365
3366 dev->flags |= IFF_ALLMULTI;
3367 dev->allmulti += inc;
3368 if (dev->allmulti == 0) {
3369 /*
3370 * Avoid overflow.
3371 * If inc causes overflow, untouch allmulti and return error.
3372 */
3373 if (inc < 0)
3374 dev->flags &= ~IFF_ALLMULTI;
3375 else {
3376 dev->allmulti -= inc;
3377 printk(KERN_WARNING "%s: allmulti touches roof, "
3378 "set allmulti failed, allmulti feature of "
3379 "device might be broken.\n", dev->name);
3380 return -EOVERFLOW;
3381 }
3382 }
3383 if (dev->flags ^ old_flags) {
3384 dev_change_rx_flags(dev, IFF_ALLMULTI);
3385 dev_set_rx_mode(dev);
3386 }
3387 return 0;
3388 }
3389
3390 /*
3391 * Upload unicast and multicast address lists to device and
3392 * configure RX filtering. When the device doesn't support unicast
3393 * filtering it is put in promiscuous mode while unicast addresses
3394 * are present.
3395 */
3396 void __dev_set_rx_mode(struct net_device *dev)
3397 {
3398 const struct net_device_ops *ops = dev->netdev_ops;
3399
3400 /* dev_open will call this function so the list will stay sane. */
3401 if (!(dev->flags&IFF_UP))
3402 return;
3403
3404 if (!netif_device_present(dev))
3405 return;
3406
3407 if (ops->ndo_set_rx_mode)
3408 ops->ndo_set_rx_mode(dev);
3409 else {
3410 /* Unicast addresses changes may only happen under the rtnl,
3411 * therefore calling __dev_set_promiscuity here is safe.
3412 */
3413 if (dev->uc_count > 0 && !dev->uc_promisc) {
3414 __dev_set_promiscuity(dev, 1);
3415 dev->uc_promisc = 1;
3416 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3417 __dev_set_promiscuity(dev, -1);
3418 dev->uc_promisc = 0;
3419 }
3420
3421 if (ops->ndo_set_multicast_list)
3422 ops->ndo_set_multicast_list(dev);
3423 }
3424 }
3425
3426 void dev_set_rx_mode(struct net_device *dev)
3427 {
3428 netif_addr_lock_bh(dev);
3429 __dev_set_rx_mode(dev);
3430 netif_addr_unlock_bh(dev);
3431 }
3432
3433 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3434 void *addr, int alen, int glbl)
3435 {
3436 struct dev_addr_list *da;
3437
3438 for (; (da = *list) != NULL; list = &da->next) {
3439 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3440 alen == da->da_addrlen) {
3441 if (glbl) {
3442 int old_glbl = da->da_gusers;
3443 da->da_gusers = 0;
3444 if (old_glbl == 0)
3445 break;
3446 }
3447 if (--da->da_users)
3448 return 0;
3449
3450 *list = da->next;
3451 kfree(da);
3452 (*count)--;
3453 return 0;
3454 }
3455 }
3456 return -ENOENT;
3457 }
3458
3459 int __dev_addr_add(struct dev_addr_list **list, int *count,
3460 void *addr, int alen, int glbl)
3461 {
3462 struct dev_addr_list *da;
3463
3464 for (da = *list; da != NULL; da = da->next) {
3465 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3466 da->da_addrlen == alen) {
3467 if (glbl) {
3468 int old_glbl = da->da_gusers;
3469 da->da_gusers = 1;
3470 if (old_glbl)
3471 return 0;
3472 }
3473 da->da_users++;
3474 return 0;
3475 }
3476 }
3477
3478 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3479 if (da == NULL)
3480 return -ENOMEM;
3481 memcpy(da->da_addr, addr, alen);
3482 da->da_addrlen = alen;
3483 da->da_users = 1;
3484 da->da_gusers = glbl ? 1 : 0;
3485 da->next = *list;
3486 *list = da;
3487 (*count)++;
3488 return 0;
3489 }
3490
3491 /**
3492 * dev_unicast_delete - Release secondary unicast address.
3493 * @dev: device
3494 * @addr: address to delete
3495 * @alen: length of @addr
3496 *
3497 * Release reference to a secondary unicast address and remove it
3498 * from the device if the reference count drops to zero.
3499 *
3500 * The caller must hold the rtnl_mutex.
3501 */
3502 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3503 {
3504 int err;
3505
3506 ASSERT_RTNL();
3507
3508 netif_addr_lock_bh(dev);
3509 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3510 if (!err)
3511 __dev_set_rx_mode(dev);
3512 netif_addr_unlock_bh(dev);
3513 return err;
3514 }
3515 EXPORT_SYMBOL(dev_unicast_delete);
3516
3517 /**
3518 * dev_unicast_add - add a secondary unicast address
3519 * @dev: device
3520 * @addr: address to add
3521 * @alen: length of @addr
3522 *
3523 * Add a secondary unicast address to the device or increase
3524 * the reference count if it already exists.
3525 *
3526 * The caller must hold the rtnl_mutex.
3527 */
3528 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3529 {
3530 int err;
3531
3532 ASSERT_RTNL();
3533
3534 netif_addr_lock_bh(dev);
3535 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3536 if (!err)
3537 __dev_set_rx_mode(dev);
3538 netif_addr_unlock_bh(dev);
3539 return err;
3540 }
3541 EXPORT_SYMBOL(dev_unicast_add);
3542
3543 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3544 struct dev_addr_list **from, int *from_count)
3545 {
3546 struct dev_addr_list *da, *next;
3547 int err = 0;
3548
3549 da = *from;
3550 while (da != NULL) {
3551 next = da->next;
3552 if (!da->da_synced) {
3553 err = __dev_addr_add(to, to_count,
3554 da->da_addr, da->da_addrlen, 0);
3555 if (err < 0)
3556 break;
3557 da->da_synced = 1;
3558 da->da_users++;
3559 } else if (da->da_users == 1) {
3560 __dev_addr_delete(to, to_count,
3561 da->da_addr, da->da_addrlen, 0);
3562 __dev_addr_delete(from, from_count,
3563 da->da_addr, da->da_addrlen, 0);
3564 }
3565 da = next;
3566 }
3567 return err;
3568 }
3569
3570 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3571 struct dev_addr_list **from, int *from_count)
3572 {
3573 struct dev_addr_list *da, *next;
3574
3575 da = *from;
3576 while (da != NULL) {
3577 next = da->next;
3578 if (da->da_synced) {
3579 __dev_addr_delete(to, to_count,
3580 da->da_addr, da->da_addrlen, 0);
3581 da->da_synced = 0;
3582 __dev_addr_delete(from, from_count,
3583 da->da_addr, da->da_addrlen, 0);
3584 }
3585 da = next;
3586 }
3587 }
3588
3589 /**
3590 * dev_unicast_sync - Synchronize device's unicast list to another device
3591 * @to: destination device
3592 * @from: source device
3593 *
3594 * Add newly added addresses to the destination device and release
3595 * addresses that have no users left. The source device must be
3596 * locked by netif_tx_lock_bh.
3597 *
3598 * This function is intended to be called from the dev->set_rx_mode
3599 * function of layered software devices.
3600 */
3601 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3602 {
3603 int err = 0;
3604
3605 netif_addr_lock_bh(to);
3606 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3607 &from->uc_list, &from->uc_count);
3608 if (!err)
3609 __dev_set_rx_mode(to);
3610 netif_addr_unlock_bh(to);
3611 return err;
3612 }
3613 EXPORT_SYMBOL(dev_unicast_sync);
3614
3615 /**
3616 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3617 * @to: destination device
3618 * @from: source device
3619 *
3620 * Remove all addresses that were added to the destination device by
3621 * dev_unicast_sync(). This function is intended to be called from the
3622 * dev->stop function of layered software devices.
3623 */
3624 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3625 {
3626 netif_addr_lock_bh(from);
3627 netif_addr_lock(to);
3628
3629 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3630 &from->uc_list, &from->uc_count);
3631 __dev_set_rx_mode(to);
3632
3633 netif_addr_unlock(to);
3634 netif_addr_unlock_bh(from);
3635 }
3636 EXPORT_SYMBOL(dev_unicast_unsync);
3637
3638 static void __dev_addr_discard(struct dev_addr_list **list)
3639 {
3640 struct dev_addr_list *tmp;
3641
3642 while (*list != NULL) {
3643 tmp = *list;
3644 *list = tmp->next;
3645 if (tmp->da_users > tmp->da_gusers)
3646 printk("__dev_addr_discard: address leakage! "
3647 "da_users=%d\n", tmp->da_users);
3648 kfree(tmp);
3649 }
3650 }
3651
3652 static void dev_addr_discard(struct net_device *dev)
3653 {
3654 netif_addr_lock_bh(dev);
3655
3656 __dev_addr_discard(&dev->uc_list);
3657 dev->uc_count = 0;
3658
3659 __dev_addr_discard(&dev->mc_list);
3660 dev->mc_count = 0;
3661
3662 netif_addr_unlock_bh(dev);
3663 }
3664
3665 /**
3666 * dev_get_flags - get flags reported to userspace
3667 * @dev: device
3668 *
3669 * Get the combination of flag bits exported through APIs to userspace.
3670 */
3671 unsigned dev_get_flags(const struct net_device *dev)
3672 {
3673 unsigned flags;
3674
3675 flags = (dev->flags & ~(IFF_PROMISC |
3676 IFF_ALLMULTI |
3677 IFF_RUNNING |
3678 IFF_LOWER_UP |
3679 IFF_DORMANT)) |
3680 (dev->gflags & (IFF_PROMISC |
3681 IFF_ALLMULTI));
3682
3683 if (netif_running(dev)) {
3684 if (netif_oper_up(dev))
3685 flags |= IFF_RUNNING;
3686 if (netif_carrier_ok(dev))
3687 flags |= IFF_LOWER_UP;
3688 if (netif_dormant(dev))
3689 flags |= IFF_DORMANT;
3690 }
3691
3692 return flags;
3693 }
3694
3695 /**
3696 * dev_change_flags - change device settings
3697 * @dev: device
3698 * @flags: device state flags
3699 *
3700 * Change settings on device based state flags. The flags are
3701 * in the userspace exported format.
3702 */
3703 int dev_change_flags(struct net_device *dev, unsigned flags)
3704 {
3705 int ret, changes;
3706 int old_flags = dev->flags;
3707
3708 ASSERT_RTNL();
3709
3710 /*
3711 * Set the flags on our device.
3712 */
3713
3714 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3715 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3716 IFF_AUTOMEDIA)) |
3717 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3718 IFF_ALLMULTI));
3719
3720 /*
3721 * Load in the correct multicast list now the flags have changed.
3722 */
3723
3724 if ((old_flags ^ flags) & IFF_MULTICAST)
3725 dev_change_rx_flags(dev, IFF_MULTICAST);
3726
3727 dev_set_rx_mode(dev);
3728
3729 /*
3730 * Have we downed the interface. We handle IFF_UP ourselves
3731 * according to user attempts to set it, rather than blindly
3732 * setting it.
3733 */
3734
3735 ret = 0;
3736 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3737 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3738
3739 if (!ret)
3740 dev_set_rx_mode(dev);
3741 }
3742
3743 if (dev->flags & IFF_UP &&
3744 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3745 IFF_VOLATILE)))
3746 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3747
3748 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3749 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3750 dev->gflags ^= IFF_PROMISC;
3751 dev_set_promiscuity(dev, inc);
3752 }
3753
3754 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3755 is important. Some (broken) drivers set IFF_PROMISC, when
3756 IFF_ALLMULTI is requested not asking us and not reporting.
3757 */
3758 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3759 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3760 dev->gflags ^= IFF_ALLMULTI;
3761 dev_set_allmulti(dev, inc);
3762 }
3763
3764 /* Exclude state transition flags, already notified */
3765 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3766 if (changes)
3767 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3768
3769 return ret;
3770 }
3771
3772 /**
3773 * dev_set_mtu - Change maximum transfer unit
3774 * @dev: device
3775 * @new_mtu: new transfer unit
3776 *
3777 * Change the maximum transfer size of the network device.
3778 */
3779 int dev_set_mtu(struct net_device *dev, int new_mtu)
3780 {
3781 const struct net_device_ops *ops = dev->netdev_ops;
3782 int err;
3783
3784 if (new_mtu == dev->mtu)
3785 return 0;
3786
3787 /* MTU must be positive. */
3788 if (new_mtu < 0)
3789 return -EINVAL;
3790
3791 if (!netif_device_present(dev))
3792 return -ENODEV;
3793
3794 err = 0;
3795 if (ops->ndo_change_mtu)
3796 err = ops->ndo_change_mtu(dev, new_mtu);
3797 else
3798 dev->mtu = new_mtu;
3799
3800 if (!err && dev->flags & IFF_UP)
3801 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3802 return err;
3803 }
3804
3805 /**
3806 * dev_set_mac_address - Change Media Access Control Address
3807 * @dev: device
3808 * @sa: new address
3809 *
3810 * Change the hardware (MAC) address of the device
3811 */
3812 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3813 {
3814 const struct net_device_ops *ops = dev->netdev_ops;
3815 int err;
3816
3817 if (!ops->ndo_set_mac_address)
3818 return -EOPNOTSUPP;
3819 if (sa->sa_family != dev->type)
3820 return -EINVAL;
3821 if (!netif_device_present(dev))
3822 return -ENODEV;
3823 err = ops->ndo_set_mac_address(dev, sa);
3824 if (!err)
3825 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3826 return err;
3827 }
3828
3829 /*
3830 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3831 */
3832 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3833 {
3834 int err;
3835 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3836
3837 if (!dev)
3838 return -ENODEV;
3839
3840 switch (cmd) {
3841 case SIOCGIFFLAGS: /* Get interface flags */
3842 ifr->ifr_flags = dev_get_flags(dev);
3843 return 0;
3844
3845 case SIOCGIFMETRIC: /* Get the metric on the interface
3846 (currently unused) */
3847 ifr->ifr_metric = 0;
3848 return 0;
3849
3850 case SIOCGIFMTU: /* Get the MTU of a device */
3851 ifr->ifr_mtu = dev->mtu;
3852 return 0;
3853
3854 case SIOCGIFHWADDR:
3855 if (!dev->addr_len)
3856 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3857 else
3858 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3859 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3860 ifr->ifr_hwaddr.sa_family = dev->type;
3861 return 0;
3862
3863 case SIOCGIFSLAVE:
3864 err = -EINVAL;
3865 break;
3866
3867 case SIOCGIFMAP:
3868 ifr->ifr_map.mem_start = dev->mem_start;
3869 ifr->ifr_map.mem_end = dev->mem_end;
3870 ifr->ifr_map.base_addr = dev->base_addr;
3871 ifr->ifr_map.irq = dev->irq;
3872 ifr->ifr_map.dma = dev->dma;
3873 ifr->ifr_map.port = dev->if_port;
3874 return 0;
3875
3876 case SIOCGIFINDEX:
3877 ifr->ifr_ifindex = dev->ifindex;
3878 return 0;
3879
3880 case SIOCGIFTXQLEN:
3881 ifr->ifr_qlen = dev->tx_queue_len;
3882 return 0;
3883
3884 default:
3885 /* dev_ioctl() should ensure this case
3886 * is never reached
3887 */
3888 WARN_ON(1);
3889 err = -EINVAL;
3890 break;
3891
3892 }
3893 return err;
3894 }
3895
3896 /*
3897 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3898 */
3899 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3900 {
3901 int err;
3902 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3903 const struct net_device_ops *ops;
3904
3905 if (!dev)
3906 return -ENODEV;
3907
3908 ops = dev->netdev_ops;
3909
3910 switch (cmd) {
3911 case SIOCSIFFLAGS: /* Set interface flags */
3912 return dev_change_flags(dev, ifr->ifr_flags);
3913
3914 case SIOCSIFMETRIC: /* Set the metric on the interface
3915 (currently unused) */
3916 return -EOPNOTSUPP;
3917
3918 case SIOCSIFMTU: /* Set the MTU of a device */
3919 return dev_set_mtu(dev, ifr->ifr_mtu);
3920
3921 case SIOCSIFHWADDR:
3922 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3923
3924 case SIOCSIFHWBROADCAST:
3925 if (ifr->ifr_hwaddr.sa_family != dev->type)
3926 return -EINVAL;
3927 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3928 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3929 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3930 return 0;
3931
3932 case SIOCSIFMAP:
3933 if (ops->ndo_set_config) {
3934 if (!netif_device_present(dev))
3935 return -ENODEV;
3936 return ops->ndo_set_config(dev, &ifr->ifr_map);
3937 }
3938 return -EOPNOTSUPP;
3939
3940 case SIOCADDMULTI:
3941 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3942 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3943 return -EINVAL;
3944 if (!netif_device_present(dev))
3945 return -ENODEV;
3946 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3947 dev->addr_len, 1);
3948
3949 case SIOCDELMULTI:
3950 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3951 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3952 return -EINVAL;
3953 if (!netif_device_present(dev))
3954 return -ENODEV;
3955 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3956 dev->addr_len, 1);
3957
3958 case SIOCSIFTXQLEN:
3959 if (ifr->ifr_qlen < 0)
3960 return -EINVAL;
3961 dev->tx_queue_len = ifr->ifr_qlen;
3962 return 0;
3963
3964 case SIOCSIFNAME:
3965 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3966 return dev_change_name(dev, ifr->ifr_newname);
3967
3968 /*
3969 * Unknown or private ioctl
3970 */
3971
3972 default:
3973 if ((cmd >= SIOCDEVPRIVATE &&
3974 cmd <= SIOCDEVPRIVATE + 15) ||
3975 cmd == SIOCBONDENSLAVE ||
3976 cmd == SIOCBONDRELEASE ||
3977 cmd == SIOCBONDSETHWADDR ||
3978 cmd == SIOCBONDSLAVEINFOQUERY ||
3979 cmd == SIOCBONDINFOQUERY ||
3980 cmd == SIOCBONDCHANGEACTIVE ||
3981 cmd == SIOCGMIIPHY ||
3982 cmd == SIOCGMIIREG ||
3983 cmd == SIOCSMIIREG ||
3984 cmd == SIOCBRADDIF ||
3985 cmd == SIOCBRDELIF ||
3986 cmd == SIOCSHWTSTAMP ||
3987 cmd == SIOCWANDEV) {
3988 err = -EOPNOTSUPP;
3989 if (ops->ndo_do_ioctl) {
3990 if (netif_device_present(dev))
3991 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3992 else
3993 err = -ENODEV;
3994 }
3995 } else
3996 err = -EINVAL;
3997
3998 }
3999 return err;
4000 }
4001
4002 /*
4003 * This function handles all "interface"-type I/O control requests. The actual
4004 * 'doing' part of this is dev_ifsioc above.
4005 */
4006
4007 /**
4008 * dev_ioctl - network device ioctl
4009 * @net: the applicable net namespace
4010 * @cmd: command to issue
4011 * @arg: pointer to a struct ifreq in user space
4012 *
4013 * Issue ioctl functions to devices. This is normally called by the
4014 * user space syscall interfaces but can sometimes be useful for
4015 * other purposes. The return value is the return from the syscall if
4016 * positive or a negative errno code on error.
4017 */
4018
4019 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4020 {
4021 struct ifreq ifr;
4022 int ret;
4023 char *colon;
4024
4025 /* One special case: SIOCGIFCONF takes ifconf argument
4026 and requires shared lock, because it sleeps writing
4027 to user space.
4028 */
4029
4030 if (cmd == SIOCGIFCONF) {
4031 rtnl_lock();
4032 ret = dev_ifconf(net, (char __user *) arg);
4033 rtnl_unlock();
4034 return ret;
4035 }
4036 if (cmd == SIOCGIFNAME)
4037 return dev_ifname(net, (struct ifreq __user *)arg);
4038
4039 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4040 return -EFAULT;
4041
4042 ifr.ifr_name[IFNAMSIZ-1] = 0;
4043
4044 colon = strchr(ifr.ifr_name, ':');
4045 if (colon)
4046 *colon = 0;
4047
4048 /*
4049 * See which interface the caller is talking about.
4050 */
4051
4052 switch (cmd) {
4053 /*
4054 * These ioctl calls:
4055 * - can be done by all.
4056 * - atomic and do not require locking.
4057 * - return a value
4058 */
4059 case SIOCGIFFLAGS:
4060 case SIOCGIFMETRIC:
4061 case SIOCGIFMTU:
4062 case SIOCGIFHWADDR:
4063 case SIOCGIFSLAVE:
4064 case SIOCGIFMAP:
4065 case SIOCGIFINDEX:
4066 case SIOCGIFTXQLEN:
4067 dev_load(net, ifr.ifr_name);
4068 read_lock(&dev_base_lock);
4069 ret = dev_ifsioc_locked(net, &ifr, cmd);
4070 read_unlock(&dev_base_lock);
4071 if (!ret) {
4072 if (colon)
4073 *colon = ':';
4074 if (copy_to_user(arg, &ifr,
4075 sizeof(struct ifreq)))
4076 ret = -EFAULT;
4077 }
4078 return ret;
4079
4080 case SIOCETHTOOL:
4081 dev_load(net, ifr.ifr_name);
4082 rtnl_lock();
4083 ret = dev_ethtool(net, &ifr);
4084 rtnl_unlock();
4085 if (!ret) {
4086 if (colon)
4087 *colon = ':';
4088 if (copy_to_user(arg, &ifr,
4089 sizeof(struct ifreq)))
4090 ret = -EFAULT;
4091 }
4092 return ret;
4093
4094 /*
4095 * These ioctl calls:
4096 * - require superuser power.
4097 * - require strict serialization.
4098 * - return a value
4099 */
4100 case SIOCGMIIPHY:
4101 case SIOCGMIIREG:
4102 case SIOCSIFNAME:
4103 if (!capable(CAP_NET_ADMIN))
4104 return -EPERM;
4105 dev_load(net, ifr.ifr_name);
4106 rtnl_lock();
4107 ret = dev_ifsioc(net, &ifr, cmd);
4108 rtnl_unlock();
4109 if (!ret) {
4110 if (colon)
4111 *colon = ':';
4112 if (copy_to_user(arg, &ifr,
4113 sizeof(struct ifreq)))
4114 ret = -EFAULT;
4115 }
4116 return ret;
4117
4118 /*
4119 * These ioctl calls:
4120 * - require superuser power.
4121 * - require strict serialization.
4122 * - do not return a value
4123 */
4124 case SIOCSIFFLAGS:
4125 case SIOCSIFMETRIC:
4126 case SIOCSIFMTU:
4127 case SIOCSIFMAP:
4128 case SIOCSIFHWADDR:
4129 case SIOCSIFSLAVE:
4130 case SIOCADDMULTI:
4131 case SIOCDELMULTI:
4132 case SIOCSIFHWBROADCAST:
4133 case SIOCSIFTXQLEN:
4134 case SIOCSMIIREG:
4135 case SIOCBONDENSLAVE:
4136 case SIOCBONDRELEASE:
4137 case SIOCBONDSETHWADDR:
4138 case SIOCBONDCHANGEACTIVE:
4139 case SIOCBRADDIF:
4140 case SIOCBRDELIF:
4141 case SIOCSHWTSTAMP:
4142 if (!capable(CAP_NET_ADMIN))
4143 return -EPERM;
4144 /* fall through */
4145 case SIOCBONDSLAVEINFOQUERY:
4146 case SIOCBONDINFOQUERY:
4147 dev_load(net, ifr.ifr_name);
4148 rtnl_lock();
4149 ret = dev_ifsioc(net, &ifr, cmd);
4150 rtnl_unlock();
4151 return ret;
4152
4153 case SIOCGIFMEM:
4154 /* Get the per device memory space. We can add this but
4155 * currently do not support it */
4156 case SIOCSIFMEM:
4157 /* Set the per device memory buffer space.
4158 * Not applicable in our case */
4159 case SIOCSIFLINK:
4160 return -EINVAL;
4161
4162 /*
4163 * Unknown or private ioctl.
4164 */
4165 default:
4166 if (cmd == SIOCWANDEV ||
4167 (cmd >= SIOCDEVPRIVATE &&
4168 cmd <= SIOCDEVPRIVATE + 15)) {
4169 dev_load(net, ifr.ifr_name);
4170 rtnl_lock();
4171 ret = dev_ifsioc(net, &ifr, cmd);
4172 rtnl_unlock();
4173 if (!ret && copy_to_user(arg, &ifr,
4174 sizeof(struct ifreq)))
4175 ret = -EFAULT;
4176 return ret;
4177 }
4178 /* Take care of Wireless Extensions */
4179 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4180 return wext_handle_ioctl(net, &ifr, cmd, arg);
4181 return -EINVAL;
4182 }
4183 }
4184
4185
4186 /**
4187 * dev_new_index - allocate an ifindex
4188 * @net: the applicable net namespace
4189 *
4190 * Returns a suitable unique value for a new device interface
4191 * number. The caller must hold the rtnl semaphore or the
4192 * dev_base_lock to be sure it remains unique.
4193 */
4194 static int dev_new_index(struct net *net)
4195 {
4196 static int ifindex;
4197 for (;;) {
4198 if (++ifindex <= 0)
4199 ifindex = 1;
4200 if (!__dev_get_by_index(net, ifindex))
4201 return ifindex;
4202 }
4203 }
4204
4205 /* Delayed registration/unregisteration */
4206 static LIST_HEAD(net_todo_list);
4207
4208 static void net_set_todo(struct net_device *dev)
4209 {
4210 list_add_tail(&dev->todo_list, &net_todo_list);
4211 }
4212
4213 static void rollback_registered(struct net_device *dev)
4214 {
4215 BUG_ON(dev_boot_phase);
4216 ASSERT_RTNL();
4217
4218 /* Some devices call without registering for initialization unwind. */
4219 if (dev->reg_state == NETREG_UNINITIALIZED) {
4220 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4221 "was registered\n", dev->name, dev);
4222
4223 WARN_ON(1);
4224 return;
4225 }
4226
4227 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4228
4229 /* If device is running, close it first. */
4230 dev_close(dev);
4231
4232 /* And unlink it from device chain. */
4233 unlist_netdevice(dev);
4234
4235 dev->reg_state = NETREG_UNREGISTERING;
4236
4237 synchronize_net();
4238
4239 /* Shutdown queueing discipline. */
4240 dev_shutdown(dev);
4241
4242
4243 /* Notify protocols, that we are about to destroy
4244 this device. They should clean all the things.
4245 */
4246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4247
4248 /*
4249 * Flush the unicast and multicast chains
4250 */
4251 dev_addr_discard(dev);
4252
4253 if (dev->netdev_ops->ndo_uninit)
4254 dev->netdev_ops->ndo_uninit(dev);
4255
4256 /* Notifier chain MUST detach us from master device. */
4257 WARN_ON(dev->master);
4258
4259 /* Remove entries from kobject tree */
4260 netdev_unregister_kobject(dev);
4261
4262 synchronize_net();
4263
4264 dev_put(dev);
4265 }
4266
4267 static void __netdev_init_queue_locks_one(struct net_device *dev,
4268 struct netdev_queue *dev_queue,
4269 void *_unused)
4270 {
4271 spin_lock_init(&dev_queue->_xmit_lock);
4272 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4273 dev_queue->xmit_lock_owner = -1;
4274 }
4275
4276 static void netdev_init_queue_locks(struct net_device *dev)
4277 {
4278 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4279 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4280 }
4281
4282 unsigned long netdev_fix_features(unsigned long features, const char *name)
4283 {
4284 /* Fix illegal SG+CSUM combinations. */
4285 if ((features & NETIF_F_SG) &&
4286 !(features & NETIF_F_ALL_CSUM)) {
4287 if (name)
4288 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4289 "checksum feature.\n", name);
4290 features &= ~NETIF_F_SG;
4291 }
4292
4293 /* TSO requires that SG is present as well. */
4294 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4295 if (name)
4296 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4297 "SG feature.\n", name);
4298 features &= ~NETIF_F_TSO;
4299 }
4300
4301 if (features & NETIF_F_UFO) {
4302 if (!(features & NETIF_F_GEN_CSUM)) {
4303 if (name)
4304 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4305 "since no NETIF_F_HW_CSUM feature.\n",
4306 name);
4307 features &= ~NETIF_F_UFO;
4308 }
4309
4310 if (!(features & NETIF_F_SG)) {
4311 if (name)
4312 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4313 "since no NETIF_F_SG feature.\n", name);
4314 features &= ~NETIF_F_UFO;
4315 }
4316 }
4317
4318 return features;
4319 }
4320 EXPORT_SYMBOL(netdev_fix_features);
4321
4322 /* Some devices need to (re-)set their netdev_ops inside
4323 * ->init() or similar. If that happens, we have to setup
4324 * the compat pointers again.
4325 */
4326 void netdev_resync_ops(struct net_device *dev)
4327 {
4328 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4329 const struct net_device_ops *ops = dev->netdev_ops;
4330
4331 dev->init = ops->ndo_init;
4332 dev->uninit = ops->ndo_uninit;
4333 dev->open = ops->ndo_open;
4334 dev->change_rx_flags = ops->ndo_change_rx_flags;
4335 dev->set_rx_mode = ops->ndo_set_rx_mode;
4336 dev->set_multicast_list = ops->ndo_set_multicast_list;
4337 dev->set_mac_address = ops->ndo_set_mac_address;
4338 dev->validate_addr = ops->ndo_validate_addr;
4339 dev->do_ioctl = ops->ndo_do_ioctl;
4340 dev->set_config = ops->ndo_set_config;
4341 dev->change_mtu = ops->ndo_change_mtu;
4342 dev->neigh_setup = ops->ndo_neigh_setup;
4343 dev->tx_timeout = ops->ndo_tx_timeout;
4344 dev->get_stats = ops->ndo_get_stats;
4345 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4346 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4347 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4348 #ifdef CONFIG_NET_POLL_CONTROLLER
4349 dev->poll_controller = ops->ndo_poll_controller;
4350 #endif
4351 #endif
4352 }
4353 EXPORT_SYMBOL(netdev_resync_ops);
4354
4355 /**
4356 * register_netdevice - register a network device
4357 * @dev: device to register
4358 *
4359 * Take a completed network device structure and add it to the kernel
4360 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4361 * chain. 0 is returned on success. A negative errno code is returned
4362 * on a failure to set up the device, or if the name is a duplicate.
4363 *
4364 * Callers must hold the rtnl semaphore. You may want
4365 * register_netdev() instead of this.
4366 *
4367 * BUGS:
4368 * The locking appears insufficient to guarantee two parallel registers
4369 * will not get the same name.
4370 */
4371
4372 int register_netdevice(struct net_device *dev)
4373 {
4374 struct hlist_head *head;
4375 struct hlist_node *p;
4376 int ret;
4377 struct net *net = dev_net(dev);
4378
4379 BUG_ON(dev_boot_phase);
4380 ASSERT_RTNL();
4381
4382 might_sleep();
4383
4384 /* When net_device's are persistent, this will be fatal. */
4385 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4386 BUG_ON(!net);
4387
4388 spin_lock_init(&dev->addr_list_lock);
4389 netdev_set_addr_lockdep_class(dev);
4390 netdev_init_queue_locks(dev);
4391
4392 dev->iflink = -1;
4393
4394 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4395 /* Netdevice_ops API compatibility support.
4396 * This is temporary until all network devices are converted.
4397 */
4398 if (dev->netdev_ops) {
4399 netdev_resync_ops(dev);
4400 } else {
4401 char drivername[64];
4402 pr_info("%s (%s): not using net_device_ops yet\n",
4403 dev->name, netdev_drivername(dev, drivername, 64));
4404
4405 /* This works only because net_device_ops and the
4406 compatibility structure are the same. */
4407 dev->netdev_ops = (void *) &(dev->init);
4408 }
4409 #endif
4410
4411 /* Init, if this function is available */
4412 if (dev->netdev_ops->ndo_init) {
4413 ret = dev->netdev_ops->ndo_init(dev);
4414 if (ret) {
4415 if (ret > 0)
4416 ret = -EIO;
4417 goto out;
4418 }
4419 }
4420
4421 if (!dev_valid_name(dev->name)) {
4422 ret = -EINVAL;
4423 goto err_uninit;
4424 }
4425
4426 dev->ifindex = dev_new_index(net);
4427 if (dev->iflink == -1)
4428 dev->iflink = dev->ifindex;
4429
4430 /* Check for existence of name */
4431 head = dev_name_hash(net, dev->name);
4432 hlist_for_each(p, head) {
4433 struct net_device *d
4434 = hlist_entry(p, struct net_device, name_hlist);
4435 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4436 ret = -EEXIST;
4437 goto err_uninit;
4438 }
4439 }
4440
4441 /* Fix illegal checksum combinations */
4442 if ((dev->features & NETIF_F_HW_CSUM) &&
4443 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4444 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4445 dev->name);
4446 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4447 }
4448
4449 if ((dev->features & NETIF_F_NO_CSUM) &&
4450 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4451 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4452 dev->name);
4453 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4454 }
4455
4456 dev->features = netdev_fix_features(dev->features, dev->name);
4457
4458 /* Enable software GSO if SG is supported. */
4459 if (dev->features & NETIF_F_SG)
4460 dev->features |= NETIF_F_GSO;
4461
4462 netdev_initialize_kobject(dev);
4463 ret = netdev_register_kobject(dev);
4464 if (ret)
4465 goto err_uninit;
4466 dev->reg_state = NETREG_REGISTERED;
4467
4468 /*
4469 * Default initial state at registry is that the
4470 * device is present.
4471 */
4472
4473 set_bit(__LINK_STATE_PRESENT, &dev->state);
4474
4475 dev_init_scheduler(dev);
4476 dev_hold(dev);
4477 list_netdevice(dev);
4478
4479 /* Notify protocols, that a new device appeared. */
4480 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4481 ret = notifier_to_errno(ret);
4482 if (ret) {
4483 rollback_registered(dev);
4484 dev->reg_state = NETREG_UNREGISTERED;
4485 }
4486
4487 out:
4488 return ret;
4489
4490 err_uninit:
4491 if (dev->netdev_ops->ndo_uninit)
4492 dev->netdev_ops->ndo_uninit(dev);
4493 goto out;
4494 }
4495
4496 /**
4497 * init_dummy_netdev - init a dummy network device for NAPI
4498 * @dev: device to init
4499 *
4500 * This takes a network device structure and initialize the minimum
4501 * amount of fields so it can be used to schedule NAPI polls without
4502 * registering a full blown interface. This is to be used by drivers
4503 * that need to tie several hardware interfaces to a single NAPI
4504 * poll scheduler due to HW limitations.
4505 */
4506 int init_dummy_netdev(struct net_device *dev)
4507 {
4508 /* Clear everything. Note we don't initialize spinlocks
4509 * are they aren't supposed to be taken by any of the
4510 * NAPI code and this dummy netdev is supposed to be
4511 * only ever used for NAPI polls
4512 */
4513 memset(dev, 0, sizeof(struct net_device));
4514
4515 /* make sure we BUG if trying to hit standard
4516 * register/unregister code path
4517 */
4518 dev->reg_state = NETREG_DUMMY;
4519
4520 /* initialize the ref count */
4521 atomic_set(&dev->refcnt, 1);
4522
4523 /* NAPI wants this */
4524 INIT_LIST_HEAD(&dev->napi_list);
4525
4526 /* a dummy interface is started by default */
4527 set_bit(__LINK_STATE_PRESENT, &dev->state);
4528 set_bit(__LINK_STATE_START, &dev->state);
4529
4530 return 0;
4531 }
4532 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4533
4534
4535 /**
4536 * register_netdev - register a network device
4537 * @dev: device to register
4538 *
4539 * Take a completed network device structure and add it to the kernel
4540 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4541 * chain. 0 is returned on success. A negative errno code is returned
4542 * on a failure to set up the device, or if the name is a duplicate.
4543 *
4544 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4545 * and expands the device name if you passed a format string to
4546 * alloc_netdev.
4547 */
4548 int register_netdev(struct net_device *dev)
4549 {
4550 int err;
4551
4552 rtnl_lock();
4553
4554 /*
4555 * If the name is a format string the caller wants us to do a
4556 * name allocation.
4557 */
4558 if (strchr(dev->name, '%')) {
4559 err = dev_alloc_name(dev, dev->name);
4560 if (err < 0)
4561 goto out;
4562 }
4563
4564 err = register_netdevice(dev);
4565 out:
4566 rtnl_unlock();
4567 return err;
4568 }
4569 EXPORT_SYMBOL(register_netdev);
4570
4571 /*
4572 * netdev_wait_allrefs - wait until all references are gone.
4573 *
4574 * This is called when unregistering network devices.
4575 *
4576 * Any protocol or device that holds a reference should register
4577 * for netdevice notification, and cleanup and put back the
4578 * reference if they receive an UNREGISTER event.
4579 * We can get stuck here if buggy protocols don't correctly
4580 * call dev_put.
4581 */
4582 static void netdev_wait_allrefs(struct net_device *dev)
4583 {
4584 unsigned long rebroadcast_time, warning_time;
4585
4586 rebroadcast_time = warning_time = jiffies;
4587 while (atomic_read(&dev->refcnt) != 0) {
4588 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4589 rtnl_lock();
4590
4591 /* Rebroadcast unregister notification */
4592 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4593
4594 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4595 &dev->state)) {
4596 /* We must not have linkwatch events
4597 * pending on unregister. If this
4598 * happens, we simply run the queue
4599 * unscheduled, resulting in a noop
4600 * for this device.
4601 */
4602 linkwatch_run_queue();
4603 }
4604
4605 __rtnl_unlock();
4606
4607 rebroadcast_time = jiffies;
4608 }
4609
4610 msleep(250);
4611
4612 if (time_after(jiffies, warning_time + 10 * HZ)) {
4613 printk(KERN_EMERG "unregister_netdevice: "
4614 "waiting for %s to become free. Usage "
4615 "count = %d\n",
4616 dev->name, atomic_read(&dev->refcnt));
4617 warning_time = jiffies;
4618 }
4619 }
4620 }
4621
4622 /* The sequence is:
4623 *
4624 * rtnl_lock();
4625 * ...
4626 * register_netdevice(x1);
4627 * register_netdevice(x2);
4628 * ...
4629 * unregister_netdevice(y1);
4630 * unregister_netdevice(y2);
4631 * ...
4632 * rtnl_unlock();
4633 * free_netdev(y1);
4634 * free_netdev(y2);
4635 *
4636 * We are invoked by rtnl_unlock().
4637 * This allows us to deal with problems:
4638 * 1) We can delete sysfs objects which invoke hotplug
4639 * without deadlocking with linkwatch via keventd.
4640 * 2) Since we run with the RTNL semaphore not held, we can sleep
4641 * safely in order to wait for the netdev refcnt to drop to zero.
4642 *
4643 * We must not return until all unregister events added during
4644 * the interval the lock was held have been completed.
4645 */
4646 void netdev_run_todo(void)
4647 {
4648 struct list_head list;
4649
4650 /* Snapshot list, allow later requests */
4651 list_replace_init(&net_todo_list, &list);
4652
4653 __rtnl_unlock();
4654
4655 while (!list_empty(&list)) {
4656 struct net_device *dev
4657 = list_entry(list.next, struct net_device, todo_list);
4658 list_del(&dev->todo_list);
4659
4660 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4661 printk(KERN_ERR "network todo '%s' but state %d\n",
4662 dev->name, dev->reg_state);
4663 dump_stack();
4664 continue;
4665 }
4666
4667 dev->reg_state = NETREG_UNREGISTERED;
4668
4669 on_each_cpu(flush_backlog, dev, 1);
4670
4671 netdev_wait_allrefs(dev);
4672
4673 /* paranoia */
4674 BUG_ON(atomic_read(&dev->refcnt));
4675 WARN_ON(dev->ip_ptr);
4676 WARN_ON(dev->ip6_ptr);
4677 WARN_ON(dev->dn_ptr);
4678
4679 if (dev->destructor)
4680 dev->destructor(dev);
4681
4682 /* Free network device */
4683 kobject_put(&dev->dev.kobj);
4684 }
4685 }
4686
4687 /**
4688 * dev_get_stats - get network device statistics
4689 * @dev: device to get statistics from
4690 *
4691 * Get network statistics from device. The device driver may provide
4692 * its own method by setting dev->netdev_ops->get_stats; otherwise
4693 * the internal statistics structure is used.
4694 */
4695 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4696 {
4697 const struct net_device_ops *ops = dev->netdev_ops;
4698
4699 if (ops->ndo_get_stats)
4700 return ops->ndo_get_stats(dev);
4701 else
4702 return &dev->stats;
4703 }
4704 EXPORT_SYMBOL(dev_get_stats);
4705
4706 static void netdev_init_one_queue(struct net_device *dev,
4707 struct netdev_queue *queue,
4708 void *_unused)
4709 {
4710 queue->dev = dev;
4711 }
4712
4713 static void netdev_init_queues(struct net_device *dev)
4714 {
4715 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4716 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4717 spin_lock_init(&dev->tx_global_lock);
4718 }
4719
4720 /**
4721 * alloc_netdev_mq - allocate network device
4722 * @sizeof_priv: size of private data to allocate space for
4723 * @name: device name format string
4724 * @setup: callback to initialize device
4725 * @queue_count: the number of subqueues to allocate
4726 *
4727 * Allocates a struct net_device with private data area for driver use
4728 * and performs basic initialization. Also allocates subquue structs
4729 * for each queue on the device at the end of the netdevice.
4730 */
4731 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4732 void (*setup)(struct net_device *), unsigned int queue_count)
4733 {
4734 struct netdev_queue *tx;
4735 struct net_device *dev;
4736 size_t alloc_size;
4737 void *p;
4738
4739 BUG_ON(strlen(name) >= sizeof(dev->name));
4740
4741 alloc_size = sizeof(struct net_device);
4742 if (sizeof_priv) {
4743 /* ensure 32-byte alignment of private area */
4744 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4745 alloc_size += sizeof_priv;
4746 }
4747 /* ensure 32-byte alignment of whole construct */
4748 alloc_size += NETDEV_ALIGN_CONST;
4749
4750 p = kzalloc(alloc_size, GFP_KERNEL);
4751 if (!p) {
4752 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4753 return NULL;
4754 }
4755
4756 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4757 if (!tx) {
4758 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4759 "tx qdiscs.\n");
4760 kfree(p);
4761 return NULL;
4762 }
4763
4764 dev = (struct net_device *)
4765 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4766 dev->padded = (char *)dev - (char *)p;
4767 dev_net_set(dev, &init_net);
4768
4769 dev->_tx = tx;
4770 dev->num_tx_queues = queue_count;
4771 dev->real_num_tx_queues = queue_count;
4772
4773 dev->gso_max_size = GSO_MAX_SIZE;
4774
4775 netdev_init_queues(dev);
4776
4777 INIT_LIST_HEAD(&dev->napi_list);
4778 setup(dev);
4779 strcpy(dev->name, name);
4780 return dev;
4781 }
4782 EXPORT_SYMBOL(alloc_netdev_mq);
4783
4784 /**
4785 * free_netdev - free network device
4786 * @dev: device
4787 *
4788 * This function does the last stage of destroying an allocated device
4789 * interface. The reference to the device object is released.
4790 * If this is the last reference then it will be freed.
4791 */
4792 void free_netdev(struct net_device *dev)
4793 {
4794 struct napi_struct *p, *n;
4795
4796 release_net(dev_net(dev));
4797
4798 kfree(dev->_tx);
4799
4800 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4801 netif_napi_del(p);
4802
4803 /* Compatibility with error handling in drivers */
4804 if (dev->reg_state == NETREG_UNINITIALIZED) {
4805 kfree((char *)dev - dev->padded);
4806 return;
4807 }
4808
4809 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4810 dev->reg_state = NETREG_RELEASED;
4811
4812 /* will free via device release */
4813 put_device(&dev->dev);
4814 }
4815
4816 /**
4817 * synchronize_net - Synchronize with packet receive processing
4818 *
4819 * Wait for packets currently being received to be done.
4820 * Does not block later packets from starting.
4821 */
4822 void synchronize_net(void)
4823 {
4824 might_sleep();
4825 synchronize_rcu();
4826 }
4827
4828 /**
4829 * unregister_netdevice - remove device from the kernel
4830 * @dev: device
4831 *
4832 * This function shuts down a device interface and removes it
4833 * from the kernel tables.
4834 *
4835 * Callers must hold the rtnl semaphore. You may want
4836 * unregister_netdev() instead of this.
4837 */
4838
4839 void unregister_netdevice(struct net_device *dev)
4840 {
4841 ASSERT_RTNL();
4842
4843 rollback_registered(dev);
4844 /* Finish processing unregister after unlock */
4845 net_set_todo(dev);
4846 }
4847
4848 /**
4849 * unregister_netdev - remove device from the kernel
4850 * @dev: device
4851 *
4852 * This function shuts down a device interface and removes it
4853 * from the kernel tables.
4854 *
4855 * This is just a wrapper for unregister_netdevice that takes
4856 * the rtnl semaphore. In general you want to use this and not
4857 * unregister_netdevice.
4858 */
4859 void unregister_netdev(struct net_device *dev)
4860 {
4861 rtnl_lock();
4862 unregister_netdevice(dev);
4863 rtnl_unlock();
4864 }
4865
4866 EXPORT_SYMBOL(unregister_netdev);
4867
4868 /**
4869 * dev_change_net_namespace - move device to different nethost namespace
4870 * @dev: device
4871 * @net: network namespace
4872 * @pat: If not NULL name pattern to try if the current device name
4873 * is already taken in the destination network namespace.
4874 *
4875 * This function shuts down a device interface and moves it
4876 * to a new network namespace. On success 0 is returned, on
4877 * a failure a netagive errno code is returned.
4878 *
4879 * Callers must hold the rtnl semaphore.
4880 */
4881
4882 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4883 {
4884 char buf[IFNAMSIZ];
4885 const char *destname;
4886 int err;
4887
4888 ASSERT_RTNL();
4889
4890 /* Don't allow namespace local devices to be moved. */
4891 err = -EINVAL;
4892 if (dev->features & NETIF_F_NETNS_LOCAL)
4893 goto out;
4894
4895 #ifdef CONFIG_SYSFS
4896 /* Don't allow real devices to be moved when sysfs
4897 * is enabled.
4898 */
4899 err = -EINVAL;
4900 if (dev->dev.parent)
4901 goto out;
4902 #endif
4903
4904 /* Ensure the device has been registrered */
4905 err = -EINVAL;
4906 if (dev->reg_state != NETREG_REGISTERED)
4907 goto out;
4908
4909 /* Get out if there is nothing todo */
4910 err = 0;
4911 if (net_eq(dev_net(dev), net))
4912 goto out;
4913
4914 /* Pick the destination device name, and ensure
4915 * we can use it in the destination network namespace.
4916 */
4917 err = -EEXIST;
4918 destname = dev->name;
4919 if (__dev_get_by_name(net, destname)) {
4920 /* We get here if we can't use the current device name */
4921 if (!pat)
4922 goto out;
4923 if (!dev_valid_name(pat))
4924 goto out;
4925 if (strchr(pat, '%')) {
4926 if (__dev_alloc_name(net, pat, buf) < 0)
4927 goto out;
4928 destname = buf;
4929 } else
4930 destname = pat;
4931 if (__dev_get_by_name(net, destname))
4932 goto out;
4933 }
4934
4935 /*
4936 * And now a mini version of register_netdevice unregister_netdevice.
4937 */
4938
4939 /* If device is running close it first. */
4940 dev_close(dev);
4941
4942 /* And unlink it from device chain */
4943 err = -ENODEV;
4944 unlist_netdevice(dev);
4945
4946 synchronize_net();
4947
4948 /* Shutdown queueing discipline. */
4949 dev_shutdown(dev);
4950
4951 /* Notify protocols, that we are about to destroy
4952 this device. They should clean all the things.
4953 */
4954 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4955
4956 /*
4957 * Flush the unicast and multicast chains
4958 */
4959 dev_addr_discard(dev);
4960
4961 netdev_unregister_kobject(dev);
4962
4963 /* Actually switch the network namespace */
4964 dev_net_set(dev, net);
4965
4966 /* Assign the new device name */
4967 if (destname != dev->name)
4968 strcpy(dev->name, destname);
4969
4970 /* If there is an ifindex conflict assign a new one */
4971 if (__dev_get_by_index(net, dev->ifindex)) {
4972 int iflink = (dev->iflink == dev->ifindex);
4973 dev->ifindex = dev_new_index(net);
4974 if (iflink)
4975 dev->iflink = dev->ifindex;
4976 }
4977
4978 /* Fixup kobjects */
4979 err = netdev_register_kobject(dev);
4980 WARN_ON(err);
4981
4982 /* Add the device back in the hashes */
4983 list_netdevice(dev);
4984
4985 /* Notify protocols, that a new device appeared. */
4986 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4987
4988 synchronize_net();
4989 err = 0;
4990 out:
4991 return err;
4992 }
4993
4994 static int dev_cpu_callback(struct notifier_block *nfb,
4995 unsigned long action,
4996 void *ocpu)
4997 {
4998 struct sk_buff **list_skb;
4999 struct Qdisc **list_net;
5000 struct sk_buff *skb;
5001 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5002 struct softnet_data *sd, *oldsd;
5003
5004 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5005 return NOTIFY_OK;
5006
5007 local_irq_disable();
5008 cpu = smp_processor_id();
5009 sd = &per_cpu(softnet_data, cpu);
5010 oldsd = &per_cpu(softnet_data, oldcpu);
5011
5012 /* Find end of our completion_queue. */
5013 list_skb = &sd->completion_queue;
5014 while (*list_skb)
5015 list_skb = &(*list_skb)->next;
5016 /* Append completion queue from offline CPU. */
5017 *list_skb = oldsd->completion_queue;
5018 oldsd->completion_queue = NULL;
5019
5020 /* Find end of our output_queue. */
5021 list_net = &sd->output_queue;
5022 while (*list_net)
5023 list_net = &(*list_net)->next_sched;
5024 /* Append output queue from offline CPU. */
5025 *list_net = oldsd->output_queue;
5026 oldsd->output_queue = NULL;
5027
5028 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5029 local_irq_enable();
5030
5031 /* Process offline CPU's input_pkt_queue */
5032 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5033 netif_rx(skb);
5034
5035 return NOTIFY_OK;
5036 }
5037
5038
5039 /**
5040 * netdev_increment_features - increment feature set by one
5041 * @all: current feature set
5042 * @one: new feature set
5043 * @mask: mask feature set
5044 *
5045 * Computes a new feature set after adding a device with feature set
5046 * @one to the master device with current feature set @all. Will not
5047 * enable anything that is off in @mask. Returns the new feature set.
5048 */
5049 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5050 unsigned long mask)
5051 {
5052 /* If device needs checksumming, downgrade to it. */
5053 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5054 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5055 else if (mask & NETIF_F_ALL_CSUM) {
5056 /* If one device supports v4/v6 checksumming, set for all. */
5057 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5058 !(all & NETIF_F_GEN_CSUM)) {
5059 all &= ~NETIF_F_ALL_CSUM;
5060 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5061 }
5062
5063 /* If one device supports hw checksumming, set for all. */
5064 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5065 all &= ~NETIF_F_ALL_CSUM;
5066 all |= NETIF_F_HW_CSUM;
5067 }
5068 }
5069
5070 one |= NETIF_F_ALL_CSUM;
5071
5072 one |= all & NETIF_F_ONE_FOR_ALL;
5073 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5074 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5075
5076 return all;
5077 }
5078 EXPORT_SYMBOL(netdev_increment_features);
5079
5080 static struct hlist_head *netdev_create_hash(void)
5081 {
5082 int i;
5083 struct hlist_head *hash;
5084
5085 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5086 if (hash != NULL)
5087 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5088 INIT_HLIST_HEAD(&hash[i]);
5089
5090 return hash;
5091 }
5092
5093 /* Initialize per network namespace state */
5094 static int __net_init netdev_init(struct net *net)
5095 {
5096 INIT_LIST_HEAD(&net->dev_base_head);
5097
5098 net->dev_name_head = netdev_create_hash();
5099 if (net->dev_name_head == NULL)
5100 goto err_name;
5101
5102 net->dev_index_head = netdev_create_hash();
5103 if (net->dev_index_head == NULL)
5104 goto err_idx;
5105
5106 return 0;
5107
5108 err_idx:
5109 kfree(net->dev_name_head);
5110 err_name:
5111 return -ENOMEM;
5112 }
5113
5114 /**
5115 * netdev_drivername - network driver for the device
5116 * @dev: network device
5117 * @buffer: buffer for resulting name
5118 * @len: size of buffer
5119 *
5120 * Determine network driver for device.
5121 */
5122 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5123 {
5124 const struct device_driver *driver;
5125 const struct device *parent;
5126
5127 if (len <= 0 || !buffer)
5128 return buffer;
5129 buffer[0] = 0;
5130
5131 parent = dev->dev.parent;
5132
5133 if (!parent)
5134 return buffer;
5135
5136 driver = parent->driver;
5137 if (driver && driver->name)
5138 strlcpy(buffer, driver->name, len);
5139 return buffer;
5140 }
5141
5142 static void __net_exit netdev_exit(struct net *net)
5143 {
5144 kfree(net->dev_name_head);
5145 kfree(net->dev_index_head);
5146 }
5147
5148 static struct pernet_operations __net_initdata netdev_net_ops = {
5149 .init = netdev_init,
5150 .exit = netdev_exit,
5151 };
5152
5153 static void __net_exit default_device_exit(struct net *net)
5154 {
5155 struct net_device *dev;
5156 /*
5157 * Push all migratable of the network devices back to the
5158 * initial network namespace
5159 */
5160 rtnl_lock();
5161 restart:
5162 for_each_netdev(net, dev) {
5163 int err;
5164 char fb_name[IFNAMSIZ];
5165
5166 /* Ignore unmoveable devices (i.e. loopback) */
5167 if (dev->features & NETIF_F_NETNS_LOCAL)
5168 continue;
5169
5170 /* Delete virtual devices */
5171 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5172 dev->rtnl_link_ops->dellink(dev);
5173 goto restart;
5174 }
5175
5176 /* Push remaing network devices to init_net */
5177 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5178 err = dev_change_net_namespace(dev, &init_net, fb_name);
5179 if (err) {
5180 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5181 __func__, dev->name, err);
5182 BUG();
5183 }
5184 goto restart;
5185 }
5186 rtnl_unlock();
5187 }
5188
5189 static struct pernet_operations __net_initdata default_device_ops = {
5190 .exit = default_device_exit,
5191 };
5192
5193 /*
5194 * Initialize the DEV module. At boot time this walks the device list and
5195 * unhooks any devices that fail to initialise (normally hardware not
5196 * present) and leaves us with a valid list of present and active devices.
5197 *
5198 */
5199
5200 /*
5201 * This is called single threaded during boot, so no need
5202 * to take the rtnl semaphore.
5203 */
5204 static int __init net_dev_init(void)
5205 {
5206 int i, rc = -ENOMEM;
5207
5208 BUG_ON(!dev_boot_phase);
5209
5210 if (dev_proc_init())
5211 goto out;
5212
5213 if (netdev_kobject_init())
5214 goto out;
5215
5216 INIT_LIST_HEAD(&ptype_all);
5217 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5218 INIT_LIST_HEAD(&ptype_base[i]);
5219
5220 if (register_pernet_subsys(&netdev_net_ops))
5221 goto out;
5222
5223 /*
5224 * Initialise the packet receive queues.
5225 */
5226
5227 for_each_possible_cpu(i) {
5228 struct softnet_data *queue;
5229
5230 queue = &per_cpu(softnet_data, i);
5231 skb_queue_head_init(&queue->input_pkt_queue);
5232 queue->completion_queue = NULL;
5233 INIT_LIST_HEAD(&queue->poll_list);
5234
5235 queue->backlog.poll = process_backlog;
5236 queue->backlog.weight = weight_p;
5237 queue->backlog.gro_list = NULL;
5238 queue->backlog.gro_count = 0;
5239 }
5240
5241 dev_boot_phase = 0;
5242
5243 /* The loopback device is special if any other network devices
5244 * is present in a network namespace the loopback device must
5245 * be present. Since we now dynamically allocate and free the
5246 * loopback device ensure this invariant is maintained by
5247 * keeping the loopback device as the first device on the
5248 * list of network devices. Ensuring the loopback devices
5249 * is the first device that appears and the last network device
5250 * that disappears.
5251 */
5252 if (register_pernet_device(&loopback_net_ops))
5253 goto out;
5254
5255 if (register_pernet_device(&default_device_ops))
5256 goto out;
5257
5258 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5259 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5260
5261 hotcpu_notifier(dev_cpu_callback, 0);
5262 dst_init();
5263 dev_mcast_init();
5264 rc = 0;
5265 out:
5266 return rc;
5267 }
5268
5269 subsys_initcall(net_dev_init);
5270
5271 static int __init initialize_hashrnd(void)
5272 {
5273 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5274 return 0;
5275 }
5276
5277 late_initcall_sync(initialize_hashrnd);
5278
5279 EXPORT_SYMBOL(__dev_get_by_index);
5280 EXPORT_SYMBOL(__dev_get_by_name);
5281 EXPORT_SYMBOL(__dev_remove_pack);
5282 EXPORT_SYMBOL(dev_valid_name);
5283 EXPORT_SYMBOL(dev_add_pack);
5284 EXPORT_SYMBOL(dev_alloc_name);
5285 EXPORT_SYMBOL(dev_close);
5286 EXPORT_SYMBOL(dev_get_by_flags);
5287 EXPORT_SYMBOL(dev_get_by_index);
5288 EXPORT_SYMBOL(dev_get_by_name);
5289 EXPORT_SYMBOL(dev_open);
5290 EXPORT_SYMBOL(dev_queue_xmit);
5291 EXPORT_SYMBOL(dev_remove_pack);
5292 EXPORT_SYMBOL(dev_set_allmulti);
5293 EXPORT_SYMBOL(dev_set_promiscuity);
5294 EXPORT_SYMBOL(dev_change_flags);
5295 EXPORT_SYMBOL(dev_set_mtu);
5296 EXPORT_SYMBOL(dev_set_mac_address);
5297 EXPORT_SYMBOL(free_netdev);
5298 EXPORT_SYMBOL(netdev_boot_setup_check);
5299 EXPORT_SYMBOL(netdev_set_master);
5300 EXPORT_SYMBOL(netdev_state_change);
5301 EXPORT_SYMBOL(netif_receive_skb);
5302 EXPORT_SYMBOL(netif_rx);
5303 EXPORT_SYMBOL(register_gifconf);
5304 EXPORT_SYMBOL(register_netdevice);
5305 EXPORT_SYMBOL(register_netdevice_notifier);
5306 EXPORT_SYMBOL(skb_checksum_help);
5307 EXPORT_SYMBOL(synchronize_net);
5308 EXPORT_SYMBOL(unregister_netdevice);
5309 EXPORT_SYMBOL(unregister_netdevice_notifier);
5310 EXPORT_SYMBOL(net_enable_timestamp);
5311 EXPORT_SYMBOL(net_disable_timestamp);
5312 EXPORT_SYMBOL(dev_get_flags);
5313
5314 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5315 EXPORT_SYMBOL(br_handle_frame_hook);
5316 EXPORT_SYMBOL(br_fdb_get_hook);
5317 EXPORT_SYMBOL(br_fdb_put_hook);
5318 #endif
5319
5320 EXPORT_SYMBOL(dev_load);
5321
5322 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.145335 seconds and 6 git commands to generate.