net: reinstate rtnl in call_netdevice_notifiers()
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 /*
148 * The list of packet types we will receive (as opposed to discard)
149 * and the routines to invoke.
150 *
151 * Why 16. Because with 16 the only overlap we get on a hash of the
152 * low nibble of the protocol value is RARP/SNAP/X.25.
153 *
154 * NOTE: That is no longer true with the addition of VLAN tags. Not
155 * sure which should go first, but I bet it won't make much
156 * difference if we are running VLANs. The good news is that
157 * this protocol won't be in the list unless compiled in, so
158 * the average user (w/out VLANs) will not be adversely affected.
159 * --BLG
160 *
161 * 0800 IP
162 * 8100 802.1Q VLAN
163 * 0001 802.3
164 * 0002 AX.25
165 * 0004 802.2
166 * 8035 RARP
167 * 0005 SNAP
168 * 0805 X.25
169 * 0806 ARP
170 * 8137 IPX
171 * 0009 Localtalk
172 * 86DD IPv6
173 */
174
175 #define PTYPE_HASH_SIZE (16)
176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
177
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly; /* Taps */
181
182 /*
183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184 * semaphore.
185 *
186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187 *
188 * Writers must hold the rtnl semaphore while they loop through the
189 * dev_base_head list, and hold dev_base_lock for writing when they do the
190 * actual updates. This allows pure readers to access the list even
191 * while a writer is preparing to update it.
192 *
193 * To put it another way, dev_base_lock is held for writing only to
194 * protect against pure readers; the rtnl semaphore provides the
195 * protection against other writers.
196 *
197 * See, for example usages, register_netdevice() and
198 * unregister_netdevice(), which must be called with the rtnl
199 * semaphore held.
200 */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 while (++net->dev_base_seq == 0);
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 struct net *net = dev_net(dev);
239
240 ASSERT_RTNL();
241
242 write_lock_bh(&dev_base_lock);
243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 hlist_add_head_rcu(&dev->index_hlist,
246 dev_index_hash(net, dev->ifindex));
247 write_unlock_bh(&dev_base_lock);
248
249 dev_base_seq_inc(net);
250
251 return 0;
252 }
253
254 /* Device list removal
255 * caller must respect a RCU grace period before freeing/reusing dev
256 */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 ASSERT_RTNL();
260
261 /* Unlink dev from the device chain */
262 write_lock_bh(&dev_base_lock);
263 list_del_rcu(&dev->dev_list);
264 hlist_del_rcu(&dev->name_hlist);
265 hlist_del_rcu(&dev->index_hlist);
266 write_unlock_bh(&dev_base_lock);
267
268 dev_base_seq_inc(dev_net(dev));
269 }
270
271 /*
272 * Our notifier list
273 */
274
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276
277 /*
278 * Device drivers call our routines to queue packets here. We empty the
279 * queue in the local softnet handler.
280 */
281
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284
285 #ifdef CONFIG_LOCKDEP
286 /*
287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288 * according to dev->type
289 */
290 static const unsigned short netdev_lock_type[] =
291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306
307 static const char *const netdev_lock_name[] =
308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 int i;
330
331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 if (netdev_lock_type[i] == dev_type)
333 return i;
334 /* the last key is used by default */
335 return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 int i;
342
343 i = netdev_lock_pos(dev_type);
344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 netdev_lock_name[i]);
346 }
347
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 int i;
351
352 i = netdev_lock_pos(dev->type);
353 lockdep_set_class_and_name(&dev->addr_list_lock,
354 &netdev_addr_lock_key[i],
355 netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366
367 /*******************************************************************************
368
369 Protocol management and registration routines
370
371 *******************************************************************************/
372
373 /*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 if (pt->type == htons(ETH_P_ALL))
392 return &ptype_all;
393 else
394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398 * dev_add_pack - add packet handler
399 * @pt: packet type declaration
400 *
401 * Add a protocol handler to the networking stack. The passed &packet_type
402 * is linked into kernel lists and may not be freed until it has been
403 * removed from the kernel lists.
404 *
405 * This call does not sleep therefore it can not
406 * guarantee all CPU's that are in middle of receiving packets
407 * will see the new packet type (until the next received packet).
408 */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412 struct list_head *head = ptype_head(pt);
413
414 spin_lock(&ptype_lock);
415 list_add_rcu(&pt->list, head);
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421 * __dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * The packet type might still be in use by receivers
430 * and must not be freed until after all the CPU's have gone
431 * through a quiescent state.
432 */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 struct list_head *head = ptype_head(pt);
436 struct packet_type *pt1;
437
438 spin_lock(&ptype_lock);
439
440 list_for_each_entry(pt1, head, list) {
441 if (pt == pt1) {
442 list_del_rcu(&pt->list);
443 goto out;
444 }
445 }
446
447 pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454 * dev_remove_pack - remove packet handler
455 * @pt: packet type declaration
456 *
457 * Remove a protocol handler that was previously added to the kernel
458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
459 * from the kernel lists and can be freed or reused once this function
460 * returns.
461 *
462 * This call sleeps to guarantee that no CPU is looking at the packet
463 * type after return.
464 */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 __dev_remove_pack(pt);
468
469 synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473 /******************************************************************************
474
475 Device Boot-time Settings Routines
476
477 *******************************************************************************/
478
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481
482 /**
483 * netdev_boot_setup_add - add new setup entry
484 * @name: name of the device
485 * @map: configured settings for the device
486 *
487 * Adds new setup entry to the dev_boot_setup list. The function
488 * returns 0 on error and 1 on success. This is a generic routine to
489 * all netdevices.
490 */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 struct netdev_boot_setup *s;
494 int i;
495
496 s = dev_boot_setup;
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 memset(s[i].name, 0, sizeof(s[i].name));
500 strlcpy(s[i].name, name, IFNAMSIZ);
501 memcpy(&s[i].map, map, sizeof(s[i].map));
502 break;
503 }
504 }
505
506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508
509 /**
510 * netdev_boot_setup_check - check boot time settings
511 * @dev: the netdevice
512 *
513 * Check boot time settings for the device.
514 * The found settings are set for the device to be used
515 * later in the device probing.
516 * Returns 0 if no settings found, 1 if they are.
517 */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 struct netdev_boot_setup *s = dev_boot_setup;
521 int i;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 !strcmp(dev->name, s[i].name)) {
526 dev->irq = s[i].map.irq;
527 dev->base_addr = s[i].map.base_addr;
528 dev->mem_start = s[i].map.mem_start;
529 dev->mem_end = s[i].map.mem_end;
530 return 1;
531 }
532 }
533 return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536
537
538 /**
539 * netdev_boot_base - get address from boot time settings
540 * @prefix: prefix for network device
541 * @unit: id for network device
542 *
543 * Check boot time settings for the base address of device.
544 * The found settings are set for the device to be used
545 * later in the device probing.
546 * Returns 0 if no settings found.
547 */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 const struct netdev_boot_setup *s = dev_boot_setup;
551 char name[IFNAMSIZ];
552 int i;
553
554 sprintf(name, "%s%d", prefix, unit);
555
556 /*
557 * If device already registered then return base of 1
558 * to indicate not to probe for this interface
559 */
560 if (__dev_get_by_name(&init_net, name))
561 return 1;
562
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 if (!strcmp(name, s[i].name))
565 return s[i].map.base_addr;
566 return 0;
567 }
568
569 /*
570 * Saves at boot time configured settings for any netdevice.
571 */
572 int __init netdev_boot_setup(char *str)
573 {
574 int ints[5];
575 struct ifmap map;
576
577 str = get_options(str, ARRAY_SIZE(ints), ints);
578 if (!str || !*str)
579 return 0;
580
581 /* Save settings */
582 memset(&map, 0, sizeof(map));
583 if (ints[0] > 0)
584 map.irq = ints[1];
585 if (ints[0] > 1)
586 map.base_addr = ints[2];
587 if (ints[0] > 2)
588 map.mem_start = ints[3];
589 if (ints[0] > 3)
590 map.mem_end = ints[4];
591
592 /* Add new entry to the list */
593 return netdev_boot_setup_add(str, &map);
594 }
595
596 __setup("netdev=", netdev_boot_setup);
597
598 /*******************************************************************************
599
600 Device Interface Subroutines
601
602 *******************************************************************************/
603
604 /**
605 * __dev_get_by_name - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name. Must be called under RTNL semaphore
610 * or @dev_base_lock. If the name is found a pointer to the device
611 * is returned. If the name is not found then %NULL is returned. The
612 * reference counters are not incremented so the caller must be
613 * careful with locks.
614 */
615
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629
630 /**
631 * dev_get_by_name_rcu - find a device by its name
632 * @net: the applicable net namespace
633 * @name: name to find
634 *
635 * Find an interface by name.
636 * If the name is found a pointer to the device is returned.
637 * If the name is not found then %NULL is returned.
638 * The reference counters are not incremented so the caller must be
639 * careful with locks. The caller must hold RCU lock.
640 */
641
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 struct hlist_node *p;
645 struct net_device *dev;
646 struct hlist_head *head = dev_name_hash(net, name);
647
648 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 if (!strncmp(dev->name, name, IFNAMSIZ))
650 return dev;
651
652 return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655
656 /**
657 * dev_get_by_name - find a device by its name
658 * @net: the applicable net namespace
659 * @name: name to find
660 *
661 * Find an interface by name. This can be called from any
662 * context and does its own locking. The returned handle has
663 * the usage count incremented and the caller must use dev_put() to
664 * release it when it is no longer needed. %NULL is returned if no
665 * matching device is found.
666 */
667
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 struct net_device *dev;
671
672 rcu_read_lock();
673 dev = dev_get_by_name_rcu(net, name);
674 if (dev)
675 dev_hold(dev);
676 rcu_read_unlock();
677 return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680
681 /**
682 * __dev_get_by_index - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold either the RTNL semaphore
690 * or @dev_base_lock.
691 */
692
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 struct hlist_node *p;
696 struct net_device *dev;
697 struct hlist_head *head = dev_index_hash(net, ifindex);
698
699 hlist_for_each_entry(dev, p, head, index_hlist)
700 if (dev->ifindex == ifindex)
701 return dev;
702
703 return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706
707 /**
708 * dev_get_by_index_rcu - find a device by its ifindex
709 * @net: the applicable net namespace
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns %NULL if the device
713 * is not found or a pointer to the device. The device has not
714 * had its reference counter increased so the caller must be careful
715 * about locking. The caller must hold RCU lock.
716 */
717
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 struct hlist_node *p;
721 struct net_device *dev;
722 struct hlist_head *head = dev_index_hash(net, ifindex);
723
724 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 if (dev->ifindex == ifindex)
726 return dev;
727
728 return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731
732
733 /**
734 * dev_get_by_index - find a device by its ifindex
735 * @net: the applicable net namespace
736 * @ifindex: index of device
737 *
738 * Search for an interface by index. Returns NULL if the device
739 * is not found or a pointer to the device. The device returned has
740 * had a reference added and the pointer is safe until the user calls
741 * dev_put to indicate they have finished with it.
742 */
743
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 struct net_device *dev;
747
748 rcu_read_lock();
749 dev = dev_get_by_index_rcu(net, ifindex);
750 if (dev)
751 dev_hold(dev);
752 rcu_read_unlock();
753 return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756
757 /**
758 * dev_getbyhwaddr_rcu - find a device by its hardware address
759 * @net: the applicable net namespace
760 * @type: media type of device
761 * @ha: hardware address
762 *
763 * Search for an interface by MAC address. Returns NULL if the device
764 * is not found or a pointer to the device.
765 * The caller must hold RCU or RTNL.
766 * The returned device has not had its ref count increased
767 * and the caller must therefore be careful about locking
768 *
769 */
770
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 const char *ha)
773 {
774 struct net_device *dev;
775
776 for_each_netdev_rcu(net, dev)
777 if (dev->type == type &&
778 !memcmp(dev->dev_addr, ha, dev->addr_len))
779 return dev;
780
781 return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 struct net_device *dev;
788
789 ASSERT_RTNL();
790 for_each_netdev(net, dev)
791 if (dev->type == type)
792 return dev;
793
794 return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 struct net_device *dev, *ret = NULL;
801
802 rcu_read_lock();
803 for_each_netdev_rcu(net, dev)
804 if (dev->type == type) {
805 dev_hold(dev);
806 ret = dev;
807 break;
808 }
809 rcu_read_unlock();
810 return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813
814 /**
815 * dev_get_by_flags_rcu - find any device with given flags
816 * @net: the applicable net namespace
817 * @if_flags: IFF_* values
818 * @mask: bitmask of bits in if_flags to check
819 *
820 * Search for any interface with the given flags. Returns NULL if a device
821 * is not found or a pointer to the device. Must be called inside
822 * rcu_read_lock(), and result refcount is unchanged.
823 */
824
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 unsigned short mask)
827 {
828 struct net_device *dev, *ret;
829
830 ret = NULL;
831 for_each_netdev_rcu(net, dev) {
832 if (((dev->flags ^ if_flags) & mask) == 0) {
833 ret = dev;
834 break;
835 }
836 }
837 return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840
841 /**
842 * dev_valid_name - check if name is okay for network device
843 * @name: name string
844 *
845 * Network device names need to be valid file names to
846 * to allow sysfs to work. We also disallow any kind of
847 * whitespace.
848 */
849 bool dev_valid_name(const char *name)
850 {
851 if (*name == '\0')
852 return false;
853 if (strlen(name) >= IFNAMSIZ)
854 return false;
855 if (!strcmp(name, ".") || !strcmp(name, ".."))
856 return false;
857
858 while (*name) {
859 if (*name == '/' || isspace(*name))
860 return false;
861 name++;
862 }
863 return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866
867 /**
868 * __dev_alloc_name - allocate a name for a device
869 * @net: network namespace to allocate the device name in
870 * @name: name format string
871 * @buf: scratch buffer and result name string
872 *
873 * Passed a format string - eg "lt%d" it will try and find a suitable
874 * id. It scans list of devices to build up a free map, then chooses
875 * the first empty slot. The caller must hold the dev_base or rtnl lock
876 * while allocating the name and adding the device in order to avoid
877 * duplicates.
878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879 * Returns the number of the unit assigned or a negative errno code.
880 */
881
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 int i = 0;
885 const char *p;
886 const int max_netdevices = 8*PAGE_SIZE;
887 unsigned long *inuse;
888 struct net_device *d;
889
890 p = strnchr(name, IFNAMSIZ-1, '%');
891 if (p) {
892 /*
893 * Verify the string as this thing may have come from
894 * the user. There must be either one "%d" and no other "%"
895 * characters.
896 */
897 if (p[1] != 'd' || strchr(p + 2, '%'))
898 return -EINVAL;
899
900 /* Use one page as a bit array of possible slots */
901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 if (!inuse)
903 return -ENOMEM;
904
905 for_each_netdev(net, d) {
906 if (!sscanf(d->name, name, &i))
907 continue;
908 if (i < 0 || i >= max_netdevices)
909 continue;
910
911 /* avoid cases where sscanf is not exact inverse of printf */
912 snprintf(buf, IFNAMSIZ, name, i);
913 if (!strncmp(buf, d->name, IFNAMSIZ))
914 set_bit(i, inuse);
915 }
916
917 i = find_first_zero_bit(inuse, max_netdevices);
918 free_page((unsigned long) inuse);
919 }
920
921 if (buf != name)
922 snprintf(buf, IFNAMSIZ, name, i);
923 if (!__dev_get_by_name(net, buf))
924 return i;
925
926 /* It is possible to run out of possible slots
927 * when the name is long and there isn't enough space left
928 * for the digits, or if all bits are used.
929 */
930 return -ENFILE;
931 }
932
933 /**
934 * dev_alloc_name - allocate a name for a device
935 * @dev: device
936 * @name: name format string
937 *
938 * Passed a format string - eg "lt%d" it will try and find a suitable
939 * id. It scans list of devices to build up a free map, then chooses
940 * the first empty slot. The caller must hold the dev_base or rtnl lock
941 * while allocating the name and adding the device in order to avoid
942 * duplicates.
943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944 * Returns the number of the unit assigned or a negative errno code.
945 */
946
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 char buf[IFNAMSIZ];
950 struct net *net;
951 int ret;
952
953 BUG_ON(!dev_net(dev));
954 net = dev_net(dev);
955 ret = __dev_alloc_name(net, name, buf);
956 if (ret >= 0)
957 strlcpy(dev->name, buf, IFNAMSIZ);
958 return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 struct net *net;
965
966 BUG_ON(!dev_net(dev));
967 net = dev_net(dev);
968
969 if (!dev_valid_name(name))
970 return -EINVAL;
971
972 if (strchr(name, '%'))
973 return dev_alloc_name(dev, name);
974 else if (__dev_get_by_name(net, name))
975 return -EEXIST;
976 else if (dev->name != name)
977 strlcpy(dev->name, name, IFNAMSIZ);
978
979 return 0;
980 }
981
982 /**
983 * dev_change_name - change name of a device
984 * @dev: device
985 * @newname: name (or format string) must be at least IFNAMSIZ
986 *
987 * Change name of a device, can pass format strings "eth%d".
988 * for wildcarding.
989 */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 char oldname[IFNAMSIZ];
993 int err = 0;
994 int ret;
995 struct net *net;
996
997 ASSERT_RTNL();
998 BUG_ON(!dev_net(dev));
999
1000 net = dev_net(dev);
1001 if (dev->flags & IFF_UP)
1002 return -EBUSY;
1003
1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 return 0;
1006
1007 memcpy(oldname, dev->name, IFNAMSIZ);
1008
1009 err = dev_get_valid_name(dev, newname);
1010 if (err < 0)
1011 return err;
1012
1013 rollback:
1014 ret = device_rename(&dev->dev, dev->name);
1015 if (ret) {
1016 memcpy(dev->name, oldname, IFNAMSIZ);
1017 return ret;
1018 }
1019
1020 write_lock_bh(&dev_base_lock);
1021 hlist_del_rcu(&dev->name_hlist);
1022 write_unlock_bh(&dev_base_lock);
1023
1024 synchronize_rcu();
1025
1026 write_lock_bh(&dev_base_lock);
1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 write_unlock_bh(&dev_base_lock);
1029
1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 ret = notifier_to_errno(ret);
1032
1033 if (ret) {
1034 /* err >= 0 after dev_alloc_name() or stores the first errno */
1035 if (err >= 0) {
1036 err = ret;
1037 memcpy(dev->name, oldname, IFNAMSIZ);
1038 goto rollback;
1039 } else {
1040 pr_err("%s: name change rollback failed: %d\n",
1041 dev->name, ret);
1042 }
1043 }
1044
1045 return err;
1046 }
1047
1048 /**
1049 * dev_set_alias - change ifalias of a device
1050 * @dev: device
1051 * @alias: name up to IFALIASZ
1052 * @len: limit of bytes to copy from info
1053 *
1054 * Set ifalias for a device,
1055 */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 char *new_ifalias;
1059
1060 ASSERT_RTNL();
1061
1062 if (len >= IFALIASZ)
1063 return -EINVAL;
1064
1065 if (!len) {
1066 if (dev->ifalias) {
1067 kfree(dev->ifalias);
1068 dev->ifalias = NULL;
1069 }
1070 return 0;
1071 }
1072
1073 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 if (!new_ifalias)
1075 return -ENOMEM;
1076 dev->ifalias = new_ifalias;
1077
1078 strlcpy(dev->ifalias, alias, len+1);
1079 return len;
1080 }
1081
1082
1083 /**
1084 * netdev_features_change - device changes features
1085 * @dev: device to cause notification
1086 *
1087 * Called to indicate a device has changed features.
1088 */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094
1095 /**
1096 * netdev_state_change - device changes state
1097 * @dev: device to cause notification
1098 *
1099 * Called to indicate a device has changed state. This function calls
1100 * the notifier chains for netdev_chain and sends a NEWLINK message
1101 * to the routing socket.
1102 */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 if (dev->flags & IFF_UP) {
1106 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 }
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111
1112 /**
1113 * netdev_notify_peers - notify network peers about existence of @dev
1114 * @dev: network device
1115 *
1116 * Generate traffic such that interested network peers are aware of
1117 * @dev, such as by generating a gratuitous ARP. This may be used when
1118 * a device wants to inform the rest of the network about some sort of
1119 * reconfiguration such as a failover event or virtual machine
1120 * migration.
1121 */
1122 void netdev_notify_peers(struct net_device *dev)
1123 {
1124 rtnl_lock();
1125 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1126 rtnl_unlock();
1127 }
1128 EXPORT_SYMBOL(netdev_notify_peers);
1129
1130 /**
1131 * dev_load - load a network module
1132 * @net: the applicable net namespace
1133 * @name: name of interface
1134 *
1135 * If a network interface is not present and the process has suitable
1136 * privileges this function loads the module. If module loading is not
1137 * available in this kernel then it becomes a nop.
1138 */
1139
1140 void dev_load(struct net *net, const char *name)
1141 {
1142 struct net_device *dev;
1143 int no_module;
1144
1145 rcu_read_lock();
1146 dev = dev_get_by_name_rcu(net, name);
1147 rcu_read_unlock();
1148
1149 no_module = !dev;
1150 if (no_module && capable(CAP_NET_ADMIN))
1151 no_module = request_module("netdev-%s", name);
1152 if (no_module && capable(CAP_SYS_MODULE)) {
1153 if (!request_module("%s", name))
1154 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1155 name);
1156 }
1157 }
1158 EXPORT_SYMBOL(dev_load);
1159
1160 static int __dev_open(struct net_device *dev)
1161 {
1162 const struct net_device_ops *ops = dev->netdev_ops;
1163 int ret;
1164
1165 ASSERT_RTNL();
1166
1167 if (!netif_device_present(dev))
1168 return -ENODEV;
1169
1170 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1171 ret = notifier_to_errno(ret);
1172 if (ret)
1173 return ret;
1174
1175 set_bit(__LINK_STATE_START, &dev->state);
1176
1177 if (ops->ndo_validate_addr)
1178 ret = ops->ndo_validate_addr(dev);
1179
1180 if (!ret && ops->ndo_open)
1181 ret = ops->ndo_open(dev);
1182
1183 if (ret)
1184 clear_bit(__LINK_STATE_START, &dev->state);
1185 else {
1186 dev->flags |= IFF_UP;
1187 net_dmaengine_get();
1188 dev_set_rx_mode(dev);
1189 dev_activate(dev);
1190 add_device_randomness(dev->dev_addr, dev->addr_len);
1191 }
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * dev_open - prepare an interface for use.
1198 * @dev: device to open
1199 *
1200 * Takes a device from down to up state. The device's private open
1201 * function is invoked and then the multicast lists are loaded. Finally
1202 * the device is moved into the up state and a %NETDEV_UP message is
1203 * sent to the netdev notifier chain.
1204 *
1205 * Calling this function on an active interface is a nop. On a failure
1206 * a negative errno code is returned.
1207 */
1208 int dev_open(struct net_device *dev)
1209 {
1210 int ret;
1211
1212 if (dev->flags & IFF_UP)
1213 return 0;
1214
1215 ret = __dev_open(dev);
1216 if (ret < 0)
1217 return ret;
1218
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close_many(struct list_head *head)
1227 {
1228 struct net_device *dev;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 list_for_each_entry(dev, head, unreg_list) {
1234 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1235
1236 clear_bit(__LINK_STATE_START, &dev->state);
1237
1238 /* Synchronize to scheduled poll. We cannot touch poll list, it
1239 * can be even on different cpu. So just clear netif_running().
1240 *
1241 * dev->stop() will invoke napi_disable() on all of it's
1242 * napi_struct instances on this device.
1243 */
1244 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1245 }
1246
1247 dev_deactivate_many(head);
1248
1249 list_for_each_entry(dev, head, unreg_list) {
1250 const struct net_device_ops *ops = dev->netdev_ops;
1251
1252 /*
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1255 *
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1258 */
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1261
1262 dev->flags &= ~IFF_UP;
1263 net_dmaengine_put();
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int __dev_close(struct net_device *dev)
1270 {
1271 int retval;
1272 LIST_HEAD(single);
1273
1274 list_add(&dev->unreg_list, &single);
1275 retval = __dev_close_many(&single);
1276 list_del(&single);
1277 return retval;
1278 }
1279
1280 static int dev_close_many(struct list_head *head)
1281 {
1282 struct net_device *dev, *tmp;
1283 LIST_HEAD(tmp_list);
1284
1285 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1286 if (!(dev->flags & IFF_UP))
1287 list_move(&dev->unreg_list, &tmp_list);
1288
1289 __dev_close_many(head);
1290
1291 list_for_each_entry(dev, head, unreg_list) {
1292 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1293 call_netdevice_notifiers(NETDEV_DOWN, dev);
1294 }
1295
1296 /* rollback_registered_many needs the complete original list */
1297 list_splice(&tmp_list, head);
1298 return 0;
1299 }
1300
1301 /**
1302 * dev_close - shutdown an interface.
1303 * @dev: device to shutdown
1304 *
1305 * This function moves an active device into down state. A
1306 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1307 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1308 * chain.
1309 */
1310 int dev_close(struct net_device *dev)
1311 {
1312 if (dev->flags & IFF_UP) {
1313 LIST_HEAD(single);
1314
1315 list_add(&dev->unreg_list, &single);
1316 dev_close_many(&single);
1317 list_del(&single);
1318 }
1319 return 0;
1320 }
1321 EXPORT_SYMBOL(dev_close);
1322
1323
1324 /**
1325 * dev_disable_lro - disable Large Receive Offload on a device
1326 * @dev: device
1327 *
1328 * Disable Large Receive Offload (LRO) on a net device. Must be
1329 * called under RTNL. This is needed if received packets may be
1330 * forwarded to another interface.
1331 */
1332 void dev_disable_lro(struct net_device *dev)
1333 {
1334 /*
1335 * If we're trying to disable lro on a vlan device
1336 * use the underlying physical device instead
1337 */
1338 if (is_vlan_dev(dev))
1339 dev = vlan_dev_real_dev(dev);
1340
1341 dev->wanted_features &= ~NETIF_F_LRO;
1342 netdev_update_features(dev);
1343
1344 if (unlikely(dev->features & NETIF_F_LRO))
1345 netdev_WARN(dev, "failed to disable LRO!\n");
1346 }
1347 EXPORT_SYMBOL(dev_disable_lro);
1348
1349
1350 static int dev_boot_phase = 1;
1351
1352 /**
1353 * register_netdevice_notifier - register a network notifier block
1354 * @nb: notifier
1355 *
1356 * Register a notifier to be called when network device events occur.
1357 * The notifier passed is linked into the kernel structures and must
1358 * not be reused until it has been unregistered. A negative errno code
1359 * is returned on a failure.
1360 *
1361 * When registered all registration and up events are replayed
1362 * to the new notifier to allow device to have a race free
1363 * view of the network device list.
1364 */
1365
1366 int register_netdevice_notifier(struct notifier_block *nb)
1367 {
1368 struct net_device *dev;
1369 struct net_device *last;
1370 struct net *net;
1371 int err;
1372
1373 rtnl_lock();
1374 err = raw_notifier_chain_register(&netdev_chain, nb);
1375 if (err)
1376 goto unlock;
1377 if (dev_boot_phase)
1378 goto unlock;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1382 err = notifier_to_errno(err);
1383 if (err)
1384 goto rollback;
1385
1386 if (!(dev->flags & IFF_UP))
1387 continue;
1388
1389 nb->notifier_call(nb, NETDEV_UP, dev);
1390 }
1391 }
1392
1393 unlock:
1394 rtnl_unlock();
1395 return err;
1396
1397 rollback:
1398 last = dev;
1399 for_each_net(net) {
1400 for_each_netdev(net, dev) {
1401 if (dev == last)
1402 goto outroll;
1403
1404 if (dev->flags & IFF_UP) {
1405 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1406 nb->notifier_call(nb, NETDEV_DOWN, dev);
1407 }
1408 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1409 }
1410 }
1411
1412 outroll:
1413 raw_notifier_chain_unregister(&netdev_chain, nb);
1414 goto unlock;
1415 }
1416 EXPORT_SYMBOL(register_netdevice_notifier);
1417
1418 /**
1419 * unregister_netdevice_notifier - unregister a network notifier block
1420 * @nb: notifier
1421 *
1422 * Unregister a notifier previously registered by
1423 * register_netdevice_notifier(). The notifier is unlinked into the
1424 * kernel structures and may then be reused. A negative errno code
1425 * is returned on a failure.
1426 *
1427 * After unregistering unregister and down device events are synthesized
1428 * for all devices on the device list to the removed notifier to remove
1429 * the need for special case cleanup code.
1430 */
1431
1432 int unregister_netdevice_notifier(struct notifier_block *nb)
1433 {
1434 struct net_device *dev;
1435 struct net *net;
1436 int err;
1437
1438 rtnl_lock();
1439 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1440 if (err)
1441 goto unlock;
1442
1443 for_each_net(net) {
1444 for_each_netdev(net, dev) {
1445 if (dev->flags & IFF_UP) {
1446 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1447 nb->notifier_call(nb, NETDEV_DOWN, dev);
1448 }
1449 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1450 }
1451 }
1452 unlock:
1453 rtnl_unlock();
1454 return err;
1455 }
1456 EXPORT_SYMBOL(unregister_netdevice_notifier);
1457
1458 /**
1459 * call_netdevice_notifiers - call all network notifier blocks
1460 * @val: value passed unmodified to notifier function
1461 * @dev: net_device pointer passed unmodified to notifier function
1462 *
1463 * Call all network notifier blocks. Parameters and return value
1464 * are as for raw_notifier_call_chain().
1465 */
1466
1467 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1468 {
1469 ASSERT_RTNL();
1470 return raw_notifier_call_chain(&netdev_chain, val, dev);
1471 }
1472 EXPORT_SYMBOL(call_netdevice_notifiers);
1473
1474 static struct static_key netstamp_needed __read_mostly;
1475 #ifdef HAVE_JUMP_LABEL
1476 /* We are not allowed to call static_key_slow_dec() from irq context
1477 * If net_disable_timestamp() is called from irq context, defer the
1478 * static_key_slow_dec() calls.
1479 */
1480 static atomic_t netstamp_needed_deferred;
1481 #endif
1482
1483 void net_enable_timestamp(void)
1484 {
1485 #ifdef HAVE_JUMP_LABEL
1486 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1487
1488 if (deferred) {
1489 while (--deferred)
1490 static_key_slow_dec(&netstamp_needed);
1491 return;
1492 }
1493 #endif
1494 WARN_ON(in_interrupt());
1495 static_key_slow_inc(&netstamp_needed);
1496 }
1497 EXPORT_SYMBOL(net_enable_timestamp);
1498
1499 void net_disable_timestamp(void)
1500 {
1501 #ifdef HAVE_JUMP_LABEL
1502 if (in_interrupt()) {
1503 atomic_inc(&netstamp_needed_deferred);
1504 return;
1505 }
1506 #endif
1507 static_key_slow_dec(&netstamp_needed);
1508 }
1509 EXPORT_SYMBOL(net_disable_timestamp);
1510
1511 static inline void net_timestamp_set(struct sk_buff *skb)
1512 {
1513 skb->tstamp.tv64 = 0;
1514 if (static_key_false(&netstamp_needed))
1515 __net_timestamp(skb);
1516 }
1517
1518 #define net_timestamp_check(COND, SKB) \
1519 if (static_key_false(&netstamp_needed)) { \
1520 if ((COND) && !(SKB)->tstamp.tv64) \
1521 __net_timestamp(SKB); \
1522 } \
1523
1524 static int net_hwtstamp_validate(struct ifreq *ifr)
1525 {
1526 struct hwtstamp_config cfg;
1527 enum hwtstamp_tx_types tx_type;
1528 enum hwtstamp_rx_filters rx_filter;
1529 int tx_type_valid = 0;
1530 int rx_filter_valid = 0;
1531
1532 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1533 return -EFAULT;
1534
1535 if (cfg.flags) /* reserved for future extensions */
1536 return -EINVAL;
1537
1538 tx_type = cfg.tx_type;
1539 rx_filter = cfg.rx_filter;
1540
1541 switch (tx_type) {
1542 case HWTSTAMP_TX_OFF:
1543 case HWTSTAMP_TX_ON:
1544 case HWTSTAMP_TX_ONESTEP_SYNC:
1545 tx_type_valid = 1;
1546 break;
1547 }
1548
1549 switch (rx_filter) {
1550 case HWTSTAMP_FILTER_NONE:
1551 case HWTSTAMP_FILTER_ALL:
1552 case HWTSTAMP_FILTER_SOME:
1553 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1554 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1555 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1556 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1557 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1558 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1559 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1560 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1561 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1562 case HWTSTAMP_FILTER_PTP_V2_EVENT:
1563 case HWTSTAMP_FILTER_PTP_V2_SYNC:
1564 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1565 rx_filter_valid = 1;
1566 break;
1567 }
1568
1569 if (!tx_type_valid || !rx_filter_valid)
1570 return -ERANGE;
1571
1572 return 0;
1573 }
1574
1575 static inline bool is_skb_forwardable(struct net_device *dev,
1576 struct sk_buff *skb)
1577 {
1578 unsigned int len;
1579
1580 if (!(dev->flags & IFF_UP))
1581 return false;
1582
1583 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1584 if (skb->len <= len)
1585 return true;
1586
1587 /* if TSO is enabled, we don't care about the length as the packet
1588 * could be forwarded without being segmented before
1589 */
1590 if (skb_is_gso(skb))
1591 return true;
1592
1593 return false;
1594 }
1595
1596 /**
1597 * dev_forward_skb - loopback an skb to another netif
1598 *
1599 * @dev: destination network device
1600 * @skb: buffer to forward
1601 *
1602 * return values:
1603 * NET_RX_SUCCESS (no congestion)
1604 * NET_RX_DROP (packet was dropped, but freed)
1605 *
1606 * dev_forward_skb can be used for injecting an skb from the
1607 * start_xmit function of one device into the receive queue
1608 * of another device.
1609 *
1610 * The receiving device may be in another namespace, so
1611 * we have to clear all information in the skb that could
1612 * impact namespace isolation.
1613 */
1614 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1615 {
1616 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1617 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1618 atomic_long_inc(&dev->rx_dropped);
1619 kfree_skb(skb);
1620 return NET_RX_DROP;
1621 }
1622 }
1623
1624 skb_orphan(skb);
1625 nf_reset(skb);
1626
1627 if (unlikely(!is_skb_forwardable(dev, skb))) {
1628 atomic_long_inc(&dev->rx_dropped);
1629 kfree_skb(skb);
1630 return NET_RX_DROP;
1631 }
1632 skb->skb_iif = 0;
1633 skb->dev = dev;
1634 skb_dst_drop(skb);
1635 skb->tstamp.tv64 = 0;
1636 skb->pkt_type = PACKET_HOST;
1637 skb->protocol = eth_type_trans(skb, dev);
1638 skb->mark = 0;
1639 secpath_reset(skb);
1640 nf_reset(skb);
1641 return netif_rx(skb);
1642 }
1643 EXPORT_SYMBOL_GPL(dev_forward_skb);
1644
1645 static inline int deliver_skb(struct sk_buff *skb,
1646 struct packet_type *pt_prev,
1647 struct net_device *orig_dev)
1648 {
1649 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1650 return -ENOMEM;
1651 atomic_inc(&skb->users);
1652 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1653 }
1654
1655 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1656 {
1657 if (ptype->af_packet_priv == NULL)
1658 return false;
1659
1660 if (ptype->id_match)
1661 return ptype->id_match(ptype, skb->sk);
1662 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1663 return true;
1664
1665 return false;
1666 }
1667
1668 /*
1669 * Support routine. Sends outgoing frames to any network
1670 * taps currently in use.
1671 */
1672
1673 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1674 {
1675 struct packet_type *ptype;
1676 struct sk_buff *skb2 = NULL;
1677 struct packet_type *pt_prev = NULL;
1678
1679 rcu_read_lock();
1680 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1681 /* Never send packets back to the socket
1682 * they originated from - MvS (miquels@drinkel.ow.org)
1683 */
1684 if ((ptype->dev == dev || !ptype->dev) &&
1685 (!skb_loop_sk(ptype, skb))) {
1686 if (pt_prev) {
1687 deliver_skb(skb2, pt_prev, skb->dev);
1688 pt_prev = ptype;
1689 continue;
1690 }
1691
1692 skb2 = skb_clone(skb, GFP_ATOMIC);
1693 if (!skb2)
1694 break;
1695
1696 net_timestamp_set(skb2);
1697
1698 /* skb->nh should be correctly
1699 set by sender, so that the second statement is
1700 just protection against buggy protocols.
1701 */
1702 skb_reset_mac_header(skb2);
1703
1704 if (skb_network_header(skb2) < skb2->data ||
1705 skb2->network_header > skb2->tail) {
1706 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1707 ntohs(skb2->protocol),
1708 dev->name);
1709 skb_reset_network_header(skb2);
1710 }
1711
1712 skb2->transport_header = skb2->network_header;
1713 skb2->pkt_type = PACKET_OUTGOING;
1714 pt_prev = ptype;
1715 }
1716 }
1717 if (pt_prev)
1718 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1719 rcu_read_unlock();
1720 }
1721
1722 /**
1723 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1724 * @dev: Network device
1725 * @txq: number of queues available
1726 *
1727 * If real_num_tx_queues is changed the tc mappings may no longer be
1728 * valid. To resolve this verify the tc mapping remains valid and if
1729 * not NULL the mapping. With no priorities mapping to this
1730 * offset/count pair it will no longer be used. In the worst case TC0
1731 * is invalid nothing can be done so disable priority mappings. If is
1732 * expected that drivers will fix this mapping if they can before
1733 * calling netif_set_real_num_tx_queues.
1734 */
1735 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1736 {
1737 int i;
1738 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1739
1740 /* If TC0 is invalidated disable TC mapping */
1741 if (tc->offset + tc->count > txq) {
1742 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1743 dev->num_tc = 0;
1744 return;
1745 }
1746
1747 /* Invalidated prio to tc mappings set to TC0 */
1748 for (i = 1; i < TC_BITMASK + 1; i++) {
1749 int q = netdev_get_prio_tc_map(dev, i);
1750
1751 tc = &dev->tc_to_txq[q];
1752 if (tc->offset + tc->count > txq) {
1753 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1754 i, q);
1755 netdev_set_prio_tc_map(dev, i, 0);
1756 }
1757 }
1758 }
1759
1760 /*
1761 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1762 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1763 */
1764 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1765 {
1766 int rc;
1767
1768 if (txq < 1 || txq > dev->num_tx_queues)
1769 return -EINVAL;
1770
1771 if (dev->reg_state == NETREG_REGISTERED ||
1772 dev->reg_state == NETREG_UNREGISTERING) {
1773 ASSERT_RTNL();
1774
1775 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1776 txq);
1777 if (rc)
1778 return rc;
1779
1780 if (dev->num_tc)
1781 netif_setup_tc(dev, txq);
1782
1783 if (txq < dev->real_num_tx_queues)
1784 qdisc_reset_all_tx_gt(dev, txq);
1785 }
1786
1787 dev->real_num_tx_queues = txq;
1788 return 0;
1789 }
1790 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1791
1792 #ifdef CONFIG_RPS
1793 /**
1794 * netif_set_real_num_rx_queues - set actual number of RX queues used
1795 * @dev: Network device
1796 * @rxq: Actual number of RX queues
1797 *
1798 * This must be called either with the rtnl_lock held or before
1799 * registration of the net device. Returns 0 on success, or a
1800 * negative error code. If called before registration, it always
1801 * succeeds.
1802 */
1803 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1804 {
1805 int rc;
1806
1807 if (rxq < 1 || rxq > dev->num_rx_queues)
1808 return -EINVAL;
1809
1810 if (dev->reg_state == NETREG_REGISTERED) {
1811 ASSERT_RTNL();
1812
1813 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1814 rxq);
1815 if (rc)
1816 return rc;
1817 }
1818
1819 dev->real_num_rx_queues = rxq;
1820 return 0;
1821 }
1822 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1823 #endif
1824
1825 /**
1826 * netif_get_num_default_rss_queues - default number of RSS queues
1827 *
1828 * This routine should set an upper limit on the number of RSS queues
1829 * used by default by multiqueue devices.
1830 */
1831 int netif_get_num_default_rss_queues(void)
1832 {
1833 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1834 }
1835 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1836
1837 static inline void __netif_reschedule(struct Qdisc *q)
1838 {
1839 struct softnet_data *sd;
1840 unsigned long flags;
1841
1842 local_irq_save(flags);
1843 sd = &__get_cpu_var(softnet_data);
1844 q->next_sched = NULL;
1845 *sd->output_queue_tailp = q;
1846 sd->output_queue_tailp = &q->next_sched;
1847 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1848 local_irq_restore(flags);
1849 }
1850
1851 void __netif_schedule(struct Qdisc *q)
1852 {
1853 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1854 __netif_reschedule(q);
1855 }
1856 EXPORT_SYMBOL(__netif_schedule);
1857
1858 void dev_kfree_skb_irq(struct sk_buff *skb)
1859 {
1860 if (atomic_dec_and_test(&skb->users)) {
1861 struct softnet_data *sd;
1862 unsigned long flags;
1863
1864 local_irq_save(flags);
1865 sd = &__get_cpu_var(softnet_data);
1866 skb->next = sd->completion_queue;
1867 sd->completion_queue = skb;
1868 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1869 local_irq_restore(flags);
1870 }
1871 }
1872 EXPORT_SYMBOL(dev_kfree_skb_irq);
1873
1874 void dev_kfree_skb_any(struct sk_buff *skb)
1875 {
1876 if (in_irq() || irqs_disabled())
1877 dev_kfree_skb_irq(skb);
1878 else
1879 dev_kfree_skb(skb);
1880 }
1881 EXPORT_SYMBOL(dev_kfree_skb_any);
1882
1883
1884 /**
1885 * netif_device_detach - mark device as removed
1886 * @dev: network device
1887 *
1888 * Mark device as removed from system and therefore no longer available.
1889 */
1890 void netif_device_detach(struct net_device *dev)
1891 {
1892 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1893 netif_running(dev)) {
1894 netif_tx_stop_all_queues(dev);
1895 }
1896 }
1897 EXPORT_SYMBOL(netif_device_detach);
1898
1899 /**
1900 * netif_device_attach - mark device as attached
1901 * @dev: network device
1902 *
1903 * Mark device as attached from system and restart if needed.
1904 */
1905 void netif_device_attach(struct net_device *dev)
1906 {
1907 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1908 netif_running(dev)) {
1909 netif_tx_wake_all_queues(dev);
1910 __netdev_watchdog_up(dev);
1911 }
1912 }
1913 EXPORT_SYMBOL(netif_device_attach);
1914
1915 static void skb_warn_bad_offload(const struct sk_buff *skb)
1916 {
1917 static const netdev_features_t null_features = 0;
1918 struct net_device *dev = skb->dev;
1919 const char *driver = "";
1920
1921 if (dev && dev->dev.parent)
1922 driver = dev_driver_string(dev->dev.parent);
1923
1924 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1925 "gso_type=%d ip_summed=%d\n",
1926 driver, dev ? &dev->features : &null_features,
1927 skb->sk ? &skb->sk->sk_route_caps : &null_features,
1928 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1929 skb_shinfo(skb)->gso_type, skb->ip_summed);
1930 }
1931
1932 /*
1933 * Invalidate hardware checksum when packet is to be mangled, and
1934 * complete checksum manually on outgoing path.
1935 */
1936 int skb_checksum_help(struct sk_buff *skb)
1937 {
1938 __wsum csum;
1939 int ret = 0, offset;
1940
1941 if (skb->ip_summed == CHECKSUM_COMPLETE)
1942 goto out_set_summed;
1943
1944 if (unlikely(skb_shinfo(skb)->gso_size)) {
1945 skb_warn_bad_offload(skb);
1946 return -EINVAL;
1947 }
1948
1949 offset = skb_checksum_start_offset(skb);
1950 BUG_ON(offset >= skb_headlen(skb));
1951 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1952
1953 offset += skb->csum_offset;
1954 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1955
1956 if (skb_cloned(skb) &&
1957 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1958 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1959 if (ret)
1960 goto out;
1961 }
1962
1963 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1964 out_set_summed:
1965 skb->ip_summed = CHECKSUM_NONE;
1966 out:
1967 return ret;
1968 }
1969 EXPORT_SYMBOL(skb_checksum_help);
1970
1971 /**
1972 * skb_gso_segment - Perform segmentation on skb.
1973 * @skb: buffer to segment
1974 * @features: features for the output path (see dev->features)
1975 *
1976 * This function segments the given skb and returns a list of segments.
1977 *
1978 * It may return NULL if the skb requires no segmentation. This is
1979 * only possible when GSO is used for verifying header integrity.
1980 */
1981 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1982 netdev_features_t features)
1983 {
1984 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1985 struct packet_type *ptype;
1986 __be16 type = skb->protocol;
1987 int vlan_depth = ETH_HLEN;
1988 int err;
1989
1990 while (type == htons(ETH_P_8021Q)) {
1991 struct vlan_hdr *vh;
1992
1993 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1994 return ERR_PTR(-EINVAL);
1995
1996 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1997 type = vh->h_vlan_encapsulated_proto;
1998 vlan_depth += VLAN_HLEN;
1999 }
2000
2001 skb_reset_mac_header(skb);
2002 skb->mac_len = skb->network_header - skb->mac_header;
2003 __skb_pull(skb, skb->mac_len);
2004
2005 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2006 skb_warn_bad_offload(skb);
2007
2008 if (skb_header_cloned(skb) &&
2009 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2010 return ERR_PTR(err);
2011 }
2012
2013 rcu_read_lock();
2014 list_for_each_entry_rcu(ptype,
2015 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2016 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
2017 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2018 err = ptype->gso_send_check(skb);
2019 segs = ERR_PTR(err);
2020 if (err || skb_gso_ok(skb, features))
2021 break;
2022 __skb_push(skb, (skb->data -
2023 skb_network_header(skb)));
2024 }
2025 segs = ptype->gso_segment(skb, features);
2026 break;
2027 }
2028 }
2029 rcu_read_unlock();
2030
2031 __skb_push(skb, skb->data - skb_mac_header(skb));
2032
2033 return segs;
2034 }
2035 EXPORT_SYMBOL(skb_gso_segment);
2036
2037 /* Take action when hardware reception checksum errors are detected. */
2038 #ifdef CONFIG_BUG
2039 void netdev_rx_csum_fault(struct net_device *dev)
2040 {
2041 if (net_ratelimit()) {
2042 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2043 dump_stack();
2044 }
2045 }
2046 EXPORT_SYMBOL(netdev_rx_csum_fault);
2047 #endif
2048
2049 /* Actually, we should eliminate this check as soon as we know, that:
2050 * 1. IOMMU is present and allows to map all the memory.
2051 * 2. No high memory really exists on this machine.
2052 */
2053
2054 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2055 {
2056 #ifdef CONFIG_HIGHMEM
2057 int i;
2058 if (!(dev->features & NETIF_F_HIGHDMA)) {
2059 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2060 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2061 if (PageHighMem(skb_frag_page(frag)))
2062 return 1;
2063 }
2064 }
2065
2066 if (PCI_DMA_BUS_IS_PHYS) {
2067 struct device *pdev = dev->dev.parent;
2068
2069 if (!pdev)
2070 return 0;
2071 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2072 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2073 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2074 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2075 return 1;
2076 }
2077 }
2078 #endif
2079 return 0;
2080 }
2081
2082 struct dev_gso_cb {
2083 void (*destructor)(struct sk_buff *skb);
2084 };
2085
2086 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2087
2088 static void dev_gso_skb_destructor(struct sk_buff *skb)
2089 {
2090 struct dev_gso_cb *cb;
2091
2092 do {
2093 struct sk_buff *nskb = skb->next;
2094
2095 skb->next = nskb->next;
2096 nskb->next = NULL;
2097 kfree_skb(nskb);
2098 } while (skb->next);
2099
2100 cb = DEV_GSO_CB(skb);
2101 if (cb->destructor)
2102 cb->destructor(skb);
2103 }
2104
2105 /**
2106 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2107 * @skb: buffer to segment
2108 * @features: device features as applicable to this skb
2109 *
2110 * This function segments the given skb and stores the list of segments
2111 * in skb->next.
2112 */
2113 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2114 {
2115 struct sk_buff *segs;
2116
2117 segs = skb_gso_segment(skb, features);
2118
2119 /* Verifying header integrity only. */
2120 if (!segs)
2121 return 0;
2122
2123 if (IS_ERR(segs))
2124 return PTR_ERR(segs);
2125
2126 skb->next = segs;
2127 DEV_GSO_CB(skb)->destructor = skb->destructor;
2128 skb->destructor = dev_gso_skb_destructor;
2129
2130 return 0;
2131 }
2132
2133 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2134 {
2135 return ((features & NETIF_F_GEN_CSUM) ||
2136 ((features & NETIF_F_V4_CSUM) &&
2137 protocol == htons(ETH_P_IP)) ||
2138 ((features & NETIF_F_V6_CSUM) &&
2139 protocol == htons(ETH_P_IPV6)) ||
2140 ((features & NETIF_F_FCOE_CRC) &&
2141 protocol == htons(ETH_P_FCOE)));
2142 }
2143
2144 static netdev_features_t harmonize_features(struct sk_buff *skb,
2145 __be16 protocol, netdev_features_t features)
2146 {
2147 if (!can_checksum_protocol(features, protocol)) {
2148 features &= ~NETIF_F_ALL_CSUM;
2149 features &= ~NETIF_F_SG;
2150 } else if (illegal_highdma(skb->dev, skb)) {
2151 features &= ~NETIF_F_SG;
2152 }
2153
2154 return features;
2155 }
2156
2157 netdev_features_t netif_skb_features(struct sk_buff *skb)
2158 {
2159 __be16 protocol = skb->protocol;
2160 netdev_features_t features = skb->dev->features;
2161
2162 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2163 features &= ~NETIF_F_GSO_MASK;
2164
2165 if (protocol == htons(ETH_P_8021Q)) {
2166 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2167 protocol = veh->h_vlan_encapsulated_proto;
2168 } else if (!vlan_tx_tag_present(skb)) {
2169 return harmonize_features(skb, protocol, features);
2170 }
2171
2172 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2173
2174 if (protocol != htons(ETH_P_8021Q)) {
2175 return harmonize_features(skb, protocol, features);
2176 } else {
2177 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2178 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2179 return harmonize_features(skb, protocol, features);
2180 }
2181 }
2182 EXPORT_SYMBOL(netif_skb_features);
2183
2184 /*
2185 * Returns true if either:
2186 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2187 * 2. skb is fragmented and the device does not support SG, or if
2188 * at least one of fragments is in highmem and device does not
2189 * support DMA from it.
2190 */
2191 static inline int skb_needs_linearize(struct sk_buff *skb,
2192 int features)
2193 {
2194 return skb_is_nonlinear(skb) &&
2195 ((skb_has_frag_list(skb) &&
2196 !(features & NETIF_F_FRAGLIST)) ||
2197 (skb_shinfo(skb)->nr_frags &&
2198 !(features & NETIF_F_SG)));
2199 }
2200
2201 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2202 struct netdev_queue *txq)
2203 {
2204 const struct net_device_ops *ops = dev->netdev_ops;
2205 int rc = NETDEV_TX_OK;
2206 unsigned int skb_len;
2207
2208 if (likely(!skb->next)) {
2209 netdev_features_t features;
2210
2211 /*
2212 * If device doesn't need skb->dst, release it right now while
2213 * its hot in this cpu cache
2214 */
2215 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2216 skb_dst_drop(skb);
2217
2218 if (!list_empty(&ptype_all))
2219 dev_queue_xmit_nit(skb, dev);
2220
2221 features = netif_skb_features(skb);
2222
2223 if (vlan_tx_tag_present(skb) &&
2224 !(features & NETIF_F_HW_VLAN_TX)) {
2225 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2226 if (unlikely(!skb))
2227 goto out;
2228
2229 skb->vlan_tci = 0;
2230 }
2231
2232 if (netif_needs_gso(skb, features)) {
2233 if (unlikely(dev_gso_segment(skb, features)))
2234 goto out_kfree_skb;
2235 if (skb->next)
2236 goto gso;
2237 } else {
2238 if (skb_needs_linearize(skb, features) &&
2239 __skb_linearize(skb))
2240 goto out_kfree_skb;
2241
2242 /* If packet is not checksummed and device does not
2243 * support checksumming for this protocol, complete
2244 * checksumming here.
2245 */
2246 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2247 skb_set_transport_header(skb,
2248 skb_checksum_start_offset(skb));
2249 if (!(features & NETIF_F_ALL_CSUM) &&
2250 skb_checksum_help(skb))
2251 goto out_kfree_skb;
2252 }
2253 }
2254
2255 skb_len = skb->len;
2256 rc = ops->ndo_start_xmit(skb, dev);
2257 trace_net_dev_xmit(skb, rc, dev, skb_len);
2258 if (rc == NETDEV_TX_OK)
2259 txq_trans_update(txq);
2260 return rc;
2261 }
2262
2263 gso:
2264 do {
2265 struct sk_buff *nskb = skb->next;
2266
2267 skb->next = nskb->next;
2268 nskb->next = NULL;
2269
2270 /*
2271 * If device doesn't need nskb->dst, release it right now while
2272 * its hot in this cpu cache
2273 */
2274 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2275 skb_dst_drop(nskb);
2276
2277 skb_len = nskb->len;
2278 rc = ops->ndo_start_xmit(nskb, dev);
2279 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2280 if (unlikely(rc != NETDEV_TX_OK)) {
2281 if (rc & ~NETDEV_TX_MASK)
2282 goto out_kfree_gso_skb;
2283 nskb->next = skb->next;
2284 skb->next = nskb;
2285 return rc;
2286 }
2287 txq_trans_update(txq);
2288 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2289 return NETDEV_TX_BUSY;
2290 } while (skb->next);
2291
2292 out_kfree_gso_skb:
2293 if (likely(skb->next == NULL))
2294 skb->destructor = DEV_GSO_CB(skb)->destructor;
2295 out_kfree_skb:
2296 kfree_skb(skb);
2297 out:
2298 return rc;
2299 }
2300
2301 static u32 hashrnd __read_mostly;
2302
2303 /*
2304 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2305 * to be used as a distribution range.
2306 */
2307 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2308 unsigned int num_tx_queues)
2309 {
2310 u32 hash;
2311 u16 qoffset = 0;
2312 u16 qcount = num_tx_queues;
2313
2314 if (skb_rx_queue_recorded(skb)) {
2315 hash = skb_get_rx_queue(skb);
2316 while (unlikely(hash >= num_tx_queues))
2317 hash -= num_tx_queues;
2318 return hash;
2319 }
2320
2321 if (dev->num_tc) {
2322 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2323 qoffset = dev->tc_to_txq[tc].offset;
2324 qcount = dev->tc_to_txq[tc].count;
2325 }
2326
2327 if (skb->sk && skb->sk->sk_hash)
2328 hash = skb->sk->sk_hash;
2329 else
2330 hash = (__force u16) skb->protocol;
2331 hash = jhash_1word(hash, hashrnd);
2332
2333 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2334 }
2335 EXPORT_SYMBOL(__skb_tx_hash);
2336
2337 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2338 {
2339 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2340 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2341 dev->name, queue_index,
2342 dev->real_num_tx_queues);
2343 return 0;
2344 }
2345 return queue_index;
2346 }
2347
2348 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2349 {
2350 #ifdef CONFIG_XPS
2351 struct xps_dev_maps *dev_maps;
2352 struct xps_map *map;
2353 int queue_index = -1;
2354
2355 rcu_read_lock();
2356 dev_maps = rcu_dereference(dev->xps_maps);
2357 if (dev_maps) {
2358 map = rcu_dereference(
2359 dev_maps->cpu_map[raw_smp_processor_id()]);
2360 if (map) {
2361 if (map->len == 1)
2362 queue_index = map->queues[0];
2363 else {
2364 u32 hash;
2365 if (skb->sk && skb->sk->sk_hash)
2366 hash = skb->sk->sk_hash;
2367 else
2368 hash = (__force u16) skb->protocol ^
2369 skb->rxhash;
2370 hash = jhash_1word(hash, hashrnd);
2371 queue_index = map->queues[
2372 ((u64)hash * map->len) >> 32];
2373 }
2374 if (unlikely(queue_index >= dev->real_num_tx_queues))
2375 queue_index = -1;
2376 }
2377 }
2378 rcu_read_unlock();
2379
2380 return queue_index;
2381 #else
2382 return -1;
2383 #endif
2384 }
2385
2386 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2387 struct sk_buff *skb)
2388 {
2389 int queue_index;
2390 const struct net_device_ops *ops = dev->netdev_ops;
2391
2392 if (dev->real_num_tx_queues == 1)
2393 queue_index = 0;
2394 else if (ops->ndo_select_queue) {
2395 queue_index = ops->ndo_select_queue(dev, skb);
2396 queue_index = dev_cap_txqueue(dev, queue_index);
2397 } else {
2398 struct sock *sk = skb->sk;
2399 queue_index = sk_tx_queue_get(sk);
2400
2401 if (queue_index < 0 || skb->ooo_okay ||
2402 queue_index >= dev->real_num_tx_queues) {
2403 int old_index = queue_index;
2404
2405 queue_index = get_xps_queue(dev, skb);
2406 if (queue_index < 0)
2407 queue_index = skb_tx_hash(dev, skb);
2408
2409 if (queue_index != old_index && sk) {
2410 struct dst_entry *dst =
2411 rcu_dereference_check(sk->sk_dst_cache, 1);
2412
2413 if (dst && skb_dst(skb) == dst)
2414 sk_tx_queue_set(sk, queue_index);
2415 }
2416 }
2417 }
2418
2419 skb_set_queue_mapping(skb, queue_index);
2420 return netdev_get_tx_queue(dev, queue_index);
2421 }
2422
2423 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2424 struct net_device *dev,
2425 struct netdev_queue *txq)
2426 {
2427 spinlock_t *root_lock = qdisc_lock(q);
2428 bool contended;
2429 int rc;
2430
2431 qdisc_skb_cb(skb)->pkt_len = skb->len;
2432 qdisc_calculate_pkt_len(skb, q);
2433 /*
2434 * Heuristic to force contended enqueues to serialize on a
2435 * separate lock before trying to get qdisc main lock.
2436 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2437 * and dequeue packets faster.
2438 */
2439 contended = qdisc_is_running(q);
2440 if (unlikely(contended))
2441 spin_lock(&q->busylock);
2442
2443 spin_lock(root_lock);
2444 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2445 kfree_skb(skb);
2446 rc = NET_XMIT_DROP;
2447 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2448 qdisc_run_begin(q)) {
2449 /*
2450 * This is a work-conserving queue; there are no old skbs
2451 * waiting to be sent out; and the qdisc is not running -
2452 * xmit the skb directly.
2453 */
2454 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2455 skb_dst_force(skb);
2456
2457 qdisc_bstats_update(q, skb);
2458
2459 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2460 if (unlikely(contended)) {
2461 spin_unlock(&q->busylock);
2462 contended = false;
2463 }
2464 __qdisc_run(q);
2465 } else
2466 qdisc_run_end(q);
2467
2468 rc = NET_XMIT_SUCCESS;
2469 } else {
2470 skb_dst_force(skb);
2471 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2472 if (qdisc_run_begin(q)) {
2473 if (unlikely(contended)) {
2474 spin_unlock(&q->busylock);
2475 contended = false;
2476 }
2477 __qdisc_run(q);
2478 }
2479 }
2480 spin_unlock(root_lock);
2481 if (unlikely(contended))
2482 spin_unlock(&q->busylock);
2483 return rc;
2484 }
2485
2486 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2487 static void skb_update_prio(struct sk_buff *skb)
2488 {
2489 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2490
2491 if (!skb->priority && skb->sk && map) {
2492 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2493
2494 if (prioidx < map->priomap_len)
2495 skb->priority = map->priomap[prioidx];
2496 }
2497 }
2498 #else
2499 #define skb_update_prio(skb)
2500 #endif
2501
2502 static DEFINE_PER_CPU(int, xmit_recursion);
2503 #define RECURSION_LIMIT 10
2504
2505 /**
2506 * dev_loopback_xmit - loop back @skb
2507 * @skb: buffer to transmit
2508 */
2509 int dev_loopback_xmit(struct sk_buff *skb)
2510 {
2511 skb_reset_mac_header(skb);
2512 __skb_pull(skb, skb_network_offset(skb));
2513 skb->pkt_type = PACKET_LOOPBACK;
2514 skb->ip_summed = CHECKSUM_UNNECESSARY;
2515 WARN_ON(!skb_dst(skb));
2516 skb_dst_force(skb);
2517 netif_rx_ni(skb);
2518 return 0;
2519 }
2520 EXPORT_SYMBOL(dev_loopback_xmit);
2521
2522 /**
2523 * dev_queue_xmit - transmit a buffer
2524 * @skb: buffer to transmit
2525 *
2526 * Queue a buffer for transmission to a network device. The caller must
2527 * have set the device and priority and built the buffer before calling
2528 * this function. The function can be called from an interrupt.
2529 *
2530 * A negative errno code is returned on a failure. A success does not
2531 * guarantee the frame will be transmitted as it may be dropped due
2532 * to congestion or traffic shaping.
2533 *
2534 * -----------------------------------------------------------------------------------
2535 * I notice this method can also return errors from the queue disciplines,
2536 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2537 * be positive.
2538 *
2539 * Regardless of the return value, the skb is consumed, so it is currently
2540 * difficult to retry a send to this method. (You can bump the ref count
2541 * before sending to hold a reference for retry if you are careful.)
2542 *
2543 * When calling this method, interrupts MUST be enabled. This is because
2544 * the BH enable code must have IRQs enabled so that it will not deadlock.
2545 * --BLG
2546 */
2547 int dev_queue_xmit(struct sk_buff *skb)
2548 {
2549 struct net_device *dev = skb->dev;
2550 struct netdev_queue *txq;
2551 struct Qdisc *q;
2552 int rc = -ENOMEM;
2553
2554 /* Disable soft irqs for various locks below. Also
2555 * stops preemption for RCU.
2556 */
2557 rcu_read_lock_bh();
2558
2559 skb_update_prio(skb);
2560
2561 txq = dev_pick_tx(dev, skb);
2562 q = rcu_dereference_bh(txq->qdisc);
2563
2564 #ifdef CONFIG_NET_CLS_ACT
2565 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2566 #endif
2567 trace_net_dev_queue(skb);
2568 if (q->enqueue) {
2569 rc = __dev_xmit_skb(skb, q, dev, txq);
2570 goto out;
2571 }
2572
2573 /* The device has no queue. Common case for software devices:
2574 loopback, all the sorts of tunnels...
2575
2576 Really, it is unlikely that netif_tx_lock protection is necessary
2577 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2578 counters.)
2579 However, it is possible, that they rely on protection
2580 made by us here.
2581
2582 Check this and shot the lock. It is not prone from deadlocks.
2583 Either shot noqueue qdisc, it is even simpler 8)
2584 */
2585 if (dev->flags & IFF_UP) {
2586 int cpu = smp_processor_id(); /* ok because BHs are off */
2587
2588 if (txq->xmit_lock_owner != cpu) {
2589
2590 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2591 goto recursion_alert;
2592
2593 HARD_TX_LOCK(dev, txq, cpu);
2594
2595 if (!netif_xmit_stopped(txq)) {
2596 __this_cpu_inc(xmit_recursion);
2597 rc = dev_hard_start_xmit(skb, dev, txq);
2598 __this_cpu_dec(xmit_recursion);
2599 if (dev_xmit_complete(rc)) {
2600 HARD_TX_UNLOCK(dev, txq);
2601 goto out;
2602 }
2603 }
2604 HARD_TX_UNLOCK(dev, txq);
2605 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2606 dev->name);
2607 } else {
2608 /* Recursion is detected! It is possible,
2609 * unfortunately
2610 */
2611 recursion_alert:
2612 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2613 dev->name);
2614 }
2615 }
2616
2617 rc = -ENETDOWN;
2618 rcu_read_unlock_bh();
2619
2620 kfree_skb(skb);
2621 return rc;
2622 out:
2623 rcu_read_unlock_bh();
2624 return rc;
2625 }
2626 EXPORT_SYMBOL(dev_queue_xmit);
2627
2628
2629 /*=======================================================================
2630 Receiver routines
2631 =======================================================================*/
2632
2633 int netdev_max_backlog __read_mostly = 1000;
2634 int netdev_tstamp_prequeue __read_mostly = 1;
2635 int netdev_budget __read_mostly = 300;
2636 int weight_p __read_mostly = 64; /* old backlog weight */
2637
2638 /* Called with irq disabled */
2639 static inline void ____napi_schedule(struct softnet_data *sd,
2640 struct napi_struct *napi)
2641 {
2642 list_add_tail(&napi->poll_list, &sd->poll_list);
2643 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2644 }
2645
2646 /*
2647 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2648 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value
2649 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb
2650 * if hash is a canonical 4-tuple hash over transport ports.
2651 */
2652 void __skb_get_rxhash(struct sk_buff *skb)
2653 {
2654 struct flow_keys keys;
2655 u32 hash;
2656
2657 if (!skb_flow_dissect(skb, &keys))
2658 return;
2659
2660 if (keys.ports) {
2661 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2662 swap(keys.port16[0], keys.port16[1]);
2663 skb->l4_rxhash = 1;
2664 }
2665
2666 /* get a consistent hash (same value on both flow directions) */
2667 if ((__force u32)keys.dst < (__force u32)keys.src)
2668 swap(keys.dst, keys.src);
2669
2670 hash = jhash_3words((__force u32)keys.dst,
2671 (__force u32)keys.src,
2672 (__force u32)keys.ports, hashrnd);
2673 if (!hash)
2674 hash = 1;
2675
2676 skb->rxhash = hash;
2677 }
2678 EXPORT_SYMBOL(__skb_get_rxhash);
2679
2680 #ifdef CONFIG_RPS
2681
2682 /* One global table that all flow-based protocols share. */
2683 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2684 EXPORT_SYMBOL(rps_sock_flow_table);
2685
2686 struct static_key rps_needed __read_mostly;
2687
2688 static struct rps_dev_flow *
2689 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2690 struct rps_dev_flow *rflow, u16 next_cpu)
2691 {
2692 if (next_cpu != RPS_NO_CPU) {
2693 #ifdef CONFIG_RFS_ACCEL
2694 struct netdev_rx_queue *rxqueue;
2695 struct rps_dev_flow_table *flow_table;
2696 struct rps_dev_flow *old_rflow;
2697 u32 flow_id;
2698 u16 rxq_index;
2699 int rc;
2700
2701 /* Should we steer this flow to a different hardware queue? */
2702 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2703 !(dev->features & NETIF_F_NTUPLE))
2704 goto out;
2705 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2706 if (rxq_index == skb_get_rx_queue(skb))
2707 goto out;
2708
2709 rxqueue = dev->_rx + rxq_index;
2710 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2711 if (!flow_table)
2712 goto out;
2713 flow_id = skb->rxhash & flow_table->mask;
2714 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2715 rxq_index, flow_id);
2716 if (rc < 0)
2717 goto out;
2718 old_rflow = rflow;
2719 rflow = &flow_table->flows[flow_id];
2720 rflow->filter = rc;
2721 if (old_rflow->filter == rflow->filter)
2722 old_rflow->filter = RPS_NO_FILTER;
2723 out:
2724 #endif
2725 rflow->last_qtail =
2726 per_cpu(softnet_data, next_cpu).input_queue_head;
2727 }
2728
2729 rflow->cpu = next_cpu;
2730 return rflow;
2731 }
2732
2733 /*
2734 * get_rps_cpu is called from netif_receive_skb and returns the target
2735 * CPU from the RPS map of the receiving queue for a given skb.
2736 * rcu_read_lock must be held on entry.
2737 */
2738 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2739 struct rps_dev_flow **rflowp)
2740 {
2741 struct netdev_rx_queue *rxqueue;
2742 struct rps_map *map;
2743 struct rps_dev_flow_table *flow_table;
2744 struct rps_sock_flow_table *sock_flow_table;
2745 int cpu = -1;
2746 u16 tcpu;
2747
2748 if (skb_rx_queue_recorded(skb)) {
2749 u16 index = skb_get_rx_queue(skb);
2750 if (unlikely(index >= dev->real_num_rx_queues)) {
2751 WARN_ONCE(dev->real_num_rx_queues > 1,
2752 "%s received packet on queue %u, but number "
2753 "of RX queues is %u\n",
2754 dev->name, index, dev->real_num_rx_queues);
2755 goto done;
2756 }
2757 rxqueue = dev->_rx + index;
2758 } else
2759 rxqueue = dev->_rx;
2760
2761 map = rcu_dereference(rxqueue->rps_map);
2762 if (map) {
2763 if (map->len == 1 &&
2764 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2765 tcpu = map->cpus[0];
2766 if (cpu_online(tcpu))
2767 cpu = tcpu;
2768 goto done;
2769 }
2770 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2771 goto done;
2772 }
2773
2774 skb_reset_network_header(skb);
2775 if (!skb_get_rxhash(skb))
2776 goto done;
2777
2778 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2779 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2780 if (flow_table && sock_flow_table) {
2781 u16 next_cpu;
2782 struct rps_dev_flow *rflow;
2783
2784 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2785 tcpu = rflow->cpu;
2786
2787 next_cpu = sock_flow_table->ents[skb->rxhash &
2788 sock_flow_table->mask];
2789
2790 /*
2791 * If the desired CPU (where last recvmsg was done) is
2792 * different from current CPU (one in the rx-queue flow
2793 * table entry), switch if one of the following holds:
2794 * - Current CPU is unset (equal to RPS_NO_CPU).
2795 * - Current CPU is offline.
2796 * - The current CPU's queue tail has advanced beyond the
2797 * last packet that was enqueued using this table entry.
2798 * This guarantees that all previous packets for the flow
2799 * have been dequeued, thus preserving in order delivery.
2800 */
2801 if (unlikely(tcpu != next_cpu) &&
2802 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2803 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2804 rflow->last_qtail)) >= 0))
2805 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2806
2807 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2808 *rflowp = rflow;
2809 cpu = tcpu;
2810 goto done;
2811 }
2812 }
2813
2814 if (map) {
2815 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2816
2817 if (cpu_online(tcpu)) {
2818 cpu = tcpu;
2819 goto done;
2820 }
2821 }
2822
2823 done:
2824 return cpu;
2825 }
2826
2827 #ifdef CONFIG_RFS_ACCEL
2828
2829 /**
2830 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2831 * @dev: Device on which the filter was set
2832 * @rxq_index: RX queue index
2833 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2834 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2835 *
2836 * Drivers that implement ndo_rx_flow_steer() should periodically call
2837 * this function for each installed filter and remove the filters for
2838 * which it returns %true.
2839 */
2840 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2841 u32 flow_id, u16 filter_id)
2842 {
2843 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2844 struct rps_dev_flow_table *flow_table;
2845 struct rps_dev_flow *rflow;
2846 bool expire = true;
2847 int cpu;
2848
2849 rcu_read_lock();
2850 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2851 if (flow_table && flow_id <= flow_table->mask) {
2852 rflow = &flow_table->flows[flow_id];
2853 cpu = ACCESS_ONCE(rflow->cpu);
2854 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2855 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2856 rflow->last_qtail) <
2857 (int)(10 * flow_table->mask)))
2858 expire = false;
2859 }
2860 rcu_read_unlock();
2861 return expire;
2862 }
2863 EXPORT_SYMBOL(rps_may_expire_flow);
2864
2865 #endif /* CONFIG_RFS_ACCEL */
2866
2867 /* Called from hardirq (IPI) context */
2868 static void rps_trigger_softirq(void *data)
2869 {
2870 struct softnet_data *sd = data;
2871
2872 ____napi_schedule(sd, &sd->backlog);
2873 sd->received_rps++;
2874 }
2875
2876 #endif /* CONFIG_RPS */
2877
2878 /*
2879 * Check if this softnet_data structure is another cpu one
2880 * If yes, queue it to our IPI list and return 1
2881 * If no, return 0
2882 */
2883 static int rps_ipi_queued(struct softnet_data *sd)
2884 {
2885 #ifdef CONFIG_RPS
2886 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2887
2888 if (sd != mysd) {
2889 sd->rps_ipi_next = mysd->rps_ipi_list;
2890 mysd->rps_ipi_list = sd;
2891
2892 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2893 return 1;
2894 }
2895 #endif /* CONFIG_RPS */
2896 return 0;
2897 }
2898
2899 /*
2900 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2901 * queue (may be a remote CPU queue).
2902 */
2903 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2904 unsigned int *qtail)
2905 {
2906 struct softnet_data *sd;
2907 unsigned long flags;
2908
2909 sd = &per_cpu(softnet_data, cpu);
2910
2911 local_irq_save(flags);
2912
2913 rps_lock(sd);
2914 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2915 if (skb_queue_len(&sd->input_pkt_queue)) {
2916 enqueue:
2917 __skb_queue_tail(&sd->input_pkt_queue, skb);
2918 input_queue_tail_incr_save(sd, qtail);
2919 rps_unlock(sd);
2920 local_irq_restore(flags);
2921 return NET_RX_SUCCESS;
2922 }
2923
2924 /* Schedule NAPI for backlog device
2925 * We can use non atomic operation since we own the queue lock
2926 */
2927 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2928 if (!rps_ipi_queued(sd))
2929 ____napi_schedule(sd, &sd->backlog);
2930 }
2931 goto enqueue;
2932 }
2933
2934 sd->dropped++;
2935 rps_unlock(sd);
2936
2937 local_irq_restore(flags);
2938
2939 atomic_long_inc(&skb->dev->rx_dropped);
2940 kfree_skb(skb);
2941 return NET_RX_DROP;
2942 }
2943
2944 /**
2945 * netif_rx - post buffer to the network code
2946 * @skb: buffer to post
2947 *
2948 * This function receives a packet from a device driver and queues it for
2949 * the upper (protocol) levels to process. It always succeeds. The buffer
2950 * may be dropped during processing for congestion control or by the
2951 * protocol layers.
2952 *
2953 * return values:
2954 * NET_RX_SUCCESS (no congestion)
2955 * NET_RX_DROP (packet was dropped)
2956 *
2957 */
2958
2959 int netif_rx(struct sk_buff *skb)
2960 {
2961 int ret;
2962
2963 /* if netpoll wants it, pretend we never saw it */
2964 if (netpoll_rx(skb))
2965 return NET_RX_DROP;
2966
2967 net_timestamp_check(netdev_tstamp_prequeue, skb);
2968
2969 trace_netif_rx(skb);
2970 #ifdef CONFIG_RPS
2971 if (static_key_false(&rps_needed)) {
2972 struct rps_dev_flow voidflow, *rflow = &voidflow;
2973 int cpu;
2974
2975 preempt_disable();
2976 rcu_read_lock();
2977
2978 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2979 if (cpu < 0)
2980 cpu = smp_processor_id();
2981
2982 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2983
2984 rcu_read_unlock();
2985 preempt_enable();
2986 } else
2987 #endif
2988 {
2989 unsigned int qtail;
2990 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2991 put_cpu();
2992 }
2993 return ret;
2994 }
2995 EXPORT_SYMBOL(netif_rx);
2996
2997 int netif_rx_ni(struct sk_buff *skb)
2998 {
2999 int err;
3000
3001 preempt_disable();
3002 err = netif_rx(skb);
3003 if (local_softirq_pending())
3004 do_softirq();
3005 preempt_enable();
3006
3007 return err;
3008 }
3009 EXPORT_SYMBOL(netif_rx_ni);
3010
3011 static void net_tx_action(struct softirq_action *h)
3012 {
3013 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3014
3015 if (sd->completion_queue) {
3016 struct sk_buff *clist;
3017
3018 local_irq_disable();
3019 clist = sd->completion_queue;
3020 sd->completion_queue = NULL;
3021 local_irq_enable();
3022
3023 while (clist) {
3024 struct sk_buff *skb = clist;
3025 clist = clist->next;
3026
3027 WARN_ON(atomic_read(&skb->users));
3028 trace_kfree_skb(skb, net_tx_action);
3029 __kfree_skb(skb);
3030 }
3031 }
3032
3033 if (sd->output_queue) {
3034 struct Qdisc *head;
3035
3036 local_irq_disable();
3037 head = sd->output_queue;
3038 sd->output_queue = NULL;
3039 sd->output_queue_tailp = &sd->output_queue;
3040 local_irq_enable();
3041
3042 while (head) {
3043 struct Qdisc *q = head;
3044 spinlock_t *root_lock;
3045
3046 head = head->next_sched;
3047
3048 root_lock = qdisc_lock(q);
3049 if (spin_trylock(root_lock)) {
3050 smp_mb__before_clear_bit();
3051 clear_bit(__QDISC_STATE_SCHED,
3052 &q->state);
3053 qdisc_run(q);
3054 spin_unlock(root_lock);
3055 } else {
3056 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3057 &q->state)) {
3058 __netif_reschedule(q);
3059 } else {
3060 smp_mb__before_clear_bit();
3061 clear_bit(__QDISC_STATE_SCHED,
3062 &q->state);
3063 }
3064 }
3065 }
3066 }
3067 }
3068
3069 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3070 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3071 /* This hook is defined here for ATM LANE */
3072 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3073 unsigned char *addr) __read_mostly;
3074 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3075 #endif
3076
3077 #ifdef CONFIG_NET_CLS_ACT
3078 /* TODO: Maybe we should just force sch_ingress to be compiled in
3079 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3080 * a compare and 2 stores extra right now if we dont have it on
3081 * but have CONFIG_NET_CLS_ACT
3082 * NOTE: This doesn't stop any functionality; if you dont have
3083 * the ingress scheduler, you just can't add policies on ingress.
3084 *
3085 */
3086 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3087 {
3088 struct net_device *dev = skb->dev;
3089 u32 ttl = G_TC_RTTL(skb->tc_verd);
3090 int result = TC_ACT_OK;
3091 struct Qdisc *q;
3092
3093 if (unlikely(MAX_RED_LOOP < ttl++)) {
3094 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3095 skb->skb_iif, dev->ifindex);
3096 return TC_ACT_SHOT;
3097 }
3098
3099 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3100 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3101
3102 q = rxq->qdisc;
3103 if (q != &noop_qdisc) {
3104 spin_lock(qdisc_lock(q));
3105 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3106 result = qdisc_enqueue_root(skb, q);
3107 spin_unlock(qdisc_lock(q));
3108 }
3109
3110 return result;
3111 }
3112
3113 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3114 struct packet_type **pt_prev,
3115 int *ret, struct net_device *orig_dev)
3116 {
3117 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3118
3119 if (!rxq || rxq->qdisc == &noop_qdisc)
3120 goto out;
3121
3122 if (*pt_prev) {
3123 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3124 *pt_prev = NULL;
3125 }
3126
3127 switch (ing_filter(skb, rxq)) {
3128 case TC_ACT_SHOT:
3129 case TC_ACT_STOLEN:
3130 kfree_skb(skb);
3131 return NULL;
3132 }
3133
3134 out:
3135 skb->tc_verd = 0;
3136 return skb;
3137 }
3138 #endif
3139
3140 /**
3141 * netdev_rx_handler_register - register receive handler
3142 * @dev: device to register a handler for
3143 * @rx_handler: receive handler to register
3144 * @rx_handler_data: data pointer that is used by rx handler
3145 *
3146 * Register a receive hander for a device. This handler will then be
3147 * called from __netif_receive_skb. A negative errno code is returned
3148 * on a failure.
3149 *
3150 * The caller must hold the rtnl_mutex.
3151 *
3152 * For a general description of rx_handler, see enum rx_handler_result.
3153 */
3154 int netdev_rx_handler_register(struct net_device *dev,
3155 rx_handler_func_t *rx_handler,
3156 void *rx_handler_data)
3157 {
3158 ASSERT_RTNL();
3159
3160 if (dev->rx_handler)
3161 return -EBUSY;
3162
3163 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3164 rcu_assign_pointer(dev->rx_handler, rx_handler);
3165
3166 return 0;
3167 }
3168 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3169
3170 /**
3171 * netdev_rx_handler_unregister - unregister receive handler
3172 * @dev: device to unregister a handler from
3173 *
3174 * Unregister a receive hander from a device.
3175 *
3176 * The caller must hold the rtnl_mutex.
3177 */
3178 void netdev_rx_handler_unregister(struct net_device *dev)
3179 {
3180
3181 ASSERT_RTNL();
3182 RCU_INIT_POINTER(dev->rx_handler, NULL);
3183 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3184 }
3185 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3186
3187 /*
3188 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3189 * the special handling of PFMEMALLOC skbs.
3190 */
3191 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3192 {
3193 switch (skb->protocol) {
3194 case __constant_htons(ETH_P_ARP):
3195 case __constant_htons(ETH_P_IP):
3196 case __constant_htons(ETH_P_IPV6):
3197 case __constant_htons(ETH_P_8021Q):
3198 return true;
3199 default:
3200 return false;
3201 }
3202 }
3203
3204 static int __netif_receive_skb(struct sk_buff *skb)
3205 {
3206 struct packet_type *ptype, *pt_prev;
3207 rx_handler_func_t *rx_handler;
3208 struct net_device *orig_dev;
3209 struct net_device *null_or_dev;
3210 bool deliver_exact = false;
3211 int ret = NET_RX_DROP;
3212 __be16 type;
3213 unsigned long pflags = current->flags;
3214
3215 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3216
3217 trace_netif_receive_skb(skb);
3218
3219 /*
3220 * PFMEMALLOC skbs are special, they should
3221 * - be delivered to SOCK_MEMALLOC sockets only
3222 * - stay away from userspace
3223 * - have bounded memory usage
3224 *
3225 * Use PF_MEMALLOC as this saves us from propagating the allocation
3226 * context down to all allocation sites.
3227 */
3228 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3229 current->flags |= PF_MEMALLOC;
3230
3231 /* if we've gotten here through NAPI, check netpoll */
3232 if (netpoll_receive_skb(skb))
3233 goto out;
3234
3235 orig_dev = skb->dev;
3236
3237 skb_reset_network_header(skb);
3238 skb_reset_transport_header(skb);
3239 skb_reset_mac_len(skb);
3240
3241 pt_prev = NULL;
3242
3243 rcu_read_lock();
3244
3245 another_round:
3246 skb->skb_iif = skb->dev->ifindex;
3247
3248 __this_cpu_inc(softnet_data.processed);
3249
3250 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3251 skb = vlan_untag(skb);
3252 if (unlikely(!skb))
3253 goto unlock;
3254 }
3255
3256 #ifdef CONFIG_NET_CLS_ACT
3257 if (skb->tc_verd & TC_NCLS) {
3258 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3259 goto ncls;
3260 }
3261 #endif
3262
3263 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3264 goto skip_taps;
3265
3266 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3267 if (!ptype->dev || ptype->dev == skb->dev) {
3268 if (pt_prev)
3269 ret = deliver_skb(skb, pt_prev, orig_dev);
3270 pt_prev = ptype;
3271 }
3272 }
3273
3274 skip_taps:
3275 #ifdef CONFIG_NET_CLS_ACT
3276 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3277 if (!skb)
3278 goto unlock;
3279 ncls:
3280 #endif
3281
3282 if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3283 && !skb_pfmemalloc_protocol(skb))
3284 goto drop;
3285
3286 rx_handler = rcu_dereference(skb->dev->rx_handler);
3287 if (vlan_tx_tag_present(skb)) {
3288 if (pt_prev) {
3289 ret = deliver_skb(skb, pt_prev, orig_dev);
3290 pt_prev = NULL;
3291 }
3292 if (vlan_do_receive(&skb, !rx_handler))
3293 goto another_round;
3294 else if (unlikely(!skb))
3295 goto unlock;
3296 }
3297
3298 if (rx_handler) {
3299 if (pt_prev) {
3300 ret = deliver_skb(skb, pt_prev, orig_dev);
3301 pt_prev = NULL;
3302 }
3303 switch (rx_handler(&skb)) {
3304 case RX_HANDLER_CONSUMED:
3305 goto unlock;
3306 case RX_HANDLER_ANOTHER:
3307 goto another_round;
3308 case RX_HANDLER_EXACT:
3309 deliver_exact = true;
3310 case RX_HANDLER_PASS:
3311 break;
3312 default:
3313 BUG();
3314 }
3315 }
3316
3317 /* deliver only exact match when indicated */
3318 null_or_dev = deliver_exact ? skb->dev : NULL;
3319
3320 type = skb->protocol;
3321 list_for_each_entry_rcu(ptype,
3322 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3323 if (ptype->type == type &&
3324 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3325 ptype->dev == orig_dev)) {
3326 if (pt_prev)
3327 ret = deliver_skb(skb, pt_prev, orig_dev);
3328 pt_prev = ptype;
3329 }
3330 }
3331
3332 if (pt_prev) {
3333 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3334 ret = -ENOMEM;
3335 else
3336 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3337 } else {
3338 drop:
3339 atomic_long_inc(&skb->dev->rx_dropped);
3340 kfree_skb(skb);
3341 /* Jamal, now you will not able to escape explaining
3342 * me how you were going to use this. :-)
3343 */
3344 ret = NET_RX_DROP;
3345 }
3346
3347 unlock:
3348 rcu_read_unlock();
3349 out:
3350 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3351 return ret;
3352 }
3353
3354 /**
3355 * netif_receive_skb - process receive buffer from network
3356 * @skb: buffer to process
3357 *
3358 * netif_receive_skb() is the main receive data processing function.
3359 * It always succeeds. The buffer may be dropped during processing
3360 * for congestion control or by the protocol layers.
3361 *
3362 * This function may only be called from softirq context and interrupts
3363 * should be enabled.
3364 *
3365 * Return values (usually ignored):
3366 * NET_RX_SUCCESS: no congestion
3367 * NET_RX_DROP: packet was dropped
3368 */
3369 int netif_receive_skb(struct sk_buff *skb)
3370 {
3371 net_timestamp_check(netdev_tstamp_prequeue, skb);
3372
3373 if (skb_defer_rx_timestamp(skb))
3374 return NET_RX_SUCCESS;
3375
3376 #ifdef CONFIG_RPS
3377 if (static_key_false(&rps_needed)) {
3378 struct rps_dev_flow voidflow, *rflow = &voidflow;
3379 int cpu, ret;
3380
3381 rcu_read_lock();
3382
3383 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3384
3385 if (cpu >= 0) {
3386 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3387 rcu_read_unlock();
3388 return ret;
3389 }
3390 rcu_read_unlock();
3391 }
3392 #endif
3393 return __netif_receive_skb(skb);
3394 }
3395 EXPORT_SYMBOL(netif_receive_skb);
3396
3397 /* Network device is going away, flush any packets still pending
3398 * Called with irqs disabled.
3399 */
3400 static void flush_backlog(void *arg)
3401 {
3402 struct net_device *dev = arg;
3403 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3404 struct sk_buff *skb, *tmp;
3405
3406 rps_lock(sd);
3407 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3408 if (skb->dev == dev) {
3409 __skb_unlink(skb, &sd->input_pkt_queue);
3410 kfree_skb(skb);
3411 input_queue_head_incr(sd);
3412 }
3413 }
3414 rps_unlock(sd);
3415
3416 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3417 if (skb->dev == dev) {
3418 __skb_unlink(skb, &sd->process_queue);
3419 kfree_skb(skb);
3420 input_queue_head_incr(sd);
3421 }
3422 }
3423 }
3424
3425 static int napi_gro_complete(struct sk_buff *skb)
3426 {
3427 struct packet_type *ptype;
3428 __be16 type = skb->protocol;
3429 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3430 int err = -ENOENT;
3431
3432 if (NAPI_GRO_CB(skb)->count == 1) {
3433 skb_shinfo(skb)->gso_size = 0;
3434 goto out;
3435 }
3436
3437 rcu_read_lock();
3438 list_for_each_entry_rcu(ptype, head, list) {
3439 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3440 continue;
3441
3442 err = ptype->gro_complete(skb);
3443 break;
3444 }
3445 rcu_read_unlock();
3446
3447 if (err) {
3448 WARN_ON(&ptype->list == head);
3449 kfree_skb(skb);
3450 return NET_RX_SUCCESS;
3451 }
3452
3453 out:
3454 return netif_receive_skb(skb);
3455 }
3456
3457 inline void napi_gro_flush(struct napi_struct *napi)
3458 {
3459 struct sk_buff *skb, *next;
3460
3461 for (skb = napi->gro_list; skb; skb = next) {
3462 next = skb->next;
3463 skb->next = NULL;
3464 napi_gro_complete(skb);
3465 }
3466
3467 napi->gro_count = 0;
3468 napi->gro_list = NULL;
3469 }
3470 EXPORT_SYMBOL(napi_gro_flush);
3471
3472 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3473 {
3474 struct sk_buff **pp = NULL;
3475 struct packet_type *ptype;
3476 __be16 type = skb->protocol;
3477 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3478 int same_flow;
3479 int mac_len;
3480 enum gro_result ret;
3481
3482 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3483 goto normal;
3484
3485 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3486 goto normal;
3487
3488 rcu_read_lock();
3489 list_for_each_entry_rcu(ptype, head, list) {
3490 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3491 continue;
3492
3493 skb_set_network_header(skb, skb_gro_offset(skb));
3494 mac_len = skb->network_header - skb->mac_header;
3495 skb->mac_len = mac_len;
3496 NAPI_GRO_CB(skb)->same_flow = 0;
3497 NAPI_GRO_CB(skb)->flush = 0;
3498 NAPI_GRO_CB(skb)->free = 0;
3499
3500 pp = ptype->gro_receive(&napi->gro_list, skb);
3501 break;
3502 }
3503 rcu_read_unlock();
3504
3505 if (&ptype->list == head)
3506 goto normal;
3507
3508 same_flow = NAPI_GRO_CB(skb)->same_flow;
3509 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3510
3511 if (pp) {
3512 struct sk_buff *nskb = *pp;
3513
3514 *pp = nskb->next;
3515 nskb->next = NULL;
3516 napi_gro_complete(nskb);
3517 napi->gro_count--;
3518 }
3519
3520 if (same_flow)
3521 goto ok;
3522
3523 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3524 goto normal;
3525
3526 napi->gro_count++;
3527 NAPI_GRO_CB(skb)->count = 1;
3528 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3529 skb->next = napi->gro_list;
3530 napi->gro_list = skb;
3531 ret = GRO_HELD;
3532
3533 pull:
3534 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3535 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3536
3537 BUG_ON(skb->end - skb->tail < grow);
3538
3539 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3540
3541 skb->tail += grow;
3542 skb->data_len -= grow;
3543
3544 skb_shinfo(skb)->frags[0].page_offset += grow;
3545 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3546
3547 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3548 skb_frag_unref(skb, 0);
3549 memmove(skb_shinfo(skb)->frags,
3550 skb_shinfo(skb)->frags + 1,
3551 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3552 }
3553 }
3554
3555 ok:
3556 return ret;
3557
3558 normal:
3559 ret = GRO_NORMAL;
3560 goto pull;
3561 }
3562 EXPORT_SYMBOL(dev_gro_receive);
3563
3564 static inline gro_result_t
3565 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3566 {
3567 struct sk_buff *p;
3568 unsigned int maclen = skb->dev->hard_header_len;
3569
3570 for (p = napi->gro_list; p; p = p->next) {
3571 unsigned long diffs;
3572
3573 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3574 diffs |= p->vlan_tci ^ skb->vlan_tci;
3575 if (maclen == ETH_HLEN)
3576 diffs |= compare_ether_header(skb_mac_header(p),
3577 skb_gro_mac_header(skb));
3578 else if (!diffs)
3579 diffs = memcmp(skb_mac_header(p),
3580 skb_gro_mac_header(skb),
3581 maclen);
3582 NAPI_GRO_CB(p)->same_flow = !diffs;
3583 NAPI_GRO_CB(p)->flush = 0;
3584 }
3585
3586 return dev_gro_receive(napi, skb);
3587 }
3588
3589 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3590 {
3591 switch (ret) {
3592 case GRO_NORMAL:
3593 if (netif_receive_skb(skb))
3594 ret = GRO_DROP;
3595 break;
3596
3597 case GRO_DROP:
3598 kfree_skb(skb);
3599 break;
3600
3601 case GRO_MERGED_FREE:
3602 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3603 kmem_cache_free(skbuff_head_cache, skb);
3604 else
3605 __kfree_skb(skb);
3606 break;
3607
3608 case GRO_HELD:
3609 case GRO_MERGED:
3610 break;
3611 }
3612
3613 return ret;
3614 }
3615 EXPORT_SYMBOL(napi_skb_finish);
3616
3617 void skb_gro_reset_offset(struct sk_buff *skb)
3618 {
3619 NAPI_GRO_CB(skb)->data_offset = 0;
3620 NAPI_GRO_CB(skb)->frag0 = NULL;
3621 NAPI_GRO_CB(skb)->frag0_len = 0;
3622
3623 if (skb->mac_header == skb->tail &&
3624 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3625 NAPI_GRO_CB(skb)->frag0 =
3626 skb_frag_address(&skb_shinfo(skb)->frags[0]);
3627 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3628 }
3629 }
3630 EXPORT_SYMBOL(skb_gro_reset_offset);
3631
3632 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3633 {
3634 skb_gro_reset_offset(skb);
3635
3636 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3637 }
3638 EXPORT_SYMBOL(napi_gro_receive);
3639
3640 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3641 {
3642 __skb_pull(skb, skb_headlen(skb));
3643 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3644 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3645 skb->vlan_tci = 0;
3646 skb->dev = napi->dev;
3647 skb->skb_iif = 0;
3648
3649 napi->skb = skb;
3650 }
3651
3652 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3653 {
3654 struct sk_buff *skb = napi->skb;
3655
3656 if (!skb) {
3657 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3658 if (skb)
3659 napi->skb = skb;
3660 }
3661 return skb;
3662 }
3663 EXPORT_SYMBOL(napi_get_frags);
3664
3665 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3666 gro_result_t ret)
3667 {
3668 switch (ret) {
3669 case GRO_NORMAL:
3670 case GRO_HELD:
3671 skb->protocol = eth_type_trans(skb, skb->dev);
3672
3673 if (ret == GRO_HELD)
3674 skb_gro_pull(skb, -ETH_HLEN);
3675 else if (netif_receive_skb(skb))
3676 ret = GRO_DROP;
3677 break;
3678
3679 case GRO_DROP:
3680 case GRO_MERGED_FREE:
3681 napi_reuse_skb(napi, skb);
3682 break;
3683
3684 case GRO_MERGED:
3685 break;
3686 }
3687
3688 return ret;
3689 }
3690 EXPORT_SYMBOL(napi_frags_finish);
3691
3692 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3693 {
3694 struct sk_buff *skb = napi->skb;
3695 struct ethhdr *eth;
3696 unsigned int hlen;
3697 unsigned int off;
3698
3699 napi->skb = NULL;
3700
3701 skb_reset_mac_header(skb);
3702 skb_gro_reset_offset(skb);
3703
3704 off = skb_gro_offset(skb);
3705 hlen = off + sizeof(*eth);
3706 eth = skb_gro_header_fast(skb, off);
3707 if (skb_gro_header_hard(skb, hlen)) {
3708 eth = skb_gro_header_slow(skb, hlen, off);
3709 if (unlikely(!eth)) {
3710 napi_reuse_skb(napi, skb);
3711 skb = NULL;
3712 goto out;
3713 }
3714 }
3715
3716 skb_gro_pull(skb, sizeof(*eth));
3717
3718 /*
3719 * This works because the only protocols we care about don't require
3720 * special handling. We'll fix it up properly at the end.
3721 */
3722 skb->protocol = eth->h_proto;
3723
3724 out:
3725 return skb;
3726 }
3727
3728 gro_result_t napi_gro_frags(struct napi_struct *napi)
3729 {
3730 struct sk_buff *skb = napi_frags_skb(napi);
3731
3732 if (!skb)
3733 return GRO_DROP;
3734
3735 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3736 }
3737 EXPORT_SYMBOL(napi_gro_frags);
3738
3739 /*
3740 * net_rps_action sends any pending IPI's for rps.
3741 * Note: called with local irq disabled, but exits with local irq enabled.
3742 */
3743 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3744 {
3745 #ifdef CONFIG_RPS
3746 struct softnet_data *remsd = sd->rps_ipi_list;
3747
3748 if (remsd) {
3749 sd->rps_ipi_list = NULL;
3750
3751 local_irq_enable();
3752
3753 /* Send pending IPI's to kick RPS processing on remote cpus. */
3754 while (remsd) {
3755 struct softnet_data *next = remsd->rps_ipi_next;
3756
3757 if (cpu_online(remsd->cpu))
3758 __smp_call_function_single(remsd->cpu,
3759 &remsd->csd, 0);
3760 remsd = next;
3761 }
3762 } else
3763 #endif
3764 local_irq_enable();
3765 }
3766
3767 static int process_backlog(struct napi_struct *napi, int quota)
3768 {
3769 int work = 0;
3770 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3771
3772 #ifdef CONFIG_RPS
3773 /* Check if we have pending ipi, its better to send them now,
3774 * not waiting net_rx_action() end.
3775 */
3776 if (sd->rps_ipi_list) {
3777 local_irq_disable();
3778 net_rps_action_and_irq_enable(sd);
3779 }
3780 #endif
3781 napi->weight = weight_p;
3782 local_irq_disable();
3783 while (work < quota) {
3784 struct sk_buff *skb;
3785 unsigned int qlen;
3786
3787 while ((skb = __skb_dequeue(&sd->process_queue))) {
3788 local_irq_enable();
3789 __netif_receive_skb(skb);
3790 local_irq_disable();
3791 input_queue_head_incr(sd);
3792 if (++work >= quota) {
3793 local_irq_enable();
3794 return work;
3795 }
3796 }
3797
3798 rps_lock(sd);
3799 qlen = skb_queue_len(&sd->input_pkt_queue);
3800 if (qlen)
3801 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3802 &sd->process_queue);
3803
3804 if (qlen < quota - work) {
3805 /*
3806 * Inline a custom version of __napi_complete().
3807 * only current cpu owns and manipulates this napi,
3808 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3809 * we can use a plain write instead of clear_bit(),
3810 * and we dont need an smp_mb() memory barrier.
3811 */
3812 list_del(&napi->poll_list);
3813 napi->state = 0;
3814
3815 quota = work + qlen;
3816 }
3817 rps_unlock(sd);
3818 }
3819 local_irq_enable();
3820
3821 return work;
3822 }
3823
3824 /**
3825 * __napi_schedule - schedule for receive
3826 * @n: entry to schedule
3827 *
3828 * The entry's receive function will be scheduled to run
3829 */
3830 void __napi_schedule(struct napi_struct *n)
3831 {
3832 unsigned long flags;
3833
3834 local_irq_save(flags);
3835 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3836 local_irq_restore(flags);
3837 }
3838 EXPORT_SYMBOL(__napi_schedule);
3839
3840 void __napi_complete(struct napi_struct *n)
3841 {
3842 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3843 BUG_ON(n->gro_list);
3844
3845 list_del(&n->poll_list);
3846 smp_mb__before_clear_bit();
3847 clear_bit(NAPI_STATE_SCHED, &n->state);
3848 }
3849 EXPORT_SYMBOL(__napi_complete);
3850
3851 void napi_complete(struct napi_struct *n)
3852 {
3853 unsigned long flags;
3854
3855 /*
3856 * don't let napi dequeue from the cpu poll list
3857 * just in case its running on a different cpu
3858 */
3859 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3860 return;
3861
3862 napi_gro_flush(n);
3863 local_irq_save(flags);
3864 __napi_complete(n);
3865 local_irq_restore(flags);
3866 }
3867 EXPORT_SYMBOL(napi_complete);
3868
3869 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3870 int (*poll)(struct napi_struct *, int), int weight)
3871 {
3872 INIT_LIST_HEAD(&napi->poll_list);
3873 napi->gro_count = 0;
3874 napi->gro_list = NULL;
3875 napi->skb = NULL;
3876 napi->poll = poll;
3877 napi->weight = weight;
3878 list_add(&napi->dev_list, &dev->napi_list);
3879 napi->dev = dev;
3880 #ifdef CONFIG_NETPOLL
3881 spin_lock_init(&napi->poll_lock);
3882 napi->poll_owner = -1;
3883 #endif
3884 set_bit(NAPI_STATE_SCHED, &napi->state);
3885 }
3886 EXPORT_SYMBOL(netif_napi_add);
3887
3888 void netif_napi_del(struct napi_struct *napi)
3889 {
3890 struct sk_buff *skb, *next;
3891
3892 list_del_init(&napi->dev_list);
3893 napi_free_frags(napi);
3894
3895 for (skb = napi->gro_list; skb; skb = next) {
3896 next = skb->next;
3897 skb->next = NULL;
3898 kfree_skb(skb);
3899 }
3900
3901 napi->gro_list = NULL;
3902 napi->gro_count = 0;
3903 }
3904 EXPORT_SYMBOL(netif_napi_del);
3905
3906 static void net_rx_action(struct softirq_action *h)
3907 {
3908 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3909 unsigned long time_limit = jiffies + 2;
3910 int budget = netdev_budget;
3911 void *have;
3912
3913 local_irq_disable();
3914
3915 while (!list_empty(&sd->poll_list)) {
3916 struct napi_struct *n;
3917 int work, weight;
3918
3919 /* If softirq window is exhuasted then punt.
3920 * Allow this to run for 2 jiffies since which will allow
3921 * an average latency of 1.5/HZ.
3922 */
3923 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3924 goto softnet_break;
3925
3926 local_irq_enable();
3927
3928 /* Even though interrupts have been re-enabled, this
3929 * access is safe because interrupts can only add new
3930 * entries to the tail of this list, and only ->poll()
3931 * calls can remove this head entry from the list.
3932 */
3933 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3934
3935 have = netpoll_poll_lock(n);
3936
3937 weight = n->weight;
3938
3939 /* This NAPI_STATE_SCHED test is for avoiding a race
3940 * with netpoll's poll_napi(). Only the entity which
3941 * obtains the lock and sees NAPI_STATE_SCHED set will
3942 * actually make the ->poll() call. Therefore we avoid
3943 * accidentally calling ->poll() when NAPI is not scheduled.
3944 */
3945 work = 0;
3946 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3947 work = n->poll(n, weight);
3948 trace_napi_poll(n);
3949 }
3950
3951 WARN_ON_ONCE(work > weight);
3952
3953 budget -= work;
3954
3955 local_irq_disable();
3956
3957 /* Drivers must not modify the NAPI state if they
3958 * consume the entire weight. In such cases this code
3959 * still "owns" the NAPI instance and therefore can
3960 * move the instance around on the list at-will.
3961 */
3962 if (unlikely(work == weight)) {
3963 if (unlikely(napi_disable_pending(n))) {
3964 local_irq_enable();
3965 napi_complete(n);
3966 local_irq_disable();
3967 } else
3968 list_move_tail(&n->poll_list, &sd->poll_list);
3969 }
3970
3971 netpoll_poll_unlock(have);
3972 }
3973 out:
3974 net_rps_action_and_irq_enable(sd);
3975
3976 #ifdef CONFIG_NET_DMA
3977 /*
3978 * There may not be any more sk_buffs coming right now, so push
3979 * any pending DMA copies to hardware
3980 */
3981 dma_issue_pending_all();
3982 #endif
3983
3984 return;
3985
3986 softnet_break:
3987 sd->time_squeeze++;
3988 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3989 goto out;
3990 }
3991
3992 static gifconf_func_t *gifconf_list[NPROTO];
3993
3994 /**
3995 * register_gifconf - register a SIOCGIF handler
3996 * @family: Address family
3997 * @gifconf: Function handler
3998 *
3999 * Register protocol dependent address dumping routines. The handler
4000 * that is passed must not be freed or reused until it has been replaced
4001 * by another handler.
4002 */
4003 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
4004 {
4005 if (family >= NPROTO)
4006 return -EINVAL;
4007 gifconf_list[family] = gifconf;
4008 return 0;
4009 }
4010 EXPORT_SYMBOL(register_gifconf);
4011
4012
4013 /*
4014 * Map an interface index to its name (SIOCGIFNAME)
4015 */
4016
4017 /*
4018 * We need this ioctl for efficient implementation of the
4019 * if_indextoname() function required by the IPv6 API. Without
4020 * it, we would have to search all the interfaces to find a
4021 * match. --pb
4022 */
4023
4024 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4025 {
4026 struct net_device *dev;
4027 struct ifreq ifr;
4028
4029 /*
4030 * Fetch the caller's info block.
4031 */
4032
4033 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4034 return -EFAULT;
4035
4036 rcu_read_lock();
4037 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4038 if (!dev) {
4039 rcu_read_unlock();
4040 return -ENODEV;
4041 }
4042
4043 strcpy(ifr.ifr_name, dev->name);
4044 rcu_read_unlock();
4045
4046 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4047 return -EFAULT;
4048 return 0;
4049 }
4050
4051 /*
4052 * Perform a SIOCGIFCONF call. This structure will change
4053 * size eventually, and there is nothing I can do about it.
4054 * Thus we will need a 'compatibility mode'.
4055 */
4056
4057 static int dev_ifconf(struct net *net, char __user *arg)
4058 {
4059 struct ifconf ifc;
4060 struct net_device *dev;
4061 char __user *pos;
4062 int len;
4063 int total;
4064 int i;
4065
4066 /*
4067 * Fetch the caller's info block.
4068 */
4069
4070 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4071 return -EFAULT;
4072
4073 pos = ifc.ifc_buf;
4074 len = ifc.ifc_len;
4075
4076 /*
4077 * Loop over the interfaces, and write an info block for each.
4078 */
4079
4080 total = 0;
4081 for_each_netdev(net, dev) {
4082 for (i = 0; i < NPROTO; i++) {
4083 if (gifconf_list[i]) {
4084 int done;
4085 if (!pos)
4086 done = gifconf_list[i](dev, NULL, 0);
4087 else
4088 done = gifconf_list[i](dev, pos + total,
4089 len - total);
4090 if (done < 0)
4091 return -EFAULT;
4092 total += done;
4093 }
4094 }
4095 }
4096
4097 /*
4098 * All done. Write the updated control block back to the caller.
4099 */
4100 ifc.ifc_len = total;
4101
4102 /*
4103 * Both BSD and Solaris return 0 here, so we do too.
4104 */
4105 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4106 }
4107
4108 #ifdef CONFIG_PROC_FS
4109
4110 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4111
4112 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4113 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4114 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4115
4116 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4117 {
4118 struct net *net = seq_file_net(seq);
4119 struct net_device *dev;
4120 struct hlist_node *p;
4121 struct hlist_head *h;
4122 unsigned int count = 0, offset = get_offset(*pos);
4123
4124 h = &net->dev_name_head[get_bucket(*pos)];
4125 hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4126 if (++count == offset)
4127 return dev;
4128 }
4129
4130 return NULL;
4131 }
4132
4133 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4134 {
4135 struct net_device *dev;
4136 unsigned int bucket;
4137
4138 do {
4139 dev = dev_from_same_bucket(seq, pos);
4140 if (dev)
4141 return dev;
4142
4143 bucket = get_bucket(*pos) + 1;
4144 *pos = set_bucket_offset(bucket, 1);
4145 } while (bucket < NETDEV_HASHENTRIES);
4146
4147 return NULL;
4148 }
4149
4150 /*
4151 * This is invoked by the /proc filesystem handler to display a device
4152 * in detail.
4153 */
4154 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4155 __acquires(RCU)
4156 {
4157 rcu_read_lock();
4158 if (!*pos)
4159 return SEQ_START_TOKEN;
4160
4161 if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4162 return NULL;
4163
4164 return dev_from_bucket(seq, pos);
4165 }
4166
4167 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4168 {
4169 ++*pos;
4170 return dev_from_bucket(seq, pos);
4171 }
4172
4173 void dev_seq_stop(struct seq_file *seq, void *v)
4174 __releases(RCU)
4175 {
4176 rcu_read_unlock();
4177 }
4178
4179 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4180 {
4181 struct rtnl_link_stats64 temp;
4182 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4183
4184 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4185 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4186 dev->name, stats->rx_bytes, stats->rx_packets,
4187 stats->rx_errors,
4188 stats->rx_dropped + stats->rx_missed_errors,
4189 stats->rx_fifo_errors,
4190 stats->rx_length_errors + stats->rx_over_errors +
4191 stats->rx_crc_errors + stats->rx_frame_errors,
4192 stats->rx_compressed, stats->multicast,
4193 stats->tx_bytes, stats->tx_packets,
4194 stats->tx_errors, stats->tx_dropped,
4195 stats->tx_fifo_errors, stats->collisions,
4196 stats->tx_carrier_errors +
4197 stats->tx_aborted_errors +
4198 stats->tx_window_errors +
4199 stats->tx_heartbeat_errors,
4200 stats->tx_compressed);
4201 }
4202
4203 /*
4204 * Called from the PROCfs module. This now uses the new arbitrary sized
4205 * /proc/net interface to create /proc/net/dev
4206 */
4207 static int dev_seq_show(struct seq_file *seq, void *v)
4208 {
4209 if (v == SEQ_START_TOKEN)
4210 seq_puts(seq, "Inter-| Receive "
4211 " | Transmit\n"
4212 " face |bytes packets errs drop fifo frame "
4213 "compressed multicast|bytes packets errs "
4214 "drop fifo colls carrier compressed\n");
4215 else
4216 dev_seq_printf_stats(seq, v);
4217 return 0;
4218 }
4219
4220 static struct softnet_data *softnet_get_online(loff_t *pos)
4221 {
4222 struct softnet_data *sd = NULL;
4223
4224 while (*pos < nr_cpu_ids)
4225 if (cpu_online(*pos)) {
4226 sd = &per_cpu(softnet_data, *pos);
4227 break;
4228 } else
4229 ++*pos;
4230 return sd;
4231 }
4232
4233 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4234 {
4235 return softnet_get_online(pos);
4236 }
4237
4238 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4239 {
4240 ++*pos;
4241 return softnet_get_online(pos);
4242 }
4243
4244 static void softnet_seq_stop(struct seq_file *seq, void *v)
4245 {
4246 }
4247
4248 static int softnet_seq_show(struct seq_file *seq, void *v)
4249 {
4250 struct softnet_data *sd = v;
4251
4252 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4253 sd->processed, sd->dropped, sd->time_squeeze, 0,
4254 0, 0, 0, 0, /* was fastroute */
4255 sd->cpu_collision, sd->received_rps);
4256 return 0;
4257 }
4258
4259 static const struct seq_operations dev_seq_ops = {
4260 .start = dev_seq_start,
4261 .next = dev_seq_next,
4262 .stop = dev_seq_stop,
4263 .show = dev_seq_show,
4264 };
4265
4266 static int dev_seq_open(struct inode *inode, struct file *file)
4267 {
4268 return seq_open_net(inode, file, &dev_seq_ops,
4269 sizeof(struct seq_net_private));
4270 }
4271
4272 static const struct file_operations dev_seq_fops = {
4273 .owner = THIS_MODULE,
4274 .open = dev_seq_open,
4275 .read = seq_read,
4276 .llseek = seq_lseek,
4277 .release = seq_release_net,
4278 };
4279
4280 static const struct seq_operations softnet_seq_ops = {
4281 .start = softnet_seq_start,
4282 .next = softnet_seq_next,
4283 .stop = softnet_seq_stop,
4284 .show = softnet_seq_show,
4285 };
4286
4287 static int softnet_seq_open(struct inode *inode, struct file *file)
4288 {
4289 return seq_open(file, &softnet_seq_ops);
4290 }
4291
4292 static const struct file_operations softnet_seq_fops = {
4293 .owner = THIS_MODULE,
4294 .open = softnet_seq_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = seq_release,
4298 };
4299
4300 static void *ptype_get_idx(loff_t pos)
4301 {
4302 struct packet_type *pt = NULL;
4303 loff_t i = 0;
4304 int t;
4305
4306 list_for_each_entry_rcu(pt, &ptype_all, list) {
4307 if (i == pos)
4308 return pt;
4309 ++i;
4310 }
4311
4312 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4313 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4314 if (i == pos)
4315 return pt;
4316 ++i;
4317 }
4318 }
4319 return NULL;
4320 }
4321
4322 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4323 __acquires(RCU)
4324 {
4325 rcu_read_lock();
4326 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4327 }
4328
4329 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4330 {
4331 struct packet_type *pt;
4332 struct list_head *nxt;
4333 int hash;
4334
4335 ++*pos;
4336 if (v == SEQ_START_TOKEN)
4337 return ptype_get_idx(0);
4338
4339 pt = v;
4340 nxt = pt->list.next;
4341 if (pt->type == htons(ETH_P_ALL)) {
4342 if (nxt != &ptype_all)
4343 goto found;
4344 hash = 0;
4345 nxt = ptype_base[0].next;
4346 } else
4347 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4348
4349 while (nxt == &ptype_base[hash]) {
4350 if (++hash >= PTYPE_HASH_SIZE)
4351 return NULL;
4352 nxt = ptype_base[hash].next;
4353 }
4354 found:
4355 return list_entry(nxt, struct packet_type, list);
4356 }
4357
4358 static void ptype_seq_stop(struct seq_file *seq, void *v)
4359 __releases(RCU)
4360 {
4361 rcu_read_unlock();
4362 }
4363
4364 static int ptype_seq_show(struct seq_file *seq, void *v)
4365 {
4366 struct packet_type *pt = v;
4367
4368 if (v == SEQ_START_TOKEN)
4369 seq_puts(seq, "Type Device Function\n");
4370 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4371 if (pt->type == htons(ETH_P_ALL))
4372 seq_puts(seq, "ALL ");
4373 else
4374 seq_printf(seq, "%04x", ntohs(pt->type));
4375
4376 seq_printf(seq, " %-8s %pF\n",
4377 pt->dev ? pt->dev->name : "", pt->func);
4378 }
4379
4380 return 0;
4381 }
4382
4383 static const struct seq_operations ptype_seq_ops = {
4384 .start = ptype_seq_start,
4385 .next = ptype_seq_next,
4386 .stop = ptype_seq_stop,
4387 .show = ptype_seq_show,
4388 };
4389
4390 static int ptype_seq_open(struct inode *inode, struct file *file)
4391 {
4392 return seq_open_net(inode, file, &ptype_seq_ops,
4393 sizeof(struct seq_net_private));
4394 }
4395
4396 static const struct file_operations ptype_seq_fops = {
4397 .owner = THIS_MODULE,
4398 .open = ptype_seq_open,
4399 .read = seq_read,
4400 .llseek = seq_lseek,
4401 .release = seq_release_net,
4402 };
4403
4404
4405 static int __net_init dev_proc_net_init(struct net *net)
4406 {
4407 int rc = -ENOMEM;
4408
4409 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4410 goto out;
4411 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4412 goto out_dev;
4413 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4414 goto out_softnet;
4415
4416 if (wext_proc_init(net))
4417 goto out_ptype;
4418 rc = 0;
4419 out:
4420 return rc;
4421 out_ptype:
4422 proc_net_remove(net, "ptype");
4423 out_softnet:
4424 proc_net_remove(net, "softnet_stat");
4425 out_dev:
4426 proc_net_remove(net, "dev");
4427 goto out;
4428 }
4429
4430 static void __net_exit dev_proc_net_exit(struct net *net)
4431 {
4432 wext_proc_exit(net);
4433
4434 proc_net_remove(net, "ptype");
4435 proc_net_remove(net, "softnet_stat");
4436 proc_net_remove(net, "dev");
4437 }
4438
4439 static struct pernet_operations __net_initdata dev_proc_ops = {
4440 .init = dev_proc_net_init,
4441 .exit = dev_proc_net_exit,
4442 };
4443
4444 static int __init dev_proc_init(void)
4445 {
4446 return register_pernet_subsys(&dev_proc_ops);
4447 }
4448 #else
4449 #define dev_proc_init() 0
4450 #endif /* CONFIG_PROC_FS */
4451
4452
4453 /**
4454 * netdev_set_master - set up master pointer
4455 * @slave: slave device
4456 * @master: new master device
4457 *
4458 * Changes the master device of the slave. Pass %NULL to break the
4459 * bonding. The caller must hold the RTNL semaphore. On a failure
4460 * a negative errno code is returned. On success the reference counts
4461 * are adjusted and the function returns zero.
4462 */
4463 int netdev_set_master(struct net_device *slave, struct net_device *master)
4464 {
4465 struct net_device *old = slave->master;
4466
4467 ASSERT_RTNL();
4468
4469 if (master) {
4470 if (old)
4471 return -EBUSY;
4472 dev_hold(master);
4473 }
4474
4475 slave->master = master;
4476
4477 if (old)
4478 dev_put(old);
4479 return 0;
4480 }
4481 EXPORT_SYMBOL(netdev_set_master);
4482
4483 /**
4484 * netdev_set_bond_master - set up bonding master/slave pair
4485 * @slave: slave device
4486 * @master: new master device
4487 *
4488 * Changes the master device of the slave. Pass %NULL to break the
4489 * bonding. The caller must hold the RTNL semaphore. On a failure
4490 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4491 * to the routing socket and the function returns zero.
4492 */
4493 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4494 {
4495 int err;
4496
4497 ASSERT_RTNL();
4498
4499 err = netdev_set_master(slave, master);
4500 if (err)
4501 return err;
4502 if (master)
4503 slave->flags |= IFF_SLAVE;
4504 else
4505 slave->flags &= ~IFF_SLAVE;
4506
4507 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4508 return 0;
4509 }
4510 EXPORT_SYMBOL(netdev_set_bond_master);
4511
4512 static void dev_change_rx_flags(struct net_device *dev, int flags)
4513 {
4514 const struct net_device_ops *ops = dev->netdev_ops;
4515
4516 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4517 ops->ndo_change_rx_flags(dev, flags);
4518 }
4519
4520 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4521 {
4522 unsigned int old_flags = dev->flags;
4523 uid_t uid;
4524 gid_t gid;
4525
4526 ASSERT_RTNL();
4527
4528 dev->flags |= IFF_PROMISC;
4529 dev->promiscuity += inc;
4530 if (dev->promiscuity == 0) {
4531 /*
4532 * Avoid overflow.
4533 * If inc causes overflow, untouch promisc and return error.
4534 */
4535 if (inc < 0)
4536 dev->flags &= ~IFF_PROMISC;
4537 else {
4538 dev->promiscuity -= inc;
4539 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4540 dev->name);
4541 return -EOVERFLOW;
4542 }
4543 }
4544 if (dev->flags != old_flags) {
4545 pr_info("device %s %s promiscuous mode\n",
4546 dev->name,
4547 dev->flags & IFF_PROMISC ? "entered" : "left");
4548 if (audit_enabled) {
4549 current_uid_gid(&uid, &gid);
4550 audit_log(current->audit_context, GFP_ATOMIC,
4551 AUDIT_ANOM_PROMISCUOUS,
4552 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4553 dev->name, (dev->flags & IFF_PROMISC),
4554 (old_flags & IFF_PROMISC),
4555 audit_get_loginuid(current),
4556 uid, gid,
4557 audit_get_sessionid(current));
4558 }
4559
4560 dev_change_rx_flags(dev, IFF_PROMISC);
4561 }
4562 return 0;
4563 }
4564
4565 /**
4566 * dev_set_promiscuity - update promiscuity count on a device
4567 * @dev: device
4568 * @inc: modifier
4569 *
4570 * Add or remove promiscuity from a device. While the count in the device
4571 * remains above zero the interface remains promiscuous. Once it hits zero
4572 * the device reverts back to normal filtering operation. A negative inc
4573 * value is used to drop promiscuity on the device.
4574 * Return 0 if successful or a negative errno code on error.
4575 */
4576 int dev_set_promiscuity(struct net_device *dev, int inc)
4577 {
4578 unsigned int old_flags = dev->flags;
4579 int err;
4580
4581 err = __dev_set_promiscuity(dev, inc);
4582 if (err < 0)
4583 return err;
4584 if (dev->flags != old_flags)
4585 dev_set_rx_mode(dev);
4586 return err;
4587 }
4588 EXPORT_SYMBOL(dev_set_promiscuity);
4589
4590 /**
4591 * dev_set_allmulti - update allmulti count on a device
4592 * @dev: device
4593 * @inc: modifier
4594 *
4595 * Add or remove reception of all multicast frames to a device. While the
4596 * count in the device remains above zero the interface remains listening
4597 * to all interfaces. Once it hits zero the device reverts back to normal
4598 * filtering operation. A negative @inc value is used to drop the counter
4599 * when releasing a resource needing all multicasts.
4600 * Return 0 if successful or a negative errno code on error.
4601 */
4602
4603 int dev_set_allmulti(struct net_device *dev, int inc)
4604 {
4605 unsigned int old_flags = dev->flags;
4606
4607 ASSERT_RTNL();
4608
4609 dev->flags |= IFF_ALLMULTI;
4610 dev->allmulti += inc;
4611 if (dev->allmulti == 0) {
4612 /*
4613 * Avoid overflow.
4614 * If inc causes overflow, untouch allmulti and return error.
4615 */
4616 if (inc < 0)
4617 dev->flags &= ~IFF_ALLMULTI;
4618 else {
4619 dev->allmulti -= inc;
4620 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4621 dev->name);
4622 return -EOVERFLOW;
4623 }
4624 }
4625 if (dev->flags ^ old_flags) {
4626 dev_change_rx_flags(dev, IFF_ALLMULTI);
4627 dev_set_rx_mode(dev);
4628 }
4629 return 0;
4630 }
4631 EXPORT_SYMBOL(dev_set_allmulti);
4632
4633 /*
4634 * Upload unicast and multicast address lists to device and
4635 * configure RX filtering. When the device doesn't support unicast
4636 * filtering it is put in promiscuous mode while unicast addresses
4637 * are present.
4638 */
4639 void __dev_set_rx_mode(struct net_device *dev)
4640 {
4641 const struct net_device_ops *ops = dev->netdev_ops;
4642
4643 /* dev_open will call this function so the list will stay sane. */
4644 if (!(dev->flags&IFF_UP))
4645 return;
4646
4647 if (!netif_device_present(dev))
4648 return;
4649
4650 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4651 /* Unicast addresses changes may only happen under the rtnl,
4652 * therefore calling __dev_set_promiscuity here is safe.
4653 */
4654 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4655 __dev_set_promiscuity(dev, 1);
4656 dev->uc_promisc = true;
4657 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4658 __dev_set_promiscuity(dev, -1);
4659 dev->uc_promisc = false;
4660 }
4661 }
4662
4663 if (ops->ndo_set_rx_mode)
4664 ops->ndo_set_rx_mode(dev);
4665 }
4666
4667 void dev_set_rx_mode(struct net_device *dev)
4668 {
4669 netif_addr_lock_bh(dev);
4670 __dev_set_rx_mode(dev);
4671 netif_addr_unlock_bh(dev);
4672 }
4673
4674 /**
4675 * dev_get_flags - get flags reported to userspace
4676 * @dev: device
4677 *
4678 * Get the combination of flag bits exported through APIs to userspace.
4679 */
4680 unsigned int dev_get_flags(const struct net_device *dev)
4681 {
4682 unsigned int flags;
4683
4684 flags = (dev->flags & ~(IFF_PROMISC |
4685 IFF_ALLMULTI |
4686 IFF_RUNNING |
4687 IFF_LOWER_UP |
4688 IFF_DORMANT)) |
4689 (dev->gflags & (IFF_PROMISC |
4690 IFF_ALLMULTI));
4691
4692 if (netif_running(dev)) {
4693 if (netif_oper_up(dev))
4694 flags |= IFF_RUNNING;
4695 if (netif_carrier_ok(dev))
4696 flags |= IFF_LOWER_UP;
4697 if (netif_dormant(dev))
4698 flags |= IFF_DORMANT;
4699 }
4700
4701 return flags;
4702 }
4703 EXPORT_SYMBOL(dev_get_flags);
4704
4705 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4706 {
4707 unsigned int old_flags = dev->flags;
4708 int ret;
4709
4710 ASSERT_RTNL();
4711
4712 /*
4713 * Set the flags on our device.
4714 */
4715
4716 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4717 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4718 IFF_AUTOMEDIA)) |
4719 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4720 IFF_ALLMULTI));
4721
4722 /*
4723 * Load in the correct multicast list now the flags have changed.
4724 */
4725
4726 if ((old_flags ^ flags) & IFF_MULTICAST)
4727 dev_change_rx_flags(dev, IFF_MULTICAST);
4728
4729 dev_set_rx_mode(dev);
4730
4731 /*
4732 * Have we downed the interface. We handle IFF_UP ourselves
4733 * according to user attempts to set it, rather than blindly
4734 * setting it.
4735 */
4736
4737 ret = 0;
4738 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4739 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4740
4741 if (!ret)
4742 dev_set_rx_mode(dev);
4743 }
4744
4745 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4746 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4747
4748 dev->gflags ^= IFF_PROMISC;
4749 dev_set_promiscuity(dev, inc);
4750 }
4751
4752 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4753 is important. Some (broken) drivers set IFF_PROMISC, when
4754 IFF_ALLMULTI is requested not asking us and not reporting.
4755 */
4756 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4757 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4758
4759 dev->gflags ^= IFF_ALLMULTI;
4760 dev_set_allmulti(dev, inc);
4761 }
4762
4763 return ret;
4764 }
4765
4766 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4767 {
4768 unsigned int changes = dev->flags ^ old_flags;
4769
4770 if (changes & IFF_UP) {
4771 if (dev->flags & IFF_UP)
4772 call_netdevice_notifiers(NETDEV_UP, dev);
4773 else
4774 call_netdevice_notifiers(NETDEV_DOWN, dev);
4775 }
4776
4777 if (dev->flags & IFF_UP &&
4778 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4779 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4780 }
4781
4782 /**
4783 * dev_change_flags - change device settings
4784 * @dev: device
4785 * @flags: device state flags
4786 *
4787 * Change settings on device based state flags. The flags are
4788 * in the userspace exported format.
4789 */
4790 int dev_change_flags(struct net_device *dev, unsigned int flags)
4791 {
4792 int ret;
4793 unsigned int changes, old_flags = dev->flags;
4794
4795 ret = __dev_change_flags(dev, flags);
4796 if (ret < 0)
4797 return ret;
4798
4799 changes = old_flags ^ dev->flags;
4800 if (changes)
4801 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4802
4803 __dev_notify_flags(dev, old_flags);
4804 return ret;
4805 }
4806 EXPORT_SYMBOL(dev_change_flags);
4807
4808 /**
4809 * dev_set_mtu - Change maximum transfer unit
4810 * @dev: device
4811 * @new_mtu: new transfer unit
4812 *
4813 * Change the maximum transfer size of the network device.
4814 */
4815 int dev_set_mtu(struct net_device *dev, int new_mtu)
4816 {
4817 const struct net_device_ops *ops = dev->netdev_ops;
4818 int err;
4819
4820 if (new_mtu == dev->mtu)
4821 return 0;
4822
4823 /* MTU must be positive. */
4824 if (new_mtu < 0)
4825 return -EINVAL;
4826
4827 if (!netif_device_present(dev))
4828 return -ENODEV;
4829
4830 err = 0;
4831 if (ops->ndo_change_mtu)
4832 err = ops->ndo_change_mtu(dev, new_mtu);
4833 else
4834 dev->mtu = new_mtu;
4835
4836 if (!err && dev->flags & IFF_UP)
4837 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4838 return err;
4839 }
4840 EXPORT_SYMBOL(dev_set_mtu);
4841
4842 /**
4843 * dev_set_group - Change group this device belongs to
4844 * @dev: device
4845 * @new_group: group this device should belong to
4846 */
4847 void dev_set_group(struct net_device *dev, int new_group)
4848 {
4849 dev->group = new_group;
4850 }
4851 EXPORT_SYMBOL(dev_set_group);
4852
4853 /**
4854 * dev_set_mac_address - Change Media Access Control Address
4855 * @dev: device
4856 * @sa: new address
4857 *
4858 * Change the hardware (MAC) address of the device
4859 */
4860 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4861 {
4862 const struct net_device_ops *ops = dev->netdev_ops;
4863 int err;
4864
4865 if (!ops->ndo_set_mac_address)
4866 return -EOPNOTSUPP;
4867 if (sa->sa_family != dev->type)
4868 return -EINVAL;
4869 if (!netif_device_present(dev))
4870 return -ENODEV;
4871 err = ops->ndo_set_mac_address(dev, sa);
4872 if (!err)
4873 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4874 add_device_randomness(dev->dev_addr, dev->addr_len);
4875 return err;
4876 }
4877 EXPORT_SYMBOL(dev_set_mac_address);
4878
4879 /*
4880 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4881 */
4882 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4883 {
4884 int err;
4885 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4886
4887 if (!dev)
4888 return -ENODEV;
4889
4890 switch (cmd) {
4891 case SIOCGIFFLAGS: /* Get interface flags */
4892 ifr->ifr_flags = (short) dev_get_flags(dev);
4893 return 0;
4894
4895 case SIOCGIFMETRIC: /* Get the metric on the interface
4896 (currently unused) */
4897 ifr->ifr_metric = 0;
4898 return 0;
4899
4900 case SIOCGIFMTU: /* Get the MTU of a device */
4901 ifr->ifr_mtu = dev->mtu;
4902 return 0;
4903
4904 case SIOCGIFHWADDR:
4905 if (!dev->addr_len)
4906 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4907 else
4908 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4909 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4910 ifr->ifr_hwaddr.sa_family = dev->type;
4911 return 0;
4912
4913 case SIOCGIFSLAVE:
4914 err = -EINVAL;
4915 break;
4916
4917 case SIOCGIFMAP:
4918 ifr->ifr_map.mem_start = dev->mem_start;
4919 ifr->ifr_map.mem_end = dev->mem_end;
4920 ifr->ifr_map.base_addr = dev->base_addr;
4921 ifr->ifr_map.irq = dev->irq;
4922 ifr->ifr_map.dma = dev->dma;
4923 ifr->ifr_map.port = dev->if_port;
4924 return 0;
4925
4926 case SIOCGIFINDEX:
4927 ifr->ifr_ifindex = dev->ifindex;
4928 return 0;
4929
4930 case SIOCGIFTXQLEN:
4931 ifr->ifr_qlen = dev->tx_queue_len;
4932 return 0;
4933
4934 default:
4935 /* dev_ioctl() should ensure this case
4936 * is never reached
4937 */
4938 WARN_ON(1);
4939 err = -ENOTTY;
4940 break;
4941
4942 }
4943 return err;
4944 }
4945
4946 /*
4947 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4948 */
4949 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4950 {
4951 int err;
4952 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4953 const struct net_device_ops *ops;
4954
4955 if (!dev)
4956 return -ENODEV;
4957
4958 ops = dev->netdev_ops;
4959
4960 switch (cmd) {
4961 case SIOCSIFFLAGS: /* Set interface flags */
4962 return dev_change_flags(dev, ifr->ifr_flags);
4963
4964 case SIOCSIFMETRIC: /* Set the metric on the interface
4965 (currently unused) */
4966 return -EOPNOTSUPP;
4967
4968 case SIOCSIFMTU: /* Set the MTU of a device */
4969 return dev_set_mtu(dev, ifr->ifr_mtu);
4970
4971 case SIOCSIFHWADDR:
4972 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4973
4974 case SIOCSIFHWBROADCAST:
4975 if (ifr->ifr_hwaddr.sa_family != dev->type)
4976 return -EINVAL;
4977 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4978 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4979 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4980 return 0;
4981
4982 case SIOCSIFMAP:
4983 if (ops->ndo_set_config) {
4984 if (!netif_device_present(dev))
4985 return -ENODEV;
4986 return ops->ndo_set_config(dev, &ifr->ifr_map);
4987 }
4988 return -EOPNOTSUPP;
4989
4990 case SIOCADDMULTI:
4991 if (!ops->ndo_set_rx_mode ||
4992 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4993 return -EINVAL;
4994 if (!netif_device_present(dev))
4995 return -ENODEV;
4996 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4997
4998 case SIOCDELMULTI:
4999 if (!ops->ndo_set_rx_mode ||
5000 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
5001 return -EINVAL;
5002 if (!netif_device_present(dev))
5003 return -ENODEV;
5004 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
5005
5006 case SIOCSIFTXQLEN:
5007 if (ifr->ifr_qlen < 0)
5008 return -EINVAL;
5009 dev->tx_queue_len = ifr->ifr_qlen;
5010 return 0;
5011
5012 case SIOCSIFNAME:
5013 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
5014 return dev_change_name(dev, ifr->ifr_newname);
5015
5016 case SIOCSHWTSTAMP:
5017 err = net_hwtstamp_validate(ifr);
5018 if (err)
5019 return err;
5020 /* fall through */
5021
5022 /*
5023 * Unknown or private ioctl
5024 */
5025 default:
5026 if ((cmd >= SIOCDEVPRIVATE &&
5027 cmd <= SIOCDEVPRIVATE + 15) ||
5028 cmd == SIOCBONDENSLAVE ||
5029 cmd == SIOCBONDRELEASE ||
5030 cmd == SIOCBONDSETHWADDR ||
5031 cmd == SIOCBONDSLAVEINFOQUERY ||
5032 cmd == SIOCBONDINFOQUERY ||
5033 cmd == SIOCBONDCHANGEACTIVE ||
5034 cmd == SIOCGMIIPHY ||
5035 cmd == SIOCGMIIREG ||
5036 cmd == SIOCSMIIREG ||
5037 cmd == SIOCBRADDIF ||
5038 cmd == SIOCBRDELIF ||
5039 cmd == SIOCSHWTSTAMP ||
5040 cmd == SIOCWANDEV) {
5041 err = -EOPNOTSUPP;
5042 if (ops->ndo_do_ioctl) {
5043 if (netif_device_present(dev))
5044 err = ops->ndo_do_ioctl(dev, ifr, cmd);
5045 else
5046 err = -ENODEV;
5047 }
5048 } else
5049 err = -EINVAL;
5050
5051 }
5052 return err;
5053 }
5054
5055 /*
5056 * This function handles all "interface"-type I/O control requests. The actual
5057 * 'doing' part of this is dev_ifsioc above.
5058 */
5059
5060 /**
5061 * dev_ioctl - network device ioctl
5062 * @net: the applicable net namespace
5063 * @cmd: command to issue
5064 * @arg: pointer to a struct ifreq in user space
5065 *
5066 * Issue ioctl functions to devices. This is normally called by the
5067 * user space syscall interfaces but can sometimes be useful for
5068 * other purposes. The return value is the return from the syscall if
5069 * positive or a negative errno code on error.
5070 */
5071
5072 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5073 {
5074 struct ifreq ifr;
5075 int ret;
5076 char *colon;
5077
5078 /* One special case: SIOCGIFCONF takes ifconf argument
5079 and requires shared lock, because it sleeps writing
5080 to user space.
5081 */
5082
5083 if (cmd == SIOCGIFCONF) {
5084 rtnl_lock();
5085 ret = dev_ifconf(net, (char __user *) arg);
5086 rtnl_unlock();
5087 return ret;
5088 }
5089 if (cmd == SIOCGIFNAME)
5090 return dev_ifname(net, (struct ifreq __user *)arg);
5091
5092 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5093 return -EFAULT;
5094
5095 ifr.ifr_name[IFNAMSIZ-1] = 0;
5096
5097 colon = strchr(ifr.ifr_name, ':');
5098 if (colon)
5099 *colon = 0;
5100
5101 /*
5102 * See which interface the caller is talking about.
5103 */
5104
5105 switch (cmd) {
5106 /*
5107 * These ioctl calls:
5108 * - can be done by all.
5109 * - atomic and do not require locking.
5110 * - return a value
5111 */
5112 case SIOCGIFFLAGS:
5113 case SIOCGIFMETRIC:
5114 case SIOCGIFMTU:
5115 case SIOCGIFHWADDR:
5116 case SIOCGIFSLAVE:
5117 case SIOCGIFMAP:
5118 case SIOCGIFINDEX:
5119 case SIOCGIFTXQLEN:
5120 dev_load(net, ifr.ifr_name);
5121 rcu_read_lock();
5122 ret = dev_ifsioc_locked(net, &ifr, cmd);
5123 rcu_read_unlock();
5124 if (!ret) {
5125 if (colon)
5126 *colon = ':';
5127 if (copy_to_user(arg, &ifr,
5128 sizeof(struct ifreq)))
5129 ret = -EFAULT;
5130 }
5131 return ret;
5132
5133 case SIOCETHTOOL:
5134 dev_load(net, ifr.ifr_name);
5135 rtnl_lock();
5136 ret = dev_ethtool(net, &ifr);
5137 rtnl_unlock();
5138 if (!ret) {
5139 if (colon)
5140 *colon = ':';
5141 if (copy_to_user(arg, &ifr,
5142 sizeof(struct ifreq)))
5143 ret = -EFAULT;
5144 }
5145 return ret;
5146
5147 /*
5148 * These ioctl calls:
5149 * - require superuser power.
5150 * - require strict serialization.
5151 * - return a value
5152 */
5153 case SIOCGMIIPHY:
5154 case SIOCGMIIREG:
5155 case SIOCSIFNAME:
5156 if (!capable(CAP_NET_ADMIN))
5157 return -EPERM;
5158 dev_load(net, ifr.ifr_name);
5159 rtnl_lock();
5160 ret = dev_ifsioc(net, &ifr, cmd);
5161 rtnl_unlock();
5162 if (!ret) {
5163 if (colon)
5164 *colon = ':';
5165 if (copy_to_user(arg, &ifr,
5166 sizeof(struct ifreq)))
5167 ret = -EFAULT;
5168 }
5169 return ret;
5170
5171 /*
5172 * These ioctl calls:
5173 * - require superuser power.
5174 * - require strict serialization.
5175 * - do not return a value
5176 */
5177 case SIOCSIFFLAGS:
5178 case SIOCSIFMETRIC:
5179 case SIOCSIFMTU:
5180 case SIOCSIFMAP:
5181 case SIOCSIFHWADDR:
5182 case SIOCSIFSLAVE:
5183 case SIOCADDMULTI:
5184 case SIOCDELMULTI:
5185 case SIOCSIFHWBROADCAST:
5186 case SIOCSIFTXQLEN:
5187 case SIOCSMIIREG:
5188 case SIOCBONDENSLAVE:
5189 case SIOCBONDRELEASE:
5190 case SIOCBONDSETHWADDR:
5191 case SIOCBONDCHANGEACTIVE:
5192 case SIOCBRADDIF:
5193 case SIOCBRDELIF:
5194 case SIOCSHWTSTAMP:
5195 if (!capable(CAP_NET_ADMIN))
5196 return -EPERM;
5197 /* fall through */
5198 case SIOCBONDSLAVEINFOQUERY:
5199 case SIOCBONDINFOQUERY:
5200 dev_load(net, ifr.ifr_name);
5201 rtnl_lock();
5202 ret = dev_ifsioc(net, &ifr, cmd);
5203 rtnl_unlock();
5204 return ret;
5205
5206 case SIOCGIFMEM:
5207 /* Get the per device memory space. We can add this but
5208 * currently do not support it */
5209 case SIOCSIFMEM:
5210 /* Set the per device memory buffer space.
5211 * Not applicable in our case */
5212 case SIOCSIFLINK:
5213 return -ENOTTY;
5214
5215 /*
5216 * Unknown or private ioctl.
5217 */
5218 default:
5219 if (cmd == SIOCWANDEV ||
5220 (cmd >= SIOCDEVPRIVATE &&
5221 cmd <= SIOCDEVPRIVATE + 15)) {
5222 dev_load(net, ifr.ifr_name);
5223 rtnl_lock();
5224 ret = dev_ifsioc(net, &ifr, cmd);
5225 rtnl_unlock();
5226 if (!ret && copy_to_user(arg, &ifr,
5227 sizeof(struct ifreq)))
5228 ret = -EFAULT;
5229 return ret;
5230 }
5231 /* Take care of Wireless Extensions */
5232 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5233 return wext_handle_ioctl(net, &ifr, cmd, arg);
5234 return -ENOTTY;
5235 }
5236 }
5237
5238
5239 /**
5240 * dev_new_index - allocate an ifindex
5241 * @net: the applicable net namespace
5242 *
5243 * Returns a suitable unique value for a new device interface
5244 * number. The caller must hold the rtnl semaphore or the
5245 * dev_base_lock to be sure it remains unique.
5246 */
5247 static int dev_new_index(struct net *net)
5248 {
5249 int ifindex = net->ifindex;
5250 for (;;) {
5251 if (++ifindex <= 0)
5252 ifindex = 1;
5253 if (!__dev_get_by_index(net, ifindex))
5254 return net->ifindex = ifindex;
5255 }
5256 }
5257
5258 /* Delayed registration/unregisteration */
5259 static LIST_HEAD(net_todo_list);
5260
5261 static void net_set_todo(struct net_device *dev)
5262 {
5263 list_add_tail(&dev->todo_list, &net_todo_list);
5264 }
5265
5266 static void rollback_registered_many(struct list_head *head)
5267 {
5268 struct net_device *dev, *tmp;
5269
5270 BUG_ON(dev_boot_phase);
5271 ASSERT_RTNL();
5272
5273 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5274 /* Some devices call without registering
5275 * for initialization unwind. Remove those
5276 * devices and proceed with the remaining.
5277 */
5278 if (dev->reg_state == NETREG_UNINITIALIZED) {
5279 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5280 dev->name, dev);
5281
5282 WARN_ON(1);
5283 list_del(&dev->unreg_list);
5284 continue;
5285 }
5286 dev->dismantle = true;
5287 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5288 }
5289
5290 /* If device is running, close it first. */
5291 dev_close_many(head);
5292
5293 list_for_each_entry(dev, head, unreg_list) {
5294 /* And unlink it from device chain. */
5295 unlist_netdevice(dev);
5296
5297 dev->reg_state = NETREG_UNREGISTERING;
5298 }
5299
5300 synchronize_net();
5301
5302 list_for_each_entry(dev, head, unreg_list) {
5303 /* Shutdown queueing discipline. */
5304 dev_shutdown(dev);
5305
5306
5307 /* Notify protocols, that we are about to destroy
5308 this device. They should clean all the things.
5309 */
5310 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5311
5312 if (!dev->rtnl_link_ops ||
5313 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5314 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5315
5316 /*
5317 * Flush the unicast and multicast chains
5318 */
5319 dev_uc_flush(dev);
5320 dev_mc_flush(dev);
5321
5322 if (dev->netdev_ops->ndo_uninit)
5323 dev->netdev_ops->ndo_uninit(dev);
5324
5325 /* Notifier chain MUST detach us from master device. */
5326 WARN_ON(dev->master);
5327
5328 /* Remove entries from kobject tree */
5329 netdev_unregister_kobject(dev);
5330 }
5331
5332 synchronize_net();
5333
5334 list_for_each_entry(dev, head, unreg_list)
5335 dev_put(dev);
5336 }
5337
5338 static void rollback_registered(struct net_device *dev)
5339 {
5340 LIST_HEAD(single);
5341
5342 list_add(&dev->unreg_list, &single);
5343 rollback_registered_many(&single);
5344 list_del(&single);
5345 }
5346
5347 static netdev_features_t netdev_fix_features(struct net_device *dev,
5348 netdev_features_t features)
5349 {
5350 /* Fix illegal checksum combinations */
5351 if ((features & NETIF_F_HW_CSUM) &&
5352 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5353 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5354 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5355 }
5356
5357 /* Fix illegal SG+CSUM combinations. */
5358 if ((features & NETIF_F_SG) &&
5359 !(features & NETIF_F_ALL_CSUM)) {
5360 netdev_dbg(dev,
5361 "Dropping NETIF_F_SG since no checksum feature.\n");
5362 features &= ~NETIF_F_SG;
5363 }
5364
5365 /* TSO requires that SG is present as well. */
5366 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5367 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5368 features &= ~NETIF_F_ALL_TSO;
5369 }
5370
5371 /* TSO ECN requires that TSO is present as well. */
5372 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5373 features &= ~NETIF_F_TSO_ECN;
5374
5375 /* Software GSO depends on SG. */
5376 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5377 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5378 features &= ~NETIF_F_GSO;
5379 }
5380
5381 /* UFO needs SG and checksumming */
5382 if (features & NETIF_F_UFO) {
5383 /* maybe split UFO into V4 and V6? */
5384 if (!((features & NETIF_F_GEN_CSUM) ||
5385 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5386 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5387 netdev_dbg(dev,
5388 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5389 features &= ~NETIF_F_UFO;
5390 }
5391
5392 if (!(features & NETIF_F_SG)) {
5393 netdev_dbg(dev,
5394 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5395 features &= ~NETIF_F_UFO;
5396 }
5397 }
5398
5399 return features;
5400 }
5401
5402 int __netdev_update_features(struct net_device *dev)
5403 {
5404 netdev_features_t features;
5405 int err = 0;
5406
5407 ASSERT_RTNL();
5408
5409 features = netdev_get_wanted_features(dev);
5410
5411 if (dev->netdev_ops->ndo_fix_features)
5412 features = dev->netdev_ops->ndo_fix_features(dev, features);
5413
5414 /* driver might be less strict about feature dependencies */
5415 features = netdev_fix_features(dev, features);
5416
5417 if (dev->features == features)
5418 return 0;
5419
5420 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5421 &dev->features, &features);
5422
5423 if (dev->netdev_ops->ndo_set_features)
5424 err = dev->netdev_ops->ndo_set_features(dev, features);
5425
5426 if (unlikely(err < 0)) {
5427 netdev_err(dev,
5428 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5429 err, &features, &dev->features);
5430 return -1;
5431 }
5432
5433 if (!err)
5434 dev->features = features;
5435
5436 return 1;
5437 }
5438
5439 /**
5440 * netdev_update_features - recalculate device features
5441 * @dev: the device to check
5442 *
5443 * Recalculate dev->features set and send notifications if it
5444 * has changed. Should be called after driver or hardware dependent
5445 * conditions might have changed that influence the features.
5446 */
5447 void netdev_update_features(struct net_device *dev)
5448 {
5449 if (__netdev_update_features(dev))
5450 netdev_features_change(dev);
5451 }
5452 EXPORT_SYMBOL(netdev_update_features);
5453
5454 /**
5455 * netdev_change_features - recalculate device features
5456 * @dev: the device to check
5457 *
5458 * Recalculate dev->features set and send notifications even
5459 * if they have not changed. Should be called instead of
5460 * netdev_update_features() if also dev->vlan_features might
5461 * have changed to allow the changes to be propagated to stacked
5462 * VLAN devices.
5463 */
5464 void netdev_change_features(struct net_device *dev)
5465 {
5466 __netdev_update_features(dev);
5467 netdev_features_change(dev);
5468 }
5469 EXPORT_SYMBOL(netdev_change_features);
5470
5471 /**
5472 * netif_stacked_transfer_operstate - transfer operstate
5473 * @rootdev: the root or lower level device to transfer state from
5474 * @dev: the device to transfer operstate to
5475 *
5476 * Transfer operational state from root to device. This is normally
5477 * called when a stacking relationship exists between the root
5478 * device and the device(a leaf device).
5479 */
5480 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5481 struct net_device *dev)
5482 {
5483 if (rootdev->operstate == IF_OPER_DORMANT)
5484 netif_dormant_on(dev);
5485 else
5486 netif_dormant_off(dev);
5487
5488 if (netif_carrier_ok(rootdev)) {
5489 if (!netif_carrier_ok(dev))
5490 netif_carrier_on(dev);
5491 } else {
5492 if (netif_carrier_ok(dev))
5493 netif_carrier_off(dev);
5494 }
5495 }
5496 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5497
5498 #ifdef CONFIG_RPS
5499 static int netif_alloc_rx_queues(struct net_device *dev)
5500 {
5501 unsigned int i, count = dev->num_rx_queues;
5502 struct netdev_rx_queue *rx;
5503
5504 BUG_ON(count < 1);
5505
5506 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5507 if (!rx) {
5508 pr_err("netdev: Unable to allocate %u rx queues\n", count);
5509 return -ENOMEM;
5510 }
5511 dev->_rx = rx;
5512
5513 for (i = 0; i < count; i++)
5514 rx[i].dev = dev;
5515 return 0;
5516 }
5517 #endif
5518
5519 static void netdev_init_one_queue(struct net_device *dev,
5520 struct netdev_queue *queue, void *_unused)
5521 {
5522 /* Initialize queue lock */
5523 spin_lock_init(&queue->_xmit_lock);
5524 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5525 queue->xmit_lock_owner = -1;
5526 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5527 queue->dev = dev;
5528 #ifdef CONFIG_BQL
5529 dql_init(&queue->dql, HZ);
5530 #endif
5531 }
5532
5533 static int netif_alloc_netdev_queues(struct net_device *dev)
5534 {
5535 unsigned int count = dev->num_tx_queues;
5536 struct netdev_queue *tx;
5537
5538 BUG_ON(count < 1);
5539
5540 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5541 if (!tx) {
5542 pr_err("netdev: Unable to allocate %u tx queues\n", count);
5543 return -ENOMEM;
5544 }
5545 dev->_tx = tx;
5546
5547 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5548 spin_lock_init(&dev->tx_global_lock);
5549
5550 return 0;
5551 }
5552
5553 /**
5554 * register_netdevice - register a network device
5555 * @dev: device to register
5556 *
5557 * Take a completed network device structure and add it to the kernel
5558 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5559 * chain. 0 is returned on success. A negative errno code is returned
5560 * on a failure to set up the device, or if the name is a duplicate.
5561 *
5562 * Callers must hold the rtnl semaphore. You may want
5563 * register_netdev() instead of this.
5564 *
5565 * BUGS:
5566 * The locking appears insufficient to guarantee two parallel registers
5567 * will not get the same name.
5568 */
5569
5570 int register_netdevice(struct net_device *dev)
5571 {
5572 int ret;
5573 struct net *net = dev_net(dev);
5574
5575 BUG_ON(dev_boot_phase);
5576 ASSERT_RTNL();
5577
5578 might_sleep();
5579
5580 /* When net_device's are persistent, this will be fatal. */
5581 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5582 BUG_ON(!net);
5583
5584 spin_lock_init(&dev->addr_list_lock);
5585 netdev_set_addr_lockdep_class(dev);
5586
5587 dev->iflink = -1;
5588
5589 ret = dev_get_valid_name(dev, dev->name);
5590 if (ret < 0)
5591 goto out;
5592
5593 /* Init, if this function is available */
5594 if (dev->netdev_ops->ndo_init) {
5595 ret = dev->netdev_ops->ndo_init(dev);
5596 if (ret) {
5597 if (ret > 0)
5598 ret = -EIO;
5599 goto out;
5600 }
5601 }
5602
5603 ret = -EBUSY;
5604 if (!dev->ifindex)
5605 dev->ifindex = dev_new_index(net);
5606 else if (__dev_get_by_index(net, dev->ifindex))
5607 goto err_uninit;
5608
5609 if (dev->iflink == -1)
5610 dev->iflink = dev->ifindex;
5611
5612 /* Transfer changeable features to wanted_features and enable
5613 * software offloads (GSO and GRO).
5614 */
5615 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5616 dev->features |= NETIF_F_SOFT_FEATURES;
5617 dev->wanted_features = dev->features & dev->hw_features;
5618
5619 /* Turn on no cache copy if HW is doing checksum */
5620 if (!(dev->flags & IFF_LOOPBACK)) {
5621 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5622 if (dev->features & NETIF_F_ALL_CSUM) {
5623 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5624 dev->features |= NETIF_F_NOCACHE_COPY;
5625 }
5626 }
5627
5628 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5629 */
5630 dev->vlan_features |= NETIF_F_HIGHDMA;
5631
5632 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5633 ret = notifier_to_errno(ret);
5634 if (ret)
5635 goto err_uninit;
5636
5637 ret = netdev_register_kobject(dev);
5638 if (ret)
5639 goto err_uninit;
5640 dev->reg_state = NETREG_REGISTERED;
5641
5642 __netdev_update_features(dev);
5643
5644 /*
5645 * Default initial state at registry is that the
5646 * device is present.
5647 */
5648
5649 set_bit(__LINK_STATE_PRESENT, &dev->state);
5650
5651 dev_init_scheduler(dev);
5652 dev_hold(dev);
5653 list_netdevice(dev);
5654 add_device_randomness(dev->dev_addr, dev->addr_len);
5655
5656 /* Notify protocols, that a new device appeared. */
5657 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5658 ret = notifier_to_errno(ret);
5659 if (ret) {
5660 rollback_registered(dev);
5661 dev->reg_state = NETREG_UNREGISTERED;
5662 }
5663 /*
5664 * Prevent userspace races by waiting until the network
5665 * device is fully setup before sending notifications.
5666 */
5667 if (!dev->rtnl_link_ops ||
5668 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5669 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5670
5671 out:
5672 return ret;
5673
5674 err_uninit:
5675 if (dev->netdev_ops->ndo_uninit)
5676 dev->netdev_ops->ndo_uninit(dev);
5677 goto out;
5678 }
5679 EXPORT_SYMBOL(register_netdevice);
5680
5681 /**
5682 * init_dummy_netdev - init a dummy network device for NAPI
5683 * @dev: device to init
5684 *
5685 * This takes a network device structure and initialize the minimum
5686 * amount of fields so it can be used to schedule NAPI polls without
5687 * registering a full blown interface. This is to be used by drivers
5688 * that need to tie several hardware interfaces to a single NAPI
5689 * poll scheduler due to HW limitations.
5690 */
5691 int init_dummy_netdev(struct net_device *dev)
5692 {
5693 /* Clear everything. Note we don't initialize spinlocks
5694 * are they aren't supposed to be taken by any of the
5695 * NAPI code and this dummy netdev is supposed to be
5696 * only ever used for NAPI polls
5697 */
5698 memset(dev, 0, sizeof(struct net_device));
5699
5700 /* make sure we BUG if trying to hit standard
5701 * register/unregister code path
5702 */
5703 dev->reg_state = NETREG_DUMMY;
5704
5705 /* NAPI wants this */
5706 INIT_LIST_HEAD(&dev->napi_list);
5707
5708 /* a dummy interface is started by default */
5709 set_bit(__LINK_STATE_PRESENT, &dev->state);
5710 set_bit(__LINK_STATE_START, &dev->state);
5711
5712 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5713 * because users of this 'device' dont need to change
5714 * its refcount.
5715 */
5716
5717 return 0;
5718 }
5719 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5720
5721
5722 /**
5723 * register_netdev - register a network device
5724 * @dev: device to register
5725 *
5726 * Take a completed network device structure and add it to the kernel
5727 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5728 * chain. 0 is returned on success. A negative errno code is returned
5729 * on a failure to set up the device, or if the name is a duplicate.
5730 *
5731 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5732 * and expands the device name if you passed a format string to
5733 * alloc_netdev.
5734 */
5735 int register_netdev(struct net_device *dev)
5736 {
5737 int err;
5738
5739 rtnl_lock();
5740 err = register_netdevice(dev);
5741 rtnl_unlock();
5742 return err;
5743 }
5744 EXPORT_SYMBOL(register_netdev);
5745
5746 int netdev_refcnt_read(const struct net_device *dev)
5747 {
5748 int i, refcnt = 0;
5749
5750 for_each_possible_cpu(i)
5751 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5752 return refcnt;
5753 }
5754 EXPORT_SYMBOL(netdev_refcnt_read);
5755
5756 /**
5757 * netdev_wait_allrefs - wait until all references are gone.
5758 * @dev: target net_device
5759 *
5760 * This is called when unregistering network devices.
5761 *
5762 * Any protocol or device that holds a reference should register
5763 * for netdevice notification, and cleanup and put back the
5764 * reference if they receive an UNREGISTER event.
5765 * We can get stuck here if buggy protocols don't correctly
5766 * call dev_put.
5767 */
5768 static void netdev_wait_allrefs(struct net_device *dev)
5769 {
5770 unsigned long rebroadcast_time, warning_time;
5771 int refcnt;
5772
5773 linkwatch_forget_dev(dev);
5774
5775 rebroadcast_time = warning_time = jiffies;
5776 refcnt = netdev_refcnt_read(dev);
5777
5778 while (refcnt != 0) {
5779 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5780 rtnl_lock();
5781
5782 /* Rebroadcast unregister notification */
5783 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5784
5785 __rtnl_unlock();
5786 rcu_barrier();
5787 rtnl_lock();
5788
5789 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5790 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5791 &dev->state)) {
5792 /* We must not have linkwatch events
5793 * pending on unregister. If this
5794 * happens, we simply run the queue
5795 * unscheduled, resulting in a noop
5796 * for this device.
5797 */
5798 linkwatch_run_queue();
5799 }
5800
5801 __rtnl_unlock();
5802
5803 rebroadcast_time = jiffies;
5804 }
5805
5806 msleep(250);
5807
5808 refcnt = netdev_refcnt_read(dev);
5809
5810 if (time_after(jiffies, warning_time + 10 * HZ)) {
5811 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5812 dev->name, refcnt);
5813 warning_time = jiffies;
5814 }
5815 }
5816 }
5817
5818 /* The sequence is:
5819 *
5820 * rtnl_lock();
5821 * ...
5822 * register_netdevice(x1);
5823 * register_netdevice(x2);
5824 * ...
5825 * unregister_netdevice(y1);
5826 * unregister_netdevice(y2);
5827 * ...
5828 * rtnl_unlock();
5829 * free_netdev(y1);
5830 * free_netdev(y2);
5831 *
5832 * We are invoked by rtnl_unlock().
5833 * This allows us to deal with problems:
5834 * 1) We can delete sysfs objects which invoke hotplug
5835 * without deadlocking with linkwatch via keventd.
5836 * 2) Since we run with the RTNL semaphore not held, we can sleep
5837 * safely in order to wait for the netdev refcnt to drop to zero.
5838 *
5839 * We must not return until all unregister events added during
5840 * the interval the lock was held have been completed.
5841 */
5842 void netdev_run_todo(void)
5843 {
5844 struct list_head list;
5845
5846 /* Snapshot list, allow later requests */
5847 list_replace_init(&net_todo_list, &list);
5848
5849 __rtnl_unlock();
5850
5851
5852 /* Wait for rcu callbacks to finish before next phase */
5853 if (!list_empty(&list))
5854 rcu_barrier();
5855
5856 while (!list_empty(&list)) {
5857 struct net_device *dev
5858 = list_first_entry(&list, struct net_device, todo_list);
5859 list_del(&dev->todo_list);
5860
5861 rtnl_lock();
5862 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5863 __rtnl_unlock();
5864
5865 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5866 pr_err("network todo '%s' but state %d\n",
5867 dev->name, dev->reg_state);
5868 dump_stack();
5869 continue;
5870 }
5871
5872 dev->reg_state = NETREG_UNREGISTERED;
5873
5874 on_each_cpu(flush_backlog, dev, 1);
5875
5876 netdev_wait_allrefs(dev);
5877
5878 /* paranoia */
5879 BUG_ON(netdev_refcnt_read(dev));
5880 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5881 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5882 WARN_ON(dev->dn_ptr);
5883
5884 if (dev->destructor)
5885 dev->destructor(dev);
5886
5887 /* Free network device */
5888 kobject_put(&dev->dev.kobj);
5889 }
5890 }
5891
5892 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5893 * fields in the same order, with only the type differing.
5894 */
5895 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5896 const struct net_device_stats *netdev_stats)
5897 {
5898 #if BITS_PER_LONG == 64
5899 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5900 memcpy(stats64, netdev_stats, sizeof(*stats64));
5901 #else
5902 size_t i, n = sizeof(*stats64) / sizeof(u64);
5903 const unsigned long *src = (const unsigned long *)netdev_stats;
5904 u64 *dst = (u64 *)stats64;
5905
5906 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5907 sizeof(*stats64) / sizeof(u64));
5908 for (i = 0; i < n; i++)
5909 dst[i] = src[i];
5910 #endif
5911 }
5912 EXPORT_SYMBOL(netdev_stats_to_stats64);
5913
5914 /**
5915 * dev_get_stats - get network device statistics
5916 * @dev: device to get statistics from
5917 * @storage: place to store stats
5918 *
5919 * Get network statistics from device. Return @storage.
5920 * The device driver may provide its own method by setting
5921 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5922 * otherwise the internal statistics structure is used.
5923 */
5924 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5925 struct rtnl_link_stats64 *storage)
5926 {
5927 const struct net_device_ops *ops = dev->netdev_ops;
5928
5929 if (ops->ndo_get_stats64) {
5930 memset(storage, 0, sizeof(*storage));
5931 ops->ndo_get_stats64(dev, storage);
5932 } else if (ops->ndo_get_stats) {
5933 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5934 } else {
5935 netdev_stats_to_stats64(storage, &dev->stats);
5936 }
5937 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5938 return storage;
5939 }
5940 EXPORT_SYMBOL(dev_get_stats);
5941
5942 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5943 {
5944 struct netdev_queue *queue = dev_ingress_queue(dev);
5945
5946 #ifdef CONFIG_NET_CLS_ACT
5947 if (queue)
5948 return queue;
5949 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5950 if (!queue)
5951 return NULL;
5952 netdev_init_one_queue(dev, queue, NULL);
5953 queue->qdisc = &noop_qdisc;
5954 queue->qdisc_sleeping = &noop_qdisc;
5955 rcu_assign_pointer(dev->ingress_queue, queue);
5956 #endif
5957 return queue;
5958 }
5959
5960 /**
5961 * alloc_netdev_mqs - allocate network device
5962 * @sizeof_priv: size of private data to allocate space for
5963 * @name: device name format string
5964 * @setup: callback to initialize device
5965 * @txqs: the number of TX subqueues to allocate
5966 * @rxqs: the number of RX subqueues to allocate
5967 *
5968 * Allocates a struct net_device with private data area for driver use
5969 * and performs basic initialization. Also allocates subquue structs
5970 * for each queue on the device.
5971 */
5972 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5973 void (*setup)(struct net_device *),
5974 unsigned int txqs, unsigned int rxqs)
5975 {
5976 struct net_device *dev;
5977 size_t alloc_size;
5978 struct net_device *p;
5979
5980 BUG_ON(strlen(name) >= sizeof(dev->name));
5981
5982 if (txqs < 1) {
5983 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5984 return NULL;
5985 }
5986
5987 #ifdef CONFIG_RPS
5988 if (rxqs < 1) {
5989 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5990 return NULL;
5991 }
5992 #endif
5993
5994 alloc_size = sizeof(struct net_device);
5995 if (sizeof_priv) {
5996 /* ensure 32-byte alignment of private area */
5997 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5998 alloc_size += sizeof_priv;
5999 }
6000 /* ensure 32-byte alignment of whole construct */
6001 alloc_size += NETDEV_ALIGN - 1;
6002
6003 p = kzalloc(alloc_size, GFP_KERNEL);
6004 if (!p) {
6005 pr_err("alloc_netdev: Unable to allocate device\n");
6006 return NULL;
6007 }
6008
6009 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6010 dev->padded = (char *)dev - (char *)p;
6011
6012 dev->pcpu_refcnt = alloc_percpu(int);
6013 if (!dev->pcpu_refcnt)
6014 goto free_p;
6015
6016 if (dev_addr_init(dev))
6017 goto free_pcpu;
6018
6019 dev_mc_init(dev);
6020 dev_uc_init(dev);
6021
6022 dev_net_set(dev, &init_net);
6023
6024 dev->gso_max_size = GSO_MAX_SIZE;
6025 dev->gso_max_segs = GSO_MAX_SEGS;
6026
6027 INIT_LIST_HEAD(&dev->napi_list);
6028 INIT_LIST_HEAD(&dev->unreg_list);
6029 INIT_LIST_HEAD(&dev->link_watch_list);
6030 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6031 setup(dev);
6032
6033 dev->num_tx_queues = txqs;
6034 dev->real_num_tx_queues = txqs;
6035 if (netif_alloc_netdev_queues(dev))
6036 goto free_all;
6037
6038 #ifdef CONFIG_RPS
6039 dev->num_rx_queues = rxqs;
6040 dev->real_num_rx_queues = rxqs;
6041 if (netif_alloc_rx_queues(dev))
6042 goto free_all;
6043 #endif
6044
6045 strcpy(dev->name, name);
6046 dev->group = INIT_NETDEV_GROUP;
6047 return dev;
6048
6049 free_all:
6050 free_netdev(dev);
6051 return NULL;
6052
6053 free_pcpu:
6054 free_percpu(dev->pcpu_refcnt);
6055 kfree(dev->_tx);
6056 #ifdef CONFIG_RPS
6057 kfree(dev->_rx);
6058 #endif
6059
6060 free_p:
6061 kfree(p);
6062 return NULL;
6063 }
6064 EXPORT_SYMBOL(alloc_netdev_mqs);
6065
6066 /**
6067 * free_netdev - free network device
6068 * @dev: device
6069 *
6070 * This function does the last stage of destroying an allocated device
6071 * interface. The reference to the device object is released.
6072 * If this is the last reference then it will be freed.
6073 */
6074 void free_netdev(struct net_device *dev)
6075 {
6076 struct napi_struct *p, *n;
6077
6078 release_net(dev_net(dev));
6079
6080 kfree(dev->_tx);
6081 #ifdef CONFIG_RPS
6082 kfree(dev->_rx);
6083 #endif
6084
6085 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6086
6087 /* Flush device addresses */
6088 dev_addr_flush(dev);
6089
6090 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6091 netif_napi_del(p);
6092
6093 free_percpu(dev->pcpu_refcnt);
6094 dev->pcpu_refcnt = NULL;
6095
6096 /* Compatibility with error handling in drivers */
6097 if (dev->reg_state == NETREG_UNINITIALIZED) {
6098 kfree((char *)dev - dev->padded);
6099 return;
6100 }
6101
6102 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6103 dev->reg_state = NETREG_RELEASED;
6104
6105 /* will free via device release */
6106 put_device(&dev->dev);
6107 }
6108 EXPORT_SYMBOL(free_netdev);
6109
6110 /**
6111 * synchronize_net - Synchronize with packet receive processing
6112 *
6113 * Wait for packets currently being received to be done.
6114 * Does not block later packets from starting.
6115 */
6116 void synchronize_net(void)
6117 {
6118 might_sleep();
6119 if (rtnl_is_locked())
6120 synchronize_rcu_expedited();
6121 else
6122 synchronize_rcu();
6123 }
6124 EXPORT_SYMBOL(synchronize_net);
6125
6126 /**
6127 * unregister_netdevice_queue - remove device from the kernel
6128 * @dev: device
6129 * @head: list
6130 *
6131 * This function shuts down a device interface and removes it
6132 * from the kernel tables.
6133 * If head not NULL, device is queued to be unregistered later.
6134 *
6135 * Callers must hold the rtnl semaphore. You may want
6136 * unregister_netdev() instead of this.
6137 */
6138
6139 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6140 {
6141 ASSERT_RTNL();
6142
6143 if (head) {
6144 list_move_tail(&dev->unreg_list, head);
6145 } else {
6146 rollback_registered(dev);
6147 /* Finish processing unregister after unlock */
6148 net_set_todo(dev);
6149 }
6150 }
6151 EXPORT_SYMBOL(unregister_netdevice_queue);
6152
6153 /**
6154 * unregister_netdevice_many - unregister many devices
6155 * @head: list of devices
6156 */
6157 void unregister_netdevice_many(struct list_head *head)
6158 {
6159 struct net_device *dev;
6160
6161 if (!list_empty(head)) {
6162 rollback_registered_many(head);
6163 list_for_each_entry(dev, head, unreg_list)
6164 net_set_todo(dev);
6165 }
6166 }
6167 EXPORT_SYMBOL(unregister_netdevice_many);
6168
6169 /**
6170 * unregister_netdev - remove device from the kernel
6171 * @dev: device
6172 *
6173 * This function shuts down a device interface and removes it
6174 * from the kernel tables.
6175 *
6176 * This is just a wrapper for unregister_netdevice that takes
6177 * the rtnl semaphore. In general you want to use this and not
6178 * unregister_netdevice.
6179 */
6180 void unregister_netdev(struct net_device *dev)
6181 {
6182 rtnl_lock();
6183 unregister_netdevice(dev);
6184 rtnl_unlock();
6185 }
6186 EXPORT_SYMBOL(unregister_netdev);
6187
6188 /**
6189 * dev_change_net_namespace - move device to different nethost namespace
6190 * @dev: device
6191 * @net: network namespace
6192 * @pat: If not NULL name pattern to try if the current device name
6193 * is already taken in the destination network namespace.
6194 *
6195 * This function shuts down a device interface and moves it
6196 * to a new network namespace. On success 0 is returned, on
6197 * a failure a netagive errno code is returned.
6198 *
6199 * Callers must hold the rtnl semaphore.
6200 */
6201
6202 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6203 {
6204 int err;
6205
6206 ASSERT_RTNL();
6207
6208 /* Don't allow namespace local devices to be moved. */
6209 err = -EINVAL;
6210 if (dev->features & NETIF_F_NETNS_LOCAL)
6211 goto out;
6212
6213 /* Ensure the device has been registrered */
6214 err = -EINVAL;
6215 if (dev->reg_state != NETREG_REGISTERED)
6216 goto out;
6217
6218 /* Get out if there is nothing todo */
6219 err = 0;
6220 if (net_eq(dev_net(dev), net))
6221 goto out;
6222
6223 /* Pick the destination device name, and ensure
6224 * we can use it in the destination network namespace.
6225 */
6226 err = -EEXIST;
6227 if (__dev_get_by_name(net, dev->name)) {
6228 /* We get here if we can't use the current device name */
6229 if (!pat)
6230 goto out;
6231 if (dev_get_valid_name(dev, pat) < 0)
6232 goto out;
6233 }
6234
6235 /*
6236 * And now a mini version of register_netdevice unregister_netdevice.
6237 */
6238
6239 /* If device is running close it first. */
6240 dev_close(dev);
6241
6242 /* And unlink it from device chain */
6243 err = -ENODEV;
6244 unlist_netdevice(dev);
6245
6246 synchronize_net();
6247
6248 /* Shutdown queueing discipline. */
6249 dev_shutdown(dev);
6250
6251 /* Notify protocols, that we are about to destroy
6252 this device. They should clean all the things.
6253
6254 Note that dev->reg_state stays at NETREG_REGISTERED.
6255 This is wanted because this way 8021q and macvlan know
6256 the device is just moving and can keep their slaves up.
6257 */
6258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6259 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6260
6261 /*
6262 * Flush the unicast and multicast chains
6263 */
6264 dev_uc_flush(dev);
6265 dev_mc_flush(dev);
6266
6267 /* Actually switch the network namespace */
6268 dev_net_set(dev, net);
6269
6270 /* If there is an ifindex conflict assign a new one */
6271 if (__dev_get_by_index(net, dev->ifindex)) {
6272 int iflink = (dev->iflink == dev->ifindex);
6273 dev->ifindex = dev_new_index(net);
6274 if (iflink)
6275 dev->iflink = dev->ifindex;
6276 }
6277
6278 /* Fixup kobjects */
6279 err = device_rename(&dev->dev, dev->name);
6280 WARN_ON(err);
6281
6282 /* Add the device back in the hashes */
6283 list_netdevice(dev);
6284
6285 /* Notify protocols, that a new device appeared. */
6286 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6287
6288 /*
6289 * Prevent userspace races by waiting until the network
6290 * device is fully setup before sending notifications.
6291 */
6292 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6293
6294 synchronize_net();
6295 err = 0;
6296 out:
6297 return err;
6298 }
6299 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6300
6301 static int dev_cpu_callback(struct notifier_block *nfb,
6302 unsigned long action,
6303 void *ocpu)
6304 {
6305 struct sk_buff **list_skb;
6306 struct sk_buff *skb;
6307 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6308 struct softnet_data *sd, *oldsd;
6309
6310 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6311 return NOTIFY_OK;
6312
6313 local_irq_disable();
6314 cpu = smp_processor_id();
6315 sd = &per_cpu(softnet_data, cpu);
6316 oldsd = &per_cpu(softnet_data, oldcpu);
6317
6318 /* Find end of our completion_queue. */
6319 list_skb = &sd->completion_queue;
6320 while (*list_skb)
6321 list_skb = &(*list_skb)->next;
6322 /* Append completion queue from offline CPU. */
6323 *list_skb = oldsd->completion_queue;
6324 oldsd->completion_queue = NULL;
6325
6326 /* Append output queue from offline CPU. */
6327 if (oldsd->output_queue) {
6328 *sd->output_queue_tailp = oldsd->output_queue;
6329 sd->output_queue_tailp = oldsd->output_queue_tailp;
6330 oldsd->output_queue = NULL;
6331 oldsd->output_queue_tailp = &oldsd->output_queue;
6332 }
6333 /* Append NAPI poll list from offline CPU. */
6334 if (!list_empty(&oldsd->poll_list)) {
6335 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6336 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6337 }
6338
6339 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6340 local_irq_enable();
6341
6342 /* Process offline CPU's input_pkt_queue */
6343 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6344 netif_rx(skb);
6345 input_queue_head_incr(oldsd);
6346 }
6347 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6348 netif_rx(skb);
6349 input_queue_head_incr(oldsd);
6350 }
6351
6352 return NOTIFY_OK;
6353 }
6354
6355
6356 /**
6357 * netdev_increment_features - increment feature set by one
6358 * @all: current feature set
6359 * @one: new feature set
6360 * @mask: mask feature set
6361 *
6362 * Computes a new feature set after adding a device with feature set
6363 * @one to the master device with current feature set @all. Will not
6364 * enable anything that is off in @mask. Returns the new feature set.
6365 */
6366 netdev_features_t netdev_increment_features(netdev_features_t all,
6367 netdev_features_t one, netdev_features_t mask)
6368 {
6369 if (mask & NETIF_F_GEN_CSUM)
6370 mask |= NETIF_F_ALL_CSUM;
6371 mask |= NETIF_F_VLAN_CHALLENGED;
6372
6373 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6374 all &= one | ~NETIF_F_ALL_FOR_ALL;
6375
6376 /* If one device supports hw checksumming, set for all. */
6377 if (all & NETIF_F_GEN_CSUM)
6378 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6379
6380 return all;
6381 }
6382 EXPORT_SYMBOL(netdev_increment_features);
6383
6384 static struct hlist_head *netdev_create_hash(void)
6385 {
6386 int i;
6387 struct hlist_head *hash;
6388
6389 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6390 if (hash != NULL)
6391 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6392 INIT_HLIST_HEAD(&hash[i]);
6393
6394 return hash;
6395 }
6396
6397 /* Initialize per network namespace state */
6398 static int __net_init netdev_init(struct net *net)
6399 {
6400 if (net != &init_net)
6401 INIT_LIST_HEAD(&net->dev_base_head);
6402
6403 net->dev_name_head = netdev_create_hash();
6404 if (net->dev_name_head == NULL)
6405 goto err_name;
6406
6407 net->dev_index_head = netdev_create_hash();
6408 if (net->dev_index_head == NULL)
6409 goto err_idx;
6410
6411 return 0;
6412
6413 err_idx:
6414 kfree(net->dev_name_head);
6415 err_name:
6416 return -ENOMEM;
6417 }
6418
6419 /**
6420 * netdev_drivername - network driver for the device
6421 * @dev: network device
6422 *
6423 * Determine network driver for device.
6424 */
6425 const char *netdev_drivername(const struct net_device *dev)
6426 {
6427 const struct device_driver *driver;
6428 const struct device *parent;
6429 const char *empty = "";
6430
6431 parent = dev->dev.parent;
6432 if (!parent)
6433 return empty;
6434
6435 driver = parent->driver;
6436 if (driver && driver->name)
6437 return driver->name;
6438 return empty;
6439 }
6440
6441 int __netdev_printk(const char *level, const struct net_device *dev,
6442 struct va_format *vaf)
6443 {
6444 int r;
6445
6446 if (dev && dev->dev.parent)
6447 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6448 netdev_name(dev), vaf);
6449 else if (dev)
6450 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6451 else
6452 r = printk("%s(NULL net_device): %pV", level, vaf);
6453
6454 return r;
6455 }
6456 EXPORT_SYMBOL(__netdev_printk);
6457
6458 int netdev_printk(const char *level, const struct net_device *dev,
6459 const char *format, ...)
6460 {
6461 struct va_format vaf;
6462 va_list args;
6463 int r;
6464
6465 va_start(args, format);
6466
6467 vaf.fmt = format;
6468 vaf.va = &args;
6469
6470 r = __netdev_printk(level, dev, &vaf);
6471 va_end(args);
6472
6473 return r;
6474 }
6475 EXPORT_SYMBOL(netdev_printk);
6476
6477 #define define_netdev_printk_level(func, level) \
6478 int func(const struct net_device *dev, const char *fmt, ...) \
6479 { \
6480 int r; \
6481 struct va_format vaf; \
6482 va_list args; \
6483 \
6484 va_start(args, fmt); \
6485 \
6486 vaf.fmt = fmt; \
6487 vaf.va = &args; \
6488 \
6489 r = __netdev_printk(level, dev, &vaf); \
6490 va_end(args); \
6491 \
6492 return r; \
6493 } \
6494 EXPORT_SYMBOL(func);
6495
6496 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6497 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6498 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6499 define_netdev_printk_level(netdev_err, KERN_ERR);
6500 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6501 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6502 define_netdev_printk_level(netdev_info, KERN_INFO);
6503
6504 static void __net_exit netdev_exit(struct net *net)
6505 {
6506 kfree(net->dev_name_head);
6507 kfree(net->dev_index_head);
6508 }
6509
6510 static struct pernet_operations __net_initdata netdev_net_ops = {
6511 .init = netdev_init,
6512 .exit = netdev_exit,
6513 };
6514
6515 static void __net_exit default_device_exit(struct net *net)
6516 {
6517 struct net_device *dev, *aux;
6518 /*
6519 * Push all migratable network devices back to the
6520 * initial network namespace
6521 */
6522 rtnl_lock();
6523 for_each_netdev_safe(net, dev, aux) {
6524 int err;
6525 char fb_name[IFNAMSIZ];
6526
6527 /* Ignore unmoveable devices (i.e. loopback) */
6528 if (dev->features & NETIF_F_NETNS_LOCAL)
6529 continue;
6530
6531 /* Leave virtual devices for the generic cleanup */
6532 if (dev->rtnl_link_ops)
6533 continue;
6534
6535 /* Push remaining network devices to init_net */
6536 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6537 err = dev_change_net_namespace(dev, &init_net, fb_name);
6538 if (err) {
6539 pr_emerg("%s: failed to move %s to init_net: %d\n",
6540 __func__, dev->name, err);
6541 BUG();
6542 }
6543 }
6544 rtnl_unlock();
6545 }
6546
6547 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6548 {
6549 /* At exit all network devices most be removed from a network
6550 * namespace. Do this in the reverse order of registration.
6551 * Do this across as many network namespaces as possible to
6552 * improve batching efficiency.
6553 */
6554 struct net_device *dev;
6555 struct net *net;
6556 LIST_HEAD(dev_kill_list);
6557
6558 rtnl_lock();
6559 list_for_each_entry(net, net_list, exit_list) {
6560 for_each_netdev_reverse(net, dev) {
6561 if (dev->rtnl_link_ops)
6562 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6563 else
6564 unregister_netdevice_queue(dev, &dev_kill_list);
6565 }
6566 }
6567 unregister_netdevice_many(&dev_kill_list);
6568 list_del(&dev_kill_list);
6569 rtnl_unlock();
6570 }
6571
6572 static struct pernet_operations __net_initdata default_device_ops = {
6573 .exit = default_device_exit,
6574 .exit_batch = default_device_exit_batch,
6575 };
6576
6577 /*
6578 * Initialize the DEV module. At boot time this walks the device list and
6579 * unhooks any devices that fail to initialise (normally hardware not
6580 * present) and leaves us with a valid list of present and active devices.
6581 *
6582 */
6583
6584 /*
6585 * This is called single threaded during boot, so no need
6586 * to take the rtnl semaphore.
6587 */
6588 static int __init net_dev_init(void)
6589 {
6590 int i, rc = -ENOMEM;
6591
6592 BUG_ON(!dev_boot_phase);
6593
6594 if (dev_proc_init())
6595 goto out;
6596
6597 if (netdev_kobject_init())
6598 goto out;
6599
6600 INIT_LIST_HEAD(&ptype_all);
6601 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6602 INIT_LIST_HEAD(&ptype_base[i]);
6603
6604 if (register_pernet_subsys(&netdev_net_ops))
6605 goto out;
6606
6607 /*
6608 * Initialise the packet receive queues.
6609 */
6610
6611 for_each_possible_cpu(i) {
6612 struct softnet_data *sd = &per_cpu(softnet_data, i);
6613
6614 memset(sd, 0, sizeof(*sd));
6615 skb_queue_head_init(&sd->input_pkt_queue);
6616 skb_queue_head_init(&sd->process_queue);
6617 sd->completion_queue = NULL;
6618 INIT_LIST_HEAD(&sd->poll_list);
6619 sd->output_queue = NULL;
6620 sd->output_queue_tailp = &sd->output_queue;
6621 #ifdef CONFIG_RPS
6622 sd->csd.func = rps_trigger_softirq;
6623 sd->csd.info = sd;
6624 sd->csd.flags = 0;
6625 sd->cpu = i;
6626 #endif
6627
6628 sd->backlog.poll = process_backlog;
6629 sd->backlog.weight = weight_p;
6630 sd->backlog.gro_list = NULL;
6631 sd->backlog.gro_count = 0;
6632 }
6633
6634 dev_boot_phase = 0;
6635
6636 /* The loopback device is special if any other network devices
6637 * is present in a network namespace the loopback device must
6638 * be present. Since we now dynamically allocate and free the
6639 * loopback device ensure this invariant is maintained by
6640 * keeping the loopback device as the first device on the
6641 * list of network devices. Ensuring the loopback devices
6642 * is the first device that appears and the last network device
6643 * that disappears.
6644 */
6645 if (register_pernet_device(&loopback_net_ops))
6646 goto out;
6647
6648 if (register_pernet_device(&default_device_ops))
6649 goto out;
6650
6651 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6652 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6653
6654 hotcpu_notifier(dev_cpu_callback, 0);
6655 dst_init();
6656 dev_mcast_init();
6657 rc = 0;
6658 out:
6659 return rc;
6660 }
6661
6662 subsys_initcall(net_dev_init);
6663
6664 static int __init initialize_hashrnd(void)
6665 {
6666 get_random_bytes(&hashrnd, sizeof(hashrnd));
6667 return 0;
6668 }
6669
6670 late_initcall_sync(initialize_hashrnd);
6671
This page took 0.155542 seconds and 6 git commands to generate.