Merge tag 'spi-v4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly; /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
159
160 /*
161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * semaphore.
163 *
164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
167 * dev_base_head list, and hold dev_base_lock for writing when they do the
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224 struct net *net = dev_net(dev);
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
247 list_del_rcu(&dev->dev_list);
248 hlist_del_rcu(&dev->name_hlist);
249 hlist_del_rcu(&dev->index_hlist);
250 write_unlock_bh(&dev_base_lock);
251
252 dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
324 {
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 if (pt->type == htons(ETH_P_ALL))
376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 else
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
390 * This call does not sleep therefore it can not
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397 struct list_head *head = ptype_head(pt);
398
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
412 * returns.
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 struct list_head *head = ptype_head(pt);
421 struct packet_type *pt1;
422
423 spin_lock(&ptype_lock);
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
432 pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452 __dev_remove_pack(pt);
453
454 synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471 void dev_add_offload(struct packet_offload *po)
472 {
473 struct packet_offload *elem;
474
475 spin_lock(&offload_lock);
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
481 spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
503 spin_lock(&offload_lock);
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 spin_unlock(&offload_lock);
515 }
516
517 /**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531 __dev_remove_offload(po);
532
533 synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539 Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
564 strlcpy(s[i].name, name, IFNAMSIZ);
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 !strcmp(dev->name, s[i].name)) {
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
624 if (__dev_get_by_name(&init_net, name))
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631 }
632
633 /*
634 * Saves at boot time configured settings for any netdevice.
635 */
636 int __init netdev_boot_setup(char *str)
637 {
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664 Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
681 return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712 * __dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
727
728 hlist_for_each_entry(dev, head, name_hlist)
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
753 hlist_for_each_entry_rcu(dev, head, name_hlist)
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 if (dev)
780 dev_hold(dev);
781 rcu_read_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787 * __dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
802
803 hlist_for_each_entry(dev, head, index_hlist)
804 if (dev->ifindex == ifindex)
805 return dev;
806
807 return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
827 hlist_for_each_entry_rcu(dev, head, index_hlist)
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837 * dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 struct net_device *dev;
850
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
853 if (dev)
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 struct net_device *dev;
873 unsigned int seq;
874
875 retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892 }
893
894 /**
895 * dev_getbyhwaddr_rcu - find a device by its hardware address
896 * @net: the applicable net namespace
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
903 * The returned device has not had its ref count increased
904 * and the caller must therefore be careful about locking
905 *
906 */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
910 {
911 struct net_device *dev;
912
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
916 return dev;
917
918 return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 struct net_device *dev;
925
926 ASSERT_RTNL();
927 for_each_netdev(net, dev)
928 if (dev->type == type)
929 return dev;
930
931 return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 struct net_device *dev, *ret = NULL;
938
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952 * __dev_get_by_flags - find any device with given flags
953 * @net: the applicable net namespace
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
958 * is not found or a pointer to the device. Must be called inside
959 * rtnl_lock(), and result refcount is unchanged.
960 */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
964 {
965 struct net_device *dev, *ret;
966
967 ASSERT_RTNL();
968
969 ret = NULL;
970 for_each_netdev(net, dev) {
971 if (((dev->flags ^ if_flags) & mask) == 0) {
972 ret = dev;
973 break;
974 }
975 }
976 return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
987 */
988 bool dev_valid_name(const char *name)
989 {
990 if (*name == '\0')
991 return false;
992 if (strlen(name) >= IFNAMSIZ)
993 return false;
994 if (!strcmp(name, ".") || !strcmp(name, ".."))
995 return false;
996
997 while (*name) {
998 if (*name == '/' || *name == ':' || isspace(*name))
999 return false;
1000 name++;
1001 }
1002 return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1009 * @name: name format string
1010 * @buf: scratch buffer and result name string
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1019 */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 int i = 0;
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
1026 unsigned long *inuse;
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 if (!inuse)
1042 return -ENOMEM;
1043
1044 for_each_netdev(net, d) {
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
1051 snprintf(buf, IFNAMSIZ, name, i);
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!__dev_get_by_name(net, buf))
1063 return i;
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070 }
1071
1072 /**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
1104 {
1105 char buf[IFNAMSIZ];
1106 int ret;
1107
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117 {
1118 BUG_ON(!net);
1119
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1123 if (strchr(name, '%'))
1124 return dev_alloc_name_ns(net, dev, name);
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 unsigned char old_assign_type;
1144 char oldname[IFNAMSIZ];
1145 int err = 0;
1146 int ret;
1147 struct net *net;
1148
1149 ASSERT_RTNL();
1150 BUG_ON(!dev_net(dev));
1151
1152 net = dev_net(dev);
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
1156 write_seqcount_begin(&devnet_rename_seq);
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 write_seqcount_end(&devnet_rename_seq);
1160 return 0;
1161 }
1162
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165 err = dev_get_valid_name(net, dev, newname);
1166 if (err < 0) {
1167 write_seqcount_end(&devnet_rename_seq);
1168 return err;
1169 }
1170
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 dev->name_assign_type = old_assign_type;
1182 write_seqcount_end(&devnet_rename_seq);
1183 return ret;
1184 }
1185
1186 write_seqcount_end(&devnet_rename_seq);
1187
1188 netdev_adjacent_rename_links(dev, oldname);
1189
1190 write_lock_bh(&dev_base_lock);
1191 hlist_del_rcu(&dev->name_hlist);
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 write_unlock_bh(&dev_base_lock);
1199
1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
1206 err = ret;
1207 write_seqcount_begin(&devnet_rename_seq);
1208 memcpy(dev->name, oldname, IFNAMSIZ);
1209 memcpy(oldname, newname, IFNAMSIZ);
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
1212 goto rollback;
1213 } else {
1214 pr_err("%s: name change rollback failed: %d\n",
1215 dev->name, ret);
1216 }
1217 }
1218
1219 return err;
1220 }
1221
1222 /**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
1226 * @len: limit of bytes to copy from info
1227 *
1228 * Set ifalias for a device,
1229 */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 char *new_ifalias;
1233
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
1239 if (!len) {
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
1242 return 0;
1243 }
1244
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
1247 return -ENOMEM;
1248 dev->ifalias = new_ifalias;
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252 }
1253
1254
1255 /**
1256 * netdev_features_change - device changes features
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 if (dev->flags & IFF_UP) {
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308 const struct net_device_ops *ops = dev->netdev_ops;
1309 int ret;
1310
1311 ASSERT_RTNL();
1312
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
1320 netpoll_poll_disable(dev);
1321
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1327 set_bit(__LINK_STATE_START, &dev->state);
1328
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
1331
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1334
1335 netpoll_poll_enable(dev);
1336
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1340 dev->flags |= IFF_UP;
1341 dev_set_rx_mode(dev);
1342 dev_activate(dev);
1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1344 }
1345
1346 return ret;
1347 }
1348
1349 /**
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1352 *
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1360 */
1361 int dev_open(struct net_device *dev)
1362 {
1363 int ret;
1364
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 struct net_device *dev;
1382
1383 ASSERT_RTNL();
1384 might_sleep();
1385
1386 list_for_each_entry(dev, head, close_list) {
1387 /* Temporarily disable netpoll until the interface is down */
1388 netpoll_poll_disable(dev);
1389
1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
1400 smp_mb__after_atomic(); /* Commit netif_running(). */
1401 }
1402
1403 dev_deactivate_many(head);
1404
1405 list_for_each_entry(dev, head, close_list) {
1406 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
1418 dev->flags &= ~IFF_UP;
1419 netpoll_poll_enable(dev);
1420 }
1421
1422 return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427 int retval;
1428 LIST_HEAD(single);
1429
1430 list_add(&dev->close_list, &single);
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
1433
1434 return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 struct net_device *dev, *tmp;
1440
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
1443 if (!(dev->flags & IFF_UP))
1444 list_del_init(&dev->close_list);
1445
1446 __dev_close_many(head);
1447
1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 if (unlink)
1452 list_del_init(&dev->close_list);
1453 }
1454
1455 return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468 int dev_close(struct net_device *dev)
1469 {
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1472
1473 list_add(&dev->close_list, &single);
1474 dev_close_many(&single, true);
1475 list_del(&single);
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
1494
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
1497
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508 {
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
1527 * to the new notifier to allow device to have a race free
1528 * view of the network device list.
1529 */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net_device *last;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_register(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1553
1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 }
1556 }
1557
1558 unlock:
1559 rtnl_unlock();
1560 return err;
1561
1562 rollback:
1563 last = dev;
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
1567 goto outroll;
1568
1569 if (dev->flags & IFF_UP) {
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 }
1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 }
1576 }
1577
1578 outroll:
1579 raw_notifier_chain_unregister(&netdev_chain, nb);
1580 goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1596 */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 struct net_device *dev;
1601 struct net *net;
1602 int err;
1603
1604 rtnl_lock();
1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 }
1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 }
1618 }
1619 unlock:
1620 rtnl_unlock();
1621 return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
1638 {
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
1647 * @dev: net_device pointer passed unmodified to notifier function
1648 *
1649 * Call all network notifier blocks. Parameters and return value
1650 * are as for raw_notifier_call_chain().
1651 */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666 static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672 static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680 * If net_disable_timestamp() is called from irq context, defer the
1681 * static_key_slow_dec() calls.
1682 */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
1693 static_key_slow_dec(&netstamp_needed);
1694 return;
1695 }
1696 #endif
1697 static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708 #endif
1709 static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 skb->tstamp.tv64 = 0;
1716 if (static_key_false(&netstamp_needed))
1717 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB) \
1721 if (static_key_false(&netstamp_needed)) { \
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
1757 skb->priority = 0;
1758 skb->protocol = eth_type_trans(skb, dev);
1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
1773 * NET_RX_DROP (packet was dropped, but freed)
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792 {
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
1801 struct net_device *orig_dev,
1802 __be16 type,
1803 struct list_head *ptype_list)
1804 {
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
1811 deliver_skb(skb, pt_prev, orig_dev);
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 if (!ptype->af_packet_priv || !skb->sk)
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828 }
1829
1830 /*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 struct packet_type *ptype;
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
1840 struct list_head *ptype_list = &ptype_all;
1841
1842 rcu_read_lock();
1843 again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
1850
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1856
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
1861
1862 net_timestamp_set(skb2);
1863
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1876 }
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1886 }
1887 out_unlock:
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 rcu_read_unlock();
1891 }
1892
1893 /**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
1938 {
1939 struct xps_map *map = NULL;
1940 int pos;
1941
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
1954 break;
1955 }
1956 }
1957
1958 return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 struct xps_dev_maps *dev_maps;
1964 int cpu, i;
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
1979 active = true;
1980 }
1981
1982 if (!active) {
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
1991 out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997 {
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
2032 {
2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 struct xps_map *map, *new_map;
2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
2052 return -ENOMEM;
2053 }
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
2068 for_each_possible_cpu(cpu) {
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
2084 #endif
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 }
2090
2091 }
2092
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095 /* Cleanup old maps */
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
2103
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 dev_maps = new_dev_maps;
2108 active = true;
2109
2110 out_no_new_maps:
2111 /* update Tx queue numa node */
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134 out_no_maps:
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138 error:
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
2148 mutex_unlock(&xps_map_mutex);
2149
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 int rc;
2163
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
2166
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
2169 ASSERT_RTNL();
2170
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
2173 if (rc)
2174 return rc;
2175
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
2179 if (txq < dev->real_num_tx_queues) {
2180 qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 }
2185 }
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
2200 * negative error code. If called before registration, it always
2201 * succeeds.
2202 */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 int rc;
2206
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 struct softnet_data *sd;
2240 unsigned long flags;
2241
2242 local_irq_save(flags);
2243 sd = this_cpu_ptr(&softnet_data);
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 unsigned long flags;
2317
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
2323 }
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 if (in_irq() || irqs_disabled())
2336 __dev_kfree_skb_irq(skb, reason);
2337 else
2338 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
2353 netif_tx_stop_all_queues(dev);
2354 }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
2368 netif_tx_wake_all_queues(dev);
2369 __netdev_watchdog_up(dev);
2370 }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380 {
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 static const netdev_features_t null_features = 0;
2405 struct net_device *dev = skb->dev;
2406 const char *driver = "";
2407
2408 if (!net_ratelimit())
2409 return;
2410
2411 if (dev && dev->dev.parent)
2412 driver = dev_driver_string(dev->dev.parent);
2413
2414 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2415 "gso_type=%d ip_summed=%d\n",
2416 driver, dev ? &dev->features : &null_features,
2417 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2418 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2419 skb_shinfo(skb)->gso_type, skb->ip_summed);
2420 }
2421
2422 /*
2423 * Invalidate hardware checksum when packet is to be mangled, and
2424 * complete checksum manually on outgoing path.
2425 */
2426 int skb_checksum_help(struct sk_buff *skb)
2427 {
2428 __wsum csum;
2429 int ret = 0, offset;
2430
2431 if (skb->ip_summed == CHECKSUM_COMPLETE)
2432 goto out_set_summed;
2433
2434 if (unlikely(skb_shinfo(skb)->gso_size)) {
2435 skb_warn_bad_offload(skb);
2436 return -EINVAL;
2437 }
2438
2439 /* Before computing a checksum, we should make sure no frag could
2440 * be modified by an external entity : checksum could be wrong.
2441 */
2442 if (skb_has_shared_frag(skb)) {
2443 ret = __skb_linearize(skb);
2444 if (ret)
2445 goto out;
2446 }
2447
2448 offset = skb_checksum_start_offset(skb);
2449 BUG_ON(offset >= skb_headlen(skb));
2450 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2451
2452 offset += skb->csum_offset;
2453 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2454
2455 if (skb_cloned(skb) &&
2456 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2457 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2458 if (ret)
2459 goto out;
2460 }
2461
2462 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2463 out_set_summed:
2464 skb->ip_summed = CHECKSUM_NONE;
2465 out:
2466 return ret;
2467 }
2468 EXPORT_SYMBOL(skb_checksum_help);
2469
2470 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2471 {
2472 __be16 type = skb->protocol;
2473
2474 /* Tunnel gso handlers can set protocol to ethernet. */
2475 if (type == htons(ETH_P_TEB)) {
2476 struct ethhdr *eth;
2477
2478 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2479 return 0;
2480
2481 eth = (struct ethhdr *)skb_mac_header(skb);
2482 type = eth->h_proto;
2483 }
2484
2485 return __vlan_get_protocol(skb, type, depth);
2486 }
2487
2488 /**
2489 * skb_mac_gso_segment - mac layer segmentation handler.
2490 * @skb: buffer to segment
2491 * @features: features for the output path (see dev->features)
2492 */
2493 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2494 netdev_features_t features)
2495 {
2496 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2497 struct packet_offload *ptype;
2498 int vlan_depth = skb->mac_len;
2499 __be16 type = skb_network_protocol(skb, &vlan_depth);
2500
2501 if (unlikely(!type))
2502 return ERR_PTR(-EINVAL);
2503
2504 __skb_pull(skb, vlan_depth);
2505
2506 rcu_read_lock();
2507 list_for_each_entry_rcu(ptype, &offload_base, list) {
2508 if (ptype->type == type && ptype->callbacks.gso_segment) {
2509 segs = ptype->callbacks.gso_segment(skb, features);
2510 break;
2511 }
2512 }
2513 rcu_read_unlock();
2514
2515 __skb_push(skb, skb->data - skb_mac_header(skb));
2516
2517 return segs;
2518 }
2519 EXPORT_SYMBOL(skb_mac_gso_segment);
2520
2521
2522 /* openvswitch calls this on rx path, so we need a different check.
2523 */
2524 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2525 {
2526 if (tx_path)
2527 return skb->ip_summed != CHECKSUM_PARTIAL;
2528 else
2529 return skb->ip_summed == CHECKSUM_NONE;
2530 }
2531
2532 /**
2533 * __skb_gso_segment - Perform segmentation on skb.
2534 * @skb: buffer to segment
2535 * @features: features for the output path (see dev->features)
2536 * @tx_path: whether it is called in TX path
2537 *
2538 * This function segments the given skb and returns a list of segments.
2539 *
2540 * It may return NULL if the skb requires no segmentation. This is
2541 * only possible when GSO is used for verifying header integrity.
2542 */
2543 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2544 netdev_features_t features, bool tx_path)
2545 {
2546 if (unlikely(skb_needs_check(skb, tx_path))) {
2547 int err;
2548
2549 skb_warn_bad_offload(skb);
2550
2551 err = skb_cow_head(skb, 0);
2552 if (err < 0)
2553 return ERR_PTR(err);
2554 }
2555
2556 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2557 SKB_GSO_CB(skb)->encap_level = 0;
2558
2559 skb_reset_mac_header(skb);
2560 skb_reset_mac_len(skb);
2561
2562 return skb_mac_gso_segment(skb, features);
2563 }
2564 EXPORT_SYMBOL(__skb_gso_segment);
2565
2566 /* Take action when hardware reception checksum errors are detected. */
2567 #ifdef CONFIG_BUG
2568 void netdev_rx_csum_fault(struct net_device *dev)
2569 {
2570 if (net_ratelimit()) {
2571 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2572 dump_stack();
2573 }
2574 }
2575 EXPORT_SYMBOL(netdev_rx_csum_fault);
2576 #endif
2577
2578 /* Actually, we should eliminate this check as soon as we know, that:
2579 * 1. IOMMU is present and allows to map all the memory.
2580 * 2. No high memory really exists on this machine.
2581 */
2582
2583 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2584 {
2585 #ifdef CONFIG_HIGHMEM
2586 int i;
2587 if (!(dev->features & NETIF_F_HIGHDMA)) {
2588 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2589 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2590 if (PageHighMem(skb_frag_page(frag)))
2591 return 1;
2592 }
2593 }
2594
2595 if (PCI_DMA_BUS_IS_PHYS) {
2596 struct device *pdev = dev->dev.parent;
2597
2598 if (!pdev)
2599 return 0;
2600 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2601 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2602 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2603 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2604 return 1;
2605 }
2606 }
2607 #endif
2608 return 0;
2609 }
2610
2611 /* If MPLS offload request, verify we are testing hardware MPLS features
2612 * instead of standard features for the netdev.
2613 */
2614 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2615 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2616 netdev_features_t features,
2617 __be16 type)
2618 {
2619 if (eth_p_mpls(type))
2620 features &= skb->dev->mpls_features;
2621
2622 return features;
2623 }
2624 #else
2625 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2626 netdev_features_t features,
2627 __be16 type)
2628 {
2629 return features;
2630 }
2631 #endif
2632
2633 static netdev_features_t harmonize_features(struct sk_buff *skb,
2634 netdev_features_t features)
2635 {
2636 int tmp;
2637 __be16 type;
2638
2639 type = skb_network_protocol(skb, &tmp);
2640 features = net_mpls_features(skb, features, type);
2641
2642 if (skb->ip_summed != CHECKSUM_NONE &&
2643 !can_checksum_protocol(features, type)) {
2644 features &= ~NETIF_F_ALL_CSUM;
2645 } else if (illegal_highdma(skb->dev, skb)) {
2646 features &= ~NETIF_F_SG;
2647 }
2648
2649 return features;
2650 }
2651
2652 netdev_features_t passthru_features_check(struct sk_buff *skb,
2653 struct net_device *dev,
2654 netdev_features_t features)
2655 {
2656 return features;
2657 }
2658 EXPORT_SYMBOL(passthru_features_check);
2659
2660 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2661 struct net_device *dev,
2662 netdev_features_t features)
2663 {
2664 return vlan_features_check(skb, features);
2665 }
2666
2667 netdev_features_t netif_skb_features(struct sk_buff *skb)
2668 {
2669 struct net_device *dev = skb->dev;
2670 netdev_features_t features = dev->features;
2671 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2672
2673 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2674 features &= ~NETIF_F_GSO_MASK;
2675
2676 /* If encapsulation offload request, verify we are testing
2677 * hardware encapsulation features instead of standard
2678 * features for the netdev
2679 */
2680 if (skb->encapsulation)
2681 features &= dev->hw_enc_features;
2682
2683 if (skb_vlan_tagged(skb))
2684 features = netdev_intersect_features(features,
2685 dev->vlan_features |
2686 NETIF_F_HW_VLAN_CTAG_TX |
2687 NETIF_F_HW_VLAN_STAG_TX);
2688
2689 if (dev->netdev_ops->ndo_features_check)
2690 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2691 features);
2692 else
2693 features &= dflt_features_check(skb, dev, features);
2694
2695 return harmonize_features(skb, features);
2696 }
2697 EXPORT_SYMBOL(netif_skb_features);
2698
2699 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2700 struct netdev_queue *txq, bool more)
2701 {
2702 unsigned int len;
2703 int rc;
2704
2705 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2706 dev_queue_xmit_nit(skb, dev);
2707
2708 len = skb->len;
2709 trace_net_dev_start_xmit(skb, dev);
2710 rc = netdev_start_xmit(skb, dev, txq, more);
2711 trace_net_dev_xmit(skb, rc, dev, len);
2712
2713 return rc;
2714 }
2715
2716 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2717 struct netdev_queue *txq, int *ret)
2718 {
2719 struct sk_buff *skb = first;
2720 int rc = NETDEV_TX_OK;
2721
2722 while (skb) {
2723 struct sk_buff *next = skb->next;
2724
2725 skb->next = NULL;
2726 rc = xmit_one(skb, dev, txq, next != NULL);
2727 if (unlikely(!dev_xmit_complete(rc))) {
2728 skb->next = next;
2729 goto out;
2730 }
2731
2732 skb = next;
2733 if (netif_xmit_stopped(txq) && skb) {
2734 rc = NETDEV_TX_BUSY;
2735 break;
2736 }
2737 }
2738
2739 out:
2740 *ret = rc;
2741 return skb;
2742 }
2743
2744 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2745 netdev_features_t features)
2746 {
2747 if (skb_vlan_tag_present(skb) &&
2748 !vlan_hw_offload_capable(features, skb->vlan_proto))
2749 skb = __vlan_hwaccel_push_inside(skb);
2750 return skb;
2751 }
2752
2753 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2754 {
2755 netdev_features_t features;
2756
2757 if (skb->next)
2758 return skb;
2759
2760 features = netif_skb_features(skb);
2761 skb = validate_xmit_vlan(skb, features);
2762 if (unlikely(!skb))
2763 goto out_null;
2764
2765 if (netif_needs_gso(skb, features)) {
2766 struct sk_buff *segs;
2767
2768 segs = skb_gso_segment(skb, features);
2769 if (IS_ERR(segs)) {
2770 goto out_kfree_skb;
2771 } else if (segs) {
2772 consume_skb(skb);
2773 skb = segs;
2774 }
2775 } else {
2776 if (skb_needs_linearize(skb, features) &&
2777 __skb_linearize(skb))
2778 goto out_kfree_skb;
2779
2780 /* If packet is not checksummed and device does not
2781 * support checksumming for this protocol, complete
2782 * checksumming here.
2783 */
2784 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2785 if (skb->encapsulation)
2786 skb_set_inner_transport_header(skb,
2787 skb_checksum_start_offset(skb));
2788 else
2789 skb_set_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 if (!(features & NETIF_F_ALL_CSUM) &&
2792 skb_checksum_help(skb))
2793 goto out_kfree_skb;
2794 }
2795 }
2796
2797 return skb;
2798
2799 out_kfree_skb:
2800 kfree_skb(skb);
2801 out_null:
2802 return NULL;
2803 }
2804
2805 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2806 {
2807 struct sk_buff *next, *head = NULL, *tail;
2808
2809 for (; skb != NULL; skb = next) {
2810 next = skb->next;
2811 skb->next = NULL;
2812
2813 /* in case skb wont be segmented, point to itself */
2814 skb->prev = skb;
2815
2816 skb = validate_xmit_skb(skb, dev);
2817 if (!skb)
2818 continue;
2819
2820 if (!head)
2821 head = skb;
2822 else
2823 tail->next = skb;
2824 /* If skb was segmented, skb->prev points to
2825 * the last segment. If not, it still contains skb.
2826 */
2827 tail = skb->prev;
2828 }
2829 return head;
2830 }
2831
2832 static void qdisc_pkt_len_init(struct sk_buff *skb)
2833 {
2834 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2835
2836 qdisc_skb_cb(skb)->pkt_len = skb->len;
2837
2838 /* To get more precise estimation of bytes sent on wire,
2839 * we add to pkt_len the headers size of all segments
2840 */
2841 if (shinfo->gso_size) {
2842 unsigned int hdr_len;
2843 u16 gso_segs = shinfo->gso_segs;
2844
2845 /* mac layer + network layer */
2846 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2847
2848 /* + transport layer */
2849 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2850 hdr_len += tcp_hdrlen(skb);
2851 else
2852 hdr_len += sizeof(struct udphdr);
2853
2854 if (shinfo->gso_type & SKB_GSO_DODGY)
2855 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2856 shinfo->gso_size);
2857
2858 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2859 }
2860 }
2861
2862 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2863 struct net_device *dev,
2864 struct netdev_queue *txq)
2865 {
2866 spinlock_t *root_lock = qdisc_lock(q);
2867 bool contended;
2868 int rc;
2869
2870 qdisc_pkt_len_init(skb);
2871 qdisc_calculate_pkt_len(skb, q);
2872 /*
2873 * Heuristic to force contended enqueues to serialize on a
2874 * separate lock before trying to get qdisc main lock.
2875 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2876 * often and dequeue packets faster.
2877 */
2878 contended = qdisc_is_running(q);
2879 if (unlikely(contended))
2880 spin_lock(&q->busylock);
2881
2882 spin_lock(root_lock);
2883 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2884 kfree_skb(skb);
2885 rc = NET_XMIT_DROP;
2886 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2887 qdisc_run_begin(q)) {
2888 /*
2889 * This is a work-conserving queue; there are no old skbs
2890 * waiting to be sent out; and the qdisc is not running -
2891 * xmit the skb directly.
2892 */
2893
2894 qdisc_bstats_update(q, skb);
2895
2896 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2897 if (unlikely(contended)) {
2898 spin_unlock(&q->busylock);
2899 contended = false;
2900 }
2901 __qdisc_run(q);
2902 } else
2903 qdisc_run_end(q);
2904
2905 rc = NET_XMIT_SUCCESS;
2906 } else {
2907 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2908 if (qdisc_run_begin(q)) {
2909 if (unlikely(contended)) {
2910 spin_unlock(&q->busylock);
2911 contended = false;
2912 }
2913 __qdisc_run(q);
2914 }
2915 }
2916 spin_unlock(root_lock);
2917 if (unlikely(contended))
2918 spin_unlock(&q->busylock);
2919 return rc;
2920 }
2921
2922 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2923 static void skb_update_prio(struct sk_buff *skb)
2924 {
2925 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2926
2927 if (!skb->priority && skb->sk && map) {
2928 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2929
2930 if (prioidx < map->priomap_len)
2931 skb->priority = map->priomap[prioidx];
2932 }
2933 }
2934 #else
2935 #define skb_update_prio(skb)
2936 #endif
2937
2938 DEFINE_PER_CPU(int, xmit_recursion);
2939 EXPORT_SYMBOL(xmit_recursion);
2940
2941 #define RECURSION_LIMIT 10
2942
2943 /**
2944 * dev_loopback_xmit - loop back @skb
2945 * @net: network namespace this loopback is happening in
2946 * @sk: sk needed to be a netfilter okfn
2947 * @skb: buffer to transmit
2948 */
2949 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2950 {
2951 skb_reset_mac_header(skb);
2952 __skb_pull(skb, skb_network_offset(skb));
2953 skb->pkt_type = PACKET_LOOPBACK;
2954 skb->ip_summed = CHECKSUM_UNNECESSARY;
2955 WARN_ON(!skb_dst(skb));
2956 skb_dst_force(skb);
2957 netif_rx_ni(skb);
2958 return 0;
2959 }
2960 EXPORT_SYMBOL(dev_loopback_xmit);
2961
2962 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2963 {
2964 #ifdef CONFIG_XPS
2965 struct xps_dev_maps *dev_maps;
2966 struct xps_map *map;
2967 int queue_index = -1;
2968
2969 rcu_read_lock();
2970 dev_maps = rcu_dereference(dev->xps_maps);
2971 if (dev_maps) {
2972 map = rcu_dereference(
2973 dev_maps->cpu_map[skb->sender_cpu - 1]);
2974 if (map) {
2975 if (map->len == 1)
2976 queue_index = map->queues[0];
2977 else
2978 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2979 map->len)];
2980 if (unlikely(queue_index >= dev->real_num_tx_queues))
2981 queue_index = -1;
2982 }
2983 }
2984 rcu_read_unlock();
2985
2986 return queue_index;
2987 #else
2988 return -1;
2989 #endif
2990 }
2991
2992 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2993 {
2994 struct sock *sk = skb->sk;
2995 int queue_index = sk_tx_queue_get(sk);
2996
2997 if (queue_index < 0 || skb->ooo_okay ||
2998 queue_index >= dev->real_num_tx_queues) {
2999 int new_index = get_xps_queue(dev, skb);
3000 if (new_index < 0)
3001 new_index = skb_tx_hash(dev, skb);
3002
3003 if (queue_index != new_index && sk &&
3004 sk_fullsock(sk) &&
3005 rcu_access_pointer(sk->sk_dst_cache))
3006 sk_tx_queue_set(sk, new_index);
3007
3008 queue_index = new_index;
3009 }
3010
3011 return queue_index;
3012 }
3013
3014 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3015 struct sk_buff *skb,
3016 void *accel_priv)
3017 {
3018 int queue_index = 0;
3019
3020 #ifdef CONFIG_XPS
3021 if (skb->sender_cpu == 0)
3022 skb->sender_cpu = raw_smp_processor_id() + 1;
3023 #endif
3024
3025 if (dev->real_num_tx_queues != 1) {
3026 const struct net_device_ops *ops = dev->netdev_ops;
3027 if (ops->ndo_select_queue)
3028 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3029 __netdev_pick_tx);
3030 else
3031 queue_index = __netdev_pick_tx(dev, skb);
3032
3033 if (!accel_priv)
3034 queue_index = netdev_cap_txqueue(dev, queue_index);
3035 }
3036
3037 skb_set_queue_mapping(skb, queue_index);
3038 return netdev_get_tx_queue(dev, queue_index);
3039 }
3040
3041 /**
3042 * __dev_queue_xmit - transmit a buffer
3043 * @skb: buffer to transmit
3044 * @accel_priv: private data used for L2 forwarding offload
3045 *
3046 * Queue a buffer for transmission to a network device. The caller must
3047 * have set the device and priority and built the buffer before calling
3048 * this function. The function can be called from an interrupt.
3049 *
3050 * A negative errno code is returned on a failure. A success does not
3051 * guarantee the frame will be transmitted as it may be dropped due
3052 * to congestion or traffic shaping.
3053 *
3054 * -----------------------------------------------------------------------------------
3055 * I notice this method can also return errors from the queue disciplines,
3056 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3057 * be positive.
3058 *
3059 * Regardless of the return value, the skb is consumed, so it is currently
3060 * difficult to retry a send to this method. (You can bump the ref count
3061 * before sending to hold a reference for retry if you are careful.)
3062 *
3063 * When calling this method, interrupts MUST be enabled. This is because
3064 * the BH enable code must have IRQs enabled so that it will not deadlock.
3065 * --BLG
3066 */
3067 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3068 {
3069 struct net_device *dev = skb->dev;
3070 struct netdev_queue *txq;
3071 struct Qdisc *q;
3072 int rc = -ENOMEM;
3073
3074 skb_reset_mac_header(skb);
3075
3076 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3077 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3078
3079 /* Disable soft irqs for various locks below. Also
3080 * stops preemption for RCU.
3081 */
3082 rcu_read_lock_bh();
3083
3084 skb_update_prio(skb);
3085
3086 /* If device/qdisc don't need skb->dst, release it right now while
3087 * its hot in this cpu cache.
3088 */
3089 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3090 skb_dst_drop(skb);
3091 else
3092 skb_dst_force(skb);
3093
3094 #ifdef CONFIG_NET_SWITCHDEV
3095 /* Don't forward if offload device already forwarded */
3096 if (skb->offload_fwd_mark &&
3097 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3098 consume_skb(skb);
3099 rc = NET_XMIT_SUCCESS;
3100 goto out;
3101 }
3102 #endif
3103
3104 txq = netdev_pick_tx(dev, skb, accel_priv);
3105 q = rcu_dereference_bh(txq->qdisc);
3106
3107 #ifdef CONFIG_NET_CLS_ACT
3108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3109 #endif
3110 trace_net_dev_queue(skb);
3111 if (q->enqueue) {
3112 rc = __dev_xmit_skb(skb, q, dev, txq);
3113 goto out;
3114 }
3115
3116 /* The device has no queue. Common case for software devices:
3117 loopback, all the sorts of tunnels...
3118
3119 Really, it is unlikely that netif_tx_lock protection is necessary
3120 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3121 counters.)
3122 However, it is possible, that they rely on protection
3123 made by us here.
3124
3125 Check this and shot the lock. It is not prone from deadlocks.
3126 Either shot noqueue qdisc, it is even simpler 8)
3127 */
3128 if (dev->flags & IFF_UP) {
3129 int cpu = smp_processor_id(); /* ok because BHs are off */
3130
3131 if (txq->xmit_lock_owner != cpu) {
3132
3133 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3134 goto recursion_alert;
3135
3136 skb = validate_xmit_skb(skb, dev);
3137 if (!skb)
3138 goto drop;
3139
3140 HARD_TX_LOCK(dev, txq, cpu);
3141
3142 if (!netif_xmit_stopped(txq)) {
3143 __this_cpu_inc(xmit_recursion);
3144 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3145 __this_cpu_dec(xmit_recursion);
3146 if (dev_xmit_complete(rc)) {
3147 HARD_TX_UNLOCK(dev, txq);
3148 goto out;
3149 }
3150 }
3151 HARD_TX_UNLOCK(dev, txq);
3152 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3153 dev->name);
3154 } else {
3155 /* Recursion is detected! It is possible,
3156 * unfortunately
3157 */
3158 recursion_alert:
3159 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3160 dev->name);
3161 }
3162 }
3163
3164 rc = -ENETDOWN;
3165 drop:
3166 rcu_read_unlock_bh();
3167
3168 atomic_long_inc(&dev->tx_dropped);
3169 kfree_skb_list(skb);
3170 return rc;
3171 out:
3172 rcu_read_unlock_bh();
3173 return rc;
3174 }
3175
3176 int dev_queue_xmit(struct sk_buff *skb)
3177 {
3178 return __dev_queue_xmit(skb, NULL);
3179 }
3180 EXPORT_SYMBOL(dev_queue_xmit);
3181
3182 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3183 {
3184 return __dev_queue_xmit(skb, accel_priv);
3185 }
3186 EXPORT_SYMBOL(dev_queue_xmit_accel);
3187
3188
3189 /*=======================================================================
3190 Receiver routines
3191 =======================================================================*/
3192
3193 int netdev_max_backlog __read_mostly = 1000;
3194 EXPORT_SYMBOL(netdev_max_backlog);
3195
3196 int netdev_tstamp_prequeue __read_mostly = 1;
3197 int netdev_budget __read_mostly = 300;
3198 int weight_p __read_mostly = 64; /* old backlog weight */
3199
3200 /* Called with irq disabled */
3201 static inline void ____napi_schedule(struct softnet_data *sd,
3202 struct napi_struct *napi)
3203 {
3204 list_add_tail(&napi->poll_list, &sd->poll_list);
3205 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3206 }
3207
3208 #ifdef CONFIG_RPS
3209
3210 /* One global table that all flow-based protocols share. */
3211 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3212 EXPORT_SYMBOL(rps_sock_flow_table);
3213 u32 rps_cpu_mask __read_mostly;
3214 EXPORT_SYMBOL(rps_cpu_mask);
3215
3216 struct static_key rps_needed __read_mostly;
3217
3218 static struct rps_dev_flow *
3219 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3220 struct rps_dev_flow *rflow, u16 next_cpu)
3221 {
3222 if (next_cpu < nr_cpu_ids) {
3223 #ifdef CONFIG_RFS_ACCEL
3224 struct netdev_rx_queue *rxqueue;
3225 struct rps_dev_flow_table *flow_table;
3226 struct rps_dev_flow *old_rflow;
3227 u32 flow_id;
3228 u16 rxq_index;
3229 int rc;
3230
3231 /* Should we steer this flow to a different hardware queue? */
3232 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3233 !(dev->features & NETIF_F_NTUPLE))
3234 goto out;
3235 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3236 if (rxq_index == skb_get_rx_queue(skb))
3237 goto out;
3238
3239 rxqueue = dev->_rx + rxq_index;
3240 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3241 if (!flow_table)
3242 goto out;
3243 flow_id = skb_get_hash(skb) & flow_table->mask;
3244 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3245 rxq_index, flow_id);
3246 if (rc < 0)
3247 goto out;
3248 old_rflow = rflow;
3249 rflow = &flow_table->flows[flow_id];
3250 rflow->filter = rc;
3251 if (old_rflow->filter == rflow->filter)
3252 old_rflow->filter = RPS_NO_FILTER;
3253 out:
3254 #endif
3255 rflow->last_qtail =
3256 per_cpu(softnet_data, next_cpu).input_queue_head;
3257 }
3258
3259 rflow->cpu = next_cpu;
3260 return rflow;
3261 }
3262
3263 /*
3264 * get_rps_cpu is called from netif_receive_skb and returns the target
3265 * CPU from the RPS map of the receiving queue for a given skb.
3266 * rcu_read_lock must be held on entry.
3267 */
3268 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3269 struct rps_dev_flow **rflowp)
3270 {
3271 const struct rps_sock_flow_table *sock_flow_table;
3272 struct netdev_rx_queue *rxqueue = dev->_rx;
3273 struct rps_dev_flow_table *flow_table;
3274 struct rps_map *map;
3275 int cpu = -1;
3276 u32 tcpu;
3277 u32 hash;
3278
3279 if (skb_rx_queue_recorded(skb)) {
3280 u16 index = skb_get_rx_queue(skb);
3281
3282 if (unlikely(index >= dev->real_num_rx_queues)) {
3283 WARN_ONCE(dev->real_num_rx_queues > 1,
3284 "%s received packet on queue %u, but number "
3285 "of RX queues is %u\n",
3286 dev->name, index, dev->real_num_rx_queues);
3287 goto done;
3288 }
3289 rxqueue += index;
3290 }
3291
3292 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3293
3294 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3295 map = rcu_dereference(rxqueue->rps_map);
3296 if (!flow_table && !map)
3297 goto done;
3298
3299 skb_reset_network_header(skb);
3300 hash = skb_get_hash(skb);
3301 if (!hash)
3302 goto done;
3303
3304 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3305 if (flow_table && sock_flow_table) {
3306 struct rps_dev_flow *rflow;
3307 u32 next_cpu;
3308 u32 ident;
3309
3310 /* First check into global flow table if there is a match */
3311 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3312 if ((ident ^ hash) & ~rps_cpu_mask)
3313 goto try_rps;
3314
3315 next_cpu = ident & rps_cpu_mask;
3316
3317 /* OK, now we know there is a match,
3318 * we can look at the local (per receive queue) flow table
3319 */
3320 rflow = &flow_table->flows[hash & flow_table->mask];
3321 tcpu = rflow->cpu;
3322
3323 /*
3324 * If the desired CPU (where last recvmsg was done) is
3325 * different from current CPU (one in the rx-queue flow
3326 * table entry), switch if one of the following holds:
3327 * - Current CPU is unset (>= nr_cpu_ids).
3328 * - Current CPU is offline.
3329 * - The current CPU's queue tail has advanced beyond the
3330 * last packet that was enqueued using this table entry.
3331 * This guarantees that all previous packets for the flow
3332 * have been dequeued, thus preserving in order delivery.
3333 */
3334 if (unlikely(tcpu != next_cpu) &&
3335 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3336 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3337 rflow->last_qtail)) >= 0)) {
3338 tcpu = next_cpu;
3339 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3340 }
3341
3342 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3343 *rflowp = rflow;
3344 cpu = tcpu;
3345 goto done;
3346 }
3347 }
3348
3349 try_rps:
3350
3351 if (map) {
3352 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3353 if (cpu_online(tcpu)) {
3354 cpu = tcpu;
3355 goto done;
3356 }
3357 }
3358
3359 done:
3360 return cpu;
3361 }
3362
3363 #ifdef CONFIG_RFS_ACCEL
3364
3365 /**
3366 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3367 * @dev: Device on which the filter was set
3368 * @rxq_index: RX queue index
3369 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3370 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3371 *
3372 * Drivers that implement ndo_rx_flow_steer() should periodically call
3373 * this function for each installed filter and remove the filters for
3374 * which it returns %true.
3375 */
3376 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3377 u32 flow_id, u16 filter_id)
3378 {
3379 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3380 struct rps_dev_flow_table *flow_table;
3381 struct rps_dev_flow *rflow;
3382 bool expire = true;
3383 unsigned int cpu;
3384
3385 rcu_read_lock();
3386 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3387 if (flow_table && flow_id <= flow_table->mask) {
3388 rflow = &flow_table->flows[flow_id];
3389 cpu = ACCESS_ONCE(rflow->cpu);
3390 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3391 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3392 rflow->last_qtail) <
3393 (int)(10 * flow_table->mask)))
3394 expire = false;
3395 }
3396 rcu_read_unlock();
3397 return expire;
3398 }
3399 EXPORT_SYMBOL(rps_may_expire_flow);
3400
3401 #endif /* CONFIG_RFS_ACCEL */
3402
3403 /* Called from hardirq (IPI) context */
3404 static void rps_trigger_softirq(void *data)
3405 {
3406 struct softnet_data *sd = data;
3407
3408 ____napi_schedule(sd, &sd->backlog);
3409 sd->received_rps++;
3410 }
3411
3412 #endif /* CONFIG_RPS */
3413
3414 /*
3415 * Check if this softnet_data structure is another cpu one
3416 * If yes, queue it to our IPI list and return 1
3417 * If no, return 0
3418 */
3419 static int rps_ipi_queued(struct softnet_data *sd)
3420 {
3421 #ifdef CONFIG_RPS
3422 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3423
3424 if (sd != mysd) {
3425 sd->rps_ipi_next = mysd->rps_ipi_list;
3426 mysd->rps_ipi_list = sd;
3427
3428 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3429 return 1;
3430 }
3431 #endif /* CONFIG_RPS */
3432 return 0;
3433 }
3434
3435 #ifdef CONFIG_NET_FLOW_LIMIT
3436 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3437 #endif
3438
3439 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3440 {
3441 #ifdef CONFIG_NET_FLOW_LIMIT
3442 struct sd_flow_limit *fl;
3443 struct softnet_data *sd;
3444 unsigned int old_flow, new_flow;
3445
3446 if (qlen < (netdev_max_backlog >> 1))
3447 return false;
3448
3449 sd = this_cpu_ptr(&softnet_data);
3450
3451 rcu_read_lock();
3452 fl = rcu_dereference(sd->flow_limit);
3453 if (fl) {
3454 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3455 old_flow = fl->history[fl->history_head];
3456 fl->history[fl->history_head] = new_flow;
3457
3458 fl->history_head++;
3459 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3460
3461 if (likely(fl->buckets[old_flow]))
3462 fl->buckets[old_flow]--;
3463
3464 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3465 fl->count++;
3466 rcu_read_unlock();
3467 return true;
3468 }
3469 }
3470 rcu_read_unlock();
3471 #endif
3472 return false;
3473 }
3474
3475 /*
3476 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3477 * queue (may be a remote CPU queue).
3478 */
3479 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3480 unsigned int *qtail)
3481 {
3482 struct softnet_data *sd;
3483 unsigned long flags;
3484 unsigned int qlen;
3485
3486 sd = &per_cpu(softnet_data, cpu);
3487
3488 local_irq_save(flags);
3489
3490 rps_lock(sd);
3491 if (!netif_running(skb->dev))
3492 goto drop;
3493 qlen = skb_queue_len(&sd->input_pkt_queue);
3494 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3495 if (qlen) {
3496 enqueue:
3497 __skb_queue_tail(&sd->input_pkt_queue, skb);
3498 input_queue_tail_incr_save(sd, qtail);
3499 rps_unlock(sd);
3500 local_irq_restore(flags);
3501 return NET_RX_SUCCESS;
3502 }
3503
3504 /* Schedule NAPI for backlog device
3505 * We can use non atomic operation since we own the queue lock
3506 */
3507 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3508 if (!rps_ipi_queued(sd))
3509 ____napi_schedule(sd, &sd->backlog);
3510 }
3511 goto enqueue;
3512 }
3513
3514 drop:
3515 sd->dropped++;
3516 rps_unlock(sd);
3517
3518 local_irq_restore(flags);
3519
3520 atomic_long_inc(&skb->dev->rx_dropped);
3521 kfree_skb(skb);
3522 return NET_RX_DROP;
3523 }
3524
3525 static int netif_rx_internal(struct sk_buff *skb)
3526 {
3527 int ret;
3528
3529 net_timestamp_check(netdev_tstamp_prequeue, skb);
3530
3531 trace_netif_rx(skb);
3532 #ifdef CONFIG_RPS
3533 if (static_key_false(&rps_needed)) {
3534 struct rps_dev_flow voidflow, *rflow = &voidflow;
3535 int cpu;
3536
3537 preempt_disable();
3538 rcu_read_lock();
3539
3540 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3541 if (cpu < 0)
3542 cpu = smp_processor_id();
3543
3544 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3545
3546 rcu_read_unlock();
3547 preempt_enable();
3548 } else
3549 #endif
3550 {
3551 unsigned int qtail;
3552 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3553 put_cpu();
3554 }
3555 return ret;
3556 }
3557
3558 /**
3559 * netif_rx - post buffer to the network code
3560 * @skb: buffer to post
3561 *
3562 * This function receives a packet from a device driver and queues it for
3563 * the upper (protocol) levels to process. It always succeeds. The buffer
3564 * may be dropped during processing for congestion control or by the
3565 * protocol layers.
3566 *
3567 * return values:
3568 * NET_RX_SUCCESS (no congestion)
3569 * NET_RX_DROP (packet was dropped)
3570 *
3571 */
3572
3573 int netif_rx(struct sk_buff *skb)
3574 {
3575 trace_netif_rx_entry(skb);
3576
3577 return netif_rx_internal(skb);
3578 }
3579 EXPORT_SYMBOL(netif_rx);
3580
3581 int netif_rx_ni(struct sk_buff *skb)
3582 {
3583 int err;
3584
3585 trace_netif_rx_ni_entry(skb);
3586
3587 preempt_disable();
3588 err = netif_rx_internal(skb);
3589 if (local_softirq_pending())
3590 do_softirq();
3591 preempt_enable();
3592
3593 return err;
3594 }
3595 EXPORT_SYMBOL(netif_rx_ni);
3596
3597 static void net_tx_action(struct softirq_action *h)
3598 {
3599 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3600
3601 if (sd->completion_queue) {
3602 struct sk_buff *clist;
3603
3604 local_irq_disable();
3605 clist = sd->completion_queue;
3606 sd->completion_queue = NULL;
3607 local_irq_enable();
3608
3609 while (clist) {
3610 struct sk_buff *skb = clist;
3611 clist = clist->next;
3612
3613 WARN_ON(atomic_read(&skb->users));
3614 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3615 trace_consume_skb(skb);
3616 else
3617 trace_kfree_skb(skb, net_tx_action);
3618 __kfree_skb(skb);
3619 }
3620 }
3621
3622 if (sd->output_queue) {
3623 struct Qdisc *head;
3624
3625 local_irq_disable();
3626 head = sd->output_queue;
3627 sd->output_queue = NULL;
3628 sd->output_queue_tailp = &sd->output_queue;
3629 local_irq_enable();
3630
3631 while (head) {
3632 struct Qdisc *q = head;
3633 spinlock_t *root_lock;
3634
3635 head = head->next_sched;
3636
3637 root_lock = qdisc_lock(q);
3638 if (spin_trylock(root_lock)) {
3639 smp_mb__before_atomic();
3640 clear_bit(__QDISC_STATE_SCHED,
3641 &q->state);
3642 qdisc_run(q);
3643 spin_unlock(root_lock);
3644 } else {
3645 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3646 &q->state)) {
3647 __netif_reschedule(q);
3648 } else {
3649 smp_mb__before_atomic();
3650 clear_bit(__QDISC_STATE_SCHED,
3651 &q->state);
3652 }
3653 }
3654 }
3655 }
3656 }
3657
3658 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3659 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3660 /* This hook is defined here for ATM LANE */
3661 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3662 unsigned char *addr) __read_mostly;
3663 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3664 #endif
3665
3666 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3667 struct packet_type **pt_prev,
3668 int *ret, struct net_device *orig_dev)
3669 {
3670 #ifdef CONFIG_NET_CLS_ACT
3671 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3672 struct tcf_result cl_res;
3673
3674 /* If there's at least one ingress present somewhere (so
3675 * we get here via enabled static key), remaining devices
3676 * that are not configured with an ingress qdisc will bail
3677 * out here.
3678 */
3679 if (!cl)
3680 return skb;
3681 if (*pt_prev) {
3682 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3683 *pt_prev = NULL;
3684 }
3685
3686 qdisc_skb_cb(skb)->pkt_len = skb->len;
3687 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3688 qdisc_bstats_cpu_update(cl->q, skb);
3689
3690 switch (tc_classify(skb, cl, &cl_res, false)) {
3691 case TC_ACT_OK:
3692 case TC_ACT_RECLASSIFY:
3693 skb->tc_index = TC_H_MIN(cl_res.classid);
3694 break;
3695 case TC_ACT_SHOT:
3696 qdisc_qstats_cpu_drop(cl->q);
3697 case TC_ACT_STOLEN:
3698 case TC_ACT_QUEUED:
3699 kfree_skb(skb);
3700 return NULL;
3701 case TC_ACT_REDIRECT:
3702 /* skb_mac_header check was done by cls/act_bpf, so
3703 * we can safely push the L2 header back before
3704 * redirecting to another netdev
3705 */
3706 __skb_push(skb, skb->mac_len);
3707 skb_do_redirect(skb);
3708 return NULL;
3709 default:
3710 break;
3711 }
3712 #endif /* CONFIG_NET_CLS_ACT */
3713 return skb;
3714 }
3715
3716 /**
3717 * netdev_rx_handler_register - register receive handler
3718 * @dev: device to register a handler for
3719 * @rx_handler: receive handler to register
3720 * @rx_handler_data: data pointer that is used by rx handler
3721 *
3722 * Register a receive handler for a device. This handler will then be
3723 * called from __netif_receive_skb. A negative errno code is returned
3724 * on a failure.
3725 *
3726 * The caller must hold the rtnl_mutex.
3727 *
3728 * For a general description of rx_handler, see enum rx_handler_result.
3729 */
3730 int netdev_rx_handler_register(struct net_device *dev,
3731 rx_handler_func_t *rx_handler,
3732 void *rx_handler_data)
3733 {
3734 ASSERT_RTNL();
3735
3736 if (dev->rx_handler)
3737 return -EBUSY;
3738
3739 /* Note: rx_handler_data must be set before rx_handler */
3740 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3741 rcu_assign_pointer(dev->rx_handler, rx_handler);
3742
3743 return 0;
3744 }
3745 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3746
3747 /**
3748 * netdev_rx_handler_unregister - unregister receive handler
3749 * @dev: device to unregister a handler from
3750 *
3751 * Unregister a receive handler from a device.
3752 *
3753 * The caller must hold the rtnl_mutex.
3754 */
3755 void netdev_rx_handler_unregister(struct net_device *dev)
3756 {
3757
3758 ASSERT_RTNL();
3759 RCU_INIT_POINTER(dev->rx_handler, NULL);
3760 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3761 * section has a guarantee to see a non NULL rx_handler_data
3762 * as well.
3763 */
3764 synchronize_net();
3765 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3766 }
3767 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3768
3769 /*
3770 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3771 * the special handling of PFMEMALLOC skbs.
3772 */
3773 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3774 {
3775 switch (skb->protocol) {
3776 case htons(ETH_P_ARP):
3777 case htons(ETH_P_IP):
3778 case htons(ETH_P_IPV6):
3779 case htons(ETH_P_8021Q):
3780 case htons(ETH_P_8021AD):
3781 return true;
3782 default:
3783 return false;
3784 }
3785 }
3786
3787 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3788 int *ret, struct net_device *orig_dev)
3789 {
3790 #ifdef CONFIG_NETFILTER_INGRESS
3791 if (nf_hook_ingress_active(skb)) {
3792 if (*pt_prev) {
3793 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3794 *pt_prev = NULL;
3795 }
3796
3797 return nf_hook_ingress(skb);
3798 }
3799 #endif /* CONFIG_NETFILTER_INGRESS */
3800 return 0;
3801 }
3802
3803 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3804 {
3805 struct packet_type *ptype, *pt_prev;
3806 rx_handler_func_t *rx_handler;
3807 struct net_device *orig_dev;
3808 bool deliver_exact = false;
3809 int ret = NET_RX_DROP;
3810 __be16 type;
3811
3812 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3813
3814 trace_netif_receive_skb(skb);
3815
3816 orig_dev = skb->dev;
3817
3818 skb_reset_network_header(skb);
3819 if (!skb_transport_header_was_set(skb))
3820 skb_reset_transport_header(skb);
3821 skb_reset_mac_len(skb);
3822
3823 pt_prev = NULL;
3824
3825 another_round:
3826 skb->skb_iif = skb->dev->ifindex;
3827
3828 __this_cpu_inc(softnet_data.processed);
3829
3830 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3831 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3832 skb = skb_vlan_untag(skb);
3833 if (unlikely(!skb))
3834 goto out;
3835 }
3836
3837 #ifdef CONFIG_NET_CLS_ACT
3838 if (skb->tc_verd & TC_NCLS) {
3839 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3840 goto ncls;
3841 }
3842 #endif
3843
3844 if (pfmemalloc)
3845 goto skip_taps;
3846
3847 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3848 if (pt_prev)
3849 ret = deliver_skb(skb, pt_prev, orig_dev);
3850 pt_prev = ptype;
3851 }
3852
3853 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3854 if (pt_prev)
3855 ret = deliver_skb(skb, pt_prev, orig_dev);
3856 pt_prev = ptype;
3857 }
3858
3859 skip_taps:
3860 #ifdef CONFIG_NET_INGRESS
3861 if (static_key_false(&ingress_needed)) {
3862 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3863 if (!skb)
3864 goto out;
3865
3866 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3867 goto out;
3868 }
3869 #endif
3870 #ifdef CONFIG_NET_CLS_ACT
3871 skb->tc_verd = 0;
3872 ncls:
3873 #endif
3874 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3875 goto drop;
3876
3877 if (skb_vlan_tag_present(skb)) {
3878 if (pt_prev) {
3879 ret = deliver_skb(skb, pt_prev, orig_dev);
3880 pt_prev = NULL;
3881 }
3882 if (vlan_do_receive(&skb))
3883 goto another_round;
3884 else if (unlikely(!skb))
3885 goto out;
3886 }
3887
3888 rx_handler = rcu_dereference(skb->dev->rx_handler);
3889 if (rx_handler) {
3890 if (pt_prev) {
3891 ret = deliver_skb(skb, pt_prev, orig_dev);
3892 pt_prev = NULL;
3893 }
3894 switch (rx_handler(&skb)) {
3895 case RX_HANDLER_CONSUMED:
3896 ret = NET_RX_SUCCESS;
3897 goto out;
3898 case RX_HANDLER_ANOTHER:
3899 goto another_round;
3900 case RX_HANDLER_EXACT:
3901 deliver_exact = true;
3902 case RX_HANDLER_PASS:
3903 break;
3904 default:
3905 BUG();
3906 }
3907 }
3908
3909 if (unlikely(skb_vlan_tag_present(skb))) {
3910 if (skb_vlan_tag_get_id(skb))
3911 skb->pkt_type = PACKET_OTHERHOST;
3912 /* Note: we might in the future use prio bits
3913 * and set skb->priority like in vlan_do_receive()
3914 * For the time being, just ignore Priority Code Point
3915 */
3916 skb->vlan_tci = 0;
3917 }
3918
3919 type = skb->protocol;
3920
3921 /* deliver only exact match when indicated */
3922 if (likely(!deliver_exact)) {
3923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3924 &ptype_base[ntohs(type) &
3925 PTYPE_HASH_MASK]);
3926 }
3927
3928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3929 &orig_dev->ptype_specific);
3930
3931 if (unlikely(skb->dev != orig_dev)) {
3932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3933 &skb->dev->ptype_specific);
3934 }
3935
3936 if (pt_prev) {
3937 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3938 goto drop;
3939 else
3940 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3941 } else {
3942 drop:
3943 atomic_long_inc(&skb->dev->rx_dropped);
3944 kfree_skb(skb);
3945 /* Jamal, now you will not able to escape explaining
3946 * me how you were going to use this. :-)
3947 */
3948 ret = NET_RX_DROP;
3949 }
3950
3951 out:
3952 return ret;
3953 }
3954
3955 static int __netif_receive_skb(struct sk_buff *skb)
3956 {
3957 int ret;
3958
3959 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3960 unsigned long pflags = current->flags;
3961
3962 /*
3963 * PFMEMALLOC skbs are special, they should
3964 * - be delivered to SOCK_MEMALLOC sockets only
3965 * - stay away from userspace
3966 * - have bounded memory usage
3967 *
3968 * Use PF_MEMALLOC as this saves us from propagating the allocation
3969 * context down to all allocation sites.
3970 */
3971 current->flags |= PF_MEMALLOC;
3972 ret = __netif_receive_skb_core(skb, true);
3973 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3974 } else
3975 ret = __netif_receive_skb_core(skb, false);
3976
3977 return ret;
3978 }
3979
3980 static int netif_receive_skb_internal(struct sk_buff *skb)
3981 {
3982 int ret;
3983
3984 net_timestamp_check(netdev_tstamp_prequeue, skb);
3985
3986 if (skb_defer_rx_timestamp(skb))
3987 return NET_RX_SUCCESS;
3988
3989 rcu_read_lock();
3990
3991 #ifdef CONFIG_RPS
3992 if (static_key_false(&rps_needed)) {
3993 struct rps_dev_flow voidflow, *rflow = &voidflow;
3994 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3995
3996 if (cpu >= 0) {
3997 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3998 rcu_read_unlock();
3999 return ret;
4000 }
4001 }
4002 #endif
4003 ret = __netif_receive_skb(skb);
4004 rcu_read_unlock();
4005 return ret;
4006 }
4007
4008 /**
4009 * netif_receive_skb - process receive buffer from network
4010 * @skb: buffer to process
4011 *
4012 * netif_receive_skb() is the main receive data processing function.
4013 * It always succeeds. The buffer may be dropped during processing
4014 * for congestion control or by the protocol layers.
4015 *
4016 * This function may only be called from softirq context and interrupts
4017 * should be enabled.
4018 *
4019 * Return values (usually ignored):
4020 * NET_RX_SUCCESS: no congestion
4021 * NET_RX_DROP: packet was dropped
4022 */
4023 int netif_receive_skb(struct sk_buff *skb)
4024 {
4025 trace_netif_receive_skb_entry(skb);
4026
4027 return netif_receive_skb_internal(skb);
4028 }
4029 EXPORT_SYMBOL(netif_receive_skb);
4030
4031 /* Network device is going away, flush any packets still pending
4032 * Called with irqs disabled.
4033 */
4034 static void flush_backlog(void *arg)
4035 {
4036 struct net_device *dev = arg;
4037 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4038 struct sk_buff *skb, *tmp;
4039
4040 rps_lock(sd);
4041 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4042 if (skb->dev == dev) {
4043 __skb_unlink(skb, &sd->input_pkt_queue);
4044 kfree_skb(skb);
4045 input_queue_head_incr(sd);
4046 }
4047 }
4048 rps_unlock(sd);
4049
4050 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4051 if (skb->dev == dev) {
4052 __skb_unlink(skb, &sd->process_queue);
4053 kfree_skb(skb);
4054 input_queue_head_incr(sd);
4055 }
4056 }
4057 }
4058
4059 static int napi_gro_complete(struct sk_buff *skb)
4060 {
4061 struct packet_offload *ptype;
4062 __be16 type = skb->protocol;
4063 struct list_head *head = &offload_base;
4064 int err = -ENOENT;
4065
4066 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4067
4068 if (NAPI_GRO_CB(skb)->count == 1) {
4069 skb_shinfo(skb)->gso_size = 0;
4070 goto out;
4071 }
4072
4073 rcu_read_lock();
4074 list_for_each_entry_rcu(ptype, head, list) {
4075 if (ptype->type != type || !ptype->callbacks.gro_complete)
4076 continue;
4077
4078 err = ptype->callbacks.gro_complete(skb, 0);
4079 break;
4080 }
4081 rcu_read_unlock();
4082
4083 if (err) {
4084 WARN_ON(&ptype->list == head);
4085 kfree_skb(skb);
4086 return NET_RX_SUCCESS;
4087 }
4088
4089 out:
4090 return netif_receive_skb_internal(skb);
4091 }
4092
4093 /* napi->gro_list contains packets ordered by age.
4094 * youngest packets at the head of it.
4095 * Complete skbs in reverse order to reduce latencies.
4096 */
4097 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4098 {
4099 struct sk_buff *skb, *prev = NULL;
4100
4101 /* scan list and build reverse chain */
4102 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4103 skb->prev = prev;
4104 prev = skb;
4105 }
4106
4107 for (skb = prev; skb; skb = prev) {
4108 skb->next = NULL;
4109
4110 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4111 return;
4112
4113 prev = skb->prev;
4114 napi_gro_complete(skb);
4115 napi->gro_count--;
4116 }
4117
4118 napi->gro_list = NULL;
4119 }
4120 EXPORT_SYMBOL(napi_gro_flush);
4121
4122 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4123 {
4124 struct sk_buff *p;
4125 unsigned int maclen = skb->dev->hard_header_len;
4126 u32 hash = skb_get_hash_raw(skb);
4127
4128 for (p = napi->gro_list; p; p = p->next) {
4129 unsigned long diffs;
4130
4131 NAPI_GRO_CB(p)->flush = 0;
4132
4133 if (hash != skb_get_hash_raw(p)) {
4134 NAPI_GRO_CB(p)->same_flow = 0;
4135 continue;
4136 }
4137
4138 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4139 diffs |= p->vlan_tci ^ skb->vlan_tci;
4140 if (maclen == ETH_HLEN)
4141 diffs |= compare_ether_header(skb_mac_header(p),
4142 skb_mac_header(skb));
4143 else if (!diffs)
4144 diffs = memcmp(skb_mac_header(p),
4145 skb_mac_header(skb),
4146 maclen);
4147 NAPI_GRO_CB(p)->same_flow = !diffs;
4148 }
4149 }
4150
4151 static void skb_gro_reset_offset(struct sk_buff *skb)
4152 {
4153 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4154 const skb_frag_t *frag0 = &pinfo->frags[0];
4155
4156 NAPI_GRO_CB(skb)->data_offset = 0;
4157 NAPI_GRO_CB(skb)->frag0 = NULL;
4158 NAPI_GRO_CB(skb)->frag0_len = 0;
4159
4160 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4161 pinfo->nr_frags &&
4162 !PageHighMem(skb_frag_page(frag0))) {
4163 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4164 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4165 }
4166 }
4167
4168 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4169 {
4170 struct skb_shared_info *pinfo = skb_shinfo(skb);
4171
4172 BUG_ON(skb->end - skb->tail < grow);
4173
4174 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4175
4176 skb->data_len -= grow;
4177 skb->tail += grow;
4178
4179 pinfo->frags[0].page_offset += grow;
4180 skb_frag_size_sub(&pinfo->frags[0], grow);
4181
4182 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4183 skb_frag_unref(skb, 0);
4184 memmove(pinfo->frags, pinfo->frags + 1,
4185 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4186 }
4187 }
4188
4189 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4190 {
4191 struct sk_buff **pp = NULL;
4192 struct packet_offload *ptype;
4193 __be16 type = skb->protocol;
4194 struct list_head *head = &offload_base;
4195 int same_flow;
4196 enum gro_result ret;
4197 int grow;
4198
4199 if (!(skb->dev->features & NETIF_F_GRO))
4200 goto normal;
4201
4202 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4203 goto normal;
4204
4205 gro_list_prepare(napi, skb);
4206
4207 rcu_read_lock();
4208 list_for_each_entry_rcu(ptype, head, list) {
4209 if (ptype->type != type || !ptype->callbacks.gro_receive)
4210 continue;
4211
4212 skb_set_network_header(skb, skb_gro_offset(skb));
4213 skb_reset_mac_len(skb);
4214 NAPI_GRO_CB(skb)->same_flow = 0;
4215 NAPI_GRO_CB(skb)->flush = 0;
4216 NAPI_GRO_CB(skb)->free = 0;
4217 NAPI_GRO_CB(skb)->udp_mark = 0;
4218 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4219
4220 /* Setup for GRO checksum validation */
4221 switch (skb->ip_summed) {
4222 case CHECKSUM_COMPLETE:
4223 NAPI_GRO_CB(skb)->csum = skb->csum;
4224 NAPI_GRO_CB(skb)->csum_valid = 1;
4225 NAPI_GRO_CB(skb)->csum_cnt = 0;
4226 break;
4227 case CHECKSUM_UNNECESSARY:
4228 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4229 NAPI_GRO_CB(skb)->csum_valid = 0;
4230 break;
4231 default:
4232 NAPI_GRO_CB(skb)->csum_cnt = 0;
4233 NAPI_GRO_CB(skb)->csum_valid = 0;
4234 }
4235
4236 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4237 break;
4238 }
4239 rcu_read_unlock();
4240
4241 if (&ptype->list == head)
4242 goto normal;
4243
4244 same_flow = NAPI_GRO_CB(skb)->same_flow;
4245 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4246
4247 if (pp) {
4248 struct sk_buff *nskb = *pp;
4249
4250 *pp = nskb->next;
4251 nskb->next = NULL;
4252 napi_gro_complete(nskb);
4253 napi->gro_count--;
4254 }
4255
4256 if (same_flow)
4257 goto ok;
4258
4259 if (NAPI_GRO_CB(skb)->flush)
4260 goto normal;
4261
4262 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4263 struct sk_buff *nskb = napi->gro_list;
4264
4265 /* locate the end of the list to select the 'oldest' flow */
4266 while (nskb->next) {
4267 pp = &nskb->next;
4268 nskb = *pp;
4269 }
4270 *pp = NULL;
4271 nskb->next = NULL;
4272 napi_gro_complete(nskb);
4273 } else {
4274 napi->gro_count++;
4275 }
4276 NAPI_GRO_CB(skb)->count = 1;
4277 NAPI_GRO_CB(skb)->age = jiffies;
4278 NAPI_GRO_CB(skb)->last = skb;
4279 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4280 skb->next = napi->gro_list;
4281 napi->gro_list = skb;
4282 ret = GRO_HELD;
4283
4284 pull:
4285 grow = skb_gro_offset(skb) - skb_headlen(skb);
4286 if (grow > 0)
4287 gro_pull_from_frag0(skb, grow);
4288 ok:
4289 return ret;
4290
4291 normal:
4292 ret = GRO_NORMAL;
4293 goto pull;
4294 }
4295
4296 struct packet_offload *gro_find_receive_by_type(__be16 type)
4297 {
4298 struct list_head *offload_head = &offload_base;
4299 struct packet_offload *ptype;
4300
4301 list_for_each_entry_rcu(ptype, offload_head, list) {
4302 if (ptype->type != type || !ptype->callbacks.gro_receive)
4303 continue;
4304 return ptype;
4305 }
4306 return NULL;
4307 }
4308 EXPORT_SYMBOL(gro_find_receive_by_type);
4309
4310 struct packet_offload *gro_find_complete_by_type(__be16 type)
4311 {
4312 struct list_head *offload_head = &offload_base;
4313 struct packet_offload *ptype;
4314
4315 list_for_each_entry_rcu(ptype, offload_head, list) {
4316 if (ptype->type != type || !ptype->callbacks.gro_complete)
4317 continue;
4318 return ptype;
4319 }
4320 return NULL;
4321 }
4322 EXPORT_SYMBOL(gro_find_complete_by_type);
4323
4324 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4325 {
4326 switch (ret) {
4327 case GRO_NORMAL:
4328 if (netif_receive_skb_internal(skb))
4329 ret = GRO_DROP;
4330 break;
4331
4332 case GRO_DROP:
4333 kfree_skb(skb);
4334 break;
4335
4336 case GRO_MERGED_FREE:
4337 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4338 kmem_cache_free(skbuff_head_cache, skb);
4339 else
4340 __kfree_skb(skb);
4341 break;
4342
4343 case GRO_HELD:
4344 case GRO_MERGED:
4345 break;
4346 }
4347
4348 return ret;
4349 }
4350
4351 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4352 {
4353 trace_napi_gro_receive_entry(skb);
4354
4355 skb_gro_reset_offset(skb);
4356
4357 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4358 }
4359 EXPORT_SYMBOL(napi_gro_receive);
4360
4361 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4362 {
4363 if (unlikely(skb->pfmemalloc)) {
4364 consume_skb(skb);
4365 return;
4366 }
4367 __skb_pull(skb, skb_headlen(skb));
4368 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4369 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4370 skb->vlan_tci = 0;
4371 skb->dev = napi->dev;
4372 skb->skb_iif = 0;
4373 skb->encapsulation = 0;
4374 skb_shinfo(skb)->gso_type = 0;
4375 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4376
4377 napi->skb = skb;
4378 }
4379
4380 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4381 {
4382 struct sk_buff *skb = napi->skb;
4383
4384 if (!skb) {
4385 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4386 napi->skb = skb;
4387 }
4388 return skb;
4389 }
4390 EXPORT_SYMBOL(napi_get_frags);
4391
4392 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4393 struct sk_buff *skb,
4394 gro_result_t ret)
4395 {
4396 switch (ret) {
4397 case GRO_NORMAL:
4398 case GRO_HELD:
4399 __skb_push(skb, ETH_HLEN);
4400 skb->protocol = eth_type_trans(skb, skb->dev);
4401 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4402 ret = GRO_DROP;
4403 break;
4404
4405 case GRO_DROP:
4406 case GRO_MERGED_FREE:
4407 napi_reuse_skb(napi, skb);
4408 break;
4409
4410 case GRO_MERGED:
4411 break;
4412 }
4413
4414 return ret;
4415 }
4416
4417 /* Upper GRO stack assumes network header starts at gro_offset=0
4418 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4419 * We copy ethernet header into skb->data to have a common layout.
4420 */
4421 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4422 {
4423 struct sk_buff *skb = napi->skb;
4424 const struct ethhdr *eth;
4425 unsigned int hlen = sizeof(*eth);
4426
4427 napi->skb = NULL;
4428
4429 skb_reset_mac_header(skb);
4430 skb_gro_reset_offset(skb);
4431
4432 eth = skb_gro_header_fast(skb, 0);
4433 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4434 eth = skb_gro_header_slow(skb, hlen, 0);
4435 if (unlikely(!eth)) {
4436 napi_reuse_skb(napi, skb);
4437 return NULL;
4438 }
4439 } else {
4440 gro_pull_from_frag0(skb, hlen);
4441 NAPI_GRO_CB(skb)->frag0 += hlen;
4442 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4443 }
4444 __skb_pull(skb, hlen);
4445
4446 /*
4447 * This works because the only protocols we care about don't require
4448 * special handling.
4449 * We'll fix it up properly in napi_frags_finish()
4450 */
4451 skb->protocol = eth->h_proto;
4452
4453 return skb;
4454 }
4455
4456 gro_result_t napi_gro_frags(struct napi_struct *napi)
4457 {
4458 struct sk_buff *skb = napi_frags_skb(napi);
4459
4460 if (!skb)
4461 return GRO_DROP;
4462
4463 trace_napi_gro_frags_entry(skb);
4464
4465 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4466 }
4467 EXPORT_SYMBOL(napi_gro_frags);
4468
4469 /* Compute the checksum from gro_offset and return the folded value
4470 * after adding in any pseudo checksum.
4471 */
4472 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4473 {
4474 __wsum wsum;
4475 __sum16 sum;
4476
4477 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4478
4479 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4480 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4481 if (likely(!sum)) {
4482 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4483 !skb->csum_complete_sw)
4484 netdev_rx_csum_fault(skb->dev);
4485 }
4486
4487 NAPI_GRO_CB(skb)->csum = wsum;
4488 NAPI_GRO_CB(skb)->csum_valid = 1;
4489
4490 return sum;
4491 }
4492 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4493
4494 /*
4495 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4496 * Note: called with local irq disabled, but exits with local irq enabled.
4497 */
4498 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4499 {
4500 #ifdef CONFIG_RPS
4501 struct softnet_data *remsd = sd->rps_ipi_list;
4502
4503 if (remsd) {
4504 sd->rps_ipi_list = NULL;
4505
4506 local_irq_enable();
4507
4508 /* Send pending IPI's to kick RPS processing on remote cpus. */
4509 while (remsd) {
4510 struct softnet_data *next = remsd->rps_ipi_next;
4511
4512 if (cpu_online(remsd->cpu))
4513 smp_call_function_single_async(remsd->cpu,
4514 &remsd->csd);
4515 remsd = next;
4516 }
4517 } else
4518 #endif
4519 local_irq_enable();
4520 }
4521
4522 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4523 {
4524 #ifdef CONFIG_RPS
4525 return sd->rps_ipi_list != NULL;
4526 #else
4527 return false;
4528 #endif
4529 }
4530
4531 static int process_backlog(struct napi_struct *napi, int quota)
4532 {
4533 int work = 0;
4534 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4535
4536 /* Check if we have pending ipi, its better to send them now,
4537 * not waiting net_rx_action() end.
4538 */
4539 if (sd_has_rps_ipi_waiting(sd)) {
4540 local_irq_disable();
4541 net_rps_action_and_irq_enable(sd);
4542 }
4543
4544 napi->weight = weight_p;
4545 local_irq_disable();
4546 while (1) {
4547 struct sk_buff *skb;
4548
4549 while ((skb = __skb_dequeue(&sd->process_queue))) {
4550 rcu_read_lock();
4551 local_irq_enable();
4552 __netif_receive_skb(skb);
4553 rcu_read_unlock();
4554 local_irq_disable();
4555 input_queue_head_incr(sd);
4556 if (++work >= quota) {
4557 local_irq_enable();
4558 return work;
4559 }
4560 }
4561
4562 rps_lock(sd);
4563 if (skb_queue_empty(&sd->input_pkt_queue)) {
4564 /*
4565 * Inline a custom version of __napi_complete().
4566 * only current cpu owns and manipulates this napi,
4567 * and NAPI_STATE_SCHED is the only possible flag set
4568 * on backlog.
4569 * We can use a plain write instead of clear_bit(),
4570 * and we dont need an smp_mb() memory barrier.
4571 */
4572 napi->state = 0;
4573 rps_unlock(sd);
4574
4575 break;
4576 }
4577
4578 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4579 &sd->process_queue);
4580 rps_unlock(sd);
4581 }
4582 local_irq_enable();
4583
4584 return work;
4585 }
4586
4587 /**
4588 * __napi_schedule - schedule for receive
4589 * @n: entry to schedule
4590 *
4591 * The entry's receive function will be scheduled to run.
4592 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4593 */
4594 void __napi_schedule(struct napi_struct *n)
4595 {
4596 unsigned long flags;
4597
4598 local_irq_save(flags);
4599 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4600 local_irq_restore(flags);
4601 }
4602 EXPORT_SYMBOL(__napi_schedule);
4603
4604 /**
4605 * __napi_schedule_irqoff - schedule for receive
4606 * @n: entry to schedule
4607 *
4608 * Variant of __napi_schedule() assuming hard irqs are masked
4609 */
4610 void __napi_schedule_irqoff(struct napi_struct *n)
4611 {
4612 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4613 }
4614 EXPORT_SYMBOL(__napi_schedule_irqoff);
4615
4616 void __napi_complete(struct napi_struct *n)
4617 {
4618 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4619
4620 list_del_init(&n->poll_list);
4621 smp_mb__before_atomic();
4622 clear_bit(NAPI_STATE_SCHED, &n->state);
4623 }
4624 EXPORT_SYMBOL(__napi_complete);
4625
4626 void napi_complete_done(struct napi_struct *n, int work_done)
4627 {
4628 unsigned long flags;
4629
4630 /*
4631 * don't let napi dequeue from the cpu poll list
4632 * just in case its running on a different cpu
4633 */
4634 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4635 return;
4636
4637 if (n->gro_list) {
4638 unsigned long timeout = 0;
4639
4640 if (work_done)
4641 timeout = n->dev->gro_flush_timeout;
4642
4643 if (timeout)
4644 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4645 HRTIMER_MODE_REL_PINNED);
4646 else
4647 napi_gro_flush(n, false);
4648 }
4649 if (likely(list_empty(&n->poll_list))) {
4650 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4651 } else {
4652 /* If n->poll_list is not empty, we need to mask irqs */
4653 local_irq_save(flags);
4654 __napi_complete(n);
4655 local_irq_restore(flags);
4656 }
4657 }
4658 EXPORT_SYMBOL(napi_complete_done);
4659
4660 /* must be called under rcu_read_lock(), as we dont take a reference */
4661 struct napi_struct *napi_by_id(unsigned int napi_id)
4662 {
4663 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4664 struct napi_struct *napi;
4665
4666 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4667 if (napi->napi_id == napi_id)
4668 return napi;
4669
4670 return NULL;
4671 }
4672 EXPORT_SYMBOL_GPL(napi_by_id);
4673
4674 void napi_hash_add(struct napi_struct *napi)
4675 {
4676 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4677
4678 spin_lock(&napi_hash_lock);
4679
4680 /* 0 is not a valid id, we also skip an id that is taken
4681 * we expect both events to be extremely rare
4682 */
4683 napi->napi_id = 0;
4684 while (!napi->napi_id) {
4685 napi->napi_id = ++napi_gen_id;
4686 if (napi_by_id(napi->napi_id))
4687 napi->napi_id = 0;
4688 }
4689
4690 hlist_add_head_rcu(&napi->napi_hash_node,
4691 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4692
4693 spin_unlock(&napi_hash_lock);
4694 }
4695 }
4696 EXPORT_SYMBOL_GPL(napi_hash_add);
4697
4698 /* Warning : caller is responsible to make sure rcu grace period
4699 * is respected before freeing memory containing @napi
4700 */
4701 void napi_hash_del(struct napi_struct *napi)
4702 {
4703 spin_lock(&napi_hash_lock);
4704
4705 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4706 hlist_del_rcu(&napi->napi_hash_node);
4707
4708 spin_unlock(&napi_hash_lock);
4709 }
4710 EXPORT_SYMBOL_GPL(napi_hash_del);
4711
4712 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4713 {
4714 struct napi_struct *napi;
4715
4716 napi = container_of(timer, struct napi_struct, timer);
4717 if (napi->gro_list)
4718 napi_schedule(napi);
4719
4720 return HRTIMER_NORESTART;
4721 }
4722
4723 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4724 int (*poll)(struct napi_struct *, int), int weight)
4725 {
4726 INIT_LIST_HEAD(&napi->poll_list);
4727 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4728 napi->timer.function = napi_watchdog;
4729 napi->gro_count = 0;
4730 napi->gro_list = NULL;
4731 napi->skb = NULL;
4732 napi->poll = poll;
4733 if (weight > NAPI_POLL_WEIGHT)
4734 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4735 weight, dev->name);
4736 napi->weight = weight;
4737 list_add(&napi->dev_list, &dev->napi_list);
4738 napi->dev = dev;
4739 #ifdef CONFIG_NETPOLL
4740 spin_lock_init(&napi->poll_lock);
4741 napi->poll_owner = -1;
4742 #endif
4743 set_bit(NAPI_STATE_SCHED, &napi->state);
4744 }
4745 EXPORT_SYMBOL(netif_napi_add);
4746
4747 void napi_disable(struct napi_struct *n)
4748 {
4749 might_sleep();
4750 set_bit(NAPI_STATE_DISABLE, &n->state);
4751
4752 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4753 msleep(1);
4754 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4755 msleep(1);
4756
4757 hrtimer_cancel(&n->timer);
4758
4759 clear_bit(NAPI_STATE_DISABLE, &n->state);
4760 }
4761 EXPORT_SYMBOL(napi_disable);
4762
4763 void netif_napi_del(struct napi_struct *napi)
4764 {
4765 list_del_init(&napi->dev_list);
4766 napi_free_frags(napi);
4767
4768 kfree_skb_list(napi->gro_list);
4769 napi->gro_list = NULL;
4770 napi->gro_count = 0;
4771 }
4772 EXPORT_SYMBOL(netif_napi_del);
4773
4774 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4775 {
4776 void *have;
4777 int work, weight;
4778
4779 list_del_init(&n->poll_list);
4780
4781 have = netpoll_poll_lock(n);
4782
4783 weight = n->weight;
4784
4785 /* This NAPI_STATE_SCHED test is for avoiding a race
4786 * with netpoll's poll_napi(). Only the entity which
4787 * obtains the lock and sees NAPI_STATE_SCHED set will
4788 * actually make the ->poll() call. Therefore we avoid
4789 * accidentally calling ->poll() when NAPI is not scheduled.
4790 */
4791 work = 0;
4792 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4793 work = n->poll(n, weight);
4794 trace_napi_poll(n);
4795 }
4796
4797 WARN_ON_ONCE(work > weight);
4798
4799 if (likely(work < weight))
4800 goto out_unlock;
4801
4802 /* Drivers must not modify the NAPI state if they
4803 * consume the entire weight. In such cases this code
4804 * still "owns" the NAPI instance and therefore can
4805 * move the instance around on the list at-will.
4806 */
4807 if (unlikely(napi_disable_pending(n))) {
4808 napi_complete(n);
4809 goto out_unlock;
4810 }
4811
4812 if (n->gro_list) {
4813 /* flush too old packets
4814 * If HZ < 1000, flush all packets.
4815 */
4816 napi_gro_flush(n, HZ >= 1000);
4817 }
4818
4819 /* Some drivers may have called napi_schedule
4820 * prior to exhausting their budget.
4821 */
4822 if (unlikely(!list_empty(&n->poll_list))) {
4823 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4824 n->dev ? n->dev->name : "backlog");
4825 goto out_unlock;
4826 }
4827
4828 list_add_tail(&n->poll_list, repoll);
4829
4830 out_unlock:
4831 netpoll_poll_unlock(have);
4832
4833 return work;
4834 }
4835
4836 static void net_rx_action(struct softirq_action *h)
4837 {
4838 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4839 unsigned long time_limit = jiffies + 2;
4840 int budget = netdev_budget;
4841 LIST_HEAD(list);
4842 LIST_HEAD(repoll);
4843
4844 local_irq_disable();
4845 list_splice_init(&sd->poll_list, &list);
4846 local_irq_enable();
4847
4848 for (;;) {
4849 struct napi_struct *n;
4850
4851 if (list_empty(&list)) {
4852 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4853 return;
4854 break;
4855 }
4856
4857 n = list_first_entry(&list, struct napi_struct, poll_list);
4858 budget -= napi_poll(n, &repoll);
4859
4860 /* If softirq window is exhausted then punt.
4861 * Allow this to run for 2 jiffies since which will allow
4862 * an average latency of 1.5/HZ.
4863 */
4864 if (unlikely(budget <= 0 ||
4865 time_after_eq(jiffies, time_limit))) {
4866 sd->time_squeeze++;
4867 break;
4868 }
4869 }
4870
4871 local_irq_disable();
4872
4873 list_splice_tail_init(&sd->poll_list, &list);
4874 list_splice_tail(&repoll, &list);
4875 list_splice(&list, &sd->poll_list);
4876 if (!list_empty(&sd->poll_list))
4877 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4878
4879 net_rps_action_and_irq_enable(sd);
4880 }
4881
4882 struct netdev_adjacent {
4883 struct net_device *dev;
4884
4885 /* upper master flag, there can only be one master device per list */
4886 bool master;
4887
4888 /* counter for the number of times this device was added to us */
4889 u16 ref_nr;
4890
4891 /* private field for the users */
4892 void *private;
4893
4894 struct list_head list;
4895 struct rcu_head rcu;
4896 };
4897
4898 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4899 struct list_head *adj_list)
4900 {
4901 struct netdev_adjacent *adj;
4902
4903 list_for_each_entry(adj, adj_list, list) {
4904 if (adj->dev == adj_dev)
4905 return adj;
4906 }
4907 return NULL;
4908 }
4909
4910 /**
4911 * netdev_has_upper_dev - Check if device is linked to an upper device
4912 * @dev: device
4913 * @upper_dev: upper device to check
4914 *
4915 * Find out if a device is linked to specified upper device and return true
4916 * in case it is. Note that this checks only immediate upper device,
4917 * not through a complete stack of devices. The caller must hold the RTNL lock.
4918 */
4919 bool netdev_has_upper_dev(struct net_device *dev,
4920 struct net_device *upper_dev)
4921 {
4922 ASSERT_RTNL();
4923
4924 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4925 }
4926 EXPORT_SYMBOL(netdev_has_upper_dev);
4927
4928 /**
4929 * netdev_has_any_upper_dev - Check if device is linked to some device
4930 * @dev: device
4931 *
4932 * Find out if a device is linked to an upper device and return true in case
4933 * it is. The caller must hold the RTNL lock.
4934 */
4935 static bool netdev_has_any_upper_dev(struct net_device *dev)
4936 {
4937 ASSERT_RTNL();
4938
4939 return !list_empty(&dev->all_adj_list.upper);
4940 }
4941
4942 /**
4943 * netdev_master_upper_dev_get - Get master upper device
4944 * @dev: device
4945 *
4946 * Find a master upper device and return pointer to it or NULL in case
4947 * it's not there. The caller must hold the RTNL lock.
4948 */
4949 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4950 {
4951 struct netdev_adjacent *upper;
4952
4953 ASSERT_RTNL();
4954
4955 if (list_empty(&dev->adj_list.upper))
4956 return NULL;
4957
4958 upper = list_first_entry(&dev->adj_list.upper,
4959 struct netdev_adjacent, list);
4960 if (likely(upper->master))
4961 return upper->dev;
4962 return NULL;
4963 }
4964 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4965
4966 void *netdev_adjacent_get_private(struct list_head *adj_list)
4967 {
4968 struct netdev_adjacent *adj;
4969
4970 adj = list_entry(adj_list, struct netdev_adjacent, list);
4971
4972 return adj->private;
4973 }
4974 EXPORT_SYMBOL(netdev_adjacent_get_private);
4975
4976 /**
4977 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4978 * @dev: device
4979 * @iter: list_head ** of the current position
4980 *
4981 * Gets the next device from the dev's upper list, starting from iter
4982 * position. The caller must hold RCU read lock.
4983 */
4984 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4985 struct list_head **iter)
4986 {
4987 struct netdev_adjacent *upper;
4988
4989 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4990
4991 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4992
4993 if (&upper->list == &dev->adj_list.upper)
4994 return NULL;
4995
4996 *iter = &upper->list;
4997
4998 return upper->dev;
4999 }
5000 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5001
5002 /**
5003 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5004 * @dev: device
5005 * @iter: list_head ** of the current position
5006 *
5007 * Gets the next device from the dev's upper list, starting from iter
5008 * position. The caller must hold RCU read lock.
5009 */
5010 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5011 struct list_head **iter)
5012 {
5013 struct netdev_adjacent *upper;
5014
5015 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5016
5017 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5018
5019 if (&upper->list == &dev->all_adj_list.upper)
5020 return NULL;
5021
5022 *iter = &upper->list;
5023
5024 return upper->dev;
5025 }
5026 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5027
5028 /**
5029 * netdev_lower_get_next_private - Get the next ->private from the
5030 * lower neighbour list
5031 * @dev: device
5032 * @iter: list_head ** of the current position
5033 *
5034 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035 * list, starting from iter position. The caller must hold either hold the
5036 * RTNL lock or its own locking that guarantees that the neighbour lower
5037 * list will remain unchanged.
5038 */
5039 void *netdev_lower_get_next_private(struct net_device *dev,
5040 struct list_head **iter)
5041 {
5042 struct netdev_adjacent *lower;
5043
5044 lower = list_entry(*iter, struct netdev_adjacent, list);
5045
5046 if (&lower->list == &dev->adj_list.lower)
5047 return NULL;
5048
5049 *iter = lower->list.next;
5050
5051 return lower->private;
5052 }
5053 EXPORT_SYMBOL(netdev_lower_get_next_private);
5054
5055 /**
5056 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5057 * lower neighbour list, RCU
5058 * variant
5059 * @dev: device
5060 * @iter: list_head ** of the current position
5061 *
5062 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5063 * list, starting from iter position. The caller must hold RCU read lock.
5064 */
5065 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5066 struct list_head **iter)
5067 {
5068 struct netdev_adjacent *lower;
5069
5070 WARN_ON_ONCE(!rcu_read_lock_held());
5071
5072 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5073
5074 if (&lower->list == &dev->adj_list.lower)
5075 return NULL;
5076
5077 *iter = &lower->list;
5078
5079 return lower->private;
5080 }
5081 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5082
5083 /**
5084 * netdev_lower_get_next - Get the next device from the lower neighbour
5085 * list
5086 * @dev: device
5087 * @iter: list_head ** of the current position
5088 *
5089 * Gets the next netdev_adjacent from the dev's lower neighbour
5090 * list, starting from iter position. The caller must hold RTNL lock or
5091 * its own locking that guarantees that the neighbour lower
5092 * list will remain unchanged.
5093 */
5094 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5095 {
5096 struct netdev_adjacent *lower;
5097
5098 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5099
5100 if (&lower->list == &dev->adj_list.lower)
5101 return NULL;
5102
5103 *iter = &lower->list;
5104
5105 return lower->dev;
5106 }
5107 EXPORT_SYMBOL(netdev_lower_get_next);
5108
5109 /**
5110 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5111 * lower neighbour list, RCU
5112 * variant
5113 * @dev: device
5114 *
5115 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5116 * list. The caller must hold RCU read lock.
5117 */
5118 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5119 {
5120 struct netdev_adjacent *lower;
5121
5122 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5123 struct netdev_adjacent, list);
5124 if (lower)
5125 return lower->private;
5126 return NULL;
5127 }
5128 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5129
5130 /**
5131 * netdev_master_upper_dev_get_rcu - Get master upper device
5132 * @dev: device
5133 *
5134 * Find a master upper device and return pointer to it or NULL in case
5135 * it's not there. The caller must hold the RCU read lock.
5136 */
5137 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5138 {
5139 struct netdev_adjacent *upper;
5140
5141 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5142 struct netdev_adjacent, list);
5143 if (upper && likely(upper->master))
5144 return upper->dev;
5145 return NULL;
5146 }
5147 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5148
5149 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5150 struct net_device *adj_dev,
5151 struct list_head *dev_list)
5152 {
5153 char linkname[IFNAMSIZ+7];
5154 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5155 "upper_%s" : "lower_%s", adj_dev->name);
5156 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5157 linkname);
5158 }
5159 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5160 char *name,
5161 struct list_head *dev_list)
5162 {
5163 char linkname[IFNAMSIZ+7];
5164 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5165 "upper_%s" : "lower_%s", name);
5166 sysfs_remove_link(&(dev->dev.kobj), linkname);
5167 }
5168
5169 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5170 struct net_device *adj_dev,
5171 struct list_head *dev_list)
5172 {
5173 return (dev_list == &dev->adj_list.upper ||
5174 dev_list == &dev->adj_list.lower) &&
5175 net_eq(dev_net(dev), dev_net(adj_dev));
5176 }
5177
5178 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5179 struct net_device *adj_dev,
5180 struct list_head *dev_list,
5181 void *private, bool master)
5182 {
5183 struct netdev_adjacent *adj;
5184 int ret;
5185
5186 adj = __netdev_find_adj(adj_dev, dev_list);
5187
5188 if (adj) {
5189 adj->ref_nr++;
5190 return 0;
5191 }
5192
5193 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5194 if (!adj)
5195 return -ENOMEM;
5196
5197 adj->dev = adj_dev;
5198 adj->master = master;
5199 adj->ref_nr = 1;
5200 adj->private = private;
5201 dev_hold(adj_dev);
5202
5203 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5204 adj_dev->name, dev->name, adj_dev->name);
5205
5206 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5207 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5208 if (ret)
5209 goto free_adj;
5210 }
5211
5212 /* Ensure that master link is always the first item in list. */
5213 if (master) {
5214 ret = sysfs_create_link(&(dev->dev.kobj),
5215 &(adj_dev->dev.kobj), "master");
5216 if (ret)
5217 goto remove_symlinks;
5218
5219 list_add_rcu(&adj->list, dev_list);
5220 } else {
5221 list_add_tail_rcu(&adj->list, dev_list);
5222 }
5223
5224 return 0;
5225
5226 remove_symlinks:
5227 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5228 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5229 free_adj:
5230 kfree(adj);
5231 dev_put(adj_dev);
5232
5233 return ret;
5234 }
5235
5236 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5237 struct net_device *adj_dev,
5238 struct list_head *dev_list)
5239 {
5240 struct netdev_adjacent *adj;
5241
5242 adj = __netdev_find_adj(adj_dev, dev_list);
5243
5244 if (!adj) {
5245 pr_err("tried to remove device %s from %s\n",
5246 dev->name, adj_dev->name);
5247 BUG();
5248 }
5249
5250 if (adj->ref_nr > 1) {
5251 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5252 adj->ref_nr-1);
5253 adj->ref_nr--;
5254 return;
5255 }
5256
5257 if (adj->master)
5258 sysfs_remove_link(&(dev->dev.kobj), "master");
5259
5260 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5261 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5262
5263 list_del_rcu(&adj->list);
5264 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5265 adj_dev->name, dev->name, adj_dev->name);
5266 dev_put(adj_dev);
5267 kfree_rcu(adj, rcu);
5268 }
5269
5270 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5271 struct net_device *upper_dev,
5272 struct list_head *up_list,
5273 struct list_head *down_list,
5274 void *private, bool master)
5275 {
5276 int ret;
5277
5278 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5279 master);
5280 if (ret)
5281 return ret;
5282
5283 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5284 false);
5285 if (ret) {
5286 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5287 return ret;
5288 }
5289
5290 return 0;
5291 }
5292
5293 static int __netdev_adjacent_dev_link(struct net_device *dev,
5294 struct net_device *upper_dev)
5295 {
5296 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5297 &dev->all_adj_list.upper,
5298 &upper_dev->all_adj_list.lower,
5299 NULL, false);
5300 }
5301
5302 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5303 struct net_device *upper_dev,
5304 struct list_head *up_list,
5305 struct list_head *down_list)
5306 {
5307 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5308 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5309 }
5310
5311 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5312 struct net_device *upper_dev)
5313 {
5314 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5315 &dev->all_adj_list.upper,
5316 &upper_dev->all_adj_list.lower);
5317 }
5318
5319 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5320 struct net_device *upper_dev,
5321 void *private, bool master)
5322 {
5323 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5324
5325 if (ret)
5326 return ret;
5327
5328 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5329 &dev->adj_list.upper,
5330 &upper_dev->adj_list.lower,
5331 private, master);
5332 if (ret) {
5333 __netdev_adjacent_dev_unlink(dev, upper_dev);
5334 return ret;
5335 }
5336
5337 return 0;
5338 }
5339
5340 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5341 struct net_device *upper_dev)
5342 {
5343 __netdev_adjacent_dev_unlink(dev, upper_dev);
5344 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5345 &dev->adj_list.upper,
5346 &upper_dev->adj_list.lower);
5347 }
5348
5349 static int __netdev_upper_dev_link(struct net_device *dev,
5350 struct net_device *upper_dev, bool master,
5351 void *private)
5352 {
5353 struct netdev_notifier_changeupper_info changeupper_info;
5354 struct netdev_adjacent *i, *j, *to_i, *to_j;
5355 int ret = 0;
5356
5357 ASSERT_RTNL();
5358
5359 if (dev == upper_dev)
5360 return -EBUSY;
5361
5362 /* To prevent loops, check if dev is not upper device to upper_dev. */
5363 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5364 return -EBUSY;
5365
5366 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5367 return -EEXIST;
5368
5369 if (master && netdev_master_upper_dev_get(dev))
5370 return -EBUSY;
5371
5372 changeupper_info.upper_dev = upper_dev;
5373 changeupper_info.master = master;
5374 changeupper_info.linking = true;
5375
5376 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5377 &changeupper_info.info);
5378 ret = notifier_to_errno(ret);
5379 if (ret)
5380 return ret;
5381
5382 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5383 master);
5384 if (ret)
5385 return ret;
5386
5387 /* Now that we linked these devs, make all the upper_dev's
5388 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5389 * versa, and don't forget the devices itself. All of these
5390 * links are non-neighbours.
5391 */
5392 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5394 pr_debug("Interlinking %s with %s, non-neighbour\n",
5395 i->dev->name, j->dev->name);
5396 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5397 if (ret)
5398 goto rollback_mesh;
5399 }
5400 }
5401
5402 /* add dev to every upper_dev's upper device */
5403 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5404 pr_debug("linking %s's upper device %s with %s\n",
5405 upper_dev->name, i->dev->name, dev->name);
5406 ret = __netdev_adjacent_dev_link(dev, i->dev);
5407 if (ret)
5408 goto rollback_upper_mesh;
5409 }
5410
5411 /* add upper_dev to every dev's lower device */
5412 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5413 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5414 i->dev->name, upper_dev->name);
5415 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5416 if (ret)
5417 goto rollback_lower_mesh;
5418 }
5419
5420 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5421 &changeupper_info.info);
5422 return 0;
5423
5424 rollback_lower_mesh:
5425 to_i = i;
5426 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5427 if (i == to_i)
5428 break;
5429 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5430 }
5431
5432 i = NULL;
5433
5434 rollback_upper_mesh:
5435 to_i = i;
5436 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5437 if (i == to_i)
5438 break;
5439 __netdev_adjacent_dev_unlink(dev, i->dev);
5440 }
5441
5442 i = j = NULL;
5443
5444 rollback_mesh:
5445 to_i = i;
5446 to_j = j;
5447 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5448 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5449 if (i == to_i && j == to_j)
5450 break;
5451 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5452 }
5453 if (i == to_i)
5454 break;
5455 }
5456
5457 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5458
5459 return ret;
5460 }
5461
5462 /**
5463 * netdev_upper_dev_link - Add a link to the upper device
5464 * @dev: device
5465 * @upper_dev: new upper device
5466 *
5467 * Adds a link to device which is upper to this one. The caller must hold
5468 * the RTNL lock. On a failure a negative errno code is returned.
5469 * On success the reference counts are adjusted and the function
5470 * returns zero.
5471 */
5472 int netdev_upper_dev_link(struct net_device *dev,
5473 struct net_device *upper_dev)
5474 {
5475 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5476 }
5477 EXPORT_SYMBOL(netdev_upper_dev_link);
5478
5479 /**
5480 * netdev_master_upper_dev_link - Add a master link to the upper device
5481 * @dev: device
5482 * @upper_dev: new upper device
5483 *
5484 * Adds a link to device which is upper to this one. In this case, only
5485 * one master upper device can be linked, although other non-master devices
5486 * might be linked as well. The caller must hold the RTNL lock.
5487 * On a failure a negative errno code is returned. On success the reference
5488 * counts are adjusted and the function returns zero.
5489 */
5490 int netdev_master_upper_dev_link(struct net_device *dev,
5491 struct net_device *upper_dev)
5492 {
5493 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5494 }
5495 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5496
5497 int netdev_master_upper_dev_link_private(struct net_device *dev,
5498 struct net_device *upper_dev,
5499 void *private)
5500 {
5501 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5502 }
5503 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5504
5505 /**
5506 * netdev_upper_dev_unlink - Removes a link to upper device
5507 * @dev: device
5508 * @upper_dev: new upper device
5509 *
5510 * Removes a link to device which is upper to this one. The caller must hold
5511 * the RTNL lock.
5512 */
5513 void netdev_upper_dev_unlink(struct net_device *dev,
5514 struct net_device *upper_dev)
5515 {
5516 struct netdev_notifier_changeupper_info changeupper_info;
5517 struct netdev_adjacent *i, *j;
5518 ASSERT_RTNL();
5519
5520 changeupper_info.upper_dev = upper_dev;
5521 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5522 changeupper_info.linking = false;
5523
5524 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5525 &changeupper_info.info);
5526
5527 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5528
5529 /* Here is the tricky part. We must remove all dev's lower
5530 * devices from all upper_dev's upper devices and vice
5531 * versa, to maintain the graph relationship.
5532 */
5533 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5534 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5535 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5536
5537 /* remove also the devices itself from lower/upper device
5538 * list
5539 */
5540 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5541 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5542
5543 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5544 __netdev_adjacent_dev_unlink(dev, i->dev);
5545
5546 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5547 &changeupper_info.info);
5548 }
5549 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5550
5551 /**
5552 * netdev_bonding_info_change - Dispatch event about slave change
5553 * @dev: device
5554 * @bonding_info: info to dispatch
5555 *
5556 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5557 * The caller must hold the RTNL lock.
5558 */
5559 void netdev_bonding_info_change(struct net_device *dev,
5560 struct netdev_bonding_info *bonding_info)
5561 {
5562 struct netdev_notifier_bonding_info info;
5563
5564 memcpy(&info.bonding_info, bonding_info,
5565 sizeof(struct netdev_bonding_info));
5566 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5567 &info.info);
5568 }
5569 EXPORT_SYMBOL(netdev_bonding_info_change);
5570
5571 static void netdev_adjacent_add_links(struct net_device *dev)
5572 {
5573 struct netdev_adjacent *iter;
5574
5575 struct net *net = dev_net(dev);
5576
5577 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5578 if (!net_eq(net,dev_net(iter->dev)))
5579 continue;
5580 netdev_adjacent_sysfs_add(iter->dev, dev,
5581 &iter->dev->adj_list.lower);
5582 netdev_adjacent_sysfs_add(dev, iter->dev,
5583 &dev->adj_list.upper);
5584 }
5585
5586 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5587 if (!net_eq(net,dev_net(iter->dev)))
5588 continue;
5589 netdev_adjacent_sysfs_add(iter->dev, dev,
5590 &iter->dev->adj_list.upper);
5591 netdev_adjacent_sysfs_add(dev, iter->dev,
5592 &dev->adj_list.lower);
5593 }
5594 }
5595
5596 static void netdev_adjacent_del_links(struct net_device *dev)
5597 {
5598 struct netdev_adjacent *iter;
5599
5600 struct net *net = dev_net(dev);
5601
5602 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5603 if (!net_eq(net,dev_net(iter->dev)))
5604 continue;
5605 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5606 &iter->dev->adj_list.lower);
5607 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5608 &dev->adj_list.upper);
5609 }
5610
5611 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5612 if (!net_eq(net,dev_net(iter->dev)))
5613 continue;
5614 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5615 &iter->dev->adj_list.upper);
5616 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5617 &dev->adj_list.lower);
5618 }
5619 }
5620
5621 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5622 {
5623 struct netdev_adjacent *iter;
5624
5625 struct net *net = dev_net(dev);
5626
5627 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5628 if (!net_eq(net,dev_net(iter->dev)))
5629 continue;
5630 netdev_adjacent_sysfs_del(iter->dev, oldname,
5631 &iter->dev->adj_list.lower);
5632 netdev_adjacent_sysfs_add(iter->dev, dev,
5633 &iter->dev->adj_list.lower);
5634 }
5635
5636 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5637 if (!net_eq(net,dev_net(iter->dev)))
5638 continue;
5639 netdev_adjacent_sysfs_del(iter->dev, oldname,
5640 &iter->dev->adj_list.upper);
5641 netdev_adjacent_sysfs_add(iter->dev, dev,
5642 &iter->dev->adj_list.upper);
5643 }
5644 }
5645
5646 void *netdev_lower_dev_get_private(struct net_device *dev,
5647 struct net_device *lower_dev)
5648 {
5649 struct netdev_adjacent *lower;
5650
5651 if (!lower_dev)
5652 return NULL;
5653 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5654 if (!lower)
5655 return NULL;
5656
5657 return lower->private;
5658 }
5659 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5660
5661
5662 int dev_get_nest_level(struct net_device *dev,
5663 bool (*type_check)(struct net_device *dev))
5664 {
5665 struct net_device *lower = NULL;
5666 struct list_head *iter;
5667 int max_nest = -1;
5668 int nest;
5669
5670 ASSERT_RTNL();
5671
5672 netdev_for_each_lower_dev(dev, lower, iter) {
5673 nest = dev_get_nest_level(lower, type_check);
5674 if (max_nest < nest)
5675 max_nest = nest;
5676 }
5677
5678 if (type_check(dev))
5679 max_nest++;
5680
5681 return max_nest;
5682 }
5683 EXPORT_SYMBOL(dev_get_nest_level);
5684
5685 static void dev_change_rx_flags(struct net_device *dev, int flags)
5686 {
5687 const struct net_device_ops *ops = dev->netdev_ops;
5688
5689 if (ops->ndo_change_rx_flags)
5690 ops->ndo_change_rx_flags(dev, flags);
5691 }
5692
5693 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5694 {
5695 unsigned int old_flags = dev->flags;
5696 kuid_t uid;
5697 kgid_t gid;
5698
5699 ASSERT_RTNL();
5700
5701 dev->flags |= IFF_PROMISC;
5702 dev->promiscuity += inc;
5703 if (dev->promiscuity == 0) {
5704 /*
5705 * Avoid overflow.
5706 * If inc causes overflow, untouch promisc and return error.
5707 */
5708 if (inc < 0)
5709 dev->flags &= ~IFF_PROMISC;
5710 else {
5711 dev->promiscuity -= inc;
5712 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5713 dev->name);
5714 return -EOVERFLOW;
5715 }
5716 }
5717 if (dev->flags != old_flags) {
5718 pr_info("device %s %s promiscuous mode\n",
5719 dev->name,
5720 dev->flags & IFF_PROMISC ? "entered" : "left");
5721 if (audit_enabled) {
5722 current_uid_gid(&uid, &gid);
5723 audit_log(current->audit_context, GFP_ATOMIC,
5724 AUDIT_ANOM_PROMISCUOUS,
5725 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5726 dev->name, (dev->flags & IFF_PROMISC),
5727 (old_flags & IFF_PROMISC),
5728 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5729 from_kuid(&init_user_ns, uid),
5730 from_kgid(&init_user_ns, gid),
5731 audit_get_sessionid(current));
5732 }
5733
5734 dev_change_rx_flags(dev, IFF_PROMISC);
5735 }
5736 if (notify)
5737 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5738 return 0;
5739 }
5740
5741 /**
5742 * dev_set_promiscuity - update promiscuity count on a device
5743 * @dev: device
5744 * @inc: modifier
5745 *
5746 * Add or remove promiscuity from a device. While the count in the device
5747 * remains above zero the interface remains promiscuous. Once it hits zero
5748 * the device reverts back to normal filtering operation. A negative inc
5749 * value is used to drop promiscuity on the device.
5750 * Return 0 if successful or a negative errno code on error.
5751 */
5752 int dev_set_promiscuity(struct net_device *dev, int inc)
5753 {
5754 unsigned int old_flags = dev->flags;
5755 int err;
5756
5757 err = __dev_set_promiscuity(dev, inc, true);
5758 if (err < 0)
5759 return err;
5760 if (dev->flags != old_flags)
5761 dev_set_rx_mode(dev);
5762 return err;
5763 }
5764 EXPORT_SYMBOL(dev_set_promiscuity);
5765
5766 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5767 {
5768 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5769
5770 ASSERT_RTNL();
5771
5772 dev->flags |= IFF_ALLMULTI;
5773 dev->allmulti += inc;
5774 if (dev->allmulti == 0) {
5775 /*
5776 * Avoid overflow.
5777 * If inc causes overflow, untouch allmulti and return error.
5778 */
5779 if (inc < 0)
5780 dev->flags &= ~IFF_ALLMULTI;
5781 else {
5782 dev->allmulti -= inc;
5783 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5784 dev->name);
5785 return -EOVERFLOW;
5786 }
5787 }
5788 if (dev->flags ^ old_flags) {
5789 dev_change_rx_flags(dev, IFF_ALLMULTI);
5790 dev_set_rx_mode(dev);
5791 if (notify)
5792 __dev_notify_flags(dev, old_flags,
5793 dev->gflags ^ old_gflags);
5794 }
5795 return 0;
5796 }
5797
5798 /**
5799 * dev_set_allmulti - update allmulti count on a device
5800 * @dev: device
5801 * @inc: modifier
5802 *
5803 * Add or remove reception of all multicast frames to a device. While the
5804 * count in the device remains above zero the interface remains listening
5805 * to all interfaces. Once it hits zero the device reverts back to normal
5806 * filtering operation. A negative @inc value is used to drop the counter
5807 * when releasing a resource needing all multicasts.
5808 * Return 0 if successful or a negative errno code on error.
5809 */
5810
5811 int dev_set_allmulti(struct net_device *dev, int inc)
5812 {
5813 return __dev_set_allmulti(dev, inc, true);
5814 }
5815 EXPORT_SYMBOL(dev_set_allmulti);
5816
5817 /*
5818 * Upload unicast and multicast address lists to device and
5819 * configure RX filtering. When the device doesn't support unicast
5820 * filtering it is put in promiscuous mode while unicast addresses
5821 * are present.
5822 */
5823 void __dev_set_rx_mode(struct net_device *dev)
5824 {
5825 const struct net_device_ops *ops = dev->netdev_ops;
5826
5827 /* dev_open will call this function so the list will stay sane. */
5828 if (!(dev->flags&IFF_UP))
5829 return;
5830
5831 if (!netif_device_present(dev))
5832 return;
5833
5834 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5835 /* Unicast addresses changes may only happen under the rtnl,
5836 * therefore calling __dev_set_promiscuity here is safe.
5837 */
5838 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5839 __dev_set_promiscuity(dev, 1, false);
5840 dev->uc_promisc = true;
5841 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5842 __dev_set_promiscuity(dev, -1, false);
5843 dev->uc_promisc = false;
5844 }
5845 }
5846
5847 if (ops->ndo_set_rx_mode)
5848 ops->ndo_set_rx_mode(dev);
5849 }
5850
5851 void dev_set_rx_mode(struct net_device *dev)
5852 {
5853 netif_addr_lock_bh(dev);
5854 __dev_set_rx_mode(dev);
5855 netif_addr_unlock_bh(dev);
5856 }
5857
5858 /**
5859 * dev_get_flags - get flags reported to userspace
5860 * @dev: device
5861 *
5862 * Get the combination of flag bits exported through APIs to userspace.
5863 */
5864 unsigned int dev_get_flags(const struct net_device *dev)
5865 {
5866 unsigned int flags;
5867
5868 flags = (dev->flags & ~(IFF_PROMISC |
5869 IFF_ALLMULTI |
5870 IFF_RUNNING |
5871 IFF_LOWER_UP |
5872 IFF_DORMANT)) |
5873 (dev->gflags & (IFF_PROMISC |
5874 IFF_ALLMULTI));
5875
5876 if (netif_running(dev)) {
5877 if (netif_oper_up(dev))
5878 flags |= IFF_RUNNING;
5879 if (netif_carrier_ok(dev))
5880 flags |= IFF_LOWER_UP;
5881 if (netif_dormant(dev))
5882 flags |= IFF_DORMANT;
5883 }
5884
5885 return flags;
5886 }
5887 EXPORT_SYMBOL(dev_get_flags);
5888
5889 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5890 {
5891 unsigned int old_flags = dev->flags;
5892 int ret;
5893
5894 ASSERT_RTNL();
5895
5896 /*
5897 * Set the flags on our device.
5898 */
5899
5900 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5901 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5902 IFF_AUTOMEDIA)) |
5903 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5904 IFF_ALLMULTI));
5905
5906 /*
5907 * Load in the correct multicast list now the flags have changed.
5908 */
5909
5910 if ((old_flags ^ flags) & IFF_MULTICAST)
5911 dev_change_rx_flags(dev, IFF_MULTICAST);
5912
5913 dev_set_rx_mode(dev);
5914
5915 /*
5916 * Have we downed the interface. We handle IFF_UP ourselves
5917 * according to user attempts to set it, rather than blindly
5918 * setting it.
5919 */
5920
5921 ret = 0;
5922 if ((old_flags ^ flags) & IFF_UP)
5923 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5924
5925 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5926 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5927 unsigned int old_flags = dev->flags;
5928
5929 dev->gflags ^= IFF_PROMISC;
5930
5931 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5932 if (dev->flags != old_flags)
5933 dev_set_rx_mode(dev);
5934 }
5935
5936 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5937 is important. Some (broken) drivers set IFF_PROMISC, when
5938 IFF_ALLMULTI is requested not asking us and not reporting.
5939 */
5940 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5941 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5942
5943 dev->gflags ^= IFF_ALLMULTI;
5944 __dev_set_allmulti(dev, inc, false);
5945 }
5946
5947 return ret;
5948 }
5949
5950 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5951 unsigned int gchanges)
5952 {
5953 unsigned int changes = dev->flags ^ old_flags;
5954
5955 if (gchanges)
5956 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5957
5958 if (changes & IFF_UP) {
5959 if (dev->flags & IFF_UP)
5960 call_netdevice_notifiers(NETDEV_UP, dev);
5961 else
5962 call_netdevice_notifiers(NETDEV_DOWN, dev);
5963 }
5964
5965 if (dev->flags & IFF_UP &&
5966 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5967 struct netdev_notifier_change_info change_info;
5968
5969 change_info.flags_changed = changes;
5970 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5971 &change_info.info);
5972 }
5973 }
5974
5975 /**
5976 * dev_change_flags - change device settings
5977 * @dev: device
5978 * @flags: device state flags
5979 *
5980 * Change settings on device based state flags. The flags are
5981 * in the userspace exported format.
5982 */
5983 int dev_change_flags(struct net_device *dev, unsigned int flags)
5984 {
5985 int ret;
5986 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5987
5988 ret = __dev_change_flags(dev, flags);
5989 if (ret < 0)
5990 return ret;
5991
5992 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5993 __dev_notify_flags(dev, old_flags, changes);
5994 return ret;
5995 }
5996 EXPORT_SYMBOL(dev_change_flags);
5997
5998 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5999 {
6000 const struct net_device_ops *ops = dev->netdev_ops;
6001
6002 if (ops->ndo_change_mtu)
6003 return ops->ndo_change_mtu(dev, new_mtu);
6004
6005 dev->mtu = new_mtu;
6006 return 0;
6007 }
6008
6009 /**
6010 * dev_set_mtu - Change maximum transfer unit
6011 * @dev: device
6012 * @new_mtu: new transfer unit
6013 *
6014 * Change the maximum transfer size of the network device.
6015 */
6016 int dev_set_mtu(struct net_device *dev, int new_mtu)
6017 {
6018 int err, orig_mtu;
6019
6020 if (new_mtu == dev->mtu)
6021 return 0;
6022
6023 /* MTU must be positive. */
6024 if (new_mtu < 0)
6025 return -EINVAL;
6026
6027 if (!netif_device_present(dev))
6028 return -ENODEV;
6029
6030 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6031 err = notifier_to_errno(err);
6032 if (err)
6033 return err;
6034
6035 orig_mtu = dev->mtu;
6036 err = __dev_set_mtu(dev, new_mtu);
6037
6038 if (!err) {
6039 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6040 err = notifier_to_errno(err);
6041 if (err) {
6042 /* setting mtu back and notifying everyone again,
6043 * so that they have a chance to revert changes.
6044 */
6045 __dev_set_mtu(dev, orig_mtu);
6046 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6047 }
6048 }
6049 return err;
6050 }
6051 EXPORT_SYMBOL(dev_set_mtu);
6052
6053 /**
6054 * dev_set_group - Change group this device belongs to
6055 * @dev: device
6056 * @new_group: group this device should belong to
6057 */
6058 void dev_set_group(struct net_device *dev, int new_group)
6059 {
6060 dev->group = new_group;
6061 }
6062 EXPORT_SYMBOL(dev_set_group);
6063
6064 /**
6065 * dev_set_mac_address - Change Media Access Control Address
6066 * @dev: device
6067 * @sa: new address
6068 *
6069 * Change the hardware (MAC) address of the device
6070 */
6071 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6072 {
6073 const struct net_device_ops *ops = dev->netdev_ops;
6074 int err;
6075
6076 if (!ops->ndo_set_mac_address)
6077 return -EOPNOTSUPP;
6078 if (sa->sa_family != dev->type)
6079 return -EINVAL;
6080 if (!netif_device_present(dev))
6081 return -ENODEV;
6082 err = ops->ndo_set_mac_address(dev, sa);
6083 if (err)
6084 return err;
6085 dev->addr_assign_type = NET_ADDR_SET;
6086 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6087 add_device_randomness(dev->dev_addr, dev->addr_len);
6088 return 0;
6089 }
6090 EXPORT_SYMBOL(dev_set_mac_address);
6091
6092 /**
6093 * dev_change_carrier - Change device carrier
6094 * @dev: device
6095 * @new_carrier: new value
6096 *
6097 * Change device carrier
6098 */
6099 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6100 {
6101 const struct net_device_ops *ops = dev->netdev_ops;
6102
6103 if (!ops->ndo_change_carrier)
6104 return -EOPNOTSUPP;
6105 if (!netif_device_present(dev))
6106 return -ENODEV;
6107 return ops->ndo_change_carrier(dev, new_carrier);
6108 }
6109 EXPORT_SYMBOL(dev_change_carrier);
6110
6111 /**
6112 * dev_get_phys_port_id - Get device physical port ID
6113 * @dev: device
6114 * @ppid: port ID
6115 *
6116 * Get device physical port ID
6117 */
6118 int dev_get_phys_port_id(struct net_device *dev,
6119 struct netdev_phys_item_id *ppid)
6120 {
6121 const struct net_device_ops *ops = dev->netdev_ops;
6122
6123 if (!ops->ndo_get_phys_port_id)
6124 return -EOPNOTSUPP;
6125 return ops->ndo_get_phys_port_id(dev, ppid);
6126 }
6127 EXPORT_SYMBOL(dev_get_phys_port_id);
6128
6129 /**
6130 * dev_get_phys_port_name - Get device physical port name
6131 * @dev: device
6132 * @name: port name
6133 *
6134 * Get device physical port name
6135 */
6136 int dev_get_phys_port_name(struct net_device *dev,
6137 char *name, size_t len)
6138 {
6139 const struct net_device_ops *ops = dev->netdev_ops;
6140
6141 if (!ops->ndo_get_phys_port_name)
6142 return -EOPNOTSUPP;
6143 return ops->ndo_get_phys_port_name(dev, name, len);
6144 }
6145 EXPORT_SYMBOL(dev_get_phys_port_name);
6146
6147 /**
6148 * dev_change_proto_down - update protocol port state information
6149 * @dev: device
6150 * @proto_down: new value
6151 *
6152 * This info can be used by switch drivers to set the phys state of the
6153 * port.
6154 */
6155 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6156 {
6157 const struct net_device_ops *ops = dev->netdev_ops;
6158
6159 if (!ops->ndo_change_proto_down)
6160 return -EOPNOTSUPP;
6161 if (!netif_device_present(dev))
6162 return -ENODEV;
6163 return ops->ndo_change_proto_down(dev, proto_down);
6164 }
6165 EXPORT_SYMBOL(dev_change_proto_down);
6166
6167 /**
6168 * dev_new_index - allocate an ifindex
6169 * @net: the applicable net namespace
6170 *
6171 * Returns a suitable unique value for a new device interface
6172 * number. The caller must hold the rtnl semaphore or the
6173 * dev_base_lock to be sure it remains unique.
6174 */
6175 static int dev_new_index(struct net *net)
6176 {
6177 int ifindex = net->ifindex;
6178 for (;;) {
6179 if (++ifindex <= 0)
6180 ifindex = 1;
6181 if (!__dev_get_by_index(net, ifindex))
6182 return net->ifindex = ifindex;
6183 }
6184 }
6185
6186 /* Delayed registration/unregisteration */
6187 static LIST_HEAD(net_todo_list);
6188 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6189
6190 static void net_set_todo(struct net_device *dev)
6191 {
6192 list_add_tail(&dev->todo_list, &net_todo_list);
6193 dev_net(dev)->dev_unreg_count++;
6194 }
6195
6196 static void rollback_registered_many(struct list_head *head)
6197 {
6198 struct net_device *dev, *tmp;
6199 LIST_HEAD(close_head);
6200
6201 BUG_ON(dev_boot_phase);
6202 ASSERT_RTNL();
6203
6204 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6205 /* Some devices call without registering
6206 * for initialization unwind. Remove those
6207 * devices and proceed with the remaining.
6208 */
6209 if (dev->reg_state == NETREG_UNINITIALIZED) {
6210 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6211 dev->name, dev);
6212
6213 WARN_ON(1);
6214 list_del(&dev->unreg_list);
6215 continue;
6216 }
6217 dev->dismantle = true;
6218 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6219 }
6220
6221 /* If device is running, close it first. */
6222 list_for_each_entry(dev, head, unreg_list)
6223 list_add_tail(&dev->close_list, &close_head);
6224 dev_close_many(&close_head, true);
6225
6226 list_for_each_entry(dev, head, unreg_list) {
6227 /* And unlink it from device chain. */
6228 unlist_netdevice(dev);
6229
6230 dev->reg_state = NETREG_UNREGISTERING;
6231 on_each_cpu(flush_backlog, dev, 1);
6232 }
6233
6234 synchronize_net();
6235
6236 list_for_each_entry(dev, head, unreg_list) {
6237 struct sk_buff *skb = NULL;
6238
6239 /* Shutdown queueing discipline. */
6240 dev_shutdown(dev);
6241
6242
6243 /* Notify protocols, that we are about to destroy
6244 this device. They should clean all the things.
6245 */
6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6247
6248 if (!dev->rtnl_link_ops ||
6249 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6250 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6251 GFP_KERNEL);
6252
6253 /*
6254 * Flush the unicast and multicast chains
6255 */
6256 dev_uc_flush(dev);
6257 dev_mc_flush(dev);
6258
6259 if (dev->netdev_ops->ndo_uninit)
6260 dev->netdev_ops->ndo_uninit(dev);
6261
6262 if (skb)
6263 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6264
6265 /* Notifier chain MUST detach us all upper devices. */
6266 WARN_ON(netdev_has_any_upper_dev(dev));
6267
6268 /* Remove entries from kobject tree */
6269 netdev_unregister_kobject(dev);
6270 #ifdef CONFIG_XPS
6271 /* Remove XPS queueing entries */
6272 netif_reset_xps_queues_gt(dev, 0);
6273 #endif
6274 }
6275
6276 synchronize_net();
6277
6278 list_for_each_entry(dev, head, unreg_list)
6279 dev_put(dev);
6280 }
6281
6282 static void rollback_registered(struct net_device *dev)
6283 {
6284 LIST_HEAD(single);
6285
6286 list_add(&dev->unreg_list, &single);
6287 rollback_registered_many(&single);
6288 list_del(&single);
6289 }
6290
6291 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6292 struct net_device *upper, netdev_features_t features)
6293 {
6294 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6295 netdev_features_t feature;
6296 int feature_bit;
6297
6298 for_each_netdev_feature(&upper_disables, feature_bit) {
6299 feature = __NETIF_F_BIT(feature_bit);
6300 if (!(upper->wanted_features & feature)
6301 && (features & feature)) {
6302 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6303 &feature, upper->name);
6304 features &= ~feature;
6305 }
6306 }
6307
6308 return features;
6309 }
6310
6311 static void netdev_sync_lower_features(struct net_device *upper,
6312 struct net_device *lower, netdev_features_t features)
6313 {
6314 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6315 netdev_features_t feature;
6316 int feature_bit;
6317
6318 for_each_netdev_feature(&upper_disables, feature_bit) {
6319 feature = __NETIF_F_BIT(feature_bit);
6320 if (!(features & feature) && (lower->features & feature)) {
6321 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6322 &feature, lower->name);
6323 lower->wanted_features &= ~feature;
6324 netdev_update_features(lower);
6325
6326 if (unlikely(lower->features & feature))
6327 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6328 &feature, lower->name);
6329 }
6330 }
6331 }
6332
6333 static netdev_features_t netdev_fix_features(struct net_device *dev,
6334 netdev_features_t features)
6335 {
6336 /* Fix illegal checksum combinations */
6337 if ((features & NETIF_F_HW_CSUM) &&
6338 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6339 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6340 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6341 }
6342
6343 /* TSO requires that SG is present as well. */
6344 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6345 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6346 features &= ~NETIF_F_ALL_TSO;
6347 }
6348
6349 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6350 !(features & NETIF_F_IP_CSUM)) {
6351 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6352 features &= ~NETIF_F_TSO;
6353 features &= ~NETIF_F_TSO_ECN;
6354 }
6355
6356 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6357 !(features & NETIF_F_IPV6_CSUM)) {
6358 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6359 features &= ~NETIF_F_TSO6;
6360 }
6361
6362 /* TSO ECN requires that TSO is present as well. */
6363 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6364 features &= ~NETIF_F_TSO_ECN;
6365
6366 /* Software GSO depends on SG. */
6367 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6368 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6369 features &= ~NETIF_F_GSO;
6370 }
6371
6372 /* UFO needs SG and checksumming */
6373 if (features & NETIF_F_UFO) {
6374 /* maybe split UFO into V4 and V6? */
6375 if (!((features & NETIF_F_GEN_CSUM) ||
6376 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6377 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6378 netdev_dbg(dev,
6379 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6380 features &= ~NETIF_F_UFO;
6381 }
6382
6383 if (!(features & NETIF_F_SG)) {
6384 netdev_dbg(dev,
6385 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6386 features &= ~NETIF_F_UFO;
6387 }
6388 }
6389
6390 #ifdef CONFIG_NET_RX_BUSY_POLL
6391 if (dev->netdev_ops->ndo_busy_poll)
6392 features |= NETIF_F_BUSY_POLL;
6393 else
6394 #endif
6395 features &= ~NETIF_F_BUSY_POLL;
6396
6397 return features;
6398 }
6399
6400 int __netdev_update_features(struct net_device *dev)
6401 {
6402 struct net_device *upper, *lower;
6403 netdev_features_t features;
6404 struct list_head *iter;
6405 int err = 0;
6406
6407 ASSERT_RTNL();
6408
6409 features = netdev_get_wanted_features(dev);
6410
6411 if (dev->netdev_ops->ndo_fix_features)
6412 features = dev->netdev_ops->ndo_fix_features(dev, features);
6413
6414 /* driver might be less strict about feature dependencies */
6415 features = netdev_fix_features(dev, features);
6416
6417 /* some features can't be enabled if they're off an an upper device */
6418 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6419 features = netdev_sync_upper_features(dev, upper, features);
6420
6421 if (dev->features == features)
6422 return 0;
6423
6424 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6425 &dev->features, &features);
6426
6427 if (dev->netdev_ops->ndo_set_features)
6428 err = dev->netdev_ops->ndo_set_features(dev, features);
6429
6430 if (unlikely(err < 0)) {
6431 netdev_err(dev,
6432 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6433 err, &features, &dev->features);
6434 return -1;
6435 }
6436
6437 /* some features must be disabled on lower devices when disabled
6438 * on an upper device (think: bonding master or bridge)
6439 */
6440 netdev_for_each_lower_dev(dev, lower, iter)
6441 netdev_sync_lower_features(dev, lower, features);
6442
6443 if (!err)
6444 dev->features = features;
6445
6446 return 1;
6447 }
6448
6449 /**
6450 * netdev_update_features - recalculate device features
6451 * @dev: the device to check
6452 *
6453 * Recalculate dev->features set and send notifications if it
6454 * has changed. Should be called after driver or hardware dependent
6455 * conditions might have changed that influence the features.
6456 */
6457 void netdev_update_features(struct net_device *dev)
6458 {
6459 if (__netdev_update_features(dev))
6460 netdev_features_change(dev);
6461 }
6462 EXPORT_SYMBOL(netdev_update_features);
6463
6464 /**
6465 * netdev_change_features - recalculate device features
6466 * @dev: the device to check
6467 *
6468 * Recalculate dev->features set and send notifications even
6469 * if they have not changed. Should be called instead of
6470 * netdev_update_features() if also dev->vlan_features might
6471 * have changed to allow the changes to be propagated to stacked
6472 * VLAN devices.
6473 */
6474 void netdev_change_features(struct net_device *dev)
6475 {
6476 __netdev_update_features(dev);
6477 netdev_features_change(dev);
6478 }
6479 EXPORT_SYMBOL(netdev_change_features);
6480
6481 /**
6482 * netif_stacked_transfer_operstate - transfer operstate
6483 * @rootdev: the root or lower level device to transfer state from
6484 * @dev: the device to transfer operstate to
6485 *
6486 * Transfer operational state from root to device. This is normally
6487 * called when a stacking relationship exists between the root
6488 * device and the device(a leaf device).
6489 */
6490 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6491 struct net_device *dev)
6492 {
6493 if (rootdev->operstate == IF_OPER_DORMANT)
6494 netif_dormant_on(dev);
6495 else
6496 netif_dormant_off(dev);
6497
6498 if (netif_carrier_ok(rootdev)) {
6499 if (!netif_carrier_ok(dev))
6500 netif_carrier_on(dev);
6501 } else {
6502 if (netif_carrier_ok(dev))
6503 netif_carrier_off(dev);
6504 }
6505 }
6506 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6507
6508 #ifdef CONFIG_SYSFS
6509 static int netif_alloc_rx_queues(struct net_device *dev)
6510 {
6511 unsigned int i, count = dev->num_rx_queues;
6512 struct netdev_rx_queue *rx;
6513 size_t sz = count * sizeof(*rx);
6514
6515 BUG_ON(count < 1);
6516
6517 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6518 if (!rx) {
6519 rx = vzalloc(sz);
6520 if (!rx)
6521 return -ENOMEM;
6522 }
6523 dev->_rx = rx;
6524
6525 for (i = 0; i < count; i++)
6526 rx[i].dev = dev;
6527 return 0;
6528 }
6529 #endif
6530
6531 static void netdev_init_one_queue(struct net_device *dev,
6532 struct netdev_queue *queue, void *_unused)
6533 {
6534 /* Initialize queue lock */
6535 spin_lock_init(&queue->_xmit_lock);
6536 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6537 queue->xmit_lock_owner = -1;
6538 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6539 queue->dev = dev;
6540 #ifdef CONFIG_BQL
6541 dql_init(&queue->dql, HZ);
6542 #endif
6543 }
6544
6545 static void netif_free_tx_queues(struct net_device *dev)
6546 {
6547 kvfree(dev->_tx);
6548 }
6549
6550 static int netif_alloc_netdev_queues(struct net_device *dev)
6551 {
6552 unsigned int count = dev->num_tx_queues;
6553 struct netdev_queue *tx;
6554 size_t sz = count * sizeof(*tx);
6555
6556 if (count < 1 || count > 0xffff)
6557 return -EINVAL;
6558
6559 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6560 if (!tx) {
6561 tx = vzalloc(sz);
6562 if (!tx)
6563 return -ENOMEM;
6564 }
6565 dev->_tx = tx;
6566
6567 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6568 spin_lock_init(&dev->tx_global_lock);
6569
6570 return 0;
6571 }
6572
6573 void netif_tx_stop_all_queues(struct net_device *dev)
6574 {
6575 unsigned int i;
6576
6577 for (i = 0; i < dev->num_tx_queues; i++) {
6578 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6579 netif_tx_stop_queue(txq);
6580 }
6581 }
6582 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6583
6584 /**
6585 * register_netdevice - register a network device
6586 * @dev: device to register
6587 *
6588 * Take a completed network device structure and add it to the kernel
6589 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6590 * chain. 0 is returned on success. A negative errno code is returned
6591 * on a failure to set up the device, or if the name is a duplicate.
6592 *
6593 * Callers must hold the rtnl semaphore. You may want
6594 * register_netdev() instead of this.
6595 *
6596 * BUGS:
6597 * The locking appears insufficient to guarantee two parallel registers
6598 * will not get the same name.
6599 */
6600
6601 int register_netdevice(struct net_device *dev)
6602 {
6603 int ret;
6604 struct net *net = dev_net(dev);
6605
6606 BUG_ON(dev_boot_phase);
6607 ASSERT_RTNL();
6608
6609 might_sleep();
6610
6611 /* When net_device's are persistent, this will be fatal. */
6612 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6613 BUG_ON(!net);
6614
6615 spin_lock_init(&dev->addr_list_lock);
6616 netdev_set_addr_lockdep_class(dev);
6617
6618 ret = dev_get_valid_name(net, dev, dev->name);
6619 if (ret < 0)
6620 goto out;
6621
6622 /* Init, if this function is available */
6623 if (dev->netdev_ops->ndo_init) {
6624 ret = dev->netdev_ops->ndo_init(dev);
6625 if (ret) {
6626 if (ret > 0)
6627 ret = -EIO;
6628 goto out;
6629 }
6630 }
6631
6632 if (((dev->hw_features | dev->features) &
6633 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6634 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6635 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6636 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6637 ret = -EINVAL;
6638 goto err_uninit;
6639 }
6640
6641 ret = -EBUSY;
6642 if (!dev->ifindex)
6643 dev->ifindex = dev_new_index(net);
6644 else if (__dev_get_by_index(net, dev->ifindex))
6645 goto err_uninit;
6646
6647 /* Transfer changeable features to wanted_features and enable
6648 * software offloads (GSO and GRO).
6649 */
6650 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6651 dev->features |= NETIF_F_SOFT_FEATURES;
6652 dev->wanted_features = dev->features & dev->hw_features;
6653
6654 if (!(dev->flags & IFF_LOOPBACK)) {
6655 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6656 }
6657
6658 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6659 */
6660 dev->vlan_features |= NETIF_F_HIGHDMA;
6661
6662 /* Make NETIF_F_SG inheritable to tunnel devices.
6663 */
6664 dev->hw_enc_features |= NETIF_F_SG;
6665
6666 /* Make NETIF_F_SG inheritable to MPLS.
6667 */
6668 dev->mpls_features |= NETIF_F_SG;
6669
6670 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6671 ret = notifier_to_errno(ret);
6672 if (ret)
6673 goto err_uninit;
6674
6675 ret = netdev_register_kobject(dev);
6676 if (ret)
6677 goto err_uninit;
6678 dev->reg_state = NETREG_REGISTERED;
6679
6680 __netdev_update_features(dev);
6681
6682 /*
6683 * Default initial state at registry is that the
6684 * device is present.
6685 */
6686
6687 set_bit(__LINK_STATE_PRESENT, &dev->state);
6688
6689 linkwatch_init_dev(dev);
6690
6691 dev_init_scheduler(dev);
6692 dev_hold(dev);
6693 list_netdevice(dev);
6694 add_device_randomness(dev->dev_addr, dev->addr_len);
6695
6696 /* If the device has permanent device address, driver should
6697 * set dev_addr and also addr_assign_type should be set to
6698 * NET_ADDR_PERM (default value).
6699 */
6700 if (dev->addr_assign_type == NET_ADDR_PERM)
6701 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6702
6703 /* Notify protocols, that a new device appeared. */
6704 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6705 ret = notifier_to_errno(ret);
6706 if (ret) {
6707 rollback_registered(dev);
6708 dev->reg_state = NETREG_UNREGISTERED;
6709 }
6710 /*
6711 * Prevent userspace races by waiting until the network
6712 * device is fully setup before sending notifications.
6713 */
6714 if (!dev->rtnl_link_ops ||
6715 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6716 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6717
6718 out:
6719 return ret;
6720
6721 err_uninit:
6722 if (dev->netdev_ops->ndo_uninit)
6723 dev->netdev_ops->ndo_uninit(dev);
6724 goto out;
6725 }
6726 EXPORT_SYMBOL(register_netdevice);
6727
6728 /**
6729 * init_dummy_netdev - init a dummy network device for NAPI
6730 * @dev: device to init
6731 *
6732 * This takes a network device structure and initialize the minimum
6733 * amount of fields so it can be used to schedule NAPI polls without
6734 * registering a full blown interface. This is to be used by drivers
6735 * that need to tie several hardware interfaces to a single NAPI
6736 * poll scheduler due to HW limitations.
6737 */
6738 int init_dummy_netdev(struct net_device *dev)
6739 {
6740 /* Clear everything. Note we don't initialize spinlocks
6741 * are they aren't supposed to be taken by any of the
6742 * NAPI code and this dummy netdev is supposed to be
6743 * only ever used for NAPI polls
6744 */
6745 memset(dev, 0, sizeof(struct net_device));
6746
6747 /* make sure we BUG if trying to hit standard
6748 * register/unregister code path
6749 */
6750 dev->reg_state = NETREG_DUMMY;
6751
6752 /* NAPI wants this */
6753 INIT_LIST_HEAD(&dev->napi_list);
6754
6755 /* a dummy interface is started by default */
6756 set_bit(__LINK_STATE_PRESENT, &dev->state);
6757 set_bit(__LINK_STATE_START, &dev->state);
6758
6759 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6760 * because users of this 'device' dont need to change
6761 * its refcount.
6762 */
6763
6764 return 0;
6765 }
6766 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6767
6768
6769 /**
6770 * register_netdev - register a network device
6771 * @dev: device to register
6772 *
6773 * Take a completed network device structure and add it to the kernel
6774 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6775 * chain. 0 is returned on success. A negative errno code is returned
6776 * on a failure to set up the device, or if the name is a duplicate.
6777 *
6778 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6779 * and expands the device name if you passed a format string to
6780 * alloc_netdev.
6781 */
6782 int register_netdev(struct net_device *dev)
6783 {
6784 int err;
6785
6786 rtnl_lock();
6787 err = register_netdevice(dev);
6788 rtnl_unlock();
6789 return err;
6790 }
6791 EXPORT_SYMBOL(register_netdev);
6792
6793 int netdev_refcnt_read(const struct net_device *dev)
6794 {
6795 int i, refcnt = 0;
6796
6797 for_each_possible_cpu(i)
6798 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6799 return refcnt;
6800 }
6801 EXPORT_SYMBOL(netdev_refcnt_read);
6802
6803 /**
6804 * netdev_wait_allrefs - wait until all references are gone.
6805 * @dev: target net_device
6806 *
6807 * This is called when unregistering network devices.
6808 *
6809 * Any protocol or device that holds a reference should register
6810 * for netdevice notification, and cleanup and put back the
6811 * reference if they receive an UNREGISTER event.
6812 * We can get stuck here if buggy protocols don't correctly
6813 * call dev_put.
6814 */
6815 static void netdev_wait_allrefs(struct net_device *dev)
6816 {
6817 unsigned long rebroadcast_time, warning_time;
6818 int refcnt;
6819
6820 linkwatch_forget_dev(dev);
6821
6822 rebroadcast_time = warning_time = jiffies;
6823 refcnt = netdev_refcnt_read(dev);
6824
6825 while (refcnt != 0) {
6826 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6827 rtnl_lock();
6828
6829 /* Rebroadcast unregister notification */
6830 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6831
6832 __rtnl_unlock();
6833 rcu_barrier();
6834 rtnl_lock();
6835
6836 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6837 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6838 &dev->state)) {
6839 /* We must not have linkwatch events
6840 * pending on unregister. If this
6841 * happens, we simply run the queue
6842 * unscheduled, resulting in a noop
6843 * for this device.
6844 */
6845 linkwatch_run_queue();
6846 }
6847
6848 __rtnl_unlock();
6849
6850 rebroadcast_time = jiffies;
6851 }
6852
6853 msleep(250);
6854
6855 refcnt = netdev_refcnt_read(dev);
6856
6857 if (time_after(jiffies, warning_time + 10 * HZ)) {
6858 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6859 dev->name, refcnt);
6860 warning_time = jiffies;
6861 }
6862 }
6863 }
6864
6865 /* The sequence is:
6866 *
6867 * rtnl_lock();
6868 * ...
6869 * register_netdevice(x1);
6870 * register_netdevice(x2);
6871 * ...
6872 * unregister_netdevice(y1);
6873 * unregister_netdevice(y2);
6874 * ...
6875 * rtnl_unlock();
6876 * free_netdev(y1);
6877 * free_netdev(y2);
6878 *
6879 * We are invoked by rtnl_unlock().
6880 * This allows us to deal with problems:
6881 * 1) We can delete sysfs objects which invoke hotplug
6882 * without deadlocking with linkwatch via keventd.
6883 * 2) Since we run with the RTNL semaphore not held, we can sleep
6884 * safely in order to wait for the netdev refcnt to drop to zero.
6885 *
6886 * We must not return until all unregister events added during
6887 * the interval the lock was held have been completed.
6888 */
6889 void netdev_run_todo(void)
6890 {
6891 struct list_head list;
6892
6893 /* Snapshot list, allow later requests */
6894 list_replace_init(&net_todo_list, &list);
6895
6896 __rtnl_unlock();
6897
6898
6899 /* Wait for rcu callbacks to finish before next phase */
6900 if (!list_empty(&list))
6901 rcu_barrier();
6902
6903 while (!list_empty(&list)) {
6904 struct net_device *dev
6905 = list_first_entry(&list, struct net_device, todo_list);
6906 list_del(&dev->todo_list);
6907
6908 rtnl_lock();
6909 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6910 __rtnl_unlock();
6911
6912 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6913 pr_err("network todo '%s' but state %d\n",
6914 dev->name, dev->reg_state);
6915 dump_stack();
6916 continue;
6917 }
6918
6919 dev->reg_state = NETREG_UNREGISTERED;
6920
6921 netdev_wait_allrefs(dev);
6922
6923 /* paranoia */
6924 BUG_ON(netdev_refcnt_read(dev));
6925 BUG_ON(!list_empty(&dev->ptype_all));
6926 BUG_ON(!list_empty(&dev->ptype_specific));
6927 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6928 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6929 WARN_ON(dev->dn_ptr);
6930
6931 if (dev->destructor)
6932 dev->destructor(dev);
6933
6934 /* Report a network device has been unregistered */
6935 rtnl_lock();
6936 dev_net(dev)->dev_unreg_count--;
6937 __rtnl_unlock();
6938 wake_up(&netdev_unregistering_wq);
6939
6940 /* Free network device */
6941 kobject_put(&dev->dev.kobj);
6942 }
6943 }
6944
6945 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6946 * fields in the same order, with only the type differing.
6947 */
6948 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6949 const struct net_device_stats *netdev_stats)
6950 {
6951 #if BITS_PER_LONG == 64
6952 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6953 memcpy(stats64, netdev_stats, sizeof(*stats64));
6954 #else
6955 size_t i, n = sizeof(*stats64) / sizeof(u64);
6956 const unsigned long *src = (const unsigned long *)netdev_stats;
6957 u64 *dst = (u64 *)stats64;
6958
6959 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6960 sizeof(*stats64) / sizeof(u64));
6961 for (i = 0; i < n; i++)
6962 dst[i] = src[i];
6963 #endif
6964 }
6965 EXPORT_SYMBOL(netdev_stats_to_stats64);
6966
6967 /**
6968 * dev_get_stats - get network device statistics
6969 * @dev: device to get statistics from
6970 * @storage: place to store stats
6971 *
6972 * Get network statistics from device. Return @storage.
6973 * The device driver may provide its own method by setting
6974 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6975 * otherwise the internal statistics structure is used.
6976 */
6977 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6978 struct rtnl_link_stats64 *storage)
6979 {
6980 const struct net_device_ops *ops = dev->netdev_ops;
6981
6982 if (ops->ndo_get_stats64) {
6983 memset(storage, 0, sizeof(*storage));
6984 ops->ndo_get_stats64(dev, storage);
6985 } else if (ops->ndo_get_stats) {
6986 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6987 } else {
6988 netdev_stats_to_stats64(storage, &dev->stats);
6989 }
6990 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6991 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6992 return storage;
6993 }
6994 EXPORT_SYMBOL(dev_get_stats);
6995
6996 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6997 {
6998 struct netdev_queue *queue = dev_ingress_queue(dev);
6999
7000 #ifdef CONFIG_NET_CLS_ACT
7001 if (queue)
7002 return queue;
7003 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7004 if (!queue)
7005 return NULL;
7006 netdev_init_one_queue(dev, queue, NULL);
7007 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7008 queue->qdisc_sleeping = &noop_qdisc;
7009 rcu_assign_pointer(dev->ingress_queue, queue);
7010 #endif
7011 return queue;
7012 }
7013
7014 static const struct ethtool_ops default_ethtool_ops;
7015
7016 void netdev_set_default_ethtool_ops(struct net_device *dev,
7017 const struct ethtool_ops *ops)
7018 {
7019 if (dev->ethtool_ops == &default_ethtool_ops)
7020 dev->ethtool_ops = ops;
7021 }
7022 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7023
7024 void netdev_freemem(struct net_device *dev)
7025 {
7026 char *addr = (char *)dev - dev->padded;
7027
7028 kvfree(addr);
7029 }
7030
7031 /**
7032 * alloc_netdev_mqs - allocate network device
7033 * @sizeof_priv: size of private data to allocate space for
7034 * @name: device name format string
7035 * @name_assign_type: origin of device name
7036 * @setup: callback to initialize device
7037 * @txqs: the number of TX subqueues to allocate
7038 * @rxqs: the number of RX subqueues to allocate
7039 *
7040 * Allocates a struct net_device with private data area for driver use
7041 * and performs basic initialization. Also allocates subqueue structs
7042 * for each queue on the device.
7043 */
7044 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7045 unsigned char name_assign_type,
7046 void (*setup)(struct net_device *),
7047 unsigned int txqs, unsigned int rxqs)
7048 {
7049 struct net_device *dev;
7050 size_t alloc_size;
7051 struct net_device *p;
7052
7053 BUG_ON(strlen(name) >= sizeof(dev->name));
7054
7055 if (txqs < 1) {
7056 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7057 return NULL;
7058 }
7059
7060 #ifdef CONFIG_SYSFS
7061 if (rxqs < 1) {
7062 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7063 return NULL;
7064 }
7065 #endif
7066
7067 alloc_size = sizeof(struct net_device);
7068 if (sizeof_priv) {
7069 /* ensure 32-byte alignment of private area */
7070 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7071 alloc_size += sizeof_priv;
7072 }
7073 /* ensure 32-byte alignment of whole construct */
7074 alloc_size += NETDEV_ALIGN - 1;
7075
7076 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7077 if (!p)
7078 p = vzalloc(alloc_size);
7079 if (!p)
7080 return NULL;
7081
7082 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7083 dev->padded = (char *)dev - (char *)p;
7084
7085 dev->pcpu_refcnt = alloc_percpu(int);
7086 if (!dev->pcpu_refcnt)
7087 goto free_dev;
7088
7089 if (dev_addr_init(dev))
7090 goto free_pcpu;
7091
7092 dev_mc_init(dev);
7093 dev_uc_init(dev);
7094
7095 dev_net_set(dev, &init_net);
7096
7097 dev->gso_max_size = GSO_MAX_SIZE;
7098 dev->gso_max_segs = GSO_MAX_SEGS;
7099 dev->gso_min_segs = 0;
7100
7101 INIT_LIST_HEAD(&dev->napi_list);
7102 INIT_LIST_HEAD(&dev->unreg_list);
7103 INIT_LIST_HEAD(&dev->close_list);
7104 INIT_LIST_HEAD(&dev->link_watch_list);
7105 INIT_LIST_HEAD(&dev->adj_list.upper);
7106 INIT_LIST_HEAD(&dev->adj_list.lower);
7107 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7108 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7109 INIT_LIST_HEAD(&dev->ptype_all);
7110 INIT_LIST_HEAD(&dev->ptype_specific);
7111 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7112 setup(dev);
7113
7114 if (!dev->tx_queue_len)
7115 dev->priv_flags |= IFF_NO_QUEUE;
7116
7117 dev->num_tx_queues = txqs;
7118 dev->real_num_tx_queues = txqs;
7119 if (netif_alloc_netdev_queues(dev))
7120 goto free_all;
7121
7122 #ifdef CONFIG_SYSFS
7123 dev->num_rx_queues = rxqs;
7124 dev->real_num_rx_queues = rxqs;
7125 if (netif_alloc_rx_queues(dev))
7126 goto free_all;
7127 #endif
7128
7129 strcpy(dev->name, name);
7130 dev->name_assign_type = name_assign_type;
7131 dev->group = INIT_NETDEV_GROUP;
7132 if (!dev->ethtool_ops)
7133 dev->ethtool_ops = &default_ethtool_ops;
7134
7135 nf_hook_ingress_init(dev);
7136
7137 return dev;
7138
7139 free_all:
7140 free_netdev(dev);
7141 return NULL;
7142
7143 free_pcpu:
7144 free_percpu(dev->pcpu_refcnt);
7145 free_dev:
7146 netdev_freemem(dev);
7147 return NULL;
7148 }
7149 EXPORT_SYMBOL(alloc_netdev_mqs);
7150
7151 /**
7152 * free_netdev - free network device
7153 * @dev: device
7154 *
7155 * This function does the last stage of destroying an allocated device
7156 * interface. The reference to the device object is released.
7157 * If this is the last reference then it will be freed.
7158 */
7159 void free_netdev(struct net_device *dev)
7160 {
7161 struct napi_struct *p, *n;
7162
7163 netif_free_tx_queues(dev);
7164 #ifdef CONFIG_SYSFS
7165 kvfree(dev->_rx);
7166 #endif
7167
7168 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7169
7170 /* Flush device addresses */
7171 dev_addr_flush(dev);
7172
7173 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7174 netif_napi_del(p);
7175
7176 free_percpu(dev->pcpu_refcnt);
7177 dev->pcpu_refcnt = NULL;
7178
7179 /* Compatibility with error handling in drivers */
7180 if (dev->reg_state == NETREG_UNINITIALIZED) {
7181 netdev_freemem(dev);
7182 return;
7183 }
7184
7185 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7186 dev->reg_state = NETREG_RELEASED;
7187
7188 /* will free via device release */
7189 put_device(&dev->dev);
7190 }
7191 EXPORT_SYMBOL(free_netdev);
7192
7193 /**
7194 * synchronize_net - Synchronize with packet receive processing
7195 *
7196 * Wait for packets currently being received to be done.
7197 * Does not block later packets from starting.
7198 */
7199 void synchronize_net(void)
7200 {
7201 might_sleep();
7202 if (rtnl_is_locked())
7203 synchronize_rcu_expedited();
7204 else
7205 synchronize_rcu();
7206 }
7207 EXPORT_SYMBOL(synchronize_net);
7208
7209 /**
7210 * unregister_netdevice_queue - remove device from the kernel
7211 * @dev: device
7212 * @head: list
7213 *
7214 * This function shuts down a device interface and removes it
7215 * from the kernel tables.
7216 * If head not NULL, device is queued to be unregistered later.
7217 *
7218 * Callers must hold the rtnl semaphore. You may want
7219 * unregister_netdev() instead of this.
7220 */
7221
7222 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7223 {
7224 ASSERT_RTNL();
7225
7226 if (head) {
7227 list_move_tail(&dev->unreg_list, head);
7228 } else {
7229 rollback_registered(dev);
7230 /* Finish processing unregister after unlock */
7231 net_set_todo(dev);
7232 }
7233 }
7234 EXPORT_SYMBOL(unregister_netdevice_queue);
7235
7236 /**
7237 * unregister_netdevice_many - unregister many devices
7238 * @head: list of devices
7239 *
7240 * Note: As most callers use a stack allocated list_head,
7241 * we force a list_del() to make sure stack wont be corrupted later.
7242 */
7243 void unregister_netdevice_many(struct list_head *head)
7244 {
7245 struct net_device *dev;
7246
7247 if (!list_empty(head)) {
7248 rollback_registered_many(head);
7249 list_for_each_entry(dev, head, unreg_list)
7250 net_set_todo(dev);
7251 list_del(head);
7252 }
7253 }
7254 EXPORT_SYMBOL(unregister_netdevice_many);
7255
7256 /**
7257 * unregister_netdev - remove device from the kernel
7258 * @dev: device
7259 *
7260 * This function shuts down a device interface and removes it
7261 * from the kernel tables.
7262 *
7263 * This is just a wrapper for unregister_netdevice that takes
7264 * the rtnl semaphore. In general you want to use this and not
7265 * unregister_netdevice.
7266 */
7267 void unregister_netdev(struct net_device *dev)
7268 {
7269 rtnl_lock();
7270 unregister_netdevice(dev);
7271 rtnl_unlock();
7272 }
7273 EXPORT_SYMBOL(unregister_netdev);
7274
7275 /**
7276 * dev_change_net_namespace - move device to different nethost namespace
7277 * @dev: device
7278 * @net: network namespace
7279 * @pat: If not NULL name pattern to try if the current device name
7280 * is already taken in the destination network namespace.
7281 *
7282 * This function shuts down a device interface and moves it
7283 * to a new network namespace. On success 0 is returned, on
7284 * a failure a netagive errno code is returned.
7285 *
7286 * Callers must hold the rtnl semaphore.
7287 */
7288
7289 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7290 {
7291 int err;
7292
7293 ASSERT_RTNL();
7294
7295 /* Don't allow namespace local devices to be moved. */
7296 err = -EINVAL;
7297 if (dev->features & NETIF_F_NETNS_LOCAL)
7298 goto out;
7299
7300 /* Ensure the device has been registrered */
7301 if (dev->reg_state != NETREG_REGISTERED)
7302 goto out;
7303
7304 /* Get out if there is nothing todo */
7305 err = 0;
7306 if (net_eq(dev_net(dev), net))
7307 goto out;
7308
7309 /* Pick the destination device name, and ensure
7310 * we can use it in the destination network namespace.
7311 */
7312 err = -EEXIST;
7313 if (__dev_get_by_name(net, dev->name)) {
7314 /* We get here if we can't use the current device name */
7315 if (!pat)
7316 goto out;
7317 if (dev_get_valid_name(net, dev, pat) < 0)
7318 goto out;
7319 }
7320
7321 /*
7322 * And now a mini version of register_netdevice unregister_netdevice.
7323 */
7324
7325 /* If device is running close it first. */
7326 dev_close(dev);
7327
7328 /* And unlink it from device chain */
7329 err = -ENODEV;
7330 unlist_netdevice(dev);
7331
7332 synchronize_net();
7333
7334 /* Shutdown queueing discipline. */
7335 dev_shutdown(dev);
7336
7337 /* Notify protocols, that we are about to destroy
7338 this device. They should clean all the things.
7339
7340 Note that dev->reg_state stays at NETREG_REGISTERED.
7341 This is wanted because this way 8021q and macvlan know
7342 the device is just moving and can keep their slaves up.
7343 */
7344 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7345 rcu_barrier();
7346 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7347 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7348
7349 /*
7350 * Flush the unicast and multicast chains
7351 */
7352 dev_uc_flush(dev);
7353 dev_mc_flush(dev);
7354
7355 /* Send a netdev-removed uevent to the old namespace */
7356 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7357 netdev_adjacent_del_links(dev);
7358
7359 /* Actually switch the network namespace */
7360 dev_net_set(dev, net);
7361
7362 /* If there is an ifindex conflict assign a new one */
7363 if (__dev_get_by_index(net, dev->ifindex))
7364 dev->ifindex = dev_new_index(net);
7365
7366 /* Send a netdev-add uevent to the new namespace */
7367 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7368 netdev_adjacent_add_links(dev);
7369
7370 /* Fixup kobjects */
7371 err = device_rename(&dev->dev, dev->name);
7372 WARN_ON(err);
7373
7374 /* Add the device back in the hashes */
7375 list_netdevice(dev);
7376
7377 /* Notify protocols, that a new device appeared. */
7378 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7379
7380 /*
7381 * Prevent userspace races by waiting until the network
7382 * device is fully setup before sending notifications.
7383 */
7384 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7385
7386 synchronize_net();
7387 err = 0;
7388 out:
7389 return err;
7390 }
7391 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7392
7393 static int dev_cpu_callback(struct notifier_block *nfb,
7394 unsigned long action,
7395 void *ocpu)
7396 {
7397 struct sk_buff **list_skb;
7398 struct sk_buff *skb;
7399 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7400 struct softnet_data *sd, *oldsd;
7401
7402 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7403 return NOTIFY_OK;
7404
7405 local_irq_disable();
7406 cpu = smp_processor_id();
7407 sd = &per_cpu(softnet_data, cpu);
7408 oldsd = &per_cpu(softnet_data, oldcpu);
7409
7410 /* Find end of our completion_queue. */
7411 list_skb = &sd->completion_queue;
7412 while (*list_skb)
7413 list_skb = &(*list_skb)->next;
7414 /* Append completion queue from offline CPU. */
7415 *list_skb = oldsd->completion_queue;
7416 oldsd->completion_queue = NULL;
7417
7418 /* Append output queue from offline CPU. */
7419 if (oldsd->output_queue) {
7420 *sd->output_queue_tailp = oldsd->output_queue;
7421 sd->output_queue_tailp = oldsd->output_queue_tailp;
7422 oldsd->output_queue = NULL;
7423 oldsd->output_queue_tailp = &oldsd->output_queue;
7424 }
7425 /* Append NAPI poll list from offline CPU, with one exception :
7426 * process_backlog() must be called by cpu owning percpu backlog.
7427 * We properly handle process_queue & input_pkt_queue later.
7428 */
7429 while (!list_empty(&oldsd->poll_list)) {
7430 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7431 struct napi_struct,
7432 poll_list);
7433
7434 list_del_init(&napi->poll_list);
7435 if (napi->poll == process_backlog)
7436 napi->state = 0;
7437 else
7438 ____napi_schedule(sd, napi);
7439 }
7440
7441 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7442 local_irq_enable();
7443
7444 /* Process offline CPU's input_pkt_queue */
7445 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7446 netif_rx_ni(skb);
7447 input_queue_head_incr(oldsd);
7448 }
7449 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7450 netif_rx_ni(skb);
7451 input_queue_head_incr(oldsd);
7452 }
7453
7454 return NOTIFY_OK;
7455 }
7456
7457
7458 /**
7459 * netdev_increment_features - increment feature set by one
7460 * @all: current feature set
7461 * @one: new feature set
7462 * @mask: mask feature set
7463 *
7464 * Computes a new feature set after adding a device with feature set
7465 * @one to the master device with current feature set @all. Will not
7466 * enable anything that is off in @mask. Returns the new feature set.
7467 */
7468 netdev_features_t netdev_increment_features(netdev_features_t all,
7469 netdev_features_t one, netdev_features_t mask)
7470 {
7471 if (mask & NETIF_F_GEN_CSUM)
7472 mask |= NETIF_F_ALL_CSUM;
7473 mask |= NETIF_F_VLAN_CHALLENGED;
7474
7475 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7476 all &= one | ~NETIF_F_ALL_FOR_ALL;
7477
7478 /* If one device supports hw checksumming, set for all. */
7479 if (all & NETIF_F_GEN_CSUM)
7480 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7481
7482 return all;
7483 }
7484 EXPORT_SYMBOL(netdev_increment_features);
7485
7486 static struct hlist_head * __net_init netdev_create_hash(void)
7487 {
7488 int i;
7489 struct hlist_head *hash;
7490
7491 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7492 if (hash != NULL)
7493 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7494 INIT_HLIST_HEAD(&hash[i]);
7495
7496 return hash;
7497 }
7498
7499 /* Initialize per network namespace state */
7500 static int __net_init netdev_init(struct net *net)
7501 {
7502 if (net != &init_net)
7503 INIT_LIST_HEAD(&net->dev_base_head);
7504
7505 net->dev_name_head = netdev_create_hash();
7506 if (net->dev_name_head == NULL)
7507 goto err_name;
7508
7509 net->dev_index_head = netdev_create_hash();
7510 if (net->dev_index_head == NULL)
7511 goto err_idx;
7512
7513 return 0;
7514
7515 err_idx:
7516 kfree(net->dev_name_head);
7517 err_name:
7518 return -ENOMEM;
7519 }
7520
7521 /**
7522 * netdev_drivername - network driver for the device
7523 * @dev: network device
7524 *
7525 * Determine network driver for device.
7526 */
7527 const char *netdev_drivername(const struct net_device *dev)
7528 {
7529 const struct device_driver *driver;
7530 const struct device *parent;
7531 const char *empty = "";
7532
7533 parent = dev->dev.parent;
7534 if (!parent)
7535 return empty;
7536
7537 driver = parent->driver;
7538 if (driver && driver->name)
7539 return driver->name;
7540 return empty;
7541 }
7542
7543 static void __netdev_printk(const char *level, const struct net_device *dev,
7544 struct va_format *vaf)
7545 {
7546 if (dev && dev->dev.parent) {
7547 dev_printk_emit(level[1] - '0',
7548 dev->dev.parent,
7549 "%s %s %s%s: %pV",
7550 dev_driver_string(dev->dev.parent),
7551 dev_name(dev->dev.parent),
7552 netdev_name(dev), netdev_reg_state(dev),
7553 vaf);
7554 } else if (dev) {
7555 printk("%s%s%s: %pV",
7556 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7557 } else {
7558 printk("%s(NULL net_device): %pV", level, vaf);
7559 }
7560 }
7561
7562 void netdev_printk(const char *level, const struct net_device *dev,
7563 const char *format, ...)
7564 {
7565 struct va_format vaf;
7566 va_list args;
7567
7568 va_start(args, format);
7569
7570 vaf.fmt = format;
7571 vaf.va = &args;
7572
7573 __netdev_printk(level, dev, &vaf);
7574
7575 va_end(args);
7576 }
7577 EXPORT_SYMBOL(netdev_printk);
7578
7579 #define define_netdev_printk_level(func, level) \
7580 void func(const struct net_device *dev, const char *fmt, ...) \
7581 { \
7582 struct va_format vaf; \
7583 va_list args; \
7584 \
7585 va_start(args, fmt); \
7586 \
7587 vaf.fmt = fmt; \
7588 vaf.va = &args; \
7589 \
7590 __netdev_printk(level, dev, &vaf); \
7591 \
7592 va_end(args); \
7593 } \
7594 EXPORT_SYMBOL(func);
7595
7596 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7597 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7598 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7599 define_netdev_printk_level(netdev_err, KERN_ERR);
7600 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7601 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7602 define_netdev_printk_level(netdev_info, KERN_INFO);
7603
7604 static void __net_exit netdev_exit(struct net *net)
7605 {
7606 kfree(net->dev_name_head);
7607 kfree(net->dev_index_head);
7608 }
7609
7610 static struct pernet_operations __net_initdata netdev_net_ops = {
7611 .init = netdev_init,
7612 .exit = netdev_exit,
7613 };
7614
7615 static void __net_exit default_device_exit(struct net *net)
7616 {
7617 struct net_device *dev, *aux;
7618 /*
7619 * Push all migratable network devices back to the
7620 * initial network namespace
7621 */
7622 rtnl_lock();
7623 for_each_netdev_safe(net, dev, aux) {
7624 int err;
7625 char fb_name[IFNAMSIZ];
7626
7627 /* Ignore unmoveable devices (i.e. loopback) */
7628 if (dev->features & NETIF_F_NETNS_LOCAL)
7629 continue;
7630
7631 /* Leave virtual devices for the generic cleanup */
7632 if (dev->rtnl_link_ops)
7633 continue;
7634
7635 /* Push remaining network devices to init_net */
7636 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7637 err = dev_change_net_namespace(dev, &init_net, fb_name);
7638 if (err) {
7639 pr_emerg("%s: failed to move %s to init_net: %d\n",
7640 __func__, dev->name, err);
7641 BUG();
7642 }
7643 }
7644 rtnl_unlock();
7645 }
7646
7647 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7648 {
7649 /* Return with the rtnl_lock held when there are no network
7650 * devices unregistering in any network namespace in net_list.
7651 */
7652 struct net *net;
7653 bool unregistering;
7654 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7655
7656 add_wait_queue(&netdev_unregistering_wq, &wait);
7657 for (;;) {
7658 unregistering = false;
7659 rtnl_lock();
7660 list_for_each_entry(net, net_list, exit_list) {
7661 if (net->dev_unreg_count > 0) {
7662 unregistering = true;
7663 break;
7664 }
7665 }
7666 if (!unregistering)
7667 break;
7668 __rtnl_unlock();
7669
7670 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7671 }
7672 remove_wait_queue(&netdev_unregistering_wq, &wait);
7673 }
7674
7675 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7676 {
7677 /* At exit all network devices most be removed from a network
7678 * namespace. Do this in the reverse order of registration.
7679 * Do this across as many network namespaces as possible to
7680 * improve batching efficiency.
7681 */
7682 struct net_device *dev;
7683 struct net *net;
7684 LIST_HEAD(dev_kill_list);
7685
7686 /* To prevent network device cleanup code from dereferencing
7687 * loopback devices or network devices that have been freed
7688 * wait here for all pending unregistrations to complete,
7689 * before unregistring the loopback device and allowing the
7690 * network namespace be freed.
7691 *
7692 * The netdev todo list containing all network devices
7693 * unregistrations that happen in default_device_exit_batch
7694 * will run in the rtnl_unlock() at the end of
7695 * default_device_exit_batch.
7696 */
7697 rtnl_lock_unregistering(net_list);
7698 list_for_each_entry(net, net_list, exit_list) {
7699 for_each_netdev_reverse(net, dev) {
7700 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7701 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7702 else
7703 unregister_netdevice_queue(dev, &dev_kill_list);
7704 }
7705 }
7706 unregister_netdevice_many(&dev_kill_list);
7707 rtnl_unlock();
7708 }
7709
7710 static struct pernet_operations __net_initdata default_device_ops = {
7711 .exit = default_device_exit,
7712 .exit_batch = default_device_exit_batch,
7713 };
7714
7715 /*
7716 * Initialize the DEV module. At boot time this walks the device list and
7717 * unhooks any devices that fail to initialise (normally hardware not
7718 * present) and leaves us with a valid list of present and active devices.
7719 *
7720 */
7721
7722 /*
7723 * This is called single threaded during boot, so no need
7724 * to take the rtnl semaphore.
7725 */
7726 static int __init net_dev_init(void)
7727 {
7728 int i, rc = -ENOMEM;
7729
7730 BUG_ON(!dev_boot_phase);
7731
7732 if (dev_proc_init())
7733 goto out;
7734
7735 if (netdev_kobject_init())
7736 goto out;
7737
7738 INIT_LIST_HEAD(&ptype_all);
7739 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7740 INIT_LIST_HEAD(&ptype_base[i]);
7741
7742 INIT_LIST_HEAD(&offload_base);
7743
7744 if (register_pernet_subsys(&netdev_net_ops))
7745 goto out;
7746
7747 /*
7748 * Initialise the packet receive queues.
7749 */
7750
7751 for_each_possible_cpu(i) {
7752 struct softnet_data *sd = &per_cpu(softnet_data, i);
7753
7754 skb_queue_head_init(&sd->input_pkt_queue);
7755 skb_queue_head_init(&sd->process_queue);
7756 INIT_LIST_HEAD(&sd->poll_list);
7757 sd->output_queue_tailp = &sd->output_queue;
7758 #ifdef CONFIG_RPS
7759 sd->csd.func = rps_trigger_softirq;
7760 sd->csd.info = sd;
7761 sd->cpu = i;
7762 #endif
7763
7764 sd->backlog.poll = process_backlog;
7765 sd->backlog.weight = weight_p;
7766 }
7767
7768 dev_boot_phase = 0;
7769
7770 /* The loopback device is special if any other network devices
7771 * is present in a network namespace the loopback device must
7772 * be present. Since we now dynamically allocate and free the
7773 * loopback device ensure this invariant is maintained by
7774 * keeping the loopback device as the first device on the
7775 * list of network devices. Ensuring the loopback devices
7776 * is the first device that appears and the last network device
7777 * that disappears.
7778 */
7779 if (register_pernet_device(&loopback_net_ops))
7780 goto out;
7781
7782 if (register_pernet_device(&default_device_ops))
7783 goto out;
7784
7785 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7786 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7787
7788 hotcpu_notifier(dev_cpu_callback, 0);
7789 dst_subsys_init();
7790 rc = 0;
7791 out:
7792 return rc;
7793 }
7794
7795 subsys_initcall(net_dev_init);
This page took 0.178911 seconds and 6 git commands to generate.