Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /*
136 * The list of packet types we will receive (as opposed to discard)
137 * and the routines to invoke.
138 *
139 * Why 16. Because with 16 the only overlap we get on a hash of the
140 * low nibble of the protocol value is RARP/SNAP/X.25.
141 *
142 * NOTE: That is no longer true with the addition of VLAN tags. Not
143 * sure which should go first, but I bet it won't make much
144 * difference if we are running VLANs. The good news is that
145 * this protocol won't be in the list unless compiled in, so
146 * the average user (w/out VLANs) will not be adversely affected.
147 * --BLG
148 *
149 * 0800 IP
150 * 8100 802.1Q VLAN
151 * 0001 802.3
152 * 0002 AX.25
153 * 0004 802.2
154 * 8035 RARP
155 * 0005 SNAP
156 * 0805 X.25
157 * 0806 ARP
158 * 8137 IPX
159 * 0009 Localtalk
160 * 86DD IPv6
161 */
162
163 #define PTYPE_HASH_SIZE (16)
164 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
165
166 static DEFINE_SPINLOCK(ptype_lock);
167 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 static struct list_head ptype_all __read_mostly; /* Taps */
169
170 #ifdef CONFIG_NET_DMA
171 struct net_dma {
172 struct dma_client client;
173 spinlock_t lock;
174 cpumask_t channel_mask;
175 struct dma_chan **channels;
176 };
177
178 static enum dma_state_client
179 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
180 enum dma_state state);
181
182 static struct net_dma net_dma = {
183 .client = {
184 .event_callback = netdev_dma_event,
185 },
186 };
187 #endif
188
189 /*
190 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
191 * semaphore.
192 *
193 * Pure readers hold dev_base_lock for reading.
194 *
195 * Writers must hold the rtnl semaphore while they loop through the
196 * dev_base_head list, and hold dev_base_lock for writing when they do the
197 * actual updates. This allows pure readers to access the list even
198 * while a writer is preparing to update it.
199 *
200 * To put it another way, dev_base_lock is held for writing only to
201 * protect against pure readers; the rtnl semaphore provides the
202 * protection against other writers.
203 *
204 * See, for example usages, register_netdevice() and
205 * unregister_netdevice(), which must be called with the rtnl
206 * semaphore held.
207 */
208 DEFINE_RWLOCK(dev_base_lock);
209
210 EXPORT_SYMBOL(dev_base_lock);
211
212 #define NETDEV_HASHBITS 8
213 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
214
215 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
216 {
217 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
218 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
219 }
220
221 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
222 {
223 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del(&dev->dev_list);
249 hlist_del(&dev->name_hlist);
250 hlist_del(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252 }
253
254 /*
255 * Our notifier list
256 */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265 DEFINE_PER_CPU(struct softnet_data, softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
286 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
287 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
303 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
304 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 /**
372 * dev_add_pack - add packet handler
373 * @pt: packet type declaration
374 *
375 * Add a protocol handler to the networking stack. The passed &packet_type
376 * is linked into kernel lists and may not be freed until it has been
377 * removed from the kernel lists.
378 *
379 * This call does not sleep therefore it can not
380 * guarantee all CPU's that are in middle of receiving packets
381 * will see the new packet type (until the next received packet).
382 */
383
384 void dev_add_pack(struct packet_type *pt)
385 {
386 int hash;
387
388 spin_lock_bh(&ptype_lock);
389 if (pt->type == htons(ETH_P_ALL))
390 list_add_rcu(&pt->list, &ptype_all);
391 else {
392 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
393 list_add_rcu(&pt->list, &ptype_base[hash]);
394 }
395 spin_unlock_bh(&ptype_lock);
396 }
397
398 /**
399 * __dev_remove_pack - remove packet handler
400 * @pt: packet type declaration
401 *
402 * Remove a protocol handler that was previously added to the kernel
403 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
404 * from the kernel lists and can be freed or reused once this function
405 * returns.
406 *
407 * The packet type might still be in use by receivers
408 * and must not be freed until after all the CPU's have gone
409 * through a quiescent state.
410 */
411 void __dev_remove_pack(struct packet_type *pt)
412 {
413 struct list_head *head;
414 struct packet_type *pt1;
415
416 spin_lock_bh(&ptype_lock);
417
418 if (pt->type == htons(ETH_P_ALL))
419 head = &ptype_all;
420 else
421 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
431 out:
432 spin_unlock_bh(&ptype_lock);
433 }
434 /**
435 * dev_remove_pack - remove packet handler
436 * @pt: packet type declaration
437 *
438 * Remove a protocol handler that was previously added to the kernel
439 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
440 * from the kernel lists and can be freed or reused once this function
441 * returns.
442 *
443 * This call sleeps to guarantee that no CPU is looking at the packet
444 * type after return.
445 */
446 void dev_remove_pack(struct packet_type *pt)
447 {
448 __dev_remove_pack(pt);
449
450 synchronize_net();
451 }
452
453 /******************************************************************************
454
455 Device Boot-time Settings Routines
456
457 *******************************************************************************/
458
459 /* Boot time configuration table */
460 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
461
462 /**
463 * netdev_boot_setup_add - add new setup entry
464 * @name: name of the device
465 * @map: configured settings for the device
466 *
467 * Adds new setup entry to the dev_boot_setup list. The function
468 * returns 0 on error and 1 on success. This is a generic routine to
469 * all netdevices.
470 */
471 static int netdev_boot_setup_add(char *name, struct ifmap *map)
472 {
473 struct netdev_boot_setup *s;
474 int i;
475
476 s = dev_boot_setup;
477 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
478 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
479 memset(s[i].name, 0, sizeof(s[i].name));
480 strlcpy(s[i].name, name, IFNAMSIZ);
481 memcpy(&s[i].map, map, sizeof(s[i].map));
482 break;
483 }
484 }
485
486 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
487 }
488
489 /**
490 * netdev_boot_setup_check - check boot time settings
491 * @dev: the netdevice
492 *
493 * Check boot time settings for the device.
494 * The found settings are set for the device to be used
495 * later in the device probing.
496 * Returns 0 if no settings found, 1 if they are.
497 */
498 int netdev_boot_setup_check(struct net_device *dev)
499 {
500 struct netdev_boot_setup *s = dev_boot_setup;
501 int i;
502
503 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
504 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
505 !strcmp(dev->name, s[i].name)) {
506 dev->irq = s[i].map.irq;
507 dev->base_addr = s[i].map.base_addr;
508 dev->mem_start = s[i].map.mem_start;
509 dev->mem_end = s[i].map.mem_end;
510 return 1;
511 }
512 }
513 return 0;
514 }
515
516
517 /**
518 * netdev_boot_base - get address from boot time settings
519 * @prefix: prefix for network device
520 * @unit: id for network device
521 *
522 * Check boot time settings for the base address of device.
523 * The found settings are set for the device to be used
524 * later in the device probing.
525 * Returns 0 if no settings found.
526 */
527 unsigned long netdev_boot_base(const char *prefix, int unit)
528 {
529 const struct netdev_boot_setup *s = dev_boot_setup;
530 char name[IFNAMSIZ];
531 int i;
532
533 sprintf(name, "%s%d", prefix, unit);
534
535 /*
536 * If device already registered then return base of 1
537 * to indicate not to probe for this interface
538 */
539 if (__dev_get_by_name(&init_net, name))
540 return 1;
541
542 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
543 if (!strcmp(name, s[i].name))
544 return s[i].map.base_addr;
545 return 0;
546 }
547
548 /*
549 * Saves at boot time configured settings for any netdevice.
550 */
551 int __init netdev_boot_setup(char *str)
552 {
553 int ints[5];
554 struct ifmap map;
555
556 str = get_options(str, ARRAY_SIZE(ints), ints);
557 if (!str || !*str)
558 return 0;
559
560 /* Save settings */
561 memset(&map, 0, sizeof(map));
562 if (ints[0] > 0)
563 map.irq = ints[1];
564 if (ints[0] > 1)
565 map.base_addr = ints[2];
566 if (ints[0] > 2)
567 map.mem_start = ints[3];
568 if (ints[0] > 3)
569 map.mem_end = ints[4];
570
571 /* Add new entry to the list */
572 return netdev_boot_setup_add(str, &map);
573 }
574
575 __setup("netdev=", netdev_boot_setup);
576
577 /*******************************************************************************
578
579 Device Interface Subroutines
580
581 *******************************************************************************/
582
583 /**
584 * __dev_get_by_name - find a device by its name
585 * @net: the applicable net namespace
586 * @name: name to find
587 *
588 * Find an interface by name. Must be called under RTNL semaphore
589 * or @dev_base_lock. If the name is found a pointer to the device
590 * is returned. If the name is not found then %NULL is returned. The
591 * reference counters are not incremented so the caller must be
592 * careful with locks.
593 */
594
595 struct net_device *__dev_get_by_name(struct net *net, const char *name)
596 {
597 struct hlist_node *p;
598
599 hlist_for_each(p, dev_name_hash(net, name)) {
600 struct net_device *dev
601 = hlist_entry(p, struct net_device, name_hlist);
602 if (!strncmp(dev->name, name, IFNAMSIZ))
603 return dev;
604 }
605 return NULL;
606 }
607
608 /**
609 * dev_get_by_name - find a device by its name
610 * @net: the applicable net namespace
611 * @name: name to find
612 *
613 * Find an interface by name. This can be called from any
614 * context and does its own locking. The returned handle has
615 * the usage count incremented and the caller must use dev_put() to
616 * release it when it is no longer needed. %NULL is returned if no
617 * matching device is found.
618 */
619
620 struct net_device *dev_get_by_name(struct net *net, const char *name)
621 {
622 struct net_device *dev;
623
624 read_lock(&dev_base_lock);
625 dev = __dev_get_by_name(net, name);
626 if (dev)
627 dev_hold(dev);
628 read_unlock(&dev_base_lock);
629 return dev;
630 }
631
632 /**
633 * __dev_get_by_index - find a device by its ifindex
634 * @net: the applicable net namespace
635 * @ifindex: index of device
636 *
637 * Search for an interface by index. Returns %NULL if the device
638 * is not found or a pointer to the device. The device has not
639 * had its reference counter increased so the caller must be careful
640 * about locking. The caller must hold either the RTNL semaphore
641 * or @dev_base_lock.
642 */
643
644 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
645 {
646 struct hlist_node *p;
647
648 hlist_for_each(p, dev_index_hash(net, ifindex)) {
649 struct net_device *dev
650 = hlist_entry(p, struct net_device, index_hlist);
651 if (dev->ifindex == ifindex)
652 return dev;
653 }
654 return NULL;
655 }
656
657
658 /**
659 * dev_get_by_index - find a device by its ifindex
660 * @net: the applicable net namespace
661 * @ifindex: index of device
662 *
663 * Search for an interface by index. Returns NULL if the device
664 * is not found or a pointer to the device. The device returned has
665 * had a reference added and the pointer is safe until the user calls
666 * dev_put to indicate they have finished with it.
667 */
668
669 struct net_device *dev_get_by_index(struct net *net, int ifindex)
670 {
671 struct net_device *dev;
672
673 read_lock(&dev_base_lock);
674 dev = __dev_get_by_index(net, ifindex);
675 if (dev)
676 dev_hold(dev);
677 read_unlock(&dev_base_lock);
678 return dev;
679 }
680
681 /**
682 * dev_getbyhwaddr - find a device by its hardware address
683 * @net: the applicable net namespace
684 * @type: media type of device
685 * @ha: hardware address
686 *
687 * Search for an interface by MAC address. Returns NULL if the device
688 * is not found or a pointer to the device. The caller must hold the
689 * rtnl semaphore. The returned device has not had its ref count increased
690 * and the caller must therefore be careful about locking
691 *
692 * BUGS:
693 * If the API was consistent this would be __dev_get_by_hwaddr
694 */
695
696 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701
702 for_each_netdev(net, dev)
703 if (dev->type == type &&
704 !memcmp(dev->dev_addr, ha, dev->addr_len))
705 return dev;
706
707 return NULL;
708 }
709
710 EXPORT_SYMBOL(dev_getbyhwaddr);
711
712 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
713 {
714 struct net_device *dev;
715
716 ASSERT_RTNL();
717 for_each_netdev(net, dev)
718 if (dev->type == type)
719 return dev;
720
721 return NULL;
722 }
723
724 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
725
726 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
727 {
728 struct net_device *dev;
729
730 rtnl_lock();
731 dev = __dev_getfirstbyhwtype(net, type);
732 if (dev)
733 dev_hold(dev);
734 rtnl_unlock();
735 return dev;
736 }
737
738 EXPORT_SYMBOL(dev_getfirstbyhwtype);
739
740 /**
741 * dev_get_by_flags - find any device with given flags
742 * @net: the applicable net namespace
743 * @if_flags: IFF_* values
744 * @mask: bitmask of bits in if_flags to check
745 *
746 * Search for any interface with the given flags. Returns NULL if a device
747 * is not found or a pointer to the device. The device returned has
748 * had a reference added and the pointer is safe until the user calls
749 * dev_put to indicate they have finished with it.
750 */
751
752 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
753 {
754 struct net_device *dev, *ret;
755
756 ret = NULL;
757 read_lock(&dev_base_lock);
758 for_each_netdev(net, dev) {
759 if (((dev->flags ^ if_flags) & mask) == 0) {
760 dev_hold(dev);
761 ret = dev;
762 break;
763 }
764 }
765 read_unlock(&dev_base_lock);
766 return ret;
767 }
768
769 /**
770 * dev_valid_name - check if name is okay for network device
771 * @name: name string
772 *
773 * Network device names need to be valid file names to
774 * to allow sysfs to work. We also disallow any kind of
775 * whitespace.
776 */
777 int dev_valid_name(const char *name)
778 {
779 if (*name == '\0')
780 return 0;
781 if (strlen(name) >= IFNAMSIZ)
782 return 0;
783 if (!strcmp(name, ".") || !strcmp(name, ".."))
784 return 0;
785
786 while (*name) {
787 if (*name == '/' || isspace(*name))
788 return 0;
789 name++;
790 }
791 return 1;
792 }
793
794 /**
795 * __dev_alloc_name - allocate a name for a device
796 * @net: network namespace to allocate the device name in
797 * @name: name format string
798 * @buf: scratch buffer and result name string
799 *
800 * Passed a format string - eg "lt%d" it will try and find a suitable
801 * id. It scans list of devices to build up a free map, then chooses
802 * the first empty slot. The caller must hold the dev_base or rtnl lock
803 * while allocating the name and adding the device in order to avoid
804 * duplicates.
805 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
806 * Returns the number of the unit assigned or a negative errno code.
807 */
808
809 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
810 {
811 int i = 0;
812 const char *p;
813 const int max_netdevices = 8*PAGE_SIZE;
814 unsigned long *inuse;
815 struct net_device *d;
816
817 p = strnchr(name, IFNAMSIZ-1, '%');
818 if (p) {
819 /*
820 * Verify the string as this thing may have come from
821 * the user. There must be either one "%d" and no other "%"
822 * characters.
823 */
824 if (p[1] != 'd' || strchr(p + 2, '%'))
825 return -EINVAL;
826
827 /* Use one page as a bit array of possible slots */
828 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
829 if (!inuse)
830 return -ENOMEM;
831
832 for_each_netdev(net, d) {
833 if (!sscanf(d->name, name, &i))
834 continue;
835 if (i < 0 || i >= max_netdevices)
836 continue;
837
838 /* avoid cases where sscanf is not exact inverse of printf */
839 snprintf(buf, IFNAMSIZ, name, i);
840 if (!strncmp(buf, d->name, IFNAMSIZ))
841 set_bit(i, inuse);
842 }
843
844 i = find_first_zero_bit(inuse, max_netdevices);
845 free_page((unsigned long) inuse);
846 }
847
848 snprintf(buf, IFNAMSIZ, name, i);
849 if (!__dev_get_by_name(net, buf))
850 return i;
851
852 /* It is possible to run out of possible slots
853 * when the name is long and there isn't enough space left
854 * for the digits, or if all bits are used.
855 */
856 return -ENFILE;
857 }
858
859 /**
860 * dev_alloc_name - allocate a name for a device
861 * @dev: device
862 * @name: name format string
863 *
864 * Passed a format string - eg "lt%d" it will try and find a suitable
865 * id. It scans list of devices to build up a free map, then chooses
866 * the first empty slot. The caller must hold the dev_base or rtnl lock
867 * while allocating the name and adding the device in order to avoid
868 * duplicates.
869 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
870 * Returns the number of the unit assigned or a negative errno code.
871 */
872
873 int dev_alloc_name(struct net_device *dev, const char *name)
874 {
875 char buf[IFNAMSIZ];
876 struct net *net;
877 int ret;
878
879 BUG_ON(!dev_net(dev));
880 net = dev_net(dev);
881 ret = __dev_alloc_name(net, name, buf);
882 if (ret >= 0)
883 strlcpy(dev->name, buf, IFNAMSIZ);
884 return ret;
885 }
886
887
888 /**
889 * dev_change_name - change name of a device
890 * @dev: device
891 * @newname: name (or format string) must be at least IFNAMSIZ
892 *
893 * Change name of a device, can pass format strings "eth%d".
894 * for wildcarding.
895 */
896 int dev_change_name(struct net_device *dev, const char *newname)
897 {
898 char oldname[IFNAMSIZ];
899 int err = 0;
900 int ret;
901 struct net *net;
902
903 ASSERT_RTNL();
904 BUG_ON(!dev_net(dev));
905
906 net = dev_net(dev);
907 if (dev->flags & IFF_UP)
908 return -EBUSY;
909
910 if (!dev_valid_name(newname))
911 return -EINVAL;
912
913 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
914 return 0;
915
916 memcpy(oldname, dev->name, IFNAMSIZ);
917
918 if (strchr(newname, '%')) {
919 err = dev_alloc_name(dev, newname);
920 if (err < 0)
921 return err;
922 }
923 else if (__dev_get_by_name(net, newname))
924 return -EEXIST;
925 else
926 strlcpy(dev->name, newname, IFNAMSIZ);
927
928 rollback:
929 /* For now only devices in the initial network namespace
930 * are in sysfs.
931 */
932 if (net == &init_net) {
933 ret = device_rename(&dev->dev, dev->name);
934 if (ret) {
935 memcpy(dev->name, oldname, IFNAMSIZ);
936 return ret;
937 }
938 }
939
940 write_lock_bh(&dev_base_lock);
941 hlist_del(&dev->name_hlist);
942 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
943 write_unlock_bh(&dev_base_lock);
944
945 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
946 ret = notifier_to_errno(ret);
947
948 if (ret) {
949 if (err) {
950 printk(KERN_ERR
951 "%s: name change rollback failed: %d.\n",
952 dev->name, ret);
953 } else {
954 err = ret;
955 memcpy(dev->name, oldname, IFNAMSIZ);
956 goto rollback;
957 }
958 }
959
960 return err;
961 }
962
963 /**
964 * dev_set_alias - change ifalias of a device
965 * @dev: device
966 * @alias: name up to IFALIASZ
967 * @len: limit of bytes to copy from info
968 *
969 * Set ifalias for a device,
970 */
971 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
972 {
973 ASSERT_RTNL();
974
975 if (len >= IFALIASZ)
976 return -EINVAL;
977
978 if (!len) {
979 if (dev->ifalias) {
980 kfree(dev->ifalias);
981 dev->ifalias = NULL;
982 }
983 return 0;
984 }
985
986 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
987 if (!dev->ifalias)
988 return -ENOMEM;
989
990 strlcpy(dev->ifalias, alias, len+1);
991 return len;
992 }
993
994
995 /**
996 * netdev_features_change - device changes features
997 * @dev: device to cause notification
998 *
999 * Called to indicate a device has changed features.
1000 */
1001 void netdev_features_change(struct net_device *dev)
1002 {
1003 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1004 }
1005 EXPORT_SYMBOL(netdev_features_change);
1006
1007 /**
1008 * netdev_state_change - device changes state
1009 * @dev: device to cause notification
1010 *
1011 * Called to indicate a device has changed state. This function calls
1012 * the notifier chains for netdev_chain and sends a NEWLINK message
1013 * to the routing socket.
1014 */
1015 void netdev_state_change(struct net_device *dev)
1016 {
1017 if (dev->flags & IFF_UP) {
1018 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1019 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1020 }
1021 }
1022
1023 void netdev_bonding_change(struct net_device *dev)
1024 {
1025 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1026 }
1027 EXPORT_SYMBOL(netdev_bonding_change);
1028
1029 /**
1030 * dev_load - load a network module
1031 * @net: the applicable net namespace
1032 * @name: name of interface
1033 *
1034 * If a network interface is not present and the process has suitable
1035 * privileges this function loads the module. If module loading is not
1036 * available in this kernel then it becomes a nop.
1037 */
1038
1039 void dev_load(struct net *net, const char *name)
1040 {
1041 struct net_device *dev;
1042
1043 read_lock(&dev_base_lock);
1044 dev = __dev_get_by_name(net, name);
1045 read_unlock(&dev_base_lock);
1046
1047 if (!dev && capable(CAP_SYS_MODULE))
1048 request_module("%s", name);
1049 }
1050
1051 /**
1052 * dev_open - prepare an interface for use.
1053 * @dev: device to open
1054 *
1055 * Takes a device from down to up state. The device's private open
1056 * function is invoked and then the multicast lists are loaded. Finally
1057 * the device is moved into the up state and a %NETDEV_UP message is
1058 * sent to the netdev notifier chain.
1059 *
1060 * Calling this function on an active interface is a nop. On a failure
1061 * a negative errno code is returned.
1062 */
1063 int dev_open(struct net_device *dev)
1064 {
1065 const struct net_device_ops *ops = dev->netdev_ops;
1066 int ret = 0;
1067
1068 ASSERT_RTNL();
1069
1070 /*
1071 * Is it already up?
1072 */
1073
1074 if (dev->flags & IFF_UP)
1075 return 0;
1076
1077 /*
1078 * Is it even present?
1079 */
1080 if (!netif_device_present(dev))
1081 return -ENODEV;
1082
1083 /*
1084 * Call device private open method
1085 */
1086 set_bit(__LINK_STATE_START, &dev->state);
1087
1088 if (ops->ndo_validate_addr)
1089 ret = ops->ndo_validate_addr(dev);
1090
1091 if (!ret && ops->ndo_open)
1092 ret = ops->ndo_open(dev);
1093
1094 /*
1095 * If it went open OK then:
1096 */
1097
1098 if (ret)
1099 clear_bit(__LINK_STATE_START, &dev->state);
1100 else {
1101 /*
1102 * Set the flags.
1103 */
1104 dev->flags |= IFF_UP;
1105
1106 /*
1107 * Initialize multicasting status
1108 */
1109 dev_set_rx_mode(dev);
1110
1111 /*
1112 * Wakeup transmit queue engine
1113 */
1114 dev_activate(dev);
1115
1116 /*
1117 * ... and announce new interface.
1118 */
1119 call_netdevice_notifiers(NETDEV_UP, dev);
1120 }
1121
1122 return ret;
1123 }
1124
1125 /**
1126 * dev_close - shutdown an interface.
1127 * @dev: device to shutdown
1128 *
1129 * This function moves an active device into down state. A
1130 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1131 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1132 * chain.
1133 */
1134 int dev_close(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 ASSERT_RTNL();
1138
1139 might_sleep();
1140
1141 if (!(dev->flags & IFF_UP))
1142 return 0;
1143
1144 /*
1145 * Tell people we are going down, so that they can
1146 * prepare to death, when device is still operating.
1147 */
1148 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1149
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151
1152 /* Synchronize to scheduled poll. We cannot touch poll list,
1153 * it can be even on different cpu. So just clear netif_running().
1154 *
1155 * dev->stop() will invoke napi_disable() on all of it's
1156 * napi_struct instances on this device.
1157 */
1158 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1159
1160 dev_deactivate(dev);
1161
1162 /*
1163 * Call the device specific close. This cannot fail.
1164 * Only if device is UP
1165 *
1166 * We allow it to be called even after a DETACH hot-plug
1167 * event.
1168 */
1169 if (ops->ndo_stop)
1170 ops->ndo_stop(dev);
1171
1172 /*
1173 * Device is now down.
1174 */
1175
1176 dev->flags &= ~IFF_UP;
1177
1178 /*
1179 * Tell people we are down
1180 */
1181 call_netdevice_notifiers(NETDEV_DOWN, dev);
1182
1183 return 0;
1184 }
1185
1186
1187 /**
1188 * dev_disable_lro - disable Large Receive Offload on a device
1189 * @dev: device
1190 *
1191 * Disable Large Receive Offload (LRO) on a net device. Must be
1192 * called under RTNL. This is needed if received packets may be
1193 * forwarded to another interface.
1194 */
1195 void dev_disable_lro(struct net_device *dev)
1196 {
1197 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1198 dev->ethtool_ops->set_flags) {
1199 u32 flags = dev->ethtool_ops->get_flags(dev);
1200 if (flags & ETH_FLAG_LRO) {
1201 flags &= ~ETH_FLAG_LRO;
1202 dev->ethtool_ops->set_flags(dev, flags);
1203 }
1204 }
1205 WARN_ON(dev->features & NETIF_F_LRO);
1206 }
1207 EXPORT_SYMBOL(dev_disable_lro);
1208
1209
1210 static int dev_boot_phase = 1;
1211
1212 /*
1213 * Device change register/unregister. These are not inline or static
1214 * as we export them to the world.
1215 */
1216
1217 /**
1218 * register_netdevice_notifier - register a network notifier block
1219 * @nb: notifier
1220 *
1221 * Register a notifier to be called when network device events occur.
1222 * The notifier passed is linked into the kernel structures and must
1223 * not be reused until it has been unregistered. A negative errno code
1224 * is returned on a failure.
1225 *
1226 * When registered all registration and up events are replayed
1227 * to the new notifier to allow device to have a race free
1228 * view of the network device list.
1229 */
1230
1231 int register_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 struct net_device *dev;
1234 struct net_device *last;
1235 struct net *net;
1236 int err;
1237
1238 rtnl_lock();
1239 err = raw_notifier_chain_register(&netdev_chain, nb);
1240 if (err)
1241 goto unlock;
1242 if (dev_boot_phase)
1243 goto unlock;
1244 for_each_net(net) {
1245 for_each_netdev(net, dev) {
1246 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1247 err = notifier_to_errno(err);
1248 if (err)
1249 goto rollback;
1250
1251 if (!(dev->flags & IFF_UP))
1252 continue;
1253
1254 nb->notifier_call(nb, NETDEV_UP, dev);
1255 }
1256 }
1257
1258 unlock:
1259 rtnl_unlock();
1260 return err;
1261
1262 rollback:
1263 last = dev;
1264 for_each_net(net) {
1265 for_each_netdev(net, dev) {
1266 if (dev == last)
1267 break;
1268
1269 if (dev->flags & IFF_UP) {
1270 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1271 nb->notifier_call(nb, NETDEV_DOWN, dev);
1272 }
1273 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1274 }
1275 }
1276
1277 raw_notifier_chain_unregister(&netdev_chain, nb);
1278 goto unlock;
1279 }
1280
1281 /**
1282 * unregister_netdevice_notifier - unregister a network notifier block
1283 * @nb: notifier
1284 *
1285 * Unregister a notifier previously registered by
1286 * register_netdevice_notifier(). The notifier is unlinked into the
1287 * kernel structures and may then be reused. A negative errno code
1288 * is returned on a failure.
1289 */
1290
1291 int unregister_netdevice_notifier(struct notifier_block *nb)
1292 {
1293 int err;
1294
1295 rtnl_lock();
1296 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1297 rtnl_unlock();
1298 return err;
1299 }
1300
1301 /**
1302 * call_netdevice_notifiers - call all network notifier blocks
1303 * @val: value passed unmodified to notifier function
1304 * @dev: net_device pointer passed unmodified to notifier function
1305 *
1306 * Call all network notifier blocks. Parameters and return value
1307 * are as for raw_notifier_call_chain().
1308 */
1309
1310 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1311 {
1312 return raw_notifier_call_chain(&netdev_chain, val, dev);
1313 }
1314
1315 /* When > 0 there are consumers of rx skb time stamps */
1316 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1317
1318 void net_enable_timestamp(void)
1319 {
1320 atomic_inc(&netstamp_needed);
1321 }
1322
1323 void net_disable_timestamp(void)
1324 {
1325 atomic_dec(&netstamp_needed);
1326 }
1327
1328 static inline void net_timestamp(struct sk_buff *skb)
1329 {
1330 if (atomic_read(&netstamp_needed))
1331 __net_timestamp(skb);
1332 else
1333 skb->tstamp.tv64 = 0;
1334 }
1335
1336 /*
1337 * Support routine. Sends outgoing frames to any network
1338 * taps currently in use.
1339 */
1340
1341 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1342 {
1343 struct packet_type *ptype;
1344
1345 net_timestamp(skb);
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1351 */
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1358
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1362 */
1363 skb_reset_mac_header(skb2);
1364
1365 if (skb_network_header(skb2) < skb2->data ||
1366 skb2->network_header > skb2->tail) {
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
1371 skb_reset_network_header(skb2);
1372 }
1373
1374 skb2->transport_header = skb2->network_header;
1375 skb2->pkt_type = PACKET_OUTGOING;
1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382
1383 static inline void __netif_reschedule(struct Qdisc *q)
1384 {
1385 struct softnet_data *sd;
1386 unsigned long flags;
1387
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1394 }
1395
1396 void __netif_schedule(struct Qdisc *q)
1397 {
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
1400 }
1401 EXPORT_SYMBOL(__netif_schedule);
1402
1403 void dev_kfree_skb_irq(struct sk_buff *skb)
1404 {
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415 }
1416 }
1417 EXPORT_SYMBOL(dev_kfree_skb_irq);
1418
1419 void dev_kfree_skb_any(struct sk_buff *skb)
1420 {
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1425 }
1426 EXPORT_SYMBOL(dev_kfree_skb_any);
1427
1428
1429 /**
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1432 *
1433 * Mark device as removed from system and therefore no longer available.
1434 */
1435 void netif_device_detach(struct net_device *dev)
1436 {
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
1439 netif_stop_queue(dev);
1440 }
1441 }
1442 EXPORT_SYMBOL(netif_device_detach);
1443
1444 /**
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1447 *
1448 * Mark device as attached from system and restart if needed.
1449 */
1450 void netif_device_attach(struct net_device *dev)
1451 {
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
1454 netif_wake_queue(dev);
1455 __netdev_watchdog_up(dev);
1456 }
1457 }
1458 EXPORT_SYMBOL(netif_device_attach);
1459
1460 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1461 {
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1466 protocol == htons(ETH_P_IPV6)));
1467 }
1468
1469 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1470 {
1471 if (can_checksum_protocol(dev->features, skb->protocol))
1472 return true;
1473
1474 if (skb->protocol == htons(ETH_P_8021Q)) {
1475 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1476 if (can_checksum_protocol(dev->features & dev->vlan_features,
1477 veh->h_vlan_encapsulated_proto))
1478 return true;
1479 }
1480
1481 return false;
1482 }
1483
1484 /*
1485 * Invalidate hardware checksum when packet is to be mangled, and
1486 * complete checksum manually on outgoing path.
1487 */
1488 int skb_checksum_help(struct sk_buff *skb)
1489 {
1490 __wsum csum;
1491 int ret = 0, offset;
1492
1493 if (skb->ip_summed == CHECKSUM_COMPLETE)
1494 goto out_set_summed;
1495
1496 if (unlikely(skb_shinfo(skb)->gso_size)) {
1497 /* Let GSO fix up the checksum. */
1498 goto out_set_summed;
1499 }
1500
1501 offset = skb->csum_start - skb_headroom(skb);
1502 BUG_ON(offset >= skb_headlen(skb));
1503 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1504
1505 offset += skb->csum_offset;
1506 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1507
1508 if (skb_cloned(skb) &&
1509 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1510 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1511 if (ret)
1512 goto out;
1513 }
1514
1515 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1516 out_set_summed:
1517 skb->ip_summed = CHECKSUM_NONE;
1518 out:
1519 return ret;
1520 }
1521
1522 /**
1523 * skb_gso_segment - Perform segmentation on skb.
1524 * @skb: buffer to segment
1525 * @features: features for the output path (see dev->features)
1526 *
1527 * This function segments the given skb and returns a list of segments.
1528 *
1529 * It may return NULL if the skb requires no segmentation. This is
1530 * only possible when GSO is used for verifying header integrity.
1531 */
1532 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1533 {
1534 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1535 struct packet_type *ptype;
1536 __be16 type = skb->protocol;
1537 int err;
1538
1539 skb_reset_mac_header(skb);
1540 skb->mac_len = skb->network_header - skb->mac_header;
1541 __skb_pull(skb, skb->mac_len);
1542
1543 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1544 if (skb_header_cloned(skb) &&
1545 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1546 return ERR_PTR(err);
1547 }
1548
1549 rcu_read_lock();
1550 list_for_each_entry_rcu(ptype,
1551 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1552 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1553 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1554 err = ptype->gso_send_check(skb);
1555 segs = ERR_PTR(err);
1556 if (err || skb_gso_ok(skb, features))
1557 break;
1558 __skb_push(skb, (skb->data -
1559 skb_network_header(skb)));
1560 }
1561 segs = ptype->gso_segment(skb, features);
1562 break;
1563 }
1564 }
1565 rcu_read_unlock();
1566
1567 __skb_push(skb, skb->data - skb_mac_header(skb));
1568
1569 return segs;
1570 }
1571
1572 EXPORT_SYMBOL(skb_gso_segment);
1573
1574 /* Take action when hardware reception checksum errors are detected. */
1575 #ifdef CONFIG_BUG
1576 void netdev_rx_csum_fault(struct net_device *dev)
1577 {
1578 if (net_ratelimit()) {
1579 printk(KERN_ERR "%s: hw csum failure.\n",
1580 dev ? dev->name : "<unknown>");
1581 dump_stack();
1582 }
1583 }
1584 EXPORT_SYMBOL(netdev_rx_csum_fault);
1585 #endif
1586
1587 /* Actually, we should eliminate this check as soon as we know, that:
1588 * 1. IOMMU is present and allows to map all the memory.
1589 * 2. No high memory really exists on this machine.
1590 */
1591
1592 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1593 {
1594 #ifdef CONFIG_HIGHMEM
1595 int i;
1596
1597 if (dev->features & NETIF_F_HIGHDMA)
1598 return 0;
1599
1600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1601 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1602 return 1;
1603
1604 #endif
1605 return 0;
1606 }
1607
1608 struct dev_gso_cb {
1609 void (*destructor)(struct sk_buff *skb);
1610 };
1611
1612 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1613
1614 static void dev_gso_skb_destructor(struct sk_buff *skb)
1615 {
1616 struct dev_gso_cb *cb;
1617
1618 do {
1619 struct sk_buff *nskb = skb->next;
1620
1621 skb->next = nskb->next;
1622 nskb->next = NULL;
1623 kfree_skb(nskb);
1624 } while (skb->next);
1625
1626 cb = DEV_GSO_CB(skb);
1627 if (cb->destructor)
1628 cb->destructor(skb);
1629 }
1630
1631 /**
1632 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1633 * @skb: buffer to segment
1634 *
1635 * This function segments the given skb and stores the list of segments
1636 * in skb->next.
1637 */
1638 static int dev_gso_segment(struct sk_buff *skb)
1639 {
1640 struct net_device *dev = skb->dev;
1641 struct sk_buff *segs;
1642 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1643 NETIF_F_SG : 0);
1644
1645 segs = skb_gso_segment(skb, features);
1646
1647 /* Verifying header integrity only. */
1648 if (!segs)
1649 return 0;
1650
1651 if (IS_ERR(segs))
1652 return PTR_ERR(segs);
1653
1654 skb->next = segs;
1655 DEV_GSO_CB(skb)->destructor = skb->destructor;
1656 skb->destructor = dev_gso_skb_destructor;
1657
1658 return 0;
1659 }
1660
1661 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1662 struct netdev_queue *txq)
1663 {
1664 const struct net_device_ops *ops = dev->netdev_ops;
1665
1666 prefetch(&dev->netdev_ops->ndo_start_xmit);
1667 if (likely(!skb->next)) {
1668 if (!list_empty(&ptype_all))
1669 dev_queue_xmit_nit(skb, dev);
1670
1671 if (netif_needs_gso(dev, skb)) {
1672 if (unlikely(dev_gso_segment(skb)))
1673 goto out_kfree_skb;
1674 if (skb->next)
1675 goto gso;
1676 }
1677
1678 return ops->ndo_start_xmit(skb, dev);
1679 }
1680
1681 gso:
1682 do {
1683 struct sk_buff *nskb = skb->next;
1684 int rc;
1685
1686 skb->next = nskb->next;
1687 nskb->next = NULL;
1688 rc = ops->ndo_start_xmit(nskb, dev);
1689 if (unlikely(rc)) {
1690 nskb->next = skb->next;
1691 skb->next = nskb;
1692 return rc;
1693 }
1694 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1695 return NETDEV_TX_BUSY;
1696 } while (skb->next);
1697
1698 skb->destructor = DEV_GSO_CB(skb)->destructor;
1699
1700 out_kfree_skb:
1701 kfree_skb(skb);
1702 return 0;
1703 }
1704
1705 static u32 simple_tx_hashrnd;
1706 static int simple_tx_hashrnd_initialized = 0;
1707
1708 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1709 {
1710 u32 addr1, addr2, ports;
1711 u32 hash, ihl;
1712 u8 ip_proto = 0;
1713
1714 if (unlikely(!simple_tx_hashrnd_initialized)) {
1715 get_random_bytes(&simple_tx_hashrnd, 4);
1716 simple_tx_hashrnd_initialized = 1;
1717 }
1718
1719 switch (skb->protocol) {
1720 case htons(ETH_P_IP):
1721 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1722 ip_proto = ip_hdr(skb)->protocol;
1723 addr1 = ip_hdr(skb)->saddr;
1724 addr2 = ip_hdr(skb)->daddr;
1725 ihl = ip_hdr(skb)->ihl;
1726 break;
1727 case htons(ETH_P_IPV6):
1728 ip_proto = ipv6_hdr(skb)->nexthdr;
1729 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1730 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1731 ihl = (40 >> 2);
1732 break;
1733 default:
1734 return 0;
1735 }
1736
1737
1738 switch (ip_proto) {
1739 case IPPROTO_TCP:
1740 case IPPROTO_UDP:
1741 case IPPROTO_DCCP:
1742 case IPPROTO_ESP:
1743 case IPPROTO_AH:
1744 case IPPROTO_SCTP:
1745 case IPPROTO_UDPLITE:
1746 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1747 break;
1748
1749 default:
1750 ports = 0;
1751 break;
1752 }
1753
1754 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1755
1756 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1757 }
1758
1759 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1760 struct sk_buff *skb)
1761 {
1762 const struct net_device_ops *ops = dev->netdev_ops;
1763 u16 queue_index = 0;
1764
1765 if (ops->ndo_select_queue)
1766 queue_index = ops->ndo_select_queue(dev, skb);
1767 else if (dev->real_num_tx_queues > 1)
1768 queue_index = simple_tx_hash(dev, skb);
1769
1770 skb_set_queue_mapping(skb, queue_index);
1771 return netdev_get_tx_queue(dev, queue_index);
1772 }
1773
1774 /**
1775 * dev_queue_xmit - transmit a buffer
1776 * @skb: buffer to transmit
1777 *
1778 * Queue a buffer for transmission to a network device. The caller must
1779 * have set the device and priority and built the buffer before calling
1780 * this function. The function can be called from an interrupt.
1781 *
1782 * A negative errno code is returned on a failure. A success does not
1783 * guarantee the frame will be transmitted as it may be dropped due
1784 * to congestion or traffic shaping.
1785 *
1786 * -----------------------------------------------------------------------------------
1787 * I notice this method can also return errors from the queue disciplines,
1788 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1789 * be positive.
1790 *
1791 * Regardless of the return value, the skb is consumed, so it is currently
1792 * difficult to retry a send to this method. (You can bump the ref count
1793 * before sending to hold a reference for retry if you are careful.)
1794 *
1795 * When calling this method, interrupts MUST be enabled. This is because
1796 * the BH enable code must have IRQs enabled so that it will not deadlock.
1797 * --BLG
1798 */
1799 int dev_queue_xmit(struct sk_buff *skb)
1800 {
1801 struct net_device *dev = skb->dev;
1802 struct netdev_queue *txq;
1803 struct Qdisc *q;
1804 int rc = -ENOMEM;
1805
1806 /* GSO will handle the following emulations directly. */
1807 if (netif_needs_gso(dev, skb))
1808 goto gso;
1809
1810 if (skb_shinfo(skb)->frag_list &&
1811 !(dev->features & NETIF_F_FRAGLIST) &&
1812 __skb_linearize(skb))
1813 goto out_kfree_skb;
1814
1815 /* Fragmented skb is linearized if device does not support SG,
1816 * or if at least one of fragments is in highmem and device
1817 * does not support DMA from it.
1818 */
1819 if (skb_shinfo(skb)->nr_frags &&
1820 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1821 __skb_linearize(skb))
1822 goto out_kfree_skb;
1823
1824 /* If packet is not checksummed and device does not support
1825 * checksumming for this protocol, complete checksumming here.
1826 */
1827 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1828 skb_set_transport_header(skb, skb->csum_start -
1829 skb_headroom(skb));
1830 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1831 goto out_kfree_skb;
1832 }
1833
1834 gso:
1835 /* Disable soft irqs for various locks below. Also
1836 * stops preemption for RCU.
1837 */
1838 rcu_read_lock_bh();
1839
1840 txq = dev_pick_tx(dev, skb);
1841 q = rcu_dereference(txq->qdisc);
1842
1843 #ifdef CONFIG_NET_CLS_ACT
1844 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1845 #endif
1846 if (q->enqueue) {
1847 spinlock_t *root_lock = qdisc_lock(q);
1848
1849 spin_lock(root_lock);
1850
1851 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1852 kfree_skb(skb);
1853 rc = NET_XMIT_DROP;
1854 } else {
1855 rc = qdisc_enqueue_root(skb, q);
1856 qdisc_run(q);
1857 }
1858 spin_unlock(root_lock);
1859
1860 goto out;
1861 }
1862
1863 /* The device has no queue. Common case for software devices:
1864 loopback, all the sorts of tunnels...
1865
1866 Really, it is unlikely that netif_tx_lock protection is necessary
1867 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1868 counters.)
1869 However, it is possible, that they rely on protection
1870 made by us here.
1871
1872 Check this and shot the lock. It is not prone from deadlocks.
1873 Either shot noqueue qdisc, it is even simpler 8)
1874 */
1875 if (dev->flags & IFF_UP) {
1876 int cpu = smp_processor_id(); /* ok because BHs are off */
1877
1878 if (txq->xmit_lock_owner != cpu) {
1879
1880 HARD_TX_LOCK(dev, txq, cpu);
1881
1882 if (!netif_tx_queue_stopped(txq)) {
1883 rc = 0;
1884 if (!dev_hard_start_xmit(skb, dev, txq)) {
1885 HARD_TX_UNLOCK(dev, txq);
1886 goto out;
1887 }
1888 }
1889 HARD_TX_UNLOCK(dev, txq);
1890 if (net_ratelimit())
1891 printk(KERN_CRIT "Virtual device %s asks to "
1892 "queue packet!\n", dev->name);
1893 } else {
1894 /* Recursion is detected! It is possible,
1895 * unfortunately */
1896 if (net_ratelimit())
1897 printk(KERN_CRIT "Dead loop on virtual device "
1898 "%s, fix it urgently!\n", dev->name);
1899 }
1900 }
1901
1902 rc = -ENETDOWN;
1903 rcu_read_unlock_bh();
1904
1905 out_kfree_skb:
1906 kfree_skb(skb);
1907 return rc;
1908 out:
1909 rcu_read_unlock_bh();
1910 return rc;
1911 }
1912
1913
1914 /*=======================================================================
1915 Receiver routines
1916 =======================================================================*/
1917
1918 int netdev_max_backlog __read_mostly = 1000;
1919 int netdev_budget __read_mostly = 300;
1920 int weight_p __read_mostly = 64; /* old backlog weight */
1921
1922 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1923
1924
1925 /**
1926 * netif_rx - post buffer to the network code
1927 * @skb: buffer to post
1928 *
1929 * This function receives a packet from a device driver and queues it for
1930 * the upper (protocol) levels to process. It always succeeds. The buffer
1931 * may be dropped during processing for congestion control or by the
1932 * protocol layers.
1933 *
1934 * return values:
1935 * NET_RX_SUCCESS (no congestion)
1936 * NET_RX_DROP (packet was dropped)
1937 *
1938 */
1939
1940 int netif_rx(struct sk_buff *skb)
1941 {
1942 struct softnet_data *queue;
1943 unsigned long flags;
1944
1945 /* if netpoll wants it, pretend we never saw it */
1946 if (netpoll_rx(skb))
1947 return NET_RX_DROP;
1948
1949 if (!skb->tstamp.tv64)
1950 net_timestamp(skb);
1951
1952 /*
1953 * The code is rearranged so that the path is the most
1954 * short when CPU is congested, but is still operating.
1955 */
1956 local_irq_save(flags);
1957 queue = &__get_cpu_var(softnet_data);
1958
1959 __get_cpu_var(netdev_rx_stat).total++;
1960 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1961 if (queue->input_pkt_queue.qlen) {
1962 enqueue:
1963 __skb_queue_tail(&queue->input_pkt_queue, skb);
1964 local_irq_restore(flags);
1965 return NET_RX_SUCCESS;
1966 }
1967
1968 napi_schedule(&queue->backlog);
1969 goto enqueue;
1970 }
1971
1972 __get_cpu_var(netdev_rx_stat).dropped++;
1973 local_irq_restore(flags);
1974
1975 kfree_skb(skb);
1976 return NET_RX_DROP;
1977 }
1978
1979 int netif_rx_ni(struct sk_buff *skb)
1980 {
1981 int err;
1982
1983 preempt_disable();
1984 err = netif_rx(skb);
1985 if (local_softirq_pending())
1986 do_softirq();
1987 preempt_enable();
1988
1989 return err;
1990 }
1991
1992 EXPORT_SYMBOL(netif_rx_ni);
1993
1994 static void net_tx_action(struct softirq_action *h)
1995 {
1996 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1997
1998 if (sd->completion_queue) {
1999 struct sk_buff *clist;
2000
2001 local_irq_disable();
2002 clist = sd->completion_queue;
2003 sd->completion_queue = NULL;
2004 local_irq_enable();
2005
2006 while (clist) {
2007 struct sk_buff *skb = clist;
2008 clist = clist->next;
2009
2010 WARN_ON(atomic_read(&skb->users));
2011 __kfree_skb(skb);
2012 }
2013 }
2014
2015 if (sd->output_queue) {
2016 struct Qdisc *head;
2017
2018 local_irq_disable();
2019 head = sd->output_queue;
2020 sd->output_queue = NULL;
2021 local_irq_enable();
2022
2023 while (head) {
2024 struct Qdisc *q = head;
2025 spinlock_t *root_lock;
2026
2027 head = head->next_sched;
2028
2029 root_lock = qdisc_lock(q);
2030 if (spin_trylock(root_lock)) {
2031 smp_mb__before_clear_bit();
2032 clear_bit(__QDISC_STATE_SCHED,
2033 &q->state);
2034 qdisc_run(q);
2035 spin_unlock(root_lock);
2036 } else {
2037 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2038 &q->state)) {
2039 __netif_reschedule(q);
2040 } else {
2041 smp_mb__before_clear_bit();
2042 clear_bit(__QDISC_STATE_SCHED,
2043 &q->state);
2044 }
2045 }
2046 }
2047 }
2048 }
2049
2050 static inline int deliver_skb(struct sk_buff *skb,
2051 struct packet_type *pt_prev,
2052 struct net_device *orig_dev)
2053 {
2054 atomic_inc(&skb->users);
2055 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2056 }
2057
2058 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2059 /* These hooks defined here for ATM */
2060 struct net_bridge;
2061 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2062 unsigned char *addr);
2063 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2064
2065 /*
2066 * If bridge module is loaded call bridging hook.
2067 * returns NULL if packet was consumed.
2068 */
2069 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2070 struct sk_buff *skb) __read_mostly;
2071 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2072 struct packet_type **pt_prev, int *ret,
2073 struct net_device *orig_dev)
2074 {
2075 struct net_bridge_port *port;
2076
2077 if (skb->pkt_type == PACKET_LOOPBACK ||
2078 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2079 return skb;
2080
2081 if (*pt_prev) {
2082 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2083 *pt_prev = NULL;
2084 }
2085
2086 return br_handle_frame_hook(port, skb);
2087 }
2088 #else
2089 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2090 #endif
2091
2092 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2093 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2094 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2095
2096 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2097 struct packet_type **pt_prev,
2098 int *ret,
2099 struct net_device *orig_dev)
2100 {
2101 if (skb->dev->macvlan_port == NULL)
2102 return skb;
2103
2104 if (*pt_prev) {
2105 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2106 *pt_prev = NULL;
2107 }
2108 return macvlan_handle_frame_hook(skb);
2109 }
2110 #else
2111 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2112 #endif
2113
2114 #ifdef CONFIG_NET_CLS_ACT
2115 /* TODO: Maybe we should just force sch_ingress to be compiled in
2116 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2117 * a compare and 2 stores extra right now if we dont have it on
2118 * but have CONFIG_NET_CLS_ACT
2119 * NOTE: This doesnt stop any functionality; if you dont have
2120 * the ingress scheduler, you just cant add policies on ingress.
2121 *
2122 */
2123 static int ing_filter(struct sk_buff *skb)
2124 {
2125 struct net_device *dev = skb->dev;
2126 u32 ttl = G_TC_RTTL(skb->tc_verd);
2127 struct netdev_queue *rxq;
2128 int result = TC_ACT_OK;
2129 struct Qdisc *q;
2130
2131 if (MAX_RED_LOOP < ttl++) {
2132 printk(KERN_WARNING
2133 "Redir loop detected Dropping packet (%d->%d)\n",
2134 skb->iif, dev->ifindex);
2135 return TC_ACT_SHOT;
2136 }
2137
2138 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2139 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2140
2141 rxq = &dev->rx_queue;
2142
2143 q = rxq->qdisc;
2144 if (q != &noop_qdisc) {
2145 spin_lock(qdisc_lock(q));
2146 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2147 result = qdisc_enqueue_root(skb, q);
2148 spin_unlock(qdisc_lock(q));
2149 }
2150
2151 return result;
2152 }
2153
2154 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2155 struct packet_type **pt_prev,
2156 int *ret, struct net_device *orig_dev)
2157 {
2158 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2159 goto out;
2160
2161 if (*pt_prev) {
2162 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2163 *pt_prev = NULL;
2164 } else {
2165 /* Huh? Why does turning on AF_PACKET affect this? */
2166 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2167 }
2168
2169 switch (ing_filter(skb)) {
2170 case TC_ACT_SHOT:
2171 case TC_ACT_STOLEN:
2172 kfree_skb(skb);
2173 return NULL;
2174 }
2175
2176 out:
2177 skb->tc_verd = 0;
2178 return skb;
2179 }
2180 #endif
2181
2182 /*
2183 * netif_nit_deliver - deliver received packets to network taps
2184 * @skb: buffer
2185 *
2186 * This function is used to deliver incoming packets to network
2187 * taps. It should be used when the normal netif_receive_skb path
2188 * is bypassed, for example because of VLAN acceleration.
2189 */
2190 void netif_nit_deliver(struct sk_buff *skb)
2191 {
2192 struct packet_type *ptype;
2193
2194 if (list_empty(&ptype_all))
2195 return;
2196
2197 skb_reset_network_header(skb);
2198 skb_reset_transport_header(skb);
2199 skb->mac_len = skb->network_header - skb->mac_header;
2200
2201 rcu_read_lock();
2202 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2203 if (!ptype->dev || ptype->dev == skb->dev)
2204 deliver_skb(skb, ptype, skb->dev);
2205 }
2206 rcu_read_unlock();
2207 }
2208
2209 /**
2210 * netif_receive_skb - process receive buffer from network
2211 * @skb: buffer to process
2212 *
2213 * netif_receive_skb() is the main receive data processing function.
2214 * It always succeeds. The buffer may be dropped during processing
2215 * for congestion control or by the protocol layers.
2216 *
2217 * This function may only be called from softirq context and interrupts
2218 * should be enabled.
2219 *
2220 * Return values (usually ignored):
2221 * NET_RX_SUCCESS: no congestion
2222 * NET_RX_DROP: packet was dropped
2223 */
2224 int netif_receive_skb(struct sk_buff *skb)
2225 {
2226 struct packet_type *ptype, *pt_prev;
2227 struct net_device *orig_dev;
2228 struct net_device *null_or_orig;
2229 int ret = NET_RX_DROP;
2230 __be16 type;
2231
2232 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2233 return NET_RX_SUCCESS;
2234
2235 /* if we've gotten here through NAPI, check netpoll */
2236 if (netpoll_receive_skb(skb))
2237 return NET_RX_DROP;
2238
2239 if (!skb->tstamp.tv64)
2240 net_timestamp(skb);
2241
2242 if (!skb->iif)
2243 skb->iif = skb->dev->ifindex;
2244
2245 null_or_orig = NULL;
2246 orig_dev = skb->dev;
2247 if (orig_dev->master) {
2248 if (skb_bond_should_drop(skb))
2249 null_or_orig = orig_dev; /* deliver only exact match */
2250 else
2251 skb->dev = orig_dev->master;
2252 }
2253
2254 __get_cpu_var(netdev_rx_stat).total++;
2255
2256 skb_reset_network_header(skb);
2257 skb_reset_transport_header(skb);
2258 skb->mac_len = skb->network_header - skb->mac_header;
2259
2260 pt_prev = NULL;
2261
2262 rcu_read_lock();
2263
2264 /* Don't receive packets in an exiting network namespace */
2265 if (!net_alive(dev_net(skb->dev))) {
2266 kfree_skb(skb);
2267 goto out;
2268 }
2269
2270 #ifdef CONFIG_NET_CLS_ACT
2271 if (skb->tc_verd & TC_NCLS) {
2272 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2273 goto ncls;
2274 }
2275 #endif
2276
2277 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2278 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2279 ptype->dev == orig_dev) {
2280 if (pt_prev)
2281 ret = deliver_skb(skb, pt_prev, orig_dev);
2282 pt_prev = ptype;
2283 }
2284 }
2285
2286 #ifdef CONFIG_NET_CLS_ACT
2287 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2288 if (!skb)
2289 goto out;
2290 ncls:
2291 #endif
2292
2293 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2294 if (!skb)
2295 goto out;
2296 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2297 if (!skb)
2298 goto out;
2299
2300 type = skb->protocol;
2301 list_for_each_entry_rcu(ptype,
2302 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2303 if (ptype->type == type &&
2304 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2305 ptype->dev == orig_dev)) {
2306 if (pt_prev)
2307 ret = deliver_skb(skb, pt_prev, orig_dev);
2308 pt_prev = ptype;
2309 }
2310 }
2311
2312 if (pt_prev) {
2313 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2314 } else {
2315 kfree_skb(skb);
2316 /* Jamal, now you will not able to escape explaining
2317 * me how you were going to use this. :-)
2318 */
2319 ret = NET_RX_DROP;
2320 }
2321
2322 out:
2323 rcu_read_unlock();
2324 return ret;
2325 }
2326
2327 /* Network device is going away, flush any packets still pending */
2328 static void flush_backlog(void *arg)
2329 {
2330 struct net_device *dev = arg;
2331 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2332 struct sk_buff *skb, *tmp;
2333
2334 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2335 if (skb->dev == dev) {
2336 __skb_unlink(skb, &queue->input_pkt_queue);
2337 kfree_skb(skb);
2338 }
2339 }
2340
2341 static int napi_gro_complete(struct sk_buff *skb)
2342 {
2343 struct packet_type *ptype;
2344 __be16 type = skb->protocol;
2345 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2346 int err = -ENOENT;
2347
2348 if (!skb_shinfo(skb)->frag_list)
2349 goto out;
2350
2351 rcu_read_lock();
2352 list_for_each_entry_rcu(ptype, head, list) {
2353 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2354 continue;
2355
2356 err = ptype->gro_complete(skb);
2357 break;
2358 }
2359 rcu_read_unlock();
2360
2361 if (err) {
2362 WARN_ON(&ptype->list == head);
2363 kfree_skb(skb);
2364 return NET_RX_SUCCESS;
2365 }
2366
2367 out:
2368 __skb_push(skb, -skb_network_offset(skb));
2369 return netif_receive_skb(skb);
2370 }
2371
2372 void napi_gro_flush(struct napi_struct *napi)
2373 {
2374 struct sk_buff *skb, *next;
2375
2376 for (skb = napi->gro_list; skb; skb = next) {
2377 next = skb->next;
2378 skb->next = NULL;
2379 napi_gro_complete(skb);
2380 }
2381
2382 napi->gro_list = NULL;
2383 }
2384 EXPORT_SYMBOL(napi_gro_flush);
2385
2386 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2387 {
2388 struct sk_buff **pp = NULL;
2389 struct packet_type *ptype;
2390 __be16 type = skb->protocol;
2391 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2392 int count = 0;
2393 int same_flow;
2394 int mac_len;
2395
2396 if (!(skb->dev->features & NETIF_F_GRO))
2397 goto normal;
2398
2399 rcu_read_lock();
2400 list_for_each_entry_rcu(ptype, head, list) {
2401 struct sk_buff *p;
2402
2403 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2404 continue;
2405
2406 skb_reset_network_header(skb);
2407 mac_len = skb->network_header - skb->mac_header;
2408 skb->mac_len = mac_len;
2409 NAPI_GRO_CB(skb)->same_flow = 0;
2410 NAPI_GRO_CB(skb)->flush = 0;
2411
2412 for (p = napi->gro_list; p; p = p->next) {
2413 count++;
2414 NAPI_GRO_CB(p)->same_flow =
2415 p->mac_len == mac_len &&
2416 !memcmp(skb_mac_header(p), skb_mac_header(skb),
2417 mac_len);
2418 NAPI_GRO_CB(p)->flush = 0;
2419 }
2420
2421 pp = ptype->gro_receive(&napi->gro_list, skb);
2422 break;
2423 }
2424 rcu_read_unlock();
2425
2426 if (&ptype->list == head)
2427 goto normal;
2428
2429 same_flow = NAPI_GRO_CB(skb)->same_flow;
2430
2431 if (pp) {
2432 struct sk_buff *nskb = *pp;
2433
2434 *pp = nskb->next;
2435 nskb->next = NULL;
2436 napi_gro_complete(nskb);
2437 count--;
2438 }
2439
2440 if (same_flow)
2441 goto ok;
2442
2443 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2444 __skb_push(skb, -skb_network_offset(skb));
2445 goto normal;
2446 }
2447
2448 NAPI_GRO_CB(skb)->count = 1;
2449 skb->next = napi->gro_list;
2450 napi->gro_list = skb;
2451
2452 ok:
2453 return NET_RX_SUCCESS;
2454
2455 normal:
2456 return netif_receive_skb(skb);
2457 }
2458 EXPORT_SYMBOL(napi_gro_receive);
2459
2460 static int process_backlog(struct napi_struct *napi, int quota)
2461 {
2462 int work = 0;
2463 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2464 unsigned long start_time = jiffies;
2465
2466 napi->weight = weight_p;
2467 do {
2468 struct sk_buff *skb;
2469
2470 local_irq_disable();
2471 skb = __skb_dequeue(&queue->input_pkt_queue);
2472 if (!skb) {
2473 __napi_complete(napi);
2474 local_irq_enable();
2475 break;
2476 }
2477 local_irq_enable();
2478
2479 napi_gro_receive(napi, skb);
2480 } while (++work < quota && jiffies == start_time);
2481
2482 napi_gro_flush(napi);
2483
2484 return work;
2485 }
2486
2487 /**
2488 * __napi_schedule - schedule for receive
2489 * @n: entry to schedule
2490 *
2491 * The entry's receive function will be scheduled to run
2492 */
2493 void __napi_schedule(struct napi_struct *n)
2494 {
2495 unsigned long flags;
2496
2497 local_irq_save(flags);
2498 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2499 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2500 local_irq_restore(flags);
2501 }
2502 EXPORT_SYMBOL(__napi_schedule);
2503
2504 void __napi_complete(struct napi_struct *n)
2505 {
2506 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2507 BUG_ON(n->gro_list);
2508
2509 list_del(&n->poll_list);
2510 smp_mb__before_clear_bit();
2511 clear_bit(NAPI_STATE_SCHED, &n->state);
2512 }
2513 EXPORT_SYMBOL(__napi_complete);
2514
2515 void napi_complete(struct napi_struct *n)
2516 {
2517 unsigned long flags;
2518
2519 /*
2520 * don't let napi dequeue from the cpu poll list
2521 * just in case its running on a different cpu
2522 */
2523 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2524 return;
2525
2526 napi_gro_flush(n);
2527 local_irq_save(flags);
2528 __napi_complete(n);
2529 local_irq_restore(flags);
2530 }
2531 EXPORT_SYMBOL(napi_complete);
2532
2533 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2534 int (*poll)(struct napi_struct *, int), int weight)
2535 {
2536 INIT_LIST_HEAD(&napi->poll_list);
2537 napi->gro_list = NULL;
2538 napi->poll = poll;
2539 napi->weight = weight;
2540 list_add(&napi->dev_list, &dev->napi_list);
2541 #ifdef CONFIG_NETPOLL
2542 napi->dev = dev;
2543 spin_lock_init(&napi->poll_lock);
2544 napi->poll_owner = -1;
2545 #endif
2546 set_bit(NAPI_STATE_SCHED, &napi->state);
2547 }
2548 EXPORT_SYMBOL(netif_napi_add);
2549
2550 void netif_napi_del(struct napi_struct *napi)
2551 {
2552 struct sk_buff *skb, *next;
2553
2554 list_del_init(&napi->dev_list);
2555
2556 for (skb = napi->gro_list; skb; skb = next) {
2557 next = skb->next;
2558 skb->next = NULL;
2559 kfree_skb(skb);
2560 }
2561
2562 napi->gro_list = NULL;
2563 }
2564 EXPORT_SYMBOL(netif_napi_del);
2565
2566
2567 static void net_rx_action(struct softirq_action *h)
2568 {
2569 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2570 unsigned long time_limit = jiffies + 2;
2571 int budget = netdev_budget;
2572 void *have;
2573
2574 local_irq_disable();
2575
2576 while (!list_empty(list)) {
2577 struct napi_struct *n;
2578 int work, weight;
2579
2580 /* If softirq window is exhuasted then punt.
2581 * Allow this to run for 2 jiffies since which will allow
2582 * an average latency of 1.5/HZ.
2583 */
2584 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2585 goto softnet_break;
2586
2587 local_irq_enable();
2588
2589 /* Even though interrupts have been re-enabled, this
2590 * access is safe because interrupts can only add new
2591 * entries to the tail of this list, and only ->poll()
2592 * calls can remove this head entry from the list.
2593 */
2594 n = list_entry(list->next, struct napi_struct, poll_list);
2595
2596 have = netpoll_poll_lock(n);
2597
2598 weight = n->weight;
2599
2600 /* This NAPI_STATE_SCHED test is for avoiding a race
2601 * with netpoll's poll_napi(). Only the entity which
2602 * obtains the lock and sees NAPI_STATE_SCHED set will
2603 * actually make the ->poll() call. Therefore we avoid
2604 * accidently calling ->poll() when NAPI is not scheduled.
2605 */
2606 work = 0;
2607 if (test_bit(NAPI_STATE_SCHED, &n->state))
2608 work = n->poll(n, weight);
2609
2610 WARN_ON_ONCE(work > weight);
2611
2612 budget -= work;
2613
2614 local_irq_disable();
2615
2616 /* Drivers must not modify the NAPI state if they
2617 * consume the entire weight. In such cases this code
2618 * still "owns" the NAPI instance and therefore can
2619 * move the instance around on the list at-will.
2620 */
2621 if (unlikely(work == weight)) {
2622 if (unlikely(napi_disable_pending(n)))
2623 __napi_complete(n);
2624 else
2625 list_move_tail(&n->poll_list, list);
2626 }
2627
2628 netpoll_poll_unlock(have);
2629 }
2630 out:
2631 local_irq_enable();
2632
2633 #ifdef CONFIG_NET_DMA
2634 /*
2635 * There may not be any more sk_buffs coming right now, so push
2636 * any pending DMA copies to hardware
2637 */
2638 if (!cpus_empty(net_dma.channel_mask)) {
2639 int chan_idx;
2640 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2641 struct dma_chan *chan = net_dma.channels[chan_idx];
2642 if (chan)
2643 dma_async_memcpy_issue_pending(chan);
2644 }
2645 }
2646 #endif
2647
2648 return;
2649
2650 softnet_break:
2651 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2652 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2653 goto out;
2654 }
2655
2656 static gifconf_func_t * gifconf_list [NPROTO];
2657
2658 /**
2659 * register_gifconf - register a SIOCGIF handler
2660 * @family: Address family
2661 * @gifconf: Function handler
2662 *
2663 * Register protocol dependent address dumping routines. The handler
2664 * that is passed must not be freed or reused until it has been replaced
2665 * by another handler.
2666 */
2667 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2668 {
2669 if (family >= NPROTO)
2670 return -EINVAL;
2671 gifconf_list[family] = gifconf;
2672 return 0;
2673 }
2674
2675
2676 /*
2677 * Map an interface index to its name (SIOCGIFNAME)
2678 */
2679
2680 /*
2681 * We need this ioctl for efficient implementation of the
2682 * if_indextoname() function required by the IPv6 API. Without
2683 * it, we would have to search all the interfaces to find a
2684 * match. --pb
2685 */
2686
2687 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2688 {
2689 struct net_device *dev;
2690 struct ifreq ifr;
2691
2692 /*
2693 * Fetch the caller's info block.
2694 */
2695
2696 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2697 return -EFAULT;
2698
2699 read_lock(&dev_base_lock);
2700 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2701 if (!dev) {
2702 read_unlock(&dev_base_lock);
2703 return -ENODEV;
2704 }
2705
2706 strcpy(ifr.ifr_name, dev->name);
2707 read_unlock(&dev_base_lock);
2708
2709 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2710 return -EFAULT;
2711 return 0;
2712 }
2713
2714 /*
2715 * Perform a SIOCGIFCONF call. This structure will change
2716 * size eventually, and there is nothing I can do about it.
2717 * Thus we will need a 'compatibility mode'.
2718 */
2719
2720 static int dev_ifconf(struct net *net, char __user *arg)
2721 {
2722 struct ifconf ifc;
2723 struct net_device *dev;
2724 char __user *pos;
2725 int len;
2726 int total;
2727 int i;
2728
2729 /*
2730 * Fetch the caller's info block.
2731 */
2732
2733 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2734 return -EFAULT;
2735
2736 pos = ifc.ifc_buf;
2737 len = ifc.ifc_len;
2738
2739 /*
2740 * Loop over the interfaces, and write an info block for each.
2741 */
2742
2743 total = 0;
2744 for_each_netdev(net, dev) {
2745 for (i = 0; i < NPROTO; i++) {
2746 if (gifconf_list[i]) {
2747 int done;
2748 if (!pos)
2749 done = gifconf_list[i](dev, NULL, 0);
2750 else
2751 done = gifconf_list[i](dev, pos + total,
2752 len - total);
2753 if (done < 0)
2754 return -EFAULT;
2755 total += done;
2756 }
2757 }
2758 }
2759
2760 /*
2761 * All done. Write the updated control block back to the caller.
2762 */
2763 ifc.ifc_len = total;
2764
2765 /*
2766 * Both BSD and Solaris return 0 here, so we do too.
2767 */
2768 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2769 }
2770
2771 #ifdef CONFIG_PROC_FS
2772 /*
2773 * This is invoked by the /proc filesystem handler to display a device
2774 * in detail.
2775 */
2776 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2777 __acquires(dev_base_lock)
2778 {
2779 struct net *net = seq_file_net(seq);
2780 loff_t off;
2781 struct net_device *dev;
2782
2783 read_lock(&dev_base_lock);
2784 if (!*pos)
2785 return SEQ_START_TOKEN;
2786
2787 off = 1;
2788 for_each_netdev(net, dev)
2789 if (off++ == *pos)
2790 return dev;
2791
2792 return NULL;
2793 }
2794
2795 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2796 {
2797 struct net *net = seq_file_net(seq);
2798 ++*pos;
2799 return v == SEQ_START_TOKEN ?
2800 first_net_device(net) : next_net_device((struct net_device *)v);
2801 }
2802
2803 void dev_seq_stop(struct seq_file *seq, void *v)
2804 __releases(dev_base_lock)
2805 {
2806 read_unlock(&dev_base_lock);
2807 }
2808
2809 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2810 {
2811 const struct net_device_stats *stats = dev_get_stats(dev);
2812
2813 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2814 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2815 dev->name, stats->rx_bytes, stats->rx_packets,
2816 stats->rx_errors,
2817 stats->rx_dropped + stats->rx_missed_errors,
2818 stats->rx_fifo_errors,
2819 stats->rx_length_errors + stats->rx_over_errors +
2820 stats->rx_crc_errors + stats->rx_frame_errors,
2821 stats->rx_compressed, stats->multicast,
2822 stats->tx_bytes, stats->tx_packets,
2823 stats->tx_errors, stats->tx_dropped,
2824 stats->tx_fifo_errors, stats->collisions,
2825 stats->tx_carrier_errors +
2826 stats->tx_aborted_errors +
2827 stats->tx_window_errors +
2828 stats->tx_heartbeat_errors,
2829 stats->tx_compressed);
2830 }
2831
2832 /*
2833 * Called from the PROCfs module. This now uses the new arbitrary sized
2834 * /proc/net interface to create /proc/net/dev
2835 */
2836 static int dev_seq_show(struct seq_file *seq, void *v)
2837 {
2838 if (v == SEQ_START_TOKEN)
2839 seq_puts(seq, "Inter-| Receive "
2840 " | Transmit\n"
2841 " face |bytes packets errs drop fifo frame "
2842 "compressed multicast|bytes packets errs "
2843 "drop fifo colls carrier compressed\n");
2844 else
2845 dev_seq_printf_stats(seq, v);
2846 return 0;
2847 }
2848
2849 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2850 {
2851 struct netif_rx_stats *rc = NULL;
2852
2853 while (*pos < nr_cpu_ids)
2854 if (cpu_online(*pos)) {
2855 rc = &per_cpu(netdev_rx_stat, *pos);
2856 break;
2857 } else
2858 ++*pos;
2859 return rc;
2860 }
2861
2862 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2863 {
2864 return softnet_get_online(pos);
2865 }
2866
2867 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2868 {
2869 ++*pos;
2870 return softnet_get_online(pos);
2871 }
2872
2873 static void softnet_seq_stop(struct seq_file *seq, void *v)
2874 {
2875 }
2876
2877 static int softnet_seq_show(struct seq_file *seq, void *v)
2878 {
2879 struct netif_rx_stats *s = v;
2880
2881 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2882 s->total, s->dropped, s->time_squeeze, 0,
2883 0, 0, 0, 0, /* was fastroute */
2884 s->cpu_collision );
2885 return 0;
2886 }
2887
2888 static const struct seq_operations dev_seq_ops = {
2889 .start = dev_seq_start,
2890 .next = dev_seq_next,
2891 .stop = dev_seq_stop,
2892 .show = dev_seq_show,
2893 };
2894
2895 static int dev_seq_open(struct inode *inode, struct file *file)
2896 {
2897 return seq_open_net(inode, file, &dev_seq_ops,
2898 sizeof(struct seq_net_private));
2899 }
2900
2901 static const struct file_operations dev_seq_fops = {
2902 .owner = THIS_MODULE,
2903 .open = dev_seq_open,
2904 .read = seq_read,
2905 .llseek = seq_lseek,
2906 .release = seq_release_net,
2907 };
2908
2909 static const struct seq_operations softnet_seq_ops = {
2910 .start = softnet_seq_start,
2911 .next = softnet_seq_next,
2912 .stop = softnet_seq_stop,
2913 .show = softnet_seq_show,
2914 };
2915
2916 static int softnet_seq_open(struct inode *inode, struct file *file)
2917 {
2918 return seq_open(file, &softnet_seq_ops);
2919 }
2920
2921 static const struct file_operations softnet_seq_fops = {
2922 .owner = THIS_MODULE,
2923 .open = softnet_seq_open,
2924 .read = seq_read,
2925 .llseek = seq_lseek,
2926 .release = seq_release,
2927 };
2928
2929 static void *ptype_get_idx(loff_t pos)
2930 {
2931 struct packet_type *pt = NULL;
2932 loff_t i = 0;
2933 int t;
2934
2935 list_for_each_entry_rcu(pt, &ptype_all, list) {
2936 if (i == pos)
2937 return pt;
2938 ++i;
2939 }
2940
2941 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2942 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2943 if (i == pos)
2944 return pt;
2945 ++i;
2946 }
2947 }
2948 return NULL;
2949 }
2950
2951 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2952 __acquires(RCU)
2953 {
2954 rcu_read_lock();
2955 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2956 }
2957
2958 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2959 {
2960 struct packet_type *pt;
2961 struct list_head *nxt;
2962 int hash;
2963
2964 ++*pos;
2965 if (v == SEQ_START_TOKEN)
2966 return ptype_get_idx(0);
2967
2968 pt = v;
2969 nxt = pt->list.next;
2970 if (pt->type == htons(ETH_P_ALL)) {
2971 if (nxt != &ptype_all)
2972 goto found;
2973 hash = 0;
2974 nxt = ptype_base[0].next;
2975 } else
2976 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2977
2978 while (nxt == &ptype_base[hash]) {
2979 if (++hash >= PTYPE_HASH_SIZE)
2980 return NULL;
2981 nxt = ptype_base[hash].next;
2982 }
2983 found:
2984 return list_entry(nxt, struct packet_type, list);
2985 }
2986
2987 static void ptype_seq_stop(struct seq_file *seq, void *v)
2988 __releases(RCU)
2989 {
2990 rcu_read_unlock();
2991 }
2992
2993 static int ptype_seq_show(struct seq_file *seq, void *v)
2994 {
2995 struct packet_type *pt = v;
2996
2997 if (v == SEQ_START_TOKEN)
2998 seq_puts(seq, "Type Device Function\n");
2999 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3000 if (pt->type == htons(ETH_P_ALL))
3001 seq_puts(seq, "ALL ");
3002 else
3003 seq_printf(seq, "%04x", ntohs(pt->type));
3004
3005 seq_printf(seq, " %-8s %pF\n",
3006 pt->dev ? pt->dev->name : "", pt->func);
3007 }
3008
3009 return 0;
3010 }
3011
3012 static const struct seq_operations ptype_seq_ops = {
3013 .start = ptype_seq_start,
3014 .next = ptype_seq_next,
3015 .stop = ptype_seq_stop,
3016 .show = ptype_seq_show,
3017 };
3018
3019 static int ptype_seq_open(struct inode *inode, struct file *file)
3020 {
3021 return seq_open_net(inode, file, &ptype_seq_ops,
3022 sizeof(struct seq_net_private));
3023 }
3024
3025 static const struct file_operations ptype_seq_fops = {
3026 .owner = THIS_MODULE,
3027 .open = ptype_seq_open,
3028 .read = seq_read,
3029 .llseek = seq_lseek,
3030 .release = seq_release_net,
3031 };
3032
3033
3034 static int __net_init dev_proc_net_init(struct net *net)
3035 {
3036 int rc = -ENOMEM;
3037
3038 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3039 goto out;
3040 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3041 goto out_dev;
3042 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3043 goto out_softnet;
3044
3045 if (wext_proc_init(net))
3046 goto out_ptype;
3047 rc = 0;
3048 out:
3049 return rc;
3050 out_ptype:
3051 proc_net_remove(net, "ptype");
3052 out_softnet:
3053 proc_net_remove(net, "softnet_stat");
3054 out_dev:
3055 proc_net_remove(net, "dev");
3056 goto out;
3057 }
3058
3059 static void __net_exit dev_proc_net_exit(struct net *net)
3060 {
3061 wext_proc_exit(net);
3062
3063 proc_net_remove(net, "ptype");
3064 proc_net_remove(net, "softnet_stat");
3065 proc_net_remove(net, "dev");
3066 }
3067
3068 static struct pernet_operations __net_initdata dev_proc_ops = {
3069 .init = dev_proc_net_init,
3070 .exit = dev_proc_net_exit,
3071 };
3072
3073 static int __init dev_proc_init(void)
3074 {
3075 return register_pernet_subsys(&dev_proc_ops);
3076 }
3077 #else
3078 #define dev_proc_init() 0
3079 #endif /* CONFIG_PROC_FS */
3080
3081
3082 /**
3083 * netdev_set_master - set up master/slave pair
3084 * @slave: slave device
3085 * @master: new master device
3086 *
3087 * Changes the master device of the slave. Pass %NULL to break the
3088 * bonding. The caller must hold the RTNL semaphore. On a failure
3089 * a negative errno code is returned. On success the reference counts
3090 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3091 * function returns zero.
3092 */
3093 int netdev_set_master(struct net_device *slave, struct net_device *master)
3094 {
3095 struct net_device *old = slave->master;
3096
3097 ASSERT_RTNL();
3098
3099 if (master) {
3100 if (old)
3101 return -EBUSY;
3102 dev_hold(master);
3103 }
3104
3105 slave->master = master;
3106
3107 synchronize_net();
3108
3109 if (old)
3110 dev_put(old);
3111
3112 if (master)
3113 slave->flags |= IFF_SLAVE;
3114 else
3115 slave->flags &= ~IFF_SLAVE;
3116
3117 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3118 return 0;
3119 }
3120
3121 static void dev_change_rx_flags(struct net_device *dev, int flags)
3122 {
3123 const struct net_device_ops *ops = dev->netdev_ops;
3124
3125 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3126 ops->ndo_change_rx_flags(dev, flags);
3127 }
3128
3129 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3130 {
3131 unsigned short old_flags = dev->flags;
3132 uid_t uid;
3133 gid_t gid;
3134
3135 ASSERT_RTNL();
3136
3137 dev->flags |= IFF_PROMISC;
3138 dev->promiscuity += inc;
3139 if (dev->promiscuity == 0) {
3140 /*
3141 * Avoid overflow.
3142 * If inc causes overflow, untouch promisc and return error.
3143 */
3144 if (inc < 0)
3145 dev->flags &= ~IFF_PROMISC;
3146 else {
3147 dev->promiscuity -= inc;
3148 printk(KERN_WARNING "%s: promiscuity touches roof, "
3149 "set promiscuity failed, promiscuity feature "
3150 "of device might be broken.\n", dev->name);
3151 return -EOVERFLOW;
3152 }
3153 }
3154 if (dev->flags != old_flags) {
3155 printk(KERN_INFO "device %s %s promiscuous mode\n",
3156 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3157 "left");
3158 if (audit_enabled) {
3159 current_uid_gid(&uid, &gid);
3160 audit_log(current->audit_context, GFP_ATOMIC,
3161 AUDIT_ANOM_PROMISCUOUS,
3162 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3163 dev->name, (dev->flags & IFF_PROMISC),
3164 (old_flags & IFF_PROMISC),
3165 audit_get_loginuid(current),
3166 uid, gid,
3167 audit_get_sessionid(current));
3168 }
3169
3170 dev_change_rx_flags(dev, IFF_PROMISC);
3171 }
3172 return 0;
3173 }
3174
3175 /**
3176 * dev_set_promiscuity - update promiscuity count on a device
3177 * @dev: device
3178 * @inc: modifier
3179 *
3180 * Add or remove promiscuity from a device. While the count in the device
3181 * remains above zero the interface remains promiscuous. Once it hits zero
3182 * the device reverts back to normal filtering operation. A negative inc
3183 * value is used to drop promiscuity on the device.
3184 * Return 0 if successful or a negative errno code on error.
3185 */
3186 int dev_set_promiscuity(struct net_device *dev, int inc)
3187 {
3188 unsigned short old_flags = dev->flags;
3189 int err;
3190
3191 err = __dev_set_promiscuity(dev, inc);
3192 if (err < 0)
3193 return err;
3194 if (dev->flags != old_flags)
3195 dev_set_rx_mode(dev);
3196 return err;
3197 }
3198
3199 /**
3200 * dev_set_allmulti - update allmulti count on a device
3201 * @dev: device
3202 * @inc: modifier
3203 *
3204 * Add or remove reception of all multicast frames to a device. While the
3205 * count in the device remains above zero the interface remains listening
3206 * to all interfaces. Once it hits zero the device reverts back to normal
3207 * filtering operation. A negative @inc value is used to drop the counter
3208 * when releasing a resource needing all multicasts.
3209 * Return 0 if successful or a negative errno code on error.
3210 */
3211
3212 int dev_set_allmulti(struct net_device *dev, int inc)
3213 {
3214 unsigned short old_flags = dev->flags;
3215
3216 ASSERT_RTNL();
3217
3218 dev->flags |= IFF_ALLMULTI;
3219 dev->allmulti += inc;
3220 if (dev->allmulti == 0) {
3221 /*
3222 * Avoid overflow.
3223 * If inc causes overflow, untouch allmulti and return error.
3224 */
3225 if (inc < 0)
3226 dev->flags &= ~IFF_ALLMULTI;
3227 else {
3228 dev->allmulti -= inc;
3229 printk(KERN_WARNING "%s: allmulti touches roof, "
3230 "set allmulti failed, allmulti feature of "
3231 "device might be broken.\n", dev->name);
3232 return -EOVERFLOW;
3233 }
3234 }
3235 if (dev->flags ^ old_flags) {
3236 dev_change_rx_flags(dev, IFF_ALLMULTI);
3237 dev_set_rx_mode(dev);
3238 }
3239 return 0;
3240 }
3241
3242 /*
3243 * Upload unicast and multicast address lists to device and
3244 * configure RX filtering. When the device doesn't support unicast
3245 * filtering it is put in promiscuous mode while unicast addresses
3246 * are present.
3247 */
3248 void __dev_set_rx_mode(struct net_device *dev)
3249 {
3250 const struct net_device_ops *ops = dev->netdev_ops;
3251
3252 /* dev_open will call this function so the list will stay sane. */
3253 if (!(dev->flags&IFF_UP))
3254 return;
3255
3256 if (!netif_device_present(dev))
3257 return;
3258
3259 if (ops->ndo_set_rx_mode)
3260 ops->ndo_set_rx_mode(dev);
3261 else {
3262 /* Unicast addresses changes may only happen under the rtnl,
3263 * therefore calling __dev_set_promiscuity here is safe.
3264 */
3265 if (dev->uc_count > 0 && !dev->uc_promisc) {
3266 __dev_set_promiscuity(dev, 1);
3267 dev->uc_promisc = 1;
3268 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3269 __dev_set_promiscuity(dev, -1);
3270 dev->uc_promisc = 0;
3271 }
3272
3273 if (ops->ndo_set_multicast_list)
3274 ops->ndo_set_multicast_list(dev);
3275 }
3276 }
3277
3278 void dev_set_rx_mode(struct net_device *dev)
3279 {
3280 netif_addr_lock_bh(dev);
3281 __dev_set_rx_mode(dev);
3282 netif_addr_unlock_bh(dev);
3283 }
3284
3285 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3286 void *addr, int alen, int glbl)
3287 {
3288 struct dev_addr_list *da;
3289
3290 for (; (da = *list) != NULL; list = &da->next) {
3291 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3292 alen == da->da_addrlen) {
3293 if (glbl) {
3294 int old_glbl = da->da_gusers;
3295 da->da_gusers = 0;
3296 if (old_glbl == 0)
3297 break;
3298 }
3299 if (--da->da_users)
3300 return 0;
3301
3302 *list = da->next;
3303 kfree(da);
3304 (*count)--;
3305 return 0;
3306 }
3307 }
3308 return -ENOENT;
3309 }
3310
3311 int __dev_addr_add(struct dev_addr_list **list, int *count,
3312 void *addr, int alen, int glbl)
3313 {
3314 struct dev_addr_list *da;
3315
3316 for (da = *list; da != NULL; da = da->next) {
3317 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3318 da->da_addrlen == alen) {
3319 if (glbl) {
3320 int old_glbl = da->da_gusers;
3321 da->da_gusers = 1;
3322 if (old_glbl)
3323 return 0;
3324 }
3325 da->da_users++;
3326 return 0;
3327 }
3328 }
3329
3330 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3331 if (da == NULL)
3332 return -ENOMEM;
3333 memcpy(da->da_addr, addr, alen);
3334 da->da_addrlen = alen;
3335 da->da_users = 1;
3336 da->da_gusers = glbl ? 1 : 0;
3337 da->next = *list;
3338 *list = da;
3339 (*count)++;
3340 return 0;
3341 }
3342
3343 /**
3344 * dev_unicast_delete - Release secondary unicast address.
3345 * @dev: device
3346 * @addr: address to delete
3347 * @alen: length of @addr
3348 *
3349 * Release reference to a secondary unicast address and remove it
3350 * from the device if the reference count drops to zero.
3351 *
3352 * The caller must hold the rtnl_mutex.
3353 */
3354 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3355 {
3356 int err;
3357
3358 ASSERT_RTNL();
3359
3360 netif_addr_lock_bh(dev);
3361 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3362 if (!err)
3363 __dev_set_rx_mode(dev);
3364 netif_addr_unlock_bh(dev);
3365 return err;
3366 }
3367 EXPORT_SYMBOL(dev_unicast_delete);
3368
3369 /**
3370 * dev_unicast_add - add a secondary unicast address
3371 * @dev: device
3372 * @addr: address to add
3373 * @alen: length of @addr
3374 *
3375 * Add a secondary unicast address to the device or increase
3376 * the reference count if it already exists.
3377 *
3378 * The caller must hold the rtnl_mutex.
3379 */
3380 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3381 {
3382 int err;
3383
3384 ASSERT_RTNL();
3385
3386 netif_addr_lock_bh(dev);
3387 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3388 if (!err)
3389 __dev_set_rx_mode(dev);
3390 netif_addr_unlock_bh(dev);
3391 return err;
3392 }
3393 EXPORT_SYMBOL(dev_unicast_add);
3394
3395 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3396 struct dev_addr_list **from, int *from_count)
3397 {
3398 struct dev_addr_list *da, *next;
3399 int err = 0;
3400
3401 da = *from;
3402 while (da != NULL) {
3403 next = da->next;
3404 if (!da->da_synced) {
3405 err = __dev_addr_add(to, to_count,
3406 da->da_addr, da->da_addrlen, 0);
3407 if (err < 0)
3408 break;
3409 da->da_synced = 1;
3410 da->da_users++;
3411 } else if (da->da_users == 1) {
3412 __dev_addr_delete(to, to_count,
3413 da->da_addr, da->da_addrlen, 0);
3414 __dev_addr_delete(from, from_count,
3415 da->da_addr, da->da_addrlen, 0);
3416 }
3417 da = next;
3418 }
3419 return err;
3420 }
3421
3422 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3423 struct dev_addr_list **from, int *from_count)
3424 {
3425 struct dev_addr_list *da, *next;
3426
3427 da = *from;
3428 while (da != NULL) {
3429 next = da->next;
3430 if (da->da_synced) {
3431 __dev_addr_delete(to, to_count,
3432 da->da_addr, da->da_addrlen, 0);
3433 da->da_synced = 0;
3434 __dev_addr_delete(from, from_count,
3435 da->da_addr, da->da_addrlen, 0);
3436 }
3437 da = next;
3438 }
3439 }
3440
3441 /**
3442 * dev_unicast_sync - Synchronize device's unicast list to another device
3443 * @to: destination device
3444 * @from: source device
3445 *
3446 * Add newly added addresses to the destination device and release
3447 * addresses that have no users left. The source device must be
3448 * locked by netif_tx_lock_bh.
3449 *
3450 * This function is intended to be called from the dev->set_rx_mode
3451 * function of layered software devices.
3452 */
3453 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3454 {
3455 int err = 0;
3456
3457 netif_addr_lock_bh(to);
3458 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3459 &from->uc_list, &from->uc_count);
3460 if (!err)
3461 __dev_set_rx_mode(to);
3462 netif_addr_unlock_bh(to);
3463 return err;
3464 }
3465 EXPORT_SYMBOL(dev_unicast_sync);
3466
3467 /**
3468 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3469 * @to: destination device
3470 * @from: source device
3471 *
3472 * Remove all addresses that were added to the destination device by
3473 * dev_unicast_sync(). This function is intended to be called from the
3474 * dev->stop function of layered software devices.
3475 */
3476 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3477 {
3478 netif_addr_lock_bh(from);
3479 netif_addr_lock(to);
3480
3481 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3482 &from->uc_list, &from->uc_count);
3483 __dev_set_rx_mode(to);
3484
3485 netif_addr_unlock(to);
3486 netif_addr_unlock_bh(from);
3487 }
3488 EXPORT_SYMBOL(dev_unicast_unsync);
3489
3490 static void __dev_addr_discard(struct dev_addr_list **list)
3491 {
3492 struct dev_addr_list *tmp;
3493
3494 while (*list != NULL) {
3495 tmp = *list;
3496 *list = tmp->next;
3497 if (tmp->da_users > tmp->da_gusers)
3498 printk("__dev_addr_discard: address leakage! "
3499 "da_users=%d\n", tmp->da_users);
3500 kfree(tmp);
3501 }
3502 }
3503
3504 static void dev_addr_discard(struct net_device *dev)
3505 {
3506 netif_addr_lock_bh(dev);
3507
3508 __dev_addr_discard(&dev->uc_list);
3509 dev->uc_count = 0;
3510
3511 __dev_addr_discard(&dev->mc_list);
3512 dev->mc_count = 0;
3513
3514 netif_addr_unlock_bh(dev);
3515 }
3516
3517 /**
3518 * dev_get_flags - get flags reported to userspace
3519 * @dev: device
3520 *
3521 * Get the combination of flag bits exported through APIs to userspace.
3522 */
3523 unsigned dev_get_flags(const struct net_device *dev)
3524 {
3525 unsigned flags;
3526
3527 flags = (dev->flags & ~(IFF_PROMISC |
3528 IFF_ALLMULTI |
3529 IFF_RUNNING |
3530 IFF_LOWER_UP |
3531 IFF_DORMANT)) |
3532 (dev->gflags & (IFF_PROMISC |
3533 IFF_ALLMULTI));
3534
3535 if (netif_running(dev)) {
3536 if (netif_oper_up(dev))
3537 flags |= IFF_RUNNING;
3538 if (netif_carrier_ok(dev))
3539 flags |= IFF_LOWER_UP;
3540 if (netif_dormant(dev))
3541 flags |= IFF_DORMANT;
3542 }
3543
3544 return flags;
3545 }
3546
3547 /**
3548 * dev_change_flags - change device settings
3549 * @dev: device
3550 * @flags: device state flags
3551 *
3552 * Change settings on device based state flags. The flags are
3553 * in the userspace exported format.
3554 */
3555 int dev_change_flags(struct net_device *dev, unsigned flags)
3556 {
3557 int ret, changes;
3558 int old_flags = dev->flags;
3559
3560 ASSERT_RTNL();
3561
3562 /*
3563 * Set the flags on our device.
3564 */
3565
3566 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3567 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3568 IFF_AUTOMEDIA)) |
3569 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3570 IFF_ALLMULTI));
3571
3572 /*
3573 * Load in the correct multicast list now the flags have changed.
3574 */
3575
3576 if ((old_flags ^ flags) & IFF_MULTICAST)
3577 dev_change_rx_flags(dev, IFF_MULTICAST);
3578
3579 dev_set_rx_mode(dev);
3580
3581 /*
3582 * Have we downed the interface. We handle IFF_UP ourselves
3583 * according to user attempts to set it, rather than blindly
3584 * setting it.
3585 */
3586
3587 ret = 0;
3588 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3589 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3590
3591 if (!ret)
3592 dev_set_rx_mode(dev);
3593 }
3594
3595 if (dev->flags & IFF_UP &&
3596 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3597 IFF_VOLATILE)))
3598 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3599
3600 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3601 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3602 dev->gflags ^= IFF_PROMISC;
3603 dev_set_promiscuity(dev, inc);
3604 }
3605
3606 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3607 is important. Some (broken) drivers set IFF_PROMISC, when
3608 IFF_ALLMULTI is requested not asking us and not reporting.
3609 */
3610 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3611 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3612 dev->gflags ^= IFF_ALLMULTI;
3613 dev_set_allmulti(dev, inc);
3614 }
3615
3616 /* Exclude state transition flags, already notified */
3617 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3618 if (changes)
3619 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3620
3621 return ret;
3622 }
3623
3624 /**
3625 * dev_set_mtu - Change maximum transfer unit
3626 * @dev: device
3627 * @new_mtu: new transfer unit
3628 *
3629 * Change the maximum transfer size of the network device.
3630 */
3631 int dev_set_mtu(struct net_device *dev, int new_mtu)
3632 {
3633 const struct net_device_ops *ops = dev->netdev_ops;
3634 int err;
3635
3636 if (new_mtu == dev->mtu)
3637 return 0;
3638
3639 /* MTU must be positive. */
3640 if (new_mtu < 0)
3641 return -EINVAL;
3642
3643 if (!netif_device_present(dev))
3644 return -ENODEV;
3645
3646 err = 0;
3647 if (ops->ndo_change_mtu)
3648 err = ops->ndo_change_mtu(dev, new_mtu);
3649 else
3650 dev->mtu = new_mtu;
3651
3652 if (!err && dev->flags & IFF_UP)
3653 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3654 return err;
3655 }
3656
3657 /**
3658 * dev_set_mac_address - Change Media Access Control Address
3659 * @dev: device
3660 * @sa: new address
3661 *
3662 * Change the hardware (MAC) address of the device
3663 */
3664 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3665 {
3666 const struct net_device_ops *ops = dev->netdev_ops;
3667 int err;
3668
3669 if (!ops->ndo_set_mac_address)
3670 return -EOPNOTSUPP;
3671 if (sa->sa_family != dev->type)
3672 return -EINVAL;
3673 if (!netif_device_present(dev))
3674 return -ENODEV;
3675 err = ops->ndo_set_mac_address(dev, sa);
3676 if (!err)
3677 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3678 return err;
3679 }
3680
3681 /*
3682 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3683 */
3684 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3685 {
3686 int err;
3687 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3688
3689 if (!dev)
3690 return -ENODEV;
3691
3692 switch (cmd) {
3693 case SIOCGIFFLAGS: /* Get interface flags */
3694 ifr->ifr_flags = dev_get_flags(dev);
3695 return 0;
3696
3697 case SIOCGIFMETRIC: /* Get the metric on the interface
3698 (currently unused) */
3699 ifr->ifr_metric = 0;
3700 return 0;
3701
3702 case SIOCGIFMTU: /* Get the MTU of a device */
3703 ifr->ifr_mtu = dev->mtu;
3704 return 0;
3705
3706 case SIOCGIFHWADDR:
3707 if (!dev->addr_len)
3708 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3709 else
3710 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3711 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3712 ifr->ifr_hwaddr.sa_family = dev->type;
3713 return 0;
3714
3715 case SIOCGIFSLAVE:
3716 err = -EINVAL;
3717 break;
3718
3719 case SIOCGIFMAP:
3720 ifr->ifr_map.mem_start = dev->mem_start;
3721 ifr->ifr_map.mem_end = dev->mem_end;
3722 ifr->ifr_map.base_addr = dev->base_addr;
3723 ifr->ifr_map.irq = dev->irq;
3724 ifr->ifr_map.dma = dev->dma;
3725 ifr->ifr_map.port = dev->if_port;
3726 return 0;
3727
3728 case SIOCGIFINDEX:
3729 ifr->ifr_ifindex = dev->ifindex;
3730 return 0;
3731
3732 case SIOCGIFTXQLEN:
3733 ifr->ifr_qlen = dev->tx_queue_len;
3734 return 0;
3735
3736 default:
3737 /* dev_ioctl() should ensure this case
3738 * is never reached
3739 */
3740 WARN_ON(1);
3741 err = -EINVAL;
3742 break;
3743
3744 }
3745 return err;
3746 }
3747
3748 /*
3749 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3750 */
3751 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3752 {
3753 int err;
3754 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3755 const struct net_device_ops *ops;
3756
3757 if (!dev)
3758 return -ENODEV;
3759
3760 ops = dev->netdev_ops;
3761
3762 switch (cmd) {
3763 case SIOCSIFFLAGS: /* Set interface flags */
3764 return dev_change_flags(dev, ifr->ifr_flags);
3765
3766 case SIOCSIFMETRIC: /* Set the metric on the interface
3767 (currently unused) */
3768 return -EOPNOTSUPP;
3769
3770 case SIOCSIFMTU: /* Set the MTU of a device */
3771 return dev_set_mtu(dev, ifr->ifr_mtu);
3772
3773 case SIOCSIFHWADDR:
3774 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3775
3776 case SIOCSIFHWBROADCAST:
3777 if (ifr->ifr_hwaddr.sa_family != dev->type)
3778 return -EINVAL;
3779 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3780 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3781 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3782 return 0;
3783
3784 case SIOCSIFMAP:
3785 if (ops->ndo_set_config) {
3786 if (!netif_device_present(dev))
3787 return -ENODEV;
3788 return ops->ndo_set_config(dev, &ifr->ifr_map);
3789 }
3790 return -EOPNOTSUPP;
3791
3792 case SIOCADDMULTI:
3793 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3794 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3795 return -EINVAL;
3796 if (!netif_device_present(dev))
3797 return -ENODEV;
3798 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3799 dev->addr_len, 1);
3800
3801 case SIOCDELMULTI:
3802 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3803 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3804 return -EINVAL;
3805 if (!netif_device_present(dev))
3806 return -ENODEV;
3807 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3808 dev->addr_len, 1);
3809
3810 case SIOCSIFTXQLEN:
3811 if (ifr->ifr_qlen < 0)
3812 return -EINVAL;
3813 dev->tx_queue_len = ifr->ifr_qlen;
3814 return 0;
3815
3816 case SIOCSIFNAME:
3817 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3818 return dev_change_name(dev, ifr->ifr_newname);
3819
3820 /*
3821 * Unknown or private ioctl
3822 */
3823
3824 default:
3825 if ((cmd >= SIOCDEVPRIVATE &&
3826 cmd <= SIOCDEVPRIVATE + 15) ||
3827 cmd == SIOCBONDENSLAVE ||
3828 cmd == SIOCBONDRELEASE ||
3829 cmd == SIOCBONDSETHWADDR ||
3830 cmd == SIOCBONDSLAVEINFOQUERY ||
3831 cmd == SIOCBONDINFOQUERY ||
3832 cmd == SIOCBONDCHANGEACTIVE ||
3833 cmd == SIOCGMIIPHY ||
3834 cmd == SIOCGMIIREG ||
3835 cmd == SIOCSMIIREG ||
3836 cmd == SIOCBRADDIF ||
3837 cmd == SIOCBRDELIF ||
3838 cmd == SIOCWANDEV) {
3839 err = -EOPNOTSUPP;
3840 if (ops->ndo_do_ioctl) {
3841 if (netif_device_present(dev))
3842 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3843 else
3844 err = -ENODEV;
3845 }
3846 } else
3847 err = -EINVAL;
3848
3849 }
3850 return err;
3851 }
3852
3853 /*
3854 * This function handles all "interface"-type I/O control requests. The actual
3855 * 'doing' part of this is dev_ifsioc above.
3856 */
3857
3858 /**
3859 * dev_ioctl - network device ioctl
3860 * @net: the applicable net namespace
3861 * @cmd: command to issue
3862 * @arg: pointer to a struct ifreq in user space
3863 *
3864 * Issue ioctl functions to devices. This is normally called by the
3865 * user space syscall interfaces but can sometimes be useful for
3866 * other purposes. The return value is the return from the syscall if
3867 * positive or a negative errno code on error.
3868 */
3869
3870 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3871 {
3872 struct ifreq ifr;
3873 int ret;
3874 char *colon;
3875
3876 /* One special case: SIOCGIFCONF takes ifconf argument
3877 and requires shared lock, because it sleeps writing
3878 to user space.
3879 */
3880
3881 if (cmd == SIOCGIFCONF) {
3882 rtnl_lock();
3883 ret = dev_ifconf(net, (char __user *) arg);
3884 rtnl_unlock();
3885 return ret;
3886 }
3887 if (cmd == SIOCGIFNAME)
3888 return dev_ifname(net, (struct ifreq __user *)arg);
3889
3890 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3891 return -EFAULT;
3892
3893 ifr.ifr_name[IFNAMSIZ-1] = 0;
3894
3895 colon = strchr(ifr.ifr_name, ':');
3896 if (colon)
3897 *colon = 0;
3898
3899 /*
3900 * See which interface the caller is talking about.
3901 */
3902
3903 switch (cmd) {
3904 /*
3905 * These ioctl calls:
3906 * - can be done by all.
3907 * - atomic and do not require locking.
3908 * - return a value
3909 */
3910 case SIOCGIFFLAGS:
3911 case SIOCGIFMETRIC:
3912 case SIOCGIFMTU:
3913 case SIOCGIFHWADDR:
3914 case SIOCGIFSLAVE:
3915 case SIOCGIFMAP:
3916 case SIOCGIFINDEX:
3917 case SIOCGIFTXQLEN:
3918 dev_load(net, ifr.ifr_name);
3919 read_lock(&dev_base_lock);
3920 ret = dev_ifsioc_locked(net, &ifr, cmd);
3921 read_unlock(&dev_base_lock);
3922 if (!ret) {
3923 if (colon)
3924 *colon = ':';
3925 if (copy_to_user(arg, &ifr,
3926 sizeof(struct ifreq)))
3927 ret = -EFAULT;
3928 }
3929 return ret;
3930
3931 case SIOCETHTOOL:
3932 dev_load(net, ifr.ifr_name);
3933 rtnl_lock();
3934 ret = dev_ethtool(net, &ifr);
3935 rtnl_unlock();
3936 if (!ret) {
3937 if (colon)
3938 *colon = ':';
3939 if (copy_to_user(arg, &ifr,
3940 sizeof(struct ifreq)))
3941 ret = -EFAULT;
3942 }
3943 return ret;
3944
3945 /*
3946 * These ioctl calls:
3947 * - require superuser power.
3948 * - require strict serialization.
3949 * - return a value
3950 */
3951 case SIOCGMIIPHY:
3952 case SIOCGMIIREG:
3953 case SIOCSIFNAME:
3954 if (!capable(CAP_NET_ADMIN))
3955 return -EPERM;
3956 dev_load(net, ifr.ifr_name);
3957 rtnl_lock();
3958 ret = dev_ifsioc(net, &ifr, cmd);
3959 rtnl_unlock();
3960 if (!ret) {
3961 if (colon)
3962 *colon = ':';
3963 if (copy_to_user(arg, &ifr,
3964 sizeof(struct ifreq)))
3965 ret = -EFAULT;
3966 }
3967 return ret;
3968
3969 /*
3970 * These ioctl calls:
3971 * - require superuser power.
3972 * - require strict serialization.
3973 * - do not return a value
3974 */
3975 case SIOCSIFFLAGS:
3976 case SIOCSIFMETRIC:
3977 case SIOCSIFMTU:
3978 case SIOCSIFMAP:
3979 case SIOCSIFHWADDR:
3980 case SIOCSIFSLAVE:
3981 case SIOCADDMULTI:
3982 case SIOCDELMULTI:
3983 case SIOCSIFHWBROADCAST:
3984 case SIOCSIFTXQLEN:
3985 case SIOCSMIIREG:
3986 case SIOCBONDENSLAVE:
3987 case SIOCBONDRELEASE:
3988 case SIOCBONDSETHWADDR:
3989 case SIOCBONDCHANGEACTIVE:
3990 case SIOCBRADDIF:
3991 case SIOCBRDELIF:
3992 if (!capable(CAP_NET_ADMIN))
3993 return -EPERM;
3994 /* fall through */
3995 case SIOCBONDSLAVEINFOQUERY:
3996 case SIOCBONDINFOQUERY:
3997 dev_load(net, ifr.ifr_name);
3998 rtnl_lock();
3999 ret = dev_ifsioc(net, &ifr, cmd);
4000 rtnl_unlock();
4001 return ret;
4002
4003 case SIOCGIFMEM:
4004 /* Get the per device memory space. We can add this but
4005 * currently do not support it */
4006 case SIOCSIFMEM:
4007 /* Set the per device memory buffer space.
4008 * Not applicable in our case */
4009 case SIOCSIFLINK:
4010 return -EINVAL;
4011
4012 /*
4013 * Unknown or private ioctl.
4014 */
4015 default:
4016 if (cmd == SIOCWANDEV ||
4017 (cmd >= SIOCDEVPRIVATE &&
4018 cmd <= SIOCDEVPRIVATE + 15)) {
4019 dev_load(net, ifr.ifr_name);
4020 rtnl_lock();
4021 ret = dev_ifsioc(net, &ifr, cmd);
4022 rtnl_unlock();
4023 if (!ret && copy_to_user(arg, &ifr,
4024 sizeof(struct ifreq)))
4025 ret = -EFAULT;
4026 return ret;
4027 }
4028 /* Take care of Wireless Extensions */
4029 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4030 return wext_handle_ioctl(net, &ifr, cmd, arg);
4031 return -EINVAL;
4032 }
4033 }
4034
4035
4036 /**
4037 * dev_new_index - allocate an ifindex
4038 * @net: the applicable net namespace
4039 *
4040 * Returns a suitable unique value for a new device interface
4041 * number. The caller must hold the rtnl semaphore or the
4042 * dev_base_lock to be sure it remains unique.
4043 */
4044 static int dev_new_index(struct net *net)
4045 {
4046 static int ifindex;
4047 for (;;) {
4048 if (++ifindex <= 0)
4049 ifindex = 1;
4050 if (!__dev_get_by_index(net, ifindex))
4051 return ifindex;
4052 }
4053 }
4054
4055 /* Delayed registration/unregisteration */
4056 static LIST_HEAD(net_todo_list);
4057
4058 static void net_set_todo(struct net_device *dev)
4059 {
4060 list_add_tail(&dev->todo_list, &net_todo_list);
4061 }
4062
4063 static void rollback_registered(struct net_device *dev)
4064 {
4065 BUG_ON(dev_boot_phase);
4066 ASSERT_RTNL();
4067
4068 /* Some devices call without registering for initialization unwind. */
4069 if (dev->reg_state == NETREG_UNINITIALIZED) {
4070 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4071 "was registered\n", dev->name, dev);
4072
4073 WARN_ON(1);
4074 return;
4075 }
4076
4077 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4078
4079 /* If device is running, close it first. */
4080 dev_close(dev);
4081
4082 /* And unlink it from device chain. */
4083 unlist_netdevice(dev);
4084
4085 dev->reg_state = NETREG_UNREGISTERING;
4086
4087 synchronize_net();
4088
4089 /* Shutdown queueing discipline. */
4090 dev_shutdown(dev);
4091
4092
4093 /* Notify protocols, that we are about to destroy
4094 this device. They should clean all the things.
4095 */
4096 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4097
4098 /*
4099 * Flush the unicast and multicast chains
4100 */
4101 dev_addr_discard(dev);
4102
4103 if (dev->netdev_ops->ndo_uninit)
4104 dev->netdev_ops->ndo_uninit(dev);
4105
4106 /* Notifier chain MUST detach us from master device. */
4107 WARN_ON(dev->master);
4108
4109 /* Remove entries from kobject tree */
4110 netdev_unregister_kobject(dev);
4111
4112 synchronize_net();
4113
4114 dev_put(dev);
4115 }
4116
4117 static void __netdev_init_queue_locks_one(struct net_device *dev,
4118 struct netdev_queue *dev_queue,
4119 void *_unused)
4120 {
4121 spin_lock_init(&dev_queue->_xmit_lock);
4122 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4123 dev_queue->xmit_lock_owner = -1;
4124 }
4125
4126 static void netdev_init_queue_locks(struct net_device *dev)
4127 {
4128 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4129 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4130 }
4131
4132 unsigned long netdev_fix_features(unsigned long features, const char *name)
4133 {
4134 /* Fix illegal SG+CSUM combinations. */
4135 if ((features & NETIF_F_SG) &&
4136 !(features & NETIF_F_ALL_CSUM)) {
4137 if (name)
4138 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4139 "checksum feature.\n", name);
4140 features &= ~NETIF_F_SG;
4141 }
4142
4143 /* TSO requires that SG is present as well. */
4144 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4145 if (name)
4146 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4147 "SG feature.\n", name);
4148 features &= ~NETIF_F_TSO;
4149 }
4150
4151 if (features & NETIF_F_UFO) {
4152 if (!(features & NETIF_F_GEN_CSUM)) {
4153 if (name)
4154 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4155 "since no NETIF_F_HW_CSUM feature.\n",
4156 name);
4157 features &= ~NETIF_F_UFO;
4158 }
4159
4160 if (!(features & NETIF_F_SG)) {
4161 if (name)
4162 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4163 "since no NETIF_F_SG feature.\n", name);
4164 features &= ~NETIF_F_UFO;
4165 }
4166 }
4167
4168 return features;
4169 }
4170 EXPORT_SYMBOL(netdev_fix_features);
4171
4172 /**
4173 * register_netdevice - register a network device
4174 * @dev: device to register
4175 *
4176 * Take a completed network device structure and add it to the kernel
4177 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4178 * chain. 0 is returned on success. A negative errno code is returned
4179 * on a failure to set up the device, or if the name is a duplicate.
4180 *
4181 * Callers must hold the rtnl semaphore. You may want
4182 * register_netdev() instead of this.
4183 *
4184 * BUGS:
4185 * The locking appears insufficient to guarantee two parallel registers
4186 * will not get the same name.
4187 */
4188
4189 int register_netdevice(struct net_device *dev)
4190 {
4191 struct hlist_head *head;
4192 struct hlist_node *p;
4193 int ret;
4194 struct net *net = dev_net(dev);
4195
4196 BUG_ON(dev_boot_phase);
4197 ASSERT_RTNL();
4198
4199 might_sleep();
4200
4201 /* When net_device's are persistent, this will be fatal. */
4202 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4203 BUG_ON(!net);
4204
4205 spin_lock_init(&dev->addr_list_lock);
4206 netdev_set_addr_lockdep_class(dev);
4207 netdev_init_queue_locks(dev);
4208
4209 dev->iflink = -1;
4210
4211 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4212 /* Netdevice_ops API compatiability support.
4213 * This is temporary until all network devices are converted.
4214 */
4215 if (dev->netdev_ops) {
4216 const struct net_device_ops *ops = dev->netdev_ops;
4217
4218 dev->init = ops->ndo_init;
4219 dev->uninit = ops->ndo_uninit;
4220 dev->open = ops->ndo_open;
4221 dev->change_rx_flags = ops->ndo_change_rx_flags;
4222 dev->set_rx_mode = ops->ndo_set_rx_mode;
4223 dev->set_multicast_list = ops->ndo_set_multicast_list;
4224 dev->set_mac_address = ops->ndo_set_mac_address;
4225 dev->validate_addr = ops->ndo_validate_addr;
4226 dev->do_ioctl = ops->ndo_do_ioctl;
4227 dev->set_config = ops->ndo_set_config;
4228 dev->change_mtu = ops->ndo_change_mtu;
4229 dev->tx_timeout = ops->ndo_tx_timeout;
4230 dev->get_stats = ops->ndo_get_stats;
4231 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4232 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4233 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4234 #ifdef CONFIG_NET_POLL_CONTROLLER
4235 dev->poll_controller = ops->ndo_poll_controller;
4236 #endif
4237 } else {
4238 char drivername[64];
4239 pr_info("%s (%s): not using net_device_ops yet\n",
4240 dev->name, netdev_drivername(dev, drivername, 64));
4241
4242 /* This works only because net_device_ops and the
4243 compatiablity structure are the same. */
4244 dev->netdev_ops = (void *) &(dev->init);
4245 }
4246 #endif
4247
4248 /* Init, if this function is available */
4249 if (dev->netdev_ops->ndo_init) {
4250 ret = dev->netdev_ops->ndo_init(dev);
4251 if (ret) {
4252 if (ret > 0)
4253 ret = -EIO;
4254 goto out;
4255 }
4256 }
4257
4258 if (!dev_valid_name(dev->name)) {
4259 ret = -EINVAL;
4260 goto err_uninit;
4261 }
4262
4263 dev->ifindex = dev_new_index(net);
4264 if (dev->iflink == -1)
4265 dev->iflink = dev->ifindex;
4266
4267 /* Check for existence of name */
4268 head = dev_name_hash(net, dev->name);
4269 hlist_for_each(p, head) {
4270 struct net_device *d
4271 = hlist_entry(p, struct net_device, name_hlist);
4272 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4273 ret = -EEXIST;
4274 goto err_uninit;
4275 }
4276 }
4277
4278 /* Fix illegal checksum combinations */
4279 if ((dev->features & NETIF_F_HW_CSUM) &&
4280 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4281 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4282 dev->name);
4283 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4284 }
4285
4286 if ((dev->features & NETIF_F_NO_CSUM) &&
4287 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4288 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4289 dev->name);
4290 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4291 }
4292
4293 dev->features = netdev_fix_features(dev->features, dev->name);
4294
4295 /* Enable software GSO if SG is supported. */
4296 if (dev->features & NETIF_F_SG)
4297 dev->features |= NETIF_F_GSO;
4298
4299 netdev_initialize_kobject(dev);
4300 ret = netdev_register_kobject(dev);
4301 if (ret)
4302 goto err_uninit;
4303 dev->reg_state = NETREG_REGISTERED;
4304
4305 /*
4306 * Default initial state at registry is that the
4307 * device is present.
4308 */
4309
4310 set_bit(__LINK_STATE_PRESENT, &dev->state);
4311
4312 dev_init_scheduler(dev);
4313 dev_hold(dev);
4314 list_netdevice(dev);
4315
4316 /* Notify protocols, that a new device appeared. */
4317 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4318 ret = notifier_to_errno(ret);
4319 if (ret) {
4320 rollback_registered(dev);
4321 dev->reg_state = NETREG_UNREGISTERED;
4322 }
4323
4324 out:
4325 return ret;
4326
4327 err_uninit:
4328 if (dev->netdev_ops->ndo_uninit)
4329 dev->netdev_ops->ndo_uninit(dev);
4330 goto out;
4331 }
4332
4333 /**
4334 * register_netdev - register a network device
4335 * @dev: device to register
4336 *
4337 * Take a completed network device structure and add it to the kernel
4338 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4339 * chain. 0 is returned on success. A negative errno code is returned
4340 * on a failure to set up the device, or if the name is a duplicate.
4341 *
4342 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4343 * and expands the device name if you passed a format string to
4344 * alloc_netdev.
4345 */
4346 int register_netdev(struct net_device *dev)
4347 {
4348 int err;
4349
4350 rtnl_lock();
4351
4352 /*
4353 * If the name is a format string the caller wants us to do a
4354 * name allocation.
4355 */
4356 if (strchr(dev->name, '%')) {
4357 err = dev_alloc_name(dev, dev->name);
4358 if (err < 0)
4359 goto out;
4360 }
4361
4362 err = register_netdevice(dev);
4363 out:
4364 rtnl_unlock();
4365 return err;
4366 }
4367 EXPORT_SYMBOL(register_netdev);
4368
4369 /*
4370 * netdev_wait_allrefs - wait until all references are gone.
4371 *
4372 * This is called when unregistering network devices.
4373 *
4374 * Any protocol or device that holds a reference should register
4375 * for netdevice notification, and cleanup and put back the
4376 * reference if they receive an UNREGISTER event.
4377 * We can get stuck here if buggy protocols don't correctly
4378 * call dev_put.
4379 */
4380 static void netdev_wait_allrefs(struct net_device *dev)
4381 {
4382 unsigned long rebroadcast_time, warning_time;
4383
4384 rebroadcast_time = warning_time = jiffies;
4385 while (atomic_read(&dev->refcnt) != 0) {
4386 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4387 rtnl_lock();
4388
4389 /* Rebroadcast unregister notification */
4390 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4391
4392 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4393 &dev->state)) {
4394 /* We must not have linkwatch events
4395 * pending on unregister. If this
4396 * happens, we simply run the queue
4397 * unscheduled, resulting in a noop
4398 * for this device.
4399 */
4400 linkwatch_run_queue();
4401 }
4402
4403 __rtnl_unlock();
4404
4405 rebroadcast_time = jiffies;
4406 }
4407
4408 msleep(250);
4409
4410 if (time_after(jiffies, warning_time + 10 * HZ)) {
4411 printk(KERN_EMERG "unregister_netdevice: "
4412 "waiting for %s to become free. Usage "
4413 "count = %d\n",
4414 dev->name, atomic_read(&dev->refcnt));
4415 warning_time = jiffies;
4416 }
4417 }
4418 }
4419
4420 /* The sequence is:
4421 *
4422 * rtnl_lock();
4423 * ...
4424 * register_netdevice(x1);
4425 * register_netdevice(x2);
4426 * ...
4427 * unregister_netdevice(y1);
4428 * unregister_netdevice(y2);
4429 * ...
4430 * rtnl_unlock();
4431 * free_netdev(y1);
4432 * free_netdev(y2);
4433 *
4434 * We are invoked by rtnl_unlock().
4435 * This allows us to deal with problems:
4436 * 1) We can delete sysfs objects which invoke hotplug
4437 * without deadlocking with linkwatch via keventd.
4438 * 2) Since we run with the RTNL semaphore not held, we can sleep
4439 * safely in order to wait for the netdev refcnt to drop to zero.
4440 *
4441 * We must not return until all unregister events added during
4442 * the interval the lock was held have been completed.
4443 */
4444 void netdev_run_todo(void)
4445 {
4446 struct list_head list;
4447
4448 /* Snapshot list, allow later requests */
4449 list_replace_init(&net_todo_list, &list);
4450
4451 __rtnl_unlock();
4452
4453 while (!list_empty(&list)) {
4454 struct net_device *dev
4455 = list_entry(list.next, struct net_device, todo_list);
4456 list_del(&dev->todo_list);
4457
4458 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4459 printk(KERN_ERR "network todo '%s' but state %d\n",
4460 dev->name, dev->reg_state);
4461 dump_stack();
4462 continue;
4463 }
4464
4465 dev->reg_state = NETREG_UNREGISTERED;
4466
4467 on_each_cpu(flush_backlog, dev, 1);
4468
4469 netdev_wait_allrefs(dev);
4470
4471 /* paranoia */
4472 BUG_ON(atomic_read(&dev->refcnt));
4473 WARN_ON(dev->ip_ptr);
4474 WARN_ON(dev->ip6_ptr);
4475 WARN_ON(dev->dn_ptr);
4476
4477 if (dev->destructor)
4478 dev->destructor(dev);
4479
4480 /* Free network device */
4481 kobject_put(&dev->dev.kobj);
4482 }
4483 }
4484
4485 /**
4486 * dev_get_stats - get network device statistics
4487 * @dev: device to get statistics from
4488 *
4489 * Get network statistics from device. The device driver may provide
4490 * its own method by setting dev->netdev_ops->get_stats; otherwise
4491 * the internal statistics structure is used.
4492 */
4493 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4494 {
4495 const struct net_device_ops *ops = dev->netdev_ops;
4496
4497 if (ops->ndo_get_stats)
4498 return ops->ndo_get_stats(dev);
4499 else
4500 return &dev->stats;
4501 }
4502 EXPORT_SYMBOL(dev_get_stats);
4503
4504 static void netdev_init_one_queue(struct net_device *dev,
4505 struct netdev_queue *queue,
4506 void *_unused)
4507 {
4508 queue->dev = dev;
4509 }
4510
4511 static void netdev_init_queues(struct net_device *dev)
4512 {
4513 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4514 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4515 spin_lock_init(&dev->tx_global_lock);
4516 }
4517
4518 /**
4519 * alloc_netdev_mq - allocate network device
4520 * @sizeof_priv: size of private data to allocate space for
4521 * @name: device name format string
4522 * @setup: callback to initialize device
4523 * @queue_count: the number of subqueues to allocate
4524 *
4525 * Allocates a struct net_device with private data area for driver use
4526 * and performs basic initialization. Also allocates subquue structs
4527 * for each queue on the device at the end of the netdevice.
4528 */
4529 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4530 void (*setup)(struct net_device *), unsigned int queue_count)
4531 {
4532 struct netdev_queue *tx;
4533 struct net_device *dev;
4534 size_t alloc_size;
4535 void *p;
4536
4537 BUG_ON(strlen(name) >= sizeof(dev->name));
4538
4539 alloc_size = sizeof(struct net_device);
4540 if (sizeof_priv) {
4541 /* ensure 32-byte alignment of private area */
4542 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4543 alloc_size += sizeof_priv;
4544 }
4545 /* ensure 32-byte alignment of whole construct */
4546 alloc_size += NETDEV_ALIGN_CONST;
4547
4548 p = kzalloc(alloc_size, GFP_KERNEL);
4549 if (!p) {
4550 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4551 return NULL;
4552 }
4553
4554 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4555 if (!tx) {
4556 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4557 "tx qdiscs.\n");
4558 kfree(p);
4559 return NULL;
4560 }
4561
4562 dev = (struct net_device *)
4563 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4564 dev->padded = (char *)dev - (char *)p;
4565 dev_net_set(dev, &init_net);
4566
4567 dev->_tx = tx;
4568 dev->num_tx_queues = queue_count;
4569 dev->real_num_tx_queues = queue_count;
4570
4571 dev->gso_max_size = GSO_MAX_SIZE;
4572
4573 netdev_init_queues(dev);
4574
4575 INIT_LIST_HEAD(&dev->napi_list);
4576 setup(dev);
4577 strcpy(dev->name, name);
4578 return dev;
4579 }
4580 EXPORT_SYMBOL(alloc_netdev_mq);
4581
4582 /**
4583 * free_netdev - free network device
4584 * @dev: device
4585 *
4586 * This function does the last stage of destroying an allocated device
4587 * interface. The reference to the device object is released.
4588 * If this is the last reference then it will be freed.
4589 */
4590 void free_netdev(struct net_device *dev)
4591 {
4592 struct napi_struct *p, *n;
4593
4594 release_net(dev_net(dev));
4595
4596 kfree(dev->_tx);
4597
4598 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4599 netif_napi_del(p);
4600
4601 /* Compatibility with error handling in drivers */
4602 if (dev->reg_state == NETREG_UNINITIALIZED) {
4603 kfree((char *)dev - dev->padded);
4604 return;
4605 }
4606
4607 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4608 dev->reg_state = NETREG_RELEASED;
4609
4610 /* will free via device release */
4611 put_device(&dev->dev);
4612 }
4613
4614 /**
4615 * synchronize_net - Synchronize with packet receive processing
4616 *
4617 * Wait for packets currently being received to be done.
4618 * Does not block later packets from starting.
4619 */
4620 void synchronize_net(void)
4621 {
4622 might_sleep();
4623 synchronize_rcu();
4624 }
4625
4626 /**
4627 * unregister_netdevice - remove device from the kernel
4628 * @dev: device
4629 *
4630 * This function shuts down a device interface and removes it
4631 * from the kernel tables.
4632 *
4633 * Callers must hold the rtnl semaphore. You may want
4634 * unregister_netdev() instead of this.
4635 */
4636
4637 void unregister_netdevice(struct net_device *dev)
4638 {
4639 ASSERT_RTNL();
4640
4641 rollback_registered(dev);
4642 /* Finish processing unregister after unlock */
4643 net_set_todo(dev);
4644 }
4645
4646 /**
4647 * unregister_netdev - remove device from the kernel
4648 * @dev: device
4649 *
4650 * This function shuts down a device interface and removes it
4651 * from the kernel tables.
4652 *
4653 * This is just a wrapper for unregister_netdevice that takes
4654 * the rtnl semaphore. In general you want to use this and not
4655 * unregister_netdevice.
4656 */
4657 void unregister_netdev(struct net_device *dev)
4658 {
4659 rtnl_lock();
4660 unregister_netdevice(dev);
4661 rtnl_unlock();
4662 }
4663
4664 EXPORT_SYMBOL(unregister_netdev);
4665
4666 /**
4667 * dev_change_net_namespace - move device to different nethost namespace
4668 * @dev: device
4669 * @net: network namespace
4670 * @pat: If not NULL name pattern to try if the current device name
4671 * is already taken in the destination network namespace.
4672 *
4673 * This function shuts down a device interface and moves it
4674 * to a new network namespace. On success 0 is returned, on
4675 * a failure a netagive errno code is returned.
4676 *
4677 * Callers must hold the rtnl semaphore.
4678 */
4679
4680 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4681 {
4682 char buf[IFNAMSIZ];
4683 const char *destname;
4684 int err;
4685
4686 ASSERT_RTNL();
4687
4688 /* Don't allow namespace local devices to be moved. */
4689 err = -EINVAL;
4690 if (dev->features & NETIF_F_NETNS_LOCAL)
4691 goto out;
4692
4693 #ifdef CONFIG_SYSFS
4694 /* Don't allow real devices to be moved when sysfs
4695 * is enabled.
4696 */
4697 err = -EINVAL;
4698 if (dev->dev.parent)
4699 goto out;
4700 #endif
4701
4702 /* Ensure the device has been registrered */
4703 err = -EINVAL;
4704 if (dev->reg_state != NETREG_REGISTERED)
4705 goto out;
4706
4707 /* Get out if there is nothing todo */
4708 err = 0;
4709 if (net_eq(dev_net(dev), net))
4710 goto out;
4711
4712 /* Pick the destination device name, and ensure
4713 * we can use it in the destination network namespace.
4714 */
4715 err = -EEXIST;
4716 destname = dev->name;
4717 if (__dev_get_by_name(net, destname)) {
4718 /* We get here if we can't use the current device name */
4719 if (!pat)
4720 goto out;
4721 if (!dev_valid_name(pat))
4722 goto out;
4723 if (strchr(pat, '%')) {
4724 if (__dev_alloc_name(net, pat, buf) < 0)
4725 goto out;
4726 destname = buf;
4727 } else
4728 destname = pat;
4729 if (__dev_get_by_name(net, destname))
4730 goto out;
4731 }
4732
4733 /*
4734 * And now a mini version of register_netdevice unregister_netdevice.
4735 */
4736
4737 /* If device is running close it first. */
4738 dev_close(dev);
4739
4740 /* And unlink it from device chain */
4741 err = -ENODEV;
4742 unlist_netdevice(dev);
4743
4744 synchronize_net();
4745
4746 /* Shutdown queueing discipline. */
4747 dev_shutdown(dev);
4748
4749 /* Notify protocols, that we are about to destroy
4750 this device. They should clean all the things.
4751 */
4752 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4753
4754 /*
4755 * Flush the unicast and multicast chains
4756 */
4757 dev_addr_discard(dev);
4758
4759 netdev_unregister_kobject(dev);
4760
4761 /* Actually switch the network namespace */
4762 dev_net_set(dev, net);
4763
4764 /* Assign the new device name */
4765 if (destname != dev->name)
4766 strcpy(dev->name, destname);
4767
4768 /* If there is an ifindex conflict assign a new one */
4769 if (__dev_get_by_index(net, dev->ifindex)) {
4770 int iflink = (dev->iflink == dev->ifindex);
4771 dev->ifindex = dev_new_index(net);
4772 if (iflink)
4773 dev->iflink = dev->ifindex;
4774 }
4775
4776 /* Fixup kobjects */
4777 err = netdev_register_kobject(dev);
4778 WARN_ON(err);
4779
4780 /* Add the device back in the hashes */
4781 list_netdevice(dev);
4782
4783 /* Notify protocols, that a new device appeared. */
4784 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4785
4786 synchronize_net();
4787 err = 0;
4788 out:
4789 return err;
4790 }
4791
4792 static int dev_cpu_callback(struct notifier_block *nfb,
4793 unsigned long action,
4794 void *ocpu)
4795 {
4796 struct sk_buff **list_skb;
4797 struct Qdisc **list_net;
4798 struct sk_buff *skb;
4799 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4800 struct softnet_data *sd, *oldsd;
4801
4802 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4803 return NOTIFY_OK;
4804
4805 local_irq_disable();
4806 cpu = smp_processor_id();
4807 sd = &per_cpu(softnet_data, cpu);
4808 oldsd = &per_cpu(softnet_data, oldcpu);
4809
4810 /* Find end of our completion_queue. */
4811 list_skb = &sd->completion_queue;
4812 while (*list_skb)
4813 list_skb = &(*list_skb)->next;
4814 /* Append completion queue from offline CPU. */
4815 *list_skb = oldsd->completion_queue;
4816 oldsd->completion_queue = NULL;
4817
4818 /* Find end of our output_queue. */
4819 list_net = &sd->output_queue;
4820 while (*list_net)
4821 list_net = &(*list_net)->next_sched;
4822 /* Append output queue from offline CPU. */
4823 *list_net = oldsd->output_queue;
4824 oldsd->output_queue = NULL;
4825
4826 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4827 local_irq_enable();
4828
4829 /* Process offline CPU's input_pkt_queue */
4830 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4831 netif_rx(skb);
4832
4833 return NOTIFY_OK;
4834 }
4835
4836 #ifdef CONFIG_NET_DMA
4837 /**
4838 * net_dma_rebalance - try to maintain one DMA channel per CPU
4839 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4840 *
4841 * This is called when the number of channels allocated to the net_dma client
4842 * changes. The net_dma client tries to have one DMA channel per CPU.
4843 */
4844
4845 static void net_dma_rebalance(struct net_dma *net_dma)
4846 {
4847 unsigned int cpu, i, n, chan_idx;
4848 struct dma_chan *chan;
4849
4850 if (cpus_empty(net_dma->channel_mask)) {
4851 for_each_online_cpu(cpu)
4852 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4853 return;
4854 }
4855
4856 i = 0;
4857 cpu = first_cpu(cpu_online_map);
4858
4859 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4860 chan = net_dma->channels[chan_idx];
4861
4862 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4863 + (i < (num_online_cpus() %
4864 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4865
4866 while(n) {
4867 per_cpu(softnet_data, cpu).net_dma = chan;
4868 cpu = next_cpu(cpu, cpu_online_map);
4869 n--;
4870 }
4871 i++;
4872 }
4873 }
4874
4875 /**
4876 * netdev_dma_event - event callback for the net_dma_client
4877 * @client: should always be net_dma_client
4878 * @chan: DMA channel for the event
4879 * @state: DMA state to be handled
4880 */
4881 static enum dma_state_client
4882 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4883 enum dma_state state)
4884 {
4885 int i, found = 0, pos = -1;
4886 struct net_dma *net_dma =
4887 container_of(client, struct net_dma, client);
4888 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4889
4890 spin_lock(&net_dma->lock);
4891 switch (state) {
4892 case DMA_RESOURCE_AVAILABLE:
4893 for (i = 0; i < nr_cpu_ids; i++)
4894 if (net_dma->channels[i] == chan) {
4895 found = 1;
4896 break;
4897 } else if (net_dma->channels[i] == NULL && pos < 0)
4898 pos = i;
4899
4900 if (!found && pos >= 0) {
4901 ack = DMA_ACK;
4902 net_dma->channels[pos] = chan;
4903 cpu_set(pos, net_dma->channel_mask);
4904 net_dma_rebalance(net_dma);
4905 }
4906 break;
4907 case DMA_RESOURCE_REMOVED:
4908 for (i = 0; i < nr_cpu_ids; i++)
4909 if (net_dma->channels[i] == chan) {
4910 found = 1;
4911 pos = i;
4912 break;
4913 }
4914
4915 if (found) {
4916 ack = DMA_ACK;
4917 cpu_clear(pos, net_dma->channel_mask);
4918 net_dma->channels[i] = NULL;
4919 net_dma_rebalance(net_dma);
4920 }
4921 break;
4922 default:
4923 break;
4924 }
4925 spin_unlock(&net_dma->lock);
4926
4927 return ack;
4928 }
4929
4930 /**
4931 * netdev_dma_register - register the networking subsystem as a DMA client
4932 */
4933 static int __init netdev_dma_register(void)
4934 {
4935 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4936 GFP_KERNEL);
4937 if (unlikely(!net_dma.channels)) {
4938 printk(KERN_NOTICE
4939 "netdev_dma: no memory for net_dma.channels\n");
4940 return -ENOMEM;
4941 }
4942 spin_lock_init(&net_dma.lock);
4943 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4944 dma_async_client_register(&net_dma.client);
4945 dma_async_client_chan_request(&net_dma.client);
4946 return 0;
4947 }
4948
4949 #else
4950 static int __init netdev_dma_register(void) { return -ENODEV; }
4951 #endif /* CONFIG_NET_DMA */
4952
4953 /**
4954 * netdev_increment_features - increment feature set by one
4955 * @all: current feature set
4956 * @one: new feature set
4957 * @mask: mask feature set
4958 *
4959 * Computes a new feature set after adding a device with feature set
4960 * @one to the master device with current feature set @all. Will not
4961 * enable anything that is off in @mask. Returns the new feature set.
4962 */
4963 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
4964 unsigned long mask)
4965 {
4966 /* If device needs checksumming, downgrade to it. */
4967 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4968 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
4969 else if (mask & NETIF_F_ALL_CSUM) {
4970 /* If one device supports v4/v6 checksumming, set for all. */
4971 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
4972 !(all & NETIF_F_GEN_CSUM)) {
4973 all &= ~NETIF_F_ALL_CSUM;
4974 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
4975 }
4976
4977 /* If one device supports hw checksumming, set for all. */
4978 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
4979 all &= ~NETIF_F_ALL_CSUM;
4980 all |= NETIF_F_HW_CSUM;
4981 }
4982 }
4983
4984 one |= NETIF_F_ALL_CSUM;
4985
4986 one |= all & NETIF_F_ONE_FOR_ALL;
4987 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
4988 all |= one & mask & NETIF_F_ONE_FOR_ALL;
4989
4990 return all;
4991 }
4992 EXPORT_SYMBOL(netdev_increment_features);
4993
4994 static struct hlist_head *netdev_create_hash(void)
4995 {
4996 int i;
4997 struct hlist_head *hash;
4998
4999 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5000 if (hash != NULL)
5001 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5002 INIT_HLIST_HEAD(&hash[i]);
5003
5004 return hash;
5005 }
5006
5007 /* Initialize per network namespace state */
5008 static int __net_init netdev_init(struct net *net)
5009 {
5010 INIT_LIST_HEAD(&net->dev_base_head);
5011
5012 net->dev_name_head = netdev_create_hash();
5013 if (net->dev_name_head == NULL)
5014 goto err_name;
5015
5016 net->dev_index_head = netdev_create_hash();
5017 if (net->dev_index_head == NULL)
5018 goto err_idx;
5019
5020 return 0;
5021
5022 err_idx:
5023 kfree(net->dev_name_head);
5024 err_name:
5025 return -ENOMEM;
5026 }
5027
5028 /**
5029 * netdev_drivername - network driver for the device
5030 * @dev: network device
5031 * @buffer: buffer for resulting name
5032 * @len: size of buffer
5033 *
5034 * Determine network driver for device.
5035 */
5036 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5037 {
5038 const struct device_driver *driver;
5039 const struct device *parent;
5040
5041 if (len <= 0 || !buffer)
5042 return buffer;
5043 buffer[0] = 0;
5044
5045 parent = dev->dev.parent;
5046
5047 if (!parent)
5048 return buffer;
5049
5050 driver = parent->driver;
5051 if (driver && driver->name)
5052 strlcpy(buffer, driver->name, len);
5053 return buffer;
5054 }
5055
5056 static void __net_exit netdev_exit(struct net *net)
5057 {
5058 kfree(net->dev_name_head);
5059 kfree(net->dev_index_head);
5060 }
5061
5062 static struct pernet_operations __net_initdata netdev_net_ops = {
5063 .init = netdev_init,
5064 .exit = netdev_exit,
5065 };
5066
5067 static void __net_exit default_device_exit(struct net *net)
5068 {
5069 struct net_device *dev;
5070 /*
5071 * Push all migratable of the network devices back to the
5072 * initial network namespace
5073 */
5074 rtnl_lock();
5075 restart:
5076 for_each_netdev(net, dev) {
5077 int err;
5078 char fb_name[IFNAMSIZ];
5079
5080 /* Ignore unmoveable devices (i.e. loopback) */
5081 if (dev->features & NETIF_F_NETNS_LOCAL)
5082 continue;
5083
5084 /* Delete virtual devices */
5085 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5086 dev->rtnl_link_ops->dellink(dev);
5087 goto restart;
5088 }
5089
5090 /* Push remaing network devices to init_net */
5091 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5092 err = dev_change_net_namespace(dev, &init_net, fb_name);
5093 if (err) {
5094 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5095 __func__, dev->name, err);
5096 BUG();
5097 }
5098 goto restart;
5099 }
5100 rtnl_unlock();
5101 }
5102
5103 static struct pernet_operations __net_initdata default_device_ops = {
5104 .exit = default_device_exit,
5105 };
5106
5107 /*
5108 * Initialize the DEV module. At boot time this walks the device list and
5109 * unhooks any devices that fail to initialise (normally hardware not
5110 * present) and leaves us with a valid list of present and active devices.
5111 *
5112 */
5113
5114 /*
5115 * This is called single threaded during boot, so no need
5116 * to take the rtnl semaphore.
5117 */
5118 static int __init net_dev_init(void)
5119 {
5120 int i, rc = -ENOMEM;
5121
5122 BUG_ON(!dev_boot_phase);
5123
5124 if (dev_proc_init())
5125 goto out;
5126
5127 if (netdev_kobject_init())
5128 goto out;
5129
5130 INIT_LIST_HEAD(&ptype_all);
5131 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5132 INIT_LIST_HEAD(&ptype_base[i]);
5133
5134 if (register_pernet_subsys(&netdev_net_ops))
5135 goto out;
5136
5137 /*
5138 * Initialise the packet receive queues.
5139 */
5140
5141 for_each_possible_cpu(i) {
5142 struct softnet_data *queue;
5143
5144 queue = &per_cpu(softnet_data, i);
5145 skb_queue_head_init(&queue->input_pkt_queue);
5146 queue->completion_queue = NULL;
5147 INIT_LIST_HEAD(&queue->poll_list);
5148
5149 queue->backlog.poll = process_backlog;
5150 queue->backlog.weight = weight_p;
5151 queue->backlog.gro_list = NULL;
5152 }
5153
5154 dev_boot_phase = 0;
5155
5156 /* The loopback device is special if any other network devices
5157 * is present in a network namespace the loopback device must
5158 * be present. Since we now dynamically allocate and free the
5159 * loopback device ensure this invariant is maintained by
5160 * keeping the loopback device as the first device on the
5161 * list of network devices. Ensuring the loopback devices
5162 * is the first device that appears and the last network device
5163 * that disappears.
5164 */
5165 if (register_pernet_device(&loopback_net_ops))
5166 goto out;
5167
5168 if (register_pernet_device(&default_device_ops))
5169 goto out;
5170
5171 netdev_dma_register();
5172
5173 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5174 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5175
5176 hotcpu_notifier(dev_cpu_callback, 0);
5177 dst_init();
5178 dev_mcast_init();
5179 rc = 0;
5180 out:
5181 return rc;
5182 }
5183
5184 subsys_initcall(net_dev_init);
5185
5186 EXPORT_SYMBOL(__dev_get_by_index);
5187 EXPORT_SYMBOL(__dev_get_by_name);
5188 EXPORT_SYMBOL(__dev_remove_pack);
5189 EXPORT_SYMBOL(dev_valid_name);
5190 EXPORT_SYMBOL(dev_add_pack);
5191 EXPORT_SYMBOL(dev_alloc_name);
5192 EXPORT_SYMBOL(dev_close);
5193 EXPORT_SYMBOL(dev_get_by_flags);
5194 EXPORT_SYMBOL(dev_get_by_index);
5195 EXPORT_SYMBOL(dev_get_by_name);
5196 EXPORT_SYMBOL(dev_open);
5197 EXPORT_SYMBOL(dev_queue_xmit);
5198 EXPORT_SYMBOL(dev_remove_pack);
5199 EXPORT_SYMBOL(dev_set_allmulti);
5200 EXPORT_SYMBOL(dev_set_promiscuity);
5201 EXPORT_SYMBOL(dev_change_flags);
5202 EXPORT_SYMBOL(dev_set_mtu);
5203 EXPORT_SYMBOL(dev_set_mac_address);
5204 EXPORT_SYMBOL(free_netdev);
5205 EXPORT_SYMBOL(netdev_boot_setup_check);
5206 EXPORT_SYMBOL(netdev_set_master);
5207 EXPORT_SYMBOL(netdev_state_change);
5208 EXPORT_SYMBOL(netif_receive_skb);
5209 EXPORT_SYMBOL(netif_rx);
5210 EXPORT_SYMBOL(register_gifconf);
5211 EXPORT_SYMBOL(register_netdevice);
5212 EXPORT_SYMBOL(register_netdevice_notifier);
5213 EXPORT_SYMBOL(skb_checksum_help);
5214 EXPORT_SYMBOL(synchronize_net);
5215 EXPORT_SYMBOL(unregister_netdevice);
5216 EXPORT_SYMBOL(unregister_netdevice_notifier);
5217 EXPORT_SYMBOL(net_enable_timestamp);
5218 EXPORT_SYMBOL(net_disable_timestamp);
5219 EXPORT_SYMBOL(dev_get_flags);
5220
5221 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5222 EXPORT_SYMBOL(br_handle_frame_hook);
5223 EXPORT_SYMBOL(br_fdb_get_hook);
5224 EXPORT_SYMBOL(br_fdb_put_hook);
5225 #endif
5226
5227 EXPORT_SYMBOL(dev_load);
5228
5229 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.129102 seconds and 6 git commands to generate.