net: Export netif_get_vlan_features().
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 /*
145 * The list of packet types we will receive (as opposed to discard)
146 * and the routines to invoke.
147 *
148 * Why 16. Because with 16 the only overlap we get on a hash of the
149 * low nibble of the protocol value is RARP/SNAP/X.25.
150 *
151 * NOTE: That is no longer true with the addition of VLAN tags. Not
152 * sure which should go first, but I bet it won't make much
153 * difference if we are running VLANs. The good news is that
154 * this protocol won't be in the list unless compiled in, so
155 * the average user (w/out VLANs) will not be adversely affected.
156 * --BLG
157 *
158 * 0800 IP
159 * 8100 802.1Q VLAN
160 * 0001 802.3
161 * 0002 AX.25
162 * 0004 802.2
163 * 8035 RARP
164 * 0005 SNAP
165 * 0805 X.25
166 * 0806 ARP
167 * 8137 IPX
168 * 0009 Localtalk
169 * 86DD IPv6
170 */
171
172 #define PTYPE_HASH_SIZE (16)
173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
174
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly; /* Taps */
178
179 /*
180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181 * semaphore.
182 *
183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184 *
185 * Writers must hold the rtnl semaphore while they loop through the
186 * dev_base_head list, and hold dev_base_lock for writing when they do the
187 * actual updates. This allows pure readers to access the list even
188 * while a writer is preparing to update it.
189 *
190 * To put it another way, dev_base_lock is held for writing only to
191 * protect against pure readers; the rtnl semaphore provides the
192 * protection against other writers.
193 *
194 * See, for example usages, register_netdevice() and
195 * unregister_netdevice(), which must be called with the rtnl
196 * semaphore held.
197 */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 struct net *net = dev_net(dev);
230
231 ASSERT_RTNL();
232
233 write_lock_bh(&dev_base_lock);
234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 hlist_add_head_rcu(&dev->index_hlist,
237 dev_index_hash(net, dev->ifindex));
238 write_unlock_bh(&dev_base_lock);
239 return 0;
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return &ptype_all;
381 else
382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461 /******************************************************************************
462
463 Device Boot-time Settings Routines
464
465 *******************************************************************************/
466
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469
470 /**
471 * netdev_boot_setup_add - add new setup entry
472 * @name: name of the device
473 * @map: configured settings for the device
474 *
475 * Adds new setup entry to the dev_boot_setup list. The function
476 * returns 0 on error and 1 on success. This is a generic routine to
477 * all netdevices.
478 */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 struct netdev_boot_setup *s;
482 int i;
483
484 s = dev_boot_setup;
485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 memset(s[i].name, 0, sizeof(s[i].name));
488 strlcpy(s[i].name, name, IFNAMSIZ);
489 memcpy(&s[i].map, map, sizeof(s[i].map));
490 break;
491 }
492 }
493
494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496
497 /**
498 * netdev_boot_setup_check - check boot time settings
499 * @dev: the netdevice
500 *
501 * Check boot time settings for the device.
502 * The found settings are set for the device to be used
503 * later in the device probing.
504 * Returns 0 if no settings found, 1 if they are.
505 */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 struct netdev_boot_setup *s = dev_boot_setup;
509 int i;
510
511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 !strcmp(dev->name, s[i].name)) {
514 dev->irq = s[i].map.irq;
515 dev->base_addr = s[i].map.base_addr;
516 dev->mem_start = s[i].map.mem_start;
517 dev->mem_end = s[i].map.mem_end;
518 return 1;
519 }
520 }
521 return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524
525
526 /**
527 * netdev_boot_base - get address from boot time settings
528 * @prefix: prefix for network device
529 * @unit: id for network device
530 *
531 * Check boot time settings for the base address of device.
532 * The found settings are set for the device to be used
533 * later in the device probing.
534 * Returns 0 if no settings found.
535 */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 const struct netdev_boot_setup *s = dev_boot_setup;
539 char name[IFNAMSIZ];
540 int i;
541
542 sprintf(name, "%s%d", prefix, unit);
543
544 /*
545 * If device already registered then return base of 1
546 * to indicate not to probe for this interface
547 */
548 if (__dev_get_by_name(&init_net, name))
549 return 1;
550
551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 if (!strcmp(name, s[i].name))
553 return s[i].map.base_addr;
554 return 0;
555 }
556
557 /*
558 * Saves at boot time configured settings for any netdevice.
559 */
560 int __init netdev_boot_setup(char *str)
561 {
562 int ints[5];
563 struct ifmap map;
564
565 str = get_options(str, ARRAY_SIZE(ints), ints);
566 if (!str || !*str)
567 return 0;
568
569 /* Save settings */
570 memset(&map, 0, sizeof(map));
571 if (ints[0] > 0)
572 map.irq = ints[1];
573 if (ints[0] > 1)
574 map.base_addr = ints[2];
575 if (ints[0] > 2)
576 map.mem_start = ints[3];
577 if (ints[0] > 3)
578 map.mem_end = ints[4];
579
580 /* Add new entry to the list */
581 return netdev_boot_setup_add(str, &map);
582 }
583
584 __setup("netdev=", netdev_boot_setup);
585
586 /*******************************************************************************
587
588 Device Interface Subroutines
589
590 *******************************************************************************/
591
592 /**
593 * __dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. Must be called under RTNL semaphore
598 * or @dev_base_lock. If the name is found a pointer to the device
599 * is returned. If the name is not found then %NULL is returned. The
600 * reference counters are not incremented so the caller must be
601 * careful with locks.
602 */
603
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 struct hlist_node *p;
607 struct net_device *dev;
608 struct hlist_head *head = dev_name_hash(net, name);
609
610 hlist_for_each_entry(dev, p, head, name_hlist)
611 if (!strncmp(dev->name, name, IFNAMSIZ))
612 return dev;
613
614 return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617
618 /**
619 * dev_get_by_name_rcu - find a device by its name
620 * @net: the applicable net namespace
621 * @name: name to find
622 *
623 * Find an interface by name.
624 * If the name is found a pointer to the device is returned.
625 * If the name is not found then %NULL is returned.
626 * The reference counters are not incremented so the caller must be
627 * careful with locks. The caller must hold RCU lock.
628 */
629
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 struct hlist_node *p;
633 struct net_device *dev;
634 struct hlist_head *head = dev_name_hash(net, name);
635
636 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 if (!strncmp(dev->name, name, IFNAMSIZ))
638 return dev;
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643
644 /**
645 * dev_get_by_name - find a device by its name
646 * @net: the applicable net namespace
647 * @name: name to find
648 *
649 * Find an interface by name. This can be called from any
650 * context and does its own locking. The returned handle has
651 * the usage count incremented and the caller must use dev_put() to
652 * release it when it is no longer needed. %NULL is returned if no
653 * matching device is found.
654 */
655
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 struct net_device *dev;
659
660 rcu_read_lock();
661 dev = dev_get_by_name_rcu(net, name);
662 if (dev)
663 dev_hold(dev);
664 rcu_read_unlock();
665 return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668
669 /**
670 * __dev_get_by_index - find a device by its ifindex
671 * @net: the applicable net namespace
672 * @ifindex: index of device
673 *
674 * Search for an interface by index. Returns %NULL if the device
675 * is not found or a pointer to the device. The device has not
676 * had its reference counter increased so the caller must be careful
677 * about locking. The caller must hold either the RTNL semaphore
678 * or @dev_base_lock.
679 */
680
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 struct hlist_node *p;
684 struct net_device *dev;
685 struct hlist_head *head = dev_index_hash(net, ifindex);
686
687 hlist_for_each_entry(dev, p, head, index_hlist)
688 if (dev->ifindex == ifindex)
689 return dev;
690
691 return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694
695 /**
696 * dev_get_by_index_rcu - find a device by its ifindex
697 * @net: the applicable net namespace
698 * @ifindex: index of device
699 *
700 * Search for an interface by index. Returns %NULL if the device
701 * is not found or a pointer to the device. The device has not
702 * had its reference counter increased so the caller must be careful
703 * about locking. The caller must hold RCU lock.
704 */
705
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 struct hlist_node *p;
709 struct net_device *dev;
710 struct hlist_head *head = dev_index_hash(net, ifindex);
711
712 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 if (dev->ifindex == ifindex)
714 return dev;
715
716 return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719
720
721 /**
722 * dev_get_by_index - find a device by its ifindex
723 * @net: the applicable net namespace
724 * @ifindex: index of device
725 *
726 * Search for an interface by index. Returns NULL if the device
727 * is not found or a pointer to the device. The device returned has
728 * had a reference added and the pointer is safe until the user calls
729 * dev_put to indicate they have finished with it.
730 */
731
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 struct net_device *dev;
735
736 rcu_read_lock();
737 dev = dev_get_by_index_rcu(net, ifindex);
738 if (dev)
739 dev_hold(dev);
740 rcu_read_unlock();
741 return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744
745 /**
746 * dev_getbyhwaddr - find a device by its hardware address
747 * @net: the applicable net namespace
748 * @type: media type of device
749 * @ha: hardware address
750 *
751 * Search for an interface by MAC address. Returns NULL if the device
752 * is not found or a pointer to the device. The caller must hold the
753 * rtnl semaphore. The returned device has not had its ref count increased
754 * and the caller must therefore be careful about locking
755 *
756 * BUGS:
757 * If the API was consistent this would be __dev_get_by_hwaddr
758 */
759
760 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 {
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765
766 for_each_netdev(net, dev)
767 if (dev->type == type &&
768 !memcmp(dev->dev_addr, ha, dev->addr_len))
769 return dev;
770
771 return NULL;
772 }
773 EXPORT_SYMBOL(dev_getbyhwaddr);
774
775 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 {
777 struct net_device *dev;
778
779 ASSERT_RTNL();
780 for_each_netdev(net, dev)
781 if (dev->type == type)
782 return dev;
783
784 return NULL;
785 }
786 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787
788 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 {
790 struct net_device *dev, *ret = NULL;
791
792 rcu_read_lock();
793 for_each_netdev_rcu(net, dev)
794 if (dev->type == type) {
795 dev_hold(dev);
796 ret = dev;
797 break;
798 }
799 rcu_read_unlock();
800 return ret;
801 }
802 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803
804 /**
805 * dev_get_by_flags_rcu - find any device with given flags
806 * @net: the applicable net namespace
807 * @if_flags: IFF_* values
808 * @mask: bitmask of bits in if_flags to check
809 *
810 * Search for any interface with the given flags. Returns NULL if a device
811 * is not found or a pointer to the device. Must be called inside
812 * rcu_read_lock(), and result refcount is unchanged.
813 */
814
815 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 unsigned short mask)
817 {
818 struct net_device *dev, *ret;
819
820 ret = NULL;
821 for_each_netdev_rcu(net, dev) {
822 if (((dev->flags ^ if_flags) & mask) == 0) {
823 ret = dev;
824 break;
825 }
826 }
827 return ret;
828 }
829 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830
831 /**
832 * dev_valid_name - check if name is okay for network device
833 * @name: name string
834 *
835 * Network device names need to be valid file names to
836 * to allow sysfs to work. We also disallow any kind of
837 * whitespace.
838 */
839 int dev_valid_name(const char *name)
840 {
841 if (*name == '\0')
842 return 0;
843 if (strlen(name) >= IFNAMSIZ)
844 return 0;
845 if (!strcmp(name, ".") || !strcmp(name, ".."))
846 return 0;
847
848 while (*name) {
849 if (*name == '/' || isspace(*name))
850 return 0;
851 name++;
852 }
853 return 1;
854 }
855 EXPORT_SYMBOL(dev_valid_name);
856
857 /**
858 * __dev_alloc_name - allocate a name for a device
859 * @net: network namespace to allocate the device name in
860 * @name: name format string
861 * @buf: scratch buffer and result name string
862 *
863 * Passed a format string - eg "lt%d" it will try and find a suitable
864 * id. It scans list of devices to build up a free map, then chooses
865 * the first empty slot. The caller must hold the dev_base or rtnl lock
866 * while allocating the name and adding the device in order to avoid
867 * duplicates.
868 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869 * Returns the number of the unit assigned or a negative errno code.
870 */
871
872 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 {
874 int i = 0;
875 const char *p;
876 const int max_netdevices = 8*PAGE_SIZE;
877 unsigned long *inuse;
878 struct net_device *d;
879
880 p = strnchr(name, IFNAMSIZ-1, '%');
881 if (p) {
882 /*
883 * Verify the string as this thing may have come from
884 * the user. There must be either one "%d" and no other "%"
885 * characters.
886 */
887 if (p[1] != 'd' || strchr(p + 2, '%'))
888 return -EINVAL;
889
890 /* Use one page as a bit array of possible slots */
891 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 if (!inuse)
893 return -ENOMEM;
894
895 for_each_netdev(net, d) {
896 if (!sscanf(d->name, name, &i))
897 continue;
898 if (i < 0 || i >= max_netdevices)
899 continue;
900
901 /* avoid cases where sscanf is not exact inverse of printf */
902 snprintf(buf, IFNAMSIZ, name, i);
903 if (!strncmp(buf, d->name, IFNAMSIZ))
904 set_bit(i, inuse);
905 }
906
907 i = find_first_zero_bit(inuse, max_netdevices);
908 free_page((unsigned long) inuse);
909 }
910
911 if (buf != name)
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!__dev_get_by_name(net, buf))
914 return i;
915
916 /* It is possible to run out of possible slots
917 * when the name is long and there isn't enough space left
918 * for the digits, or if all bits are used.
919 */
920 return -ENFILE;
921 }
922
923 /**
924 * dev_alloc_name - allocate a name for a device
925 * @dev: device
926 * @name: name format string
927 *
928 * Passed a format string - eg "lt%d" it will try and find a suitable
929 * id. It scans list of devices to build up a free map, then chooses
930 * the first empty slot. The caller must hold the dev_base or rtnl lock
931 * while allocating the name and adding the device in order to avoid
932 * duplicates.
933 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934 * Returns the number of the unit assigned or a negative errno code.
935 */
936
937 int dev_alloc_name(struct net_device *dev, const char *name)
938 {
939 char buf[IFNAMSIZ];
940 struct net *net;
941 int ret;
942
943 BUG_ON(!dev_net(dev));
944 net = dev_net(dev);
945 ret = __dev_alloc_name(net, name, buf);
946 if (ret >= 0)
947 strlcpy(dev->name, buf, IFNAMSIZ);
948 return ret;
949 }
950 EXPORT_SYMBOL(dev_alloc_name);
951
952 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 {
954 struct net *net;
955
956 BUG_ON(!dev_net(dev));
957 net = dev_net(dev);
958
959 if (!dev_valid_name(name))
960 return -EINVAL;
961
962 if (fmt && strchr(name, '%'))
963 return dev_alloc_name(dev, name);
964 else if (__dev_get_by_name(net, name))
965 return -EEXIST;
966 else if (dev->name != name)
967 strlcpy(dev->name, name, IFNAMSIZ);
968
969 return 0;
970 }
971
972 /**
973 * dev_change_name - change name of a device
974 * @dev: device
975 * @newname: name (or format string) must be at least IFNAMSIZ
976 *
977 * Change name of a device, can pass format strings "eth%d".
978 * for wildcarding.
979 */
980 int dev_change_name(struct net_device *dev, const char *newname)
981 {
982 char oldname[IFNAMSIZ];
983 int err = 0;
984 int ret;
985 struct net *net;
986
987 ASSERT_RTNL();
988 BUG_ON(!dev_net(dev));
989
990 net = dev_net(dev);
991 if (dev->flags & IFF_UP)
992 return -EBUSY;
993
994 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 return 0;
996
997 memcpy(oldname, dev->name, IFNAMSIZ);
998
999 err = dev_get_valid_name(dev, newname, 1);
1000 if (err < 0)
1001 return err;
1002
1003 rollback:
1004 ret = device_rename(&dev->dev, dev->name);
1005 if (ret) {
1006 memcpy(dev->name, oldname, IFNAMSIZ);
1007 return ret;
1008 }
1009
1010 write_lock_bh(&dev_base_lock);
1011 hlist_del(&dev->name_hlist);
1012 write_unlock_bh(&dev_base_lock);
1013
1014 synchronize_rcu();
1015
1016 write_lock_bh(&dev_base_lock);
1017 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 write_unlock_bh(&dev_base_lock);
1019
1020 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 ret = notifier_to_errno(ret);
1022
1023 if (ret) {
1024 /* err >= 0 after dev_alloc_name() or stores the first errno */
1025 if (err >= 0) {
1026 err = ret;
1027 memcpy(dev->name, oldname, IFNAMSIZ);
1028 goto rollback;
1029 } else {
1030 printk(KERN_ERR
1031 "%s: name change rollback failed: %d.\n",
1032 dev->name, ret);
1033 }
1034 }
1035
1036 return err;
1037 }
1038
1039 /**
1040 * dev_set_alias - change ifalias of a device
1041 * @dev: device
1042 * @alias: name up to IFALIASZ
1043 * @len: limit of bytes to copy from info
1044 *
1045 * Set ifalias for a device,
1046 */
1047 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 {
1049 ASSERT_RTNL();
1050
1051 if (len >= IFALIASZ)
1052 return -EINVAL;
1053
1054 if (!len) {
1055 if (dev->ifalias) {
1056 kfree(dev->ifalias);
1057 dev->ifalias = NULL;
1058 }
1059 return 0;
1060 }
1061
1062 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 if (!dev->ifalias)
1064 return -ENOMEM;
1065
1066 strlcpy(dev->ifalias, alias, len+1);
1067 return len;
1068 }
1069
1070
1071 /**
1072 * netdev_features_change - device changes features
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed features.
1076 */
1077 void netdev_features_change(struct net_device *dev)
1078 {
1079 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 }
1081 EXPORT_SYMBOL(netdev_features_change);
1082
1083 /**
1084 * netdev_state_change - device changes state
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed state. This function calls
1088 * the notifier chains for netdev_chain and sends a NEWLINK message
1089 * to the routing socket.
1090 */
1091 void netdev_state_change(struct net_device *dev)
1092 {
1093 if (dev->flags & IFF_UP) {
1094 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 }
1097 }
1098 EXPORT_SYMBOL(netdev_state_change);
1099
1100 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 {
1102 return call_netdevice_notifiers(event, dev);
1103 }
1104 EXPORT_SYMBOL(netdev_bonding_change);
1105
1106 /**
1107 * dev_load - load a network module
1108 * @net: the applicable net namespace
1109 * @name: name of interface
1110 *
1111 * If a network interface is not present and the process has suitable
1112 * privileges this function loads the module. If module loading is not
1113 * available in this kernel then it becomes a nop.
1114 */
1115
1116 void dev_load(struct net *net, const char *name)
1117 {
1118 struct net_device *dev;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 if (!dev && capable(CAP_NET_ADMIN))
1125 request_module("%s", name);
1126 }
1127 EXPORT_SYMBOL(dev_load);
1128
1129 static int __dev_open(struct net_device *dev)
1130 {
1131 const struct net_device_ops *ops = dev->netdev_ops;
1132 int ret;
1133
1134 ASSERT_RTNL();
1135
1136 /*
1137 * Is it even present?
1138 */
1139 if (!netif_device_present(dev))
1140 return -ENODEV;
1141
1142 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 ret = notifier_to_errno(ret);
1144 if (ret)
1145 return ret;
1146
1147 /*
1148 * Call device private open method
1149 */
1150 set_bit(__LINK_STATE_START, &dev->state);
1151
1152 if (ops->ndo_validate_addr)
1153 ret = ops->ndo_validate_addr(dev);
1154
1155 if (!ret && ops->ndo_open)
1156 ret = ops->ndo_open(dev);
1157
1158 /*
1159 * If it went open OK then:
1160 */
1161
1162 if (ret)
1163 clear_bit(__LINK_STATE_START, &dev->state);
1164 else {
1165 /*
1166 * Set the flags.
1167 */
1168 dev->flags |= IFF_UP;
1169
1170 /*
1171 * Enable NET_DMA
1172 */
1173 net_dmaengine_get();
1174
1175 /*
1176 * Initialize multicasting status
1177 */
1178 dev_set_rx_mode(dev);
1179
1180 /*
1181 * Wakeup transmit queue engine
1182 */
1183 dev_activate(dev);
1184 }
1185
1186 return ret;
1187 }
1188
1189 /**
1190 * dev_open - prepare an interface for use.
1191 * @dev: device to open
1192 *
1193 * Takes a device from down to up state. The device's private open
1194 * function is invoked and then the multicast lists are loaded. Finally
1195 * the device is moved into the up state and a %NETDEV_UP message is
1196 * sent to the netdev notifier chain.
1197 *
1198 * Calling this function on an active interface is a nop. On a failure
1199 * a negative errno code is returned.
1200 */
1201 int dev_open(struct net_device *dev)
1202 {
1203 int ret;
1204
1205 /*
1206 * Is it already up?
1207 */
1208 if (dev->flags & IFF_UP)
1209 return 0;
1210
1211 /*
1212 * Open device
1213 */
1214 ret = __dev_open(dev);
1215 if (ret < 0)
1216 return ret;
1217
1218 /*
1219 * ... and announce new interface.
1220 */
1221 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 call_netdevice_notifiers(NETDEV_UP, dev);
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(dev_open);
1227
1228 static int __dev_close(struct net_device *dev)
1229 {
1230 const struct net_device_ops *ops = dev->netdev_ops;
1231
1232 ASSERT_RTNL();
1233 might_sleep();
1234
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list,
1244 * it can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250
1251 dev_deactivate(dev);
1252
1253 /*
1254 * Call the device specific close. This cannot fail.
1255 * Only if device is UP
1256 *
1257 * We allow it to be called even after a DETACH hot-plug
1258 * event.
1259 */
1260 if (ops->ndo_stop)
1261 ops->ndo_stop(dev);
1262
1263 /*
1264 * Device is now down.
1265 */
1266
1267 dev->flags &= ~IFF_UP;
1268
1269 /*
1270 * Shutdown NET_DMA
1271 */
1272 net_dmaengine_put();
1273
1274 return 0;
1275 }
1276
1277 /**
1278 * dev_close - shutdown an interface.
1279 * @dev: device to shutdown
1280 *
1281 * This function moves an active device into down state. A
1282 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284 * chain.
1285 */
1286 int dev_close(struct net_device *dev)
1287 {
1288 if (!(dev->flags & IFF_UP))
1289 return 0;
1290
1291 __dev_close(dev);
1292
1293 /*
1294 * Tell people we are down
1295 */
1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 call_netdevice_notifiers(NETDEV_DOWN, dev);
1298
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(dev_close);
1302
1303
1304 /**
1305 * dev_disable_lro - disable Large Receive Offload on a device
1306 * @dev: device
1307 *
1308 * Disable Large Receive Offload (LRO) on a net device. Must be
1309 * called under RTNL. This is needed if received packets may be
1310 * forwarded to another interface.
1311 */
1312 void dev_disable_lro(struct net_device *dev)
1313 {
1314 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 dev->ethtool_ops->set_flags) {
1316 u32 flags = dev->ethtool_ops->get_flags(dev);
1317 if (flags & ETH_FLAG_LRO) {
1318 flags &= ~ETH_FLAG_LRO;
1319 dev->ethtool_ops->set_flags(dev, flags);
1320 }
1321 }
1322 WARN_ON(dev->features & NETIF_F_LRO);
1323 }
1324 EXPORT_SYMBOL(dev_disable_lro);
1325
1326
1327 static int dev_boot_phase = 1;
1328
1329 /*
1330 * Device change register/unregister. These are not inline or static
1331 * as we export them to the world.
1332 */
1333
1334 /**
1335 * register_netdevice_notifier - register a network notifier block
1336 * @nb: notifier
1337 *
1338 * Register a notifier to be called when network device events occur.
1339 * The notifier passed is linked into the kernel structures and must
1340 * not be reused until it has been unregistered. A negative errno code
1341 * is returned on a failure.
1342 *
1343 * When registered all registration and up events are replayed
1344 * to the new notifier to allow device to have a race free
1345 * view of the network device list.
1346 */
1347
1348 int register_netdevice_notifier(struct notifier_block *nb)
1349 {
1350 struct net_device *dev;
1351 struct net_device *last;
1352 struct net *net;
1353 int err;
1354
1355 rtnl_lock();
1356 err = raw_notifier_chain_register(&netdev_chain, nb);
1357 if (err)
1358 goto unlock;
1359 if (dev_boot_phase)
1360 goto unlock;
1361 for_each_net(net) {
1362 for_each_netdev(net, dev) {
1363 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 err = notifier_to_errno(err);
1365 if (err)
1366 goto rollback;
1367
1368 if (!(dev->flags & IFF_UP))
1369 continue;
1370
1371 nb->notifier_call(nb, NETDEV_UP, dev);
1372 }
1373 }
1374
1375 unlock:
1376 rtnl_unlock();
1377 return err;
1378
1379 rollback:
1380 last = dev;
1381 for_each_net(net) {
1382 for_each_netdev(net, dev) {
1383 if (dev == last)
1384 break;
1385
1386 if (dev->flags & IFF_UP) {
1387 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 }
1390 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 }
1393 }
1394
1395 raw_notifier_chain_unregister(&netdev_chain, nb);
1396 goto unlock;
1397 }
1398 EXPORT_SYMBOL(register_netdevice_notifier);
1399
1400 /**
1401 * unregister_netdevice_notifier - unregister a network notifier block
1402 * @nb: notifier
1403 *
1404 * Unregister a notifier previously registered by
1405 * register_netdevice_notifier(). The notifier is unlinked into the
1406 * kernel structures and may then be reused. A negative errno code
1407 * is returned on a failure.
1408 */
1409
1410 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 {
1412 int err;
1413
1414 rtnl_lock();
1415 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 rtnl_unlock();
1417 return err;
1418 }
1419 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420
1421 /**
1422 * call_netdevice_notifiers - call all network notifier blocks
1423 * @val: value passed unmodified to notifier function
1424 * @dev: net_device pointer passed unmodified to notifier function
1425 *
1426 * Call all network notifier blocks. Parameters and return value
1427 * are as for raw_notifier_call_chain().
1428 */
1429
1430 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 {
1432 ASSERT_RTNL();
1433 return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 }
1435
1436 /* When > 0 there are consumers of rx skb time stamps */
1437 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438
1439 void net_enable_timestamp(void)
1440 {
1441 atomic_inc(&netstamp_needed);
1442 }
1443 EXPORT_SYMBOL(net_enable_timestamp);
1444
1445 void net_disable_timestamp(void)
1446 {
1447 atomic_dec(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_disable_timestamp);
1450
1451 static inline void net_timestamp_set(struct sk_buff *skb)
1452 {
1453 if (atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 else
1456 skb->tstamp.tv64 = 0;
1457 }
1458
1459 static inline void net_timestamp_check(struct sk_buff *skb)
1460 {
1461 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 __net_timestamp(skb);
1463 }
1464
1465 /**
1466 * dev_forward_skb - loopback an skb to another netif
1467 *
1468 * @dev: destination network device
1469 * @skb: buffer to forward
1470 *
1471 * return values:
1472 * NET_RX_SUCCESS (no congestion)
1473 * NET_RX_DROP (packet was dropped, but freed)
1474 *
1475 * dev_forward_skb can be used for injecting an skb from the
1476 * start_xmit function of one device into the receive queue
1477 * of another device.
1478 *
1479 * The receiving device may be in another namespace, so
1480 * we have to clear all information in the skb that could
1481 * impact namespace isolation.
1482 */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 skb_orphan(skb);
1486 nf_reset(skb);
1487
1488 if (unlikely(!(dev->flags & IFF_UP) ||
1489 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 atomic_long_inc(&dev->rx_dropped);
1491 kfree_skb(skb);
1492 return NET_RX_DROP;
1493 }
1494 skb_set_dev(skb, dev);
1495 skb->tstamp.tv64 = 0;
1496 skb->pkt_type = PACKET_HOST;
1497 skb->protocol = eth_type_trans(skb, dev);
1498 return netif_rx(skb);
1499 }
1500 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501
1502 /*
1503 * Support routine. Sends outgoing frames to any network
1504 * taps currently in use.
1505 */
1506
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 struct packet_type *ptype;
1510
1511 #ifdef CONFIG_NET_CLS_ACT
1512 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 net_timestamp_set(skb);
1514 #else
1515 net_timestamp_set(skb);
1516 #endif
1517
1518 rcu_read_lock();
1519 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 /* Never send packets back to the socket
1521 * they originated from - MvS (miquels@drinkel.ow.org)
1522 */
1523 if ((ptype->dev == dev || !ptype->dev) &&
1524 (ptype->af_packet_priv == NULL ||
1525 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 if (!skb2)
1528 break;
1529
1530 /* skb->nh should be correctly
1531 set by sender, so that the second statement is
1532 just protection against buggy protocols.
1533 */
1534 skb_reset_mac_header(skb2);
1535
1536 if (skb_network_header(skb2) < skb2->data ||
1537 skb2->network_header > skb2->tail) {
1538 if (net_ratelimit())
1539 printk(KERN_CRIT "protocol %04x is "
1540 "buggy, dev %s\n",
1541 ntohs(skb2->protocol),
1542 dev->name);
1543 skb_reset_network_header(skb2);
1544 }
1545
1546 skb2->transport_header = skb2->network_header;
1547 skb2->pkt_type = PACKET_OUTGOING;
1548 ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 }
1550 }
1551 rcu_read_unlock();
1552 }
1553
1554 /*
1555 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557 */
1558 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559 {
1560 if (txq < 1 || txq > dev->num_tx_queues)
1561 return -EINVAL;
1562
1563 if (dev->reg_state == NETREG_REGISTERED) {
1564 ASSERT_RTNL();
1565
1566 if (txq < dev->real_num_tx_queues)
1567 qdisc_reset_all_tx_gt(dev, txq);
1568 }
1569
1570 dev->real_num_tx_queues = txq;
1571 return 0;
1572 }
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574
1575 #ifdef CONFIG_RPS
1576 /**
1577 * netif_set_real_num_rx_queues - set actual number of RX queues used
1578 * @dev: Network device
1579 * @rxq: Actual number of RX queues
1580 *
1581 * This must be called either with the rtnl_lock held or before
1582 * registration of the net device. Returns 0 on success, or a
1583 * negative error code. If called before registration, it always
1584 * succeeds.
1585 */
1586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1587 {
1588 int rc;
1589
1590 if (rxq < 1 || rxq > dev->num_rx_queues)
1591 return -EINVAL;
1592
1593 if (dev->reg_state == NETREG_REGISTERED) {
1594 ASSERT_RTNL();
1595
1596 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1597 rxq);
1598 if (rc)
1599 return rc;
1600 }
1601
1602 dev->real_num_rx_queues = rxq;
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1606 #endif
1607
1608 static inline void __netif_reschedule(struct Qdisc *q)
1609 {
1610 struct softnet_data *sd;
1611 unsigned long flags;
1612
1613 local_irq_save(flags);
1614 sd = &__get_cpu_var(softnet_data);
1615 q->next_sched = NULL;
1616 *sd->output_queue_tailp = q;
1617 sd->output_queue_tailp = &q->next_sched;
1618 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1619 local_irq_restore(flags);
1620 }
1621
1622 void __netif_schedule(struct Qdisc *q)
1623 {
1624 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1625 __netif_reschedule(q);
1626 }
1627 EXPORT_SYMBOL(__netif_schedule);
1628
1629 void dev_kfree_skb_irq(struct sk_buff *skb)
1630 {
1631 if (atomic_dec_and_test(&skb->users)) {
1632 struct softnet_data *sd;
1633 unsigned long flags;
1634
1635 local_irq_save(flags);
1636 sd = &__get_cpu_var(softnet_data);
1637 skb->next = sd->completion_queue;
1638 sd->completion_queue = skb;
1639 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1640 local_irq_restore(flags);
1641 }
1642 }
1643 EXPORT_SYMBOL(dev_kfree_skb_irq);
1644
1645 void dev_kfree_skb_any(struct sk_buff *skb)
1646 {
1647 if (in_irq() || irqs_disabled())
1648 dev_kfree_skb_irq(skb);
1649 else
1650 dev_kfree_skb(skb);
1651 }
1652 EXPORT_SYMBOL(dev_kfree_skb_any);
1653
1654
1655 /**
1656 * netif_device_detach - mark device as removed
1657 * @dev: network device
1658 *
1659 * Mark device as removed from system and therefore no longer available.
1660 */
1661 void netif_device_detach(struct net_device *dev)
1662 {
1663 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1664 netif_running(dev)) {
1665 netif_tx_stop_all_queues(dev);
1666 }
1667 }
1668 EXPORT_SYMBOL(netif_device_detach);
1669
1670 /**
1671 * netif_device_attach - mark device as attached
1672 * @dev: network device
1673 *
1674 * Mark device as attached from system and restart if needed.
1675 */
1676 void netif_device_attach(struct net_device *dev)
1677 {
1678 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1679 netif_running(dev)) {
1680 netif_tx_wake_all_queues(dev);
1681 __netdev_watchdog_up(dev);
1682 }
1683 }
1684 EXPORT_SYMBOL(netif_device_attach);
1685
1686 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1687 {
1688 return ((features & NETIF_F_NO_CSUM) ||
1689 ((features & NETIF_F_V4_CSUM) &&
1690 protocol == htons(ETH_P_IP)) ||
1691 ((features & NETIF_F_V6_CSUM) &&
1692 protocol == htons(ETH_P_IPV6)) ||
1693 ((features & NETIF_F_FCOE_CRC) &&
1694 protocol == htons(ETH_P_FCOE)));
1695 }
1696
1697 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1698 {
1699 __be16 protocol = skb->protocol;
1700 int features = dev->features;
1701
1702 if (vlan_tx_tag_present(skb)) {
1703 features &= dev->vlan_features;
1704 } else if (protocol == htons(ETH_P_8021Q)) {
1705 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1706 protocol = veh->h_vlan_encapsulated_proto;
1707 features &= dev->vlan_features;
1708 }
1709
1710 return can_checksum_protocol(features, protocol);
1711 }
1712
1713 /**
1714 * skb_dev_set -- assign a new device to a buffer
1715 * @skb: buffer for the new device
1716 * @dev: network device
1717 *
1718 * If an skb is owned by a device already, we have to reset
1719 * all data private to the namespace a device belongs to
1720 * before assigning it a new device.
1721 */
1722 #ifdef CONFIG_NET_NS
1723 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1724 {
1725 skb_dst_drop(skb);
1726 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1727 secpath_reset(skb);
1728 nf_reset(skb);
1729 skb_init_secmark(skb);
1730 skb->mark = 0;
1731 skb->priority = 0;
1732 skb->nf_trace = 0;
1733 skb->ipvs_property = 0;
1734 #ifdef CONFIG_NET_SCHED
1735 skb->tc_index = 0;
1736 #endif
1737 }
1738 skb->dev = dev;
1739 }
1740 EXPORT_SYMBOL(skb_set_dev);
1741 #endif /* CONFIG_NET_NS */
1742
1743 /*
1744 * Invalidate hardware checksum when packet is to be mangled, and
1745 * complete checksum manually on outgoing path.
1746 */
1747 int skb_checksum_help(struct sk_buff *skb)
1748 {
1749 __wsum csum;
1750 int ret = 0, offset;
1751
1752 if (skb->ip_summed == CHECKSUM_COMPLETE)
1753 goto out_set_summed;
1754
1755 if (unlikely(skb_shinfo(skb)->gso_size)) {
1756 /* Let GSO fix up the checksum. */
1757 goto out_set_summed;
1758 }
1759
1760 offset = skb->csum_start - skb_headroom(skb);
1761 BUG_ON(offset >= skb_headlen(skb));
1762 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1763
1764 offset += skb->csum_offset;
1765 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1766
1767 if (skb_cloned(skb) &&
1768 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1769 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1770 if (ret)
1771 goto out;
1772 }
1773
1774 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1775 out_set_summed:
1776 skb->ip_summed = CHECKSUM_NONE;
1777 out:
1778 return ret;
1779 }
1780 EXPORT_SYMBOL(skb_checksum_help);
1781
1782 /**
1783 * skb_gso_segment - Perform segmentation on skb.
1784 * @skb: buffer to segment
1785 * @features: features for the output path (see dev->features)
1786 *
1787 * This function segments the given skb and returns a list of segments.
1788 *
1789 * It may return NULL if the skb requires no segmentation. This is
1790 * only possible when GSO is used for verifying header integrity.
1791 */
1792 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1793 {
1794 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1795 struct packet_type *ptype;
1796 __be16 type = skb->protocol;
1797 int vlan_depth = ETH_HLEN;
1798 int err;
1799
1800 while (type == htons(ETH_P_8021Q)) {
1801 struct vlan_hdr *vh;
1802
1803 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1804 return ERR_PTR(-EINVAL);
1805
1806 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1807 type = vh->h_vlan_encapsulated_proto;
1808 vlan_depth += VLAN_HLEN;
1809 }
1810
1811 skb_reset_mac_header(skb);
1812 skb->mac_len = skb->network_header - skb->mac_header;
1813 __skb_pull(skb, skb->mac_len);
1814
1815 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1816 struct net_device *dev = skb->dev;
1817 struct ethtool_drvinfo info = {};
1818
1819 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1820 dev->ethtool_ops->get_drvinfo(dev, &info);
1821
1822 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1823 info.driver, dev ? dev->features : 0L,
1824 skb->sk ? skb->sk->sk_route_caps : 0L,
1825 skb->len, skb->data_len, skb->ip_summed);
1826
1827 if (skb_header_cloned(skb) &&
1828 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1829 return ERR_PTR(err);
1830 }
1831
1832 rcu_read_lock();
1833 list_for_each_entry_rcu(ptype,
1834 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1835 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1836 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1837 err = ptype->gso_send_check(skb);
1838 segs = ERR_PTR(err);
1839 if (err || skb_gso_ok(skb, features))
1840 break;
1841 __skb_push(skb, (skb->data -
1842 skb_network_header(skb)));
1843 }
1844 segs = ptype->gso_segment(skb, features);
1845 break;
1846 }
1847 }
1848 rcu_read_unlock();
1849
1850 __skb_push(skb, skb->data - skb_mac_header(skb));
1851
1852 return segs;
1853 }
1854 EXPORT_SYMBOL(skb_gso_segment);
1855
1856 /* Take action when hardware reception checksum errors are detected. */
1857 #ifdef CONFIG_BUG
1858 void netdev_rx_csum_fault(struct net_device *dev)
1859 {
1860 if (net_ratelimit()) {
1861 printk(KERN_ERR "%s: hw csum failure.\n",
1862 dev ? dev->name : "<unknown>");
1863 dump_stack();
1864 }
1865 }
1866 EXPORT_SYMBOL(netdev_rx_csum_fault);
1867 #endif
1868
1869 /* Actually, we should eliminate this check as soon as we know, that:
1870 * 1. IOMMU is present and allows to map all the memory.
1871 * 2. No high memory really exists on this machine.
1872 */
1873
1874 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 #ifdef CONFIG_HIGHMEM
1877 int i;
1878 if (!(dev->features & NETIF_F_HIGHDMA)) {
1879 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1880 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1881 return 1;
1882 }
1883
1884 if (PCI_DMA_BUS_IS_PHYS) {
1885 struct device *pdev = dev->dev.parent;
1886
1887 if (!pdev)
1888 return 0;
1889 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1890 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1891 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1892 return 1;
1893 }
1894 }
1895 #endif
1896 return 0;
1897 }
1898
1899 struct dev_gso_cb {
1900 void (*destructor)(struct sk_buff *skb);
1901 };
1902
1903 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1904
1905 static void dev_gso_skb_destructor(struct sk_buff *skb)
1906 {
1907 struct dev_gso_cb *cb;
1908
1909 do {
1910 struct sk_buff *nskb = skb->next;
1911
1912 skb->next = nskb->next;
1913 nskb->next = NULL;
1914 kfree_skb(nskb);
1915 } while (skb->next);
1916
1917 cb = DEV_GSO_CB(skb);
1918 if (cb->destructor)
1919 cb->destructor(skb);
1920 }
1921
1922 /**
1923 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1924 * @skb: buffer to segment
1925 *
1926 * This function segments the given skb and stores the list of segments
1927 * in skb->next.
1928 */
1929 static int dev_gso_segment(struct sk_buff *skb)
1930 {
1931 struct net_device *dev = skb->dev;
1932 struct sk_buff *segs;
1933 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1934 NETIF_F_SG : 0);
1935
1936 segs = skb_gso_segment(skb, features);
1937
1938 /* Verifying header integrity only. */
1939 if (!segs)
1940 return 0;
1941
1942 if (IS_ERR(segs))
1943 return PTR_ERR(segs);
1944
1945 skb->next = segs;
1946 DEV_GSO_CB(skb)->destructor = skb->destructor;
1947 skb->destructor = dev_gso_skb_destructor;
1948
1949 return 0;
1950 }
1951
1952 /*
1953 * Try to orphan skb early, right before transmission by the device.
1954 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1955 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1956 */
1957 static inline void skb_orphan_try(struct sk_buff *skb)
1958 {
1959 struct sock *sk = skb->sk;
1960
1961 if (sk && !skb_shinfo(skb)->tx_flags) {
1962 /* skb_tx_hash() wont be able to get sk.
1963 * We copy sk_hash into skb->rxhash
1964 */
1965 if (!skb->rxhash)
1966 skb->rxhash = sk->sk_hash;
1967 skb_orphan(skb);
1968 }
1969 }
1970
1971 int netif_get_vlan_features(struct sk_buff *skb, struct net_device *dev)
1972 {
1973 __be16 protocol = skb->protocol;
1974
1975 if (protocol == htons(ETH_P_8021Q)) {
1976 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1977 protocol = veh->h_vlan_encapsulated_proto;
1978 } else if (!skb->vlan_tci)
1979 return dev->features;
1980
1981 if (protocol != htons(ETH_P_8021Q))
1982 return dev->features & dev->vlan_features;
1983 else
1984 return 0;
1985 }
1986 EXPORT_SYMBOL(netif_get_vlan_features);
1987
1988 /*
1989 * Returns true if either:
1990 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1991 * 2. skb is fragmented and the device does not support SG, or if
1992 * at least one of fragments is in highmem and device does not
1993 * support DMA from it.
1994 */
1995 static inline int skb_needs_linearize(struct sk_buff *skb,
1996 struct net_device *dev)
1997 {
1998 if (skb_is_nonlinear(skb)) {
1999 int features = dev->features;
2000
2001 if (vlan_tx_tag_present(skb))
2002 features &= dev->vlan_features;
2003
2004 return (skb_has_frag_list(skb) &&
2005 !(features & NETIF_F_FRAGLIST)) ||
2006 (skb_shinfo(skb)->nr_frags &&
2007 (!(features & NETIF_F_SG) ||
2008 illegal_highdma(dev, skb)));
2009 }
2010
2011 return 0;
2012 }
2013
2014 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2015 struct netdev_queue *txq)
2016 {
2017 const struct net_device_ops *ops = dev->netdev_ops;
2018 int rc = NETDEV_TX_OK;
2019
2020 if (likely(!skb->next)) {
2021 if (!list_empty(&ptype_all))
2022 dev_queue_xmit_nit(skb, dev);
2023
2024 /*
2025 * If device doesnt need skb->dst, release it right now while
2026 * its hot in this cpu cache
2027 */
2028 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2029 skb_dst_drop(skb);
2030
2031 skb_orphan_try(skb);
2032
2033 if (vlan_tx_tag_present(skb) &&
2034 !(dev->features & NETIF_F_HW_VLAN_TX)) {
2035 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2036 if (unlikely(!skb))
2037 goto out;
2038
2039 skb->vlan_tci = 0;
2040 }
2041
2042 if (netif_needs_gso(dev, skb)) {
2043 if (unlikely(dev_gso_segment(skb)))
2044 goto out_kfree_skb;
2045 if (skb->next)
2046 goto gso;
2047 } else {
2048 if (skb_needs_linearize(skb, dev) &&
2049 __skb_linearize(skb))
2050 goto out_kfree_skb;
2051
2052 /* If packet is not checksummed and device does not
2053 * support checksumming for this protocol, complete
2054 * checksumming here.
2055 */
2056 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2057 skb_set_transport_header(skb, skb->csum_start -
2058 skb_headroom(skb));
2059 if (!dev_can_checksum(dev, skb) &&
2060 skb_checksum_help(skb))
2061 goto out_kfree_skb;
2062 }
2063 }
2064
2065 rc = ops->ndo_start_xmit(skb, dev);
2066 trace_net_dev_xmit(skb, rc);
2067 if (rc == NETDEV_TX_OK)
2068 txq_trans_update(txq);
2069 return rc;
2070 }
2071
2072 gso:
2073 do {
2074 struct sk_buff *nskb = skb->next;
2075
2076 skb->next = nskb->next;
2077 nskb->next = NULL;
2078
2079 /*
2080 * If device doesnt need nskb->dst, release it right now while
2081 * its hot in this cpu cache
2082 */
2083 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2084 skb_dst_drop(nskb);
2085
2086 rc = ops->ndo_start_xmit(nskb, dev);
2087 trace_net_dev_xmit(nskb, rc);
2088 if (unlikely(rc != NETDEV_TX_OK)) {
2089 if (rc & ~NETDEV_TX_MASK)
2090 goto out_kfree_gso_skb;
2091 nskb->next = skb->next;
2092 skb->next = nskb;
2093 return rc;
2094 }
2095 txq_trans_update(txq);
2096 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2097 return NETDEV_TX_BUSY;
2098 } while (skb->next);
2099
2100 out_kfree_gso_skb:
2101 if (likely(skb->next == NULL))
2102 skb->destructor = DEV_GSO_CB(skb)->destructor;
2103 out_kfree_skb:
2104 kfree_skb(skb);
2105 out:
2106 return rc;
2107 }
2108
2109 static u32 hashrnd __read_mostly;
2110
2111 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2112 {
2113 u32 hash;
2114
2115 if (skb_rx_queue_recorded(skb)) {
2116 hash = skb_get_rx_queue(skb);
2117 while (unlikely(hash >= dev->real_num_tx_queues))
2118 hash -= dev->real_num_tx_queues;
2119 return hash;
2120 }
2121
2122 if (skb->sk && skb->sk->sk_hash)
2123 hash = skb->sk->sk_hash;
2124 else
2125 hash = (__force u16) skb->protocol ^ skb->rxhash;
2126 hash = jhash_1word(hash, hashrnd);
2127
2128 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2129 }
2130 EXPORT_SYMBOL(skb_tx_hash);
2131
2132 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2133 {
2134 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2135 if (net_ratelimit()) {
2136 pr_warning("%s selects TX queue %d, but "
2137 "real number of TX queues is %d\n",
2138 dev->name, queue_index, dev->real_num_tx_queues);
2139 }
2140 return 0;
2141 }
2142 return queue_index;
2143 }
2144
2145 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2146 struct sk_buff *skb)
2147 {
2148 int queue_index;
2149 const struct net_device_ops *ops = dev->netdev_ops;
2150
2151 if (ops->ndo_select_queue) {
2152 queue_index = ops->ndo_select_queue(dev, skb);
2153 queue_index = dev_cap_txqueue(dev, queue_index);
2154 } else {
2155 struct sock *sk = skb->sk;
2156 queue_index = sk_tx_queue_get(sk);
2157 if (queue_index < 0 || queue_index >= dev->real_num_tx_queues) {
2158
2159 queue_index = 0;
2160 if (dev->real_num_tx_queues > 1)
2161 queue_index = skb_tx_hash(dev, skb);
2162
2163 if (sk) {
2164 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2165
2166 if (dst && skb_dst(skb) == dst)
2167 sk_tx_queue_set(sk, queue_index);
2168 }
2169 }
2170 }
2171
2172 skb_set_queue_mapping(skb, queue_index);
2173 return netdev_get_tx_queue(dev, queue_index);
2174 }
2175
2176 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2177 struct net_device *dev,
2178 struct netdev_queue *txq)
2179 {
2180 spinlock_t *root_lock = qdisc_lock(q);
2181 bool contended = qdisc_is_running(q);
2182 int rc;
2183
2184 /*
2185 * Heuristic to force contended enqueues to serialize on a
2186 * separate lock before trying to get qdisc main lock.
2187 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2188 * and dequeue packets faster.
2189 */
2190 if (unlikely(contended))
2191 spin_lock(&q->busylock);
2192
2193 spin_lock(root_lock);
2194 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2195 kfree_skb(skb);
2196 rc = NET_XMIT_DROP;
2197 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2198 qdisc_run_begin(q)) {
2199 /*
2200 * This is a work-conserving queue; there are no old skbs
2201 * waiting to be sent out; and the qdisc is not running -
2202 * xmit the skb directly.
2203 */
2204 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2205 skb_dst_force(skb);
2206 __qdisc_update_bstats(q, skb->len);
2207 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2208 if (unlikely(contended)) {
2209 spin_unlock(&q->busylock);
2210 contended = false;
2211 }
2212 __qdisc_run(q);
2213 } else
2214 qdisc_run_end(q);
2215
2216 rc = NET_XMIT_SUCCESS;
2217 } else {
2218 skb_dst_force(skb);
2219 rc = qdisc_enqueue_root(skb, q);
2220 if (qdisc_run_begin(q)) {
2221 if (unlikely(contended)) {
2222 spin_unlock(&q->busylock);
2223 contended = false;
2224 }
2225 __qdisc_run(q);
2226 }
2227 }
2228 spin_unlock(root_lock);
2229 if (unlikely(contended))
2230 spin_unlock(&q->busylock);
2231 return rc;
2232 }
2233
2234 static DEFINE_PER_CPU(int, xmit_recursion);
2235 #define RECURSION_LIMIT 10
2236
2237 /**
2238 * dev_queue_xmit - transmit a buffer
2239 * @skb: buffer to transmit
2240 *
2241 * Queue a buffer for transmission to a network device. The caller must
2242 * have set the device and priority and built the buffer before calling
2243 * this function. The function can be called from an interrupt.
2244 *
2245 * A negative errno code is returned on a failure. A success does not
2246 * guarantee the frame will be transmitted as it may be dropped due
2247 * to congestion or traffic shaping.
2248 *
2249 * -----------------------------------------------------------------------------------
2250 * I notice this method can also return errors from the queue disciplines,
2251 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2252 * be positive.
2253 *
2254 * Regardless of the return value, the skb is consumed, so it is currently
2255 * difficult to retry a send to this method. (You can bump the ref count
2256 * before sending to hold a reference for retry if you are careful.)
2257 *
2258 * When calling this method, interrupts MUST be enabled. This is because
2259 * the BH enable code must have IRQs enabled so that it will not deadlock.
2260 * --BLG
2261 */
2262 int dev_queue_xmit(struct sk_buff *skb)
2263 {
2264 struct net_device *dev = skb->dev;
2265 struct netdev_queue *txq;
2266 struct Qdisc *q;
2267 int rc = -ENOMEM;
2268
2269 /* Disable soft irqs for various locks below. Also
2270 * stops preemption for RCU.
2271 */
2272 rcu_read_lock_bh();
2273
2274 txq = dev_pick_tx(dev, skb);
2275 q = rcu_dereference_bh(txq->qdisc);
2276
2277 #ifdef CONFIG_NET_CLS_ACT
2278 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2279 #endif
2280 trace_net_dev_queue(skb);
2281 if (q->enqueue) {
2282 rc = __dev_xmit_skb(skb, q, dev, txq);
2283 goto out;
2284 }
2285
2286 /* The device has no queue. Common case for software devices:
2287 loopback, all the sorts of tunnels...
2288
2289 Really, it is unlikely that netif_tx_lock protection is necessary
2290 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2291 counters.)
2292 However, it is possible, that they rely on protection
2293 made by us here.
2294
2295 Check this and shot the lock. It is not prone from deadlocks.
2296 Either shot noqueue qdisc, it is even simpler 8)
2297 */
2298 if (dev->flags & IFF_UP) {
2299 int cpu = smp_processor_id(); /* ok because BHs are off */
2300
2301 if (txq->xmit_lock_owner != cpu) {
2302
2303 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2304 goto recursion_alert;
2305
2306 HARD_TX_LOCK(dev, txq, cpu);
2307
2308 if (!netif_tx_queue_stopped(txq)) {
2309 __this_cpu_inc(xmit_recursion);
2310 rc = dev_hard_start_xmit(skb, dev, txq);
2311 __this_cpu_dec(xmit_recursion);
2312 if (dev_xmit_complete(rc)) {
2313 HARD_TX_UNLOCK(dev, txq);
2314 goto out;
2315 }
2316 }
2317 HARD_TX_UNLOCK(dev, txq);
2318 if (net_ratelimit())
2319 printk(KERN_CRIT "Virtual device %s asks to "
2320 "queue packet!\n", dev->name);
2321 } else {
2322 /* Recursion is detected! It is possible,
2323 * unfortunately
2324 */
2325 recursion_alert:
2326 if (net_ratelimit())
2327 printk(KERN_CRIT "Dead loop on virtual device "
2328 "%s, fix it urgently!\n", dev->name);
2329 }
2330 }
2331
2332 rc = -ENETDOWN;
2333 rcu_read_unlock_bh();
2334
2335 kfree_skb(skb);
2336 return rc;
2337 out:
2338 rcu_read_unlock_bh();
2339 return rc;
2340 }
2341 EXPORT_SYMBOL(dev_queue_xmit);
2342
2343
2344 /*=======================================================================
2345 Receiver routines
2346 =======================================================================*/
2347
2348 int netdev_max_backlog __read_mostly = 1000;
2349 int netdev_tstamp_prequeue __read_mostly = 1;
2350 int netdev_budget __read_mostly = 300;
2351 int weight_p __read_mostly = 64; /* old backlog weight */
2352
2353 /* Called with irq disabled */
2354 static inline void ____napi_schedule(struct softnet_data *sd,
2355 struct napi_struct *napi)
2356 {
2357 list_add_tail(&napi->poll_list, &sd->poll_list);
2358 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2359 }
2360
2361 /*
2362 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2363 * and src/dst port numbers. Returns a non-zero hash number on success
2364 * and 0 on failure.
2365 */
2366 __u32 __skb_get_rxhash(struct sk_buff *skb)
2367 {
2368 int nhoff, hash = 0, poff;
2369 struct ipv6hdr *ip6;
2370 struct iphdr *ip;
2371 u8 ip_proto;
2372 u32 addr1, addr2, ihl;
2373 union {
2374 u32 v32;
2375 u16 v16[2];
2376 } ports;
2377
2378 nhoff = skb_network_offset(skb);
2379
2380 switch (skb->protocol) {
2381 case __constant_htons(ETH_P_IP):
2382 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2383 goto done;
2384
2385 ip = (struct iphdr *) (skb->data + nhoff);
2386 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2387 ip_proto = 0;
2388 else
2389 ip_proto = ip->protocol;
2390 addr1 = (__force u32) ip->saddr;
2391 addr2 = (__force u32) ip->daddr;
2392 ihl = ip->ihl;
2393 break;
2394 case __constant_htons(ETH_P_IPV6):
2395 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2396 goto done;
2397
2398 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2399 ip_proto = ip6->nexthdr;
2400 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2401 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2402 ihl = (40 >> 2);
2403 break;
2404 default:
2405 goto done;
2406 }
2407
2408 ports.v32 = 0;
2409 poff = proto_ports_offset(ip_proto);
2410 if (poff >= 0) {
2411 nhoff += ihl * 4 + poff;
2412 if (pskb_may_pull(skb, nhoff + 4)) {
2413 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2414 if (ports.v16[1] < ports.v16[0])
2415 swap(ports.v16[0], ports.v16[1]);
2416 }
2417 }
2418
2419 /* get a consistent hash (same value on both flow directions) */
2420 if (addr2 < addr1)
2421 swap(addr1, addr2);
2422
2423 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2424 if (!hash)
2425 hash = 1;
2426
2427 done:
2428 return hash;
2429 }
2430 EXPORT_SYMBOL(__skb_get_rxhash);
2431
2432 #ifdef CONFIG_RPS
2433
2434 /* One global table that all flow-based protocols share. */
2435 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2436 EXPORT_SYMBOL(rps_sock_flow_table);
2437
2438 /*
2439 * get_rps_cpu is called from netif_receive_skb and returns the target
2440 * CPU from the RPS map of the receiving queue for a given skb.
2441 * rcu_read_lock must be held on entry.
2442 */
2443 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2444 struct rps_dev_flow **rflowp)
2445 {
2446 struct netdev_rx_queue *rxqueue;
2447 struct rps_map *map;
2448 struct rps_dev_flow_table *flow_table;
2449 struct rps_sock_flow_table *sock_flow_table;
2450 int cpu = -1;
2451 u16 tcpu;
2452
2453 if (skb_rx_queue_recorded(skb)) {
2454 u16 index = skb_get_rx_queue(skb);
2455 if (unlikely(index >= dev->real_num_rx_queues)) {
2456 WARN_ONCE(dev->real_num_rx_queues > 1,
2457 "%s received packet on queue %u, but number "
2458 "of RX queues is %u\n",
2459 dev->name, index, dev->real_num_rx_queues);
2460 goto done;
2461 }
2462 rxqueue = dev->_rx + index;
2463 } else
2464 rxqueue = dev->_rx;
2465
2466 map = rcu_dereference(rxqueue->rps_map);
2467 if (map) {
2468 if (map->len == 1) {
2469 tcpu = map->cpus[0];
2470 if (cpu_online(tcpu))
2471 cpu = tcpu;
2472 goto done;
2473 }
2474 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2475 goto done;
2476 }
2477
2478 skb_reset_network_header(skb);
2479 if (!skb_get_rxhash(skb))
2480 goto done;
2481
2482 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2483 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2484 if (flow_table && sock_flow_table) {
2485 u16 next_cpu;
2486 struct rps_dev_flow *rflow;
2487
2488 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2489 tcpu = rflow->cpu;
2490
2491 next_cpu = sock_flow_table->ents[skb->rxhash &
2492 sock_flow_table->mask];
2493
2494 /*
2495 * If the desired CPU (where last recvmsg was done) is
2496 * different from current CPU (one in the rx-queue flow
2497 * table entry), switch if one of the following holds:
2498 * - Current CPU is unset (equal to RPS_NO_CPU).
2499 * - Current CPU is offline.
2500 * - The current CPU's queue tail has advanced beyond the
2501 * last packet that was enqueued using this table entry.
2502 * This guarantees that all previous packets for the flow
2503 * have been dequeued, thus preserving in order delivery.
2504 */
2505 if (unlikely(tcpu != next_cpu) &&
2506 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2507 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2508 rflow->last_qtail)) >= 0)) {
2509 tcpu = rflow->cpu = next_cpu;
2510 if (tcpu != RPS_NO_CPU)
2511 rflow->last_qtail = per_cpu(softnet_data,
2512 tcpu).input_queue_head;
2513 }
2514 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2515 *rflowp = rflow;
2516 cpu = tcpu;
2517 goto done;
2518 }
2519 }
2520
2521 if (map) {
2522 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2523
2524 if (cpu_online(tcpu)) {
2525 cpu = tcpu;
2526 goto done;
2527 }
2528 }
2529
2530 done:
2531 return cpu;
2532 }
2533
2534 /* Called from hardirq (IPI) context */
2535 static void rps_trigger_softirq(void *data)
2536 {
2537 struct softnet_data *sd = data;
2538
2539 ____napi_schedule(sd, &sd->backlog);
2540 sd->received_rps++;
2541 }
2542
2543 #endif /* CONFIG_RPS */
2544
2545 /*
2546 * Check if this softnet_data structure is another cpu one
2547 * If yes, queue it to our IPI list and return 1
2548 * If no, return 0
2549 */
2550 static int rps_ipi_queued(struct softnet_data *sd)
2551 {
2552 #ifdef CONFIG_RPS
2553 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2554
2555 if (sd != mysd) {
2556 sd->rps_ipi_next = mysd->rps_ipi_list;
2557 mysd->rps_ipi_list = sd;
2558
2559 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2560 return 1;
2561 }
2562 #endif /* CONFIG_RPS */
2563 return 0;
2564 }
2565
2566 /*
2567 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2568 * queue (may be a remote CPU queue).
2569 */
2570 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2571 unsigned int *qtail)
2572 {
2573 struct softnet_data *sd;
2574 unsigned long flags;
2575
2576 sd = &per_cpu(softnet_data, cpu);
2577
2578 local_irq_save(flags);
2579
2580 rps_lock(sd);
2581 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2582 if (skb_queue_len(&sd->input_pkt_queue)) {
2583 enqueue:
2584 __skb_queue_tail(&sd->input_pkt_queue, skb);
2585 input_queue_tail_incr_save(sd, qtail);
2586 rps_unlock(sd);
2587 local_irq_restore(flags);
2588 return NET_RX_SUCCESS;
2589 }
2590
2591 /* Schedule NAPI for backlog device
2592 * We can use non atomic operation since we own the queue lock
2593 */
2594 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2595 if (!rps_ipi_queued(sd))
2596 ____napi_schedule(sd, &sd->backlog);
2597 }
2598 goto enqueue;
2599 }
2600
2601 sd->dropped++;
2602 rps_unlock(sd);
2603
2604 local_irq_restore(flags);
2605
2606 atomic_long_inc(&skb->dev->rx_dropped);
2607 kfree_skb(skb);
2608 return NET_RX_DROP;
2609 }
2610
2611 /**
2612 * netif_rx - post buffer to the network code
2613 * @skb: buffer to post
2614 *
2615 * This function receives a packet from a device driver and queues it for
2616 * the upper (protocol) levels to process. It always succeeds. The buffer
2617 * may be dropped during processing for congestion control or by the
2618 * protocol layers.
2619 *
2620 * return values:
2621 * NET_RX_SUCCESS (no congestion)
2622 * NET_RX_DROP (packet was dropped)
2623 *
2624 */
2625
2626 int netif_rx(struct sk_buff *skb)
2627 {
2628 int ret;
2629
2630 /* if netpoll wants it, pretend we never saw it */
2631 if (netpoll_rx(skb))
2632 return NET_RX_DROP;
2633
2634 if (netdev_tstamp_prequeue)
2635 net_timestamp_check(skb);
2636
2637 trace_netif_rx(skb);
2638 #ifdef CONFIG_RPS
2639 {
2640 struct rps_dev_flow voidflow, *rflow = &voidflow;
2641 int cpu;
2642
2643 preempt_disable();
2644 rcu_read_lock();
2645
2646 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2647 if (cpu < 0)
2648 cpu = smp_processor_id();
2649
2650 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2651
2652 rcu_read_unlock();
2653 preempt_enable();
2654 }
2655 #else
2656 {
2657 unsigned int qtail;
2658 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2659 put_cpu();
2660 }
2661 #endif
2662 return ret;
2663 }
2664 EXPORT_SYMBOL(netif_rx);
2665
2666 int netif_rx_ni(struct sk_buff *skb)
2667 {
2668 int err;
2669
2670 preempt_disable();
2671 err = netif_rx(skb);
2672 if (local_softirq_pending())
2673 do_softirq();
2674 preempt_enable();
2675
2676 return err;
2677 }
2678 EXPORT_SYMBOL(netif_rx_ni);
2679
2680 static void net_tx_action(struct softirq_action *h)
2681 {
2682 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2683
2684 if (sd->completion_queue) {
2685 struct sk_buff *clist;
2686
2687 local_irq_disable();
2688 clist = sd->completion_queue;
2689 sd->completion_queue = NULL;
2690 local_irq_enable();
2691
2692 while (clist) {
2693 struct sk_buff *skb = clist;
2694 clist = clist->next;
2695
2696 WARN_ON(atomic_read(&skb->users));
2697 trace_kfree_skb(skb, net_tx_action);
2698 __kfree_skb(skb);
2699 }
2700 }
2701
2702 if (sd->output_queue) {
2703 struct Qdisc *head;
2704
2705 local_irq_disable();
2706 head = sd->output_queue;
2707 sd->output_queue = NULL;
2708 sd->output_queue_tailp = &sd->output_queue;
2709 local_irq_enable();
2710
2711 while (head) {
2712 struct Qdisc *q = head;
2713 spinlock_t *root_lock;
2714
2715 head = head->next_sched;
2716
2717 root_lock = qdisc_lock(q);
2718 if (spin_trylock(root_lock)) {
2719 smp_mb__before_clear_bit();
2720 clear_bit(__QDISC_STATE_SCHED,
2721 &q->state);
2722 qdisc_run(q);
2723 spin_unlock(root_lock);
2724 } else {
2725 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2726 &q->state)) {
2727 __netif_reschedule(q);
2728 } else {
2729 smp_mb__before_clear_bit();
2730 clear_bit(__QDISC_STATE_SCHED,
2731 &q->state);
2732 }
2733 }
2734 }
2735 }
2736 }
2737
2738 static inline int deliver_skb(struct sk_buff *skb,
2739 struct packet_type *pt_prev,
2740 struct net_device *orig_dev)
2741 {
2742 atomic_inc(&skb->users);
2743 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2744 }
2745
2746 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2747 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2748 /* This hook is defined here for ATM LANE */
2749 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2750 unsigned char *addr) __read_mostly;
2751 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2752 #endif
2753
2754 #ifdef CONFIG_NET_CLS_ACT
2755 /* TODO: Maybe we should just force sch_ingress to be compiled in
2756 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2757 * a compare and 2 stores extra right now if we dont have it on
2758 * but have CONFIG_NET_CLS_ACT
2759 * NOTE: This doesnt stop any functionality; if you dont have
2760 * the ingress scheduler, you just cant add policies on ingress.
2761 *
2762 */
2763 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2764 {
2765 struct net_device *dev = skb->dev;
2766 u32 ttl = G_TC_RTTL(skb->tc_verd);
2767 int result = TC_ACT_OK;
2768 struct Qdisc *q;
2769
2770 if (unlikely(MAX_RED_LOOP < ttl++)) {
2771 if (net_ratelimit())
2772 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2773 skb->skb_iif, dev->ifindex);
2774 return TC_ACT_SHOT;
2775 }
2776
2777 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2778 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2779
2780 q = rxq->qdisc;
2781 if (q != &noop_qdisc) {
2782 spin_lock(qdisc_lock(q));
2783 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2784 result = qdisc_enqueue_root(skb, q);
2785 spin_unlock(qdisc_lock(q));
2786 }
2787
2788 return result;
2789 }
2790
2791 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2792 struct packet_type **pt_prev,
2793 int *ret, struct net_device *orig_dev)
2794 {
2795 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2796
2797 if (!rxq || rxq->qdisc == &noop_qdisc)
2798 goto out;
2799
2800 if (*pt_prev) {
2801 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2802 *pt_prev = NULL;
2803 }
2804
2805 switch (ing_filter(skb, rxq)) {
2806 case TC_ACT_SHOT:
2807 case TC_ACT_STOLEN:
2808 kfree_skb(skb);
2809 return NULL;
2810 }
2811
2812 out:
2813 skb->tc_verd = 0;
2814 return skb;
2815 }
2816 #endif
2817
2818 /**
2819 * netdev_rx_handler_register - register receive handler
2820 * @dev: device to register a handler for
2821 * @rx_handler: receive handler to register
2822 * @rx_handler_data: data pointer that is used by rx handler
2823 *
2824 * Register a receive hander for a device. This handler will then be
2825 * called from __netif_receive_skb. A negative errno code is returned
2826 * on a failure.
2827 *
2828 * The caller must hold the rtnl_mutex.
2829 */
2830 int netdev_rx_handler_register(struct net_device *dev,
2831 rx_handler_func_t *rx_handler,
2832 void *rx_handler_data)
2833 {
2834 ASSERT_RTNL();
2835
2836 if (dev->rx_handler)
2837 return -EBUSY;
2838
2839 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2840 rcu_assign_pointer(dev->rx_handler, rx_handler);
2841
2842 return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2845
2846 /**
2847 * netdev_rx_handler_unregister - unregister receive handler
2848 * @dev: device to unregister a handler from
2849 *
2850 * Unregister a receive hander from a device.
2851 *
2852 * The caller must hold the rtnl_mutex.
2853 */
2854 void netdev_rx_handler_unregister(struct net_device *dev)
2855 {
2856
2857 ASSERT_RTNL();
2858 rcu_assign_pointer(dev->rx_handler, NULL);
2859 rcu_assign_pointer(dev->rx_handler_data, NULL);
2860 }
2861 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2862
2863 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2864 struct net_device *master)
2865 {
2866 if (skb->pkt_type == PACKET_HOST) {
2867 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2868
2869 memcpy(dest, master->dev_addr, ETH_ALEN);
2870 }
2871 }
2872
2873 /* On bonding slaves other than the currently active slave, suppress
2874 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2875 * ARP on active-backup slaves with arp_validate enabled.
2876 */
2877 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2878 {
2879 struct net_device *dev = skb->dev;
2880
2881 if (master->priv_flags & IFF_MASTER_ARPMON)
2882 dev->last_rx = jiffies;
2883
2884 if ((master->priv_flags & IFF_MASTER_ALB) &&
2885 (master->priv_flags & IFF_BRIDGE_PORT)) {
2886 /* Do address unmangle. The local destination address
2887 * will be always the one master has. Provides the right
2888 * functionality in a bridge.
2889 */
2890 skb_bond_set_mac_by_master(skb, master);
2891 }
2892
2893 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2894 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2895 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2896 return 0;
2897
2898 if (master->priv_flags & IFF_MASTER_ALB) {
2899 if (skb->pkt_type != PACKET_BROADCAST &&
2900 skb->pkt_type != PACKET_MULTICAST)
2901 return 0;
2902 }
2903 if (master->priv_flags & IFF_MASTER_8023AD &&
2904 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2905 return 0;
2906
2907 return 1;
2908 }
2909 return 0;
2910 }
2911 EXPORT_SYMBOL(__skb_bond_should_drop);
2912
2913 static int __netif_receive_skb(struct sk_buff *skb)
2914 {
2915 struct packet_type *ptype, *pt_prev;
2916 rx_handler_func_t *rx_handler;
2917 struct net_device *orig_dev;
2918 struct net_device *master;
2919 struct net_device *null_or_orig;
2920 struct net_device *orig_or_bond;
2921 int ret = NET_RX_DROP;
2922 __be16 type;
2923
2924 if (!netdev_tstamp_prequeue)
2925 net_timestamp_check(skb);
2926
2927 trace_netif_receive_skb(skb);
2928
2929 /* if we've gotten here through NAPI, check netpoll */
2930 if (netpoll_receive_skb(skb))
2931 return NET_RX_DROP;
2932
2933 if (!skb->skb_iif)
2934 skb->skb_iif = skb->dev->ifindex;
2935
2936 /*
2937 * bonding note: skbs received on inactive slaves should only
2938 * be delivered to pkt handlers that are exact matches. Also
2939 * the deliver_no_wcard flag will be set. If packet handlers
2940 * are sensitive to duplicate packets these skbs will need to
2941 * be dropped at the handler.
2942 */
2943 null_or_orig = NULL;
2944 orig_dev = skb->dev;
2945 master = ACCESS_ONCE(orig_dev->master);
2946 if (skb->deliver_no_wcard)
2947 null_or_orig = orig_dev;
2948 else if (master) {
2949 if (skb_bond_should_drop(skb, master)) {
2950 skb->deliver_no_wcard = 1;
2951 null_or_orig = orig_dev; /* deliver only exact match */
2952 } else
2953 skb->dev = master;
2954 }
2955
2956 __this_cpu_inc(softnet_data.processed);
2957 skb_reset_network_header(skb);
2958 skb_reset_transport_header(skb);
2959 skb->mac_len = skb->network_header - skb->mac_header;
2960
2961 pt_prev = NULL;
2962
2963 rcu_read_lock();
2964
2965 #ifdef CONFIG_NET_CLS_ACT
2966 if (skb->tc_verd & TC_NCLS) {
2967 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2968 goto ncls;
2969 }
2970 #endif
2971
2972 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2973 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2974 ptype->dev == orig_dev) {
2975 if (pt_prev)
2976 ret = deliver_skb(skb, pt_prev, orig_dev);
2977 pt_prev = ptype;
2978 }
2979 }
2980
2981 #ifdef CONFIG_NET_CLS_ACT
2982 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2983 if (!skb)
2984 goto out;
2985 ncls:
2986 #endif
2987
2988 /* Handle special case of bridge or macvlan */
2989 rx_handler = rcu_dereference(skb->dev->rx_handler);
2990 if (rx_handler) {
2991 if (pt_prev) {
2992 ret = deliver_skb(skb, pt_prev, orig_dev);
2993 pt_prev = NULL;
2994 }
2995 skb = rx_handler(skb);
2996 if (!skb)
2997 goto out;
2998 }
2999
3000 if (vlan_tx_tag_present(skb)) {
3001 if (pt_prev) {
3002 ret = deliver_skb(skb, pt_prev, orig_dev);
3003 pt_prev = NULL;
3004 }
3005 if (vlan_hwaccel_do_receive(&skb)) {
3006 ret = __netif_receive_skb(skb);
3007 goto out;
3008 } else if (unlikely(!skb))
3009 goto out;
3010 }
3011
3012 /*
3013 * Make sure frames received on VLAN interfaces stacked on
3014 * bonding interfaces still make their way to any base bonding
3015 * device that may have registered for a specific ptype. The
3016 * handler may have to adjust skb->dev and orig_dev.
3017 */
3018 orig_or_bond = orig_dev;
3019 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3020 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3021 orig_or_bond = vlan_dev_real_dev(skb->dev);
3022 }
3023
3024 type = skb->protocol;
3025 list_for_each_entry_rcu(ptype,
3026 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3027 if (ptype->type == type && (ptype->dev == null_or_orig ||
3028 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3029 ptype->dev == orig_or_bond)) {
3030 if (pt_prev)
3031 ret = deliver_skb(skb, pt_prev, orig_dev);
3032 pt_prev = ptype;
3033 }
3034 }
3035
3036 if (pt_prev) {
3037 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3038 } else {
3039 atomic_long_inc(&skb->dev->rx_dropped);
3040 kfree_skb(skb);
3041 /* Jamal, now you will not able to escape explaining
3042 * me how you were going to use this. :-)
3043 */
3044 ret = NET_RX_DROP;
3045 }
3046
3047 out:
3048 rcu_read_unlock();
3049 return ret;
3050 }
3051
3052 /**
3053 * netif_receive_skb - process receive buffer from network
3054 * @skb: buffer to process
3055 *
3056 * netif_receive_skb() is the main receive data processing function.
3057 * It always succeeds. The buffer may be dropped during processing
3058 * for congestion control or by the protocol layers.
3059 *
3060 * This function may only be called from softirq context and interrupts
3061 * should be enabled.
3062 *
3063 * Return values (usually ignored):
3064 * NET_RX_SUCCESS: no congestion
3065 * NET_RX_DROP: packet was dropped
3066 */
3067 int netif_receive_skb(struct sk_buff *skb)
3068 {
3069 if (netdev_tstamp_prequeue)
3070 net_timestamp_check(skb);
3071
3072 if (skb_defer_rx_timestamp(skb))
3073 return NET_RX_SUCCESS;
3074
3075 #ifdef CONFIG_RPS
3076 {
3077 struct rps_dev_flow voidflow, *rflow = &voidflow;
3078 int cpu, ret;
3079
3080 rcu_read_lock();
3081
3082 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3083
3084 if (cpu >= 0) {
3085 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3086 rcu_read_unlock();
3087 } else {
3088 rcu_read_unlock();
3089 ret = __netif_receive_skb(skb);
3090 }
3091
3092 return ret;
3093 }
3094 #else
3095 return __netif_receive_skb(skb);
3096 #endif
3097 }
3098 EXPORT_SYMBOL(netif_receive_skb);
3099
3100 /* Network device is going away, flush any packets still pending
3101 * Called with irqs disabled.
3102 */
3103 static void flush_backlog(void *arg)
3104 {
3105 struct net_device *dev = arg;
3106 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3107 struct sk_buff *skb, *tmp;
3108
3109 rps_lock(sd);
3110 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3111 if (skb->dev == dev) {
3112 __skb_unlink(skb, &sd->input_pkt_queue);
3113 kfree_skb(skb);
3114 input_queue_head_incr(sd);
3115 }
3116 }
3117 rps_unlock(sd);
3118
3119 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3120 if (skb->dev == dev) {
3121 __skb_unlink(skb, &sd->process_queue);
3122 kfree_skb(skb);
3123 input_queue_head_incr(sd);
3124 }
3125 }
3126 }
3127
3128 static int napi_gro_complete(struct sk_buff *skb)
3129 {
3130 struct packet_type *ptype;
3131 __be16 type = skb->protocol;
3132 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3133 int err = -ENOENT;
3134
3135 if (NAPI_GRO_CB(skb)->count == 1) {
3136 skb_shinfo(skb)->gso_size = 0;
3137 goto out;
3138 }
3139
3140 rcu_read_lock();
3141 list_for_each_entry_rcu(ptype, head, list) {
3142 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3143 continue;
3144
3145 err = ptype->gro_complete(skb);
3146 break;
3147 }
3148 rcu_read_unlock();
3149
3150 if (err) {
3151 WARN_ON(&ptype->list == head);
3152 kfree_skb(skb);
3153 return NET_RX_SUCCESS;
3154 }
3155
3156 out:
3157 return netif_receive_skb(skb);
3158 }
3159
3160 inline void napi_gro_flush(struct napi_struct *napi)
3161 {
3162 struct sk_buff *skb, *next;
3163
3164 for (skb = napi->gro_list; skb; skb = next) {
3165 next = skb->next;
3166 skb->next = NULL;
3167 napi_gro_complete(skb);
3168 }
3169
3170 napi->gro_count = 0;
3171 napi->gro_list = NULL;
3172 }
3173 EXPORT_SYMBOL(napi_gro_flush);
3174
3175 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3176 {
3177 struct sk_buff **pp = NULL;
3178 struct packet_type *ptype;
3179 __be16 type = skb->protocol;
3180 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3181 int same_flow;
3182 int mac_len;
3183 enum gro_result ret;
3184
3185 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3186 goto normal;
3187
3188 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3189 goto normal;
3190
3191 rcu_read_lock();
3192 list_for_each_entry_rcu(ptype, head, list) {
3193 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3194 continue;
3195
3196 skb_set_network_header(skb, skb_gro_offset(skb));
3197 mac_len = skb->network_header - skb->mac_header;
3198 skb->mac_len = mac_len;
3199 NAPI_GRO_CB(skb)->same_flow = 0;
3200 NAPI_GRO_CB(skb)->flush = 0;
3201 NAPI_GRO_CB(skb)->free = 0;
3202
3203 pp = ptype->gro_receive(&napi->gro_list, skb);
3204 break;
3205 }
3206 rcu_read_unlock();
3207
3208 if (&ptype->list == head)
3209 goto normal;
3210
3211 same_flow = NAPI_GRO_CB(skb)->same_flow;
3212 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3213
3214 if (pp) {
3215 struct sk_buff *nskb = *pp;
3216
3217 *pp = nskb->next;
3218 nskb->next = NULL;
3219 napi_gro_complete(nskb);
3220 napi->gro_count--;
3221 }
3222
3223 if (same_flow)
3224 goto ok;
3225
3226 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3227 goto normal;
3228
3229 napi->gro_count++;
3230 NAPI_GRO_CB(skb)->count = 1;
3231 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3232 skb->next = napi->gro_list;
3233 napi->gro_list = skb;
3234 ret = GRO_HELD;
3235
3236 pull:
3237 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3238 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3239
3240 BUG_ON(skb->end - skb->tail < grow);
3241
3242 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3243
3244 skb->tail += grow;
3245 skb->data_len -= grow;
3246
3247 skb_shinfo(skb)->frags[0].page_offset += grow;
3248 skb_shinfo(skb)->frags[0].size -= grow;
3249
3250 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3251 put_page(skb_shinfo(skb)->frags[0].page);
3252 memmove(skb_shinfo(skb)->frags,
3253 skb_shinfo(skb)->frags + 1,
3254 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3255 }
3256 }
3257
3258 ok:
3259 return ret;
3260
3261 normal:
3262 ret = GRO_NORMAL;
3263 goto pull;
3264 }
3265 EXPORT_SYMBOL(dev_gro_receive);
3266
3267 static inline gro_result_t
3268 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3269 {
3270 struct sk_buff *p;
3271
3272 for (p = napi->gro_list; p; p = p->next) {
3273 unsigned long diffs;
3274
3275 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3276 diffs |= p->vlan_tci ^ skb->vlan_tci;
3277 diffs |= compare_ether_header(skb_mac_header(p),
3278 skb_gro_mac_header(skb));
3279 NAPI_GRO_CB(p)->same_flow = !diffs;
3280 NAPI_GRO_CB(p)->flush = 0;
3281 }
3282
3283 return dev_gro_receive(napi, skb);
3284 }
3285
3286 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3287 {
3288 switch (ret) {
3289 case GRO_NORMAL:
3290 if (netif_receive_skb(skb))
3291 ret = GRO_DROP;
3292 break;
3293
3294 case GRO_DROP:
3295 case GRO_MERGED_FREE:
3296 kfree_skb(skb);
3297 break;
3298
3299 case GRO_HELD:
3300 case GRO_MERGED:
3301 break;
3302 }
3303
3304 return ret;
3305 }
3306 EXPORT_SYMBOL(napi_skb_finish);
3307
3308 void skb_gro_reset_offset(struct sk_buff *skb)
3309 {
3310 NAPI_GRO_CB(skb)->data_offset = 0;
3311 NAPI_GRO_CB(skb)->frag0 = NULL;
3312 NAPI_GRO_CB(skb)->frag0_len = 0;
3313
3314 if (skb->mac_header == skb->tail &&
3315 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3316 NAPI_GRO_CB(skb)->frag0 =
3317 page_address(skb_shinfo(skb)->frags[0].page) +
3318 skb_shinfo(skb)->frags[0].page_offset;
3319 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3320 }
3321 }
3322 EXPORT_SYMBOL(skb_gro_reset_offset);
3323
3324 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3325 {
3326 skb_gro_reset_offset(skb);
3327
3328 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3329 }
3330 EXPORT_SYMBOL(napi_gro_receive);
3331
3332 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3333 {
3334 __skb_pull(skb, skb_headlen(skb));
3335 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3336 skb->vlan_tci = 0;
3337
3338 napi->skb = skb;
3339 }
3340
3341 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3342 {
3343 struct sk_buff *skb = napi->skb;
3344
3345 if (!skb) {
3346 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3347 if (skb)
3348 napi->skb = skb;
3349 }
3350 return skb;
3351 }
3352 EXPORT_SYMBOL(napi_get_frags);
3353
3354 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3355 gro_result_t ret)
3356 {
3357 switch (ret) {
3358 case GRO_NORMAL:
3359 case GRO_HELD:
3360 skb->protocol = eth_type_trans(skb, skb->dev);
3361
3362 if (ret == GRO_HELD)
3363 skb_gro_pull(skb, -ETH_HLEN);
3364 else if (netif_receive_skb(skb))
3365 ret = GRO_DROP;
3366 break;
3367
3368 case GRO_DROP:
3369 case GRO_MERGED_FREE:
3370 napi_reuse_skb(napi, skb);
3371 break;
3372
3373 case GRO_MERGED:
3374 break;
3375 }
3376
3377 return ret;
3378 }
3379 EXPORT_SYMBOL(napi_frags_finish);
3380
3381 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3382 {
3383 struct sk_buff *skb = napi->skb;
3384 struct ethhdr *eth;
3385 unsigned int hlen;
3386 unsigned int off;
3387
3388 napi->skb = NULL;
3389
3390 skb_reset_mac_header(skb);
3391 skb_gro_reset_offset(skb);
3392
3393 off = skb_gro_offset(skb);
3394 hlen = off + sizeof(*eth);
3395 eth = skb_gro_header_fast(skb, off);
3396 if (skb_gro_header_hard(skb, hlen)) {
3397 eth = skb_gro_header_slow(skb, hlen, off);
3398 if (unlikely(!eth)) {
3399 napi_reuse_skb(napi, skb);
3400 skb = NULL;
3401 goto out;
3402 }
3403 }
3404
3405 skb_gro_pull(skb, sizeof(*eth));
3406
3407 /*
3408 * This works because the only protocols we care about don't require
3409 * special handling. We'll fix it up properly at the end.
3410 */
3411 skb->protocol = eth->h_proto;
3412
3413 out:
3414 return skb;
3415 }
3416 EXPORT_SYMBOL(napi_frags_skb);
3417
3418 gro_result_t napi_gro_frags(struct napi_struct *napi)
3419 {
3420 struct sk_buff *skb = napi_frags_skb(napi);
3421
3422 if (!skb)
3423 return GRO_DROP;
3424
3425 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3426 }
3427 EXPORT_SYMBOL(napi_gro_frags);
3428
3429 /*
3430 * net_rps_action sends any pending IPI's for rps.
3431 * Note: called with local irq disabled, but exits with local irq enabled.
3432 */
3433 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3434 {
3435 #ifdef CONFIG_RPS
3436 struct softnet_data *remsd = sd->rps_ipi_list;
3437
3438 if (remsd) {
3439 sd->rps_ipi_list = NULL;
3440
3441 local_irq_enable();
3442
3443 /* Send pending IPI's to kick RPS processing on remote cpus. */
3444 while (remsd) {
3445 struct softnet_data *next = remsd->rps_ipi_next;
3446
3447 if (cpu_online(remsd->cpu))
3448 __smp_call_function_single(remsd->cpu,
3449 &remsd->csd, 0);
3450 remsd = next;
3451 }
3452 } else
3453 #endif
3454 local_irq_enable();
3455 }
3456
3457 static int process_backlog(struct napi_struct *napi, int quota)
3458 {
3459 int work = 0;
3460 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3461
3462 #ifdef CONFIG_RPS
3463 /* Check if we have pending ipi, its better to send them now,
3464 * not waiting net_rx_action() end.
3465 */
3466 if (sd->rps_ipi_list) {
3467 local_irq_disable();
3468 net_rps_action_and_irq_enable(sd);
3469 }
3470 #endif
3471 napi->weight = weight_p;
3472 local_irq_disable();
3473 while (work < quota) {
3474 struct sk_buff *skb;
3475 unsigned int qlen;
3476
3477 while ((skb = __skb_dequeue(&sd->process_queue))) {
3478 local_irq_enable();
3479 __netif_receive_skb(skb);
3480 local_irq_disable();
3481 input_queue_head_incr(sd);
3482 if (++work >= quota) {
3483 local_irq_enable();
3484 return work;
3485 }
3486 }
3487
3488 rps_lock(sd);
3489 qlen = skb_queue_len(&sd->input_pkt_queue);
3490 if (qlen)
3491 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3492 &sd->process_queue);
3493
3494 if (qlen < quota - work) {
3495 /*
3496 * Inline a custom version of __napi_complete().
3497 * only current cpu owns and manipulates this napi,
3498 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3499 * we can use a plain write instead of clear_bit(),
3500 * and we dont need an smp_mb() memory barrier.
3501 */
3502 list_del(&napi->poll_list);
3503 napi->state = 0;
3504
3505 quota = work + qlen;
3506 }
3507 rps_unlock(sd);
3508 }
3509 local_irq_enable();
3510
3511 return work;
3512 }
3513
3514 /**
3515 * __napi_schedule - schedule for receive
3516 * @n: entry to schedule
3517 *
3518 * The entry's receive function will be scheduled to run
3519 */
3520 void __napi_schedule(struct napi_struct *n)
3521 {
3522 unsigned long flags;
3523
3524 local_irq_save(flags);
3525 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3526 local_irq_restore(flags);
3527 }
3528 EXPORT_SYMBOL(__napi_schedule);
3529
3530 void __napi_complete(struct napi_struct *n)
3531 {
3532 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3533 BUG_ON(n->gro_list);
3534
3535 list_del(&n->poll_list);
3536 smp_mb__before_clear_bit();
3537 clear_bit(NAPI_STATE_SCHED, &n->state);
3538 }
3539 EXPORT_SYMBOL(__napi_complete);
3540
3541 void napi_complete(struct napi_struct *n)
3542 {
3543 unsigned long flags;
3544
3545 /*
3546 * don't let napi dequeue from the cpu poll list
3547 * just in case its running on a different cpu
3548 */
3549 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3550 return;
3551
3552 napi_gro_flush(n);
3553 local_irq_save(flags);
3554 __napi_complete(n);
3555 local_irq_restore(flags);
3556 }
3557 EXPORT_SYMBOL(napi_complete);
3558
3559 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3560 int (*poll)(struct napi_struct *, int), int weight)
3561 {
3562 INIT_LIST_HEAD(&napi->poll_list);
3563 napi->gro_count = 0;
3564 napi->gro_list = NULL;
3565 napi->skb = NULL;
3566 napi->poll = poll;
3567 napi->weight = weight;
3568 list_add(&napi->dev_list, &dev->napi_list);
3569 napi->dev = dev;
3570 #ifdef CONFIG_NETPOLL
3571 spin_lock_init(&napi->poll_lock);
3572 napi->poll_owner = -1;
3573 #endif
3574 set_bit(NAPI_STATE_SCHED, &napi->state);
3575 }
3576 EXPORT_SYMBOL(netif_napi_add);
3577
3578 void netif_napi_del(struct napi_struct *napi)
3579 {
3580 struct sk_buff *skb, *next;
3581
3582 list_del_init(&napi->dev_list);
3583 napi_free_frags(napi);
3584
3585 for (skb = napi->gro_list; skb; skb = next) {
3586 next = skb->next;
3587 skb->next = NULL;
3588 kfree_skb(skb);
3589 }
3590
3591 napi->gro_list = NULL;
3592 napi->gro_count = 0;
3593 }
3594 EXPORT_SYMBOL(netif_napi_del);
3595
3596 static void net_rx_action(struct softirq_action *h)
3597 {
3598 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3599 unsigned long time_limit = jiffies + 2;
3600 int budget = netdev_budget;
3601 void *have;
3602
3603 local_irq_disable();
3604
3605 while (!list_empty(&sd->poll_list)) {
3606 struct napi_struct *n;
3607 int work, weight;
3608
3609 /* If softirq window is exhuasted then punt.
3610 * Allow this to run for 2 jiffies since which will allow
3611 * an average latency of 1.5/HZ.
3612 */
3613 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3614 goto softnet_break;
3615
3616 local_irq_enable();
3617
3618 /* Even though interrupts have been re-enabled, this
3619 * access is safe because interrupts can only add new
3620 * entries to the tail of this list, and only ->poll()
3621 * calls can remove this head entry from the list.
3622 */
3623 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3624
3625 have = netpoll_poll_lock(n);
3626
3627 weight = n->weight;
3628
3629 /* This NAPI_STATE_SCHED test is for avoiding a race
3630 * with netpoll's poll_napi(). Only the entity which
3631 * obtains the lock and sees NAPI_STATE_SCHED set will
3632 * actually make the ->poll() call. Therefore we avoid
3633 * accidently calling ->poll() when NAPI is not scheduled.
3634 */
3635 work = 0;
3636 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3637 work = n->poll(n, weight);
3638 trace_napi_poll(n);
3639 }
3640
3641 WARN_ON_ONCE(work > weight);
3642
3643 budget -= work;
3644
3645 local_irq_disable();
3646
3647 /* Drivers must not modify the NAPI state if they
3648 * consume the entire weight. In such cases this code
3649 * still "owns" the NAPI instance and therefore can
3650 * move the instance around on the list at-will.
3651 */
3652 if (unlikely(work == weight)) {
3653 if (unlikely(napi_disable_pending(n))) {
3654 local_irq_enable();
3655 napi_complete(n);
3656 local_irq_disable();
3657 } else
3658 list_move_tail(&n->poll_list, &sd->poll_list);
3659 }
3660
3661 netpoll_poll_unlock(have);
3662 }
3663 out:
3664 net_rps_action_and_irq_enable(sd);
3665
3666 #ifdef CONFIG_NET_DMA
3667 /*
3668 * There may not be any more sk_buffs coming right now, so push
3669 * any pending DMA copies to hardware
3670 */
3671 dma_issue_pending_all();
3672 #endif
3673
3674 return;
3675
3676 softnet_break:
3677 sd->time_squeeze++;
3678 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3679 goto out;
3680 }
3681
3682 static gifconf_func_t *gifconf_list[NPROTO];
3683
3684 /**
3685 * register_gifconf - register a SIOCGIF handler
3686 * @family: Address family
3687 * @gifconf: Function handler
3688 *
3689 * Register protocol dependent address dumping routines. The handler
3690 * that is passed must not be freed or reused until it has been replaced
3691 * by another handler.
3692 */
3693 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3694 {
3695 if (family >= NPROTO)
3696 return -EINVAL;
3697 gifconf_list[family] = gifconf;
3698 return 0;
3699 }
3700 EXPORT_SYMBOL(register_gifconf);
3701
3702
3703 /*
3704 * Map an interface index to its name (SIOCGIFNAME)
3705 */
3706
3707 /*
3708 * We need this ioctl for efficient implementation of the
3709 * if_indextoname() function required by the IPv6 API. Without
3710 * it, we would have to search all the interfaces to find a
3711 * match. --pb
3712 */
3713
3714 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3715 {
3716 struct net_device *dev;
3717 struct ifreq ifr;
3718
3719 /*
3720 * Fetch the caller's info block.
3721 */
3722
3723 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3724 return -EFAULT;
3725
3726 rcu_read_lock();
3727 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3728 if (!dev) {
3729 rcu_read_unlock();
3730 return -ENODEV;
3731 }
3732
3733 strcpy(ifr.ifr_name, dev->name);
3734 rcu_read_unlock();
3735
3736 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3737 return -EFAULT;
3738 return 0;
3739 }
3740
3741 /*
3742 * Perform a SIOCGIFCONF call. This structure will change
3743 * size eventually, and there is nothing I can do about it.
3744 * Thus we will need a 'compatibility mode'.
3745 */
3746
3747 static int dev_ifconf(struct net *net, char __user *arg)
3748 {
3749 struct ifconf ifc;
3750 struct net_device *dev;
3751 char __user *pos;
3752 int len;
3753 int total;
3754 int i;
3755
3756 /*
3757 * Fetch the caller's info block.
3758 */
3759
3760 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3761 return -EFAULT;
3762
3763 pos = ifc.ifc_buf;
3764 len = ifc.ifc_len;
3765
3766 /*
3767 * Loop over the interfaces, and write an info block for each.
3768 */
3769
3770 total = 0;
3771 for_each_netdev(net, dev) {
3772 for (i = 0; i < NPROTO; i++) {
3773 if (gifconf_list[i]) {
3774 int done;
3775 if (!pos)
3776 done = gifconf_list[i](dev, NULL, 0);
3777 else
3778 done = gifconf_list[i](dev, pos + total,
3779 len - total);
3780 if (done < 0)
3781 return -EFAULT;
3782 total += done;
3783 }
3784 }
3785 }
3786
3787 /*
3788 * All done. Write the updated control block back to the caller.
3789 */
3790 ifc.ifc_len = total;
3791
3792 /*
3793 * Both BSD and Solaris return 0 here, so we do too.
3794 */
3795 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3796 }
3797
3798 #ifdef CONFIG_PROC_FS
3799 /*
3800 * This is invoked by the /proc filesystem handler to display a device
3801 * in detail.
3802 */
3803 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3804 __acquires(RCU)
3805 {
3806 struct net *net = seq_file_net(seq);
3807 loff_t off;
3808 struct net_device *dev;
3809
3810 rcu_read_lock();
3811 if (!*pos)
3812 return SEQ_START_TOKEN;
3813
3814 off = 1;
3815 for_each_netdev_rcu(net, dev)
3816 if (off++ == *pos)
3817 return dev;
3818
3819 return NULL;
3820 }
3821
3822 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3823 {
3824 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3825 first_net_device(seq_file_net(seq)) :
3826 next_net_device((struct net_device *)v);
3827
3828 ++*pos;
3829 return rcu_dereference(dev);
3830 }
3831
3832 void dev_seq_stop(struct seq_file *seq, void *v)
3833 __releases(RCU)
3834 {
3835 rcu_read_unlock();
3836 }
3837
3838 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3839 {
3840 struct rtnl_link_stats64 temp;
3841 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3842
3843 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3844 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3845 dev->name, stats->rx_bytes, stats->rx_packets,
3846 stats->rx_errors,
3847 stats->rx_dropped + stats->rx_missed_errors,
3848 stats->rx_fifo_errors,
3849 stats->rx_length_errors + stats->rx_over_errors +
3850 stats->rx_crc_errors + stats->rx_frame_errors,
3851 stats->rx_compressed, stats->multicast,
3852 stats->tx_bytes, stats->tx_packets,
3853 stats->tx_errors, stats->tx_dropped,
3854 stats->tx_fifo_errors, stats->collisions,
3855 stats->tx_carrier_errors +
3856 stats->tx_aborted_errors +
3857 stats->tx_window_errors +
3858 stats->tx_heartbeat_errors,
3859 stats->tx_compressed);
3860 }
3861
3862 /*
3863 * Called from the PROCfs module. This now uses the new arbitrary sized
3864 * /proc/net interface to create /proc/net/dev
3865 */
3866 static int dev_seq_show(struct seq_file *seq, void *v)
3867 {
3868 if (v == SEQ_START_TOKEN)
3869 seq_puts(seq, "Inter-| Receive "
3870 " | Transmit\n"
3871 " face |bytes packets errs drop fifo frame "
3872 "compressed multicast|bytes packets errs "
3873 "drop fifo colls carrier compressed\n");
3874 else
3875 dev_seq_printf_stats(seq, v);
3876 return 0;
3877 }
3878
3879 static struct softnet_data *softnet_get_online(loff_t *pos)
3880 {
3881 struct softnet_data *sd = NULL;
3882
3883 while (*pos < nr_cpu_ids)
3884 if (cpu_online(*pos)) {
3885 sd = &per_cpu(softnet_data, *pos);
3886 break;
3887 } else
3888 ++*pos;
3889 return sd;
3890 }
3891
3892 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3893 {
3894 return softnet_get_online(pos);
3895 }
3896
3897 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3898 {
3899 ++*pos;
3900 return softnet_get_online(pos);
3901 }
3902
3903 static void softnet_seq_stop(struct seq_file *seq, void *v)
3904 {
3905 }
3906
3907 static int softnet_seq_show(struct seq_file *seq, void *v)
3908 {
3909 struct softnet_data *sd = v;
3910
3911 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3912 sd->processed, sd->dropped, sd->time_squeeze, 0,
3913 0, 0, 0, 0, /* was fastroute */
3914 sd->cpu_collision, sd->received_rps);
3915 return 0;
3916 }
3917
3918 static const struct seq_operations dev_seq_ops = {
3919 .start = dev_seq_start,
3920 .next = dev_seq_next,
3921 .stop = dev_seq_stop,
3922 .show = dev_seq_show,
3923 };
3924
3925 static int dev_seq_open(struct inode *inode, struct file *file)
3926 {
3927 return seq_open_net(inode, file, &dev_seq_ops,
3928 sizeof(struct seq_net_private));
3929 }
3930
3931 static const struct file_operations dev_seq_fops = {
3932 .owner = THIS_MODULE,
3933 .open = dev_seq_open,
3934 .read = seq_read,
3935 .llseek = seq_lseek,
3936 .release = seq_release_net,
3937 };
3938
3939 static const struct seq_operations softnet_seq_ops = {
3940 .start = softnet_seq_start,
3941 .next = softnet_seq_next,
3942 .stop = softnet_seq_stop,
3943 .show = softnet_seq_show,
3944 };
3945
3946 static int softnet_seq_open(struct inode *inode, struct file *file)
3947 {
3948 return seq_open(file, &softnet_seq_ops);
3949 }
3950
3951 static const struct file_operations softnet_seq_fops = {
3952 .owner = THIS_MODULE,
3953 .open = softnet_seq_open,
3954 .read = seq_read,
3955 .llseek = seq_lseek,
3956 .release = seq_release,
3957 };
3958
3959 static void *ptype_get_idx(loff_t pos)
3960 {
3961 struct packet_type *pt = NULL;
3962 loff_t i = 0;
3963 int t;
3964
3965 list_for_each_entry_rcu(pt, &ptype_all, list) {
3966 if (i == pos)
3967 return pt;
3968 ++i;
3969 }
3970
3971 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3972 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3973 if (i == pos)
3974 return pt;
3975 ++i;
3976 }
3977 }
3978 return NULL;
3979 }
3980
3981 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3982 __acquires(RCU)
3983 {
3984 rcu_read_lock();
3985 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3986 }
3987
3988 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3989 {
3990 struct packet_type *pt;
3991 struct list_head *nxt;
3992 int hash;
3993
3994 ++*pos;
3995 if (v == SEQ_START_TOKEN)
3996 return ptype_get_idx(0);
3997
3998 pt = v;
3999 nxt = pt->list.next;
4000 if (pt->type == htons(ETH_P_ALL)) {
4001 if (nxt != &ptype_all)
4002 goto found;
4003 hash = 0;
4004 nxt = ptype_base[0].next;
4005 } else
4006 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4007
4008 while (nxt == &ptype_base[hash]) {
4009 if (++hash >= PTYPE_HASH_SIZE)
4010 return NULL;
4011 nxt = ptype_base[hash].next;
4012 }
4013 found:
4014 return list_entry(nxt, struct packet_type, list);
4015 }
4016
4017 static void ptype_seq_stop(struct seq_file *seq, void *v)
4018 __releases(RCU)
4019 {
4020 rcu_read_unlock();
4021 }
4022
4023 static int ptype_seq_show(struct seq_file *seq, void *v)
4024 {
4025 struct packet_type *pt = v;
4026
4027 if (v == SEQ_START_TOKEN)
4028 seq_puts(seq, "Type Device Function\n");
4029 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4030 if (pt->type == htons(ETH_P_ALL))
4031 seq_puts(seq, "ALL ");
4032 else
4033 seq_printf(seq, "%04x", ntohs(pt->type));
4034
4035 seq_printf(seq, " %-8s %pF\n",
4036 pt->dev ? pt->dev->name : "", pt->func);
4037 }
4038
4039 return 0;
4040 }
4041
4042 static const struct seq_operations ptype_seq_ops = {
4043 .start = ptype_seq_start,
4044 .next = ptype_seq_next,
4045 .stop = ptype_seq_stop,
4046 .show = ptype_seq_show,
4047 };
4048
4049 static int ptype_seq_open(struct inode *inode, struct file *file)
4050 {
4051 return seq_open_net(inode, file, &ptype_seq_ops,
4052 sizeof(struct seq_net_private));
4053 }
4054
4055 static const struct file_operations ptype_seq_fops = {
4056 .owner = THIS_MODULE,
4057 .open = ptype_seq_open,
4058 .read = seq_read,
4059 .llseek = seq_lseek,
4060 .release = seq_release_net,
4061 };
4062
4063
4064 static int __net_init dev_proc_net_init(struct net *net)
4065 {
4066 int rc = -ENOMEM;
4067
4068 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4069 goto out;
4070 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4071 goto out_dev;
4072 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4073 goto out_softnet;
4074
4075 if (wext_proc_init(net))
4076 goto out_ptype;
4077 rc = 0;
4078 out:
4079 return rc;
4080 out_ptype:
4081 proc_net_remove(net, "ptype");
4082 out_softnet:
4083 proc_net_remove(net, "softnet_stat");
4084 out_dev:
4085 proc_net_remove(net, "dev");
4086 goto out;
4087 }
4088
4089 static void __net_exit dev_proc_net_exit(struct net *net)
4090 {
4091 wext_proc_exit(net);
4092
4093 proc_net_remove(net, "ptype");
4094 proc_net_remove(net, "softnet_stat");
4095 proc_net_remove(net, "dev");
4096 }
4097
4098 static struct pernet_operations __net_initdata dev_proc_ops = {
4099 .init = dev_proc_net_init,
4100 .exit = dev_proc_net_exit,
4101 };
4102
4103 static int __init dev_proc_init(void)
4104 {
4105 return register_pernet_subsys(&dev_proc_ops);
4106 }
4107 #else
4108 #define dev_proc_init() 0
4109 #endif /* CONFIG_PROC_FS */
4110
4111
4112 /**
4113 * netdev_set_master - set up master/slave pair
4114 * @slave: slave device
4115 * @master: new master device
4116 *
4117 * Changes the master device of the slave. Pass %NULL to break the
4118 * bonding. The caller must hold the RTNL semaphore. On a failure
4119 * a negative errno code is returned. On success the reference counts
4120 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4121 * function returns zero.
4122 */
4123 int netdev_set_master(struct net_device *slave, struct net_device *master)
4124 {
4125 struct net_device *old = slave->master;
4126
4127 ASSERT_RTNL();
4128
4129 if (master) {
4130 if (old)
4131 return -EBUSY;
4132 dev_hold(master);
4133 }
4134
4135 slave->master = master;
4136
4137 if (old) {
4138 synchronize_net();
4139 dev_put(old);
4140 }
4141 if (master)
4142 slave->flags |= IFF_SLAVE;
4143 else
4144 slave->flags &= ~IFF_SLAVE;
4145
4146 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4147 return 0;
4148 }
4149 EXPORT_SYMBOL(netdev_set_master);
4150
4151 static void dev_change_rx_flags(struct net_device *dev, int flags)
4152 {
4153 const struct net_device_ops *ops = dev->netdev_ops;
4154
4155 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4156 ops->ndo_change_rx_flags(dev, flags);
4157 }
4158
4159 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4160 {
4161 unsigned short old_flags = dev->flags;
4162 uid_t uid;
4163 gid_t gid;
4164
4165 ASSERT_RTNL();
4166
4167 dev->flags |= IFF_PROMISC;
4168 dev->promiscuity += inc;
4169 if (dev->promiscuity == 0) {
4170 /*
4171 * Avoid overflow.
4172 * If inc causes overflow, untouch promisc and return error.
4173 */
4174 if (inc < 0)
4175 dev->flags &= ~IFF_PROMISC;
4176 else {
4177 dev->promiscuity -= inc;
4178 printk(KERN_WARNING "%s: promiscuity touches roof, "
4179 "set promiscuity failed, promiscuity feature "
4180 "of device might be broken.\n", dev->name);
4181 return -EOVERFLOW;
4182 }
4183 }
4184 if (dev->flags != old_flags) {
4185 printk(KERN_INFO "device %s %s promiscuous mode\n",
4186 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4187 "left");
4188 if (audit_enabled) {
4189 current_uid_gid(&uid, &gid);
4190 audit_log(current->audit_context, GFP_ATOMIC,
4191 AUDIT_ANOM_PROMISCUOUS,
4192 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4193 dev->name, (dev->flags & IFF_PROMISC),
4194 (old_flags & IFF_PROMISC),
4195 audit_get_loginuid(current),
4196 uid, gid,
4197 audit_get_sessionid(current));
4198 }
4199
4200 dev_change_rx_flags(dev, IFF_PROMISC);
4201 }
4202 return 0;
4203 }
4204
4205 /**
4206 * dev_set_promiscuity - update promiscuity count on a device
4207 * @dev: device
4208 * @inc: modifier
4209 *
4210 * Add or remove promiscuity from a device. While the count in the device
4211 * remains above zero the interface remains promiscuous. Once it hits zero
4212 * the device reverts back to normal filtering operation. A negative inc
4213 * value is used to drop promiscuity on the device.
4214 * Return 0 if successful or a negative errno code on error.
4215 */
4216 int dev_set_promiscuity(struct net_device *dev, int inc)
4217 {
4218 unsigned short old_flags = dev->flags;
4219 int err;
4220
4221 err = __dev_set_promiscuity(dev, inc);
4222 if (err < 0)
4223 return err;
4224 if (dev->flags != old_flags)
4225 dev_set_rx_mode(dev);
4226 return err;
4227 }
4228 EXPORT_SYMBOL(dev_set_promiscuity);
4229
4230 /**
4231 * dev_set_allmulti - update allmulti count on a device
4232 * @dev: device
4233 * @inc: modifier
4234 *
4235 * Add or remove reception of all multicast frames to a device. While the
4236 * count in the device remains above zero the interface remains listening
4237 * to all interfaces. Once it hits zero the device reverts back to normal
4238 * filtering operation. A negative @inc value is used to drop the counter
4239 * when releasing a resource needing all multicasts.
4240 * Return 0 if successful or a negative errno code on error.
4241 */
4242
4243 int dev_set_allmulti(struct net_device *dev, int inc)
4244 {
4245 unsigned short old_flags = dev->flags;
4246
4247 ASSERT_RTNL();
4248
4249 dev->flags |= IFF_ALLMULTI;
4250 dev->allmulti += inc;
4251 if (dev->allmulti == 0) {
4252 /*
4253 * Avoid overflow.
4254 * If inc causes overflow, untouch allmulti and return error.
4255 */
4256 if (inc < 0)
4257 dev->flags &= ~IFF_ALLMULTI;
4258 else {
4259 dev->allmulti -= inc;
4260 printk(KERN_WARNING "%s: allmulti touches roof, "
4261 "set allmulti failed, allmulti feature of "
4262 "device might be broken.\n", dev->name);
4263 return -EOVERFLOW;
4264 }
4265 }
4266 if (dev->flags ^ old_flags) {
4267 dev_change_rx_flags(dev, IFF_ALLMULTI);
4268 dev_set_rx_mode(dev);
4269 }
4270 return 0;
4271 }
4272 EXPORT_SYMBOL(dev_set_allmulti);
4273
4274 /*
4275 * Upload unicast and multicast address lists to device and
4276 * configure RX filtering. When the device doesn't support unicast
4277 * filtering it is put in promiscuous mode while unicast addresses
4278 * are present.
4279 */
4280 void __dev_set_rx_mode(struct net_device *dev)
4281 {
4282 const struct net_device_ops *ops = dev->netdev_ops;
4283
4284 /* dev_open will call this function so the list will stay sane. */
4285 if (!(dev->flags&IFF_UP))
4286 return;
4287
4288 if (!netif_device_present(dev))
4289 return;
4290
4291 if (ops->ndo_set_rx_mode)
4292 ops->ndo_set_rx_mode(dev);
4293 else {
4294 /* Unicast addresses changes may only happen under the rtnl,
4295 * therefore calling __dev_set_promiscuity here is safe.
4296 */
4297 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4298 __dev_set_promiscuity(dev, 1);
4299 dev->uc_promisc = 1;
4300 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4301 __dev_set_promiscuity(dev, -1);
4302 dev->uc_promisc = 0;
4303 }
4304
4305 if (ops->ndo_set_multicast_list)
4306 ops->ndo_set_multicast_list(dev);
4307 }
4308 }
4309
4310 void dev_set_rx_mode(struct net_device *dev)
4311 {
4312 netif_addr_lock_bh(dev);
4313 __dev_set_rx_mode(dev);
4314 netif_addr_unlock_bh(dev);
4315 }
4316
4317 /**
4318 * dev_get_flags - get flags reported to userspace
4319 * @dev: device
4320 *
4321 * Get the combination of flag bits exported through APIs to userspace.
4322 */
4323 unsigned dev_get_flags(const struct net_device *dev)
4324 {
4325 unsigned flags;
4326
4327 flags = (dev->flags & ~(IFF_PROMISC |
4328 IFF_ALLMULTI |
4329 IFF_RUNNING |
4330 IFF_LOWER_UP |
4331 IFF_DORMANT)) |
4332 (dev->gflags & (IFF_PROMISC |
4333 IFF_ALLMULTI));
4334
4335 if (netif_running(dev)) {
4336 if (netif_oper_up(dev))
4337 flags |= IFF_RUNNING;
4338 if (netif_carrier_ok(dev))
4339 flags |= IFF_LOWER_UP;
4340 if (netif_dormant(dev))
4341 flags |= IFF_DORMANT;
4342 }
4343
4344 return flags;
4345 }
4346 EXPORT_SYMBOL(dev_get_flags);
4347
4348 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4349 {
4350 int old_flags = dev->flags;
4351 int ret;
4352
4353 ASSERT_RTNL();
4354
4355 /*
4356 * Set the flags on our device.
4357 */
4358
4359 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4360 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4361 IFF_AUTOMEDIA)) |
4362 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4363 IFF_ALLMULTI));
4364
4365 /*
4366 * Load in the correct multicast list now the flags have changed.
4367 */
4368
4369 if ((old_flags ^ flags) & IFF_MULTICAST)
4370 dev_change_rx_flags(dev, IFF_MULTICAST);
4371
4372 dev_set_rx_mode(dev);
4373
4374 /*
4375 * Have we downed the interface. We handle IFF_UP ourselves
4376 * according to user attempts to set it, rather than blindly
4377 * setting it.
4378 */
4379
4380 ret = 0;
4381 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4382 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4383
4384 if (!ret)
4385 dev_set_rx_mode(dev);
4386 }
4387
4388 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4389 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4390
4391 dev->gflags ^= IFF_PROMISC;
4392 dev_set_promiscuity(dev, inc);
4393 }
4394
4395 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4396 is important. Some (broken) drivers set IFF_PROMISC, when
4397 IFF_ALLMULTI is requested not asking us and not reporting.
4398 */
4399 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4400 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4401
4402 dev->gflags ^= IFF_ALLMULTI;
4403 dev_set_allmulti(dev, inc);
4404 }
4405
4406 return ret;
4407 }
4408
4409 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4410 {
4411 unsigned int changes = dev->flags ^ old_flags;
4412
4413 if (changes & IFF_UP) {
4414 if (dev->flags & IFF_UP)
4415 call_netdevice_notifiers(NETDEV_UP, dev);
4416 else
4417 call_netdevice_notifiers(NETDEV_DOWN, dev);
4418 }
4419
4420 if (dev->flags & IFF_UP &&
4421 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4422 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4423 }
4424
4425 /**
4426 * dev_change_flags - change device settings
4427 * @dev: device
4428 * @flags: device state flags
4429 *
4430 * Change settings on device based state flags. The flags are
4431 * in the userspace exported format.
4432 */
4433 int dev_change_flags(struct net_device *dev, unsigned flags)
4434 {
4435 int ret, changes;
4436 int old_flags = dev->flags;
4437
4438 ret = __dev_change_flags(dev, flags);
4439 if (ret < 0)
4440 return ret;
4441
4442 changes = old_flags ^ dev->flags;
4443 if (changes)
4444 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4445
4446 __dev_notify_flags(dev, old_flags);
4447 return ret;
4448 }
4449 EXPORT_SYMBOL(dev_change_flags);
4450
4451 /**
4452 * dev_set_mtu - Change maximum transfer unit
4453 * @dev: device
4454 * @new_mtu: new transfer unit
4455 *
4456 * Change the maximum transfer size of the network device.
4457 */
4458 int dev_set_mtu(struct net_device *dev, int new_mtu)
4459 {
4460 const struct net_device_ops *ops = dev->netdev_ops;
4461 int err;
4462
4463 if (new_mtu == dev->mtu)
4464 return 0;
4465
4466 /* MTU must be positive. */
4467 if (new_mtu < 0)
4468 return -EINVAL;
4469
4470 if (!netif_device_present(dev))
4471 return -ENODEV;
4472
4473 err = 0;
4474 if (ops->ndo_change_mtu)
4475 err = ops->ndo_change_mtu(dev, new_mtu);
4476 else
4477 dev->mtu = new_mtu;
4478
4479 if (!err && dev->flags & IFF_UP)
4480 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4481 return err;
4482 }
4483 EXPORT_SYMBOL(dev_set_mtu);
4484
4485 /**
4486 * dev_set_mac_address - Change Media Access Control Address
4487 * @dev: device
4488 * @sa: new address
4489 *
4490 * Change the hardware (MAC) address of the device
4491 */
4492 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4493 {
4494 const struct net_device_ops *ops = dev->netdev_ops;
4495 int err;
4496
4497 if (!ops->ndo_set_mac_address)
4498 return -EOPNOTSUPP;
4499 if (sa->sa_family != dev->type)
4500 return -EINVAL;
4501 if (!netif_device_present(dev))
4502 return -ENODEV;
4503 err = ops->ndo_set_mac_address(dev, sa);
4504 if (!err)
4505 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4506 return err;
4507 }
4508 EXPORT_SYMBOL(dev_set_mac_address);
4509
4510 /*
4511 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4512 */
4513 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4514 {
4515 int err;
4516 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4517
4518 if (!dev)
4519 return -ENODEV;
4520
4521 switch (cmd) {
4522 case SIOCGIFFLAGS: /* Get interface flags */
4523 ifr->ifr_flags = (short) dev_get_flags(dev);
4524 return 0;
4525
4526 case SIOCGIFMETRIC: /* Get the metric on the interface
4527 (currently unused) */
4528 ifr->ifr_metric = 0;
4529 return 0;
4530
4531 case SIOCGIFMTU: /* Get the MTU of a device */
4532 ifr->ifr_mtu = dev->mtu;
4533 return 0;
4534
4535 case SIOCGIFHWADDR:
4536 if (!dev->addr_len)
4537 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4538 else
4539 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4540 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4541 ifr->ifr_hwaddr.sa_family = dev->type;
4542 return 0;
4543
4544 case SIOCGIFSLAVE:
4545 err = -EINVAL;
4546 break;
4547
4548 case SIOCGIFMAP:
4549 ifr->ifr_map.mem_start = dev->mem_start;
4550 ifr->ifr_map.mem_end = dev->mem_end;
4551 ifr->ifr_map.base_addr = dev->base_addr;
4552 ifr->ifr_map.irq = dev->irq;
4553 ifr->ifr_map.dma = dev->dma;
4554 ifr->ifr_map.port = dev->if_port;
4555 return 0;
4556
4557 case SIOCGIFINDEX:
4558 ifr->ifr_ifindex = dev->ifindex;
4559 return 0;
4560
4561 case SIOCGIFTXQLEN:
4562 ifr->ifr_qlen = dev->tx_queue_len;
4563 return 0;
4564
4565 default:
4566 /* dev_ioctl() should ensure this case
4567 * is never reached
4568 */
4569 WARN_ON(1);
4570 err = -EINVAL;
4571 break;
4572
4573 }
4574 return err;
4575 }
4576
4577 /*
4578 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4579 */
4580 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4581 {
4582 int err;
4583 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4584 const struct net_device_ops *ops;
4585
4586 if (!dev)
4587 return -ENODEV;
4588
4589 ops = dev->netdev_ops;
4590
4591 switch (cmd) {
4592 case SIOCSIFFLAGS: /* Set interface flags */
4593 return dev_change_flags(dev, ifr->ifr_flags);
4594
4595 case SIOCSIFMETRIC: /* Set the metric on the interface
4596 (currently unused) */
4597 return -EOPNOTSUPP;
4598
4599 case SIOCSIFMTU: /* Set the MTU of a device */
4600 return dev_set_mtu(dev, ifr->ifr_mtu);
4601
4602 case SIOCSIFHWADDR:
4603 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4604
4605 case SIOCSIFHWBROADCAST:
4606 if (ifr->ifr_hwaddr.sa_family != dev->type)
4607 return -EINVAL;
4608 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4609 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4610 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4611 return 0;
4612
4613 case SIOCSIFMAP:
4614 if (ops->ndo_set_config) {
4615 if (!netif_device_present(dev))
4616 return -ENODEV;
4617 return ops->ndo_set_config(dev, &ifr->ifr_map);
4618 }
4619 return -EOPNOTSUPP;
4620
4621 case SIOCADDMULTI:
4622 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4623 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4624 return -EINVAL;
4625 if (!netif_device_present(dev))
4626 return -ENODEV;
4627 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4628
4629 case SIOCDELMULTI:
4630 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4631 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4632 return -EINVAL;
4633 if (!netif_device_present(dev))
4634 return -ENODEV;
4635 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4636
4637 case SIOCSIFTXQLEN:
4638 if (ifr->ifr_qlen < 0)
4639 return -EINVAL;
4640 dev->tx_queue_len = ifr->ifr_qlen;
4641 return 0;
4642
4643 case SIOCSIFNAME:
4644 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4645 return dev_change_name(dev, ifr->ifr_newname);
4646
4647 /*
4648 * Unknown or private ioctl
4649 */
4650 default:
4651 if ((cmd >= SIOCDEVPRIVATE &&
4652 cmd <= SIOCDEVPRIVATE + 15) ||
4653 cmd == SIOCBONDENSLAVE ||
4654 cmd == SIOCBONDRELEASE ||
4655 cmd == SIOCBONDSETHWADDR ||
4656 cmd == SIOCBONDSLAVEINFOQUERY ||
4657 cmd == SIOCBONDINFOQUERY ||
4658 cmd == SIOCBONDCHANGEACTIVE ||
4659 cmd == SIOCGMIIPHY ||
4660 cmd == SIOCGMIIREG ||
4661 cmd == SIOCSMIIREG ||
4662 cmd == SIOCBRADDIF ||
4663 cmd == SIOCBRDELIF ||
4664 cmd == SIOCSHWTSTAMP ||
4665 cmd == SIOCWANDEV) {
4666 err = -EOPNOTSUPP;
4667 if (ops->ndo_do_ioctl) {
4668 if (netif_device_present(dev))
4669 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4670 else
4671 err = -ENODEV;
4672 }
4673 } else
4674 err = -EINVAL;
4675
4676 }
4677 return err;
4678 }
4679
4680 /*
4681 * This function handles all "interface"-type I/O control requests. The actual
4682 * 'doing' part of this is dev_ifsioc above.
4683 */
4684
4685 /**
4686 * dev_ioctl - network device ioctl
4687 * @net: the applicable net namespace
4688 * @cmd: command to issue
4689 * @arg: pointer to a struct ifreq in user space
4690 *
4691 * Issue ioctl functions to devices. This is normally called by the
4692 * user space syscall interfaces but can sometimes be useful for
4693 * other purposes. The return value is the return from the syscall if
4694 * positive or a negative errno code on error.
4695 */
4696
4697 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4698 {
4699 struct ifreq ifr;
4700 int ret;
4701 char *colon;
4702
4703 /* One special case: SIOCGIFCONF takes ifconf argument
4704 and requires shared lock, because it sleeps writing
4705 to user space.
4706 */
4707
4708 if (cmd == SIOCGIFCONF) {
4709 rtnl_lock();
4710 ret = dev_ifconf(net, (char __user *) arg);
4711 rtnl_unlock();
4712 return ret;
4713 }
4714 if (cmd == SIOCGIFNAME)
4715 return dev_ifname(net, (struct ifreq __user *)arg);
4716
4717 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4718 return -EFAULT;
4719
4720 ifr.ifr_name[IFNAMSIZ-1] = 0;
4721
4722 colon = strchr(ifr.ifr_name, ':');
4723 if (colon)
4724 *colon = 0;
4725
4726 /*
4727 * See which interface the caller is talking about.
4728 */
4729
4730 switch (cmd) {
4731 /*
4732 * These ioctl calls:
4733 * - can be done by all.
4734 * - atomic and do not require locking.
4735 * - return a value
4736 */
4737 case SIOCGIFFLAGS:
4738 case SIOCGIFMETRIC:
4739 case SIOCGIFMTU:
4740 case SIOCGIFHWADDR:
4741 case SIOCGIFSLAVE:
4742 case SIOCGIFMAP:
4743 case SIOCGIFINDEX:
4744 case SIOCGIFTXQLEN:
4745 dev_load(net, ifr.ifr_name);
4746 rcu_read_lock();
4747 ret = dev_ifsioc_locked(net, &ifr, cmd);
4748 rcu_read_unlock();
4749 if (!ret) {
4750 if (colon)
4751 *colon = ':';
4752 if (copy_to_user(arg, &ifr,
4753 sizeof(struct ifreq)))
4754 ret = -EFAULT;
4755 }
4756 return ret;
4757
4758 case SIOCETHTOOL:
4759 dev_load(net, ifr.ifr_name);
4760 rtnl_lock();
4761 ret = dev_ethtool(net, &ifr);
4762 rtnl_unlock();
4763 if (!ret) {
4764 if (colon)
4765 *colon = ':';
4766 if (copy_to_user(arg, &ifr,
4767 sizeof(struct ifreq)))
4768 ret = -EFAULT;
4769 }
4770 return ret;
4771
4772 /*
4773 * These ioctl calls:
4774 * - require superuser power.
4775 * - require strict serialization.
4776 * - return a value
4777 */
4778 case SIOCGMIIPHY:
4779 case SIOCGMIIREG:
4780 case SIOCSIFNAME:
4781 if (!capable(CAP_NET_ADMIN))
4782 return -EPERM;
4783 dev_load(net, ifr.ifr_name);
4784 rtnl_lock();
4785 ret = dev_ifsioc(net, &ifr, cmd);
4786 rtnl_unlock();
4787 if (!ret) {
4788 if (colon)
4789 *colon = ':';
4790 if (copy_to_user(arg, &ifr,
4791 sizeof(struct ifreq)))
4792 ret = -EFAULT;
4793 }
4794 return ret;
4795
4796 /*
4797 * These ioctl calls:
4798 * - require superuser power.
4799 * - require strict serialization.
4800 * - do not return a value
4801 */
4802 case SIOCSIFFLAGS:
4803 case SIOCSIFMETRIC:
4804 case SIOCSIFMTU:
4805 case SIOCSIFMAP:
4806 case SIOCSIFHWADDR:
4807 case SIOCSIFSLAVE:
4808 case SIOCADDMULTI:
4809 case SIOCDELMULTI:
4810 case SIOCSIFHWBROADCAST:
4811 case SIOCSIFTXQLEN:
4812 case SIOCSMIIREG:
4813 case SIOCBONDENSLAVE:
4814 case SIOCBONDRELEASE:
4815 case SIOCBONDSETHWADDR:
4816 case SIOCBONDCHANGEACTIVE:
4817 case SIOCBRADDIF:
4818 case SIOCBRDELIF:
4819 case SIOCSHWTSTAMP:
4820 if (!capable(CAP_NET_ADMIN))
4821 return -EPERM;
4822 /* fall through */
4823 case SIOCBONDSLAVEINFOQUERY:
4824 case SIOCBONDINFOQUERY:
4825 dev_load(net, ifr.ifr_name);
4826 rtnl_lock();
4827 ret = dev_ifsioc(net, &ifr, cmd);
4828 rtnl_unlock();
4829 return ret;
4830
4831 case SIOCGIFMEM:
4832 /* Get the per device memory space. We can add this but
4833 * currently do not support it */
4834 case SIOCSIFMEM:
4835 /* Set the per device memory buffer space.
4836 * Not applicable in our case */
4837 case SIOCSIFLINK:
4838 return -EINVAL;
4839
4840 /*
4841 * Unknown or private ioctl.
4842 */
4843 default:
4844 if (cmd == SIOCWANDEV ||
4845 (cmd >= SIOCDEVPRIVATE &&
4846 cmd <= SIOCDEVPRIVATE + 15)) {
4847 dev_load(net, ifr.ifr_name);
4848 rtnl_lock();
4849 ret = dev_ifsioc(net, &ifr, cmd);
4850 rtnl_unlock();
4851 if (!ret && copy_to_user(arg, &ifr,
4852 sizeof(struct ifreq)))
4853 ret = -EFAULT;
4854 return ret;
4855 }
4856 /* Take care of Wireless Extensions */
4857 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4858 return wext_handle_ioctl(net, &ifr, cmd, arg);
4859 return -EINVAL;
4860 }
4861 }
4862
4863
4864 /**
4865 * dev_new_index - allocate an ifindex
4866 * @net: the applicable net namespace
4867 *
4868 * Returns a suitable unique value for a new device interface
4869 * number. The caller must hold the rtnl semaphore or the
4870 * dev_base_lock to be sure it remains unique.
4871 */
4872 static int dev_new_index(struct net *net)
4873 {
4874 static int ifindex;
4875 for (;;) {
4876 if (++ifindex <= 0)
4877 ifindex = 1;
4878 if (!__dev_get_by_index(net, ifindex))
4879 return ifindex;
4880 }
4881 }
4882
4883 /* Delayed registration/unregisteration */
4884 static LIST_HEAD(net_todo_list);
4885
4886 static void net_set_todo(struct net_device *dev)
4887 {
4888 list_add_tail(&dev->todo_list, &net_todo_list);
4889 }
4890
4891 static void rollback_registered_many(struct list_head *head)
4892 {
4893 struct net_device *dev, *tmp;
4894
4895 BUG_ON(dev_boot_phase);
4896 ASSERT_RTNL();
4897
4898 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4899 /* Some devices call without registering
4900 * for initialization unwind. Remove those
4901 * devices and proceed with the remaining.
4902 */
4903 if (dev->reg_state == NETREG_UNINITIALIZED) {
4904 pr_debug("unregister_netdevice: device %s/%p never "
4905 "was registered\n", dev->name, dev);
4906
4907 WARN_ON(1);
4908 list_del(&dev->unreg_list);
4909 continue;
4910 }
4911
4912 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4913
4914 /* If device is running, close it first. */
4915 dev_close(dev);
4916
4917 /* And unlink it from device chain. */
4918 unlist_netdevice(dev);
4919
4920 dev->reg_state = NETREG_UNREGISTERING;
4921 }
4922
4923 synchronize_net();
4924
4925 list_for_each_entry(dev, head, unreg_list) {
4926 /* Shutdown queueing discipline. */
4927 dev_shutdown(dev);
4928
4929
4930 /* Notify protocols, that we are about to destroy
4931 this device. They should clean all the things.
4932 */
4933 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4934
4935 if (!dev->rtnl_link_ops ||
4936 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4937 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4938
4939 /*
4940 * Flush the unicast and multicast chains
4941 */
4942 dev_uc_flush(dev);
4943 dev_mc_flush(dev);
4944
4945 if (dev->netdev_ops->ndo_uninit)
4946 dev->netdev_ops->ndo_uninit(dev);
4947
4948 /* Notifier chain MUST detach us from master device. */
4949 WARN_ON(dev->master);
4950
4951 /* Remove entries from kobject tree */
4952 netdev_unregister_kobject(dev);
4953 }
4954
4955 /* Process any work delayed until the end of the batch */
4956 dev = list_first_entry(head, struct net_device, unreg_list);
4957 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4958
4959 rcu_barrier();
4960
4961 list_for_each_entry(dev, head, unreg_list)
4962 dev_put(dev);
4963 }
4964
4965 static void rollback_registered(struct net_device *dev)
4966 {
4967 LIST_HEAD(single);
4968
4969 list_add(&dev->unreg_list, &single);
4970 rollback_registered_many(&single);
4971 }
4972
4973 unsigned long netdev_fix_features(unsigned long features, const char *name)
4974 {
4975 /* Fix illegal SG+CSUM combinations. */
4976 if ((features & NETIF_F_SG) &&
4977 !(features & NETIF_F_ALL_CSUM)) {
4978 if (name)
4979 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4980 "checksum feature.\n", name);
4981 features &= ~NETIF_F_SG;
4982 }
4983
4984 /* TSO requires that SG is present as well. */
4985 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4986 if (name)
4987 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4988 "SG feature.\n", name);
4989 features &= ~NETIF_F_TSO;
4990 }
4991
4992 if (features & NETIF_F_UFO) {
4993 if (!(features & NETIF_F_GEN_CSUM)) {
4994 if (name)
4995 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4996 "since no NETIF_F_HW_CSUM feature.\n",
4997 name);
4998 features &= ~NETIF_F_UFO;
4999 }
5000
5001 if (!(features & NETIF_F_SG)) {
5002 if (name)
5003 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5004 "since no NETIF_F_SG feature.\n", name);
5005 features &= ~NETIF_F_UFO;
5006 }
5007 }
5008
5009 return features;
5010 }
5011 EXPORT_SYMBOL(netdev_fix_features);
5012
5013 /**
5014 * netif_stacked_transfer_operstate - transfer operstate
5015 * @rootdev: the root or lower level device to transfer state from
5016 * @dev: the device to transfer operstate to
5017 *
5018 * Transfer operational state from root to device. This is normally
5019 * called when a stacking relationship exists between the root
5020 * device and the device(a leaf device).
5021 */
5022 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5023 struct net_device *dev)
5024 {
5025 if (rootdev->operstate == IF_OPER_DORMANT)
5026 netif_dormant_on(dev);
5027 else
5028 netif_dormant_off(dev);
5029
5030 if (netif_carrier_ok(rootdev)) {
5031 if (!netif_carrier_ok(dev))
5032 netif_carrier_on(dev);
5033 } else {
5034 if (netif_carrier_ok(dev))
5035 netif_carrier_off(dev);
5036 }
5037 }
5038 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5039
5040 static int netif_alloc_rx_queues(struct net_device *dev)
5041 {
5042 #ifdef CONFIG_RPS
5043 unsigned int i, count = dev->num_rx_queues;
5044 struct netdev_rx_queue *rx;
5045
5046 BUG_ON(count < 1);
5047
5048 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5049 if (!rx) {
5050 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5051 return -ENOMEM;
5052 }
5053 dev->_rx = rx;
5054
5055 for (i = 0; i < count; i++)
5056 rx[i].dev = dev;
5057 #endif
5058 return 0;
5059 }
5060
5061 static int netif_alloc_netdev_queues(struct net_device *dev)
5062 {
5063 unsigned int count = dev->num_tx_queues;
5064 struct netdev_queue *tx;
5065
5066 BUG_ON(count < 1);
5067
5068 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5069 if (!tx) {
5070 pr_err("netdev: Unable to allocate %u tx queues.\n",
5071 count);
5072 return -ENOMEM;
5073 }
5074 dev->_tx = tx;
5075 return 0;
5076 }
5077
5078 static void netdev_init_one_queue(struct net_device *dev,
5079 struct netdev_queue *queue,
5080 void *_unused)
5081 {
5082 queue->dev = dev;
5083
5084 /* Initialize queue lock */
5085 spin_lock_init(&queue->_xmit_lock);
5086 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5087 queue->xmit_lock_owner = -1;
5088 }
5089
5090 static void netdev_init_queues(struct net_device *dev)
5091 {
5092 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5093 spin_lock_init(&dev->tx_global_lock);
5094 }
5095
5096 /**
5097 * register_netdevice - register a network device
5098 * @dev: device to register
5099 *
5100 * Take a completed network device structure and add it to the kernel
5101 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5102 * chain. 0 is returned on success. A negative errno code is returned
5103 * on a failure to set up the device, or if the name is a duplicate.
5104 *
5105 * Callers must hold the rtnl semaphore. You may want
5106 * register_netdev() instead of this.
5107 *
5108 * BUGS:
5109 * The locking appears insufficient to guarantee two parallel registers
5110 * will not get the same name.
5111 */
5112
5113 int register_netdevice(struct net_device *dev)
5114 {
5115 int ret;
5116 struct net *net = dev_net(dev);
5117
5118 BUG_ON(dev_boot_phase);
5119 ASSERT_RTNL();
5120
5121 might_sleep();
5122
5123 /* When net_device's are persistent, this will be fatal. */
5124 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5125 BUG_ON(!net);
5126
5127 spin_lock_init(&dev->addr_list_lock);
5128 netdev_set_addr_lockdep_class(dev);
5129
5130 dev->iflink = -1;
5131
5132 netdev_init_queues(dev);
5133
5134 /* Init, if this function is available */
5135 if (dev->netdev_ops->ndo_init) {
5136 ret = dev->netdev_ops->ndo_init(dev);
5137 if (ret) {
5138 if (ret > 0)
5139 ret = -EIO;
5140 goto out;
5141 }
5142 }
5143
5144 ret = dev_get_valid_name(dev, dev->name, 0);
5145 if (ret)
5146 goto err_uninit;
5147
5148 dev->ifindex = dev_new_index(net);
5149 if (dev->iflink == -1)
5150 dev->iflink = dev->ifindex;
5151
5152 /* Fix illegal checksum combinations */
5153 if ((dev->features & NETIF_F_HW_CSUM) &&
5154 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5155 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5156 dev->name);
5157 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5158 }
5159
5160 if ((dev->features & NETIF_F_NO_CSUM) &&
5161 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5162 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5163 dev->name);
5164 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5165 }
5166
5167 dev->features = netdev_fix_features(dev->features, dev->name);
5168
5169 /* Enable software GSO if SG is supported. */
5170 if (dev->features & NETIF_F_SG)
5171 dev->features |= NETIF_F_GSO;
5172
5173 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5174 * vlan_dev_init() will do the dev->features check, so these features
5175 * are enabled only if supported by underlying device.
5176 */
5177 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5178
5179 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5180 ret = notifier_to_errno(ret);
5181 if (ret)
5182 goto err_uninit;
5183
5184 ret = netdev_register_kobject(dev);
5185 if (ret)
5186 goto err_uninit;
5187 dev->reg_state = NETREG_REGISTERED;
5188
5189 /*
5190 * Default initial state at registry is that the
5191 * device is present.
5192 */
5193
5194 set_bit(__LINK_STATE_PRESENT, &dev->state);
5195
5196 dev_init_scheduler(dev);
5197 dev_hold(dev);
5198 list_netdevice(dev);
5199
5200 /* Notify protocols, that a new device appeared. */
5201 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5202 ret = notifier_to_errno(ret);
5203 if (ret) {
5204 rollback_registered(dev);
5205 dev->reg_state = NETREG_UNREGISTERED;
5206 }
5207 /*
5208 * Prevent userspace races by waiting until the network
5209 * device is fully setup before sending notifications.
5210 */
5211 if (!dev->rtnl_link_ops ||
5212 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5213 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5214
5215 out:
5216 return ret;
5217
5218 err_uninit:
5219 if (dev->netdev_ops->ndo_uninit)
5220 dev->netdev_ops->ndo_uninit(dev);
5221 goto out;
5222 }
5223 EXPORT_SYMBOL(register_netdevice);
5224
5225 /**
5226 * init_dummy_netdev - init a dummy network device for NAPI
5227 * @dev: device to init
5228 *
5229 * This takes a network device structure and initialize the minimum
5230 * amount of fields so it can be used to schedule NAPI polls without
5231 * registering a full blown interface. This is to be used by drivers
5232 * that need to tie several hardware interfaces to a single NAPI
5233 * poll scheduler due to HW limitations.
5234 */
5235 int init_dummy_netdev(struct net_device *dev)
5236 {
5237 /* Clear everything. Note we don't initialize spinlocks
5238 * are they aren't supposed to be taken by any of the
5239 * NAPI code and this dummy netdev is supposed to be
5240 * only ever used for NAPI polls
5241 */
5242 memset(dev, 0, sizeof(struct net_device));
5243
5244 /* make sure we BUG if trying to hit standard
5245 * register/unregister code path
5246 */
5247 dev->reg_state = NETREG_DUMMY;
5248
5249 /* NAPI wants this */
5250 INIT_LIST_HEAD(&dev->napi_list);
5251
5252 /* a dummy interface is started by default */
5253 set_bit(__LINK_STATE_PRESENT, &dev->state);
5254 set_bit(__LINK_STATE_START, &dev->state);
5255
5256 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5257 * because users of this 'device' dont need to change
5258 * its refcount.
5259 */
5260
5261 return 0;
5262 }
5263 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5264
5265
5266 /**
5267 * register_netdev - register a network device
5268 * @dev: device to register
5269 *
5270 * Take a completed network device structure and add it to the kernel
5271 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5272 * chain. 0 is returned on success. A negative errno code is returned
5273 * on a failure to set up the device, or if the name is a duplicate.
5274 *
5275 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5276 * and expands the device name if you passed a format string to
5277 * alloc_netdev.
5278 */
5279 int register_netdev(struct net_device *dev)
5280 {
5281 int err;
5282
5283 rtnl_lock();
5284
5285 /*
5286 * If the name is a format string the caller wants us to do a
5287 * name allocation.
5288 */
5289 if (strchr(dev->name, '%')) {
5290 err = dev_alloc_name(dev, dev->name);
5291 if (err < 0)
5292 goto out;
5293 }
5294
5295 err = register_netdevice(dev);
5296 out:
5297 rtnl_unlock();
5298 return err;
5299 }
5300 EXPORT_SYMBOL(register_netdev);
5301
5302 int netdev_refcnt_read(const struct net_device *dev)
5303 {
5304 int i, refcnt = 0;
5305
5306 for_each_possible_cpu(i)
5307 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5308 return refcnt;
5309 }
5310 EXPORT_SYMBOL(netdev_refcnt_read);
5311
5312 /*
5313 * netdev_wait_allrefs - wait until all references are gone.
5314 *
5315 * This is called when unregistering network devices.
5316 *
5317 * Any protocol or device that holds a reference should register
5318 * for netdevice notification, and cleanup and put back the
5319 * reference if they receive an UNREGISTER event.
5320 * We can get stuck here if buggy protocols don't correctly
5321 * call dev_put.
5322 */
5323 static void netdev_wait_allrefs(struct net_device *dev)
5324 {
5325 unsigned long rebroadcast_time, warning_time;
5326 int refcnt;
5327
5328 linkwatch_forget_dev(dev);
5329
5330 rebroadcast_time = warning_time = jiffies;
5331 refcnt = netdev_refcnt_read(dev);
5332
5333 while (refcnt != 0) {
5334 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5335 rtnl_lock();
5336
5337 /* Rebroadcast unregister notification */
5338 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5339 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5340 * should have already handle it the first time */
5341
5342 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5343 &dev->state)) {
5344 /* We must not have linkwatch events
5345 * pending on unregister. If this
5346 * happens, we simply run the queue
5347 * unscheduled, resulting in a noop
5348 * for this device.
5349 */
5350 linkwatch_run_queue();
5351 }
5352
5353 __rtnl_unlock();
5354
5355 rebroadcast_time = jiffies;
5356 }
5357
5358 msleep(250);
5359
5360 refcnt = netdev_refcnt_read(dev);
5361
5362 if (time_after(jiffies, warning_time + 10 * HZ)) {
5363 printk(KERN_EMERG "unregister_netdevice: "
5364 "waiting for %s to become free. Usage "
5365 "count = %d\n",
5366 dev->name, refcnt);
5367 warning_time = jiffies;
5368 }
5369 }
5370 }
5371
5372 /* The sequence is:
5373 *
5374 * rtnl_lock();
5375 * ...
5376 * register_netdevice(x1);
5377 * register_netdevice(x2);
5378 * ...
5379 * unregister_netdevice(y1);
5380 * unregister_netdevice(y2);
5381 * ...
5382 * rtnl_unlock();
5383 * free_netdev(y1);
5384 * free_netdev(y2);
5385 *
5386 * We are invoked by rtnl_unlock().
5387 * This allows us to deal with problems:
5388 * 1) We can delete sysfs objects which invoke hotplug
5389 * without deadlocking with linkwatch via keventd.
5390 * 2) Since we run with the RTNL semaphore not held, we can sleep
5391 * safely in order to wait for the netdev refcnt to drop to zero.
5392 *
5393 * We must not return until all unregister events added during
5394 * the interval the lock was held have been completed.
5395 */
5396 void netdev_run_todo(void)
5397 {
5398 struct list_head list;
5399
5400 /* Snapshot list, allow later requests */
5401 list_replace_init(&net_todo_list, &list);
5402
5403 __rtnl_unlock();
5404
5405 while (!list_empty(&list)) {
5406 struct net_device *dev
5407 = list_first_entry(&list, struct net_device, todo_list);
5408 list_del(&dev->todo_list);
5409
5410 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5411 printk(KERN_ERR "network todo '%s' but state %d\n",
5412 dev->name, dev->reg_state);
5413 dump_stack();
5414 continue;
5415 }
5416
5417 dev->reg_state = NETREG_UNREGISTERED;
5418
5419 on_each_cpu(flush_backlog, dev, 1);
5420
5421 netdev_wait_allrefs(dev);
5422
5423 /* paranoia */
5424 BUG_ON(netdev_refcnt_read(dev));
5425 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5426 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5427 WARN_ON(dev->dn_ptr);
5428
5429 if (dev->destructor)
5430 dev->destructor(dev);
5431
5432 /* Free network device */
5433 kobject_put(&dev->dev.kobj);
5434 }
5435 }
5436
5437 /**
5438 * dev_txq_stats_fold - fold tx_queues stats
5439 * @dev: device to get statistics from
5440 * @stats: struct rtnl_link_stats64 to hold results
5441 */
5442 void dev_txq_stats_fold(const struct net_device *dev,
5443 struct rtnl_link_stats64 *stats)
5444 {
5445 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5446 unsigned int i;
5447 struct netdev_queue *txq;
5448
5449 for (i = 0; i < dev->num_tx_queues; i++) {
5450 txq = netdev_get_tx_queue(dev, i);
5451 spin_lock_bh(&txq->_xmit_lock);
5452 tx_bytes += txq->tx_bytes;
5453 tx_packets += txq->tx_packets;
5454 tx_dropped += txq->tx_dropped;
5455 spin_unlock_bh(&txq->_xmit_lock);
5456 }
5457 if (tx_bytes || tx_packets || tx_dropped) {
5458 stats->tx_bytes = tx_bytes;
5459 stats->tx_packets = tx_packets;
5460 stats->tx_dropped = tx_dropped;
5461 }
5462 }
5463 EXPORT_SYMBOL(dev_txq_stats_fold);
5464
5465 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5466 * fields in the same order, with only the type differing.
5467 */
5468 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5469 const struct net_device_stats *netdev_stats)
5470 {
5471 #if BITS_PER_LONG == 64
5472 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5473 memcpy(stats64, netdev_stats, sizeof(*stats64));
5474 #else
5475 size_t i, n = sizeof(*stats64) / sizeof(u64);
5476 const unsigned long *src = (const unsigned long *)netdev_stats;
5477 u64 *dst = (u64 *)stats64;
5478
5479 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5480 sizeof(*stats64) / sizeof(u64));
5481 for (i = 0; i < n; i++)
5482 dst[i] = src[i];
5483 #endif
5484 }
5485
5486 /**
5487 * dev_get_stats - get network device statistics
5488 * @dev: device to get statistics from
5489 * @storage: place to store stats
5490 *
5491 * Get network statistics from device. Return @storage.
5492 * The device driver may provide its own method by setting
5493 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5494 * otherwise the internal statistics structure is used.
5495 */
5496 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5497 struct rtnl_link_stats64 *storage)
5498 {
5499 const struct net_device_ops *ops = dev->netdev_ops;
5500
5501 if (ops->ndo_get_stats64) {
5502 memset(storage, 0, sizeof(*storage));
5503 ops->ndo_get_stats64(dev, storage);
5504 } else if (ops->ndo_get_stats) {
5505 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5506 } else {
5507 netdev_stats_to_stats64(storage, &dev->stats);
5508 dev_txq_stats_fold(dev, storage);
5509 }
5510 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5511 return storage;
5512 }
5513 EXPORT_SYMBOL(dev_get_stats);
5514
5515 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5516 {
5517 struct netdev_queue *queue = dev_ingress_queue(dev);
5518
5519 #ifdef CONFIG_NET_CLS_ACT
5520 if (queue)
5521 return queue;
5522 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5523 if (!queue)
5524 return NULL;
5525 netdev_init_one_queue(dev, queue, NULL);
5526 queue->qdisc = &noop_qdisc;
5527 queue->qdisc_sleeping = &noop_qdisc;
5528 rcu_assign_pointer(dev->ingress_queue, queue);
5529 #endif
5530 return queue;
5531 }
5532
5533 /**
5534 * alloc_netdev_mq - allocate network device
5535 * @sizeof_priv: size of private data to allocate space for
5536 * @name: device name format string
5537 * @setup: callback to initialize device
5538 * @queue_count: the number of subqueues to allocate
5539 *
5540 * Allocates a struct net_device with private data area for driver use
5541 * and performs basic initialization. Also allocates subquue structs
5542 * for each queue on the device at the end of the netdevice.
5543 */
5544 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5545 void (*setup)(struct net_device *), unsigned int queue_count)
5546 {
5547 struct net_device *dev;
5548 size_t alloc_size;
5549 struct net_device *p;
5550
5551 BUG_ON(strlen(name) >= sizeof(dev->name));
5552
5553 if (queue_count < 1) {
5554 pr_err("alloc_netdev: Unable to allocate device "
5555 "with zero queues.\n");
5556 return NULL;
5557 }
5558
5559 alloc_size = sizeof(struct net_device);
5560 if (sizeof_priv) {
5561 /* ensure 32-byte alignment of private area */
5562 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5563 alloc_size += sizeof_priv;
5564 }
5565 /* ensure 32-byte alignment of whole construct */
5566 alloc_size += NETDEV_ALIGN - 1;
5567
5568 p = kzalloc(alloc_size, GFP_KERNEL);
5569 if (!p) {
5570 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5571 return NULL;
5572 }
5573
5574 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5575 dev->padded = (char *)dev - (char *)p;
5576
5577 dev->pcpu_refcnt = alloc_percpu(int);
5578 if (!dev->pcpu_refcnt)
5579 goto free_p;
5580
5581 if (dev_addr_init(dev))
5582 goto free_pcpu;
5583
5584 dev_mc_init(dev);
5585 dev_uc_init(dev);
5586
5587 dev_net_set(dev, &init_net);
5588
5589 dev->num_tx_queues = queue_count;
5590 dev->real_num_tx_queues = queue_count;
5591 if (netif_alloc_netdev_queues(dev))
5592 goto free_pcpu;
5593
5594 #ifdef CONFIG_RPS
5595 dev->num_rx_queues = queue_count;
5596 dev->real_num_rx_queues = queue_count;
5597 if (netif_alloc_rx_queues(dev))
5598 goto free_pcpu;
5599 #endif
5600
5601 dev->gso_max_size = GSO_MAX_SIZE;
5602
5603 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5604 dev->ethtool_ntuple_list.count = 0;
5605 INIT_LIST_HEAD(&dev->napi_list);
5606 INIT_LIST_HEAD(&dev->unreg_list);
5607 INIT_LIST_HEAD(&dev->link_watch_list);
5608 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5609 setup(dev);
5610 strcpy(dev->name, name);
5611 return dev;
5612
5613 free_pcpu:
5614 free_percpu(dev->pcpu_refcnt);
5615 kfree(dev->_tx);
5616 #ifdef CONFIG_RPS
5617 kfree(dev->_rx);
5618 #endif
5619
5620 free_p:
5621 kfree(p);
5622 return NULL;
5623 }
5624 EXPORT_SYMBOL(alloc_netdev_mq);
5625
5626 /**
5627 * free_netdev - free network device
5628 * @dev: device
5629 *
5630 * This function does the last stage of destroying an allocated device
5631 * interface. The reference to the device object is released.
5632 * If this is the last reference then it will be freed.
5633 */
5634 void free_netdev(struct net_device *dev)
5635 {
5636 struct napi_struct *p, *n;
5637
5638 release_net(dev_net(dev));
5639
5640 kfree(dev->_tx);
5641 #ifdef CONFIG_RPS
5642 kfree(dev->_rx);
5643 #endif
5644
5645 kfree(rcu_dereference_raw(dev->ingress_queue));
5646
5647 /* Flush device addresses */
5648 dev_addr_flush(dev);
5649
5650 /* Clear ethtool n-tuple list */
5651 ethtool_ntuple_flush(dev);
5652
5653 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5654 netif_napi_del(p);
5655
5656 free_percpu(dev->pcpu_refcnt);
5657 dev->pcpu_refcnt = NULL;
5658
5659 /* Compatibility with error handling in drivers */
5660 if (dev->reg_state == NETREG_UNINITIALIZED) {
5661 kfree((char *)dev - dev->padded);
5662 return;
5663 }
5664
5665 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5666 dev->reg_state = NETREG_RELEASED;
5667
5668 /* will free via device release */
5669 put_device(&dev->dev);
5670 }
5671 EXPORT_SYMBOL(free_netdev);
5672
5673 /**
5674 * synchronize_net - Synchronize with packet receive processing
5675 *
5676 * Wait for packets currently being received to be done.
5677 * Does not block later packets from starting.
5678 */
5679 void synchronize_net(void)
5680 {
5681 might_sleep();
5682 synchronize_rcu();
5683 }
5684 EXPORT_SYMBOL(synchronize_net);
5685
5686 /**
5687 * unregister_netdevice_queue - remove device from the kernel
5688 * @dev: device
5689 * @head: list
5690 *
5691 * This function shuts down a device interface and removes it
5692 * from the kernel tables.
5693 * If head not NULL, device is queued to be unregistered later.
5694 *
5695 * Callers must hold the rtnl semaphore. You may want
5696 * unregister_netdev() instead of this.
5697 */
5698
5699 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5700 {
5701 ASSERT_RTNL();
5702
5703 if (head) {
5704 list_move_tail(&dev->unreg_list, head);
5705 } else {
5706 rollback_registered(dev);
5707 /* Finish processing unregister after unlock */
5708 net_set_todo(dev);
5709 }
5710 }
5711 EXPORT_SYMBOL(unregister_netdevice_queue);
5712
5713 /**
5714 * unregister_netdevice_many - unregister many devices
5715 * @head: list of devices
5716 */
5717 void unregister_netdevice_many(struct list_head *head)
5718 {
5719 struct net_device *dev;
5720
5721 if (!list_empty(head)) {
5722 rollback_registered_many(head);
5723 list_for_each_entry(dev, head, unreg_list)
5724 net_set_todo(dev);
5725 }
5726 }
5727 EXPORT_SYMBOL(unregister_netdevice_many);
5728
5729 /**
5730 * unregister_netdev - remove device from the kernel
5731 * @dev: device
5732 *
5733 * This function shuts down a device interface and removes it
5734 * from the kernel tables.
5735 *
5736 * This is just a wrapper for unregister_netdevice that takes
5737 * the rtnl semaphore. In general you want to use this and not
5738 * unregister_netdevice.
5739 */
5740 void unregister_netdev(struct net_device *dev)
5741 {
5742 rtnl_lock();
5743 unregister_netdevice(dev);
5744 rtnl_unlock();
5745 }
5746 EXPORT_SYMBOL(unregister_netdev);
5747
5748 /**
5749 * dev_change_net_namespace - move device to different nethost namespace
5750 * @dev: device
5751 * @net: network namespace
5752 * @pat: If not NULL name pattern to try if the current device name
5753 * is already taken in the destination network namespace.
5754 *
5755 * This function shuts down a device interface and moves it
5756 * to a new network namespace. On success 0 is returned, on
5757 * a failure a netagive errno code is returned.
5758 *
5759 * Callers must hold the rtnl semaphore.
5760 */
5761
5762 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5763 {
5764 int err;
5765
5766 ASSERT_RTNL();
5767
5768 /* Don't allow namespace local devices to be moved. */
5769 err = -EINVAL;
5770 if (dev->features & NETIF_F_NETNS_LOCAL)
5771 goto out;
5772
5773 /* Ensure the device has been registrered */
5774 err = -EINVAL;
5775 if (dev->reg_state != NETREG_REGISTERED)
5776 goto out;
5777
5778 /* Get out if there is nothing todo */
5779 err = 0;
5780 if (net_eq(dev_net(dev), net))
5781 goto out;
5782
5783 /* Pick the destination device name, and ensure
5784 * we can use it in the destination network namespace.
5785 */
5786 err = -EEXIST;
5787 if (__dev_get_by_name(net, dev->name)) {
5788 /* We get here if we can't use the current device name */
5789 if (!pat)
5790 goto out;
5791 if (dev_get_valid_name(dev, pat, 1))
5792 goto out;
5793 }
5794
5795 /*
5796 * And now a mini version of register_netdevice unregister_netdevice.
5797 */
5798
5799 /* If device is running close it first. */
5800 dev_close(dev);
5801
5802 /* And unlink it from device chain */
5803 err = -ENODEV;
5804 unlist_netdevice(dev);
5805
5806 synchronize_net();
5807
5808 /* Shutdown queueing discipline. */
5809 dev_shutdown(dev);
5810
5811 /* Notify protocols, that we are about to destroy
5812 this device. They should clean all the things.
5813
5814 Note that dev->reg_state stays at NETREG_REGISTERED.
5815 This is wanted because this way 8021q and macvlan know
5816 the device is just moving and can keep their slaves up.
5817 */
5818 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5819 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5820
5821 /*
5822 * Flush the unicast and multicast chains
5823 */
5824 dev_uc_flush(dev);
5825 dev_mc_flush(dev);
5826
5827 /* Actually switch the network namespace */
5828 dev_net_set(dev, net);
5829
5830 /* If there is an ifindex conflict assign a new one */
5831 if (__dev_get_by_index(net, dev->ifindex)) {
5832 int iflink = (dev->iflink == dev->ifindex);
5833 dev->ifindex = dev_new_index(net);
5834 if (iflink)
5835 dev->iflink = dev->ifindex;
5836 }
5837
5838 /* Fixup kobjects */
5839 err = device_rename(&dev->dev, dev->name);
5840 WARN_ON(err);
5841
5842 /* Add the device back in the hashes */
5843 list_netdevice(dev);
5844
5845 /* Notify protocols, that a new device appeared. */
5846 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5847
5848 /*
5849 * Prevent userspace races by waiting until the network
5850 * device is fully setup before sending notifications.
5851 */
5852 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5853
5854 synchronize_net();
5855 err = 0;
5856 out:
5857 return err;
5858 }
5859 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5860
5861 static int dev_cpu_callback(struct notifier_block *nfb,
5862 unsigned long action,
5863 void *ocpu)
5864 {
5865 struct sk_buff **list_skb;
5866 struct sk_buff *skb;
5867 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5868 struct softnet_data *sd, *oldsd;
5869
5870 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5871 return NOTIFY_OK;
5872
5873 local_irq_disable();
5874 cpu = smp_processor_id();
5875 sd = &per_cpu(softnet_data, cpu);
5876 oldsd = &per_cpu(softnet_data, oldcpu);
5877
5878 /* Find end of our completion_queue. */
5879 list_skb = &sd->completion_queue;
5880 while (*list_skb)
5881 list_skb = &(*list_skb)->next;
5882 /* Append completion queue from offline CPU. */
5883 *list_skb = oldsd->completion_queue;
5884 oldsd->completion_queue = NULL;
5885
5886 /* Append output queue from offline CPU. */
5887 if (oldsd->output_queue) {
5888 *sd->output_queue_tailp = oldsd->output_queue;
5889 sd->output_queue_tailp = oldsd->output_queue_tailp;
5890 oldsd->output_queue = NULL;
5891 oldsd->output_queue_tailp = &oldsd->output_queue;
5892 }
5893
5894 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5895 local_irq_enable();
5896
5897 /* Process offline CPU's input_pkt_queue */
5898 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5899 netif_rx(skb);
5900 input_queue_head_incr(oldsd);
5901 }
5902 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5903 netif_rx(skb);
5904 input_queue_head_incr(oldsd);
5905 }
5906
5907 return NOTIFY_OK;
5908 }
5909
5910
5911 /**
5912 * netdev_increment_features - increment feature set by one
5913 * @all: current feature set
5914 * @one: new feature set
5915 * @mask: mask feature set
5916 *
5917 * Computes a new feature set after adding a device with feature set
5918 * @one to the master device with current feature set @all. Will not
5919 * enable anything that is off in @mask. Returns the new feature set.
5920 */
5921 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5922 unsigned long mask)
5923 {
5924 /* If device needs checksumming, downgrade to it. */
5925 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5926 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5927 else if (mask & NETIF_F_ALL_CSUM) {
5928 /* If one device supports v4/v6 checksumming, set for all. */
5929 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5930 !(all & NETIF_F_GEN_CSUM)) {
5931 all &= ~NETIF_F_ALL_CSUM;
5932 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5933 }
5934
5935 /* If one device supports hw checksumming, set for all. */
5936 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5937 all &= ~NETIF_F_ALL_CSUM;
5938 all |= NETIF_F_HW_CSUM;
5939 }
5940 }
5941
5942 one |= NETIF_F_ALL_CSUM;
5943
5944 one |= all & NETIF_F_ONE_FOR_ALL;
5945 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5946 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5947
5948 return all;
5949 }
5950 EXPORT_SYMBOL(netdev_increment_features);
5951
5952 static struct hlist_head *netdev_create_hash(void)
5953 {
5954 int i;
5955 struct hlist_head *hash;
5956
5957 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5958 if (hash != NULL)
5959 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5960 INIT_HLIST_HEAD(&hash[i]);
5961
5962 return hash;
5963 }
5964
5965 /* Initialize per network namespace state */
5966 static int __net_init netdev_init(struct net *net)
5967 {
5968 INIT_LIST_HEAD(&net->dev_base_head);
5969
5970 net->dev_name_head = netdev_create_hash();
5971 if (net->dev_name_head == NULL)
5972 goto err_name;
5973
5974 net->dev_index_head = netdev_create_hash();
5975 if (net->dev_index_head == NULL)
5976 goto err_idx;
5977
5978 return 0;
5979
5980 err_idx:
5981 kfree(net->dev_name_head);
5982 err_name:
5983 return -ENOMEM;
5984 }
5985
5986 /**
5987 * netdev_drivername - network driver for the device
5988 * @dev: network device
5989 * @buffer: buffer for resulting name
5990 * @len: size of buffer
5991 *
5992 * Determine network driver for device.
5993 */
5994 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5995 {
5996 const struct device_driver *driver;
5997 const struct device *parent;
5998
5999 if (len <= 0 || !buffer)
6000 return buffer;
6001 buffer[0] = 0;
6002
6003 parent = dev->dev.parent;
6004
6005 if (!parent)
6006 return buffer;
6007
6008 driver = parent->driver;
6009 if (driver && driver->name)
6010 strlcpy(buffer, driver->name, len);
6011 return buffer;
6012 }
6013
6014 static int __netdev_printk(const char *level, const struct net_device *dev,
6015 struct va_format *vaf)
6016 {
6017 int r;
6018
6019 if (dev && dev->dev.parent)
6020 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6021 netdev_name(dev), vaf);
6022 else if (dev)
6023 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6024 else
6025 r = printk("%s(NULL net_device): %pV", level, vaf);
6026
6027 return r;
6028 }
6029
6030 int netdev_printk(const char *level, const struct net_device *dev,
6031 const char *format, ...)
6032 {
6033 struct va_format vaf;
6034 va_list args;
6035 int r;
6036
6037 va_start(args, format);
6038
6039 vaf.fmt = format;
6040 vaf.va = &args;
6041
6042 r = __netdev_printk(level, dev, &vaf);
6043 va_end(args);
6044
6045 return r;
6046 }
6047 EXPORT_SYMBOL(netdev_printk);
6048
6049 #define define_netdev_printk_level(func, level) \
6050 int func(const struct net_device *dev, const char *fmt, ...) \
6051 { \
6052 int r; \
6053 struct va_format vaf; \
6054 va_list args; \
6055 \
6056 va_start(args, fmt); \
6057 \
6058 vaf.fmt = fmt; \
6059 vaf.va = &args; \
6060 \
6061 r = __netdev_printk(level, dev, &vaf); \
6062 va_end(args); \
6063 \
6064 return r; \
6065 } \
6066 EXPORT_SYMBOL(func);
6067
6068 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6069 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6070 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6071 define_netdev_printk_level(netdev_err, KERN_ERR);
6072 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6073 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6074 define_netdev_printk_level(netdev_info, KERN_INFO);
6075
6076 static void __net_exit netdev_exit(struct net *net)
6077 {
6078 kfree(net->dev_name_head);
6079 kfree(net->dev_index_head);
6080 }
6081
6082 static struct pernet_operations __net_initdata netdev_net_ops = {
6083 .init = netdev_init,
6084 .exit = netdev_exit,
6085 };
6086
6087 static void __net_exit default_device_exit(struct net *net)
6088 {
6089 struct net_device *dev, *aux;
6090 /*
6091 * Push all migratable network devices back to the
6092 * initial network namespace
6093 */
6094 rtnl_lock();
6095 for_each_netdev_safe(net, dev, aux) {
6096 int err;
6097 char fb_name[IFNAMSIZ];
6098
6099 /* Ignore unmoveable devices (i.e. loopback) */
6100 if (dev->features & NETIF_F_NETNS_LOCAL)
6101 continue;
6102
6103 /* Leave virtual devices for the generic cleanup */
6104 if (dev->rtnl_link_ops)
6105 continue;
6106
6107 /* Push remaing network devices to init_net */
6108 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6109 err = dev_change_net_namespace(dev, &init_net, fb_name);
6110 if (err) {
6111 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6112 __func__, dev->name, err);
6113 BUG();
6114 }
6115 }
6116 rtnl_unlock();
6117 }
6118
6119 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6120 {
6121 /* At exit all network devices most be removed from a network
6122 * namespace. Do this in the reverse order of registeration.
6123 * Do this across as many network namespaces as possible to
6124 * improve batching efficiency.
6125 */
6126 struct net_device *dev;
6127 struct net *net;
6128 LIST_HEAD(dev_kill_list);
6129
6130 rtnl_lock();
6131 list_for_each_entry(net, net_list, exit_list) {
6132 for_each_netdev_reverse(net, dev) {
6133 if (dev->rtnl_link_ops)
6134 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6135 else
6136 unregister_netdevice_queue(dev, &dev_kill_list);
6137 }
6138 }
6139 unregister_netdevice_many(&dev_kill_list);
6140 rtnl_unlock();
6141 }
6142
6143 static struct pernet_operations __net_initdata default_device_ops = {
6144 .exit = default_device_exit,
6145 .exit_batch = default_device_exit_batch,
6146 };
6147
6148 /*
6149 * Initialize the DEV module. At boot time this walks the device list and
6150 * unhooks any devices that fail to initialise (normally hardware not
6151 * present) and leaves us with a valid list of present and active devices.
6152 *
6153 */
6154
6155 /*
6156 * This is called single threaded during boot, so no need
6157 * to take the rtnl semaphore.
6158 */
6159 static int __init net_dev_init(void)
6160 {
6161 int i, rc = -ENOMEM;
6162
6163 BUG_ON(!dev_boot_phase);
6164
6165 if (dev_proc_init())
6166 goto out;
6167
6168 if (netdev_kobject_init())
6169 goto out;
6170
6171 INIT_LIST_HEAD(&ptype_all);
6172 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6173 INIT_LIST_HEAD(&ptype_base[i]);
6174
6175 if (register_pernet_subsys(&netdev_net_ops))
6176 goto out;
6177
6178 /*
6179 * Initialise the packet receive queues.
6180 */
6181
6182 for_each_possible_cpu(i) {
6183 struct softnet_data *sd = &per_cpu(softnet_data, i);
6184
6185 memset(sd, 0, sizeof(*sd));
6186 skb_queue_head_init(&sd->input_pkt_queue);
6187 skb_queue_head_init(&sd->process_queue);
6188 sd->completion_queue = NULL;
6189 INIT_LIST_HEAD(&sd->poll_list);
6190 sd->output_queue = NULL;
6191 sd->output_queue_tailp = &sd->output_queue;
6192 #ifdef CONFIG_RPS
6193 sd->csd.func = rps_trigger_softirq;
6194 sd->csd.info = sd;
6195 sd->csd.flags = 0;
6196 sd->cpu = i;
6197 #endif
6198
6199 sd->backlog.poll = process_backlog;
6200 sd->backlog.weight = weight_p;
6201 sd->backlog.gro_list = NULL;
6202 sd->backlog.gro_count = 0;
6203 }
6204
6205 dev_boot_phase = 0;
6206
6207 /* The loopback device is special if any other network devices
6208 * is present in a network namespace the loopback device must
6209 * be present. Since we now dynamically allocate and free the
6210 * loopback device ensure this invariant is maintained by
6211 * keeping the loopback device as the first device on the
6212 * list of network devices. Ensuring the loopback devices
6213 * is the first device that appears and the last network device
6214 * that disappears.
6215 */
6216 if (register_pernet_device(&loopback_net_ops))
6217 goto out;
6218
6219 if (register_pernet_device(&default_device_ops))
6220 goto out;
6221
6222 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6223 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6224
6225 hotcpu_notifier(dev_cpu_callback, 0);
6226 dst_init();
6227 dev_mcast_init();
6228 rc = 0;
6229 out:
6230 return rc;
6231 }
6232
6233 subsys_initcall(net_dev_init);
6234
6235 static int __init initialize_hashrnd(void)
6236 {
6237 get_random_bytes(&hashrnd, sizeof(hashrnd));
6238 return 0;
6239 }
6240
6241 late_initcall_sync(initialize_hashrnd);
6242
This page took 0.15968 seconds and 6 git commands to generate.