[NET]: Initialize the network namespace of network devices.
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122
123 /*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
134 * the average user (w/out VLANs) will not be adversely affected.
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly; /* Taps */
154
155 #ifdef CONFIG_NET_DMA
156 struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161 };
162
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167 static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171 };
172 #endif
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 LIST_HEAD(dev_base_head);
194 DEFINE_RWLOCK(dev_base_lock);
195
196 EXPORT_SYMBOL(dev_base_head);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 #define NETDEV_HASHBITS 8
200 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
201 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
202
203 static inline struct hlist_head *dev_name_hash(const char *name)
204 {
205 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
206 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
207 }
208
209 static inline struct hlist_head *dev_index_hash(int ifindex)
210 {
211 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
212 }
213
214 /*
215 * Our notifier list
216 */
217
218 static RAW_NOTIFIER_HEAD(netdev_chain);
219
220 /*
221 * Device drivers call our routines to queue packets here. We empty the
222 * queue in the local softnet handler.
223 */
224
225 DEFINE_PER_CPU(struct softnet_data, softnet_data);
226
227 #ifdef CONFIG_SYSFS
228 extern int netdev_sysfs_init(void);
229 extern int netdev_register_sysfs(struct net_device *);
230 extern void netdev_unregister_sysfs(struct net_device *);
231 #else
232 #define netdev_sysfs_init() (0)
233 #define netdev_register_sysfs(dev) (0)
234 #define netdev_unregister_sysfs(dev) do { } while(0)
235 #endif
236
237 #ifdef CONFIG_DEBUG_LOCK_ALLOC
238 /*
239 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
240 * according to dev->type
241 */
242 static const unsigned short netdev_lock_type[] =
243 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
244 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
245 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
246 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
247 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
248 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
249 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
250 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
251 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
252 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
253 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
254 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
255 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
256 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
257 ARPHRD_NONE};
258
259 static const char *netdev_lock_name[] =
260 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
261 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
262 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
263 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
264 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
265 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
266 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
267 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
268 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
269 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
270 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
271 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
272 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
273 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
274 "_xmit_NONE"};
275
276 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
277
278 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
279 {
280 int i;
281
282 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
283 if (netdev_lock_type[i] == dev_type)
284 return i;
285 /* the last key is used by default */
286 return ARRAY_SIZE(netdev_lock_type) - 1;
287 }
288
289 static inline void netdev_set_lockdep_class(spinlock_t *lock,
290 unsigned short dev_type)
291 {
292 int i;
293
294 i = netdev_lock_pos(dev_type);
295 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
296 netdev_lock_name[i]);
297 }
298 #else
299 static inline void netdev_set_lockdep_class(spinlock_t *lock,
300 unsigned short dev_type)
301 {
302 }
303 #endif
304
305 /*******************************************************************************
306
307 Protocol management and registration routines
308
309 *******************************************************************************/
310
311 /*
312 * Add a protocol ID to the list. Now that the input handler is
313 * smarter we can dispense with all the messy stuff that used to be
314 * here.
315 *
316 * BEWARE!!! Protocol handlers, mangling input packets,
317 * MUST BE last in hash buckets and checking protocol handlers
318 * MUST start from promiscuous ptype_all chain in net_bh.
319 * It is true now, do not change it.
320 * Explanation follows: if protocol handler, mangling packet, will
321 * be the first on list, it is not able to sense, that packet
322 * is cloned and should be copied-on-write, so that it will
323 * change it and subsequent readers will get broken packet.
324 * --ANK (980803)
325 */
326
327 /**
328 * dev_add_pack - add packet handler
329 * @pt: packet type declaration
330 *
331 * Add a protocol handler to the networking stack. The passed &packet_type
332 * is linked into kernel lists and may not be freed until it has been
333 * removed from the kernel lists.
334 *
335 * This call does not sleep therefore it can not
336 * guarantee all CPU's that are in middle of receiving packets
337 * will see the new packet type (until the next received packet).
338 */
339
340 void dev_add_pack(struct packet_type *pt)
341 {
342 int hash;
343
344 spin_lock_bh(&ptype_lock);
345 if (pt->type == htons(ETH_P_ALL))
346 list_add_rcu(&pt->list, &ptype_all);
347 else {
348 hash = ntohs(pt->type) & 15;
349 list_add_rcu(&pt->list, &ptype_base[hash]);
350 }
351 spin_unlock_bh(&ptype_lock);
352 }
353
354 /**
355 * __dev_remove_pack - remove packet handler
356 * @pt: packet type declaration
357 *
358 * Remove a protocol handler that was previously added to the kernel
359 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
360 * from the kernel lists and can be freed or reused once this function
361 * returns.
362 *
363 * The packet type might still be in use by receivers
364 * and must not be freed until after all the CPU's have gone
365 * through a quiescent state.
366 */
367 void __dev_remove_pack(struct packet_type *pt)
368 {
369 struct list_head *head;
370 struct packet_type *pt1;
371
372 spin_lock_bh(&ptype_lock);
373
374 if (pt->type == htons(ETH_P_ALL))
375 head = &ptype_all;
376 else
377 head = &ptype_base[ntohs(pt->type) & 15];
378
379 list_for_each_entry(pt1, head, list) {
380 if (pt == pt1) {
381 list_del_rcu(&pt->list);
382 goto out;
383 }
384 }
385
386 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
387 out:
388 spin_unlock_bh(&ptype_lock);
389 }
390 /**
391 * dev_remove_pack - remove packet handler
392 * @pt: packet type declaration
393 *
394 * Remove a protocol handler that was previously added to the kernel
395 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
396 * from the kernel lists and can be freed or reused once this function
397 * returns.
398 *
399 * This call sleeps to guarantee that no CPU is looking at the packet
400 * type after return.
401 */
402 void dev_remove_pack(struct packet_type *pt)
403 {
404 __dev_remove_pack(pt);
405
406 synchronize_net();
407 }
408
409 /******************************************************************************
410
411 Device Boot-time Settings Routines
412
413 *******************************************************************************/
414
415 /* Boot time configuration table */
416 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
417
418 /**
419 * netdev_boot_setup_add - add new setup entry
420 * @name: name of the device
421 * @map: configured settings for the device
422 *
423 * Adds new setup entry to the dev_boot_setup list. The function
424 * returns 0 on error and 1 on success. This is a generic routine to
425 * all netdevices.
426 */
427 static int netdev_boot_setup_add(char *name, struct ifmap *map)
428 {
429 struct netdev_boot_setup *s;
430 int i;
431
432 s = dev_boot_setup;
433 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
434 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
435 memset(s[i].name, 0, sizeof(s[i].name));
436 strcpy(s[i].name, name);
437 memcpy(&s[i].map, map, sizeof(s[i].map));
438 break;
439 }
440 }
441
442 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
443 }
444
445 /**
446 * netdev_boot_setup_check - check boot time settings
447 * @dev: the netdevice
448 *
449 * Check boot time settings for the device.
450 * The found settings are set for the device to be used
451 * later in the device probing.
452 * Returns 0 if no settings found, 1 if they are.
453 */
454 int netdev_boot_setup_check(struct net_device *dev)
455 {
456 struct netdev_boot_setup *s = dev_boot_setup;
457 int i;
458
459 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
460 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
461 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
462 dev->irq = s[i].map.irq;
463 dev->base_addr = s[i].map.base_addr;
464 dev->mem_start = s[i].map.mem_start;
465 dev->mem_end = s[i].map.mem_end;
466 return 1;
467 }
468 }
469 return 0;
470 }
471
472
473 /**
474 * netdev_boot_base - get address from boot time settings
475 * @prefix: prefix for network device
476 * @unit: id for network device
477 *
478 * Check boot time settings for the base address of device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found.
482 */
483 unsigned long netdev_boot_base(const char *prefix, int unit)
484 {
485 const struct netdev_boot_setup *s = dev_boot_setup;
486 char name[IFNAMSIZ];
487 int i;
488
489 sprintf(name, "%s%d", prefix, unit);
490
491 /*
492 * If device already registered then return base of 1
493 * to indicate not to probe for this interface
494 */
495 if (__dev_get_by_name(name))
496 return 1;
497
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
499 if (!strcmp(name, s[i].name))
500 return s[i].map.base_addr;
501 return 0;
502 }
503
504 /*
505 * Saves at boot time configured settings for any netdevice.
506 */
507 int __init netdev_boot_setup(char *str)
508 {
509 int ints[5];
510 struct ifmap map;
511
512 str = get_options(str, ARRAY_SIZE(ints), ints);
513 if (!str || !*str)
514 return 0;
515
516 /* Save settings */
517 memset(&map, 0, sizeof(map));
518 if (ints[0] > 0)
519 map.irq = ints[1];
520 if (ints[0] > 1)
521 map.base_addr = ints[2];
522 if (ints[0] > 2)
523 map.mem_start = ints[3];
524 if (ints[0] > 3)
525 map.mem_end = ints[4];
526
527 /* Add new entry to the list */
528 return netdev_boot_setup_add(str, &map);
529 }
530
531 __setup("netdev=", netdev_boot_setup);
532
533 /*******************************************************************************
534
535 Device Interface Subroutines
536
537 *******************************************************************************/
538
539 /**
540 * __dev_get_by_name - find a device by its name
541 * @name: name to find
542 *
543 * Find an interface by name. Must be called under RTNL semaphore
544 * or @dev_base_lock. If the name is found a pointer to the device
545 * is returned. If the name is not found then %NULL is returned. The
546 * reference counters are not incremented so the caller must be
547 * careful with locks.
548 */
549
550 struct net_device *__dev_get_by_name(const char *name)
551 {
552 struct hlist_node *p;
553
554 hlist_for_each(p, dev_name_hash(name)) {
555 struct net_device *dev
556 = hlist_entry(p, struct net_device, name_hlist);
557 if (!strncmp(dev->name, name, IFNAMSIZ))
558 return dev;
559 }
560 return NULL;
561 }
562
563 /**
564 * dev_get_by_name - find a device by its name
565 * @name: name to find
566 *
567 * Find an interface by name. This can be called from any
568 * context and does its own locking. The returned handle has
569 * the usage count incremented and the caller must use dev_put() to
570 * release it when it is no longer needed. %NULL is returned if no
571 * matching device is found.
572 */
573
574 struct net_device *dev_get_by_name(const char *name)
575 {
576 struct net_device *dev;
577
578 read_lock(&dev_base_lock);
579 dev = __dev_get_by_name(name);
580 if (dev)
581 dev_hold(dev);
582 read_unlock(&dev_base_lock);
583 return dev;
584 }
585
586 /**
587 * __dev_get_by_index - find a device by its ifindex
588 * @ifindex: index of device
589 *
590 * Search for an interface by index. Returns %NULL if the device
591 * is not found or a pointer to the device. The device has not
592 * had its reference counter increased so the caller must be careful
593 * about locking. The caller must hold either the RTNL semaphore
594 * or @dev_base_lock.
595 */
596
597 struct net_device *__dev_get_by_index(int ifindex)
598 {
599 struct hlist_node *p;
600
601 hlist_for_each(p, dev_index_hash(ifindex)) {
602 struct net_device *dev
603 = hlist_entry(p, struct net_device, index_hlist);
604 if (dev->ifindex == ifindex)
605 return dev;
606 }
607 return NULL;
608 }
609
610
611 /**
612 * dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns NULL if the device
616 * is not found or a pointer to the device. The device returned has
617 * had a reference added and the pointer is safe until the user calls
618 * dev_put to indicate they have finished with it.
619 */
620
621 struct net_device *dev_get_by_index(int ifindex)
622 {
623 struct net_device *dev;
624
625 read_lock(&dev_base_lock);
626 dev = __dev_get_by_index(ifindex);
627 if (dev)
628 dev_hold(dev);
629 read_unlock(&dev_base_lock);
630 return dev;
631 }
632
633 /**
634 * dev_getbyhwaddr - find a device by its hardware address
635 * @type: media type of device
636 * @ha: hardware address
637 *
638 * Search for an interface by MAC address. Returns NULL if the device
639 * is not found or a pointer to the device. The caller must hold the
640 * rtnl semaphore. The returned device has not had its ref count increased
641 * and the caller must therefore be careful about locking
642 *
643 * BUGS:
644 * If the API was consistent this would be __dev_get_by_hwaddr
645 */
646
647 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
648 {
649 struct net_device *dev;
650
651 ASSERT_RTNL();
652
653 for_each_netdev(dev)
654 if (dev->type == type &&
655 !memcmp(dev->dev_addr, ha, dev->addr_len))
656 return dev;
657
658 return NULL;
659 }
660
661 EXPORT_SYMBOL(dev_getbyhwaddr);
662
663 struct net_device *__dev_getfirstbyhwtype(unsigned short type)
664 {
665 struct net_device *dev;
666
667 ASSERT_RTNL();
668 for_each_netdev(dev)
669 if (dev->type == type)
670 return dev;
671
672 return NULL;
673 }
674
675 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
676
677 struct net_device *dev_getfirstbyhwtype(unsigned short type)
678 {
679 struct net_device *dev;
680
681 rtnl_lock();
682 dev = __dev_getfirstbyhwtype(type);
683 if (dev)
684 dev_hold(dev);
685 rtnl_unlock();
686 return dev;
687 }
688
689 EXPORT_SYMBOL(dev_getfirstbyhwtype);
690
691 /**
692 * dev_get_by_flags - find any device with given flags
693 * @if_flags: IFF_* values
694 * @mask: bitmask of bits in if_flags to check
695 *
696 * Search for any interface with the given flags. Returns NULL if a device
697 * is not found or a pointer to the device. The device returned has
698 * had a reference added and the pointer is safe until the user calls
699 * dev_put to indicate they have finished with it.
700 */
701
702 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
703 {
704 struct net_device *dev, *ret;
705
706 ret = NULL;
707 read_lock(&dev_base_lock);
708 for_each_netdev(dev) {
709 if (((dev->flags ^ if_flags) & mask) == 0) {
710 dev_hold(dev);
711 ret = dev;
712 break;
713 }
714 }
715 read_unlock(&dev_base_lock);
716 return ret;
717 }
718
719 /**
720 * dev_valid_name - check if name is okay for network device
721 * @name: name string
722 *
723 * Network device names need to be valid file names to
724 * to allow sysfs to work. We also disallow any kind of
725 * whitespace.
726 */
727 int dev_valid_name(const char *name)
728 {
729 if (*name == '\0')
730 return 0;
731 if (strlen(name) >= IFNAMSIZ)
732 return 0;
733 if (!strcmp(name, ".") || !strcmp(name, ".."))
734 return 0;
735
736 while (*name) {
737 if (*name == '/' || isspace(*name))
738 return 0;
739 name++;
740 }
741 return 1;
742 }
743
744 /**
745 * dev_alloc_name - allocate a name for a device
746 * @dev: device
747 * @name: name format string
748 *
749 * Passed a format string - eg "lt%d" it will try and find a suitable
750 * id. It scans list of devices to build up a free map, then chooses
751 * the first empty slot. The caller must hold the dev_base or rtnl lock
752 * while allocating the name and adding the device in order to avoid
753 * duplicates.
754 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
755 * Returns the number of the unit assigned or a negative errno code.
756 */
757
758 int dev_alloc_name(struct net_device *dev, const char *name)
759 {
760 int i = 0;
761 char buf[IFNAMSIZ];
762 const char *p;
763 const int max_netdevices = 8*PAGE_SIZE;
764 long *inuse;
765 struct net_device *d;
766
767 p = strnchr(name, IFNAMSIZ-1, '%');
768 if (p) {
769 /*
770 * Verify the string as this thing may have come from
771 * the user. There must be either one "%d" and no other "%"
772 * characters.
773 */
774 if (p[1] != 'd' || strchr(p + 2, '%'))
775 return -EINVAL;
776
777 /* Use one page as a bit array of possible slots */
778 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
779 if (!inuse)
780 return -ENOMEM;
781
782 for_each_netdev(d) {
783 if (!sscanf(d->name, name, &i))
784 continue;
785 if (i < 0 || i >= max_netdevices)
786 continue;
787
788 /* avoid cases where sscanf is not exact inverse of printf */
789 snprintf(buf, sizeof(buf), name, i);
790 if (!strncmp(buf, d->name, IFNAMSIZ))
791 set_bit(i, inuse);
792 }
793
794 i = find_first_zero_bit(inuse, max_netdevices);
795 free_page((unsigned long) inuse);
796 }
797
798 snprintf(buf, sizeof(buf), name, i);
799 if (!__dev_get_by_name(buf)) {
800 strlcpy(dev->name, buf, IFNAMSIZ);
801 return i;
802 }
803
804 /* It is possible to run out of possible slots
805 * when the name is long and there isn't enough space left
806 * for the digits, or if all bits are used.
807 */
808 return -ENFILE;
809 }
810
811
812 /**
813 * dev_change_name - change name of a device
814 * @dev: device
815 * @newname: name (or format string) must be at least IFNAMSIZ
816 *
817 * Change name of a device, can pass format strings "eth%d".
818 * for wildcarding.
819 */
820 int dev_change_name(struct net_device *dev, char *newname)
821 {
822 char oldname[IFNAMSIZ];
823 int err = 0;
824 int ret;
825
826 ASSERT_RTNL();
827
828 if (dev->flags & IFF_UP)
829 return -EBUSY;
830
831 if (!dev_valid_name(newname))
832 return -EINVAL;
833
834 memcpy(oldname, dev->name, IFNAMSIZ);
835
836 if (strchr(newname, '%')) {
837 err = dev_alloc_name(dev, newname);
838 if (err < 0)
839 return err;
840 strcpy(newname, dev->name);
841 }
842 else if (__dev_get_by_name(newname))
843 return -EEXIST;
844 else
845 strlcpy(dev->name, newname, IFNAMSIZ);
846
847 rollback:
848 device_rename(&dev->dev, dev->name);
849
850 write_lock_bh(&dev_base_lock);
851 hlist_del(&dev->name_hlist);
852 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
853 write_unlock_bh(&dev_base_lock);
854
855 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
856 ret = notifier_to_errno(ret);
857
858 if (ret) {
859 if (err) {
860 printk(KERN_ERR
861 "%s: name change rollback failed: %d.\n",
862 dev->name, ret);
863 } else {
864 err = ret;
865 memcpy(dev->name, oldname, IFNAMSIZ);
866 goto rollback;
867 }
868 }
869
870 return err;
871 }
872
873 /**
874 * netdev_features_change - device changes features
875 * @dev: device to cause notification
876 *
877 * Called to indicate a device has changed features.
878 */
879 void netdev_features_change(struct net_device *dev)
880 {
881 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
882 }
883 EXPORT_SYMBOL(netdev_features_change);
884
885 /**
886 * netdev_state_change - device changes state
887 * @dev: device to cause notification
888 *
889 * Called to indicate a device has changed state. This function calls
890 * the notifier chains for netdev_chain and sends a NEWLINK message
891 * to the routing socket.
892 */
893 void netdev_state_change(struct net_device *dev)
894 {
895 if (dev->flags & IFF_UP) {
896 raw_notifier_call_chain(&netdev_chain,
897 NETDEV_CHANGE, dev);
898 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
899 }
900 }
901
902 /**
903 * dev_load - load a network module
904 * @name: name of interface
905 *
906 * If a network interface is not present and the process has suitable
907 * privileges this function loads the module. If module loading is not
908 * available in this kernel then it becomes a nop.
909 */
910
911 void dev_load(const char *name)
912 {
913 struct net_device *dev;
914
915 read_lock(&dev_base_lock);
916 dev = __dev_get_by_name(name);
917 read_unlock(&dev_base_lock);
918
919 if (!dev && capable(CAP_SYS_MODULE))
920 request_module("%s", name);
921 }
922
923 static int default_rebuild_header(struct sk_buff *skb)
924 {
925 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
926 skb->dev ? skb->dev->name : "NULL!!!");
927 kfree_skb(skb);
928 return 1;
929 }
930
931 /**
932 * dev_open - prepare an interface for use.
933 * @dev: device to open
934 *
935 * Takes a device from down to up state. The device's private open
936 * function is invoked and then the multicast lists are loaded. Finally
937 * the device is moved into the up state and a %NETDEV_UP message is
938 * sent to the netdev notifier chain.
939 *
940 * Calling this function on an active interface is a nop. On a failure
941 * a negative errno code is returned.
942 */
943 int dev_open(struct net_device *dev)
944 {
945 int ret = 0;
946
947 /*
948 * Is it already up?
949 */
950
951 if (dev->flags & IFF_UP)
952 return 0;
953
954 /*
955 * Is it even present?
956 */
957 if (!netif_device_present(dev))
958 return -ENODEV;
959
960 /*
961 * Call device private open method
962 */
963 set_bit(__LINK_STATE_START, &dev->state);
964 if (dev->open) {
965 ret = dev->open(dev);
966 if (ret)
967 clear_bit(__LINK_STATE_START, &dev->state);
968 }
969
970 /*
971 * If it went open OK then:
972 */
973
974 if (!ret) {
975 /*
976 * Set the flags.
977 */
978 dev->flags |= IFF_UP;
979
980 /*
981 * Initialize multicasting status
982 */
983 dev_set_rx_mode(dev);
984
985 /*
986 * Wakeup transmit queue engine
987 */
988 dev_activate(dev);
989
990 /*
991 * ... and announce new interface.
992 */
993 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
994 }
995 return ret;
996 }
997
998 /**
999 * dev_close - shutdown an interface.
1000 * @dev: device to shutdown
1001 *
1002 * This function moves an active device into down state. A
1003 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1004 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1005 * chain.
1006 */
1007 int dev_close(struct net_device *dev)
1008 {
1009 if (!(dev->flags & IFF_UP))
1010 return 0;
1011
1012 /*
1013 * Tell people we are going down, so that they can
1014 * prepare to death, when device is still operating.
1015 */
1016 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
1017
1018 dev_deactivate(dev);
1019
1020 clear_bit(__LINK_STATE_START, &dev->state);
1021
1022 /* Synchronize to scheduled poll. We cannot touch poll list,
1023 * it can be even on different cpu. So just clear netif_running().
1024 *
1025 * dev->stop() will invoke napi_disable() on all of it's
1026 * napi_struct instances on this device.
1027 */
1028 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1029
1030 /*
1031 * Call the device specific close. This cannot fail.
1032 * Only if device is UP
1033 *
1034 * We allow it to be called even after a DETACH hot-plug
1035 * event.
1036 */
1037 if (dev->stop)
1038 dev->stop(dev);
1039
1040 /*
1041 * Device is now down.
1042 */
1043
1044 dev->flags &= ~IFF_UP;
1045
1046 /*
1047 * Tell people we are down
1048 */
1049 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1050
1051 return 0;
1052 }
1053
1054
1055 /*
1056 * Device change register/unregister. These are not inline or static
1057 * as we export them to the world.
1058 */
1059
1060 /**
1061 * register_netdevice_notifier - register a network notifier block
1062 * @nb: notifier
1063 *
1064 * Register a notifier to be called when network device events occur.
1065 * The notifier passed is linked into the kernel structures and must
1066 * not be reused until it has been unregistered. A negative errno code
1067 * is returned on a failure.
1068 *
1069 * When registered all registration and up events are replayed
1070 * to the new notifier to allow device to have a race free
1071 * view of the network device list.
1072 */
1073
1074 int register_netdevice_notifier(struct notifier_block *nb)
1075 {
1076 struct net_device *dev;
1077 struct net_device *last;
1078 int err;
1079
1080 rtnl_lock();
1081 err = raw_notifier_chain_register(&netdev_chain, nb);
1082 if (err)
1083 goto unlock;
1084
1085 for_each_netdev(dev) {
1086 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1087 err = notifier_to_errno(err);
1088 if (err)
1089 goto rollback;
1090
1091 if (!(dev->flags & IFF_UP))
1092 continue;
1093
1094 nb->notifier_call(nb, NETDEV_UP, dev);
1095 }
1096
1097 unlock:
1098 rtnl_unlock();
1099 return err;
1100
1101 rollback:
1102 last = dev;
1103 for_each_netdev(dev) {
1104 if (dev == last)
1105 break;
1106
1107 if (dev->flags & IFF_UP) {
1108 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1109 nb->notifier_call(nb, NETDEV_DOWN, dev);
1110 }
1111 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1112 }
1113 goto unlock;
1114 }
1115
1116 /**
1117 * unregister_netdevice_notifier - unregister a network notifier block
1118 * @nb: notifier
1119 *
1120 * Unregister a notifier previously registered by
1121 * register_netdevice_notifier(). The notifier is unlinked into the
1122 * kernel structures and may then be reused. A negative errno code
1123 * is returned on a failure.
1124 */
1125
1126 int unregister_netdevice_notifier(struct notifier_block *nb)
1127 {
1128 int err;
1129
1130 rtnl_lock();
1131 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1132 rtnl_unlock();
1133 return err;
1134 }
1135
1136 /**
1137 * call_netdevice_notifiers - call all network notifier blocks
1138 * @val: value passed unmodified to notifier function
1139 * @v: pointer passed unmodified to notifier function
1140 *
1141 * Call all network notifier blocks. Parameters and return value
1142 * are as for raw_notifier_call_chain().
1143 */
1144
1145 int call_netdevice_notifiers(unsigned long val, void *v)
1146 {
1147 return raw_notifier_call_chain(&netdev_chain, val, v);
1148 }
1149
1150 /* When > 0 there are consumers of rx skb time stamps */
1151 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1152
1153 void net_enable_timestamp(void)
1154 {
1155 atomic_inc(&netstamp_needed);
1156 }
1157
1158 void net_disable_timestamp(void)
1159 {
1160 atomic_dec(&netstamp_needed);
1161 }
1162
1163 static inline void net_timestamp(struct sk_buff *skb)
1164 {
1165 if (atomic_read(&netstamp_needed))
1166 __net_timestamp(skb);
1167 else
1168 skb->tstamp.tv64 = 0;
1169 }
1170
1171 /*
1172 * Support routine. Sends outgoing frames to any network
1173 * taps currently in use.
1174 */
1175
1176 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1177 {
1178 struct packet_type *ptype;
1179
1180 net_timestamp(skb);
1181
1182 rcu_read_lock();
1183 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1184 /* Never send packets back to the socket
1185 * they originated from - MvS (miquels@drinkel.ow.org)
1186 */
1187 if ((ptype->dev == dev || !ptype->dev) &&
1188 (ptype->af_packet_priv == NULL ||
1189 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1190 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1191 if (!skb2)
1192 break;
1193
1194 /* skb->nh should be correctly
1195 set by sender, so that the second statement is
1196 just protection against buggy protocols.
1197 */
1198 skb_reset_mac_header(skb2);
1199
1200 if (skb_network_header(skb2) < skb2->data ||
1201 skb2->network_header > skb2->tail) {
1202 if (net_ratelimit())
1203 printk(KERN_CRIT "protocol %04x is "
1204 "buggy, dev %s\n",
1205 skb2->protocol, dev->name);
1206 skb_reset_network_header(skb2);
1207 }
1208
1209 skb2->transport_header = skb2->network_header;
1210 skb2->pkt_type = PACKET_OUTGOING;
1211 ptype->func(skb2, skb->dev, ptype, skb->dev);
1212 }
1213 }
1214 rcu_read_unlock();
1215 }
1216
1217
1218 void __netif_schedule(struct net_device *dev)
1219 {
1220 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1221 unsigned long flags;
1222 struct softnet_data *sd;
1223
1224 local_irq_save(flags);
1225 sd = &__get_cpu_var(softnet_data);
1226 dev->next_sched = sd->output_queue;
1227 sd->output_queue = dev;
1228 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1229 local_irq_restore(flags);
1230 }
1231 }
1232 EXPORT_SYMBOL(__netif_schedule);
1233
1234 void dev_kfree_skb_irq(struct sk_buff *skb)
1235 {
1236 if (atomic_dec_and_test(&skb->users)) {
1237 struct softnet_data *sd;
1238 unsigned long flags;
1239
1240 local_irq_save(flags);
1241 sd = &__get_cpu_var(softnet_data);
1242 skb->next = sd->completion_queue;
1243 sd->completion_queue = skb;
1244 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1245 local_irq_restore(flags);
1246 }
1247 }
1248 EXPORT_SYMBOL(dev_kfree_skb_irq);
1249
1250 void dev_kfree_skb_any(struct sk_buff *skb)
1251 {
1252 if (in_irq() || irqs_disabled())
1253 dev_kfree_skb_irq(skb);
1254 else
1255 dev_kfree_skb(skb);
1256 }
1257 EXPORT_SYMBOL(dev_kfree_skb_any);
1258
1259
1260 /**
1261 * netif_device_detach - mark device as removed
1262 * @dev: network device
1263 *
1264 * Mark device as removed from system and therefore no longer available.
1265 */
1266 void netif_device_detach(struct net_device *dev)
1267 {
1268 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1269 netif_running(dev)) {
1270 netif_stop_queue(dev);
1271 }
1272 }
1273 EXPORT_SYMBOL(netif_device_detach);
1274
1275 /**
1276 * netif_device_attach - mark device as attached
1277 * @dev: network device
1278 *
1279 * Mark device as attached from system and restart if needed.
1280 */
1281 void netif_device_attach(struct net_device *dev)
1282 {
1283 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1284 netif_running(dev)) {
1285 netif_wake_queue(dev);
1286 __netdev_watchdog_up(dev);
1287 }
1288 }
1289 EXPORT_SYMBOL(netif_device_attach);
1290
1291
1292 /*
1293 * Invalidate hardware checksum when packet is to be mangled, and
1294 * complete checksum manually on outgoing path.
1295 */
1296 int skb_checksum_help(struct sk_buff *skb)
1297 {
1298 __wsum csum;
1299 int ret = 0, offset;
1300
1301 if (skb->ip_summed == CHECKSUM_COMPLETE)
1302 goto out_set_summed;
1303
1304 if (unlikely(skb_shinfo(skb)->gso_size)) {
1305 /* Let GSO fix up the checksum. */
1306 goto out_set_summed;
1307 }
1308
1309 if (skb_cloned(skb)) {
1310 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1311 if (ret)
1312 goto out;
1313 }
1314
1315 offset = skb->csum_start - skb_headroom(skb);
1316 BUG_ON(offset > (int)skb->len);
1317 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1318
1319 offset = skb_headlen(skb) - offset;
1320 BUG_ON(offset <= 0);
1321 BUG_ON(skb->csum_offset + 2 > offset);
1322
1323 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1324 csum_fold(csum);
1325 out_set_summed:
1326 skb->ip_summed = CHECKSUM_NONE;
1327 out:
1328 return ret;
1329 }
1330
1331 /**
1332 * skb_gso_segment - Perform segmentation on skb.
1333 * @skb: buffer to segment
1334 * @features: features for the output path (see dev->features)
1335 *
1336 * This function segments the given skb and returns a list of segments.
1337 *
1338 * It may return NULL if the skb requires no segmentation. This is
1339 * only possible when GSO is used for verifying header integrity.
1340 */
1341 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1342 {
1343 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1344 struct packet_type *ptype;
1345 __be16 type = skb->protocol;
1346 int err;
1347
1348 BUG_ON(skb_shinfo(skb)->frag_list);
1349
1350 skb_reset_mac_header(skb);
1351 skb->mac_len = skb->network_header - skb->mac_header;
1352 __skb_pull(skb, skb->mac_len);
1353
1354 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1355 if (skb_header_cloned(skb) &&
1356 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1357 return ERR_PTR(err);
1358 }
1359
1360 rcu_read_lock();
1361 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1362 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1363 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1364 err = ptype->gso_send_check(skb);
1365 segs = ERR_PTR(err);
1366 if (err || skb_gso_ok(skb, features))
1367 break;
1368 __skb_push(skb, (skb->data -
1369 skb_network_header(skb)));
1370 }
1371 segs = ptype->gso_segment(skb, features);
1372 break;
1373 }
1374 }
1375 rcu_read_unlock();
1376
1377 __skb_push(skb, skb->data - skb_mac_header(skb));
1378
1379 return segs;
1380 }
1381
1382 EXPORT_SYMBOL(skb_gso_segment);
1383
1384 /* Take action when hardware reception checksum errors are detected. */
1385 #ifdef CONFIG_BUG
1386 void netdev_rx_csum_fault(struct net_device *dev)
1387 {
1388 if (net_ratelimit()) {
1389 printk(KERN_ERR "%s: hw csum failure.\n",
1390 dev ? dev->name : "<unknown>");
1391 dump_stack();
1392 }
1393 }
1394 EXPORT_SYMBOL(netdev_rx_csum_fault);
1395 #endif
1396
1397 /* Actually, we should eliminate this check as soon as we know, that:
1398 * 1. IOMMU is present and allows to map all the memory.
1399 * 2. No high memory really exists on this machine.
1400 */
1401
1402 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1403 {
1404 #ifdef CONFIG_HIGHMEM
1405 int i;
1406
1407 if (dev->features & NETIF_F_HIGHDMA)
1408 return 0;
1409
1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1411 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1412 return 1;
1413
1414 #endif
1415 return 0;
1416 }
1417
1418 struct dev_gso_cb {
1419 void (*destructor)(struct sk_buff *skb);
1420 };
1421
1422 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1423
1424 static void dev_gso_skb_destructor(struct sk_buff *skb)
1425 {
1426 struct dev_gso_cb *cb;
1427
1428 do {
1429 struct sk_buff *nskb = skb->next;
1430
1431 skb->next = nskb->next;
1432 nskb->next = NULL;
1433 kfree_skb(nskb);
1434 } while (skb->next);
1435
1436 cb = DEV_GSO_CB(skb);
1437 if (cb->destructor)
1438 cb->destructor(skb);
1439 }
1440
1441 /**
1442 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1443 * @skb: buffer to segment
1444 *
1445 * This function segments the given skb and stores the list of segments
1446 * in skb->next.
1447 */
1448 static int dev_gso_segment(struct sk_buff *skb)
1449 {
1450 struct net_device *dev = skb->dev;
1451 struct sk_buff *segs;
1452 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1453 NETIF_F_SG : 0);
1454
1455 segs = skb_gso_segment(skb, features);
1456
1457 /* Verifying header integrity only. */
1458 if (!segs)
1459 return 0;
1460
1461 if (unlikely(IS_ERR(segs)))
1462 return PTR_ERR(segs);
1463
1464 skb->next = segs;
1465 DEV_GSO_CB(skb)->destructor = skb->destructor;
1466 skb->destructor = dev_gso_skb_destructor;
1467
1468 return 0;
1469 }
1470
1471 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1472 {
1473 if (likely(!skb->next)) {
1474 if (!list_empty(&ptype_all))
1475 dev_queue_xmit_nit(skb, dev);
1476
1477 if (netif_needs_gso(dev, skb)) {
1478 if (unlikely(dev_gso_segment(skb)))
1479 goto out_kfree_skb;
1480 if (skb->next)
1481 goto gso;
1482 }
1483
1484 return dev->hard_start_xmit(skb, dev);
1485 }
1486
1487 gso:
1488 do {
1489 struct sk_buff *nskb = skb->next;
1490 int rc;
1491
1492 skb->next = nskb->next;
1493 nskb->next = NULL;
1494 rc = dev->hard_start_xmit(nskb, dev);
1495 if (unlikely(rc)) {
1496 nskb->next = skb->next;
1497 skb->next = nskb;
1498 return rc;
1499 }
1500 if (unlikely((netif_queue_stopped(dev) ||
1501 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1502 skb->next))
1503 return NETDEV_TX_BUSY;
1504 } while (skb->next);
1505
1506 skb->destructor = DEV_GSO_CB(skb)->destructor;
1507
1508 out_kfree_skb:
1509 kfree_skb(skb);
1510 return 0;
1511 }
1512
1513 #define HARD_TX_LOCK(dev, cpu) { \
1514 if ((dev->features & NETIF_F_LLTX) == 0) { \
1515 netif_tx_lock(dev); \
1516 } \
1517 }
1518
1519 #define HARD_TX_UNLOCK(dev) { \
1520 if ((dev->features & NETIF_F_LLTX) == 0) { \
1521 netif_tx_unlock(dev); \
1522 } \
1523 }
1524
1525 /**
1526 * dev_queue_xmit - transmit a buffer
1527 * @skb: buffer to transmit
1528 *
1529 * Queue a buffer for transmission to a network device. The caller must
1530 * have set the device and priority and built the buffer before calling
1531 * this function. The function can be called from an interrupt.
1532 *
1533 * A negative errno code is returned on a failure. A success does not
1534 * guarantee the frame will be transmitted as it may be dropped due
1535 * to congestion or traffic shaping.
1536 *
1537 * -----------------------------------------------------------------------------------
1538 * I notice this method can also return errors from the queue disciplines,
1539 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1540 * be positive.
1541 *
1542 * Regardless of the return value, the skb is consumed, so it is currently
1543 * difficult to retry a send to this method. (You can bump the ref count
1544 * before sending to hold a reference for retry if you are careful.)
1545 *
1546 * When calling this method, interrupts MUST be enabled. This is because
1547 * the BH enable code must have IRQs enabled so that it will not deadlock.
1548 * --BLG
1549 */
1550
1551 int dev_queue_xmit(struct sk_buff *skb)
1552 {
1553 struct net_device *dev = skb->dev;
1554 struct Qdisc *q;
1555 int rc = -ENOMEM;
1556
1557 /* GSO will handle the following emulations directly. */
1558 if (netif_needs_gso(dev, skb))
1559 goto gso;
1560
1561 if (skb_shinfo(skb)->frag_list &&
1562 !(dev->features & NETIF_F_FRAGLIST) &&
1563 __skb_linearize(skb))
1564 goto out_kfree_skb;
1565
1566 /* Fragmented skb is linearized if device does not support SG,
1567 * or if at least one of fragments is in highmem and device
1568 * does not support DMA from it.
1569 */
1570 if (skb_shinfo(skb)->nr_frags &&
1571 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1572 __skb_linearize(skb))
1573 goto out_kfree_skb;
1574
1575 /* If packet is not checksummed and device does not support
1576 * checksumming for this protocol, complete checksumming here.
1577 */
1578 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1579 skb_set_transport_header(skb, skb->csum_start -
1580 skb_headroom(skb));
1581
1582 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1583 !((dev->features & NETIF_F_IP_CSUM) &&
1584 skb->protocol == htons(ETH_P_IP)) &&
1585 !((dev->features & NETIF_F_IPV6_CSUM) &&
1586 skb->protocol == htons(ETH_P_IPV6)))
1587 if (skb_checksum_help(skb))
1588 goto out_kfree_skb;
1589 }
1590
1591 gso:
1592 spin_lock_prefetch(&dev->queue_lock);
1593
1594 /* Disable soft irqs for various locks below. Also
1595 * stops preemption for RCU.
1596 */
1597 rcu_read_lock_bh();
1598
1599 /* Updates of qdisc are serialized by queue_lock.
1600 * The struct Qdisc which is pointed to by qdisc is now a
1601 * rcu structure - it may be accessed without acquiring
1602 * a lock (but the structure may be stale.) The freeing of the
1603 * qdisc will be deferred until it's known that there are no
1604 * more references to it.
1605 *
1606 * If the qdisc has an enqueue function, we still need to
1607 * hold the queue_lock before calling it, since queue_lock
1608 * also serializes access to the device queue.
1609 */
1610
1611 q = rcu_dereference(dev->qdisc);
1612 #ifdef CONFIG_NET_CLS_ACT
1613 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1614 #endif
1615 if (q->enqueue) {
1616 /* Grab device queue */
1617 spin_lock(&dev->queue_lock);
1618 q = dev->qdisc;
1619 if (q->enqueue) {
1620 /* reset queue_mapping to zero */
1621 skb->queue_mapping = 0;
1622 rc = q->enqueue(skb, q);
1623 qdisc_run(dev);
1624 spin_unlock(&dev->queue_lock);
1625
1626 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1627 goto out;
1628 }
1629 spin_unlock(&dev->queue_lock);
1630 }
1631
1632 /* The device has no queue. Common case for software devices:
1633 loopback, all the sorts of tunnels...
1634
1635 Really, it is unlikely that netif_tx_lock protection is necessary
1636 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1637 counters.)
1638 However, it is possible, that they rely on protection
1639 made by us here.
1640
1641 Check this and shot the lock. It is not prone from deadlocks.
1642 Either shot noqueue qdisc, it is even simpler 8)
1643 */
1644 if (dev->flags & IFF_UP) {
1645 int cpu = smp_processor_id(); /* ok because BHs are off */
1646
1647 if (dev->xmit_lock_owner != cpu) {
1648
1649 HARD_TX_LOCK(dev, cpu);
1650
1651 if (!netif_queue_stopped(dev) &&
1652 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1653 rc = 0;
1654 if (!dev_hard_start_xmit(skb, dev)) {
1655 HARD_TX_UNLOCK(dev);
1656 goto out;
1657 }
1658 }
1659 HARD_TX_UNLOCK(dev);
1660 if (net_ratelimit())
1661 printk(KERN_CRIT "Virtual device %s asks to "
1662 "queue packet!\n", dev->name);
1663 } else {
1664 /* Recursion is detected! It is possible,
1665 * unfortunately */
1666 if (net_ratelimit())
1667 printk(KERN_CRIT "Dead loop on virtual device "
1668 "%s, fix it urgently!\n", dev->name);
1669 }
1670 }
1671
1672 rc = -ENETDOWN;
1673 rcu_read_unlock_bh();
1674
1675 out_kfree_skb:
1676 kfree_skb(skb);
1677 return rc;
1678 out:
1679 rcu_read_unlock_bh();
1680 return rc;
1681 }
1682
1683
1684 /*=======================================================================
1685 Receiver routines
1686 =======================================================================*/
1687
1688 int netdev_max_backlog __read_mostly = 1000;
1689 int netdev_budget __read_mostly = 300;
1690 int weight_p __read_mostly = 64; /* old backlog weight */
1691
1692 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1693
1694
1695 /**
1696 * netif_rx - post buffer to the network code
1697 * @skb: buffer to post
1698 *
1699 * This function receives a packet from a device driver and queues it for
1700 * the upper (protocol) levels to process. It always succeeds. The buffer
1701 * may be dropped during processing for congestion control or by the
1702 * protocol layers.
1703 *
1704 * return values:
1705 * NET_RX_SUCCESS (no congestion)
1706 * NET_RX_CN_LOW (low congestion)
1707 * NET_RX_CN_MOD (moderate congestion)
1708 * NET_RX_CN_HIGH (high congestion)
1709 * NET_RX_DROP (packet was dropped)
1710 *
1711 */
1712
1713 int netif_rx(struct sk_buff *skb)
1714 {
1715 struct softnet_data *queue;
1716 unsigned long flags;
1717
1718 /* if netpoll wants it, pretend we never saw it */
1719 if (netpoll_rx(skb))
1720 return NET_RX_DROP;
1721
1722 if (!skb->tstamp.tv64)
1723 net_timestamp(skb);
1724
1725 /*
1726 * The code is rearranged so that the path is the most
1727 * short when CPU is congested, but is still operating.
1728 */
1729 local_irq_save(flags);
1730 queue = &__get_cpu_var(softnet_data);
1731
1732 __get_cpu_var(netdev_rx_stat).total++;
1733 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1734 if (queue->input_pkt_queue.qlen) {
1735 enqueue:
1736 dev_hold(skb->dev);
1737 __skb_queue_tail(&queue->input_pkt_queue, skb);
1738 local_irq_restore(flags);
1739 return NET_RX_SUCCESS;
1740 }
1741
1742 napi_schedule(&queue->backlog);
1743 goto enqueue;
1744 }
1745
1746 __get_cpu_var(netdev_rx_stat).dropped++;
1747 local_irq_restore(flags);
1748
1749 kfree_skb(skb);
1750 return NET_RX_DROP;
1751 }
1752
1753 int netif_rx_ni(struct sk_buff *skb)
1754 {
1755 int err;
1756
1757 preempt_disable();
1758 err = netif_rx(skb);
1759 if (local_softirq_pending())
1760 do_softirq();
1761 preempt_enable();
1762
1763 return err;
1764 }
1765
1766 EXPORT_SYMBOL(netif_rx_ni);
1767
1768 static inline struct net_device *skb_bond(struct sk_buff *skb)
1769 {
1770 struct net_device *dev = skb->dev;
1771
1772 if (dev->master) {
1773 if (skb_bond_should_drop(skb)) {
1774 kfree_skb(skb);
1775 return NULL;
1776 }
1777 skb->dev = dev->master;
1778 }
1779
1780 return dev;
1781 }
1782
1783
1784 static void net_tx_action(struct softirq_action *h)
1785 {
1786 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1787
1788 if (sd->completion_queue) {
1789 struct sk_buff *clist;
1790
1791 local_irq_disable();
1792 clist = sd->completion_queue;
1793 sd->completion_queue = NULL;
1794 local_irq_enable();
1795
1796 while (clist) {
1797 struct sk_buff *skb = clist;
1798 clist = clist->next;
1799
1800 BUG_TRAP(!atomic_read(&skb->users));
1801 __kfree_skb(skb);
1802 }
1803 }
1804
1805 if (sd->output_queue) {
1806 struct net_device *head;
1807
1808 local_irq_disable();
1809 head = sd->output_queue;
1810 sd->output_queue = NULL;
1811 local_irq_enable();
1812
1813 while (head) {
1814 struct net_device *dev = head;
1815 head = head->next_sched;
1816
1817 smp_mb__before_clear_bit();
1818 clear_bit(__LINK_STATE_SCHED, &dev->state);
1819
1820 if (spin_trylock(&dev->queue_lock)) {
1821 qdisc_run(dev);
1822 spin_unlock(&dev->queue_lock);
1823 } else {
1824 netif_schedule(dev);
1825 }
1826 }
1827 }
1828 }
1829
1830 static inline int deliver_skb(struct sk_buff *skb,
1831 struct packet_type *pt_prev,
1832 struct net_device *orig_dev)
1833 {
1834 atomic_inc(&skb->users);
1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836 }
1837
1838 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1839 /* These hooks defined here for ATM */
1840 struct net_bridge;
1841 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1842 unsigned char *addr);
1843 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1844
1845 /*
1846 * If bridge module is loaded call bridging hook.
1847 * returns NULL if packet was consumed.
1848 */
1849 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1850 struct sk_buff *skb) __read_mostly;
1851 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1852 struct packet_type **pt_prev, int *ret,
1853 struct net_device *orig_dev)
1854 {
1855 struct net_bridge_port *port;
1856
1857 if (skb->pkt_type == PACKET_LOOPBACK ||
1858 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1859 return skb;
1860
1861 if (*pt_prev) {
1862 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1863 *pt_prev = NULL;
1864 }
1865
1866 return br_handle_frame_hook(port, skb);
1867 }
1868 #else
1869 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1870 #endif
1871
1872 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1873 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1874 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1875
1876 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1877 struct packet_type **pt_prev,
1878 int *ret,
1879 struct net_device *orig_dev)
1880 {
1881 if (skb->dev->macvlan_port == NULL)
1882 return skb;
1883
1884 if (*pt_prev) {
1885 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1886 *pt_prev = NULL;
1887 }
1888 return macvlan_handle_frame_hook(skb);
1889 }
1890 #else
1891 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1892 #endif
1893
1894 #ifdef CONFIG_NET_CLS_ACT
1895 /* TODO: Maybe we should just force sch_ingress to be compiled in
1896 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1897 * a compare and 2 stores extra right now if we dont have it on
1898 * but have CONFIG_NET_CLS_ACT
1899 * NOTE: This doesnt stop any functionality; if you dont have
1900 * the ingress scheduler, you just cant add policies on ingress.
1901 *
1902 */
1903 static int ing_filter(struct sk_buff *skb)
1904 {
1905 struct Qdisc *q;
1906 struct net_device *dev = skb->dev;
1907 int result = TC_ACT_OK;
1908
1909 if (dev->qdisc_ingress) {
1910 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1911 if (MAX_RED_LOOP < ttl++) {
1912 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1913 skb->iif, skb->dev->ifindex);
1914 return TC_ACT_SHOT;
1915 }
1916
1917 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1918
1919 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1920
1921 spin_lock(&dev->ingress_lock);
1922 if ((q = dev->qdisc_ingress) != NULL)
1923 result = q->enqueue(skb, q);
1924 spin_unlock(&dev->ingress_lock);
1925
1926 }
1927
1928 return result;
1929 }
1930 #endif
1931
1932 int netif_receive_skb(struct sk_buff *skb)
1933 {
1934 struct packet_type *ptype, *pt_prev;
1935 struct net_device *orig_dev;
1936 int ret = NET_RX_DROP;
1937 __be16 type;
1938
1939 /* if we've gotten here through NAPI, check netpoll */
1940 if (netpoll_receive_skb(skb))
1941 return NET_RX_DROP;
1942
1943 if (!skb->tstamp.tv64)
1944 net_timestamp(skb);
1945
1946 if (!skb->iif)
1947 skb->iif = skb->dev->ifindex;
1948
1949 orig_dev = skb_bond(skb);
1950
1951 if (!orig_dev)
1952 return NET_RX_DROP;
1953
1954 __get_cpu_var(netdev_rx_stat).total++;
1955
1956 skb_reset_network_header(skb);
1957 skb_reset_transport_header(skb);
1958 skb->mac_len = skb->network_header - skb->mac_header;
1959
1960 pt_prev = NULL;
1961
1962 rcu_read_lock();
1963
1964 #ifdef CONFIG_NET_CLS_ACT
1965 if (skb->tc_verd & TC_NCLS) {
1966 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1967 goto ncls;
1968 }
1969 #endif
1970
1971 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1972 if (!ptype->dev || ptype->dev == skb->dev) {
1973 if (pt_prev)
1974 ret = deliver_skb(skb, pt_prev, orig_dev);
1975 pt_prev = ptype;
1976 }
1977 }
1978
1979 #ifdef CONFIG_NET_CLS_ACT
1980 if (pt_prev) {
1981 ret = deliver_skb(skb, pt_prev, orig_dev);
1982 pt_prev = NULL; /* noone else should process this after*/
1983 } else {
1984 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1985 }
1986
1987 ret = ing_filter(skb);
1988
1989 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1990 kfree_skb(skb);
1991 goto out;
1992 }
1993
1994 skb->tc_verd = 0;
1995 ncls:
1996 #endif
1997
1998 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
1999 if (!skb)
2000 goto out;
2001 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2002 if (!skb)
2003 goto out;
2004
2005 type = skb->protocol;
2006 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2007 if (ptype->type == type &&
2008 (!ptype->dev || ptype->dev == skb->dev)) {
2009 if (pt_prev)
2010 ret = deliver_skb(skb, pt_prev, orig_dev);
2011 pt_prev = ptype;
2012 }
2013 }
2014
2015 if (pt_prev) {
2016 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2017 } else {
2018 kfree_skb(skb);
2019 /* Jamal, now you will not able to escape explaining
2020 * me how you were going to use this. :-)
2021 */
2022 ret = NET_RX_DROP;
2023 }
2024
2025 out:
2026 rcu_read_unlock();
2027 return ret;
2028 }
2029
2030 static int process_backlog(struct napi_struct *napi, int quota)
2031 {
2032 int work = 0;
2033 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2034 unsigned long start_time = jiffies;
2035
2036 napi->weight = weight_p;
2037 do {
2038 struct sk_buff *skb;
2039 struct net_device *dev;
2040
2041 local_irq_disable();
2042 skb = __skb_dequeue(&queue->input_pkt_queue);
2043 if (!skb) {
2044 __napi_complete(napi);
2045 local_irq_enable();
2046 break;
2047 }
2048
2049 local_irq_enable();
2050
2051 dev = skb->dev;
2052
2053 netif_receive_skb(skb);
2054
2055 dev_put(dev);
2056 } while (++work < quota && jiffies == start_time);
2057
2058 return work;
2059 }
2060
2061 /**
2062 * __napi_schedule - schedule for receive
2063 * @napi: entry to schedule
2064 *
2065 * The entry's receive function will be scheduled to run
2066 */
2067 void fastcall __napi_schedule(struct napi_struct *n)
2068 {
2069 unsigned long flags;
2070
2071 local_irq_save(flags);
2072 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2073 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2074 local_irq_restore(flags);
2075 }
2076 EXPORT_SYMBOL(__napi_schedule);
2077
2078
2079 static void net_rx_action(struct softirq_action *h)
2080 {
2081 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2082 unsigned long start_time = jiffies;
2083 int budget = netdev_budget;
2084 void *have;
2085
2086 local_irq_disable();
2087
2088 while (!list_empty(list)) {
2089 struct napi_struct *n;
2090 int work, weight;
2091
2092 /* If softirq window is exhuasted then punt.
2093 *
2094 * Note that this is a slight policy change from the
2095 * previous NAPI code, which would allow up to 2
2096 * jiffies to pass before breaking out. The test
2097 * used to be "jiffies - start_time > 1".
2098 */
2099 if (unlikely(budget <= 0 || jiffies != start_time))
2100 goto softnet_break;
2101
2102 local_irq_enable();
2103
2104 /* Even though interrupts have been re-enabled, this
2105 * access is safe because interrupts can only add new
2106 * entries to the tail of this list, and only ->poll()
2107 * calls can remove this head entry from the list.
2108 */
2109 n = list_entry(list->next, struct napi_struct, poll_list);
2110
2111 have = netpoll_poll_lock(n);
2112
2113 weight = n->weight;
2114
2115 work = n->poll(n, weight);
2116
2117 WARN_ON_ONCE(work > weight);
2118
2119 budget -= work;
2120
2121 local_irq_disable();
2122
2123 /* Drivers must not modify the NAPI state if they
2124 * consume the entire weight. In such cases this code
2125 * still "owns" the NAPI instance and therefore can
2126 * move the instance around on the list at-will.
2127 */
2128 if (unlikely(work == weight))
2129 list_move_tail(&n->poll_list, list);
2130
2131 netpoll_poll_unlock(have);
2132 }
2133 out:
2134 local_irq_enable();
2135
2136 #ifdef CONFIG_NET_DMA
2137 /*
2138 * There may not be any more sk_buffs coming right now, so push
2139 * any pending DMA copies to hardware
2140 */
2141 if (!cpus_empty(net_dma.channel_mask)) {
2142 int chan_idx;
2143 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2144 struct dma_chan *chan = net_dma.channels[chan_idx];
2145 if (chan)
2146 dma_async_memcpy_issue_pending(chan);
2147 }
2148 }
2149 #endif
2150
2151 return;
2152
2153 softnet_break:
2154 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2155 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2156 goto out;
2157 }
2158
2159 static gifconf_func_t * gifconf_list [NPROTO];
2160
2161 /**
2162 * register_gifconf - register a SIOCGIF handler
2163 * @family: Address family
2164 * @gifconf: Function handler
2165 *
2166 * Register protocol dependent address dumping routines. The handler
2167 * that is passed must not be freed or reused until it has been replaced
2168 * by another handler.
2169 */
2170 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2171 {
2172 if (family >= NPROTO)
2173 return -EINVAL;
2174 gifconf_list[family] = gifconf;
2175 return 0;
2176 }
2177
2178
2179 /*
2180 * Map an interface index to its name (SIOCGIFNAME)
2181 */
2182
2183 /*
2184 * We need this ioctl for efficient implementation of the
2185 * if_indextoname() function required by the IPv6 API. Without
2186 * it, we would have to search all the interfaces to find a
2187 * match. --pb
2188 */
2189
2190 static int dev_ifname(struct ifreq __user *arg)
2191 {
2192 struct net_device *dev;
2193 struct ifreq ifr;
2194
2195 /*
2196 * Fetch the caller's info block.
2197 */
2198
2199 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2200 return -EFAULT;
2201
2202 read_lock(&dev_base_lock);
2203 dev = __dev_get_by_index(ifr.ifr_ifindex);
2204 if (!dev) {
2205 read_unlock(&dev_base_lock);
2206 return -ENODEV;
2207 }
2208
2209 strcpy(ifr.ifr_name, dev->name);
2210 read_unlock(&dev_base_lock);
2211
2212 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2213 return -EFAULT;
2214 return 0;
2215 }
2216
2217 /*
2218 * Perform a SIOCGIFCONF call. This structure will change
2219 * size eventually, and there is nothing I can do about it.
2220 * Thus we will need a 'compatibility mode'.
2221 */
2222
2223 static int dev_ifconf(char __user *arg)
2224 {
2225 struct ifconf ifc;
2226 struct net_device *dev;
2227 char __user *pos;
2228 int len;
2229 int total;
2230 int i;
2231
2232 /*
2233 * Fetch the caller's info block.
2234 */
2235
2236 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2237 return -EFAULT;
2238
2239 pos = ifc.ifc_buf;
2240 len = ifc.ifc_len;
2241
2242 /*
2243 * Loop over the interfaces, and write an info block for each.
2244 */
2245
2246 total = 0;
2247 for_each_netdev(dev) {
2248 for (i = 0; i < NPROTO; i++) {
2249 if (gifconf_list[i]) {
2250 int done;
2251 if (!pos)
2252 done = gifconf_list[i](dev, NULL, 0);
2253 else
2254 done = gifconf_list[i](dev, pos + total,
2255 len - total);
2256 if (done < 0)
2257 return -EFAULT;
2258 total += done;
2259 }
2260 }
2261 }
2262
2263 /*
2264 * All done. Write the updated control block back to the caller.
2265 */
2266 ifc.ifc_len = total;
2267
2268 /*
2269 * Both BSD and Solaris return 0 here, so we do too.
2270 */
2271 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2272 }
2273
2274 #ifdef CONFIG_PROC_FS
2275 /*
2276 * This is invoked by the /proc filesystem handler to display a device
2277 * in detail.
2278 */
2279 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2280 {
2281 loff_t off;
2282 struct net_device *dev;
2283
2284 read_lock(&dev_base_lock);
2285 if (!*pos)
2286 return SEQ_START_TOKEN;
2287
2288 off = 1;
2289 for_each_netdev(dev)
2290 if (off++ == *pos)
2291 return dev;
2292
2293 return NULL;
2294 }
2295
2296 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2297 {
2298 ++*pos;
2299 return v == SEQ_START_TOKEN ?
2300 first_net_device() : next_net_device((struct net_device *)v);
2301 }
2302
2303 void dev_seq_stop(struct seq_file *seq, void *v)
2304 {
2305 read_unlock(&dev_base_lock);
2306 }
2307
2308 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2309 {
2310 struct net_device_stats *stats = dev->get_stats(dev);
2311
2312 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2313 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2314 dev->name, stats->rx_bytes, stats->rx_packets,
2315 stats->rx_errors,
2316 stats->rx_dropped + stats->rx_missed_errors,
2317 stats->rx_fifo_errors,
2318 stats->rx_length_errors + stats->rx_over_errors +
2319 stats->rx_crc_errors + stats->rx_frame_errors,
2320 stats->rx_compressed, stats->multicast,
2321 stats->tx_bytes, stats->tx_packets,
2322 stats->tx_errors, stats->tx_dropped,
2323 stats->tx_fifo_errors, stats->collisions,
2324 stats->tx_carrier_errors +
2325 stats->tx_aborted_errors +
2326 stats->tx_window_errors +
2327 stats->tx_heartbeat_errors,
2328 stats->tx_compressed);
2329 }
2330
2331 /*
2332 * Called from the PROCfs module. This now uses the new arbitrary sized
2333 * /proc/net interface to create /proc/net/dev
2334 */
2335 static int dev_seq_show(struct seq_file *seq, void *v)
2336 {
2337 if (v == SEQ_START_TOKEN)
2338 seq_puts(seq, "Inter-| Receive "
2339 " | Transmit\n"
2340 " face |bytes packets errs drop fifo frame "
2341 "compressed multicast|bytes packets errs "
2342 "drop fifo colls carrier compressed\n");
2343 else
2344 dev_seq_printf_stats(seq, v);
2345 return 0;
2346 }
2347
2348 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2349 {
2350 struct netif_rx_stats *rc = NULL;
2351
2352 while (*pos < NR_CPUS)
2353 if (cpu_online(*pos)) {
2354 rc = &per_cpu(netdev_rx_stat, *pos);
2355 break;
2356 } else
2357 ++*pos;
2358 return rc;
2359 }
2360
2361 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2362 {
2363 return softnet_get_online(pos);
2364 }
2365
2366 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2367 {
2368 ++*pos;
2369 return softnet_get_online(pos);
2370 }
2371
2372 static void softnet_seq_stop(struct seq_file *seq, void *v)
2373 {
2374 }
2375
2376 static int softnet_seq_show(struct seq_file *seq, void *v)
2377 {
2378 struct netif_rx_stats *s = v;
2379
2380 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2381 s->total, s->dropped, s->time_squeeze, 0,
2382 0, 0, 0, 0, /* was fastroute */
2383 s->cpu_collision );
2384 return 0;
2385 }
2386
2387 static const struct seq_operations dev_seq_ops = {
2388 .start = dev_seq_start,
2389 .next = dev_seq_next,
2390 .stop = dev_seq_stop,
2391 .show = dev_seq_show,
2392 };
2393
2394 static int dev_seq_open(struct inode *inode, struct file *file)
2395 {
2396 return seq_open(file, &dev_seq_ops);
2397 }
2398
2399 static const struct file_operations dev_seq_fops = {
2400 .owner = THIS_MODULE,
2401 .open = dev_seq_open,
2402 .read = seq_read,
2403 .llseek = seq_lseek,
2404 .release = seq_release,
2405 };
2406
2407 static const struct seq_operations softnet_seq_ops = {
2408 .start = softnet_seq_start,
2409 .next = softnet_seq_next,
2410 .stop = softnet_seq_stop,
2411 .show = softnet_seq_show,
2412 };
2413
2414 static int softnet_seq_open(struct inode *inode, struct file *file)
2415 {
2416 return seq_open(file, &softnet_seq_ops);
2417 }
2418
2419 static const struct file_operations softnet_seq_fops = {
2420 .owner = THIS_MODULE,
2421 .open = softnet_seq_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = seq_release,
2425 };
2426
2427 static void *ptype_get_idx(loff_t pos)
2428 {
2429 struct packet_type *pt = NULL;
2430 loff_t i = 0;
2431 int t;
2432
2433 list_for_each_entry_rcu(pt, &ptype_all, list) {
2434 if (i == pos)
2435 return pt;
2436 ++i;
2437 }
2438
2439 for (t = 0; t < 16; t++) {
2440 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2441 if (i == pos)
2442 return pt;
2443 ++i;
2444 }
2445 }
2446 return NULL;
2447 }
2448
2449 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2450 {
2451 rcu_read_lock();
2452 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2453 }
2454
2455 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456 {
2457 struct packet_type *pt;
2458 struct list_head *nxt;
2459 int hash;
2460
2461 ++*pos;
2462 if (v == SEQ_START_TOKEN)
2463 return ptype_get_idx(0);
2464
2465 pt = v;
2466 nxt = pt->list.next;
2467 if (pt->type == htons(ETH_P_ALL)) {
2468 if (nxt != &ptype_all)
2469 goto found;
2470 hash = 0;
2471 nxt = ptype_base[0].next;
2472 } else
2473 hash = ntohs(pt->type) & 15;
2474
2475 while (nxt == &ptype_base[hash]) {
2476 if (++hash >= 16)
2477 return NULL;
2478 nxt = ptype_base[hash].next;
2479 }
2480 found:
2481 return list_entry(nxt, struct packet_type, list);
2482 }
2483
2484 static void ptype_seq_stop(struct seq_file *seq, void *v)
2485 {
2486 rcu_read_unlock();
2487 }
2488
2489 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2490 {
2491 #ifdef CONFIG_KALLSYMS
2492 unsigned long offset = 0, symsize;
2493 const char *symname;
2494 char *modname;
2495 char namebuf[128];
2496
2497 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2498 &modname, namebuf);
2499
2500 if (symname) {
2501 char *delim = ":";
2502
2503 if (!modname)
2504 modname = delim = "";
2505 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2506 symname, offset);
2507 return;
2508 }
2509 #endif
2510
2511 seq_printf(seq, "[%p]", sym);
2512 }
2513
2514 static int ptype_seq_show(struct seq_file *seq, void *v)
2515 {
2516 struct packet_type *pt = v;
2517
2518 if (v == SEQ_START_TOKEN)
2519 seq_puts(seq, "Type Device Function\n");
2520 else {
2521 if (pt->type == htons(ETH_P_ALL))
2522 seq_puts(seq, "ALL ");
2523 else
2524 seq_printf(seq, "%04x", ntohs(pt->type));
2525
2526 seq_printf(seq, " %-8s ",
2527 pt->dev ? pt->dev->name : "");
2528 ptype_seq_decode(seq, pt->func);
2529 seq_putc(seq, '\n');
2530 }
2531
2532 return 0;
2533 }
2534
2535 static const struct seq_operations ptype_seq_ops = {
2536 .start = ptype_seq_start,
2537 .next = ptype_seq_next,
2538 .stop = ptype_seq_stop,
2539 .show = ptype_seq_show,
2540 };
2541
2542 static int ptype_seq_open(struct inode *inode, struct file *file)
2543 {
2544 return seq_open(file, &ptype_seq_ops);
2545 }
2546
2547 static const struct file_operations ptype_seq_fops = {
2548 .owner = THIS_MODULE,
2549 .open = ptype_seq_open,
2550 .read = seq_read,
2551 .llseek = seq_lseek,
2552 .release = seq_release,
2553 };
2554
2555
2556 static int __init dev_proc_init(void)
2557 {
2558 int rc = -ENOMEM;
2559
2560 if (!proc_net_fops_create(&init_net, "dev", S_IRUGO, &dev_seq_fops))
2561 goto out;
2562 if (!proc_net_fops_create(&init_net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2563 goto out_dev;
2564 if (!proc_net_fops_create(&init_net, "ptype", S_IRUGO, &ptype_seq_fops))
2565 goto out_softnet;
2566
2567 if (wext_proc_init())
2568 goto out_ptype;
2569 rc = 0;
2570 out:
2571 return rc;
2572 out_ptype:
2573 proc_net_remove(&init_net, "ptype");
2574 out_softnet:
2575 proc_net_remove(&init_net, "softnet_stat");
2576 out_dev:
2577 proc_net_remove(&init_net, "dev");
2578 goto out;
2579 }
2580 #else
2581 #define dev_proc_init() 0
2582 #endif /* CONFIG_PROC_FS */
2583
2584
2585 /**
2586 * netdev_set_master - set up master/slave pair
2587 * @slave: slave device
2588 * @master: new master device
2589 *
2590 * Changes the master device of the slave. Pass %NULL to break the
2591 * bonding. The caller must hold the RTNL semaphore. On a failure
2592 * a negative errno code is returned. On success the reference counts
2593 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2594 * function returns zero.
2595 */
2596 int netdev_set_master(struct net_device *slave, struct net_device *master)
2597 {
2598 struct net_device *old = slave->master;
2599
2600 ASSERT_RTNL();
2601
2602 if (master) {
2603 if (old)
2604 return -EBUSY;
2605 dev_hold(master);
2606 }
2607
2608 slave->master = master;
2609
2610 synchronize_net();
2611
2612 if (old)
2613 dev_put(old);
2614
2615 if (master)
2616 slave->flags |= IFF_SLAVE;
2617 else
2618 slave->flags &= ~IFF_SLAVE;
2619
2620 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2621 return 0;
2622 }
2623
2624 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2625 {
2626 unsigned short old_flags = dev->flags;
2627
2628 ASSERT_RTNL();
2629
2630 if ((dev->promiscuity += inc) == 0)
2631 dev->flags &= ~IFF_PROMISC;
2632 else
2633 dev->flags |= IFF_PROMISC;
2634 if (dev->flags != old_flags) {
2635 printk(KERN_INFO "device %s %s promiscuous mode\n",
2636 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2637 "left");
2638 audit_log(current->audit_context, GFP_ATOMIC,
2639 AUDIT_ANOM_PROMISCUOUS,
2640 "dev=%s prom=%d old_prom=%d auid=%u",
2641 dev->name, (dev->flags & IFF_PROMISC),
2642 (old_flags & IFF_PROMISC),
2643 audit_get_loginuid(current->audit_context));
2644
2645 if (dev->change_rx_flags)
2646 dev->change_rx_flags(dev, IFF_PROMISC);
2647 }
2648 }
2649
2650 /**
2651 * dev_set_promiscuity - update promiscuity count on a device
2652 * @dev: device
2653 * @inc: modifier
2654 *
2655 * Add or remove promiscuity from a device. While the count in the device
2656 * remains above zero the interface remains promiscuous. Once it hits zero
2657 * the device reverts back to normal filtering operation. A negative inc
2658 * value is used to drop promiscuity on the device.
2659 */
2660 void dev_set_promiscuity(struct net_device *dev, int inc)
2661 {
2662 unsigned short old_flags = dev->flags;
2663
2664 __dev_set_promiscuity(dev, inc);
2665 if (dev->flags != old_flags)
2666 dev_set_rx_mode(dev);
2667 }
2668
2669 /**
2670 * dev_set_allmulti - update allmulti count on a device
2671 * @dev: device
2672 * @inc: modifier
2673 *
2674 * Add or remove reception of all multicast frames to a device. While the
2675 * count in the device remains above zero the interface remains listening
2676 * to all interfaces. Once it hits zero the device reverts back to normal
2677 * filtering operation. A negative @inc value is used to drop the counter
2678 * when releasing a resource needing all multicasts.
2679 */
2680
2681 void dev_set_allmulti(struct net_device *dev, int inc)
2682 {
2683 unsigned short old_flags = dev->flags;
2684
2685 ASSERT_RTNL();
2686
2687 dev->flags |= IFF_ALLMULTI;
2688 if ((dev->allmulti += inc) == 0)
2689 dev->flags &= ~IFF_ALLMULTI;
2690 if (dev->flags ^ old_flags) {
2691 if (dev->change_rx_flags)
2692 dev->change_rx_flags(dev, IFF_ALLMULTI);
2693 dev_set_rx_mode(dev);
2694 }
2695 }
2696
2697 /*
2698 * Upload unicast and multicast address lists to device and
2699 * configure RX filtering. When the device doesn't support unicast
2700 * filtering it is put in promiscous mode while unicast addresses
2701 * are present.
2702 */
2703 void __dev_set_rx_mode(struct net_device *dev)
2704 {
2705 /* dev_open will call this function so the list will stay sane. */
2706 if (!(dev->flags&IFF_UP))
2707 return;
2708
2709 if (!netif_device_present(dev))
2710 return;
2711
2712 if (dev->set_rx_mode)
2713 dev->set_rx_mode(dev);
2714 else {
2715 /* Unicast addresses changes may only happen under the rtnl,
2716 * therefore calling __dev_set_promiscuity here is safe.
2717 */
2718 if (dev->uc_count > 0 && !dev->uc_promisc) {
2719 __dev_set_promiscuity(dev, 1);
2720 dev->uc_promisc = 1;
2721 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2722 __dev_set_promiscuity(dev, -1);
2723 dev->uc_promisc = 0;
2724 }
2725
2726 if (dev->set_multicast_list)
2727 dev->set_multicast_list(dev);
2728 }
2729 }
2730
2731 void dev_set_rx_mode(struct net_device *dev)
2732 {
2733 netif_tx_lock_bh(dev);
2734 __dev_set_rx_mode(dev);
2735 netif_tx_unlock_bh(dev);
2736 }
2737
2738 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2739 void *addr, int alen, int glbl)
2740 {
2741 struct dev_addr_list *da;
2742
2743 for (; (da = *list) != NULL; list = &da->next) {
2744 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2745 alen == da->da_addrlen) {
2746 if (glbl) {
2747 int old_glbl = da->da_gusers;
2748 da->da_gusers = 0;
2749 if (old_glbl == 0)
2750 break;
2751 }
2752 if (--da->da_users)
2753 return 0;
2754
2755 *list = da->next;
2756 kfree(da);
2757 (*count)--;
2758 return 0;
2759 }
2760 }
2761 return -ENOENT;
2762 }
2763
2764 int __dev_addr_add(struct dev_addr_list **list, int *count,
2765 void *addr, int alen, int glbl)
2766 {
2767 struct dev_addr_list *da;
2768
2769 for (da = *list; da != NULL; da = da->next) {
2770 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2771 da->da_addrlen == alen) {
2772 if (glbl) {
2773 int old_glbl = da->da_gusers;
2774 da->da_gusers = 1;
2775 if (old_glbl)
2776 return 0;
2777 }
2778 da->da_users++;
2779 return 0;
2780 }
2781 }
2782
2783 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2784 if (da == NULL)
2785 return -ENOMEM;
2786 memcpy(da->da_addr, addr, alen);
2787 da->da_addrlen = alen;
2788 da->da_users = 1;
2789 da->da_gusers = glbl ? 1 : 0;
2790 da->next = *list;
2791 *list = da;
2792 (*count)++;
2793 return 0;
2794 }
2795
2796 /**
2797 * dev_unicast_delete - Release secondary unicast address.
2798 * @dev: device
2799 * @addr: address to delete
2800 * @alen: length of @addr
2801 *
2802 * Release reference to a secondary unicast address and remove it
2803 * from the device if the reference count drops to zero.
2804 *
2805 * The caller must hold the rtnl_mutex.
2806 */
2807 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2808 {
2809 int err;
2810
2811 ASSERT_RTNL();
2812
2813 netif_tx_lock_bh(dev);
2814 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2815 if (!err)
2816 __dev_set_rx_mode(dev);
2817 netif_tx_unlock_bh(dev);
2818 return err;
2819 }
2820 EXPORT_SYMBOL(dev_unicast_delete);
2821
2822 /**
2823 * dev_unicast_add - add a secondary unicast address
2824 * @dev: device
2825 * @addr: address to delete
2826 * @alen: length of @addr
2827 *
2828 * Add a secondary unicast address to the device or increase
2829 * the reference count if it already exists.
2830 *
2831 * The caller must hold the rtnl_mutex.
2832 */
2833 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2834 {
2835 int err;
2836
2837 ASSERT_RTNL();
2838
2839 netif_tx_lock_bh(dev);
2840 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2841 if (!err)
2842 __dev_set_rx_mode(dev);
2843 netif_tx_unlock_bh(dev);
2844 return err;
2845 }
2846 EXPORT_SYMBOL(dev_unicast_add);
2847
2848 static void __dev_addr_discard(struct dev_addr_list **list)
2849 {
2850 struct dev_addr_list *tmp;
2851
2852 while (*list != NULL) {
2853 tmp = *list;
2854 *list = tmp->next;
2855 if (tmp->da_users > tmp->da_gusers)
2856 printk("__dev_addr_discard: address leakage! "
2857 "da_users=%d\n", tmp->da_users);
2858 kfree(tmp);
2859 }
2860 }
2861
2862 static void dev_addr_discard(struct net_device *dev)
2863 {
2864 netif_tx_lock_bh(dev);
2865
2866 __dev_addr_discard(&dev->uc_list);
2867 dev->uc_count = 0;
2868
2869 __dev_addr_discard(&dev->mc_list);
2870 dev->mc_count = 0;
2871
2872 netif_tx_unlock_bh(dev);
2873 }
2874
2875 unsigned dev_get_flags(const struct net_device *dev)
2876 {
2877 unsigned flags;
2878
2879 flags = (dev->flags & ~(IFF_PROMISC |
2880 IFF_ALLMULTI |
2881 IFF_RUNNING |
2882 IFF_LOWER_UP |
2883 IFF_DORMANT)) |
2884 (dev->gflags & (IFF_PROMISC |
2885 IFF_ALLMULTI));
2886
2887 if (netif_running(dev)) {
2888 if (netif_oper_up(dev))
2889 flags |= IFF_RUNNING;
2890 if (netif_carrier_ok(dev))
2891 flags |= IFF_LOWER_UP;
2892 if (netif_dormant(dev))
2893 flags |= IFF_DORMANT;
2894 }
2895
2896 return flags;
2897 }
2898
2899 int dev_change_flags(struct net_device *dev, unsigned flags)
2900 {
2901 int ret, changes;
2902 int old_flags = dev->flags;
2903
2904 ASSERT_RTNL();
2905
2906 /*
2907 * Set the flags on our device.
2908 */
2909
2910 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2911 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2912 IFF_AUTOMEDIA)) |
2913 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2914 IFF_ALLMULTI));
2915
2916 /*
2917 * Load in the correct multicast list now the flags have changed.
2918 */
2919
2920 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
2921 dev->change_rx_flags(dev, IFF_MULTICAST);
2922
2923 dev_set_rx_mode(dev);
2924
2925 /*
2926 * Have we downed the interface. We handle IFF_UP ourselves
2927 * according to user attempts to set it, rather than blindly
2928 * setting it.
2929 */
2930
2931 ret = 0;
2932 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2933 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2934
2935 if (!ret)
2936 dev_set_rx_mode(dev);
2937 }
2938
2939 if (dev->flags & IFF_UP &&
2940 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2941 IFF_VOLATILE)))
2942 raw_notifier_call_chain(&netdev_chain,
2943 NETDEV_CHANGE, dev);
2944
2945 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2946 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2947 dev->gflags ^= IFF_PROMISC;
2948 dev_set_promiscuity(dev, inc);
2949 }
2950
2951 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2952 is important. Some (broken) drivers set IFF_PROMISC, when
2953 IFF_ALLMULTI is requested not asking us and not reporting.
2954 */
2955 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2956 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2957 dev->gflags ^= IFF_ALLMULTI;
2958 dev_set_allmulti(dev, inc);
2959 }
2960
2961 /* Exclude state transition flags, already notified */
2962 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
2963 if (changes)
2964 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
2965
2966 return ret;
2967 }
2968
2969 int dev_set_mtu(struct net_device *dev, int new_mtu)
2970 {
2971 int err;
2972
2973 if (new_mtu == dev->mtu)
2974 return 0;
2975
2976 /* MTU must be positive. */
2977 if (new_mtu < 0)
2978 return -EINVAL;
2979
2980 if (!netif_device_present(dev))
2981 return -ENODEV;
2982
2983 err = 0;
2984 if (dev->change_mtu)
2985 err = dev->change_mtu(dev, new_mtu);
2986 else
2987 dev->mtu = new_mtu;
2988 if (!err && dev->flags & IFF_UP)
2989 raw_notifier_call_chain(&netdev_chain,
2990 NETDEV_CHANGEMTU, dev);
2991 return err;
2992 }
2993
2994 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2995 {
2996 int err;
2997
2998 if (!dev->set_mac_address)
2999 return -EOPNOTSUPP;
3000 if (sa->sa_family != dev->type)
3001 return -EINVAL;
3002 if (!netif_device_present(dev))
3003 return -ENODEV;
3004 err = dev->set_mac_address(dev, sa);
3005 if (!err)
3006 raw_notifier_call_chain(&netdev_chain,
3007 NETDEV_CHANGEADDR, dev);
3008 return err;
3009 }
3010
3011 /*
3012 * Perform the SIOCxIFxxx calls.
3013 */
3014 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
3015 {
3016 int err;
3017 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
3018
3019 if (!dev)
3020 return -ENODEV;
3021
3022 switch (cmd) {
3023 case SIOCGIFFLAGS: /* Get interface flags */
3024 ifr->ifr_flags = dev_get_flags(dev);
3025 return 0;
3026
3027 case SIOCSIFFLAGS: /* Set interface flags */
3028 return dev_change_flags(dev, ifr->ifr_flags);
3029
3030 case SIOCGIFMETRIC: /* Get the metric on the interface
3031 (currently unused) */
3032 ifr->ifr_metric = 0;
3033 return 0;
3034
3035 case SIOCSIFMETRIC: /* Set the metric on the interface
3036 (currently unused) */
3037 return -EOPNOTSUPP;
3038
3039 case SIOCGIFMTU: /* Get the MTU of a device */
3040 ifr->ifr_mtu = dev->mtu;
3041 return 0;
3042
3043 case SIOCSIFMTU: /* Set the MTU of a device */
3044 return dev_set_mtu(dev, ifr->ifr_mtu);
3045
3046 case SIOCGIFHWADDR:
3047 if (!dev->addr_len)
3048 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3049 else
3050 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3051 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3052 ifr->ifr_hwaddr.sa_family = dev->type;
3053 return 0;
3054
3055 case SIOCSIFHWADDR:
3056 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3057
3058 case SIOCSIFHWBROADCAST:
3059 if (ifr->ifr_hwaddr.sa_family != dev->type)
3060 return -EINVAL;
3061 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3062 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3063 raw_notifier_call_chain(&netdev_chain,
3064 NETDEV_CHANGEADDR, dev);
3065 return 0;
3066
3067 case SIOCGIFMAP:
3068 ifr->ifr_map.mem_start = dev->mem_start;
3069 ifr->ifr_map.mem_end = dev->mem_end;
3070 ifr->ifr_map.base_addr = dev->base_addr;
3071 ifr->ifr_map.irq = dev->irq;
3072 ifr->ifr_map.dma = dev->dma;
3073 ifr->ifr_map.port = dev->if_port;
3074 return 0;
3075
3076 case SIOCSIFMAP:
3077 if (dev->set_config) {
3078 if (!netif_device_present(dev))
3079 return -ENODEV;
3080 return dev->set_config(dev, &ifr->ifr_map);
3081 }
3082 return -EOPNOTSUPP;
3083
3084 case SIOCADDMULTI:
3085 if (!dev->set_multicast_list ||
3086 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3087 return -EINVAL;
3088 if (!netif_device_present(dev))
3089 return -ENODEV;
3090 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3091 dev->addr_len, 1);
3092
3093 case SIOCDELMULTI:
3094 if (!dev->set_multicast_list ||
3095 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3096 return -EINVAL;
3097 if (!netif_device_present(dev))
3098 return -ENODEV;
3099 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3100 dev->addr_len, 1);
3101
3102 case SIOCGIFINDEX:
3103 ifr->ifr_ifindex = dev->ifindex;
3104 return 0;
3105
3106 case SIOCGIFTXQLEN:
3107 ifr->ifr_qlen = dev->tx_queue_len;
3108 return 0;
3109
3110 case SIOCSIFTXQLEN:
3111 if (ifr->ifr_qlen < 0)
3112 return -EINVAL;
3113 dev->tx_queue_len = ifr->ifr_qlen;
3114 return 0;
3115
3116 case SIOCSIFNAME:
3117 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3118 return dev_change_name(dev, ifr->ifr_newname);
3119
3120 /*
3121 * Unknown or private ioctl
3122 */
3123
3124 default:
3125 if ((cmd >= SIOCDEVPRIVATE &&
3126 cmd <= SIOCDEVPRIVATE + 15) ||
3127 cmd == SIOCBONDENSLAVE ||
3128 cmd == SIOCBONDRELEASE ||
3129 cmd == SIOCBONDSETHWADDR ||
3130 cmd == SIOCBONDSLAVEINFOQUERY ||
3131 cmd == SIOCBONDINFOQUERY ||
3132 cmd == SIOCBONDCHANGEACTIVE ||
3133 cmd == SIOCGMIIPHY ||
3134 cmd == SIOCGMIIREG ||
3135 cmd == SIOCSMIIREG ||
3136 cmd == SIOCBRADDIF ||
3137 cmd == SIOCBRDELIF ||
3138 cmd == SIOCWANDEV) {
3139 err = -EOPNOTSUPP;
3140 if (dev->do_ioctl) {
3141 if (netif_device_present(dev))
3142 err = dev->do_ioctl(dev, ifr,
3143 cmd);
3144 else
3145 err = -ENODEV;
3146 }
3147 } else
3148 err = -EINVAL;
3149
3150 }
3151 return err;
3152 }
3153
3154 /*
3155 * This function handles all "interface"-type I/O control requests. The actual
3156 * 'doing' part of this is dev_ifsioc above.
3157 */
3158
3159 /**
3160 * dev_ioctl - network device ioctl
3161 * @cmd: command to issue
3162 * @arg: pointer to a struct ifreq in user space
3163 *
3164 * Issue ioctl functions to devices. This is normally called by the
3165 * user space syscall interfaces but can sometimes be useful for
3166 * other purposes. The return value is the return from the syscall if
3167 * positive or a negative errno code on error.
3168 */
3169
3170 int dev_ioctl(unsigned int cmd, void __user *arg)
3171 {
3172 struct ifreq ifr;
3173 int ret;
3174 char *colon;
3175
3176 /* One special case: SIOCGIFCONF takes ifconf argument
3177 and requires shared lock, because it sleeps writing
3178 to user space.
3179 */
3180
3181 if (cmd == SIOCGIFCONF) {
3182 rtnl_lock();
3183 ret = dev_ifconf((char __user *) arg);
3184 rtnl_unlock();
3185 return ret;
3186 }
3187 if (cmd == SIOCGIFNAME)
3188 return dev_ifname((struct ifreq __user *)arg);
3189
3190 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3191 return -EFAULT;
3192
3193 ifr.ifr_name[IFNAMSIZ-1] = 0;
3194
3195 colon = strchr(ifr.ifr_name, ':');
3196 if (colon)
3197 *colon = 0;
3198
3199 /*
3200 * See which interface the caller is talking about.
3201 */
3202
3203 switch (cmd) {
3204 /*
3205 * These ioctl calls:
3206 * - can be done by all.
3207 * - atomic and do not require locking.
3208 * - return a value
3209 */
3210 case SIOCGIFFLAGS:
3211 case SIOCGIFMETRIC:
3212 case SIOCGIFMTU:
3213 case SIOCGIFHWADDR:
3214 case SIOCGIFSLAVE:
3215 case SIOCGIFMAP:
3216 case SIOCGIFINDEX:
3217 case SIOCGIFTXQLEN:
3218 dev_load(ifr.ifr_name);
3219 read_lock(&dev_base_lock);
3220 ret = dev_ifsioc(&ifr, cmd);
3221 read_unlock(&dev_base_lock);
3222 if (!ret) {
3223 if (colon)
3224 *colon = ':';
3225 if (copy_to_user(arg, &ifr,
3226 sizeof(struct ifreq)))
3227 ret = -EFAULT;
3228 }
3229 return ret;
3230
3231 case SIOCETHTOOL:
3232 dev_load(ifr.ifr_name);
3233 rtnl_lock();
3234 ret = dev_ethtool(&ifr);
3235 rtnl_unlock();
3236 if (!ret) {
3237 if (colon)
3238 *colon = ':';
3239 if (copy_to_user(arg, &ifr,
3240 sizeof(struct ifreq)))
3241 ret = -EFAULT;
3242 }
3243 return ret;
3244
3245 /*
3246 * These ioctl calls:
3247 * - require superuser power.
3248 * - require strict serialization.
3249 * - return a value
3250 */
3251 case SIOCGMIIPHY:
3252 case SIOCGMIIREG:
3253 case SIOCSIFNAME:
3254 if (!capable(CAP_NET_ADMIN))
3255 return -EPERM;
3256 dev_load(ifr.ifr_name);
3257 rtnl_lock();
3258 ret = dev_ifsioc(&ifr, cmd);
3259 rtnl_unlock();
3260 if (!ret) {
3261 if (colon)
3262 *colon = ':';
3263 if (copy_to_user(arg, &ifr,
3264 sizeof(struct ifreq)))
3265 ret = -EFAULT;
3266 }
3267 return ret;
3268
3269 /*
3270 * These ioctl calls:
3271 * - require superuser power.
3272 * - require strict serialization.
3273 * - do not return a value
3274 */
3275 case SIOCSIFFLAGS:
3276 case SIOCSIFMETRIC:
3277 case SIOCSIFMTU:
3278 case SIOCSIFMAP:
3279 case SIOCSIFHWADDR:
3280 case SIOCSIFSLAVE:
3281 case SIOCADDMULTI:
3282 case SIOCDELMULTI:
3283 case SIOCSIFHWBROADCAST:
3284 case SIOCSIFTXQLEN:
3285 case SIOCSMIIREG:
3286 case SIOCBONDENSLAVE:
3287 case SIOCBONDRELEASE:
3288 case SIOCBONDSETHWADDR:
3289 case SIOCBONDCHANGEACTIVE:
3290 case SIOCBRADDIF:
3291 case SIOCBRDELIF:
3292 if (!capable(CAP_NET_ADMIN))
3293 return -EPERM;
3294 /* fall through */
3295 case SIOCBONDSLAVEINFOQUERY:
3296 case SIOCBONDINFOQUERY:
3297 dev_load(ifr.ifr_name);
3298 rtnl_lock();
3299 ret = dev_ifsioc(&ifr, cmd);
3300 rtnl_unlock();
3301 return ret;
3302
3303 case SIOCGIFMEM:
3304 /* Get the per device memory space. We can add this but
3305 * currently do not support it */
3306 case SIOCSIFMEM:
3307 /* Set the per device memory buffer space.
3308 * Not applicable in our case */
3309 case SIOCSIFLINK:
3310 return -EINVAL;
3311
3312 /*
3313 * Unknown or private ioctl.
3314 */
3315 default:
3316 if (cmd == SIOCWANDEV ||
3317 (cmd >= SIOCDEVPRIVATE &&
3318 cmd <= SIOCDEVPRIVATE + 15)) {
3319 dev_load(ifr.ifr_name);
3320 rtnl_lock();
3321 ret = dev_ifsioc(&ifr, cmd);
3322 rtnl_unlock();
3323 if (!ret && copy_to_user(arg, &ifr,
3324 sizeof(struct ifreq)))
3325 ret = -EFAULT;
3326 return ret;
3327 }
3328 /* Take care of Wireless Extensions */
3329 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3330 return wext_handle_ioctl(&ifr, cmd, arg);
3331 return -EINVAL;
3332 }
3333 }
3334
3335
3336 /**
3337 * dev_new_index - allocate an ifindex
3338 *
3339 * Returns a suitable unique value for a new device interface
3340 * number. The caller must hold the rtnl semaphore or the
3341 * dev_base_lock to be sure it remains unique.
3342 */
3343 static int dev_new_index(void)
3344 {
3345 static int ifindex;
3346 for (;;) {
3347 if (++ifindex <= 0)
3348 ifindex = 1;
3349 if (!__dev_get_by_index(ifindex))
3350 return ifindex;
3351 }
3352 }
3353
3354 static int dev_boot_phase = 1;
3355
3356 /* Delayed registration/unregisteration */
3357 static DEFINE_SPINLOCK(net_todo_list_lock);
3358 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3359
3360 static void net_set_todo(struct net_device *dev)
3361 {
3362 spin_lock(&net_todo_list_lock);
3363 list_add_tail(&dev->todo_list, &net_todo_list);
3364 spin_unlock(&net_todo_list_lock);
3365 }
3366
3367 /**
3368 * register_netdevice - register a network device
3369 * @dev: device to register
3370 *
3371 * Take a completed network device structure and add it to the kernel
3372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3373 * chain. 0 is returned on success. A negative errno code is returned
3374 * on a failure to set up the device, or if the name is a duplicate.
3375 *
3376 * Callers must hold the rtnl semaphore. You may want
3377 * register_netdev() instead of this.
3378 *
3379 * BUGS:
3380 * The locking appears insufficient to guarantee two parallel registers
3381 * will not get the same name.
3382 */
3383
3384 int register_netdevice(struct net_device *dev)
3385 {
3386 struct hlist_head *head;
3387 struct hlist_node *p;
3388 int ret;
3389
3390 BUG_ON(dev_boot_phase);
3391 ASSERT_RTNL();
3392
3393 might_sleep();
3394
3395 /* When net_device's are persistent, this will be fatal. */
3396 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3397
3398 spin_lock_init(&dev->queue_lock);
3399 spin_lock_init(&dev->_xmit_lock);
3400 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3401 dev->xmit_lock_owner = -1;
3402 spin_lock_init(&dev->ingress_lock);
3403
3404 dev->iflink = -1;
3405
3406 /* Init, if this function is available */
3407 if (dev->init) {
3408 ret = dev->init(dev);
3409 if (ret) {
3410 if (ret > 0)
3411 ret = -EIO;
3412 goto out;
3413 }
3414 }
3415
3416 if (!dev_valid_name(dev->name)) {
3417 ret = -EINVAL;
3418 goto err_uninit;
3419 }
3420
3421 dev->ifindex = dev_new_index();
3422 if (dev->iflink == -1)
3423 dev->iflink = dev->ifindex;
3424
3425 /* Check for existence of name */
3426 head = dev_name_hash(dev->name);
3427 hlist_for_each(p, head) {
3428 struct net_device *d
3429 = hlist_entry(p, struct net_device, name_hlist);
3430 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3431 ret = -EEXIST;
3432 goto err_uninit;
3433 }
3434 }
3435
3436 /* Fix illegal checksum combinations */
3437 if ((dev->features & NETIF_F_HW_CSUM) &&
3438 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3439 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3440 dev->name);
3441 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3442 }
3443
3444 if ((dev->features & NETIF_F_NO_CSUM) &&
3445 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3446 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3447 dev->name);
3448 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3449 }
3450
3451
3452 /* Fix illegal SG+CSUM combinations. */
3453 if ((dev->features & NETIF_F_SG) &&
3454 !(dev->features & NETIF_F_ALL_CSUM)) {
3455 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3456 dev->name);
3457 dev->features &= ~NETIF_F_SG;
3458 }
3459
3460 /* TSO requires that SG is present as well. */
3461 if ((dev->features & NETIF_F_TSO) &&
3462 !(dev->features & NETIF_F_SG)) {
3463 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3464 dev->name);
3465 dev->features &= ~NETIF_F_TSO;
3466 }
3467 if (dev->features & NETIF_F_UFO) {
3468 if (!(dev->features & NETIF_F_HW_CSUM)) {
3469 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3470 "NETIF_F_HW_CSUM feature.\n",
3471 dev->name);
3472 dev->features &= ~NETIF_F_UFO;
3473 }
3474 if (!(dev->features & NETIF_F_SG)) {
3475 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3476 "NETIF_F_SG feature.\n",
3477 dev->name);
3478 dev->features &= ~NETIF_F_UFO;
3479 }
3480 }
3481
3482 /*
3483 * nil rebuild_header routine,
3484 * that should be never called and used as just bug trap.
3485 */
3486
3487 if (!dev->rebuild_header)
3488 dev->rebuild_header = default_rebuild_header;
3489
3490 ret = netdev_register_sysfs(dev);
3491 if (ret)
3492 goto err_uninit;
3493 dev->reg_state = NETREG_REGISTERED;
3494
3495 /*
3496 * Default initial state at registry is that the
3497 * device is present.
3498 */
3499
3500 set_bit(__LINK_STATE_PRESENT, &dev->state);
3501
3502 dev_init_scheduler(dev);
3503 write_lock_bh(&dev_base_lock);
3504 list_add_tail(&dev->dev_list, &dev_base_head);
3505 hlist_add_head(&dev->name_hlist, head);
3506 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3507 dev_hold(dev);
3508 write_unlock_bh(&dev_base_lock);
3509
3510 /* Notify protocols, that a new device appeared. */
3511 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3512 ret = notifier_to_errno(ret);
3513 if (ret)
3514 unregister_netdevice(dev);
3515
3516 out:
3517 return ret;
3518
3519 err_uninit:
3520 if (dev->uninit)
3521 dev->uninit(dev);
3522 goto out;
3523 }
3524
3525 /**
3526 * register_netdev - register a network device
3527 * @dev: device to register
3528 *
3529 * Take a completed network device structure and add it to the kernel
3530 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3531 * chain. 0 is returned on success. A negative errno code is returned
3532 * on a failure to set up the device, or if the name is a duplicate.
3533 *
3534 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3535 * and expands the device name if you passed a format string to
3536 * alloc_netdev.
3537 */
3538 int register_netdev(struct net_device *dev)
3539 {
3540 int err;
3541
3542 rtnl_lock();
3543
3544 /*
3545 * If the name is a format string the caller wants us to do a
3546 * name allocation.
3547 */
3548 if (strchr(dev->name, '%')) {
3549 err = dev_alloc_name(dev, dev->name);
3550 if (err < 0)
3551 goto out;
3552 }
3553
3554 err = register_netdevice(dev);
3555 out:
3556 rtnl_unlock();
3557 return err;
3558 }
3559 EXPORT_SYMBOL(register_netdev);
3560
3561 /*
3562 * netdev_wait_allrefs - wait until all references are gone.
3563 *
3564 * This is called when unregistering network devices.
3565 *
3566 * Any protocol or device that holds a reference should register
3567 * for netdevice notification, and cleanup and put back the
3568 * reference if they receive an UNREGISTER event.
3569 * We can get stuck here if buggy protocols don't correctly
3570 * call dev_put.
3571 */
3572 static void netdev_wait_allrefs(struct net_device *dev)
3573 {
3574 unsigned long rebroadcast_time, warning_time;
3575
3576 rebroadcast_time = warning_time = jiffies;
3577 while (atomic_read(&dev->refcnt) != 0) {
3578 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3579 rtnl_lock();
3580
3581 /* Rebroadcast unregister notification */
3582 raw_notifier_call_chain(&netdev_chain,
3583 NETDEV_UNREGISTER, dev);
3584
3585 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3586 &dev->state)) {
3587 /* We must not have linkwatch events
3588 * pending on unregister. If this
3589 * happens, we simply run the queue
3590 * unscheduled, resulting in a noop
3591 * for this device.
3592 */
3593 linkwatch_run_queue();
3594 }
3595
3596 __rtnl_unlock();
3597
3598 rebroadcast_time = jiffies;
3599 }
3600
3601 msleep(250);
3602
3603 if (time_after(jiffies, warning_time + 10 * HZ)) {
3604 printk(KERN_EMERG "unregister_netdevice: "
3605 "waiting for %s to become free. Usage "
3606 "count = %d\n",
3607 dev->name, atomic_read(&dev->refcnt));
3608 warning_time = jiffies;
3609 }
3610 }
3611 }
3612
3613 /* The sequence is:
3614 *
3615 * rtnl_lock();
3616 * ...
3617 * register_netdevice(x1);
3618 * register_netdevice(x2);
3619 * ...
3620 * unregister_netdevice(y1);
3621 * unregister_netdevice(y2);
3622 * ...
3623 * rtnl_unlock();
3624 * free_netdev(y1);
3625 * free_netdev(y2);
3626 *
3627 * We are invoked by rtnl_unlock() after it drops the semaphore.
3628 * This allows us to deal with problems:
3629 * 1) We can delete sysfs objects which invoke hotplug
3630 * without deadlocking with linkwatch via keventd.
3631 * 2) Since we run with the RTNL semaphore not held, we can sleep
3632 * safely in order to wait for the netdev refcnt to drop to zero.
3633 */
3634 static DEFINE_MUTEX(net_todo_run_mutex);
3635 void netdev_run_todo(void)
3636 {
3637 struct list_head list;
3638
3639 /* Need to guard against multiple cpu's getting out of order. */
3640 mutex_lock(&net_todo_run_mutex);
3641
3642 /* Not safe to do outside the semaphore. We must not return
3643 * until all unregister events invoked by the local processor
3644 * have been completed (either by this todo run, or one on
3645 * another cpu).
3646 */
3647 if (list_empty(&net_todo_list))
3648 goto out;
3649
3650 /* Snapshot list, allow later requests */
3651 spin_lock(&net_todo_list_lock);
3652 list_replace_init(&net_todo_list, &list);
3653 spin_unlock(&net_todo_list_lock);
3654
3655 while (!list_empty(&list)) {
3656 struct net_device *dev
3657 = list_entry(list.next, struct net_device, todo_list);
3658 list_del(&dev->todo_list);
3659
3660 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3661 printk(KERN_ERR "network todo '%s' but state %d\n",
3662 dev->name, dev->reg_state);
3663 dump_stack();
3664 continue;
3665 }
3666
3667 dev->reg_state = NETREG_UNREGISTERED;
3668
3669 netdev_wait_allrefs(dev);
3670
3671 /* paranoia */
3672 BUG_ON(atomic_read(&dev->refcnt));
3673 BUG_TRAP(!dev->ip_ptr);
3674 BUG_TRAP(!dev->ip6_ptr);
3675 BUG_TRAP(!dev->dn_ptr);
3676
3677 if (dev->destructor)
3678 dev->destructor(dev);
3679
3680 /* Free network device */
3681 kobject_put(&dev->dev.kobj);
3682 }
3683
3684 out:
3685 mutex_unlock(&net_todo_run_mutex);
3686 }
3687
3688 static struct net_device_stats *internal_stats(struct net_device *dev)
3689 {
3690 return &dev->stats;
3691 }
3692
3693 /**
3694 * alloc_netdev_mq - allocate network device
3695 * @sizeof_priv: size of private data to allocate space for
3696 * @name: device name format string
3697 * @setup: callback to initialize device
3698 * @queue_count: the number of subqueues to allocate
3699 *
3700 * Allocates a struct net_device with private data area for driver use
3701 * and performs basic initialization. Also allocates subquue structs
3702 * for each queue on the device at the end of the netdevice.
3703 */
3704 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3705 void (*setup)(struct net_device *), unsigned int queue_count)
3706 {
3707 void *p;
3708 struct net_device *dev;
3709 int alloc_size;
3710
3711 BUG_ON(strlen(name) >= sizeof(dev->name));
3712
3713 /* ensure 32-byte alignment of both the device and private area */
3714 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3715 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3716 ~NETDEV_ALIGN_CONST;
3717 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3718
3719 p = kzalloc(alloc_size, GFP_KERNEL);
3720 if (!p) {
3721 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3722 return NULL;
3723 }
3724
3725 dev = (struct net_device *)
3726 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3727 dev->padded = (char *)dev - (char *)p;
3728 dev->nd_net = &init_net;
3729
3730 if (sizeof_priv) {
3731 dev->priv = ((char *)dev +
3732 ((sizeof(struct net_device) +
3733 (sizeof(struct net_device_subqueue) *
3734 (queue_count - 1)) + NETDEV_ALIGN_CONST)
3735 & ~NETDEV_ALIGN_CONST));
3736 }
3737
3738 dev->egress_subqueue_count = queue_count;
3739
3740 dev->get_stats = internal_stats;
3741 netpoll_netdev_init(dev);
3742 setup(dev);
3743 strcpy(dev->name, name);
3744 return dev;
3745 }
3746 EXPORT_SYMBOL(alloc_netdev_mq);
3747
3748 /**
3749 * free_netdev - free network device
3750 * @dev: device
3751 *
3752 * This function does the last stage of destroying an allocated device
3753 * interface. The reference to the device object is released.
3754 * If this is the last reference then it will be freed.
3755 */
3756 void free_netdev(struct net_device *dev)
3757 {
3758 #ifdef CONFIG_SYSFS
3759 /* Compatibility with error handling in drivers */
3760 if (dev->reg_state == NETREG_UNINITIALIZED) {
3761 kfree((char *)dev - dev->padded);
3762 return;
3763 }
3764
3765 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3766 dev->reg_state = NETREG_RELEASED;
3767
3768 /* will free via device release */
3769 put_device(&dev->dev);
3770 #else
3771 kfree((char *)dev - dev->padded);
3772 #endif
3773 }
3774
3775 /* Synchronize with packet receive processing. */
3776 void synchronize_net(void)
3777 {
3778 might_sleep();
3779 synchronize_rcu();
3780 }
3781
3782 /**
3783 * unregister_netdevice - remove device from the kernel
3784 * @dev: device
3785 *
3786 * This function shuts down a device interface and removes it
3787 * from the kernel tables. On success 0 is returned, on a failure
3788 * a negative errno code is returned.
3789 *
3790 * Callers must hold the rtnl semaphore. You may want
3791 * unregister_netdev() instead of this.
3792 */
3793
3794 void unregister_netdevice(struct net_device *dev)
3795 {
3796 BUG_ON(dev_boot_phase);
3797 ASSERT_RTNL();
3798
3799 /* Some devices call without registering for initialization unwind. */
3800 if (dev->reg_state == NETREG_UNINITIALIZED) {
3801 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3802 "was registered\n", dev->name, dev);
3803
3804 WARN_ON(1);
3805 return;
3806 }
3807
3808 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3809
3810 /* If device is running, close it first. */
3811 if (dev->flags & IFF_UP)
3812 dev_close(dev);
3813
3814 /* And unlink it from device chain. */
3815 write_lock_bh(&dev_base_lock);
3816 list_del(&dev->dev_list);
3817 hlist_del(&dev->name_hlist);
3818 hlist_del(&dev->index_hlist);
3819 write_unlock_bh(&dev_base_lock);
3820
3821 dev->reg_state = NETREG_UNREGISTERING;
3822
3823 synchronize_net();
3824
3825 /* Shutdown queueing discipline. */
3826 dev_shutdown(dev);
3827
3828
3829 /* Notify protocols, that we are about to destroy
3830 this device. They should clean all the things.
3831 */
3832 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3833
3834 /*
3835 * Flush the unicast and multicast chains
3836 */
3837 dev_addr_discard(dev);
3838
3839 if (dev->uninit)
3840 dev->uninit(dev);
3841
3842 /* Notifier chain MUST detach us from master device. */
3843 BUG_TRAP(!dev->master);
3844
3845 /* Remove entries from sysfs */
3846 netdev_unregister_sysfs(dev);
3847
3848 /* Finish processing unregister after unlock */
3849 net_set_todo(dev);
3850
3851 synchronize_net();
3852
3853 dev_put(dev);
3854 }
3855
3856 /**
3857 * unregister_netdev - remove device from the kernel
3858 * @dev: device
3859 *
3860 * This function shuts down a device interface and removes it
3861 * from the kernel tables. On success 0 is returned, on a failure
3862 * a negative errno code is returned.
3863 *
3864 * This is just a wrapper for unregister_netdevice that takes
3865 * the rtnl semaphore. In general you want to use this and not
3866 * unregister_netdevice.
3867 */
3868 void unregister_netdev(struct net_device *dev)
3869 {
3870 rtnl_lock();
3871 unregister_netdevice(dev);
3872 rtnl_unlock();
3873 }
3874
3875 EXPORT_SYMBOL(unregister_netdev);
3876
3877 static int dev_cpu_callback(struct notifier_block *nfb,
3878 unsigned long action,
3879 void *ocpu)
3880 {
3881 struct sk_buff **list_skb;
3882 struct net_device **list_net;
3883 struct sk_buff *skb;
3884 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3885 struct softnet_data *sd, *oldsd;
3886
3887 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
3888 return NOTIFY_OK;
3889
3890 local_irq_disable();
3891 cpu = smp_processor_id();
3892 sd = &per_cpu(softnet_data, cpu);
3893 oldsd = &per_cpu(softnet_data, oldcpu);
3894
3895 /* Find end of our completion_queue. */
3896 list_skb = &sd->completion_queue;
3897 while (*list_skb)
3898 list_skb = &(*list_skb)->next;
3899 /* Append completion queue from offline CPU. */
3900 *list_skb = oldsd->completion_queue;
3901 oldsd->completion_queue = NULL;
3902
3903 /* Find end of our output_queue. */
3904 list_net = &sd->output_queue;
3905 while (*list_net)
3906 list_net = &(*list_net)->next_sched;
3907 /* Append output queue from offline CPU. */
3908 *list_net = oldsd->output_queue;
3909 oldsd->output_queue = NULL;
3910
3911 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3912 local_irq_enable();
3913
3914 /* Process offline CPU's input_pkt_queue */
3915 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3916 netif_rx(skb);
3917
3918 return NOTIFY_OK;
3919 }
3920
3921 #ifdef CONFIG_NET_DMA
3922 /**
3923 * net_dma_rebalance - try to maintain one DMA channel per CPU
3924 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
3925 *
3926 * This is called when the number of channels allocated to the net_dma client
3927 * changes. The net_dma client tries to have one DMA channel per CPU.
3928 */
3929
3930 static void net_dma_rebalance(struct net_dma *net_dma)
3931 {
3932 unsigned int cpu, i, n, chan_idx;
3933 struct dma_chan *chan;
3934
3935 if (cpus_empty(net_dma->channel_mask)) {
3936 for_each_online_cpu(cpu)
3937 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
3938 return;
3939 }
3940
3941 i = 0;
3942 cpu = first_cpu(cpu_online_map);
3943
3944 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
3945 chan = net_dma->channels[chan_idx];
3946
3947 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
3948 + (i < (num_online_cpus() %
3949 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
3950
3951 while(n) {
3952 per_cpu(softnet_data, cpu).net_dma = chan;
3953 cpu = next_cpu(cpu, cpu_online_map);
3954 n--;
3955 }
3956 i++;
3957 }
3958 }
3959
3960 /**
3961 * netdev_dma_event - event callback for the net_dma_client
3962 * @client: should always be net_dma_client
3963 * @chan: DMA channel for the event
3964 * @state: DMA state to be handled
3965 */
3966 static enum dma_state_client
3967 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3968 enum dma_state state)
3969 {
3970 int i, found = 0, pos = -1;
3971 struct net_dma *net_dma =
3972 container_of(client, struct net_dma, client);
3973 enum dma_state_client ack = DMA_DUP; /* default: take no action */
3974
3975 spin_lock(&net_dma->lock);
3976 switch (state) {
3977 case DMA_RESOURCE_AVAILABLE:
3978 for (i = 0; i < NR_CPUS; i++)
3979 if (net_dma->channels[i] == chan) {
3980 found = 1;
3981 break;
3982 } else if (net_dma->channels[i] == NULL && pos < 0)
3983 pos = i;
3984
3985 if (!found && pos >= 0) {
3986 ack = DMA_ACK;
3987 net_dma->channels[pos] = chan;
3988 cpu_set(pos, net_dma->channel_mask);
3989 net_dma_rebalance(net_dma);
3990 }
3991 break;
3992 case DMA_RESOURCE_REMOVED:
3993 for (i = 0; i < NR_CPUS; i++)
3994 if (net_dma->channels[i] == chan) {
3995 found = 1;
3996 pos = i;
3997 break;
3998 }
3999
4000 if (found) {
4001 ack = DMA_ACK;
4002 cpu_clear(pos, net_dma->channel_mask);
4003 net_dma->channels[i] = NULL;
4004 net_dma_rebalance(net_dma);
4005 }
4006 break;
4007 default:
4008 break;
4009 }
4010 spin_unlock(&net_dma->lock);
4011
4012 return ack;
4013 }
4014
4015 /**
4016 * netdev_dma_regiser - register the networking subsystem as a DMA client
4017 */
4018 static int __init netdev_dma_register(void)
4019 {
4020 spin_lock_init(&net_dma.lock);
4021 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4022 dma_async_client_register(&net_dma.client);
4023 dma_async_client_chan_request(&net_dma.client);
4024 return 0;
4025 }
4026
4027 #else
4028 static int __init netdev_dma_register(void) { return -ENODEV; }
4029 #endif /* CONFIG_NET_DMA */
4030
4031 /**
4032 * netdev_compute_feature - compute conjunction of two feature sets
4033 * @all: first feature set
4034 * @one: second feature set
4035 *
4036 * Computes a new feature set after adding a device with feature set
4037 * @one to the master device with current feature set @all. Returns
4038 * the new feature set.
4039 */
4040 int netdev_compute_features(unsigned long all, unsigned long one)
4041 {
4042 /* if device needs checksumming, downgrade to hw checksumming */
4043 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4044 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4045
4046 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4047 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4048 all ^= NETIF_F_HW_CSUM
4049 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4050
4051 if (one & NETIF_F_GSO)
4052 one |= NETIF_F_GSO_SOFTWARE;
4053 one |= NETIF_F_GSO;
4054
4055 /* If even one device supports robust GSO, enable it for all. */
4056 if (one & NETIF_F_GSO_ROBUST)
4057 all |= NETIF_F_GSO_ROBUST;
4058
4059 all &= one | NETIF_F_LLTX;
4060
4061 if (!(all & NETIF_F_ALL_CSUM))
4062 all &= ~NETIF_F_SG;
4063 if (!(all & NETIF_F_SG))
4064 all &= ~NETIF_F_GSO_MASK;
4065
4066 return all;
4067 }
4068 EXPORT_SYMBOL(netdev_compute_features);
4069
4070 /*
4071 * Initialize the DEV module. At boot time this walks the device list and
4072 * unhooks any devices that fail to initialise (normally hardware not
4073 * present) and leaves us with a valid list of present and active devices.
4074 *
4075 */
4076
4077 /*
4078 * This is called single threaded during boot, so no need
4079 * to take the rtnl semaphore.
4080 */
4081 static int __init net_dev_init(void)
4082 {
4083 int i, rc = -ENOMEM;
4084
4085 BUG_ON(!dev_boot_phase);
4086
4087 if (dev_proc_init())
4088 goto out;
4089
4090 if (netdev_sysfs_init())
4091 goto out;
4092
4093 INIT_LIST_HEAD(&ptype_all);
4094 for (i = 0; i < 16; i++)
4095 INIT_LIST_HEAD(&ptype_base[i]);
4096
4097 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
4098 INIT_HLIST_HEAD(&dev_name_head[i]);
4099
4100 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
4101 INIT_HLIST_HEAD(&dev_index_head[i]);
4102
4103 /*
4104 * Initialise the packet receive queues.
4105 */
4106
4107 for_each_possible_cpu(i) {
4108 struct softnet_data *queue;
4109
4110 queue = &per_cpu(softnet_data, i);
4111 skb_queue_head_init(&queue->input_pkt_queue);
4112 queue->completion_queue = NULL;
4113 INIT_LIST_HEAD(&queue->poll_list);
4114
4115 queue->backlog.poll = process_backlog;
4116 queue->backlog.weight = weight_p;
4117 }
4118
4119 netdev_dma_register();
4120
4121 dev_boot_phase = 0;
4122
4123 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4124 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4125
4126 hotcpu_notifier(dev_cpu_callback, 0);
4127 dst_init();
4128 dev_mcast_init();
4129 rc = 0;
4130 out:
4131 return rc;
4132 }
4133
4134 subsys_initcall(net_dev_init);
4135
4136 EXPORT_SYMBOL(__dev_get_by_index);
4137 EXPORT_SYMBOL(__dev_get_by_name);
4138 EXPORT_SYMBOL(__dev_remove_pack);
4139 EXPORT_SYMBOL(dev_valid_name);
4140 EXPORT_SYMBOL(dev_add_pack);
4141 EXPORT_SYMBOL(dev_alloc_name);
4142 EXPORT_SYMBOL(dev_close);
4143 EXPORT_SYMBOL(dev_get_by_flags);
4144 EXPORT_SYMBOL(dev_get_by_index);
4145 EXPORT_SYMBOL(dev_get_by_name);
4146 EXPORT_SYMBOL(dev_open);
4147 EXPORT_SYMBOL(dev_queue_xmit);
4148 EXPORT_SYMBOL(dev_remove_pack);
4149 EXPORT_SYMBOL(dev_set_allmulti);
4150 EXPORT_SYMBOL(dev_set_promiscuity);
4151 EXPORT_SYMBOL(dev_change_flags);
4152 EXPORT_SYMBOL(dev_set_mtu);
4153 EXPORT_SYMBOL(dev_set_mac_address);
4154 EXPORT_SYMBOL(free_netdev);
4155 EXPORT_SYMBOL(netdev_boot_setup_check);
4156 EXPORT_SYMBOL(netdev_set_master);
4157 EXPORT_SYMBOL(netdev_state_change);
4158 EXPORT_SYMBOL(netif_receive_skb);
4159 EXPORT_SYMBOL(netif_rx);
4160 EXPORT_SYMBOL(register_gifconf);
4161 EXPORT_SYMBOL(register_netdevice);
4162 EXPORT_SYMBOL(register_netdevice_notifier);
4163 EXPORT_SYMBOL(skb_checksum_help);
4164 EXPORT_SYMBOL(synchronize_net);
4165 EXPORT_SYMBOL(unregister_netdevice);
4166 EXPORT_SYMBOL(unregister_netdevice_notifier);
4167 EXPORT_SYMBOL(net_enable_timestamp);
4168 EXPORT_SYMBOL(net_disable_timestamp);
4169 EXPORT_SYMBOL(dev_get_flags);
4170
4171 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4172 EXPORT_SYMBOL(br_handle_frame_hook);
4173 EXPORT_SYMBOL(br_fdb_get_hook);
4174 EXPORT_SYMBOL(br_fdb_put_hook);
4175 #endif
4176
4177 #ifdef CONFIG_KMOD
4178 EXPORT_SYMBOL(dev_load);
4179 #endif
4180
4181 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.109759 seconds and 6 git commands to generate.