gro: New frags interface to avoid copying shinfo
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129
130 #include "net-sysfs.h"
131
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137
138 /*
139 * The list of packet types we will receive (as opposed to discard)
140 * and the routines to invoke.
141 *
142 * Why 16. Because with 16 the only overlap we get on a hash of the
143 * low nibble of the protocol value is RARP/SNAP/X.25.
144 *
145 * NOTE: That is no longer true with the addition of VLAN tags. Not
146 * sure which should go first, but I bet it won't make much
147 * difference if we are running VLANs. The good news is that
148 * this protocol won't be in the list unless compiled in, so
149 * the average user (w/out VLANs) will not be adversely affected.
150 * --BLG
151 *
152 * 0800 IP
153 * 8100 802.1Q VLAN
154 * 0001 802.3
155 * 0002 AX.25
156 * 0004 802.2
157 * 8035 RARP
158 * 0005 SNAP
159 * 0805 X.25
160 * 0806 ARP
161 * 8137 IPX
162 * 0009 Localtalk
163 * 86DD IPv6
164 */
165
166 #define PTYPE_HASH_SIZE (16)
167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
168
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly; /* Taps */
172
173 /*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading.
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192 DEFINE_RWLOCK(dev_base_lock);
193
194 EXPORT_SYMBOL(dev_base_lock);
195
196 #define NETDEV_HASHBITS 8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223 }
224
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250
251 #ifdef CONFIG_LOCKDEP
252 /*
253 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254 * according to dev->type
255 */
256 static const unsigned short netdev_lock_type[] =
257 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272
273 static const char *netdev_lock_name[] =
274 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306 {
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312 }
313
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332
333 /*******************************************************************************
334
335 Protocol management and registration routines
336
337 *******************************************************************************/
338
339 /*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355 /**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368 void dev_add_pack(struct packet_type *pt)
369 {
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380 }
381
382 /**
383 * __dev_remove_pack - remove packet handler
384 * @pt: packet type declaration
385 *
386 * Remove a protocol handler that was previously added to the kernel
387 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
388 * from the kernel lists and can be freed or reused once this function
389 * returns.
390 *
391 * The packet type might still be in use by receivers
392 * and must not be freed until after all the CPU's have gone
393 * through a quiescent state.
394 */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 struct list_head *head;
398 struct packet_type *pt1;
399
400 spin_lock_bh(&ptype_lock);
401
402 if (pt->type == htons(ETH_P_ALL))
403 head = &ptype_all;
404 else
405 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 spin_unlock_bh(&ptype_lock);
417 }
418 /**
419 * dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
426 *
427 * This call sleeps to guarantee that no CPU is looking at the packet
428 * type after return.
429 */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 __dev_remove_pack(pt);
433
434 synchronize_net();
435 }
436
437 /******************************************************************************
438
439 Device Boot-time Settings Routines
440
441 *******************************************************************************/
442
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445
446 /**
447 * netdev_boot_setup_add - add new setup entry
448 * @name: name of the device
449 * @map: configured settings for the device
450 *
451 * Adds new setup entry to the dev_boot_setup list. The function
452 * returns 0 on error and 1 on success. This is a generic routine to
453 * all netdevices.
454 */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 struct netdev_boot_setup *s;
458 int i;
459
460 s = dev_boot_setup;
461 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 memset(s[i].name, 0, sizeof(s[i].name));
464 strlcpy(s[i].name, name, IFNAMSIZ);
465 memcpy(&s[i].map, map, sizeof(s[i].map));
466 break;
467 }
468 }
469
470 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472
473 /**
474 * netdev_boot_setup_check - check boot time settings
475 * @dev: the netdevice
476 *
477 * Check boot time settings for the device.
478 * The found settings are set for the device to be used
479 * later in the device probing.
480 * Returns 0 if no settings found, 1 if they are.
481 */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 struct netdev_boot_setup *s = dev_boot_setup;
485 int i;
486
487 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 !strcmp(dev->name, s[i].name)) {
490 dev->irq = s[i].map.irq;
491 dev->base_addr = s[i].map.base_addr;
492 dev->mem_start = s[i].map.mem_start;
493 dev->mem_end = s[i].map.mem_end;
494 return 1;
495 }
496 }
497 return 0;
498 }
499
500
501 /**
502 * netdev_boot_base - get address from boot time settings
503 * @prefix: prefix for network device
504 * @unit: id for network device
505 *
506 * Check boot time settings for the base address of device.
507 * The found settings are set for the device to be used
508 * later in the device probing.
509 * Returns 0 if no settings found.
510 */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 const struct netdev_boot_setup *s = dev_boot_setup;
514 char name[IFNAMSIZ];
515 int i;
516
517 sprintf(name, "%s%d", prefix, unit);
518
519 /*
520 * If device already registered then return base of 1
521 * to indicate not to probe for this interface
522 */
523 if (__dev_get_by_name(&init_net, name))
524 return 1;
525
526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 if (!strcmp(name, s[i].name))
528 return s[i].map.base_addr;
529 return 0;
530 }
531
532 /*
533 * Saves at boot time configured settings for any netdevice.
534 */
535 int __init netdev_boot_setup(char *str)
536 {
537 int ints[5];
538 struct ifmap map;
539
540 str = get_options(str, ARRAY_SIZE(ints), ints);
541 if (!str || !*str)
542 return 0;
543
544 /* Save settings */
545 memset(&map, 0, sizeof(map));
546 if (ints[0] > 0)
547 map.irq = ints[1];
548 if (ints[0] > 1)
549 map.base_addr = ints[2];
550 if (ints[0] > 2)
551 map.mem_start = ints[3];
552 if (ints[0] > 3)
553 map.mem_end = ints[4];
554
555 /* Add new entry to the list */
556 return netdev_boot_setup_add(str, &map);
557 }
558
559 __setup("netdev=", netdev_boot_setup);
560
561 /*******************************************************************************
562
563 Device Interface Subroutines
564
565 *******************************************************************************/
566
567 /**
568 * __dev_get_by_name - find a device by its name
569 * @net: the applicable net namespace
570 * @name: name to find
571 *
572 * Find an interface by name. Must be called under RTNL semaphore
573 * or @dev_base_lock. If the name is found a pointer to the device
574 * is returned. If the name is not found then %NULL is returned. The
575 * reference counters are not incremented so the caller must be
576 * careful with locks.
577 */
578
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 struct hlist_node *p;
582
583 hlist_for_each(p, dev_name_hash(net, name)) {
584 struct net_device *dev
585 = hlist_entry(p, struct net_device, name_hlist);
586 if (!strncmp(dev->name, name, IFNAMSIZ))
587 return dev;
588 }
589 return NULL;
590 }
591
592 /**
593 * dev_get_by_name - find a device by its name
594 * @net: the applicable net namespace
595 * @name: name to find
596 *
597 * Find an interface by name. This can be called from any
598 * context and does its own locking. The returned handle has
599 * the usage count incremented and the caller must use dev_put() to
600 * release it when it is no longer needed. %NULL is returned if no
601 * matching device is found.
602 */
603
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 struct net_device *dev;
607
608 read_lock(&dev_base_lock);
609 dev = __dev_get_by_name(net, name);
610 if (dev)
611 dev_hold(dev);
612 read_unlock(&dev_base_lock);
613 return dev;
614 }
615
616 /**
617 * __dev_get_by_index - find a device by its ifindex
618 * @net: the applicable net namespace
619 * @ifindex: index of device
620 *
621 * Search for an interface by index. Returns %NULL if the device
622 * is not found or a pointer to the device. The device has not
623 * had its reference counter increased so the caller must be careful
624 * about locking. The caller must hold either the RTNL semaphore
625 * or @dev_base_lock.
626 */
627
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 struct hlist_node *p;
631
632 hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 struct net_device *dev
634 = hlist_entry(p, struct net_device, index_hlist);
635 if (dev->ifindex == ifindex)
636 return dev;
637 }
638 return NULL;
639 }
640
641
642 /**
643 * dev_get_by_index - find a device by its ifindex
644 * @net: the applicable net namespace
645 * @ifindex: index of device
646 *
647 * Search for an interface by index. Returns NULL if the device
648 * is not found or a pointer to the device. The device returned has
649 * had a reference added and the pointer is safe until the user calls
650 * dev_put to indicate they have finished with it.
651 */
652
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 struct net_device *dev;
656
657 read_lock(&dev_base_lock);
658 dev = __dev_get_by_index(net, ifindex);
659 if (dev)
660 dev_hold(dev);
661 read_unlock(&dev_base_lock);
662 return dev;
663 }
664
665 /**
666 * dev_getbyhwaddr - find a device by its hardware address
667 * @net: the applicable net namespace
668 * @type: media type of device
669 * @ha: hardware address
670 *
671 * Search for an interface by MAC address. Returns NULL if the device
672 * is not found or a pointer to the device. The caller must hold the
673 * rtnl semaphore. The returned device has not had its ref count increased
674 * and the caller must therefore be careful about locking
675 *
676 * BUGS:
677 * If the API was consistent this would be __dev_get_by_hwaddr
678 */
679
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 struct net_device *dev;
683
684 ASSERT_RTNL();
685
686 for_each_netdev(net, dev)
687 if (dev->type == type &&
688 !memcmp(dev->dev_addr, ha, dev->addr_len))
689 return dev;
690
691 return NULL;
692 }
693
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 struct net_device *dev;
699
700 ASSERT_RTNL();
701 for_each_netdev(net, dev)
702 if (dev->type == type)
703 return dev;
704
705 return NULL;
706 }
707
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 struct net_device *dev;
713
714 rtnl_lock();
715 dev = __dev_getfirstbyhwtype(net, type);
716 if (dev)
717 dev_hold(dev);
718 rtnl_unlock();
719 return dev;
720 }
721
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723
724 /**
725 * dev_get_by_flags - find any device with given flags
726 * @net: the applicable net namespace
727 * @if_flags: IFF_* values
728 * @mask: bitmask of bits in if_flags to check
729 *
730 * Search for any interface with the given flags. Returns NULL if a device
731 * is not found or a pointer to the device. The device returned has
732 * had a reference added and the pointer is safe until the user calls
733 * dev_put to indicate they have finished with it.
734 */
735
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 struct net_device *dev, *ret;
739
740 ret = NULL;
741 read_lock(&dev_base_lock);
742 for_each_netdev(net, dev) {
743 if (((dev->flags ^ if_flags) & mask) == 0) {
744 dev_hold(dev);
745 ret = dev;
746 break;
747 }
748 }
749 read_unlock(&dev_base_lock);
750 return ret;
751 }
752
753 /**
754 * dev_valid_name - check if name is okay for network device
755 * @name: name string
756 *
757 * Network device names need to be valid file names to
758 * to allow sysfs to work. We also disallow any kind of
759 * whitespace.
760 */
761 int dev_valid_name(const char *name)
762 {
763 if (*name == '\0')
764 return 0;
765 if (strlen(name) >= IFNAMSIZ)
766 return 0;
767 if (!strcmp(name, ".") || !strcmp(name, ".."))
768 return 0;
769
770 while (*name) {
771 if (*name == '/' || isspace(*name))
772 return 0;
773 name++;
774 }
775 return 1;
776 }
777
778 /**
779 * __dev_alloc_name - allocate a name for a device
780 * @net: network namespace to allocate the device name in
781 * @name: name format string
782 * @buf: scratch buffer and result name string
783 *
784 * Passed a format string - eg "lt%d" it will try and find a suitable
785 * id. It scans list of devices to build up a free map, then chooses
786 * the first empty slot. The caller must hold the dev_base or rtnl lock
787 * while allocating the name and adding the device in order to avoid
788 * duplicates.
789 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790 * Returns the number of the unit assigned or a negative errno code.
791 */
792
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 int i = 0;
796 const char *p;
797 const int max_netdevices = 8*PAGE_SIZE;
798 unsigned long *inuse;
799 struct net_device *d;
800
801 p = strnchr(name, IFNAMSIZ-1, '%');
802 if (p) {
803 /*
804 * Verify the string as this thing may have come from
805 * the user. There must be either one "%d" and no other "%"
806 * characters.
807 */
808 if (p[1] != 'd' || strchr(p + 2, '%'))
809 return -EINVAL;
810
811 /* Use one page as a bit array of possible slots */
812 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 if (!inuse)
814 return -ENOMEM;
815
816 for_each_netdev(net, d) {
817 if (!sscanf(d->name, name, &i))
818 continue;
819 if (i < 0 || i >= max_netdevices)
820 continue;
821
822 /* avoid cases where sscanf is not exact inverse of printf */
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!strncmp(buf, d->name, IFNAMSIZ))
825 set_bit(i, inuse);
826 }
827
828 i = find_first_zero_bit(inuse, max_netdevices);
829 free_page((unsigned long) inuse);
830 }
831
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!__dev_get_by_name(net, buf))
834 return i;
835
836 /* It is possible to run out of possible slots
837 * when the name is long and there isn't enough space left
838 * for the digits, or if all bits are used.
839 */
840 return -ENFILE;
841 }
842
843 /**
844 * dev_alloc_name - allocate a name for a device
845 * @dev: device
846 * @name: name format string
847 *
848 * Passed a format string - eg "lt%d" it will try and find a suitable
849 * id. It scans list of devices to build up a free map, then chooses
850 * the first empty slot. The caller must hold the dev_base or rtnl lock
851 * while allocating the name and adding the device in order to avoid
852 * duplicates.
853 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854 * Returns the number of the unit assigned or a negative errno code.
855 */
856
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 char buf[IFNAMSIZ];
860 struct net *net;
861 int ret;
862
863 BUG_ON(!dev_net(dev));
864 net = dev_net(dev);
865 ret = __dev_alloc_name(net, name, buf);
866 if (ret >= 0)
867 strlcpy(dev->name, buf, IFNAMSIZ);
868 return ret;
869 }
870
871
872 /**
873 * dev_change_name - change name of a device
874 * @dev: device
875 * @newname: name (or format string) must be at least IFNAMSIZ
876 *
877 * Change name of a device, can pass format strings "eth%d".
878 * for wildcarding.
879 */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 char oldname[IFNAMSIZ];
883 int err = 0;
884 int ret;
885 struct net *net;
886
887 ASSERT_RTNL();
888 BUG_ON(!dev_net(dev));
889
890 net = dev_net(dev);
891 if (dev->flags & IFF_UP)
892 return -EBUSY;
893
894 if (!dev_valid_name(newname))
895 return -EINVAL;
896
897 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 return 0;
899
900 memcpy(oldname, dev->name, IFNAMSIZ);
901
902 if (strchr(newname, '%')) {
903 err = dev_alloc_name(dev, newname);
904 if (err < 0)
905 return err;
906 }
907 else if (__dev_get_by_name(net, newname))
908 return -EEXIST;
909 else
910 strlcpy(dev->name, newname, IFNAMSIZ);
911
912 rollback:
913 /* For now only devices in the initial network namespace
914 * are in sysfs.
915 */
916 if (net == &init_net) {
917 ret = device_rename(&dev->dev, dev->name);
918 if (ret) {
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 return ret;
921 }
922 }
923
924 write_lock_bh(&dev_base_lock);
925 hlist_del(&dev->name_hlist);
926 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 write_unlock_bh(&dev_base_lock);
928
929 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 ret = notifier_to_errno(ret);
931
932 if (ret) {
933 if (err) {
934 printk(KERN_ERR
935 "%s: name change rollback failed: %d.\n",
936 dev->name, ret);
937 } else {
938 err = ret;
939 memcpy(dev->name, oldname, IFNAMSIZ);
940 goto rollback;
941 }
942 }
943
944 return err;
945 }
946
947 /**
948 * dev_set_alias - change ifalias of a device
949 * @dev: device
950 * @alias: name up to IFALIASZ
951 * @len: limit of bytes to copy from info
952 *
953 * Set ifalias for a device,
954 */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 ASSERT_RTNL();
958
959 if (len >= IFALIASZ)
960 return -EINVAL;
961
962 if (!len) {
963 if (dev->ifalias) {
964 kfree(dev->ifalias);
965 dev->ifalias = NULL;
966 }
967 return 0;
968 }
969
970 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 if (!dev->ifalias)
972 return -ENOMEM;
973
974 strlcpy(dev->ifalias, alias, len+1);
975 return len;
976 }
977
978
979 /**
980 * netdev_features_change - device changes features
981 * @dev: device to cause notification
982 *
983 * Called to indicate a device has changed features.
984 */
985 void netdev_features_change(struct net_device *dev)
986 {
987 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990
991 /**
992 * netdev_state_change - device changes state
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed state. This function calls
996 * the notifier chains for netdev_chain and sends a NEWLINK message
997 * to the routing socket.
998 */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 if (dev->flags & IFF_UP) {
1002 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 }
1005 }
1006
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012
1013 /**
1014 * dev_load - load a network module
1015 * @net: the applicable net namespace
1016 * @name: name of interface
1017 *
1018 * If a network interface is not present and the process has suitable
1019 * privileges this function loads the module. If module loading is not
1020 * available in this kernel then it becomes a nop.
1021 */
1022
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 struct net_device *dev;
1026
1027 read_lock(&dev_base_lock);
1028 dev = __dev_get_by_name(net, name);
1029 read_unlock(&dev_base_lock);
1030
1031 if (!dev && capable(CAP_SYS_MODULE))
1032 request_module("%s", name);
1033 }
1034
1035 /**
1036 * dev_open - prepare an interface for use.
1037 * @dev: device to open
1038 *
1039 * Takes a device from down to up state. The device's private open
1040 * function is invoked and then the multicast lists are loaded. Finally
1041 * the device is moved into the up state and a %NETDEV_UP message is
1042 * sent to the netdev notifier chain.
1043 *
1044 * Calling this function on an active interface is a nop. On a failure
1045 * a negative errno code is returned.
1046 */
1047 int dev_open(struct net_device *dev)
1048 {
1049 const struct net_device_ops *ops = dev->netdev_ops;
1050 int ret = 0;
1051
1052 ASSERT_RTNL();
1053
1054 /*
1055 * Is it already up?
1056 */
1057
1058 if (dev->flags & IFF_UP)
1059 return 0;
1060
1061 /*
1062 * Is it even present?
1063 */
1064 if (!netif_device_present(dev))
1065 return -ENODEV;
1066
1067 /*
1068 * Call device private open method
1069 */
1070 set_bit(__LINK_STATE_START, &dev->state);
1071
1072 if (ops->ndo_validate_addr)
1073 ret = ops->ndo_validate_addr(dev);
1074
1075 if (!ret && ops->ndo_open)
1076 ret = ops->ndo_open(dev);
1077
1078 /*
1079 * If it went open OK then:
1080 */
1081
1082 if (ret)
1083 clear_bit(__LINK_STATE_START, &dev->state);
1084 else {
1085 /*
1086 * Set the flags.
1087 */
1088 dev->flags |= IFF_UP;
1089
1090 /*
1091 * Enable NET_DMA
1092 */
1093 net_dmaengine_get();
1094
1095 /*
1096 * Initialize multicasting status
1097 */
1098 dev_set_rx_mode(dev);
1099
1100 /*
1101 * Wakeup transmit queue engine
1102 */
1103 dev_activate(dev);
1104
1105 /*
1106 * ... and announce new interface.
1107 */
1108 call_netdevice_notifiers(NETDEV_UP, dev);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * dev_close - shutdown an interface.
1116 * @dev: device to shutdown
1117 *
1118 * This function moves an active device into down state. A
1119 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121 * chain.
1122 */
1123 int dev_close(struct net_device *dev)
1124 {
1125 const struct net_device_ops *ops = dev->netdev_ops;
1126 ASSERT_RTNL();
1127
1128 might_sleep();
1129
1130 if (!(dev->flags & IFF_UP))
1131 return 0;
1132
1133 /*
1134 * Tell people we are going down, so that they can
1135 * prepare to death, when device is still operating.
1136 */
1137 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138
1139 clear_bit(__LINK_STATE_START, &dev->state);
1140
1141 /* Synchronize to scheduled poll. We cannot touch poll list,
1142 * it can be even on different cpu. So just clear netif_running().
1143 *
1144 * dev->stop() will invoke napi_disable() on all of it's
1145 * napi_struct instances on this device.
1146 */
1147 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148
1149 dev_deactivate(dev);
1150
1151 /*
1152 * Call the device specific close. This cannot fail.
1153 * Only if device is UP
1154 *
1155 * We allow it to be called even after a DETACH hot-plug
1156 * event.
1157 */
1158 if (ops->ndo_stop)
1159 ops->ndo_stop(dev);
1160
1161 /*
1162 * Device is now down.
1163 */
1164
1165 dev->flags &= ~IFF_UP;
1166
1167 /*
1168 * Tell people we are down
1169 */
1170 call_netdevice_notifiers(NETDEV_DOWN, dev);
1171
1172 /*
1173 * Shutdown NET_DMA
1174 */
1175 net_dmaengine_put();
1176
1177 return 0;
1178 }
1179
1180
1181 /**
1182 * dev_disable_lro - disable Large Receive Offload on a device
1183 * @dev: device
1184 *
1185 * Disable Large Receive Offload (LRO) on a net device. Must be
1186 * called under RTNL. This is needed if received packets may be
1187 * forwarded to another interface.
1188 */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 dev->ethtool_ops->set_flags) {
1193 u32 flags = dev->ethtool_ops->get_flags(dev);
1194 if (flags & ETH_FLAG_LRO) {
1195 flags &= ~ETH_FLAG_LRO;
1196 dev->ethtool_ops->set_flags(dev, flags);
1197 }
1198 }
1199 WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202
1203
1204 static int dev_boot_phase = 1;
1205
1206 /*
1207 * Device change register/unregister. These are not inline or static
1208 * as we export them to the world.
1209 */
1210
1211 /**
1212 * register_netdevice_notifier - register a network notifier block
1213 * @nb: notifier
1214 *
1215 * Register a notifier to be called when network device events occur.
1216 * The notifier passed is linked into the kernel structures and must
1217 * not be reused until it has been unregistered. A negative errno code
1218 * is returned on a failure.
1219 *
1220 * When registered all registration and up events are replayed
1221 * to the new notifier to allow device to have a race free
1222 * view of the network device list.
1223 */
1224
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 struct net_device *dev;
1228 struct net_device *last;
1229 struct net *net;
1230 int err;
1231
1232 rtnl_lock();
1233 err = raw_notifier_chain_register(&netdev_chain, nb);
1234 if (err)
1235 goto unlock;
1236 if (dev_boot_phase)
1237 goto unlock;
1238 for_each_net(net) {
1239 for_each_netdev(net, dev) {
1240 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 err = notifier_to_errno(err);
1242 if (err)
1243 goto rollback;
1244
1245 if (!(dev->flags & IFF_UP))
1246 continue;
1247
1248 nb->notifier_call(nb, NETDEV_UP, dev);
1249 }
1250 }
1251
1252 unlock:
1253 rtnl_unlock();
1254 return err;
1255
1256 rollback:
1257 last = dev;
1258 for_each_net(net) {
1259 for_each_netdev(net, dev) {
1260 if (dev == last)
1261 break;
1262
1263 if (dev->flags & IFF_UP) {
1264 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 }
1267 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 }
1269 }
1270
1271 raw_notifier_chain_unregister(&netdev_chain, nb);
1272 goto unlock;
1273 }
1274
1275 /**
1276 * unregister_netdevice_notifier - unregister a network notifier block
1277 * @nb: notifier
1278 *
1279 * Unregister a notifier previously registered by
1280 * register_netdevice_notifier(). The notifier is unlinked into the
1281 * kernel structures and may then be reused. A negative errno code
1282 * is returned on a failure.
1283 */
1284
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 int err;
1288
1289 rtnl_lock();
1290 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 rtnl_unlock();
1292 return err;
1293 }
1294
1295 /**
1296 * call_netdevice_notifiers - call all network notifier blocks
1297 * @val: value passed unmodified to notifier function
1298 * @dev: net_device pointer passed unmodified to notifier function
1299 *
1300 * Call all network notifier blocks. Parameters and return value
1301 * are as for raw_notifier_call_chain().
1302 */
1303
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311
1312 void net_enable_timestamp(void)
1313 {
1314 atomic_inc(&netstamp_needed);
1315 }
1316
1317 void net_disable_timestamp(void)
1318 {
1319 atomic_dec(&netstamp_needed);
1320 }
1321
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 if (atomic_read(&netstamp_needed))
1325 __net_timestamp(skb);
1326 else
1327 skb->tstamp.tv64 = 0;
1328 }
1329
1330 /*
1331 * Support routine. Sends outgoing frames to any network
1332 * taps currently in use.
1333 */
1334
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 struct packet_type *ptype;
1338
1339 net_timestamp(skb);
1340
1341 rcu_read_lock();
1342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1343 /* Never send packets back to the socket
1344 * they originated from - MvS (miquels@drinkel.ow.org)
1345 */
1346 if ((ptype->dev == dev || !ptype->dev) &&
1347 (ptype->af_packet_priv == NULL ||
1348 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1349 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1350 if (!skb2)
1351 break;
1352
1353 /* skb->nh should be correctly
1354 set by sender, so that the second statement is
1355 just protection against buggy protocols.
1356 */
1357 skb_reset_mac_header(skb2);
1358
1359 if (skb_network_header(skb2) < skb2->data ||
1360 skb2->network_header > skb2->tail) {
1361 if (net_ratelimit())
1362 printk(KERN_CRIT "protocol %04x is "
1363 "buggy, dev %s\n",
1364 skb2->protocol, dev->name);
1365 skb_reset_network_header(skb2);
1366 }
1367
1368 skb2->transport_header = skb2->network_header;
1369 skb2->pkt_type = PACKET_OUTGOING;
1370 ptype->func(skb2, skb->dev, ptype, skb->dev);
1371 }
1372 }
1373 rcu_read_unlock();
1374 }
1375
1376
1377 static inline void __netif_reschedule(struct Qdisc *q)
1378 {
1379 struct softnet_data *sd;
1380 unsigned long flags;
1381
1382 local_irq_save(flags);
1383 sd = &__get_cpu_var(softnet_data);
1384 q->next_sched = sd->output_queue;
1385 sd->output_queue = q;
1386 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1387 local_irq_restore(flags);
1388 }
1389
1390 void __netif_schedule(struct Qdisc *q)
1391 {
1392 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1393 __netif_reschedule(q);
1394 }
1395 EXPORT_SYMBOL(__netif_schedule);
1396
1397 void dev_kfree_skb_irq(struct sk_buff *skb)
1398 {
1399 if (atomic_dec_and_test(&skb->users)) {
1400 struct softnet_data *sd;
1401 unsigned long flags;
1402
1403 local_irq_save(flags);
1404 sd = &__get_cpu_var(softnet_data);
1405 skb->next = sd->completion_queue;
1406 sd->completion_queue = skb;
1407 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1408 local_irq_restore(flags);
1409 }
1410 }
1411 EXPORT_SYMBOL(dev_kfree_skb_irq);
1412
1413 void dev_kfree_skb_any(struct sk_buff *skb)
1414 {
1415 if (in_irq() || irqs_disabled())
1416 dev_kfree_skb_irq(skb);
1417 else
1418 dev_kfree_skb(skb);
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_any);
1421
1422
1423 /**
1424 * netif_device_detach - mark device as removed
1425 * @dev: network device
1426 *
1427 * Mark device as removed from system and therefore no longer available.
1428 */
1429 void netif_device_detach(struct net_device *dev)
1430 {
1431 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1432 netif_running(dev)) {
1433 netif_stop_queue(dev);
1434 }
1435 }
1436 EXPORT_SYMBOL(netif_device_detach);
1437
1438 /**
1439 * netif_device_attach - mark device as attached
1440 * @dev: network device
1441 *
1442 * Mark device as attached from system and restart if needed.
1443 */
1444 void netif_device_attach(struct net_device *dev)
1445 {
1446 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1447 netif_running(dev)) {
1448 netif_wake_queue(dev);
1449 __netdev_watchdog_up(dev);
1450 }
1451 }
1452 EXPORT_SYMBOL(netif_device_attach);
1453
1454 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1455 {
1456 return ((features & NETIF_F_GEN_CSUM) ||
1457 ((features & NETIF_F_IP_CSUM) &&
1458 protocol == htons(ETH_P_IP)) ||
1459 ((features & NETIF_F_IPV6_CSUM) &&
1460 protocol == htons(ETH_P_IPV6)) ||
1461 ((features & NETIF_F_FCOE_CRC) &&
1462 protocol == htons(ETH_P_FCOE)));
1463 }
1464
1465 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1466 {
1467 if (can_checksum_protocol(dev->features, skb->protocol))
1468 return true;
1469
1470 if (skb->protocol == htons(ETH_P_8021Q)) {
1471 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1472 if (can_checksum_protocol(dev->features & dev->vlan_features,
1473 veh->h_vlan_encapsulated_proto))
1474 return true;
1475 }
1476
1477 return false;
1478 }
1479
1480 /*
1481 * Invalidate hardware checksum when packet is to be mangled, and
1482 * complete checksum manually on outgoing path.
1483 */
1484 int skb_checksum_help(struct sk_buff *skb)
1485 {
1486 __wsum csum;
1487 int ret = 0, offset;
1488
1489 if (skb->ip_summed == CHECKSUM_COMPLETE)
1490 goto out_set_summed;
1491
1492 if (unlikely(skb_shinfo(skb)->gso_size)) {
1493 /* Let GSO fix up the checksum. */
1494 goto out_set_summed;
1495 }
1496
1497 offset = skb->csum_start - skb_headroom(skb);
1498 BUG_ON(offset >= skb_headlen(skb));
1499 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1500
1501 offset += skb->csum_offset;
1502 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1503
1504 if (skb_cloned(skb) &&
1505 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1506 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1507 if (ret)
1508 goto out;
1509 }
1510
1511 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1512 out_set_summed:
1513 skb->ip_summed = CHECKSUM_NONE;
1514 out:
1515 return ret;
1516 }
1517
1518 /**
1519 * skb_gso_segment - Perform segmentation on skb.
1520 * @skb: buffer to segment
1521 * @features: features for the output path (see dev->features)
1522 *
1523 * This function segments the given skb and returns a list of segments.
1524 *
1525 * It may return NULL if the skb requires no segmentation. This is
1526 * only possible when GSO is used for verifying header integrity.
1527 */
1528 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1529 {
1530 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1531 struct packet_type *ptype;
1532 __be16 type = skb->protocol;
1533 int err;
1534
1535 skb_reset_mac_header(skb);
1536 skb->mac_len = skb->network_header - skb->mac_header;
1537 __skb_pull(skb, skb->mac_len);
1538
1539 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1540 struct net_device *dev = skb->dev;
1541 struct ethtool_drvinfo info = {};
1542
1543 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1544 dev->ethtool_ops->get_drvinfo(dev, &info);
1545
1546 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1547 "ip_summed=%d",
1548 info.driver, dev ? dev->features : 0L,
1549 skb->sk ? skb->sk->sk_route_caps : 0L,
1550 skb->len, skb->data_len, skb->ip_summed);
1551
1552 if (skb_header_cloned(skb) &&
1553 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1554 return ERR_PTR(err);
1555 }
1556
1557 rcu_read_lock();
1558 list_for_each_entry_rcu(ptype,
1559 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1560 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1561 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1562 err = ptype->gso_send_check(skb);
1563 segs = ERR_PTR(err);
1564 if (err || skb_gso_ok(skb, features))
1565 break;
1566 __skb_push(skb, (skb->data -
1567 skb_network_header(skb)));
1568 }
1569 segs = ptype->gso_segment(skb, features);
1570 break;
1571 }
1572 }
1573 rcu_read_unlock();
1574
1575 __skb_push(skb, skb->data - skb_mac_header(skb));
1576
1577 return segs;
1578 }
1579
1580 EXPORT_SYMBOL(skb_gso_segment);
1581
1582 /* Take action when hardware reception checksum errors are detected. */
1583 #ifdef CONFIG_BUG
1584 void netdev_rx_csum_fault(struct net_device *dev)
1585 {
1586 if (net_ratelimit()) {
1587 printk(KERN_ERR "%s: hw csum failure.\n",
1588 dev ? dev->name : "<unknown>");
1589 dump_stack();
1590 }
1591 }
1592 EXPORT_SYMBOL(netdev_rx_csum_fault);
1593 #endif
1594
1595 /* Actually, we should eliminate this check as soon as we know, that:
1596 * 1. IOMMU is present and allows to map all the memory.
1597 * 2. No high memory really exists on this machine.
1598 */
1599
1600 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1601 {
1602 #ifdef CONFIG_HIGHMEM
1603 int i;
1604
1605 if (dev->features & NETIF_F_HIGHDMA)
1606 return 0;
1607
1608 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1609 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1610 return 1;
1611
1612 #endif
1613 return 0;
1614 }
1615
1616 struct dev_gso_cb {
1617 void (*destructor)(struct sk_buff *skb);
1618 };
1619
1620 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1621
1622 static void dev_gso_skb_destructor(struct sk_buff *skb)
1623 {
1624 struct dev_gso_cb *cb;
1625
1626 do {
1627 struct sk_buff *nskb = skb->next;
1628
1629 skb->next = nskb->next;
1630 nskb->next = NULL;
1631 kfree_skb(nskb);
1632 } while (skb->next);
1633
1634 cb = DEV_GSO_CB(skb);
1635 if (cb->destructor)
1636 cb->destructor(skb);
1637 }
1638
1639 /**
1640 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1641 * @skb: buffer to segment
1642 *
1643 * This function segments the given skb and stores the list of segments
1644 * in skb->next.
1645 */
1646 static int dev_gso_segment(struct sk_buff *skb)
1647 {
1648 struct net_device *dev = skb->dev;
1649 struct sk_buff *segs;
1650 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1651 NETIF_F_SG : 0);
1652
1653 segs = skb_gso_segment(skb, features);
1654
1655 /* Verifying header integrity only. */
1656 if (!segs)
1657 return 0;
1658
1659 if (IS_ERR(segs))
1660 return PTR_ERR(segs);
1661
1662 skb->next = segs;
1663 DEV_GSO_CB(skb)->destructor = skb->destructor;
1664 skb->destructor = dev_gso_skb_destructor;
1665
1666 return 0;
1667 }
1668
1669 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1670 struct netdev_queue *txq)
1671 {
1672 const struct net_device_ops *ops = dev->netdev_ops;
1673 int rc;
1674
1675 if (likely(!skb->next)) {
1676 if (!list_empty(&ptype_all))
1677 dev_queue_xmit_nit(skb, dev);
1678
1679 if (netif_needs_gso(dev, skb)) {
1680 if (unlikely(dev_gso_segment(skb)))
1681 goto out_kfree_skb;
1682 if (skb->next)
1683 goto gso;
1684 }
1685
1686 rc = ops->ndo_start_xmit(skb, dev);
1687 /*
1688 * TODO: if skb_orphan() was called by
1689 * dev->hard_start_xmit() (for example, the unmodified
1690 * igb driver does that; bnx2 doesn't), then
1691 * skb_tx_software_timestamp() will be unable to send
1692 * back the time stamp.
1693 *
1694 * How can this be prevented? Always create another
1695 * reference to the socket before calling
1696 * dev->hard_start_xmit()? Prevent that skb_orphan()
1697 * does anything in dev->hard_start_xmit() by clearing
1698 * the skb destructor before the call and restoring it
1699 * afterwards, then doing the skb_orphan() ourselves?
1700 */
1701 return rc;
1702 }
1703
1704 gso:
1705 do {
1706 struct sk_buff *nskb = skb->next;
1707
1708 skb->next = nskb->next;
1709 nskb->next = NULL;
1710 rc = ops->ndo_start_xmit(nskb, dev);
1711 if (unlikely(rc)) {
1712 nskb->next = skb->next;
1713 skb->next = nskb;
1714 return rc;
1715 }
1716 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1717 return NETDEV_TX_BUSY;
1718 } while (skb->next);
1719
1720 skb->destructor = DEV_GSO_CB(skb)->destructor;
1721
1722 out_kfree_skb:
1723 kfree_skb(skb);
1724 return 0;
1725 }
1726
1727 static u32 skb_tx_hashrnd;
1728
1729 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1730 {
1731 u32 hash;
1732
1733 if (skb_rx_queue_recorded(skb)) {
1734 hash = skb_get_rx_queue(skb);
1735 } else if (skb->sk && skb->sk->sk_hash) {
1736 hash = skb->sk->sk_hash;
1737 } else
1738 hash = skb->protocol;
1739
1740 hash = jhash_1word(hash, skb_tx_hashrnd);
1741
1742 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1743 }
1744 EXPORT_SYMBOL(skb_tx_hash);
1745
1746 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1747 struct sk_buff *skb)
1748 {
1749 const struct net_device_ops *ops = dev->netdev_ops;
1750 u16 queue_index = 0;
1751
1752 if (ops->ndo_select_queue)
1753 queue_index = ops->ndo_select_queue(dev, skb);
1754 else if (dev->real_num_tx_queues > 1)
1755 queue_index = skb_tx_hash(dev, skb);
1756
1757 skb_set_queue_mapping(skb, queue_index);
1758 return netdev_get_tx_queue(dev, queue_index);
1759 }
1760
1761 /**
1762 * dev_queue_xmit - transmit a buffer
1763 * @skb: buffer to transmit
1764 *
1765 * Queue a buffer for transmission to a network device. The caller must
1766 * have set the device and priority and built the buffer before calling
1767 * this function. The function can be called from an interrupt.
1768 *
1769 * A negative errno code is returned on a failure. A success does not
1770 * guarantee the frame will be transmitted as it may be dropped due
1771 * to congestion or traffic shaping.
1772 *
1773 * -----------------------------------------------------------------------------------
1774 * I notice this method can also return errors from the queue disciplines,
1775 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1776 * be positive.
1777 *
1778 * Regardless of the return value, the skb is consumed, so it is currently
1779 * difficult to retry a send to this method. (You can bump the ref count
1780 * before sending to hold a reference for retry if you are careful.)
1781 *
1782 * When calling this method, interrupts MUST be enabled. This is because
1783 * the BH enable code must have IRQs enabled so that it will not deadlock.
1784 * --BLG
1785 */
1786 int dev_queue_xmit(struct sk_buff *skb)
1787 {
1788 struct net_device *dev = skb->dev;
1789 struct netdev_queue *txq;
1790 struct Qdisc *q;
1791 int rc = -ENOMEM;
1792
1793 /* GSO will handle the following emulations directly. */
1794 if (netif_needs_gso(dev, skb))
1795 goto gso;
1796
1797 if (skb_shinfo(skb)->frag_list &&
1798 !(dev->features & NETIF_F_FRAGLIST) &&
1799 __skb_linearize(skb))
1800 goto out_kfree_skb;
1801
1802 /* Fragmented skb is linearized if device does not support SG,
1803 * or if at least one of fragments is in highmem and device
1804 * does not support DMA from it.
1805 */
1806 if (skb_shinfo(skb)->nr_frags &&
1807 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1808 __skb_linearize(skb))
1809 goto out_kfree_skb;
1810
1811 /* If packet is not checksummed and device does not support
1812 * checksumming for this protocol, complete checksumming here.
1813 */
1814 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1815 skb_set_transport_header(skb, skb->csum_start -
1816 skb_headroom(skb));
1817 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1818 goto out_kfree_skb;
1819 }
1820
1821 gso:
1822 /* Disable soft irqs for various locks below. Also
1823 * stops preemption for RCU.
1824 */
1825 rcu_read_lock_bh();
1826
1827 txq = dev_pick_tx(dev, skb);
1828 q = rcu_dereference(txq->qdisc);
1829
1830 #ifdef CONFIG_NET_CLS_ACT
1831 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1832 #endif
1833 if (q->enqueue) {
1834 spinlock_t *root_lock = qdisc_lock(q);
1835
1836 spin_lock(root_lock);
1837
1838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1839 kfree_skb(skb);
1840 rc = NET_XMIT_DROP;
1841 } else {
1842 rc = qdisc_enqueue_root(skb, q);
1843 qdisc_run(q);
1844 }
1845 spin_unlock(root_lock);
1846
1847 goto out;
1848 }
1849
1850 /* The device has no queue. Common case for software devices:
1851 loopback, all the sorts of tunnels...
1852
1853 Really, it is unlikely that netif_tx_lock protection is necessary
1854 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1855 counters.)
1856 However, it is possible, that they rely on protection
1857 made by us here.
1858
1859 Check this and shot the lock. It is not prone from deadlocks.
1860 Either shot noqueue qdisc, it is even simpler 8)
1861 */
1862 if (dev->flags & IFF_UP) {
1863 int cpu = smp_processor_id(); /* ok because BHs are off */
1864
1865 if (txq->xmit_lock_owner != cpu) {
1866
1867 HARD_TX_LOCK(dev, txq, cpu);
1868
1869 if (!netif_tx_queue_stopped(txq)) {
1870 rc = 0;
1871 if (!dev_hard_start_xmit(skb, dev, txq)) {
1872 HARD_TX_UNLOCK(dev, txq);
1873 goto out;
1874 }
1875 }
1876 HARD_TX_UNLOCK(dev, txq);
1877 if (net_ratelimit())
1878 printk(KERN_CRIT "Virtual device %s asks to "
1879 "queue packet!\n", dev->name);
1880 } else {
1881 /* Recursion is detected! It is possible,
1882 * unfortunately */
1883 if (net_ratelimit())
1884 printk(KERN_CRIT "Dead loop on virtual device "
1885 "%s, fix it urgently!\n", dev->name);
1886 }
1887 }
1888
1889 rc = -ENETDOWN;
1890 rcu_read_unlock_bh();
1891
1892 out_kfree_skb:
1893 kfree_skb(skb);
1894 return rc;
1895 out:
1896 rcu_read_unlock_bh();
1897 return rc;
1898 }
1899
1900
1901 /*=======================================================================
1902 Receiver routines
1903 =======================================================================*/
1904
1905 int netdev_max_backlog __read_mostly = 1000;
1906 int netdev_budget __read_mostly = 300;
1907 int weight_p __read_mostly = 64; /* old backlog weight */
1908
1909 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1910
1911
1912 /**
1913 * netif_rx - post buffer to the network code
1914 * @skb: buffer to post
1915 *
1916 * This function receives a packet from a device driver and queues it for
1917 * the upper (protocol) levels to process. It always succeeds. The buffer
1918 * may be dropped during processing for congestion control or by the
1919 * protocol layers.
1920 *
1921 * return values:
1922 * NET_RX_SUCCESS (no congestion)
1923 * NET_RX_DROP (packet was dropped)
1924 *
1925 */
1926
1927 int netif_rx(struct sk_buff *skb)
1928 {
1929 struct softnet_data *queue;
1930 unsigned long flags;
1931
1932 /* if netpoll wants it, pretend we never saw it */
1933 if (netpoll_rx(skb))
1934 return NET_RX_DROP;
1935
1936 if (!skb->tstamp.tv64)
1937 net_timestamp(skb);
1938
1939 /*
1940 * The code is rearranged so that the path is the most
1941 * short when CPU is congested, but is still operating.
1942 */
1943 local_irq_save(flags);
1944 queue = &__get_cpu_var(softnet_data);
1945
1946 __get_cpu_var(netdev_rx_stat).total++;
1947 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1948 if (queue->input_pkt_queue.qlen) {
1949 enqueue:
1950 __skb_queue_tail(&queue->input_pkt_queue, skb);
1951 local_irq_restore(flags);
1952 return NET_RX_SUCCESS;
1953 }
1954
1955 napi_schedule(&queue->backlog);
1956 goto enqueue;
1957 }
1958
1959 __get_cpu_var(netdev_rx_stat).dropped++;
1960 local_irq_restore(flags);
1961
1962 kfree_skb(skb);
1963 return NET_RX_DROP;
1964 }
1965
1966 int netif_rx_ni(struct sk_buff *skb)
1967 {
1968 int err;
1969
1970 preempt_disable();
1971 err = netif_rx(skb);
1972 if (local_softirq_pending())
1973 do_softirq();
1974 preempt_enable();
1975
1976 return err;
1977 }
1978
1979 EXPORT_SYMBOL(netif_rx_ni);
1980
1981 static void net_tx_action(struct softirq_action *h)
1982 {
1983 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1984
1985 if (sd->completion_queue) {
1986 struct sk_buff *clist;
1987
1988 local_irq_disable();
1989 clist = sd->completion_queue;
1990 sd->completion_queue = NULL;
1991 local_irq_enable();
1992
1993 while (clist) {
1994 struct sk_buff *skb = clist;
1995 clist = clist->next;
1996
1997 WARN_ON(atomic_read(&skb->users));
1998 __kfree_skb(skb);
1999 }
2000 }
2001
2002 if (sd->output_queue) {
2003 struct Qdisc *head;
2004
2005 local_irq_disable();
2006 head = sd->output_queue;
2007 sd->output_queue = NULL;
2008 local_irq_enable();
2009
2010 while (head) {
2011 struct Qdisc *q = head;
2012 spinlock_t *root_lock;
2013
2014 head = head->next_sched;
2015
2016 root_lock = qdisc_lock(q);
2017 if (spin_trylock(root_lock)) {
2018 smp_mb__before_clear_bit();
2019 clear_bit(__QDISC_STATE_SCHED,
2020 &q->state);
2021 qdisc_run(q);
2022 spin_unlock(root_lock);
2023 } else {
2024 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2025 &q->state)) {
2026 __netif_reschedule(q);
2027 } else {
2028 smp_mb__before_clear_bit();
2029 clear_bit(__QDISC_STATE_SCHED,
2030 &q->state);
2031 }
2032 }
2033 }
2034 }
2035 }
2036
2037 static inline int deliver_skb(struct sk_buff *skb,
2038 struct packet_type *pt_prev,
2039 struct net_device *orig_dev)
2040 {
2041 atomic_inc(&skb->users);
2042 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2043 }
2044
2045 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2046 /* These hooks defined here for ATM */
2047 struct net_bridge;
2048 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2049 unsigned char *addr);
2050 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2051
2052 /*
2053 * If bridge module is loaded call bridging hook.
2054 * returns NULL if packet was consumed.
2055 */
2056 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2057 struct sk_buff *skb) __read_mostly;
2058 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2059 struct packet_type **pt_prev, int *ret,
2060 struct net_device *orig_dev)
2061 {
2062 struct net_bridge_port *port;
2063
2064 if (skb->pkt_type == PACKET_LOOPBACK ||
2065 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2066 return skb;
2067
2068 if (*pt_prev) {
2069 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2070 *pt_prev = NULL;
2071 }
2072
2073 return br_handle_frame_hook(port, skb);
2074 }
2075 #else
2076 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2077 #endif
2078
2079 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2080 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2081 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2082
2083 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2084 struct packet_type **pt_prev,
2085 int *ret,
2086 struct net_device *orig_dev)
2087 {
2088 if (skb->dev->macvlan_port == NULL)
2089 return skb;
2090
2091 if (*pt_prev) {
2092 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2093 *pt_prev = NULL;
2094 }
2095 return macvlan_handle_frame_hook(skb);
2096 }
2097 #else
2098 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2099 #endif
2100
2101 #ifdef CONFIG_NET_CLS_ACT
2102 /* TODO: Maybe we should just force sch_ingress to be compiled in
2103 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2104 * a compare and 2 stores extra right now if we dont have it on
2105 * but have CONFIG_NET_CLS_ACT
2106 * NOTE: This doesnt stop any functionality; if you dont have
2107 * the ingress scheduler, you just cant add policies on ingress.
2108 *
2109 */
2110 static int ing_filter(struct sk_buff *skb)
2111 {
2112 struct net_device *dev = skb->dev;
2113 u32 ttl = G_TC_RTTL(skb->tc_verd);
2114 struct netdev_queue *rxq;
2115 int result = TC_ACT_OK;
2116 struct Qdisc *q;
2117
2118 if (MAX_RED_LOOP < ttl++) {
2119 printk(KERN_WARNING
2120 "Redir loop detected Dropping packet (%d->%d)\n",
2121 skb->iif, dev->ifindex);
2122 return TC_ACT_SHOT;
2123 }
2124
2125 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2126 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2127
2128 rxq = &dev->rx_queue;
2129
2130 q = rxq->qdisc;
2131 if (q != &noop_qdisc) {
2132 spin_lock(qdisc_lock(q));
2133 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2134 result = qdisc_enqueue_root(skb, q);
2135 spin_unlock(qdisc_lock(q));
2136 }
2137
2138 return result;
2139 }
2140
2141 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2142 struct packet_type **pt_prev,
2143 int *ret, struct net_device *orig_dev)
2144 {
2145 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2146 goto out;
2147
2148 if (*pt_prev) {
2149 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2150 *pt_prev = NULL;
2151 } else {
2152 /* Huh? Why does turning on AF_PACKET affect this? */
2153 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2154 }
2155
2156 switch (ing_filter(skb)) {
2157 case TC_ACT_SHOT:
2158 case TC_ACT_STOLEN:
2159 kfree_skb(skb);
2160 return NULL;
2161 }
2162
2163 out:
2164 skb->tc_verd = 0;
2165 return skb;
2166 }
2167 #endif
2168
2169 /*
2170 * netif_nit_deliver - deliver received packets to network taps
2171 * @skb: buffer
2172 *
2173 * This function is used to deliver incoming packets to network
2174 * taps. It should be used when the normal netif_receive_skb path
2175 * is bypassed, for example because of VLAN acceleration.
2176 */
2177 void netif_nit_deliver(struct sk_buff *skb)
2178 {
2179 struct packet_type *ptype;
2180
2181 if (list_empty(&ptype_all))
2182 return;
2183
2184 skb_reset_network_header(skb);
2185 skb_reset_transport_header(skb);
2186 skb->mac_len = skb->network_header - skb->mac_header;
2187
2188 rcu_read_lock();
2189 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2190 if (!ptype->dev || ptype->dev == skb->dev)
2191 deliver_skb(skb, ptype, skb->dev);
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 /**
2197 * netif_receive_skb - process receive buffer from network
2198 * @skb: buffer to process
2199 *
2200 * netif_receive_skb() is the main receive data processing function.
2201 * It always succeeds. The buffer may be dropped during processing
2202 * for congestion control or by the protocol layers.
2203 *
2204 * This function may only be called from softirq context and interrupts
2205 * should be enabled.
2206 *
2207 * Return values (usually ignored):
2208 * NET_RX_SUCCESS: no congestion
2209 * NET_RX_DROP: packet was dropped
2210 */
2211 int netif_receive_skb(struct sk_buff *skb)
2212 {
2213 struct packet_type *ptype, *pt_prev;
2214 struct net_device *orig_dev;
2215 struct net_device *null_or_orig;
2216 int ret = NET_RX_DROP;
2217 __be16 type;
2218
2219 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2220 return NET_RX_SUCCESS;
2221
2222 /* if we've gotten here through NAPI, check netpoll */
2223 if (netpoll_receive_skb(skb))
2224 return NET_RX_DROP;
2225
2226 if (!skb->tstamp.tv64)
2227 net_timestamp(skb);
2228
2229 if (!skb->iif)
2230 skb->iif = skb->dev->ifindex;
2231
2232 null_or_orig = NULL;
2233 orig_dev = skb->dev;
2234 if (orig_dev->master) {
2235 if (skb_bond_should_drop(skb))
2236 null_or_orig = orig_dev; /* deliver only exact match */
2237 else
2238 skb->dev = orig_dev->master;
2239 }
2240
2241 __get_cpu_var(netdev_rx_stat).total++;
2242
2243 skb_reset_network_header(skb);
2244 skb_reset_transport_header(skb);
2245 skb->mac_len = skb->network_header - skb->mac_header;
2246
2247 pt_prev = NULL;
2248
2249 rcu_read_lock();
2250
2251 #ifdef CONFIG_NET_CLS_ACT
2252 if (skb->tc_verd & TC_NCLS) {
2253 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2254 goto ncls;
2255 }
2256 #endif
2257
2258 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2259 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2260 ptype->dev == orig_dev) {
2261 if (pt_prev)
2262 ret = deliver_skb(skb, pt_prev, orig_dev);
2263 pt_prev = ptype;
2264 }
2265 }
2266
2267 #ifdef CONFIG_NET_CLS_ACT
2268 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2269 if (!skb)
2270 goto out;
2271 ncls:
2272 #endif
2273
2274 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2275 if (!skb)
2276 goto out;
2277 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2278 if (!skb)
2279 goto out;
2280
2281 skb_orphan(skb);
2282
2283 type = skb->protocol;
2284 list_for_each_entry_rcu(ptype,
2285 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2286 if (ptype->type == type &&
2287 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2288 ptype->dev == orig_dev)) {
2289 if (pt_prev)
2290 ret = deliver_skb(skb, pt_prev, orig_dev);
2291 pt_prev = ptype;
2292 }
2293 }
2294
2295 if (pt_prev) {
2296 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2297 } else {
2298 kfree_skb(skb);
2299 /* Jamal, now you will not able to escape explaining
2300 * me how you were going to use this. :-)
2301 */
2302 ret = NET_RX_DROP;
2303 }
2304
2305 out:
2306 rcu_read_unlock();
2307 return ret;
2308 }
2309
2310 /* Network device is going away, flush any packets still pending */
2311 static void flush_backlog(void *arg)
2312 {
2313 struct net_device *dev = arg;
2314 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2315 struct sk_buff *skb, *tmp;
2316
2317 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2318 if (skb->dev == dev) {
2319 __skb_unlink(skb, &queue->input_pkt_queue);
2320 kfree_skb(skb);
2321 }
2322 }
2323
2324 static int napi_gro_complete(struct sk_buff *skb)
2325 {
2326 struct packet_type *ptype;
2327 __be16 type = skb->protocol;
2328 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2329 int err = -ENOENT;
2330
2331 if (NAPI_GRO_CB(skb)->count == 1)
2332 goto out;
2333
2334 rcu_read_lock();
2335 list_for_each_entry_rcu(ptype, head, list) {
2336 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2337 continue;
2338
2339 err = ptype->gro_complete(skb);
2340 break;
2341 }
2342 rcu_read_unlock();
2343
2344 if (err) {
2345 WARN_ON(&ptype->list == head);
2346 kfree_skb(skb);
2347 return NET_RX_SUCCESS;
2348 }
2349
2350 out:
2351 skb_shinfo(skb)->gso_size = 0;
2352 return netif_receive_skb(skb);
2353 }
2354
2355 void napi_gro_flush(struct napi_struct *napi)
2356 {
2357 struct sk_buff *skb, *next;
2358
2359 for (skb = napi->gro_list; skb; skb = next) {
2360 next = skb->next;
2361 skb->next = NULL;
2362 napi_gro_complete(skb);
2363 }
2364
2365 napi->gro_count = 0;
2366 napi->gro_list = NULL;
2367 }
2368 EXPORT_SYMBOL(napi_gro_flush);
2369
2370 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2371 {
2372 unsigned int offset = skb_gro_offset(skb);
2373
2374 hlen += offset;
2375 if (hlen <= skb_headlen(skb))
2376 return skb->data + offset;
2377
2378 if (unlikely(!skb_shinfo(skb)->nr_frags ||
2379 skb_shinfo(skb)->frags[0].size <=
2380 hlen - skb_headlen(skb) ||
2381 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2382 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2383
2384 return page_address(skb_shinfo(skb)->frags[0].page) +
2385 skb_shinfo(skb)->frags[0].page_offset +
2386 offset - skb_headlen(skb);
2387 }
2388 EXPORT_SYMBOL(skb_gro_header);
2389
2390 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2391 {
2392 struct sk_buff **pp = NULL;
2393 struct packet_type *ptype;
2394 __be16 type = skb->protocol;
2395 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2396 int same_flow;
2397 int mac_len;
2398 int ret;
2399
2400 if (!(skb->dev->features & NETIF_F_GRO))
2401 goto normal;
2402
2403 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2404 goto normal;
2405
2406 rcu_read_lock();
2407 list_for_each_entry_rcu(ptype, head, list) {
2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 continue;
2410
2411 skb_set_network_header(skb, skb_gro_offset(skb));
2412 mac_len = skb->network_header - skb->mac_header;
2413 skb->mac_len = mac_len;
2414 NAPI_GRO_CB(skb)->same_flow = 0;
2415 NAPI_GRO_CB(skb)->flush = 0;
2416 NAPI_GRO_CB(skb)->free = 0;
2417
2418 pp = ptype->gro_receive(&napi->gro_list, skb);
2419 break;
2420 }
2421 rcu_read_unlock();
2422
2423 if (&ptype->list == head)
2424 goto normal;
2425
2426 same_flow = NAPI_GRO_CB(skb)->same_flow;
2427 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2428
2429 if (pp) {
2430 struct sk_buff *nskb = *pp;
2431
2432 *pp = nskb->next;
2433 nskb->next = NULL;
2434 napi_gro_complete(nskb);
2435 napi->gro_count--;
2436 }
2437
2438 if (same_flow)
2439 goto ok;
2440
2441 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2442 goto normal;
2443
2444 napi->gro_count++;
2445 NAPI_GRO_CB(skb)->count = 1;
2446 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2447 skb->next = napi->gro_list;
2448 napi->gro_list = skb;
2449 ret = GRO_HELD;
2450
2451 pull:
2452 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2453 if (napi->gro_list == skb)
2454 napi->gro_list = skb->next;
2455 ret = GRO_DROP;
2456 }
2457
2458 ok:
2459 return ret;
2460
2461 normal:
2462 ret = GRO_NORMAL;
2463 goto pull;
2464 }
2465 EXPORT_SYMBOL(dev_gro_receive);
2466
2467 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2468 {
2469 struct sk_buff *p;
2470
2471 if (netpoll_rx_on(skb))
2472 return GRO_NORMAL;
2473
2474 for (p = napi->gro_list; p; p = p->next) {
2475 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2476 && !compare_ether_header(skb_mac_header(p),
2477 skb_gro_mac_header(skb));
2478 NAPI_GRO_CB(p)->flush = 0;
2479 }
2480
2481 return dev_gro_receive(napi, skb);
2482 }
2483
2484 int napi_skb_finish(int ret, struct sk_buff *skb)
2485 {
2486 int err = NET_RX_SUCCESS;
2487
2488 switch (ret) {
2489 case GRO_NORMAL:
2490 return netif_receive_skb(skb);
2491
2492 case GRO_DROP:
2493 err = NET_RX_DROP;
2494 /* fall through */
2495
2496 case GRO_MERGED_FREE:
2497 kfree_skb(skb);
2498 break;
2499 }
2500
2501 return err;
2502 }
2503 EXPORT_SYMBOL(napi_skb_finish);
2504
2505 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2506 {
2507 skb_gro_reset_offset(skb);
2508
2509 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2510 }
2511 EXPORT_SYMBOL(napi_gro_receive);
2512
2513 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2514 {
2515 __skb_pull(skb, skb_headlen(skb));
2516 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2517
2518 napi->skb = skb;
2519 }
2520 EXPORT_SYMBOL(napi_reuse_skb);
2521
2522 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2523 {
2524 struct net_device *dev = napi->dev;
2525 struct sk_buff *skb = napi->skb;
2526
2527 if (!skb) {
2528 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2529 if (!skb)
2530 goto out;
2531
2532 skb_reserve(skb, NET_IP_ALIGN);
2533
2534 napi->skb = skb;
2535 }
2536
2537 out:
2538 return skb;
2539 }
2540 EXPORT_SYMBOL(napi_get_frags);
2541
2542 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2543 {
2544 int err = NET_RX_SUCCESS;
2545
2546 switch (ret) {
2547 case GRO_NORMAL:
2548 case GRO_HELD:
2549 skb->protocol = eth_type_trans(skb, napi->dev);
2550
2551 if (ret == GRO_NORMAL)
2552 return netif_receive_skb(skb);
2553
2554 skb_gro_pull(skb, -ETH_HLEN);
2555 break;
2556
2557 case GRO_DROP:
2558 err = NET_RX_DROP;
2559 /* fall through */
2560
2561 case GRO_MERGED_FREE:
2562 napi_reuse_skb(napi, skb);
2563 break;
2564 }
2565
2566 return err;
2567 }
2568 EXPORT_SYMBOL(napi_frags_finish);
2569
2570 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2571 {
2572 struct sk_buff *skb = napi->skb;
2573 struct ethhdr *eth;
2574
2575 napi->skb = NULL;
2576
2577 skb_reset_mac_header(skb);
2578 skb_gro_reset_offset(skb);
2579
2580 eth = skb_gro_header(skb, sizeof(*eth));
2581 if (!eth) {
2582 napi_reuse_skb(napi, skb);
2583 skb = NULL;
2584 goto out;
2585 }
2586
2587 skb_gro_pull(skb, sizeof(*eth));
2588
2589 /*
2590 * This works because the only protocols we care about don't require
2591 * special handling. We'll fix it up properly at the end.
2592 */
2593 skb->protocol = eth->h_proto;
2594
2595 out:
2596 return skb;
2597 }
2598 EXPORT_SYMBOL(napi_frags_skb);
2599
2600 int napi_gro_frags(struct napi_struct *napi)
2601 {
2602 struct sk_buff *skb = napi_frags_skb(napi);
2603
2604 if (!skb)
2605 return NET_RX_DROP;
2606
2607 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2608 }
2609 EXPORT_SYMBOL(napi_gro_frags);
2610
2611 static int process_backlog(struct napi_struct *napi, int quota)
2612 {
2613 int work = 0;
2614 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2615 unsigned long start_time = jiffies;
2616
2617 napi->weight = weight_p;
2618 do {
2619 struct sk_buff *skb;
2620
2621 local_irq_disable();
2622 skb = __skb_dequeue(&queue->input_pkt_queue);
2623 if (!skb) {
2624 __napi_complete(napi);
2625 local_irq_enable();
2626 break;
2627 }
2628 local_irq_enable();
2629
2630 netif_receive_skb(skb);
2631 } while (++work < quota && jiffies == start_time);
2632
2633 return work;
2634 }
2635
2636 /**
2637 * __napi_schedule - schedule for receive
2638 * @n: entry to schedule
2639 *
2640 * The entry's receive function will be scheduled to run
2641 */
2642 void __napi_schedule(struct napi_struct *n)
2643 {
2644 unsigned long flags;
2645
2646 local_irq_save(flags);
2647 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2648 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2649 local_irq_restore(flags);
2650 }
2651 EXPORT_SYMBOL(__napi_schedule);
2652
2653 void __napi_complete(struct napi_struct *n)
2654 {
2655 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2656 BUG_ON(n->gro_list);
2657
2658 list_del(&n->poll_list);
2659 smp_mb__before_clear_bit();
2660 clear_bit(NAPI_STATE_SCHED, &n->state);
2661 }
2662 EXPORT_SYMBOL(__napi_complete);
2663
2664 void napi_complete(struct napi_struct *n)
2665 {
2666 unsigned long flags;
2667
2668 /*
2669 * don't let napi dequeue from the cpu poll list
2670 * just in case its running on a different cpu
2671 */
2672 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2673 return;
2674
2675 napi_gro_flush(n);
2676 local_irq_save(flags);
2677 __napi_complete(n);
2678 local_irq_restore(flags);
2679 }
2680 EXPORT_SYMBOL(napi_complete);
2681
2682 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2683 int (*poll)(struct napi_struct *, int), int weight)
2684 {
2685 INIT_LIST_HEAD(&napi->poll_list);
2686 napi->gro_count = 0;
2687 napi->gro_list = NULL;
2688 napi->skb = NULL;
2689 napi->poll = poll;
2690 napi->weight = weight;
2691 list_add(&napi->dev_list, &dev->napi_list);
2692 napi->dev = dev;
2693 #ifdef CONFIG_NETPOLL
2694 spin_lock_init(&napi->poll_lock);
2695 napi->poll_owner = -1;
2696 #endif
2697 set_bit(NAPI_STATE_SCHED, &napi->state);
2698 }
2699 EXPORT_SYMBOL(netif_napi_add);
2700
2701 void netif_napi_del(struct napi_struct *napi)
2702 {
2703 struct sk_buff *skb, *next;
2704
2705 list_del_init(&napi->dev_list);
2706 napi_free_frags(napi);
2707
2708 for (skb = napi->gro_list; skb; skb = next) {
2709 next = skb->next;
2710 skb->next = NULL;
2711 kfree_skb(skb);
2712 }
2713
2714 napi->gro_list = NULL;
2715 napi->gro_count = 0;
2716 }
2717 EXPORT_SYMBOL(netif_napi_del);
2718
2719
2720 static void net_rx_action(struct softirq_action *h)
2721 {
2722 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2723 unsigned long time_limit = jiffies + 2;
2724 int budget = netdev_budget;
2725 void *have;
2726
2727 local_irq_disable();
2728
2729 while (!list_empty(list)) {
2730 struct napi_struct *n;
2731 int work, weight;
2732
2733 /* If softirq window is exhuasted then punt.
2734 * Allow this to run for 2 jiffies since which will allow
2735 * an average latency of 1.5/HZ.
2736 */
2737 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2738 goto softnet_break;
2739
2740 local_irq_enable();
2741
2742 /* Even though interrupts have been re-enabled, this
2743 * access is safe because interrupts can only add new
2744 * entries to the tail of this list, and only ->poll()
2745 * calls can remove this head entry from the list.
2746 */
2747 n = list_entry(list->next, struct napi_struct, poll_list);
2748
2749 have = netpoll_poll_lock(n);
2750
2751 weight = n->weight;
2752
2753 /* This NAPI_STATE_SCHED test is for avoiding a race
2754 * with netpoll's poll_napi(). Only the entity which
2755 * obtains the lock and sees NAPI_STATE_SCHED set will
2756 * actually make the ->poll() call. Therefore we avoid
2757 * accidently calling ->poll() when NAPI is not scheduled.
2758 */
2759 work = 0;
2760 if (test_bit(NAPI_STATE_SCHED, &n->state))
2761 work = n->poll(n, weight);
2762
2763 WARN_ON_ONCE(work > weight);
2764
2765 budget -= work;
2766
2767 local_irq_disable();
2768
2769 /* Drivers must not modify the NAPI state if they
2770 * consume the entire weight. In such cases this code
2771 * still "owns" the NAPI instance and therefore can
2772 * move the instance around on the list at-will.
2773 */
2774 if (unlikely(work == weight)) {
2775 if (unlikely(napi_disable_pending(n)))
2776 __napi_complete(n);
2777 else
2778 list_move_tail(&n->poll_list, list);
2779 }
2780
2781 netpoll_poll_unlock(have);
2782 }
2783 out:
2784 local_irq_enable();
2785
2786 #ifdef CONFIG_NET_DMA
2787 /*
2788 * There may not be any more sk_buffs coming right now, so push
2789 * any pending DMA copies to hardware
2790 */
2791 dma_issue_pending_all();
2792 #endif
2793
2794 return;
2795
2796 softnet_break:
2797 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2798 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2799 goto out;
2800 }
2801
2802 static gifconf_func_t * gifconf_list [NPROTO];
2803
2804 /**
2805 * register_gifconf - register a SIOCGIF handler
2806 * @family: Address family
2807 * @gifconf: Function handler
2808 *
2809 * Register protocol dependent address dumping routines. The handler
2810 * that is passed must not be freed or reused until it has been replaced
2811 * by another handler.
2812 */
2813 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2814 {
2815 if (family >= NPROTO)
2816 return -EINVAL;
2817 gifconf_list[family] = gifconf;
2818 return 0;
2819 }
2820
2821
2822 /*
2823 * Map an interface index to its name (SIOCGIFNAME)
2824 */
2825
2826 /*
2827 * We need this ioctl for efficient implementation of the
2828 * if_indextoname() function required by the IPv6 API. Without
2829 * it, we would have to search all the interfaces to find a
2830 * match. --pb
2831 */
2832
2833 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2834 {
2835 struct net_device *dev;
2836 struct ifreq ifr;
2837
2838 /*
2839 * Fetch the caller's info block.
2840 */
2841
2842 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2843 return -EFAULT;
2844
2845 read_lock(&dev_base_lock);
2846 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2847 if (!dev) {
2848 read_unlock(&dev_base_lock);
2849 return -ENODEV;
2850 }
2851
2852 strcpy(ifr.ifr_name, dev->name);
2853 read_unlock(&dev_base_lock);
2854
2855 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2856 return -EFAULT;
2857 return 0;
2858 }
2859
2860 /*
2861 * Perform a SIOCGIFCONF call. This structure will change
2862 * size eventually, and there is nothing I can do about it.
2863 * Thus we will need a 'compatibility mode'.
2864 */
2865
2866 static int dev_ifconf(struct net *net, char __user *arg)
2867 {
2868 struct ifconf ifc;
2869 struct net_device *dev;
2870 char __user *pos;
2871 int len;
2872 int total;
2873 int i;
2874
2875 /*
2876 * Fetch the caller's info block.
2877 */
2878
2879 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2880 return -EFAULT;
2881
2882 pos = ifc.ifc_buf;
2883 len = ifc.ifc_len;
2884
2885 /*
2886 * Loop over the interfaces, and write an info block for each.
2887 */
2888
2889 total = 0;
2890 for_each_netdev(net, dev) {
2891 for (i = 0; i < NPROTO; i++) {
2892 if (gifconf_list[i]) {
2893 int done;
2894 if (!pos)
2895 done = gifconf_list[i](dev, NULL, 0);
2896 else
2897 done = gifconf_list[i](dev, pos + total,
2898 len - total);
2899 if (done < 0)
2900 return -EFAULT;
2901 total += done;
2902 }
2903 }
2904 }
2905
2906 /*
2907 * All done. Write the updated control block back to the caller.
2908 */
2909 ifc.ifc_len = total;
2910
2911 /*
2912 * Both BSD and Solaris return 0 here, so we do too.
2913 */
2914 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2915 }
2916
2917 #ifdef CONFIG_PROC_FS
2918 /*
2919 * This is invoked by the /proc filesystem handler to display a device
2920 * in detail.
2921 */
2922 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2923 __acquires(dev_base_lock)
2924 {
2925 struct net *net = seq_file_net(seq);
2926 loff_t off;
2927 struct net_device *dev;
2928
2929 read_lock(&dev_base_lock);
2930 if (!*pos)
2931 return SEQ_START_TOKEN;
2932
2933 off = 1;
2934 for_each_netdev(net, dev)
2935 if (off++ == *pos)
2936 return dev;
2937
2938 return NULL;
2939 }
2940
2941 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2942 {
2943 struct net *net = seq_file_net(seq);
2944 ++*pos;
2945 return v == SEQ_START_TOKEN ?
2946 first_net_device(net) : next_net_device((struct net_device *)v);
2947 }
2948
2949 void dev_seq_stop(struct seq_file *seq, void *v)
2950 __releases(dev_base_lock)
2951 {
2952 read_unlock(&dev_base_lock);
2953 }
2954
2955 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2956 {
2957 const struct net_device_stats *stats = dev_get_stats(dev);
2958
2959 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2960 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2961 dev->name, stats->rx_bytes, stats->rx_packets,
2962 stats->rx_errors,
2963 stats->rx_dropped + stats->rx_missed_errors,
2964 stats->rx_fifo_errors,
2965 stats->rx_length_errors + stats->rx_over_errors +
2966 stats->rx_crc_errors + stats->rx_frame_errors,
2967 stats->rx_compressed, stats->multicast,
2968 stats->tx_bytes, stats->tx_packets,
2969 stats->tx_errors, stats->tx_dropped,
2970 stats->tx_fifo_errors, stats->collisions,
2971 stats->tx_carrier_errors +
2972 stats->tx_aborted_errors +
2973 stats->tx_window_errors +
2974 stats->tx_heartbeat_errors,
2975 stats->tx_compressed);
2976 }
2977
2978 /*
2979 * Called from the PROCfs module. This now uses the new arbitrary sized
2980 * /proc/net interface to create /proc/net/dev
2981 */
2982 static int dev_seq_show(struct seq_file *seq, void *v)
2983 {
2984 if (v == SEQ_START_TOKEN)
2985 seq_puts(seq, "Inter-| Receive "
2986 " | Transmit\n"
2987 " face |bytes packets errs drop fifo frame "
2988 "compressed multicast|bytes packets errs "
2989 "drop fifo colls carrier compressed\n");
2990 else
2991 dev_seq_printf_stats(seq, v);
2992 return 0;
2993 }
2994
2995 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2996 {
2997 struct netif_rx_stats *rc = NULL;
2998
2999 while (*pos < nr_cpu_ids)
3000 if (cpu_online(*pos)) {
3001 rc = &per_cpu(netdev_rx_stat, *pos);
3002 break;
3003 } else
3004 ++*pos;
3005 return rc;
3006 }
3007
3008 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3009 {
3010 return softnet_get_online(pos);
3011 }
3012
3013 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3014 {
3015 ++*pos;
3016 return softnet_get_online(pos);
3017 }
3018
3019 static void softnet_seq_stop(struct seq_file *seq, void *v)
3020 {
3021 }
3022
3023 static int softnet_seq_show(struct seq_file *seq, void *v)
3024 {
3025 struct netif_rx_stats *s = v;
3026
3027 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3028 s->total, s->dropped, s->time_squeeze, 0,
3029 0, 0, 0, 0, /* was fastroute */
3030 s->cpu_collision );
3031 return 0;
3032 }
3033
3034 static const struct seq_operations dev_seq_ops = {
3035 .start = dev_seq_start,
3036 .next = dev_seq_next,
3037 .stop = dev_seq_stop,
3038 .show = dev_seq_show,
3039 };
3040
3041 static int dev_seq_open(struct inode *inode, struct file *file)
3042 {
3043 return seq_open_net(inode, file, &dev_seq_ops,
3044 sizeof(struct seq_net_private));
3045 }
3046
3047 static const struct file_operations dev_seq_fops = {
3048 .owner = THIS_MODULE,
3049 .open = dev_seq_open,
3050 .read = seq_read,
3051 .llseek = seq_lseek,
3052 .release = seq_release_net,
3053 };
3054
3055 static const struct seq_operations softnet_seq_ops = {
3056 .start = softnet_seq_start,
3057 .next = softnet_seq_next,
3058 .stop = softnet_seq_stop,
3059 .show = softnet_seq_show,
3060 };
3061
3062 static int softnet_seq_open(struct inode *inode, struct file *file)
3063 {
3064 return seq_open(file, &softnet_seq_ops);
3065 }
3066
3067 static const struct file_operations softnet_seq_fops = {
3068 .owner = THIS_MODULE,
3069 .open = softnet_seq_open,
3070 .read = seq_read,
3071 .llseek = seq_lseek,
3072 .release = seq_release,
3073 };
3074
3075 static void *ptype_get_idx(loff_t pos)
3076 {
3077 struct packet_type *pt = NULL;
3078 loff_t i = 0;
3079 int t;
3080
3081 list_for_each_entry_rcu(pt, &ptype_all, list) {
3082 if (i == pos)
3083 return pt;
3084 ++i;
3085 }
3086
3087 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3088 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3089 if (i == pos)
3090 return pt;
3091 ++i;
3092 }
3093 }
3094 return NULL;
3095 }
3096
3097 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3098 __acquires(RCU)
3099 {
3100 rcu_read_lock();
3101 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3102 }
3103
3104 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3105 {
3106 struct packet_type *pt;
3107 struct list_head *nxt;
3108 int hash;
3109
3110 ++*pos;
3111 if (v == SEQ_START_TOKEN)
3112 return ptype_get_idx(0);
3113
3114 pt = v;
3115 nxt = pt->list.next;
3116 if (pt->type == htons(ETH_P_ALL)) {
3117 if (nxt != &ptype_all)
3118 goto found;
3119 hash = 0;
3120 nxt = ptype_base[0].next;
3121 } else
3122 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3123
3124 while (nxt == &ptype_base[hash]) {
3125 if (++hash >= PTYPE_HASH_SIZE)
3126 return NULL;
3127 nxt = ptype_base[hash].next;
3128 }
3129 found:
3130 return list_entry(nxt, struct packet_type, list);
3131 }
3132
3133 static void ptype_seq_stop(struct seq_file *seq, void *v)
3134 __releases(RCU)
3135 {
3136 rcu_read_unlock();
3137 }
3138
3139 static int ptype_seq_show(struct seq_file *seq, void *v)
3140 {
3141 struct packet_type *pt = v;
3142
3143 if (v == SEQ_START_TOKEN)
3144 seq_puts(seq, "Type Device Function\n");
3145 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3146 if (pt->type == htons(ETH_P_ALL))
3147 seq_puts(seq, "ALL ");
3148 else
3149 seq_printf(seq, "%04x", ntohs(pt->type));
3150
3151 seq_printf(seq, " %-8s %pF\n",
3152 pt->dev ? pt->dev->name : "", pt->func);
3153 }
3154
3155 return 0;
3156 }
3157
3158 static const struct seq_operations ptype_seq_ops = {
3159 .start = ptype_seq_start,
3160 .next = ptype_seq_next,
3161 .stop = ptype_seq_stop,
3162 .show = ptype_seq_show,
3163 };
3164
3165 static int ptype_seq_open(struct inode *inode, struct file *file)
3166 {
3167 return seq_open_net(inode, file, &ptype_seq_ops,
3168 sizeof(struct seq_net_private));
3169 }
3170
3171 static const struct file_operations ptype_seq_fops = {
3172 .owner = THIS_MODULE,
3173 .open = ptype_seq_open,
3174 .read = seq_read,
3175 .llseek = seq_lseek,
3176 .release = seq_release_net,
3177 };
3178
3179
3180 static int __net_init dev_proc_net_init(struct net *net)
3181 {
3182 int rc = -ENOMEM;
3183
3184 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3185 goto out;
3186 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3187 goto out_dev;
3188 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3189 goto out_softnet;
3190
3191 if (wext_proc_init(net))
3192 goto out_ptype;
3193 rc = 0;
3194 out:
3195 return rc;
3196 out_ptype:
3197 proc_net_remove(net, "ptype");
3198 out_softnet:
3199 proc_net_remove(net, "softnet_stat");
3200 out_dev:
3201 proc_net_remove(net, "dev");
3202 goto out;
3203 }
3204
3205 static void __net_exit dev_proc_net_exit(struct net *net)
3206 {
3207 wext_proc_exit(net);
3208
3209 proc_net_remove(net, "ptype");
3210 proc_net_remove(net, "softnet_stat");
3211 proc_net_remove(net, "dev");
3212 }
3213
3214 static struct pernet_operations __net_initdata dev_proc_ops = {
3215 .init = dev_proc_net_init,
3216 .exit = dev_proc_net_exit,
3217 };
3218
3219 static int __init dev_proc_init(void)
3220 {
3221 return register_pernet_subsys(&dev_proc_ops);
3222 }
3223 #else
3224 #define dev_proc_init() 0
3225 #endif /* CONFIG_PROC_FS */
3226
3227
3228 /**
3229 * netdev_set_master - set up master/slave pair
3230 * @slave: slave device
3231 * @master: new master device
3232 *
3233 * Changes the master device of the slave. Pass %NULL to break the
3234 * bonding. The caller must hold the RTNL semaphore. On a failure
3235 * a negative errno code is returned. On success the reference counts
3236 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3237 * function returns zero.
3238 */
3239 int netdev_set_master(struct net_device *slave, struct net_device *master)
3240 {
3241 struct net_device *old = slave->master;
3242
3243 ASSERT_RTNL();
3244
3245 if (master) {
3246 if (old)
3247 return -EBUSY;
3248 dev_hold(master);
3249 }
3250
3251 slave->master = master;
3252
3253 synchronize_net();
3254
3255 if (old)
3256 dev_put(old);
3257
3258 if (master)
3259 slave->flags |= IFF_SLAVE;
3260 else
3261 slave->flags &= ~IFF_SLAVE;
3262
3263 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3264 return 0;
3265 }
3266
3267 static void dev_change_rx_flags(struct net_device *dev, int flags)
3268 {
3269 const struct net_device_ops *ops = dev->netdev_ops;
3270
3271 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3272 ops->ndo_change_rx_flags(dev, flags);
3273 }
3274
3275 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3276 {
3277 unsigned short old_flags = dev->flags;
3278 uid_t uid;
3279 gid_t gid;
3280
3281 ASSERT_RTNL();
3282
3283 dev->flags |= IFF_PROMISC;
3284 dev->promiscuity += inc;
3285 if (dev->promiscuity == 0) {
3286 /*
3287 * Avoid overflow.
3288 * If inc causes overflow, untouch promisc and return error.
3289 */
3290 if (inc < 0)
3291 dev->flags &= ~IFF_PROMISC;
3292 else {
3293 dev->promiscuity -= inc;
3294 printk(KERN_WARNING "%s: promiscuity touches roof, "
3295 "set promiscuity failed, promiscuity feature "
3296 "of device might be broken.\n", dev->name);
3297 return -EOVERFLOW;
3298 }
3299 }
3300 if (dev->flags != old_flags) {
3301 printk(KERN_INFO "device %s %s promiscuous mode\n",
3302 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3303 "left");
3304 if (audit_enabled) {
3305 current_uid_gid(&uid, &gid);
3306 audit_log(current->audit_context, GFP_ATOMIC,
3307 AUDIT_ANOM_PROMISCUOUS,
3308 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3309 dev->name, (dev->flags & IFF_PROMISC),
3310 (old_flags & IFF_PROMISC),
3311 audit_get_loginuid(current),
3312 uid, gid,
3313 audit_get_sessionid(current));
3314 }
3315
3316 dev_change_rx_flags(dev, IFF_PROMISC);
3317 }
3318 return 0;
3319 }
3320
3321 /**
3322 * dev_set_promiscuity - update promiscuity count on a device
3323 * @dev: device
3324 * @inc: modifier
3325 *
3326 * Add or remove promiscuity from a device. While the count in the device
3327 * remains above zero the interface remains promiscuous. Once it hits zero
3328 * the device reverts back to normal filtering operation. A negative inc
3329 * value is used to drop promiscuity on the device.
3330 * Return 0 if successful or a negative errno code on error.
3331 */
3332 int dev_set_promiscuity(struct net_device *dev, int inc)
3333 {
3334 unsigned short old_flags = dev->flags;
3335 int err;
3336
3337 err = __dev_set_promiscuity(dev, inc);
3338 if (err < 0)
3339 return err;
3340 if (dev->flags != old_flags)
3341 dev_set_rx_mode(dev);
3342 return err;
3343 }
3344
3345 /**
3346 * dev_set_allmulti - update allmulti count on a device
3347 * @dev: device
3348 * @inc: modifier
3349 *
3350 * Add or remove reception of all multicast frames to a device. While the
3351 * count in the device remains above zero the interface remains listening
3352 * to all interfaces. Once it hits zero the device reverts back to normal
3353 * filtering operation. A negative @inc value is used to drop the counter
3354 * when releasing a resource needing all multicasts.
3355 * Return 0 if successful or a negative errno code on error.
3356 */
3357
3358 int dev_set_allmulti(struct net_device *dev, int inc)
3359 {
3360 unsigned short old_flags = dev->flags;
3361
3362 ASSERT_RTNL();
3363
3364 dev->flags |= IFF_ALLMULTI;
3365 dev->allmulti += inc;
3366 if (dev->allmulti == 0) {
3367 /*
3368 * Avoid overflow.
3369 * If inc causes overflow, untouch allmulti and return error.
3370 */
3371 if (inc < 0)
3372 dev->flags &= ~IFF_ALLMULTI;
3373 else {
3374 dev->allmulti -= inc;
3375 printk(KERN_WARNING "%s: allmulti touches roof, "
3376 "set allmulti failed, allmulti feature of "
3377 "device might be broken.\n", dev->name);
3378 return -EOVERFLOW;
3379 }
3380 }
3381 if (dev->flags ^ old_flags) {
3382 dev_change_rx_flags(dev, IFF_ALLMULTI);
3383 dev_set_rx_mode(dev);
3384 }
3385 return 0;
3386 }
3387
3388 /*
3389 * Upload unicast and multicast address lists to device and
3390 * configure RX filtering. When the device doesn't support unicast
3391 * filtering it is put in promiscuous mode while unicast addresses
3392 * are present.
3393 */
3394 void __dev_set_rx_mode(struct net_device *dev)
3395 {
3396 const struct net_device_ops *ops = dev->netdev_ops;
3397
3398 /* dev_open will call this function so the list will stay sane. */
3399 if (!(dev->flags&IFF_UP))
3400 return;
3401
3402 if (!netif_device_present(dev))
3403 return;
3404
3405 if (ops->ndo_set_rx_mode)
3406 ops->ndo_set_rx_mode(dev);
3407 else {
3408 /* Unicast addresses changes may only happen under the rtnl,
3409 * therefore calling __dev_set_promiscuity here is safe.
3410 */
3411 if (dev->uc_count > 0 && !dev->uc_promisc) {
3412 __dev_set_promiscuity(dev, 1);
3413 dev->uc_promisc = 1;
3414 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3415 __dev_set_promiscuity(dev, -1);
3416 dev->uc_promisc = 0;
3417 }
3418
3419 if (ops->ndo_set_multicast_list)
3420 ops->ndo_set_multicast_list(dev);
3421 }
3422 }
3423
3424 void dev_set_rx_mode(struct net_device *dev)
3425 {
3426 netif_addr_lock_bh(dev);
3427 __dev_set_rx_mode(dev);
3428 netif_addr_unlock_bh(dev);
3429 }
3430
3431 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3432 void *addr, int alen, int glbl)
3433 {
3434 struct dev_addr_list *da;
3435
3436 for (; (da = *list) != NULL; list = &da->next) {
3437 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3438 alen == da->da_addrlen) {
3439 if (glbl) {
3440 int old_glbl = da->da_gusers;
3441 da->da_gusers = 0;
3442 if (old_glbl == 0)
3443 break;
3444 }
3445 if (--da->da_users)
3446 return 0;
3447
3448 *list = da->next;
3449 kfree(da);
3450 (*count)--;
3451 return 0;
3452 }
3453 }
3454 return -ENOENT;
3455 }
3456
3457 int __dev_addr_add(struct dev_addr_list **list, int *count,
3458 void *addr, int alen, int glbl)
3459 {
3460 struct dev_addr_list *da;
3461
3462 for (da = *list; da != NULL; da = da->next) {
3463 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3464 da->da_addrlen == alen) {
3465 if (glbl) {
3466 int old_glbl = da->da_gusers;
3467 da->da_gusers = 1;
3468 if (old_glbl)
3469 return 0;
3470 }
3471 da->da_users++;
3472 return 0;
3473 }
3474 }
3475
3476 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3477 if (da == NULL)
3478 return -ENOMEM;
3479 memcpy(da->da_addr, addr, alen);
3480 da->da_addrlen = alen;
3481 da->da_users = 1;
3482 da->da_gusers = glbl ? 1 : 0;
3483 da->next = *list;
3484 *list = da;
3485 (*count)++;
3486 return 0;
3487 }
3488
3489 /**
3490 * dev_unicast_delete - Release secondary unicast address.
3491 * @dev: device
3492 * @addr: address to delete
3493 * @alen: length of @addr
3494 *
3495 * Release reference to a secondary unicast address and remove it
3496 * from the device if the reference count drops to zero.
3497 *
3498 * The caller must hold the rtnl_mutex.
3499 */
3500 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3501 {
3502 int err;
3503
3504 ASSERT_RTNL();
3505
3506 netif_addr_lock_bh(dev);
3507 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3508 if (!err)
3509 __dev_set_rx_mode(dev);
3510 netif_addr_unlock_bh(dev);
3511 return err;
3512 }
3513 EXPORT_SYMBOL(dev_unicast_delete);
3514
3515 /**
3516 * dev_unicast_add - add a secondary unicast address
3517 * @dev: device
3518 * @addr: address to add
3519 * @alen: length of @addr
3520 *
3521 * Add a secondary unicast address to the device or increase
3522 * the reference count if it already exists.
3523 *
3524 * The caller must hold the rtnl_mutex.
3525 */
3526 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3527 {
3528 int err;
3529
3530 ASSERT_RTNL();
3531
3532 netif_addr_lock_bh(dev);
3533 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3534 if (!err)
3535 __dev_set_rx_mode(dev);
3536 netif_addr_unlock_bh(dev);
3537 return err;
3538 }
3539 EXPORT_SYMBOL(dev_unicast_add);
3540
3541 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3542 struct dev_addr_list **from, int *from_count)
3543 {
3544 struct dev_addr_list *da, *next;
3545 int err = 0;
3546
3547 da = *from;
3548 while (da != NULL) {
3549 next = da->next;
3550 if (!da->da_synced) {
3551 err = __dev_addr_add(to, to_count,
3552 da->da_addr, da->da_addrlen, 0);
3553 if (err < 0)
3554 break;
3555 da->da_synced = 1;
3556 da->da_users++;
3557 } else if (da->da_users == 1) {
3558 __dev_addr_delete(to, to_count,
3559 da->da_addr, da->da_addrlen, 0);
3560 __dev_addr_delete(from, from_count,
3561 da->da_addr, da->da_addrlen, 0);
3562 }
3563 da = next;
3564 }
3565 return err;
3566 }
3567
3568 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3569 struct dev_addr_list **from, int *from_count)
3570 {
3571 struct dev_addr_list *da, *next;
3572
3573 da = *from;
3574 while (da != NULL) {
3575 next = da->next;
3576 if (da->da_synced) {
3577 __dev_addr_delete(to, to_count,
3578 da->da_addr, da->da_addrlen, 0);
3579 da->da_synced = 0;
3580 __dev_addr_delete(from, from_count,
3581 da->da_addr, da->da_addrlen, 0);
3582 }
3583 da = next;
3584 }
3585 }
3586
3587 /**
3588 * dev_unicast_sync - Synchronize device's unicast list to another device
3589 * @to: destination device
3590 * @from: source device
3591 *
3592 * Add newly added addresses to the destination device and release
3593 * addresses that have no users left. The source device must be
3594 * locked by netif_tx_lock_bh.
3595 *
3596 * This function is intended to be called from the dev->set_rx_mode
3597 * function of layered software devices.
3598 */
3599 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3600 {
3601 int err = 0;
3602
3603 netif_addr_lock_bh(to);
3604 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3605 &from->uc_list, &from->uc_count);
3606 if (!err)
3607 __dev_set_rx_mode(to);
3608 netif_addr_unlock_bh(to);
3609 return err;
3610 }
3611 EXPORT_SYMBOL(dev_unicast_sync);
3612
3613 /**
3614 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3615 * @to: destination device
3616 * @from: source device
3617 *
3618 * Remove all addresses that were added to the destination device by
3619 * dev_unicast_sync(). This function is intended to be called from the
3620 * dev->stop function of layered software devices.
3621 */
3622 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3623 {
3624 netif_addr_lock_bh(from);
3625 netif_addr_lock(to);
3626
3627 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3628 &from->uc_list, &from->uc_count);
3629 __dev_set_rx_mode(to);
3630
3631 netif_addr_unlock(to);
3632 netif_addr_unlock_bh(from);
3633 }
3634 EXPORT_SYMBOL(dev_unicast_unsync);
3635
3636 static void __dev_addr_discard(struct dev_addr_list **list)
3637 {
3638 struct dev_addr_list *tmp;
3639
3640 while (*list != NULL) {
3641 tmp = *list;
3642 *list = tmp->next;
3643 if (tmp->da_users > tmp->da_gusers)
3644 printk("__dev_addr_discard: address leakage! "
3645 "da_users=%d\n", tmp->da_users);
3646 kfree(tmp);
3647 }
3648 }
3649
3650 static void dev_addr_discard(struct net_device *dev)
3651 {
3652 netif_addr_lock_bh(dev);
3653
3654 __dev_addr_discard(&dev->uc_list);
3655 dev->uc_count = 0;
3656
3657 __dev_addr_discard(&dev->mc_list);
3658 dev->mc_count = 0;
3659
3660 netif_addr_unlock_bh(dev);
3661 }
3662
3663 /**
3664 * dev_get_flags - get flags reported to userspace
3665 * @dev: device
3666 *
3667 * Get the combination of flag bits exported through APIs to userspace.
3668 */
3669 unsigned dev_get_flags(const struct net_device *dev)
3670 {
3671 unsigned flags;
3672
3673 flags = (dev->flags & ~(IFF_PROMISC |
3674 IFF_ALLMULTI |
3675 IFF_RUNNING |
3676 IFF_LOWER_UP |
3677 IFF_DORMANT)) |
3678 (dev->gflags & (IFF_PROMISC |
3679 IFF_ALLMULTI));
3680
3681 if (netif_running(dev)) {
3682 if (netif_oper_up(dev))
3683 flags |= IFF_RUNNING;
3684 if (netif_carrier_ok(dev))
3685 flags |= IFF_LOWER_UP;
3686 if (netif_dormant(dev))
3687 flags |= IFF_DORMANT;
3688 }
3689
3690 return flags;
3691 }
3692
3693 /**
3694 * dev_change_flags - change device settings
3695 * @dev: device
3696 * @flags: device state flags
3697 *
3698 * Change settings on device based state flags. The flags are
3699 * in the userspace exported format.
3700 */
3701 int dev_change_flags(struct net_device *dev, unsigned flags)
3702 {
3703 int ret, changes;
3704 int old_flags = dev->flags;
3705
3706 ASSERT_RTNL();
3707
3708 /*
3709 * Set the flags on our device.
3710 */
3711
3712 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3713 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3714 IFF_AUTOMEDIA)) |
3715 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3716 IFF_ALLMULTI));
3717
3718 /*
3719 * Load in the correct multicast list now the flags have changed.
3720 */
3721
3722 if ((old_flags ^ flags) & IFF_MULTICAST)
3723 dev_change_rx_flags(dev, IFF_MULTICAST);
3724
3725 dev_set_rx_mode(dev);
3726
3727 /*
3728 * Have we downed the interface. We handle IFF_UP ourselves
3729 * according to user attempts to set it, rather than blindly
3730 * setting it.
3731 */
3732
3733 ret = 0;
3734 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3735 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3736
3737 if (!ret)
3738 dev_set_rx_mode(dev);
3739 }
3740
3741 if (dev->flags & IFF_UP &&
3742 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3743 IFF_VOLATILE)))
3744 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3745
3746 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3747 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3748 dev->gflags ^= IFF_PROMISC;
3749 dev_set_promiscuity(dev, inc);
3750 }
3751
3752 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3753 is important. Some (broken) drivers set IFF_PROMISC, when
3754 IFF_ALLMULTI is requested not asking us and not reporting.
3755 */
3756 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3757 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3758 dev->gflags ^= IFF_ALLMULTI;
3759 dev_set_allmulti(dev, inc);
3760 }
3761
3762 /* Exclude state transition flags, already notified */
3763 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3764 if (changes)
3765 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3766
3767 return ret;
3768 }
3769
3770 /**
3771 * dev_set_mtu - Change maximum transfer unit
3772 * @dev: device
3773 * @new_mtu: new transfer unit
3774 *
3775 * Change the maximum transfer size of the network device.
3776 */
3777 int dev_set_mtu(struct net_device *dev, int new_mtu)
3778 {
3779 const struct net_device_ops *ops = dev->netdev_ops;
3780 int err;
3781
3782 if (new_mtu == dev->mtu)
3783 return 0;
3784
3785 /* MTU must be positive. */
3786 if (new_mtu < 0)
3787 return -EINVAL;
3788
3789 if (!netif_device_present(dev))
3790 return -ENODEV;
3791
3792 err = 0;
3793 if (ops->ndo_change_mtu)
3794 err = ops->ndo_change_mtu(dev, new_mtu);
3795 else
3796 dev->mtu = new_mtu;
3797
3798 if (!err && dev->flags & IFF_UP)
3799 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3800 return err;
3801 }
3802
3803 /**
3804 * dev_set_mac_address - Change Media Access Control Address
3805 * @dev: device
3806 * @sa: new address
3807 *
3808 * Change the hardware (MAC) address of the device
3809 */
3810 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3811 {
3812 const struct net_device_ops *ops = dev->netdev_ops;
3813 int err;
3814
3815 if (!ops->ndo_set_mac_address)
3816 return -EOPNOTSUPP;
3817 if (sa->sa_family != dev->type)
3818 return -EINVAL;
3819 if (!netif_device_present(dev))
3820 return -ENODEV;
3821 err = ops->ndo_set_mac_address(dev, sa);
3822 if (!err)
3823 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3824 return err;
3825 }
3826
3827 /*
3828 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3829 */
3830 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3831 {
3832 int err;
3833 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3834
3835 if (!dev)
3836 return -ENODEV;
3837
3838 switch (cmd) {
3839 case SIOCGIFFLAGS: /* Get interface flags */
3840 ifr->ifr_flags = dev_get_flags(dev);
3841 return 0;
3842
3843 case SIOCGIFMETRIC: /* Get the metric on the interface
3844 (currently unused) */
3845 ifr->ifr_metric = 0;
3846 return 0;
3847
3848 case SIOCGIFMTU: /* Get the MTU of a device */
3849 ifr->ifr_mtu = dev->mtu;
3850 return 0;
3851
3852 case SIOCGIFHWADDR:
3853 if (!dev->addr_len)
3854 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3855 else
3856 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3857 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3858 ifr->ifr_hwaddr.sa_family = dev->type;
3859 return 0;
3860
3861 case SIOCGIFSLAVE:
3862 err = -EINVAL;
3863 break;
3864
3865 case SIOCGIFMAP:
3866 ifr->ifr_map.mem_start = dev->mem_start;
3867 ifr->ifr_map.mem_end = dev->mem_end;
3868 ifr->ifr_map.base_addr = dev->base_addr;
3869 ifr->ifr_map.irq = dev->irq;
3870 ifr->ifr_map.dma = dev->dma;
3871 ifr->ifr_map.port = dev->if_port;
3872 return 0;
3873
3874 case SIOCGIFINDEX:
3875 ifr->ifr_ifindex = dev->ifindex;
3876 return 0;
3877
3878 case SIOCGIFTXQLEN:
3879 ifr->ifr_qlen = dev->tx_queue_len;
3880 return 0;
3881
3882 default:
3883 /* dev_ioctl() should ensure this case
3884 * is never reached
3885 */
3886 WARN_ON(1);
3887 err = -EINVAL;
3888 break;
3889
3890 }
3891 return err;
3892 }
3893
3894 /*
3895 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3896 */
3897 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3898 {
3899 int err;
3900 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3901 const struct net_device_ops *ops;
3902
3903 if (!dev)
3904 return -ENODEV;
3905
3906 ops = dev->netdev_ops;
3907
3908 switch (cmd) {
3909 case SIOCSIFFLAGS: /* Set interface flags */
3910 return dev_change_flags(dev, ifr->ifr_flags);
3911
3912 case SIOCSIFMETRIC: /* Set the metric on the interface
3913 (currently unused) */
3914 return -EOPNOTSUPP;
3915
3916 case SIOCSIFMTU: /* Set the MTU of a device */
3917 return dev_set_mtu(dev, ifr->ifr_mtu);
3918
3919 case SIOCSIFHWADDR:
3920 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3921
3922 case SIOCSIFHWBROADCAST:
3923 if (ifr->ifr_hwaddr.sa_family != dev->type)
3924 return -EINVAL;
3925 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3926 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3927 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3928 return 0;
3929
3930 case SIOCSIFMAP:
3931 if (ops->ndo_set_config) {
3932 if (!netif_device_present(dev))
3933 return -ENODEV;
3934 return ops->ndo_set_config(dev, &ifr->ifr_map);
3935 }
3936 return -EOPNOTSUPP;
3937
3938 case SIOCADDMULTI:
3939 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3940 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3941 return -EINVAL;
3942 if (!netif_device_present(dev))
3943 return -ENODEV;
3944 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3945 dev->addr_len, 1);
3946
3947 case SIOCDELMULTI:
3948 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3949 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3950 return -EINVAL;
3951 if (!netif_device_present(dev))
3952 return -ENODEV;
3953 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3954 dev->addr_len, 1);
3955
3956 case SIOCSIFTXQLEN:
3957 if (ifr->ifr_qlen < 0)
3958 return -EINVAL;
3959 dev->tx_queue_len = ifr->ifr_qlen;
3960 return 0;
3961
3962 case SIOCSIFNAME:
3963 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3964 return dev_change_name(dev, ifr->ifr_newname);
3965
3966 /*
3967 * Unknown or private ioctl
3968 */
3969
3970 default:
3971 if ((cmd >= SIOCDEVPRIVATE &&
3972 cmd <= SIOCDEVPRIVATE + 15) ||
3973 cmd == SIOCBONDENSLAVE ||
3974 cmd == SIOCBONDRELEASE ||
3975 cmd == SIOCBONDSETHWADDR ||
3976 cmd == SIOCBONDSLAVEINFOQUERY ||
3977 cmd == SIOCBONDINFOQUERY ||
3978 cmd == SIOCBONDCHANGEACTIVE ||
3979 cmd == SIOCGMIIPHY ||
3980 cmd == SIOCGMIIREG ||
3981 cmd == SIOCSMIIREG ||
3982 cmd == SIOCBRADDIF ||
3983 cmd == SIOCBRDELIF ||
3984 cmd == SIOCSHWTSTAMP ||
3985 cmd == SIOCWANDEV) {
3986 err = -EOPNOTSUPP;
3987 if (ops->ndo_do_ioctl) {
3988 if (netif_device_present(dev))
3989 err = ops->ndo_do_ioctl(dev, ifr, cmd);
3990 else
3991 err = -ENODEV;
3992 }
3993 } else
3994 err = -EINVAL;
3995
3996 }
3997 return err;
3998 }
3999
4000 /*
4001 * This function handles all "interface"-type I/O control requests. The actual
4002 * 'doing' part of this is dev_ifsioc above.
4003 */
4004
4005 /**
4006 * dev_ioctl - network device ioctl
4007 * @net: the applicable net namespace
4008 * @cmd: command to issue
4009 * @arg: pointer to a struct ifreq in user space
4010 *
4011 * Issue ioctl functions to devices. This is normally called by the
4012 * user space syscall interfaces but can sometimes be useful for
4013 * other purposes. The return value is the return from the syscall if
4014 * positive or a negative errno code on error.
4015 */
4016
4017 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4018 {
4019 struct ifreq ifr;
4020 int ret;
4021 char *colon;
4022
4023 /* One special case: SIOCGIFCONF takes ifconf argument
4024 and requires shared lock, because it sleeps writing
4025 to user space.
4026 */
4027
4028 if (cmd == SIOCGIFCONF) {
4029 rtnl_lock();
4030 ret = dev_ifconf(net, (char __user *) arg);
4031 rtnl_unlock();
4032 return ret;
4033 }
4034 if (cmd == SIOCGIFNAME)
4035 return dev_ifname(net, (struct ifreq __user *)arg);
4036
4037 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4038 return -EFAULT;
4039
4040 ifr.ifr_name[IFNAMSIZ-1] = 0;
4041
4042 colon = strchr(ifr.ifr_name, ':');
4043 if (colon)
4044 *colon = 0;
4045
4046 /*
4047 * See which interface the caller is talking about.
4048 */
4049
4050 switch (cmd) {
4051 /*
4052 * These ioctl calls:
4053 * - can be done by all.
4054 * - atomic and do not require locking.
4055 * - return a value
4056 */
4057 case SIOCGIFFLAGS:
4058 case SIOCGIFMETRIC:
4059 case SIOCGIFMTU:
4060 case SIOCGIFHWADDR:
4061 case SIOCGIFSLAVE:
4062 case SIOCGIFMAP:
4063 case SIOCGIFINDEX:
4064 case SIOCGIFTXQLEN:
4065 dev_load(net, ifr.ifr_name);
4066 read_lock(&dev_base_lock);
4067 ret = dev_ifsioc_locked(net, &ifr, cmd);
4068 read_unlock(&dev_base_lock);
4069 if (!ret) {
4070 if (colon)
4071 *colon = ':';
4072 if (copy_to_user(arg, &ifr,
4073 sizeof(struct ifreq)))
4074 ret = -EFAULT;
4075 }
4076 return ret;
4077
4078 case SIOCETHTOOL:
4079 dev_load(net, ifr.ifr_name);
4080 rtnl_lock();
4081 ret = dev_ethtool(net, &ifr);
4082 rtnl_unlock();
4083 if (!ret) {
4084 if (colon)
4085 *colon = ':';
4086 if (copy_to_user(arg, &ifr,
4087 sizeof(struct ifreq)))
4088 ret = -EFAULT;
4089 }
4090 return ret;
4091
4092 /*
4093 * These ioctl calls:
4094 * - require superuser power.
4095 * - require strict serialization.
4096 * - return a value
4097 */
4098 case SIOCGMIIPHY:
4099 case SIOCGMIIREG:
4100 case SIOCSIFNAME:
4101 if (!capable(CAP_NET_ADMIN))
4102 return -EPERM;
4103 dev_load(net, ifr.ifr_name);
4104 rtnl_lock();
4105 ret = dev_ifsioc(net, &ifr, cmd);
4106 rtnl_unlock();
4107 if (!ret) {
4108 if (colon)
4109 *colon = ':';
4110 if (copy_to_user(arg, &ifr,
4111 sizeof(struct ifreq)))
4112 ret = -EFAULT;
4113 }
4114 return ret;
4115
4116 /*
4117 * These ioctl calls:
4118 * - require superuser power.
4119 * - require strict serialization.
4120 * - do not return a value
4121 */
4122 case SIOCSIFFLAGS:
4123 case SIOCSIFMETRIC:
4124 case SIOCSIFMTU:
4125 case SIOCSIFMAP:
4126 case SIOCSIFHWADDR:
4127 case SIOCSIFSLAVE:
4128 case SIOCADDMULTI:
4129 case SIOCDELMULTI:
4130 case SIOCSIFHWBROADCAST:
4131 case SIOCSIFTXQLEN:
4132 case SIOCSMIIREG:
4133 case SIOCBONDENSLAVE:
4134 case SIOCBONDRELEASE:
4135 case SIOCBONDSETHWADDR:
4136 case SIOCBONDCHANGEACTIVE:
4137 case SIOCBRADDIF:
4138 case SIOCBRDELIF:
4139 case SIOCSHWTSTAMP:
4140 if (!capable(CAP_NET_ADMIN))
4141 return -EPERM;
4142 /* fall through */
4143 case SIOCBONDSLAVEINFOQUERY:
4144 case SIOCBONDINFOQUERY:
4145 dev_load(net, ifr.ifr_name);
4146 rtnl_lock();
4147 ret = dev_ifsioc(net, &ifr, cmd);
4148 rtnl_unlock();
4149 return ret;
4150
4151 case SIOCGIFMEM:
4152 /* Get the per device memory space. We can add this but
4153 * currently do not support it */
4154 case SIOCSIFMEM:
4155 /* Set the per device memory buffer space.
4156 * Not applicable in our case */
4157 case SIOCSIFLINK:
4158 return -EINVAL;
4159
4160 /*
4161 * Unknown or private ioctl.
4162 */
4163 default:
4164 if (cmd == SIOCWANDEV ||
4165 (cmd >= SIOCDEVPRIVATE &&
4166 cmd <= SIOCDEVPRIVATE + 15)) {
4167 dev_load(net, ifr.ifr_name);
4168 rtnl_lock();
4169 ret = dev_ifsioc(net, &ifr, cmd);
4170 rtnl_unlock();
4171 if (!ret && copy_to_user(arg, &ifr,
4172 sizeof(struct ifreq)))
4173 ret = -EFAULT;
4174 return ret;
4175 }
4176 /* Take care of Wireless Extensions */
4177 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4178 return wext_handle_ioctl(net, &ifr, cmd, arg);
4179 return -EINVAL;
4180 }
4181 }
4182
4183
4184 /**
4185 * dev_new_index - allocate an ifindex
4186 * @net: the applicable net namespace
4187 *
4188 * Returns a suitable unique value for a new device interface
4189 * number. The caller must hold the rtnl semaphore or the
4190 * dev_base_lock to be sure it remains unique.
4191 */
4192 static int dev_new_index(struct net *net)
4193 {
4194 static int ifindex;
4195 for (;;) {
4196 if (++ifindex <= 0)
4197 ifindex = 1;
4198 if (!__dev_get_by_index(net, ifindex))
4199 return ifindex;
4200 }
4201 }
4202
4203 /* Delayed registration/unregisteration */
4204 static LIST_HEAD(net_todo_list);
4205
4206 static void net_set_todo(struct net_device *dev)
4207 {
4208 list_add_tail(&dev->todo_list, &net_todo_list);
4209 }
4210
4211 static void rollback_registered(struct net_device *dev)
4212 {
4213 BUG_ON(dev_boot_phase);
4214 ASSERT_RTNL();
4215
4216 /* Some devices call without registering for initialization unwind. */
4217 if (dev->reg_state == NETREG_UNINITIALIZED) {
4218 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4219 "was registered\n", dev->name, dev);
4220
4221 WARN_ON(1);
4222 return;
4223 }
4224
4225 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4226
4227 /* If device is running, close it first. */
4228 dev_close(dev);
4229
4230 /* And unlink it from device chain. */
4231 unlist_netdevice(dev);
4232
4233 dev->reg_state = NETREG_UNREGISTERING;
4234
4235 synchronize_net();
4236
4237 /* Shutdown queueing discipline. */
4238 dev_shutdown(dev);
4239
4240
4241 /* Notify protocols, that we are about to destroy
4242 this device. They should clean all the things.
4243 */
4244 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4245
4246 /*
4247 * Flush the unicast and multicast chains
4248 */
4249 dev_addr_discard(dev);
4250
4251 if (dev->netdev_ops->ndo_uninit)
4252 dev->netdev_ops->ndo_uninit(dev);
4253
4254 /* Notifier chain MUST detach us from master device. */
4255 WARN_ON(dev->master);
4256
4257 /* Remove entries from kobject tree */
4258 netdev_unregister_kobject(dev);
4259
4260 synchronize_net();
4261
4262 dev_put(dev);
4263 }
4264
4265 static void __netdev_init_queue_locks_one(struct net_device *dev,
4266 struct netdev_queue *dev_queue,
4267 void *_unused)
4268 {
4269 spin_lock_init(&dev_queue->_xmit_lock);
4270 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4271 dev_queue->xmit_lock_owner = -1;
4272 }
4273
4274 static void netdev_init_queue_locks(struct net_device *dev)
4275 {
4276 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4277 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4278 }
4279
4280 unsigned long netdev_fix_features(unsigned long features, const char *name)
4281 {
4282 /* Fix illegal SG+CSUM combinations. */
4283 if ((features & NETIF_F_SG) &&
4284 !(features & NETIF_F_ALL_CSUM)) {
4285 if (name)
4286 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4287 "checksum feature.\n", name);
4288 features &= ~NETIF_F_SG;
4289 }
4290
4291 /* TSO requires that SG is present as well. */
4292 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4293 if (name)
4294 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4295 "SG feature.\n", name);
4296 features &= ~NETIF_F_TSO;
4297 }
4298
4299 if (features & NETIF_F_UFO) {
4300 if (!(features & NETIF_F_GEN_CSUM)) {
4301 if (name)
4302 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4303 "since no NETIF_F_HW_CSUM feature.\n",
4304 name);
4305 features &= ~NETIF_F_UFO;
4306 }
4307
4308 if (!(features & NETIF_F_SG)) {
4309 if (name)
4310 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4311 "since no NETIF_F_SG feature.\n", name);
4312 features &= ~NETIF_F_UFO;
4313 }
4314 }
4315
4316 return features;
4317 }
4318 EXPORT_SYMBOL(netdev_fix_features);
4319
4320 /* Some devices need to (re-)set their netdev_ops inside
4321 * ->init() or similar. If that happens, we have to setup
4322 * the compat pointers again.
4323 */
4324 void netdev_resync_ops(struct net_device *dev)
4325 {
4326 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4327 const struct net_device_ops *ops = dev->netdev_ops;
4328
4329 dev->init = ops->ndo_init;
4330 dev->uninit = ops->ndo_uninit;
4331 dev->open = ops->ndo_open;
4332 dev->change_rx_flags = ops->ndo_change_rx_flags;
4333 dev->set_rx_mode = ops->ndo_set_rx_mode;
4334 dev->set_multicast_list = ops->ndo_set_multicast_list;
4335 dev->set_mac_address = ops->ndo_set_mac_address;
4336 dev->validate_addr = ops->ndo_validate_addr;
4337 dev->do_ioctl = ops->ndo_do_ioctl;
4338 dev->set_config = ops->ndo_set_config;
4339 dev->change_mtu = ops->ndo_change_mtu;
4340 dev->neigh_setup = ops->ndo_neigh_setup;
4341 dev->tx_timeout = ops->ndo_tx_timeout;
4342 dev->get_stats = ops->ndo_get_stats;
4343 dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4344 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4345 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4346 #ifdef CONFIG_NET_POLL_CONTROLLER
4347 dev->poll_controller = ops->ndo_poll_controller;
4348 #endif
4349 #endif
4350 }
4351 EXPORT_SYMBOL(netdev_resync_ops);
4352
4353 /**
4354 * register_netdevice - register a network device
4355 * @dev: device to register
4356 *
4357 * Take a completed network device structure and add it to the kernel
4358 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4359 * chain. 0 is returned on success. A negative errno code is returned
4360 * on a failure to set up the device, or if the name is a duplicate.
4361 *
4362 * Callers must hold the rtnl semaphore. You may want
4363 * register_netdev() instead of this.
4364 *
4365 * BUGS:
4366 * The locking appears insufficient to guarantee two parallel registers
4367 * will not get the same name.
4368 */
4369
4370 int register_netdevice(struct net_device *dev)
4371 {
4372 struct hlist_head *head;
4373 struct hlist_node *p;
4374 int ret;
4375 struct net *net = dev_net(dev);
4376
4377 BUG_ON(dev_boot_phase);
4378 ASSERT_RTNL();
4379
4380 might_sleep();
4381
4382 /* When net_device's are persistent, this will be fatal. */
4383 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4384 BUG_ON(!net);
4385
4386 spin_lock_init(&dev->addr_list_lock);
4387 netdev_set_addr_lockdep_class(dev);
4388 netdev_init_queue_locks(dev);
4389
4390 dev->iflink = -1;
4391
4392 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4393 /* Netdevice_ops API compatiability support.
4394 * This is temporary until all network devices are converted.
4395 */
4396 if (dev->netdev_ops) {
4397 netdev_resync_ops(dev);
4398 } else {
4399 char drivername[64];
4400 pr_info("%s (%s): not using net_device_ops yet\n",
4401 dev->name, netdev_drivername(dev, drivername, 64));
4402
4403 /* This works only because net_device_ops and the
4404 compatiablity structure are the same. */
4405 dev->netdev_ops = (void *) &(dev->init);
4406 }
4407 #endif
4408
4409 /* Init, if this function is available */
4410 if (dev->netdev_ops->ndo_init) {
4411 ret = dev->netdev_ops->ndo_init(dev);
4412 if (ret) {
4413 if (ret > 0)
4414 ret = -EIO;
4415 goto out;
4416 }
4417 }
4418
4419 if (!dev_valid_name(dev->name)) {
4420 ret = -EINVAL;
4421 goto err_uninit;
4422 }
4423
4424 dev->ifindex = dev_new_index(net);
4425 if (dev->iflink == -1)
4426 dev->iflink = dev->ifindex;
4427
4428 /* Check for existence of name */
4429 head = dev_name_hash(net, dev->name);
4430 hlist_for_each(p, head) {
4431 struct net_device *d
4432 = hlist_entry(p, struct net_device, name_hlist);
4433 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4434 ret = -EEXIST;
4435 goto err_uninit;
4436 }
4437 }
4438
4439 /* Fix illegal checksum combinations */
4440 if ((dev->features & NETIF_F_HW_CSUM) &&
4441 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4442 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4443 dev->name);
4444 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4445 }
4446
4447 if ((dev->features & NETIF_F_NO_CSUM) &&
4448 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4449 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4450 dev->name);
4451 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4452 }
4453
4454 dev->features = netdev_fix_features(dev->features, dev->name);
4455
4456 /* Enable software GSO if SG is supported. */
4457 if (dev->features & NETIF_F_SG)
4458 dev->features |= NETIF_F_GSO;
4459
4460 netdev_initialize_kobject(dev);
4461 ret = netdev_register_kobject(dev);
4462 if (ret)
4463 goto err_uninit;
4464 dev->reg_state = NETREG_REGISTERED;
4465
4466 /*
4467 * Default initial state at registry is that the
4468 * device is present.
4469 */
4470
4471 set_bit(__LINK_STATE_PRESENT, &dev->state);
4472
4473 dev_init_scheduler(dev);
4474 dev_hold(dev);
4475 list_netdevice(dev);
4476
4477 /* Notify protocols, that a new device appeared. */
4478 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4479 ret = notifier_to_errno(ret);
4480 if (ret) {
4481 rollback_registered(dev);
4482 dev->reg_state = NETREG_UNREGISTERED;
4483 }
4484
4485 out:
4486 return ret;
4487
4488 err_uninit:
4489 if (dev->netdev_ops->ndo_uninit)
4490 dev->netdev_ops->ndo_uninit(dev);
4491 goto out;
4492 }
4493
4494 /**
4495 * init_dummy_netdev - init a dummy network device for NAPI
4496 * @dev: device to init
4497 *
4498 * This takes a network device structure and initialize the minimum
4499 * amount of fields so it can be used to schedule NAPI polls without
4500 * registering a full blown interface. This is to be used by drivers
4501 * that need to tie several hardware interfaces to a single NAPI
4502 * poll scheduler due to HW limitations.
4503 */
4504 int init_dummy_netdev(struct net_device *dev)
4505 {
4506 /* Clear everything. Note we don't initialize spinlocks
4507 * are they aren't supposed to be taken by any of the
4508 * NAPI code and this dummy netdev is supposed to be
4509 * only ever used for NAPI polls
4510 */
4511 memset(dev, 0, sizeof(struct net_device));
4512
4513 /* make sure we BUG if trying to hit standard
4514 * register/unregister code path
4515 */
4516 dev->reg_state = NETREG_DUMMY;
4517
4518 /* initialize the ref count */
4519 atomic_set(&dev->refcnt, 1);
4520
4521 /* NAPI wants this */
4522 INIT_LIST_HEAD(&dev->napi_list);
4523
4524 /* a dummy interface is started by default */
4525 set_bit(__LINK_STATE_PRESENT, &dev->state);
4526 set_bit(__LINK_STATE_START, &dev->state);
4527
4528 return 0;
4529 }
4530 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4531
4532
4533 /**
4534 * register_netdev - register a network device
4535 * @dev: device to register
4536 *
4537 * Take a completed network device structure and add it to the kernel
4538 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4539 * chain. 0 is returned on success. A negative errno code is returned
4540 * on a failure to set up the device, or if the name is a duplicate.
4541 *
4542 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4543 * and expands the device name if you passed a format string to
4544 * alloc_netdev.
4545 */
4546 int register_netdev(struct net_device *dev)
4547 {
4548 int err;
4549
4550 rtnl_lock();
4551
4552 /*
4553 * If the name is a format string the caller wants us to do a
4554 * name allocation.
4555 */
4556 if (strchr(dev->name, '%')) {
4557 err = dev_alloc_name(dev, dev->name);
4558 if (err < 0)
4559 goto out;
4560 }
4561
4562 err = register_netdevice(dev);
4563 out:
4564 rtnl_unlock();
4565 return err;
4566 }
4567 EXPORT_SYMBOL(register_netdev);
4568
4569 /*
4570 * netdev_wait_allrefs - wait until all references are gone.
4571 *
4572 * This is called when unregistering network devices.
4573 *
4574 * Any protocol or device that holds a reference should register
4575 * for netdevice notification, and cleanup and put back the
4576 * reference if they receive an UNREGISTER event.
4577 * We can get stuck here if buggy protocols don't correctly
4578 * call dev_put.
4579 */
4580 static void netdev_wait_allrefs(struct net_device *dev)
4581 {
4582 unsigned long rebroadcast_time, warning_time;
4583
4584 rebroadcast_time = warning_time = jiffies;
4585 while (atomic_read(&dev->refcnt) != 0) {
4586 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4587 rtnl_lock();
4588
4589 /* Rebroadcast unregister notification */
4590 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4591
4592 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4593 &dev->state)) {
4594 /* We must not have linkwatch events
4595 * pending on unregister. If this
4596 * happens, we simply run the queue
4597 * unscheduled, resulting in a noop
4598 * for this device.
4599 */
4600 linkwatch_run_queue();
4601 }
4602
4603 __rtnl_unlock();
4604
4605 rebroadcast_time = jiffies;
4606 }
4607
4608 msleep(250);
4609
4610 if (time_after(jiffies, warning_time + 10 * HZ)) {
4611 printk(KERN_EMERG "unregister_netdevice: "
4612 "waiting for %s to become free. Usage "
4613 "count = %d\n",
4614 dev->name, atomic_read(&dev->refcnt));
4615 warning_time = jiffies;
4616 }
4617 }
4618 }
4619
4620 /* The sequence is:
4621 *
4622 * rtnl_lock();
4623 * ...
4624 * register_netdevice(x1);
4625 * register_netdevice(x2);
4626 * ...
4627 * unregister_netdevice(y1);
4628 * unregister_netdevice(y2);
4629 * ...
4630 * rtnl_unlock();
4631 * free_netdev(y1);
4632 * free_netdev(y2);
4633 *
4634 * We are invoked by rtnl_unlock().
4635 * This allows us to deal with problems:
4636 * 1) We can delete sysfs objects which invoke hotplug
4637 * without deadlocking with linkwatch via keventd.
4638 * 2) Since we run with the RTNL semaphore not held, we can sleep
4639 * safely in order to wait for the netdev refcnt to drop to zero.
4640 *
4641 * We must not return until all unregister events added during
4642 * the interval the lock was held have been completed.
4643 */
4644 void netdev_run_todo(void)
4645 {
4646 struct list_head list;
4647
4648 /* Snapshot list, allow later requests */
4649 list_replace_init(&net_todo_list, &list);
4650
4651 __rtnl_unlock();
4652
4653 while (!list_empty(&list)) {
4654 struct net_device *dev
4655 = list_entry(list.next, struct net_device, todo_list);
4656 list_del(&dev->todo_list);
4657
4658 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4659 printk(KERN_ERR "network todo '%s' but state %d\n",
4660 dev->name, dev->reg_state);
4661 dump_stack();
4662 continue;
4663 }
4664
4665 dev->reg_state = NETREG_UNREGISTERED;
4666
4667 on_each_cpu(flush_backlog, dev, 1);
4668
4669 netdev_wait_allrefs(dev);
4670
4671 /* paranoia */
4672 BUG_ON(atomic_read(&dev->refcnt));
4673 WARN_ON(dev->ip_ptr);
4674 WARN_ON(dev->ip6_ptr);
4675 WARN_ON(dev->dn_ptr);
4676
4677 if (dev->destructor)
4678 dev->destructor(dev);
4679
4680 /* Free network device */
4681 kobject_put(&dev->dev.kobj);
4682 }
4683 }
4684
4685 /**
4686 * dev_get_stats - get network device statistics
4687 * @dev: device to get statistics from
4688 *
4689 * Get network statistics from device. The device driver may provide
4690 * its own method by setting dev->netdev_ops->get_stats; otherwise
4691 * the internal statistics structure is used.
4692 */
4693 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4694 {
4695 const struct net_device_ops *ops = dev->netdev_ops;
4696
4697 if (ops->ndo_get_stats)
4698 return ops->ndo_get_stats(dev);
4699 else
4700 return &dev->stats;
4701 }
4702 EXPORT_SYMBOL(dev_get_stats);
4703
4704 static void netdev_init_one_queue(struct net_device *dev,
4705 struct netdev_queue *queue,
4706 void *_unused)
4707 {
4708 queue->dev = dev;
4709 }
4710
4711 static void netdev_init_queues(struct net_device *dev)
4712 {
4713 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4714 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4715 spin_lock_init(&dev->tx_global_lock);
4716 }
4717
4718 /**
4719 * alloc_netdev_mq - allocate network device
4720 * @sizeof_priv: size of private data to allocate space for
4721 * @name: device name format string
4722 * @setup: callback to initialize device
4723 * @queue_count: the number of subqueues to allocate
4724 *
4725 * Allocates a struct net_device with private data area for driver use
4726 * and performs basic initialization. Also allocates subquue structs
4727 * for each queue on the device at the end of the netdevice.
4728 */
4729 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4730 void (*setup)(struct net_device *), unsigned int queue_count)
4731 {
4732 struct netdev_queue *tx;
4733 struct net_device *dev;
4734 size_t alloc_size;
4735 void *p;
4736
4737 BUG_ON(strlen(name) >= sizeof(dev->name));
4738
4739 alloc_size = sizeof(struct net_device);
4740 if (sizeof_priv) {
4741 /* ensure 32-byte alignment of private area */
4742 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4743 alloc_size += sizeof_priv;
4744 }
4745 /* ensure 32-byte alignment of whole construct */
4746 alloc_size += NETDEV_ALIGN_CONST;
4747
4748 p = kzalloc(alloc_size, GFP_KERNEL);
4749 if (!p) {
4750 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4751 return NULL;
4752 }
4753
4754 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4755 if (!tx) {
4756 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4757 "tx qdiscs.\n");
4758 kfree(p);
4759 return NULL;
4760 }
4761
4762 dev = (struct net_device *)
4763 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4764 dev->padded = (char *)dev - (char *)p;
4765 dev_net_set(dev, &init_net);
4766
4767 dev->_tx = tx;
4768 dev->num_tx_queues = queue_count;
4769 dev->real_num_tx_queues = queue_count;
4770
4771 dev->gso_max_size = GSO_MAX_SIZE;
4772
4773 netdev_init_queues(dev);
4774
4775 INIT_LIST_HEAD(&dev->napi_list);
4776 setup(dev);
4777 strcpy(dev->name, name);
4778 return dev;
4779 }
4780 EXPORT_SYMBOL(alloc_netdev_mq);
4781
4782 /**
4783 * free_netdev - free network device
4784 * @dev: device
4785 *
4786 * This function does the last stage of destroying an allocated device
4787 * interface. The reference to the device object is released.
4788 * If this is the last reference then it will be freed.
4789 */
4790 void free_netdev(struct net_device *dev)
4791 {
4792 struct napi_struct *p, *n;
4793
4794 release_net(dev_net(dev));
4795
4796 kfree(dev->_tx);
4797
4798 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4799 netif_napi_del(p);
4800
4801 /* Compatibility with error handling in drivers */
4802 if (dev->reg_state == NETREG_UNINITIALIZED) {
4803 kfree((char *)dev - dev->padded);
4804 return;
4805 }
4806
4807 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4808 dev->reg_state = NETREG_RELEASED;
4809
4810 /* will free via device release */
4811 put_device(&dev->dev);
4812 }
4813
4814 /**
4815 * synchronize_net - Synchronize with packet receive processing
4816 *
4817 * Wait for packets currently being received to be done.
4818 * Does not block later packets from starting.
4819 */
4820 void synchronize_net(void)
4821 {
4822 might_sleep();
4823 synchronize_rcu();
4824 }
4825
4826 /**
4827 * unregister_netdevice - remove device from the kernel
4828 * @dev: device
4829 *
4830 * This function shuts down a device interface and removes it
4831 * from the kernel tables.
4832 *
4833 * Callers must hold the rtnl semaphore. You may want
4834 * unregister_netdev() instead of this.
4835 */
4836
4837 void unregister_netdevice(struct net_device *dev)
4838 {
4839 ASSERT_RTNL();
4840
4841 rollback_registered(dev);
4842 /* Finish processing unregister after unlock */
4843 net_set_todo(dev);
4844 }
4845
4846 /**
4847 * unregister_netdev - remove device from the kernel
4848 * @dev: device
4849 *
4850 * This function shuts down a device interface and removes it
4851 * from the kernel tables.
4852 *
4853 * This is just a wrapper for unregister_netdevice that takes
4854 * the rtnl semaphore. In general you want to use this and not
4855 * unregister_netdevice.
4856 */
4857 void unregister_netdev(struct net_device *dev)
4858 {
4859 rtnl_lock();
4860 unregister_netdevice(dev);
4861 rtnl_unlock();
4862 }
4863
4864 EXPORT_SYMBOL(unregister_netdev);
4865
4866 /**
4867 * dev_change_net_namespace - move device to different nethost namespace
4868 * @dev: device
4869 * @net: network namespace
4870 * @pat: If not NULL name pattern to try if the current device name
4871 * is already taken in the destination network namespace.
4872 *
4873 * This function shuts down a device interface and moves it
4874 * to a new network namespace. On success 0 is returned, on
4875 * a failure a netagive errno code is returned.
4876 *
4877 * Callers must hold the rtnl semaphore.
4878 */
4879
4880 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4881 {
4882 char buf[IFNAMSIZ];
4883 const char *destname;
4884 int err;
4885
4886 ASSERT_RTNL();
4887
4888 /* Don't allow namespace local devices to be moved. */
4889 err = -EINVAL;
4890 if (dev->features & NETIF_F_NETNS_LOCAL)
4891 goto out;
4892
4893 #ifdef CONFIG_SYSFS
4894 /* Don't allow real devices to be moved when sysfs
4895 * is enabled.
4896 */
4897 err = -EINVAL;
4898 if (dev->dev.parent)
4899 goto out;
4900 #endif
4901
4902 /* Ensure the device has been registrered */
4903 err = -EINVAL;
4904 if (dev->reg_state != NETREG_REGISTERED)
4905 goto out;
4906
4907 /* Get out if there is nothing todo */
4908 err = 0;
4909 if (net_eq(dev_net(dev), net))
4910 goto out;
4911
4912 /* Pick the destination device name, and ensure
4913 * we can use it in the destination network namespace.
4914 */
4915 err = -EEXIST;
4916 destname = dev->name;
4917 if (__dev_get_by_name(net, destname)) {
4918 /* We get here if we can't use the current device name */
4919 if (!pat)
4920 goto out;
4921 if (!dev_valid_name(pat))
4922 goto out;
4923 if (strchr(pat, '%')) {
4924 if (__dev_alloc_name(net, pat, buf) < 0)
4925 goto out;
4926 destname = buf;
4927 } else
4928 destname = pat;
4929 if (__dev_get_by_name(net, destname))
4930 goto out;
4931 }
4932
4933 /*
4934 * And now a mini version of register_netdevice unregister_netdevice.
4935 */
4936
4937 /* If device is running close it first. */
4938 dev_close(dev);
4939
4940 /* And unlink it from device chain */
4941 err = -ENODEV;
4942 unlist_netdevice(dev);
4943
4944 synchronize_net();
4945
4946 /* Shutdown queueing discipline. */
4947 dev_shutdown(dev);
4948
4949 /* Notify protocols, that we are about to destroy
4950 this device. They should clean all the things.
4951 */
4952 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4953
4954 /*
4955 * Flush the unicast and multicast chains
4956 */
4957 dev_addr_discard(dev);
4958
4959 netdev_unregister_kobject(dev);
4960
4961 /* Actually switch the network namespace */
4962 dev_net_set(dev, net);
4963
4964 /* Assign the new device name */
4965 if (destname != dev->name)
4966 strcpy(dev->name, destname);
4967
4968 /* If there is an ifindex conflict assign a new one */
4969 if (__dev_get_by_index(net, dev->ifindex)) {
4970 int iflink = (dev->iflink == dev->ifindex);
4971 dev->ifindex = dev_new_index(net);
4972 if (iflink)
4973 dev->iflink = dev->ifindex;
4974 }
4975
4976 /* Fixup kobjects */
4977 err = netdev_register_kobject(dev);
4978 WARN_ON(err);
4979
4980 /* Add the device back in the hashes */
4981 list_netdevice(dev);
4982
4983 /* Notify protocols, that a new device appeared. */
4984 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4985
4986 synchronize_net();
4987 err = 0;
4988 out:
4989 return err;
4990 }
4991
4992 static int dev_cpu_callback(struct notifier_block *nfb,
4993 unsigned long action,
4994 void *ocpu)
4995 {
4996 struct sk_buff **list_skb;
4997 struct Qdisc **list_net;
4998 struct sk_buff *skb;
4999 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5000 struct softnet_data *sd, *oldsd;
5001
5002 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5003 return NOTIFY_OK;
5004
5005 local_irq_disable();
5006 cpu = smp_processor_id();
5007 sd = &per_cpu(softnet_data, cpu);
5008 oldsd = &per_cpu(softnet_data, oldcpu);
5009
5010 /* Find end of our completion_queue. */
5011 list_skb = &sd->completion_queue;
5012 while (*list_skb)
5013 list_skb = &(*list_skb)->next;
5014 /* Append completion queue from offline CPU. */
5015 *list_skb = oldsd->completion_queue;
5016 oldsd->completion_queue = NULL;
5017
5018 /* Find end of our output_queue. */
5019 list_net = &sd->output_queue;
5020 while (*list_net)
5021 list_net = &(*list_net)->next_sched;
5022 /* Append output queue from offline CPU. */
5023 *list_net = oldsd->output_queue;
5024 oldsd->output_queue = NULL;
5025
5026 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5027 local_irq_enable();
5028
5029 /* Process offline CPU's input_pkt_queue */
5030 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5031 netif_rx(skb);
5032
5033 return NOTIFY_OK;
5034 }
5035
5036
5037 /**
5038 * netdev_increment_features - increment feature set by one
5039 * @all: current feature set
5040 * @one: new feature set
5041 * @mask: mask feature set
5042 *
5043 * Computes a new feature set after adding a device with feature set
5044 * @one to the master device with current feature set @all. Will not
5045 * enable anything that is off in @mask. Returns the new feature set.
5046 */
5047 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5048 unsigned long mask)
5049 {
5050 /* If device needs checksumming, downgrade to it. */
5051 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5052 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5053 else if (mask & NETIF_F_ALL_CSUM) {
5054 /* If one device supports v4/v6 checksumming, set for all. */
5055 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5056 !(all & NETIF_F_GEN_CSUM)) {
5057 all &= ~NETIF_F_ALL_CSUM;
5058 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5059 }
5060
5061 /* If one device supports hw checksumming, set for all. */
5062 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5063 all &= ~NETIF_F_ALL_CSUM;
5064 all |= NETIF_F_HW_CSUM;
5065 }
5066 }
5067
5068 one |= NETIF_F_ALL_CSUM;
5069
5070 one |= all & NETIF_F_ONE_FOR_ALL;
5071 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5072 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5073
5074 return all;
5075 }
5076 EXPORT_SYMBOL(netdev_increment_features);
5077
5078 static struct hlist_head *netdev_create_hash(void)
5079 {
5080 int i;
5081 struct hlist_head *hash;
5082
5083 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5084 if (hash != NULL)
5085 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5086 INIT_HLIST_HEAD(&hash[i]);
5087
5088 return hash;
5089 }
5090
5091 /* Initialize per network namespace state */
5092 static int __net_init netdev_init(struct net *net)
5093 {
5094 INIT_LIST_HEAD(&net->dev_base_head);
5095
5096 net->dev_name_head = netdev_create_hash();
5097 if (net->dev_name_head == NULL)
5098 goto err_name;
5099
5100 net->dev_index_head = netdev_create_hash();
5101 if (net->dev_index_head == NULL)
5102 goto err_idx;
5103
5104 return 0;
5105
5106 err_idx:
5107 kfree(net->dev_name_head);
5108 err_name:
5109 return -ENOMEM;
5110 }
5111
5112 /**
5113 * netdev_drivername - network driver for the device
5114 * @dev: network device
5115 * @buffer: buffer for resulting name
5116 * @len: size of buffer
5117 *
5118 * Determine network driver for device.
5119 */
5120 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5121 {
5122 const struct device_driver *driver;
5123 const struct device *parent;
5124
5125 if (len <= 0 || !buffer)
5126 return buffer;
5127 buffer[0] = 0;
5128
5129 parent = dev->dev.parent;
5130
5131 if (!parent)
5132 return buffer;
5133
5134 driver = parent->driver;
5135 if (driver && driver->name)
5136 strlcpy(buffer, driver->name, len);
5137 return buffer;
5138 }
5139
5140 static void __net_exit netdev_exit(struct net *net)
5141 {
5142 kfree(net->dev_name_head);
5143 kfree(net->dev_index_head);
5144 }
5145
5146 static struct pernet_operations __net_initdata netdev_net_ops = {
5147 .init = netdev_init,
5148 .exit = netdev_exit,
5149 };
5150
5151 static void __net_exit default_device_exit(struct net *net)
5152 {
5153 struct net_device *dev;
5154 /*
5155 * Push all migratable of the network devices back to the
5156 * initial network namespace
5157 */
5158 rtnl_lock();
5159 restart:
5160 for_each_netdev(net, dev) {
5161 int err;
5162 char fb_name[IFNAMSIZ];
5163
5164 /* Ignore unmoveable devices (i.e. loopback) */
5165 if (dev->features & NETIF_F_NETNS_LOCAL)
5166 continue;
5167
5168 /* Delete virtual devices */
5169 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5170 dev->rtnl_link_ops->dellink(dev);
5171 goto restart;
5172 }
5173
5174 /* Push remaing network devices to init_net */
5175 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5176 err = dev_change_net_namespace(dev, &init_net, fb_name);
5177 if (err) {
5178 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5179 __func__, dev->name, err);
5180 BUG();
5181 }
5182 goto restart;
5183 }
5184 rtnl_unlock();
5185 }
5186
5187 static struct pernet_operations __net_initdata default_device_ops = {
5188 .exit = default_device_exit,
5189 };
5190
5191 /*
5192 * Initialize the DEV module. At boot time this walks the device list and
5193 * unhooks any devices that fail to initialise (normally hardware not
5194 * present) and leaves us with a valid list of present and active devices.
5195 *
5196 */
5197
5198 /*
5199 * This is called single threaded during boot, so no need
5200 * to take the rtnl semaphore.
5201 */
5202 static int __init net_dev_init(void)
5203 {
5204 int i, rc = -ENOMEM;
5205
5206 BUG_ON(!dev_boot_phase);
5207
5208 if (dev_proc_init())
5209 goto out;
5210
5211 if (netdev_kobject_init())
5212 goto out;
5213
5214 INIT_LIST_HEAD(&ptype_all);
5215 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5216 INIT_LIST_HEAD(&ptype_base[i]);
5217
5218 if (register_pernet_subsys(&netdev_net_ops))
5219 goto out;
5220
5221 /*
5222 * Initialise the packet receive queues.
5223 */
5224
5225 for_each_possible_cpu(i) {
5226 struct softnet_data *queue;
5227
5228 queue = &per_cpu(softnet_data, i);
5229 skb_queue_head_init(&queue->input_pkt_queue);
5230 queue->completion_queue = NULL;
5231 INIT_LIST_HEAD(&queue->poll_list);
5232
5233 queue->backlog.poll = process_backlog;
5234 queue->backlog.weight = weight_p;
5235 queue->backlog.gro_list = NULL;
5236 queue->backlog.gro_count = 0;
5237 }
5238
5239 dev_boot_phase = 0;
5240
5241 /* The loopback device is special if any other network devices
5242 * is present in a network namespace the loopback device must
5243 * be present. Since we now dynamically allocate and free the
5244 * loopback device ensure this invariant is maintained by
5245 * keeping the loopback device as the first device on the
5246 * list of network devices. Ensuring the loopback devices
5247 * is the first device that appears and the last network device
5248 * that disappears.
5249 */
5250 if (register_pernet_device(&loopback_net_ops))
5251 goto out;
5252
5253 if (register_pernet_device(&default_device_ops))
5254 goto out;
5255
5256 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5257 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5258
5259 hotcpu_notifier(dev_cpu_callback, 0);
5260 dst_init();
5261 dev_mcast_init();
5262 rc = 0;
5263 out:
5264 return rc;
5265 }
5266
5267 subsys_initcall(net_dev_init);
5268
5269 static int __init initialize_hashrnd(void)
5270 {
5271 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5272 return 0;
5273 }
5274
5275 late_initcall_sync(initialize_hashrnd);
5276
5277 EXPORT_SYMBOL(__dev_get_by_index);
5278 EXPORT_SYMBOL(__dev_get_by_name);
5279 EXPORT_SYMBOL(__dev_remove_pack);
5280 EXPORT_SYMBOL(dev_valid_name);
5281 EXPORT_SYMBOL(dev_add_pack);
5282 EXPORT_SYMBOL(dev_alloc_name);
5283 EXPORT_SYMBOL(dev_close);
5284 EXPORT_SYMBOL(dev_get_by_flags);
5285 EXPORT_SYMBOL(dev_get_by_index);
5286 EXPORT_SYMBOL(dev_get_by_name);
5287 EXPORT_SYMBOL(dev_open);
5288 EXPORT_SYMBOL(dev_queue_xmit);
5289 EXPORT_SYMBOL(dev_remove_pack);
5290 EXPORT_SYMBOL(dev_set_allmulti);
5291 EXPORT_SYMBOL(dev_set_promiscuity);
5292 EXPORT_SYMBOL(dev_change_flags);
5293 EXPORT_SYMBOL(dev_set_mtu);
5294 EXPORT_SYMBOL(dev_set_mac_address);
5295 EXPORT_SYMBOL(free_netdev);
5296 EXPORT_SYMBOL(netdev_boot_setup_check);
5297 EXPORT_SYMBOL(netdev_set_master);
5298 EXPORT_SYMBOL(netdev_state_change);
5299 EXPORT_SYMBOL(netif_receive_skb);
5300 EXPORT_SYMBOL(netif_rx);
5301 EXPORT_SYMBOL(register_gifconf);
5302 EXPORT_SYMBOL(register_netdevice);
5303 EXPORT_SYMBOL(register_netdevice_notifier);
5304 EXPORT_SYMBOL(skb_checksum_help);
5305 EXPORT_SYMBOL(synchronize_net);
5306 EXPORT_SYMBOL(unregister_netdevice);
5307 EXPORT_SYMBOL(unregister_netdevice_notifier);
5308 EXPORT_SYMBOL(net_enable_timestamp);
5309 EXPORT_SYMBOL(net_disable_timestamp);
5310 EXPORT_SYMBOL(dev_get_flags);
5311
5312 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5313 EXPORT_SYMBOL(br_handle_frame_hook);
5314 EXPORT_SYMBOL(br_fdb_get_hook);
5315 EXPORT_SYMBOL(br_fdb_put_hook);
5316 #endif
5317
5318 EXPORT_SYMBOL(dev_load);
5319
5320 EXPORT_PER_CPU_SYMBOL(softnet_data);
This page took 0.132223 seconds and 6 git commands to generate.