net: introduce NAPI_POLL_WEIGHT
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 WARN_ON(in_interrupt());
1549 static_key_slow_inc(&netstamp_needed);
1550 }
1551 EXPORT_SYMBOL(net_enable_timestamp);
1552
1553 void net_disable_timestamp(void)
1554 {
1555 #ifdef HAVE_JUMP_LABEL
1556 if (in_interrupt()) {
1557 atomic_inc(&netstamp_needed_deferred);
1558 return;
1559 }
1560 #endif
1561 static_key_slow_dec(&netstamp_needed);
1562 }
1563 EXPORT_SYMBOL(net_disable_timestamp);
1564
1565 static inline void net_timestamp_set(struct sk_buff *skb)
1566 {
1567 skb->tstamp.tv64 = 0;
1568 if (static_key_false(&netstamp_needed))
1569 __net_timestamp(skb);
1570 }
1571
1572 #define net_timestamp_check(COND, SKB) \
1573 if (static_key_false(&netstamp_needed)) { \
1574 if ((COND) && !(SKB)->tstamp.tv64) \
1575 __net_timestamp(SKB); \
1576 } \
1577
1578 static inline bool is_skb_forwardable(struct net_device *dev,
1579 struct sk_buff *skb)
1580 {
1581 unsigned int len;
1582
1583 if (!(dev->flags & IFF_UP))
1584 return false;
1585
1586 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1587 if (skb->len <= len)
1588 return true;
1589
1590 /* if TSO is enabled, we don't care about the length as the packet
1591 * could be forwarded without being segmented before
1592 */
1593 if (skb_is_gso(skb))
1594 return true;
1595
1596 return false;
1597 }
1598
1599 /**
1600 * dev_forward_skb - loopback an skb to another netif
1601 *
1602 * @dev: destination network device
1603 * @skb: buffer to forward
1604 *
1605 * return values:
1606 * NET_RX_SUCCESS (no congestion)
1607 * NET_RX_DROP (packet was dropped, but freed)
1608 *
1609 * dev_forward_skb can be used for injecting an skb from the
1610 * start_xmit function of one device into the receive queue
1611 * of another device.
1612 *
1613 * The receiving device may be in another namespace, so
1614 * we have to clear all information in the skb that could
1615 * impact namespace isolation.
1616 */
1617 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1618 {
1619 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1620 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1621 atomic_long_inc(&dev->rx_dropped);
1622 kfree_skb(skb);
1623 return NET_RX_DROP;
1624 }
1625 }
1626
1627 skb_orphan(skb);
1628 nf_reset(skb);
1629
1630 if (unlikely(!is_skb_forwardable(dev, skb))) {
1631 atomic_long_inc(&dev->rx_dropped);
1632 kfree_skb(skb);
1633 return NET_RX_DROP;
1634 }
1635 skb->skb_iif = 0;
1636 skb->dev = dev;
1637 skb_dst_drop(skb);
1638 skb->tstamp.tv64 = 0;
1639 skb->pkt_type = PACKET_HOST;
1640 skb->protocol = eth_type_trans(skb, dev);
1641 skb->mark = 0;
1642 secpath_reset(skb);
1643 nf_reset(skb);
1644 return netif_rx(skb);
1645 }
1646 EXPORT_SYMBOL_GPL(dev_forward_skb);
1647
1648 static inline int deliver_skb(struct sk_buff *skb,
1649 struct packet_type *pt_prev,
1650 struct net_device *orig_dev)
1651 {
1652 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1653 return -ENOMEM;
1654 atomic_inc(&skb->users);
1655 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1656 }
1657
1658 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1659 {
1660 if (!ptype->af_packet_priv || !skb->sk)
1661 return false;
1662
1663 if (ptype->id_match)
1664 return ptype->id_match(ptype, skb->sk);
1665 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1666 return true;
1667
1668 return false;
1669 }
1670
1671 /*
1672 * Support routine. Sends outgoing frames to any network
1673 * taps currently in use.
1674 */
1675
1676 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1677 {
1678 struct packet_type *ptype;
1679 struct sk_buff *skb2 = NULL;
1680 struct packet_type *pt_prev = NULL;
1681
1682 rcu_read_lock();
1683 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1684 /* Never send packets back to the socket
1685 * they originated from - MvS (miquels@drinkel.ow.org)
1686 */
1687 if ((ptype->dev == dev || !ptype->dev) &&
1688 (!skb_loop_sk(ptype, skb))) {
1689 if (pt_prev) {
1690 deliver_skb(skb2, pt_prev, skb->dev);
1691 pt_prev = ptype;
1692 continue;
1693 }
1694
1695 skb2 = skb_clone(skb, GFP_ATOMIC);
1696 if (!skb2)
1697 break;
1698
1699 net_timestamp_set(skb2);
1700
1701 /* skb->nh should be correctly
1702 set by sender, so that the second statement is
1703 just protection against buggy protocols.
1704 */
1705 skb_reset_mac_header(skb2);
1706
1707 if (skb_network_header(skb2) < skb2->data ||
1708 skb2->network_header > skb2->tail) {
1709 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1710 ntohs(skb2->protocol),
1711 dev->name);
1712 skb_reset_network_header(skb2);
1713 }
1714
1715 skb2->transport_header = skb2->network_header;
1716 skb2->pkt_type = PACKET_OUTGOING;
1717 pt_prev = ptype;
1718 }
1719 }
1720 if (pt_prev)
1721 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1722 rcu_read_unlock();
1723 }
1724
1725 /**
1726 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1727 * @dev: Network device
1728 * @txq: number of queues available
1729 *
1730 * If real_num_tx_queues is changed the tc mappings may no longer be
1731 * valid. To resolve this verify the tc mapping remains valid and if
1732 * not NULL the mapping. With no priorities mapping to this
1733 * offset/count pair it will no longer be used. In the worst case TC0
1734 * is invalid nothing can be done so disable priority mappings. If is
1735 * expected that drivers will fix this mapping if they can before
1736 * calling netif_set_real_num_tx_queues.
1737 */
1738 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1739 {
1740 int i;
1741 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1742
1743 /* If TC0 is invalidated disable TC mapping */
1744 if (tc->offset + tc->count > txq) {
1745 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1746 dev->num_tc = 0;
1747 return;
1748 }
1749
1750 /* Invalidated prio to tc mappings set to TC0 */
1751 for (i = 1; i < TC_BITMASK + 1; i++) {
1752 int q = netdev_get_prio_tc_map(dev, i);
1753
1754 tc = &dev->tc_to_txq[q];
1755 if (tc->offset + tc->count > txq) {
1756 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1757 i, q);
1758 netdev_set_prio_tc_map(dev, i, 0);
1759 }
1760 }
1761 }
1762
1763 #ifdef CONFIG_XPS
1764 static DEFINE_MUTEX(xps_map_mutex);
1765 #define xmap_dereference(P) \
1766 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1767
1768 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1769 int cpu, u16 index)
1770 {
1771 struct xps_map *map = NULL;
1772 int pos;
1773
1774 if (dev_maps)
1775 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1776
1777 for (pos = 0; map && pos < map->len; pos++) {
1778 if (map->queues[pos] == index) {
1779 if (map->len > 1) {
1780 map->queues[pos] = map->queues[--map->len];
1781 } else {
1782 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1783 kfree_rcu(map, rcu);
1784 map = NULL;
1785 }
1786 break;
1787 }
1788 }
1789
1790 return map;
1791 }
1792
1793 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1794 {
1795 struct xps_dev_maps *dev_maps;
1796 int cpu, i;
1797 bool active = false;
1798
1799 mutex_lock(&xps_map_mutex);
1800 dev_maps = xmap_dereference(dev->xps_maps);
1801
1802 if (!dev_maps)
1803 goto out_no_maps;
1804
1805 for_each_possible_cpu(cpu) {
1806 for (i = index; i < dev->num_tx_queues; i++) {
1807 if (!remove_xps_queue(dev_maps, cpu, i))
1808 break;
1809 }
1810 if (i == dev->num_tx_queues)
1811 active = true;
1812 }
1813
1814 if (!active) {
1815 RCU_INIT_POINTER(dev->xps_maps, NULL);
1816 kfree_rcu(dev_maps, rcu);
1817 }
1818
1819 for (i = index; i < dev->num_tx_queues; i++)
1820 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1821 NUMA_NO_NODE);
1822
1823 out_no_maps:
1824 mutex_unlock(&xps_map_mutex);
1825 }
1826
1827 static struct xps_map *expand_xps_map(struct xps_map *map,
1828 int cpu, u16 index)
1829 {
1830 struct xps_map *new_map;
1831 int alloc_len = XPS_MIN_MAP_ALLOC;
1832 int i, pos;
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] != index)
1836 continue;
1837 return map;
1838 }
1839
1840 /* Need to add queue to this CPU's existing map */
1841 if (map) {
1842 if (pos < map->alloc_len)
1843 return map;
1844
1845 alloc_len = map->alloc_len * 2;
1846 }
1847
1848 /* Need to allocate new map to store queue on this CPU's map */
1849 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1850 cpu_to_node(cpu));
1851 if (!new_map)
1852 return NULL;
1853
1854 for (i = 0; i < pos; i++)
1855 new_map->queues[i] = map->queues[i];
1856 new_map->alloc_len = alloc_len;
1857 new_map->len = pos;
1858
1859 return new_map;
1860 }
1861
1862 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1863 {
1864 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1865 struct xps_map *map, *new_map;
1866 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1867 int cpu, numa_node_id = -2;
1868 bool active = false;
1869
1870 mutex_lock(&xps_map_mutex);
1871
1872 dev_maps = xmap_dereference(dev->xps_maps);
1873
1874 /* allocate memory for queue storage */
1875 for_each_online_cpu(cpu) {
1876 if (!cpumask_test_cpu(cpu, mask))
1877 continue;
1878
1879 if (!new_dev_maps)
1880 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1881 if (!new_dev_maps) {
1882 mutex_unlock(&xps_map_mutex);
1883 return -ENOMEM;
1884 }
1885
1886 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1887 NULL;
1888
1889 map = expand_xps_map(map, cpu, index);
1890 if (!map)
1891 goto error;
1892
1893 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1894 }
1895
1896 if (!new_dev_maps)
1897 goto out_no_new_maps;
1898
1899 for_each_possible_cpu(cpu) {
1900 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1901 /* add queue to CPU maps */
1902 int pos = 0;
1903
1904 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1905 while ((pos < map->len) && (map->queues[pos] != index))
1906 pos++;
1907
1908 if (pos == map->len)
1909 map->queues[map->len++] = index;
1910 #ifdef CONFIG_NUMA
1911 if (numa_node_id == -2)
1912 numa_node_id = cpu_to_node(cpu);
1913 else if (numa_node_id != cpu_to_node(cpu))
1914 numa_node_id = -1;
1915 #endif
1916 } else if (dev_maps) {
1917 /* fill in the new device map from the old device map */
1918 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1919 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1920 }
1921
1922 }
1923
1924 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1925
1926 /* Cleanup old maps */
1927 if (dev_maps) {
1928 for_each_possible_cpu(cpu) {
1929 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1930 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1931 if (map && map != new_map)
1932 kfree_rcu(map, rcu);
1933 }
1934
1935 kfree_rcu(dev_maps, rcu);
1936 }
1937
1938 dev_maps = new_dev_maps;
1939 active = true;
1940
1941 out_no_new_maps:
1942 /* update Tx queue numa node */
1943 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1944 (numa_node_id >= 0) ? numa_node_id :
1945 NUMA_NO_NODE);
1946
1947 if (!dev_maps)
1948 goto out_no_maps;
1949
1950 /* removes queue from unused CPUs */
1951 for_each_possible_cpu(cpu) {
1952 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1953 continue;
1954
1955 if (remove_xps_queue(dev_maps, cpu, index))
1956 active = true;
1957 }
1958
1959 /* free map if not active */
1960 if (!active) {
1961 RCU_INIT_POINTER(dev->xps_maps, NULL);
1962 kfree_rcu(dev_maps, rcu);
1963 }
1964
1965 out_no_maps:
1966 mutex_unlock(&xps_map_mutex);
1967
1968 return 0;
1969 error:
1970 /* remove any maps that we added */
1971 for_each_possible_cpu(cpu) {
1972 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1973 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1974 NULL;
1975 if (new_map && new_map != map)
1976 kfree(new_map);
1977 }
1978
1979 mutex_unlock(&xps_map_mutex);
1980
1981 kfree(new_dev_maps);
1982 return -ENOMEM;
1983 }
1984 EXPORT_SYMBOL(netif_set_xps_queue);
1985
1986 #endif
1987 /*
1988 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1989 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1990 */
1991 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1992 {
1993 int rc;
1994
1995 if (txq < 1 || txq > dev->num_tx_queues)
1996 return -EINVAL;
1997
1998 if (dev->reg_state == NETREG_REGISTERED ||
1999 dev->reg_state == NETREG_UNREGISTERING) {
2000 ASSERT_RTNL();
2001
2002 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2003 txq);
2004 if (rc)
2005 return rc;
2006
2007 if (dev->num_tc)
2008 netif_setup_tc(dev, txq);
2009
2010 if (txq < dev->real_num_tx_queues) {
2011 qdisc_reset_all_tx_gt(dev, txq);
2012 #ifdef CONFIG_XPS
2013 netif_reset_xps_queues_gt(dev, txq);
2014 #endif
2015 }
2016 }
2017
2018 dev->real_num_tx_queues = txq;
2019 return 0;
2020 }
2021 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2022
2023 #ifdef CONFIG_RPS
2024 /**
2025 * netif_set_real_num_rx_queues - set actual number of RX queues used
2026 * @dev: Network device
2027 * @rxq: Actual number of RX queues
2028 *
2029 * This must be called either with the rtnl_lock held or before
2030 * registration of the net device. Returns 0 on success, or a
2031 * negative error code. If called before registration, it always
2032 * succeeds.
2033 */
2034 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2035 {
2036 int rc;
2037
2038 if (rxq < 1 || rxq > dev->num_rx_queues)
2039 return -EINVAL;
2040
2041 if (dev->reg_state == NETREG_REGISTERED) {
2042 ASSERT_RTNL();
2043
2044 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2045 rxq);
2046 if (rc)
2047 return rc;
2048 }
2049
2050 dev->real_num_rx_queues = rxq;
2051 return 0;
2052 }
2053 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2054 #endif
2055
2056 /**
2057 * netif_get_num_default_rss_queues - default number of RSS queues
2058 *
2059 * This routine should set an upper limit on the number of RSS queues
2060 * used by default by multiqueue devices.
2061 */
2062 int netif_get_num_default_rss_queues(void)
2063 {
2064 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2065 }
2066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2067
2068 static inline void __netif_reschedule(struct Qdisc *q)
2069 {
2070 struct softnet_data *sd;
2071 unsigned long flags;
2072
2073 local_irq_save(flags);
2074 sd = &__get_cpu_var(softnet_data);
2075 q->next_sched = NULL;
2076 *sd->output_queue_tailp = q;
2077 sd->output_queue_tailp = &q->next_sched;
2078 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2079 local_irq_restore(flags);
2080 }
2081
2082 void __netif_schedule(struct Qdisc *q)
2083 {
2084 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2085 __netif_reschedule(q);
2086 }
2087 EXPORT_SYMBOL(__netif_schedule);
2088
2089 void dev_kfree_skb_irq(struct sk_buff *skb)
2090 {
2091 if (atomic_dec_and_test(&skb->users)) {
2092 struct softnet_data *sd;
2093 unsigned long flags;
2094
2095 local_irq_save(flags);
2096 sd = &__get_cpu_var(softnet_data);
2097 skb->next = sd->completion_queue;
2098 sd->completion_queue = skb;
2099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2100 local_irq_restore(flags);
2101 }
2102 }
2103 EXPORT_SYMBOL(dev_kfree_skb_irq);
2104
2105 void dev_kfree_skb_any(struct sk_buff *skb)
2106 {
2107 if (in_irq() || irqs_disabled())
2108 dev_kfree_skb_irq(skb);
2109 else
2110 dev_kfree_skb(skb);
2111 }
2112 EXPORT_SYMBOL(dev_kfree_skb_any);
2113
2114
2115 /**
2116 * netif_device_detach - mark device as removed
2117 * @dev: network device
2118 *
2119 * Mark device as removed from system and therefore no longer available.
2120 */
2121 void netif_device_detach(struct net_device *dev)
2122 {
2123 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2124 netif_running(dev)) {
2125 netif_tx_stop_all_queues(dev);
2126 }
2127 }
2128 EXPORT_SYMBOL(netif_device_detach);
2129
2130 /**
2131 * netif_device_attach - mark device as attached
2132 * @dev: network device
2133 *
2134 * Mark device as attached from system and restart if needed.
2135 */
2136 void netif_device_attach(struct net_device *dev)
2137 {
2138 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2139 netif_running(dev)) {
2140 netif_tx_wake_all_queues(dev);
2141 __netdev_watchdog_up(dev);
2142 }
2143 }
2144 EXPORT_SYMBOL(netif_device_attach);
2145
2146 static void skb_warn_bad_offload(const struct sk_buff *skb)
2147 {
2148 static const netdev_features_t null_features = 0;
2149 struct net_device *dev = skb->dev;
2150 const char *driver = "";
2151
2152 if (dev && dev->dev.parent)
2153 driver = dev_driver_string(dev->dev.parent);
2154
2155 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2156 "gso_type=%d ip_summed=%d\n",
2157 driver, dev ? &dev->features : &null_features,
2158 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2159 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2160 skb_shinfo(skb)->gso_type, skb->ip_summed);
2161 }
2162
2163 /*
2164 * Invalidate hardware checksum when packet is to be mangled, and
2165 * complete checksum manually on outgoing path.
2166 */
2167 int skb_checksum_help(struct sk_buff *skb)
2168 {
2169 __wsum csum;
2170 int ret = 0, offset;
2171
2172 if (skb->ip_summed == CHECKSUM_COMPLETE)
2173 goto out_set_summed;
2174
2175 if (unlikely(skb_shinfo(skb)->gso_size)) {
2176 skb_warn_bad_offload(skb);
2177 return -EINVAL;
2178 }
2179
2180 /* Before computing a checksum, we should make sure no frag could
2181 * be modified by an external entity : checksum could be wrong.
2182 */
2183 if (skb_has_shared_frag(skb)) {
2184 ret = __skb_linearize(skb);
2185 if (ret)
2186 goto out;
2187 }
2188
2189 offset = skb_checksum_start_offset(skb);
2190 BUG_ON(offset >= skb_headlen(skb));
2191 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2192
2193 offset += skb->csum_offset;
2194 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2195
2196 if (skb_cloned(skb) &&
2197 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2198 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2199 if (ret)
2200 goto out;
2201 }
2202
2203 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2204 out_set_summed:
2205 skb->ip_summed = CHECKSUM_NONE;
2206 out:
2207 return ret;
2208 }
2209 EXPORT_SYMBOL(skb_checksum_help);
2210
2211 /**
2212 * skb_mac_gso_segment - mac layer segmentation handler.
2213 * @skb: buffer to segment
2214 * @features: features for the output path (see dev->features)
2215 */
2216 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2217 netdev_features_t features)
2218 {
2219 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2220 struct packet_offload *ptype;
2221 __be16 type = skb->protocol;
2222
2223 while (type == htons(ETH_P_8021Q)) {
2224 int vlan_depth = ETH_HLEN;
2225 struct vlan_hdr *vh;
2226
2227 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2228 return ERR_PTR(-EINVAL);
2229
2230 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2231 type = vh->h_vlan_encapsulated_proto;
2232 vlan_depth += VLAN_HLEN;
2233 }
2234
2235 __skb_pull(skb, skb->mac_len);
2236
2237 rcu_read_lock();
2238 list_for_each_entry_rcu(ptype, &offload_base, list) {
2239 if (ptype->type == type && ptype->callbacks.gso_segment) {
2240 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2241 int err;
2242
2243 err = ptype->callbacks.gso_send_check(skb);
2244 segs = ERR_PTR(err);
2245 if (err || skb_gso_ok(skb, features))
2246 break;
2247 __skb_push(skb, (skb->data -
2248 skb_network_header(skb)));
2249 }
2250 segs = ptype->callbacks.gso_segment(skb, features);
2251 break;
2252 }
2253 }
2254 rcu_read_unlock();
2255
2256 __skb_push(skb, skb->data - skb_mac_header(skb));
2257
2258 return segs;
2259 }
2260 EXPORT_SYMBOL(skb_mac_gso_segment);
2261
2262
2263 /* openvswitch calls this on rx path, so we need a different check.
2264 */
2265 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2266 {
2267 if (tx_path)
2268 return skb->ip_summed != CHECKSUM_PARTIAL;
2269 else
2270 return skb->ip_summed == CHECKSUM_NONE;
2271 }
2272
2273 /**
2274 * __skb_gso_segment - Perform segmentation on skb.
2275 * @skb: buffer to segment
2276 * @features: features for the output path (see dev->features)
2277 * @tx_path: whether it is called in TX path
2278 *
2279 * This function segments the given skb and returns a list of segments.
2280 *
2281 * It may return NULL if the skb requires no segmentation. This is
2282 * only possible when GSO is used for verifying header integrity.
2283 */
2284 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2285 netdev_features_t features, bool tx_path)
2286 {
2287 if (unlikely(skb_needs_check(skb, tx_path))) {
2288 int err;
2289
2290 skb_warn_bad_offload(skb);
2291
2292 if (skb_header_cloned(skb) &&
2293 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2294 return ERR_PTR(err);
2295 }
2296
2297 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2298 skb_reset_mac_header(skb);
2299 skb_reset_mac_len(skb);
2300
2301 return skb_mac_gso_segment(skb, features);
2302 }
2303 EXPORT_SYMBOL(__skb_gso_segment);
2304
2305 /* Take action when hardware reception checksum errors are detected. */
2306 #ifdef CONFIG_BUG
2307 void netdev_rx_csum_fault(struct net_device *dev)
2308 {
2309 if (net_ratelimit()) {
2310 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2311 dump_stack();
2312 }
2313 }
2314 EXPORT_SYMBOL(netdev_rx_csum_fault);
2315 #endif
2316
2317 /* Actually, we should eliminate this check as soon as we know, that:
2318 * 1. IOMMU is present and allows to map all the memory.
2319 * 2. No high memory really exists on this machine.
2320 */
2321
2322 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2323 {
2324 #ifdef CONFIG_HIGHMEM
2325 int i;
2326 if (!(dev->features & NETIF_F_HIGHDMA)) {
2327 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2328 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2329 if (PageHighMem(skb_frag_page(frag)))
2330 return 1;
2331 }
2332 }
2333
2334 if (PCI_DMA_BUS_IS_PHYS) {
2335 struct device *pdev = dev->dev.parent;
2336
2337 if (!pdev)
2338 return 0;
2339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2340 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2341 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2342 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2343 return 1;
2344 }
2345 }
2346 #endif
2347 return 0;
2348 }
2349
2350 struct dev_gso_cb {
2351 void (*destructor)(struct sk_buff *skb);
2352 };
2353
2354 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2355
2356 static void dev_gso_skb_destructor(struct sk_buff *skb)
2357 {
2358 struct dev_gso_cb *cb;
2359
2360 do {
2361 struct sk_buff *nskb = skb->next;
2362
2363 skb->next = nskb->next;
2364 nskb->next = NULL;
2365 kfree_skb(nskb);
2366 } while (skb->next);
2367
2368 cb = DEV_GSO_CB(skb);
2369 if (cb->destructor)
2370 cb->destructor(skb);
2371 }
2372
2373 /**
2374 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2375 * @skb: buffer to segment
2376 * @features: device features as applicable to this skb
2377 *
2378 * This function segments the given skb and stores the list of segments
2379 * in skb->next.
2380 */
2381 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2382 {
2383 struct sk_buff *segs;
2384
2385 segs = skb_gso_segment(skb, features);
2386
2387 /* Verifying header integrity only. */
2388 if (!segs)
2389 return 0;
2390
2391 if (IS_ERR(segs))
2392 return PTR_ERR(segs);
2393
2394 skb->next = segs;
2395 DEV_GSO_CB(skb)->destructor = skb->destructor;
2396 skb->destructor = dev_gso_skb_destructor;
2397
2398 return 0;
2399 }
2400
2401 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2402 {
2403 return ((features & NETIF_F_GEN_CSUM) ||
2404 ((features & NETIF_F_V4_CSUM) &&
2405 protocol == htons(ETH_P_IP)) ||
2406 ((features & NETIF_F_V6_CSUM) &&
2407 protocol == htons(ETH_P_IPV6)) ||
2408 ((features & NETIF_F_FCOE_CRC) &&
2409 protocol == htons(ETH_P_FCOE)));
2410 }
2411
2412 static netdev_features_t harmonize_features(struct sk_buff *skb,
2413 __be16 protocol, netdev_features_t features)
2414 {
2415 if (skb->ip_summed != CHECKSUM_NONE &&
2416 !can_checksum_protocol(features, protocol)) {
2417 features &= ~NETIF_F_ALL_CSUM;
2418 features &= ~NETIF_F_SG;
2419 } else if (illegal_highdma(skb->dev, skb)) {
2420 features &= ~NETIF_F_SG;
2421 }
2422
2423 return features;
2424 }
2425
2426 netdev_features_t netif_skb_features(struct sk_buff *skb)
2427 {
2428 __be16 protocol = skb->protocol;
2429 netdev_features_t features = skb->dev->features;
2430
2431 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2432 features &= ~NETIF_F_GSO_MASK;
2433
2434 if (protocol == htons(ETH_P_8021Q)) {
2435 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2436 protocol = veh->h_vlan_encapsulated_proto;
2437 } else if (!vlan_tx_tag_present(skb)) {
2438 return harmonize_features(skb, protocol, features);
2439 }
2440
2441 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2442
2443 if (protocol != htons(ETH_P_8021Q)) {
2444 return harmonize_features(skb, protocol, features);
2445 } else {
2446 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2447 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2448 return harmonize_features(skb, protocol, features);
2449 }
2450 }
2451 EXPORT_SYMBOL(netif_skb_features);
2452
2453 /*
2454 * Returns true if either:
2455 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2456 * 2. skb is fragmented and the device does not support SG.
2457 */
2458 static inline int skb_needs_linearize(struct sk_buff *skb,
2459 int features)
2460 {
2461 return skb_is_nonlinear(skb) &&
2462 ((skb_has_frag_list(skb) &&
2463 !(features & NETIF_F_FRAGLIST)) ||
2464 (skb_shinfo(skb)->nr_frags &&
2465 !(features & NETIF_F_SG)));
2466 }
2467
2468 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2469 struct netdev_queue *txq)
2470 {
2471 const struct net_device_ops *ops = dev->netdev_ops;
2472 int rc = NETDEV_TX_OK;
2473 unsigned int skb_len;
2474
2475 if (likely(!skb->next)) {
2476 netdev_features_t features;
2477
2478 /*
2479 * If device doesn't need skb->dst, release it right now while
2480 * its hot in this cpu cache
2481 */
2482 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2483 skb_dst_drop(skb);
2484
2485 features = netif_skb_features(skb);
2486
2487 if (vlan_tx_tag_present(skb) &&
2488 !(features & NETIF_F_HW_VLAN_TX)) {
2489 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2490 if (unlikely(!skb))
2491 goto out;
2492
2493 skb->vlan_tci = 0;
2494 }
2495
2496 /* If encapsulation offload request, verify we are testing
2497 * hardware encapsulation features instead of standard
2498 * features for the netdev
2499 */
2500 if (skb->encapsulation)
2501 features &= dev->hw_enc_features;
2502
2503 if (netif_needs_gso(skb, features)) {
2504 if (unlikely(dev_gso_segment(skb, features)))
2505 goto out_kfree_skb;
2506 if (skb->next)
2507 goto gso;
2508 } else {
2509 if (skb_needs_linearize(skb, features) &&
2510 __skb_linearize(skb))
2511 goto out_kfree_skb;
2512
2513 /* If packet is not checksummed and device does not
2514 * support checksumming for this protocol, complete
2515 * checksumming here.
2516 */
2517 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2518 if (skb->encapsulation)
2519 skb_set_inner_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 else
2522 skb_set_transport_header(skb,
2523 skb_checksum_start_offset(skb));
2524 if (!(features & NETIF_F_ALL_CSUM) &&
2525 skb_checksum_help(skb))
2526 goto out_kfree_skb;
2527 }
2528 }
2529
2530 if (!list_empty(&ptype_all))
2531 dev_queue_xmit_nit(skb, dev);
2532
2533 skb_len = skb->len;
2534 rc = ops->ndo_start_xmit(skb, dev);
2535 trace_net_dev_xmit(skb, rc, dev, skb_len);
2536 if (rc == NETDEV_TX_OK)
2537 txq_trans_update(txq);
2538 return rc;
2539 }
2540
2541 gso:
2542 do {
2543 struct sk_buff *nskb = skb->next;
2544
2545 skb->next = nskb->next;
2546 nskb->next = NULL;
2547
2548 /*
2549 * If device doesn't need nskb->dst, release it right now while
2550 * its hot in this cpu cache
2551 */
2552 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2553 skb_dst_drop(nskb);
2554
2555 if (!list_empty(&ptype_all))
2556 dev_queue_xmit_nit(nskb, dev);
2557
2558 skb_len = nskb->len;
2559 rc = ops->ndo_start_xmit(nskb, dev);
2560 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2561 if (unlikely(rc != NETDEV_TX_OK)) {
2562 if (rc & ~NETDEV_TX_MASK)
2563 goto out_kfree_gso_skb;
2564 nskb->next = skb->next;
2565 skb->next = nskb;
2566 return rc;
2567 }
2568 txq_trans_update(txq);
2569 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2570 return NETDEV_TX_BUSY;
2571 } while (skb->next);
2572
2573 out_kfree_gso_skb:
2574 if (likely(skb->next == NULL))
2575 skb->destructor = DEV_GSO_CB(skb)->destructor;
2576 out_kfree_skb:
2577 kfree_skb(skb);
2578 out:
2579 return rc;
2580 }
2581
2582 static void qdisc_pkt_len_init(struct sk_buff *skb)
2583 {
2584 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2585
2586 qdisc_skb_cb(skb)->pkt_len = skb->len;
2587
2588 /* To get more precise estimation of bytes sent on wire,
2589 * we add to pkt_len the headers size of all segments
2590 */
2591 if (shinfo->gso_size) {
2592 unsigned int hdr_len;
2593
2594 /* mac layer + network layer */
2595 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2596
2597 /* + transport layer */
2598 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2599 hdr_len += tcp_hdrlen(skb);
2600 else
2601 hdr_len += sizeof(struct udphdr);
2602 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2603 }
2604 }
2605
2606 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2607 struct net_device *dev,
2608 struct netdev_queue *txq)
2609 {
2610 spinlock_t *root_lock = qdisc_lock(q);
2611 bool contended;
2612 int rc;
2613
2614 qdisc_pkt_len_init(skb);
2615 qdisc_calculate_pkt_len(skb, q);
2616 /*
2617 * Heuristic to force contended enqueues to serialize on a
2618 * separate lock before trying to get qdisc main lock.
2619 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2620 * and dequeue packets faster.
2621 */
2622 contended = qdisc_is_running(q);
2623 if (unlikely(contended))
2624 spin_lock(&q->busylock);
2625
2626 spin_lock(root_lock);
2627 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2628 kfree_skb(skb);
2629 rc = NET_XMIT_DROP;
2630 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2631 qdisc_run_begin(q)) {
2632 /*
2633 * This is a work-conserving queue; there are no old skbs
2634 * waiting to be sent out; and the qdisc is not running -
2635 * xmit the skb directly.
2636 */
2637 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2638 skb_dst_force(skb);
2639
2640 qdisc_bstats_update(q, skb);
2641
2642 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2643 if (unlikely(contended)) {
2644 spin_unlock(&q->busylock);
2645 contended = false;
2646 }
2647 __qdisc_run(q);
2648 } else
2649 qdisc_run_end(q);
2650
2651 rc = NET_XMIT_SUCCESS;
2652 } else {
2653 skb_dst_force(skb);
2654 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2655 if (qdisc_run_begin(q)) {
2656 if (unlikely(contended)) {
2657 spin_unlock(&q->busylock);
2658 contended = false;
2659 }
2660 __qdisc_run(q);
2661 }
2662 }
2663 spin_unlock(root_lock);
2664 if (unlikely(contended))
2665 spin_unlock(&q->busylock);
2666 return rc;
2667 }
2668
2669 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2670 static void skb_update_prio(struct sk_buff *skb)
2671 {
2672 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2673
2674 if (!skb->priority && skb->sk && map) {
2675 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2676
2677 if (prioidx < map->priomap_len)
2678 skb->priority = map->priomap[prioidx];
2679 }
2680 }
2681 #else
2682 #define skb_update_prio(skb)
2683 #endif
2684
2685 static DEFINE_PER_CPU(int, xmit_recursion);
2686 #define RECURSION_LIMIT 10
2687
2688 /**
2689 * dev_loopback_xmit - loop back @skb
2690 * @skb: buffer to transmit
2691 */
2692 int dev_loopback_xmit(struct sk_buff *skb)
2693 {
2694 skb_reset_mac_header(skb);
2695 __skb_pull(skb, skb_network_offset(skb));
2696 skb->pkt_type = PACKET_LOOPBACK;
2697 skb->ip_summed = CHECKSUM_UNNECESSARY;
2698 WARN_ON(!skb_dst(skb));
2699 skb_dst_force(skb);
2700 netif_rx_ni(skb);
2701 return 0;
2702 }
2703 EXPORT_SYMBOL(dev_loopback_xmit);
2704
2705 /**
2706 * dev_queue_xmit - transmit a buffer
2707 * @skb: buffer to transmit
2708 *
2709 * Queue a buffer for transmission to a network device. The caller must
2710 * have set the device and priority and built the buffer before calling
2711 * this function. The function can be called from an interrupt.
2712 *
2713 * A negative errno code is returned on a failure. A success does not
2714 * guarantee the frame will be transmitted as it may be dropped due
2715 * to congestion or traffic shaping.
2716 *
2717 * -----------------------------------------------------------------------------------
2718 * I notice this method can also return errors from the queue disciplines,
2719 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2720 * be positive.
2721 *
2722 * Regardless of the return value, the skb is consumed, so it is currently
2723 * difficult to retry a send to this method. (You can bump the ref count
2724 * before sending to hold a reference for retry if you are careful.)
2725 *
2726 * When calling this method, interrupts MUST be enabled. This is because
2727 * the BH enable code must have IRQs enabled so that it will not deadlock.
2728 * --BLG
2729 */
2730 int dev_queue_xmit(struct sk_buff *skb)
2731 {
2732 struct net_device *dev = skb->dev;
2733 struct netdev_queue *txq;
2734 struct Qdisc *q;
2735 int rc = -ENOMEM;
2736
2737 skb_reset_mac_header(skb);
2738
2739 /* Disable soft irqs for various locks below. Also
2740 * stops preemption for RCU.
2741 */
2742 rcu_read_lock_bh();
2743
2744 skb_update_prio(skb);
2745
2746 txq = netdev_pick_tx(dev, skb);
2747 q = rcu_dereference_bh(txq->qdisc);
2748
2749 #ifdef CONFIG_NET_CLS_ACT
2750 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2751 #endif
2752 trace_net_dev_queue(skb);
2753 if (q->enqueue) {
2754 rc = __dev_xmit_skb(skb, q, dev, txq);
2755 goto out;
2756 }
2757
2758 /* The device has no queue. Common case for software devices:
2759 loopback, all the sorts of tunnels...
2760
2761 Really, it is unlikely that netif_tx_lock protection is necessary
2762 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2763 counters.)
2764 However, it is possible, that they rely on protection
2765 made by us here.
2766
2767 Check this and shot the lock. It is not prone from deadlocks.
2768 Either shot noqueue qdisc, it is even simpler 8)
2769 */
2770 if (dev->flags & IFF_UP) {
2771 int cpu = smp_processor_id(); /* ok because BHs are off */
2772
2773 if (txq->xmit_lock_owner != cpu) {
2774
2775 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2776 goto recursion_alert;
2777
2778 HARD_TX_LOCK(dev, txq, cpu);
2779
2780 if (!netif_xmit_stopped(txq)) {
2781 __this_cpu_inc(xmit_recursion);
2782 rc = dev_hard_start_xmit(skb, dev, txq);
2783 __this_cpu_dec(xmit_recursion);
2784 if (dev_xmit_complete(rc)) {
2785 HARD_TX_UNLOCK(dev, txq);
2786 goto out;
2787 }
2788 }
2789 HARD_TX_UNLOCK(dev, txq);
2790 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2791 dev->name);
2792 } else {
2793 /* Recursion is detected! It is possible,
2794 * unfortunately
2795 */
2796 recursion_alert:
2797 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2798 dev->name);
2799 }
2800 }
2801
2802 rc = -ENETDOWN;
2803 rcu_read_unlock_bh();
2804
2805 kfree_skb(skb);
2806 return rc;
2807 out:
2808 rcu_read_unlock_bh();
2809 return rc;
2810 }
2811 EXPORT_SYMBOL(dev_queue_xmit);
2812
2813
2814 /*=======================================================================
2815 Receiver routines
2816 =======================================================================*/
2817
2818 int netdev_max_backlog __read_mostly = 1000;
2819 EXPORT_SYMBOL(netdev_max_backlog);
2820
2821 int netdev_tstamp_prequeue __read_mostly = 1;
2822 int netdev_budget __read_mostly = 300;
2823 int weight_p __read_mostly = 64; /* old backlog weight */
2824
2825 /* Called with irq disabled */
2826 static inline void ____napi_schedule(struct softnet_data *sd,
2827 struct napi_struct *napi)
2828 {
2829 list_add_tail(&napi->poll_list, &sd->poll_list);
2830 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2831 }
2832
2833 #ifdef CONFIG_RPS
2834
2835 /* One global table that all flow-based protocols share. */
2836 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2837 EXPORT_SYMBOL(rps_sock_flow_table);
2838
2839 struct static_key rps_needed __read_mostly;
2840
2841 static struct rps_dev_flow *
2842 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2843 struct rps_dev_flow *rflow, u16 next_cpu)
2844 {
2845 if (next_cpu != RPS_NO_CPU) {
2846 #ifdef CONFIG_RFS_ACCEL
2847 struct netdev_rx_queue *rxqueue;
2848 struct rps_dev_flow_table *flow_table;
2849 struct rps_dev_flow *old_rflow;
2850 u32 flow_id;
2851 u16 rxq_index;
2852 int rc;
2853
2854 /* Should we steer this flow to a different hardware queue? */
2855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2856 !(dev->features & NETIF_F_NTUPLE))
2857 goto out;
2858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2859 if (rxq_index == skb_get_rx_queue(skb))
2860 goto out;
2861
2862 rxqueue = dev->_rx + rxq_index;
2863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2864 if (!flow_table)
2865 goto out;
2866 flow_id = skb->rxhash & flow_table->mask;
2867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2868 rxq_index, flow_id);
2869 if (rc < 0)
2870 goto out;
2871 old_rflow = rflow;
2872 rflow = &flow_table->flows[flow_id];
2873 rflow->filter = rc;
2874 if (old_rflow->filter == rflow->filter)
2875 old_rflow->filter = RPS_NO_FILTER;
2876 out:
2877 #endif
2878 rflow->last_qtail =
2879 per_cpu(softnet_data, next_cpu).input_queue_head;
2880 }
2881
2882 rflow->cpu = next_cpu;
2883 return rflow;
2884 }
2885
2886 /*
2887 * get_rps_cpu is called from netif_receive_skb and returns the target
2888 * CPU from the RPS map of the receiving queue for a given skb.
2889 * rcu_read_lock must be held on entry.
2890 */
2891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2892 struct rps_dev_flow **rflowp)
2893 {
2894 struct netdev_rx_queue *rxqueue;
2895 struct rps_map *map;
2896 struct rps_dev_flow_table *flow_table;
2897 struct rps_sock_flow_table *sock_flow_table;
2898 int cpu = -1;
2899 u16 tcpu;
2900
2901 if (skb_rx_queue_recorded(skb)) {
2902 u16 index = skb_get_rx_queue(skb);
2903 if (unlikely(index >= dev->real_num_rx_queues)) {
2904 WARN_ONCE(dev->real_num_rx_queues > 1,
2905 "%s received packet on queue %u, but number "
2906 "of RX queues is %u\n",
2907 dev->name, index, dev->real_num_rx_queues);
2908 goto done;
2909 }
2910 rxqueue = dev->_rx + index;
2911 } else
2912 rxqueue = dev->_rx;
2913
2914 map = rcu_dereference(rxqueue->rps_map);
2915 if (map) {
2916 if (map->len == 1 &&
2917 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2918 tcpu = map->cpus[0];
2919 if (cpu_online(tcpu))
2920 cpu = tcpu;
2921 goto done;
2922 }
2923 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2924 goto done;
2925 }
2926
2927 skb_reset_network_header(skb);
2928 if (!skb_get_rxhash(skb))
2929 goto done;
2930
2931 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2932 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2933 if (flow_table && sock_flow_table) {
2934 u16 next_cpu;
2935 struct rps_dev_flow *rflow;
2936
2937 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2938 tcpu = rflow->cpu;
2939
2940 next_cpu = sock_flow_table->ents[skb->rxhash &
2941 sock_flow_table->mask];
2942
2943 /*
2944 * If the desired CPU (where last recvmsg was done) is
2945 * different from current CPU (one in the rx-queue flow
2946 * table entry), switch if one of the following holds:
2947 * - Current CPU is unset (equal to RPS_NO_CPU).
2948 * - Current CPU is offline.
2949 * - The current CPU's queue tail has advanced beyond the
2950 * last packet that was enqueued using this table entry.
2951 * This guarantees that all previous packets for the flow
2952 * have been dequeued, thus preserving in order delivery.
2953 */
2954 if (unlikely(tcpu != next_cpu) &&
2955 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2956 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2957 rflow->last_qtail)) >= 0)) {
2958 tcpu = next_cpu;
2959 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2960 }
2961
2962 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2963 *rflowp = rflow;
2964 cpu = tcpu;
2965 goto done;
2966 }
2967 }
2968
2969 if (map) {
2970 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2971
2972 if (cpu_online(tcpu)) {
2973 cpu = tcpu;
2974 goto done;
2975 }
2976 }
2977
2978 done:
2979 return cpu;
2980 }
2981
2982 #ifdef CONFIG_RFS_ACCEL
2983
2984 /**
2985 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2986 * @dev: Device on which the filter was set
2987 * @rxq_index: RX queue index
2988 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2989 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2990 *
2991 * Drivers that implement ndo_rx_flow_steer() should periodically call
2992 * this function for each installed filter and remove the filters for
2993 * which it returns %true.
2994 */
2995 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2996 u32 flow_id, u16 filter_id)
2997 {
2998 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2999 struct rps_dev_flow_table *flow_table;
3000 struct rps_dev_flow *rflow;
3001 bool expire = true;
3002 int cpu;
3003
3004 rcu_read_lock();
3005 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3006 if (flow_table && flow_id <= flow_table->mask) {
3007 rflow = &flow_table->flows[flow_id];
3008 cpu = ACCESS_ONCE(rflow->cpu);
3009 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3010 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3011 rflow->last_qtail) <
3012 (int)(10 * flow_table->mask)))
3013 expire = false;
3014 }
3015 rcu_read_unlock();
3016 return expire;
3017 }
3018 EXPORT_SYMBOL(rps_may_expire_flow);
3019
3020 #endif /* CONFIG_RFS_ACCEL */
3021
3022 /* Called from hardirq (IPI) context */
3023 static void rps_trigger_softirq(void *data)
3024 {
3025 struct softnet_data *sd = data;
3026
3027 ____napi_schedule(sd, &sd->backlog);
3028 sd->received_rps++;
3029 }
3030
3031 #endif /* CONFIG_RPS */
3032
3033 /*
3034 * Check if this softnet_data structure is another cpu one
3035 * If yes, queue it to our IPI list and return 1
3036 * If no, return 0
3037 */
3038 static int rps_ipi_queued(struct softnet_data *sd)
3039 {
3040 #ifdef CONFIG_RPS
3041 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3042
3043 if (sd != mysd) {
3044 sd->rps_ipi_next = mysd->rps_ipi_list;
3045 mysd->rps_ipi_list = sd;
3046
3047 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3048 return 1;
3049 }
3050 #endif /* CONFIG_RPS */
3051 return 0;
3052 }
3053
3054 /*
3055 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3056 * queue (may be a remote CPU queue).
3057 */
3058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3059 unsigned int *qtail)
3060 {
3061 struct softnet_data *sd;
3062 unsigned long flags;
3063
3064 sd = &per_cpu(softnet_data, cpu);
3065
3066 local_irq_save(flags);
3067
3068 rps_lock(sd);
3069 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3070 if (skb_queue_len(&sd->input_pkt_queue)) {
3071 enqueue:
3072 __skb_queue_tail(&sd->input_pkt_queue, skb);
3073 input_queue_tail_incr_save(sd, qtail);
3074 rps_unlock(sd);
3075 local_irq_restore(flags);
3076 return NET_RX_SUCCESS;
3077 }
3078
3079 /* Schedule NAPI for backlog device
3080 * We can use non atomic operation since we own the queue lock
3081 */
3082 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3083 if (!rps_ipi_queued(sd))
3084 ____napi_schedule(sd, &sd->backlog);
3085 }
3086 goto enqueue;
3087 }
3088
3089 sd->dropped++;
3090 rps_unlock(sd);
3091
3092 local_irq_restore(flags);
3093
3094 atomic_long_inc(&skb->dev->rx_dropped);
3095 kfree_skb(skb);
3096 return NET_RX_DROP;
3097 }
3098
3099 /**
3100 * netif_rx - post buffer to the network code
3101 * @skb: buffer to post
3102 *
3103 * This function receives a packet from a device driver and queues it for
3104 * the upper (protocol) levels to process. It always succeeds. The buffer
3105 * may be dropped during processing for congestion control or by the
3106 * protocol layers.
3107 *
3108 * return values:
3109 * NET_RX_SUCCESS (no congestion)
3110 * NET_RX_DROP (packet was dropped)
3111 *
3112 */
3113
3114 int netif_rx(struct sk_buff *skb)
3115 {
3116 int ret;
3117
3118 /* if netpoll wants it, pretend we never saw it */
3119 if (netpoll_rx(skb))
3120 return NET_RX_DROP;
3121
3122 net_timestamp_check(netdev_tstamp_prequeue, skb);
3123
3124 trace_netif_rx(skb);
3125 #ifdef CONFIG_RPS
3126 if (static_key_false(&rps_needed)) {
3127 struct rps_dev_flow voidflow, *rflow = &voidflow;
3128 int cpu;
3129
3130 preempt_disable();
3131 rcu_read_lock();
3132
3133 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3134 if (cpu < 0)
3135 cpu = smp_processor_id();
3136
3137 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3138
3139 rcu_read_unlock();
3140 preempt_enable();
3141 } else
3142 #endif
3143 {
3144 unsigned int qtail;
3145 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3146 put_cpu();
3147 }
3148 return ret;
3149 }
3150 EXPORT_SYMBOL(netif_rx);
3151
3152 int netif_rx_ni(struct sk_buff *skb)
3153 {
3154 int err;
3155
3156 preempt_disable();
3157 err = netif_rx(skb);
3158 if (local_softirq_pending())
3159 do_softirq();
3160 preempt_enable();
3161
3162 return err;
3163 }
3164 EXPORT_SYMBOL(netif_rx_ni);
3165
3166 static void net_tx_action(struct softirq_action *h)
3167 {
3168 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3169
3170 if (sd->completion_queue) {
3171 struct sk_buff *clist;
3172
3173 local_irq_disable();
3174 clist = sd->completion_queue;
3175 sd->completion_queue = NULL;
3176 local_irq_enable();
3177
3178 while (clist) {
3179 struct sk_buff *skb = clist;
3180 clist = clist->next;
3181
3182 WARN_ON(atomic_read(&skb->users));
3183 trace_kfree_skb(skb, net_tx_action);
3184 __kfree_skb(skb);
3185 }
3186 }
3187
3188 if (sd->output_queue) {
3189 struct Qdisc *head;
3190
3191 local_irq_disable();
3192 head = sd->output_queue;
3193 sd->output_queue = NULL;
3194 sd->output_queue_tailp = &sd->output_queue;
3195 local_irq_enable();
3196
3197 while (head) {
3198 struct Qdisc *q = head;
3199 spinlock_t *root_lock;
3200
3201 head = head->next_sched;
3202
3203 root_lock = qdisc_lock(q);
3204 if (spin_trylock(root_lock)) {
3205 smp_mb__before_clear_bit();
3206 clear_bit(__QDISC_STATE_SCHED,
3207 &q->state);
3208 qdisc_run(q);
3209 spin_unlock(root_lock);
3210 } else {
3211 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3212 &q->state)) {
3213 __netif_reschedule(q);
3214 } else {
3215 smp_mb__before_clear_bit();
3216 clear_bit(__QDISC_STATE_SCHED,
3217 &q->state);
3218 }
3219 }
3220 }
3221 }
3222 }
3223
3224 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3225 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3226 /* This hook is defined here for ATM LANE */
3227 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3228 unsigned char *addr) __read_mostly;
3229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3230 #endif
3231
3232 #ifdef CONFIG_NET_CLS_ACT
3233 /* TODO: Maybe we should just force sch_ingress to be compiled in
3234 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3235 * a compare and 2 stores extra right now if we dont have it on
3236 * but have CONFIG_NET_CLS_ACT
3237 * NOTE: This doesn't stop any functionality; if you dont have
3238 * the ingress scheduler, you just can't add policies on ingress.
3239 *
3240 */
3241 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3242 {
3243 struct net_device *dev = skb->dev;
3244 u32 ttl = G_TC_RTTL(skb->tc_verd);
3245 int result = TC_ACT_OK;
3246 struct Qdisc *q;
3247
3248 if (unlikely(MAX_RED_LOOP < ttl++)) {
3249 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3250 skb->skb_iif, dev->ifindex);
3251 return TC_ACT_SHOT;
3252 }
3253
3254 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3255 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3256
3257 q = rxq->qdisc;
3258 if (q != &noop_qdisc) {
3259 spin_lock(qdisc_lock(q));
3260 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3261 result = qdisc_enqueue_root(skb, q);
3262 spin_unlock(qdisc_lock(q));
3263 }
3264
3265 return result;
3266 }
3267
3268 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3269 struct packet_type **pt_prev,
3270 int *ret, struct net_device *orig_dev)
3271 {
3272 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3273
3274 if (!rxq || rxq->qdisc == &noop_qdisc)
3275 goto out;
3276
3277 if (*pt_prev) {
3278 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3279 *pt_prev = NULL;
3280 }
3281
3282 switch (ing_filter(skb, rxq)) {
3283 case TC_ACT_SHOT:
3284 case TC_ACT_STOLEN:
3285 kfree_skb(skb);
3286 return NULL;
3287 }
3288
3289 out:
3290 skb->tc_verd = 0;
3291 return skb;
3292 }
3293 #endif
3294
3295 /**
3296 * netdev_rx_handler_register - register receive handler
3297 * @dev: device to register a handler for
3298 * @rx_handler: receive handler to register
3299 * @rx_handler_data: data pointer that is used by rx handler
3300 *
3301 * Register a receive hander for a device. This handler will then be
3302 * called from __netif_receive_skb. A negative errno code is returned
3303 * on a failure.
3304 *
3305 * The caller must hold the rtnl_mutex.
3306 *
3307 * For a general description of rx_handler, see enum rx_handler_result.
3308 */
3309 int netdev_rx_handler_register(struct net_device *dev,
3310 rx_handler_func_t *rx_handler,
3311 void *rx_handler_data)
3312 {
3313 ASSERT_RTNL();
3314
3315 if (dev->rx_handler)
3316 return -EBUSY;
3317
3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3319 rcu_assign_pointer(dev->rx_handler, rx_handler);
3320
3321 return 0;
3322 }
3323 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324
3325 /**
3326 * netdev_rx_handler_unregister - unregister receive handler
3327 * @dev: device to unregister a handler from
3328 *
3329 * Unregister a receive hander from a device.
3330 *
3331 * The caller must hold the rtnl_mutex.
3332 */
3333 void netdev_rx_handler_unregister(struct net_device *dev)
3334 {
3335
3336 ASSERT_RTNL();
3337 RCU_INIT_POINTER(dev->rx_handler, NULL);
3338 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3339 }
3340 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3341
3342 /*
3343 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3344 * the special handling of PFMEMALLOC skbs.
3345 */
3346 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3347 {
3348 switch (skb->protocol) {
3349 case __constant_htons(ETH_P_ARP):
3350 case __constant_htons(ETH_P_IP):
3351 case __constant_htons(ETH_P_IPV6):
3352 case __constant_htons(ETH_P_8021Q):
3353 return true;
3354 default:
3355 return false;
3356 }
3357 }
3358
3359 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3360 {
3361 struct packet_type *ptype, *pt_prev;
3362 rx_handler_func_t *rx_handler;
3363 struct net_device *orig_dev;
3364 struct net_device *null_or_dev;
3365 bool deliver_exact = false;
3366 int ret = NET_RX_DROP;
3367 __be16 type;
3368
3369 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3370
3371 trace_netif_receive_skb(skb);
3372
3373 /* if we've gotten here through NAPI, check netpoll */
3374 if (netpoll_receive_skb(skb))
3375 goto out;
3376
3377 orig_dev = skb->dev;
3378
3379 skb_reset_network_header(skb);
3380 if (!skb_transport_header_was_set(skb))
3381 skb_reset_transport_header(skb);
3382 skb_reset_mac_len(skb);
3383
3384 pt_prev = NULL;
3385
3386 rcu_read_lock();
3387
3388 another_round:
3389 skb->skb_iif = skb->dev->ifindex;
3390
3391 __this_cpu_inc(softnet_data.processed);
3392
3393 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3394 skb = vlan_untag(skb);
3395 if (unlikely(!skb))
3396 goto unlock;
3397 }
3398
3399 #ifdef CONFIG_NET_CLS_ACT
3400 if (skb->tc_verd & TC_NCLS) {
3401 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3402 goto ncls;
3403 }
3404 #endif
3405
3406 if (pfmemalloc)
3407 goto skip_taps;
3408
3409 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3410 if (!ptype->dev || ptype->dev == skb->dev) {
3411 if (pt_prev)
3412 ret = deliver_skb(skb, pt_prev, orig_dev);
3413 pt_prev = ptype;
3414 }
3415 }
3416
3417 skip_taps:
3418 #ifdef CONFIG_NET_CLS_ACT
3419 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3420 if (!skb)
3421 goto unlock;
3422 ncls:
3423 #endif
3424
3425 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3426 goto drop;
3427
3428 if (vlan_tx_tag_present(skb)) {
3429 if (pt_prev) {
3430 ret = deliver_skb(skb, pt_prev, orig_dev);
3431 pt_prev = NULL;
3432 }
3433 if (vlan_do_receive(&skb))
3434 goto another_round;
3435 else if (unlikely(!skb))
3436 goto unlock;
3437 }
3438
3439 rx_handler = rcu_dereference(skb->dev->rx_handler);
3440 if (rx_handler) {
3441 if (pt_prev) {
3442 ret = deliver_skb(skb, pt_prev, orig_dev);
3443 pt_prev = NULL;
3444 }
3445 switch (rx_handler(&skb)) {
3446 case RX_HANDLER_CONSUMED:
3447 goto unlock;
3448 case RX_HANDLER_ANOTHER:
3449 goto another_round;
3450 case RX_HANDLER_EXACT:
3451 deliver_exact = true;
3452 case RX_HANDLER_PASS:
3453 break;
3454 default:
3455 BUG();
3456 }
3457 }
3458
3459 if (vlan_tx_nonzero_tag_present(skb))
3460 skb->pkt_type = PACKET_OTHERHOST;
3461
3462 /* deliver only exact match when indicated */
3463 null_or_dev = deliver_exact ? skb->dev : NULL;
3464
3465 type = skb->protocol;
3466 list_for_each_entry_rcu(ptype,
3467 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3468 if (ptype->type == type &&
3469 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3470 ptype->dev == orig_dev)) {
3471 if (pt_prev)
3472 ret = deliver_skb(skb, pt_prev, orig_dev);
3473 pt_prev = ptype;
3474 }
3475 }
3476
3477 if (pt_prev) {
3478 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3479 goto drop;
3480 else
3481 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3482 } else {
3483 drop:
3484 atomic_long_inc(&skb->dev->rx_dropped);
3485 kfree_skb(skb);
3486 /* Jamal, now you will not able to escape explaining
3487 * me how you were going to use this. :-)
3488 */
3489 ret = NET_RX_DROP;
3490 }
3491
3492 unlock:
3493 rcu_read_unlock();
3494 out:
3495 return ret;
3496 }
3497
3498 static int __netif_receive_skb(struct sk_buff *skb)
3499 {
3500 int ret;
3501
3502 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3503 unsigned long pflags = current->flags;
3504
3505 /*
3506 * PFMEMALLOC skbs are special, they should
3507 * - be delivered to SOCK_MEMALLOC sockets only
3508 * - stay away from userspace
3509 * - have bounded memory usage
3510 *
3511 * Use PF_MEMALLOC as this saves us from propagating the allocation
3512 * context down to all allocation sites.
3513 */
3514 current->flags |= PF_MEMALLOC;
3515 ret = __netif_receive_skb_core(skb, true);
3516 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3517 } else
3518 ret = __netif_receive_skb_core(skb, false);
3519
3520 return ret;
3521 }
3522
3523 /**
3524 * netif_receive_skb - process receive buffer from network
3525 * @skb: buffer to process
3526 *
3527 * netif_receive_skb() is the main receive data processing function.
3528 * It always succeeds. The buffer may be dropped during processing
3529 * for congestion control or by the protocol layers.
3530 *
3531 * This function may only be called from softirq context and interrupts
3532 * should be enabled.
3533 *
3534 * Return values (usually ignored):
3535 * NET_RX_SUCCESS: no congestion
3536 * NET_RX_DROP: packet was dropped
3537 */
3538 int netif_receive_skb(struct sk_buff *skb)
3539 {
3540 net_timestamp_check(netdev_tstamp_prequeue, skb);
3541
3542 if (skb_defer_rx_timestamp(skb))
3543 return NET_RX_SUCCESS;
3544
3545 #ifdef CONFIG_RPS
3546 if (static_key_false(&rps_needed)) {
3547 struct rps_dev_flow voidflow, *rflow = &voidflow;
3548 int cpu, ret;
3549
3550 rcu_read_lock();
3551
3552 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3553
3554 if (cpu >= 0) {
3555 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3556 rcu_read_unlock();
3557 return ret;
3558 }
3559 rcu_read_unlock();
3560 }
3561 #endif
3562 return __netif_receive_skb(skb);
3563 }
3564 EXPORT_SYMBOL(netif_receive_skb);
3565
3566 /* Network device is going away, flush any packets still pending
3567 * Called with irqs disabled.
3568 */
3569 static void flush_backlog(void *arg)
3570 {
3571 struct net_device *dev = arg;
3572 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3573 struct sk_buff *skb, *tmp;
3574
3575 rps_lock(sd);
3576 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3577 if (skb->dev == dev) {
3578 __skb_unlink(skb, &sd->input_pkt_queue);
3579 kfree_skb(skb);
3580 input_queue_head_incr(sd);
3581 }
3582 }
3583 rps_unlock(sd);
3584
3585 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3586 if (skb->dev == dev) {
3587 __skb_unlink(skb, &sd->process_queue);
3588 kfree_skb(skb);
3589 input_queue_head_incr(sd);
3590 }
3591 }
3592 }
3593
3594 static int napi_gro_complete(struct sk_buff *skb)
3595 {
3596 struct packet_offload *ptype;
3597 __be16 type = skb->protocol;
3598 struct list_head *head = &offload_base;
3599 int err = -ENOENT;
3600
3601 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3602
3603 if (NAPI_GRO_CB(skb)->count == 1) {
3604 skb_shinfo(skb)->gso_size = 0;
3605 goto out;
3606 }
3607
3608 rcu_read_lock();
3609 list_for_each_entry_rcu(ptype, head, list) {
3610 if (ptype->type != type || !ptype->callbacks.gro_complete)
3611 continue;
3612
3613 err = ptype->callbacks.gro_complete(skb);
3614 break;
3615 }
3616 rcu_read_unlock();
3617
3618 if (err) {
3619 WARN_ON(&ptype->list == head);
3620 kfree_skb(skb);
3621 return NET_RX_SUCCESS;
3622 }
3623
3624 out:
3625 return netif_receive_skb(skb);
3626 }
3627
3628 /* napi->gro_list contains packets ordered by age.
3629 * youngest packets at the head of it.
3630 * Complete skbs in reverse order to reduce latencies.
3631 */
3632 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3633 {
3634 struct sk_buff *skb, *prev = NULL;
3635
3636 /* scan list and build reverse chain */
3637 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3638 skb->prev = prev;
3639 prev = skb;
3640 }
3641
3642 for (skb = prev; skb; skb = prev) {
3643 skb->next = NULL;
3644
3645 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3646 return;
3647
3648 prev = skb->prev;
3649 napi_gro_complete(skb);
3650 napi->gro_count--;
3651 }
3652
3653 napi->gro_list = NULL;
3654 }
3655 EXPORT_SYMBOL(napi_gro_flush);
3656
3657 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3658 {
3659 struct sk_buff *p;
3660 unsigned int maclen = skb->dev->hard_header_len;
3661
3662 for (p = napi->gro_list; p; p = p->next) {
3663 unsigned long diffs;
3664
3665 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3666 diffs |= p->vlan_tci ^ skb->vlan_tci;
3667 if (maclen == ETH_HLEN)
3668 diffs |= compare_ether_header(skb_mac_header(p),
3669 skb_gro_mac_header(skb));
3670 else if (!diffs)
3671 diffs = memcmp(skb_mac_header(p),
3672 skb_gro_mac_header(skb),
3673 maclen);
3674 NAPI_GRO_CB(p)->same_flow = !diffs;
3675 NAPI_GRO_CB(p)->flush = 0;
3676 }
3677 }
3678
3679 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3680 {
3681 struct sk_buff **pp = NULL;
3682 struct packet_offload *ptype;
3683 __be16 type = skb->protocol;
3684 struct list_head *head = &offload_base;
3685 int same_flow;
3686 enum gro_result ret;
3687
3688 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3689 goto normal;
3690
3691 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3692 goto normal;
3693
3694 gro_list_prepare(napi, skb);
3695
3696 rcu_read_lock();
3697 list_for_each_entry_rcu(ptype, head, list) {
3698 if (ptype->type != type || !ptype->callbacks.gro_receive)
3699 continue;
3700
3701 skb_set_network_header(skb, skb_gro_offset(skb));
3702 skb_reset_mac_len(skb);
3703 NAPI_GRO_CB(skb)->same_flow = 0;
3704 NAPI_GRO_CB(skb)->flush = 0;
3705 NAPI_GRO_CB(skb)->free = 0;
3706
3707 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3708 break;
3709 }
3710 rcu_read_unlock();
3711
3712 if (&ptype->list == head)
3713 goto normal;
3714
3715 same_flow = NAPI_GRO_CB(skb)->same_flow;
3716 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3717
3718 if (pp) {
3719 struct sk_buff *nskb = *pp;
3720
3721 *pp = nskb->next;
3722 nskb->next = NULL;
3723 napi_gro_complete(nskb);
3724 napi->gro_count--;
3725 }
3726
3727 if (same_flow)
3728 goto ok;
3729
3730 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3731 goto normal;
3732
3733 napi->gro_count++;
3734 NAPI_GRO_CB(skb)->count = 1;
3735 NAPI_GRO_CB(skb)->age = jiffies;
3736 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3737 skb->next = napi->gro_list;
3738 napi->gro_list = skb;
3739 ret = GRO_HELD;
3740
3741 pull:
3742 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3743 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3744
3745 BUG_ON(skb->end - skb->tail < grow);
3746
3747 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3748
3749 skb->tail += grow;
3750 skb->data_len -= grow;
3751
3752 skb_shinfo(skb)->frags[0].page_offset += grow;
3753 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3754
3755 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3756 skb_frag_unref(skb, 0);
3757 memmove(skb_shinfo(skb)->frags,
3758 skb_shinfo(skb)->frags + 1,
3759 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3760 }
3761 }
3762
3763 ok:
3764 return ret;
3765
3766 normal:
3767 ret = GRO_NORMAL;
3768 goto pull;
3769 }
3770
3771
3772 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3773 {
3774 switch (ret) {
3775 case GRO_NORMAL:
3776 if (netif_receive_skb(skb))
3777 ret = GRO_DROP;
3778 break;
3779
3780 case GRO_DROP:
3781 kfree_skb(skb);
3782 break;
3783
3784 case GRO_MERGED_FREE:
3785 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3786 kmem_cache_free(skbuff_head_cache, skb);
3787 else
3788 __kfree_skb(skb);
3789 break;
3790
3791 case GRO_HELD:
3792 case GRO_MERGED:
3793 break;
3794 }
3795
3796 return ret;
3797 }
3798
3799 static void skb_gro_reset_offset(struct sk_buff *skb)
3800 {
3801 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3802 const skb_frag_t *frag0 = &pinfo->frags[0];
3803
3804 NAPI_GRO_CB(skb)->data_offset = 0;
3805 NAPI_GRO_CB(skb)->frag0 = NULL;
3806 NAPI_GRO_CB(skb)->frag0_len = 0;
3807
3808 if (skb->mac_header == skb->tail &&
3809 pinfo->nr_frags &&
3810 !PageHighMem(skb_frag_page(frag0))) {
3811 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3812 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3813 }
3814 }
3815
3816 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 skb_gro_reset_offset(skb);
3819
3820 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3821 }
3822 EXPORT_SYMBOL(napi_gro_receive);
3823
3824 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3825 {
3826 __skb_pull(skb, skb_headlen(skb));
3827 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3828 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3829 skb->vlan_tci = 0;
3830 skb->dev = napi->dev;
3831 skb->skb_iif = 0;
3832
3833 napi->skb = skb;
3834 }
3835
3836 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3837 {
3838 struct sk_buff *skb = napi->skb;
3839
3840 if (!skb) {
3841 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3842 if (skb)
3843 napi->skb = skb;
3844 }
3845 return skb;
3846 }
3847 EXPORT_SYMBOL(napi_get_frags);
3848
3849 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3850 gro_result_t ret)
3851 {
3852 switch (ret) {
3853 case GRO_NORMAL:
3854 case GRO_HELD:
3855 skb->protocol = eth_type_trans(skb, skb->dev);
3856
3857 if (ret == GRO_HELD)
3858 skb_gro_pull(skb, -ETH_HLEN);
3859 else if (netif_receive_skb(skb))
3860 ret = GRO_DROP;
3861 break;
3862
3863 case GRO_DROP:
3864 case GRO_MERGED_FREE:
3865 napi_reuse_skb(napi, skb);
3866 break;
3867
3868 case GRO_MERGED:
3869 break;
3870 }
3871
3872 return ret;
3873 }
3874
3875 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3876 {
3877 struct sk_buff *skb = napi->skb;
3878 struct ethhdr *eth;
3879 unsigned int hlen;
3880 unsigned int off;
3881
3882 napi->skb = NULL;
3883
3884 skb_reset_mac_header(skb);
3885 skb_gro_reset_offset(skb);
3886
3887 off = skb_gro_offset(skb);
3888 hlen = off + sizeof(*eth);
3889 eth = skb_gro_header_fast(skb, off);
3890 if (skb_gro_header_hard(skb, hlen)) {
3891 eth = skb_gro_header_slow(skb, hlen, off);
3892 if (unlikely(!eth)) {
3893 napi_reuse_skb(napi, skb);
3894 skb = NULL;
3895 goto out;
3896 }
3897 }
3898
3899 skb_gro_pull(skb, sizeof(*eth));
3900
3901 /*
3902 * This works because the only protocols we care about don't require
3903 * special handling. We'll fix it up properly at the end.
3904 */
3905 skb->protocol = eth->h_proto;
3906
3907 out:
3908 return skb;
3909 }
3910
3911 gro_result_t napi_gro_frags(struct napi_struct *napi)
3912 {
3913 struct sk_buff *skb = napi_frags_skb(napi);
3914
3915 if (!skb)
3916 return GRO_DROP;
3917
3918 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3919 }
3920 EXPORT_SYMBOL(napi_gro_frags);
3921
3922 /*
3923 * net_rps_action sends any pending IPI's for rps.
3924 * Note: called with local irq disabled, but exits with local irq enabled.
3925 */
3926 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3927 {
3928 #ifdef CONFIG_RPS
3929 struct softnet_data *remsd = sd->rps_ipi_list;
3930
3931 if (remsd) {
3932 sd->rps_ipi_list = NULL;
3933
3934 local_irq_enable();
3935
3936 /* Send pending IPI's to kick RPS processing on remote cpus. */
3937 while (remsd) {
3938 struct softnet_data *next = remsd->rps_ipi_next;
3939
3940 if (cpu_online(remsd->cpu))
3941 __smp_call_function_single(remsd->cpu,
3942 &remsd->csd, 0);
3943 remsd = next;
3944 }
3945 } else
3946 #endif
3947 local_irq_enable();
3948 }
3949
3950 static int process_backlog(struct napi_struct *napi, int quota)
3951 {
3952 int work = 0;
3953 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3954
3955 #ifdef CONFIG_RPS
3956 /* Check if we have pending ipi, its better to send them now,
3957 * not waiting net_rx_action() end.
3958 */
3959 if (sd->rps_ipi_list) {
3960 local_irq_disable();
3961 net_rps_action_and_irq_enable(sd);
3962 }
3963 #endif
3964 napi->weight = weight_p;
3965 local_irq_disable();
3966 while (work < quota) {
3967 struct sk_buff *skb;
3968 unsigned int qlen;
3969
3970 while ((skb = __skb_dequeue(&sd->process_queue))) {
3971 local_irq_enable();
3972 __netif_receive_skb(skb);
3973 local_irq_disable();
3974 input_queue_head_incr(sd);
3975 if (++work >= quota) {
3976 local_irq_enable();
3977 return work;
3978 }
3979 }
3980
3981 rps_lock(sd);
3982 qlen = skb_queue_len(&sd->input_pkt_queue);
3983 if (qlen)
3984 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3985 &sd->process_queue);
3986
3987 if (qlen < quota - work) {
3988 /*
3989 * Inline a custom version of __napi_complete().
3990 * only current cpu owns and manipulates this napi,
3991 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3992 * we can use a plain write instead of clear_bit(),
3993 * and we dont need an smp_mb() memory barrier.
3994 */
3995 list_del(&napi->poll_list);
3996 napi->state = 0;
3997
3998 quota = work + qlen;
3999 }
4000 rps_unlock(sd);
4001 }
4002 local_irq_enable();
4003
4004 return work;
4005 }
4006
4007 /**
4008 * __napi_schedule - schedule for receive
4009 * @n: entry to schedule
4010 *
4011 * The entry's receive function will be scheduled to run
4012 */
4013 void __napi_schedule(struct napi_struct *n)
4014 {
4015 unsigned long flags;
4016
4017 local_irq_save(flags);
4018 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4019 local_irq_restore(flags);
4020 }
4021 EXPORT_SYMBOL(__napi_schedule);
4022
4023 void __napi_complete(struct napi_struct *n)
4024 {
4025 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4026 BUG_ON(n->gro_list);
4027
4028 list_del(&n->poll_list);
4029 smp_mb__before_clear_bit();
4030 clear_bit(NAPI_STATE_SCHED, &n->state);
4031 }
4032 EXPORT_SYMBOL(__napi_complete);
4033
4034 void napi_complete(struct napi_struct *n)
4035 {
4036 unsigned long flags;
4037
4038 /*
4039 * don't let napi dequeue from the cpu poll list
4040 * just in case its running on a different cpu
4041 */
4042 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4043 return;
4044
4045 napi_gro_flush(n, false);
4046 local_irq_save(flags);
4047 __napi_complete(n);
4048 local_irq_restore(flags);
4049 }
4050 EXPORT_SYMBOL(napi_complete);
4051
4052 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4053 int (*poll)(struct napi_struct *, int), int weight)
4054 {
4055 INIT_LIST_HEAD(&napi->poll_list);
4056 napi->gro_count = 0;
4057 napi->gro_list = NULL;
4058 napi->skb = NULL;
4059 napi->poll = poll;
4060 if (weight > NAPI_POLL_WEIGHT)
4061 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4062 weight, dev->name);
4063 napi->weight = weight;
4064 list_add(&napi->dev_list, &dev->napi_list);
4065 napi->dev = dev;
4066 #ifdef CONFIG_NETPOLL
4067 spin_lock_init(&napi->poll_lock);
4068 napi->poll_owner = -1;
4069 #endif
4070 set_bit(NAPI_STATE_SCHED, &napi->state);
4071 }
4072 EXPORT_SYMBOL(netif_napi_add);
4073
4074 void netif_napi_del(struct napi_struct *napi)
4075 {
4076 struct sk_buff *skb, *next;
4077
4078 list_del_init(&napi->dev_list);
4079 napi_free_frags(napi);
4080
4081 for (skb = napi->gro_list; skb; skb = next) {
4082 next = skb->next;
4083 skb->next = NULL;
4084 kfree_skb(skb);
4085 }
4086
4087 napi->gro_list = NULL;
4088 napi->gro_count = 0;
4089 }
4090 EXPORT_SYMBOL(netif_napi_del);
4091
4092 static void net_rx_action(struct softirq_action *h)
4093 {
4094 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4095 unsigned long time_limit = jiffies + 2;
4096 int budget = netdev_budget;
4097 void *have;
4098
4099 local_irq_disable();
4100
4101 while (!list_empty(&sd->poll_list)) {
4102 struct napi_struct *n;
4103 int work, weight;
4104
4105 /* If softirq window is exhuasted then punt.
4106 * Allow this to run for 2 jiffies since which will allow
4107 * an average latency of 1.5/HZ.
4108 */
4109 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
4110 goto softnet_break;
4111
4112 local_irq_enable();
4113
4114 /* Even though interrupts have been re-enabled, this
4115 * access is safe because interrupts can only add new
4116 * entries to the tail of this list, and only ->poll()
4117 * calls can remove this head entry from the list.
4118 */
4119 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4120
4121 have = netpoll_poll_lock(n);
4122
4123 weight = n->weight;
4124
4125 /* This NAPI_STATE_SCHED test is for avoiding a race
4126 * with netpoll's poll_napi(). Only the entity which
4127 * obtains the lock and sees NAPI_STATE_SCHED set will
4128 * actually make the ->poll() call. Therefore we avoid
4129 * accidentally calling ->poll() when NAPI is not scheduled.
4130 */
4131 work = 0;
4132 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4133 work = n->poll(n, weight);
4134 trace_napi_poll(n);
4135 }
4136
4137 WARN_ON_ONCE(work > weight);
4138
4139 budget -= work;
4140
4141 local_irq_disable();
4142
4143 /* Drivers must not modify the NAPI state if they
4144 * consume the entire weight. In such cases this code
4145 * still "owns" the NAPI instance and therefore can
4146 * move the instance around on the list at-will.
4147 */
4148 if (unlikely(work == weight)) {
4149 if (unlikely(napi_disable_pending(n))) {
4150 local_irq_enable();
4151 napi_complete(n);
4152 local_irq_disable();
4153 } else {
4154 if (n->gro_list) {
4155 /* flush too old packets
4156 * If HZ < 1000, flush all packets.
4157 */
4158 local_irq_enable();
4159 napi_gro_flush(n, HZ >= 1000);
4160 local_irq_disable();
4161 }
4162 list_move_tail(&n->poll_list, &sd->poll_list);
4163 }
4164 }
4165
4166 netpoll_poll_unlock(have);
4167 }
4168 out:
4169 net_rps_action_and_irq_enable(sd);
4170
4171 #ifdef CONFIG_NET_DMA
4172 /*
4173 * There may not be any more sk_buffs coming right now, so push
4174 * any pending DMA copies to hardware
4175 */
4176 dma_issue_pending_all();
4177 #endif
4178
4179 return;
4180
4181 softnet_break:
4182 sd->time_squeeze++;
4183 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4184 goto out;
4185 }
4186
4187 struct netdev_upper {
4188 struct net_device *dev;
4189 bool master;
4190 struct list_head list;
4191 struct rcu_head rcu;
4192 struct list_head search_list;
4193 };
4194
4195 static void __append_search_uppers(struct list_head *search_list,
4196 struct net_device *dev)
4197 {
4198 struct netdev_upper *upper;
4199
4200 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4201 /* check if this upper is not already in search list */
4202 if (list_empty(&upper->search_list))
4203 list_add_tail(&upper->search_list, search_list);
4204 }
4205 }
4206
4207 static bool __netdev_search_upper_dev(struct net_device *dev,
4208 struct net_device *upper_dev)
4209 {
4210 LIST_HEAD(search_list);
4211 struct netdev_upper *upper;
4212 struct netdev_upper *tmp;
4213 bool ret = false;
4214
4215 __append_search_uppers(&search_list, dev);
4216 list_for_each_entry(upper, &search_list, search_list) {
4217 if (upper->dev == upper_dev) {
4218 ret = true;
4219 break;
4220 }
4221 __append_search_uppers(&search_list, upper->dev);
4222 }
4223 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4224 INIT_LIST_HEAD(&upper->search_list);
4225 return ret;
4226 }
4227
4228 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4229 struct net_device *upper_dev)
4230 {
4231 struct netdev_upper *upper;
4232
4233 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4234 if (upper->dev == upper_dev)
4235 return upper;
4236 }
4237 return NULL;
4238 }
4239
4240 /**
4241 * netdev_has_upper_dev - Check if device is linked to an upper device
4242 * @dev: device
4243 * @upper_dev: upper device to check
4244 *
4245 * Find out if a device is linked to specified upper device and return true
4246 * in case it is. Note that this checks only immediate upper device,
4247 * not through a complete stack of devices. The caller must hold the RTNL lock.
4248 */
4249 bool netdev_has_upper_dev(struct net_device *dev,
4250 struct net_device *upper_dev)
4251 {
4252 ASSERT_RTNL();
4253
4254 return __netdev_find_upper(dev, upper_dev);
4255 }
4256 EXPORT_SYMBOL(netdev_has_upper_dev);
4257
4258 /**
4259 * netdev_has_any_upper_dev - Check if device is linked to some device
4260 * @dev: device
4261 *
4262 * Find out if a device is linked to an upper device and return true in case
4263 * it is. The caller must hold the RTNL lock.
4264 */
4265 bool netdev_has_any_upper_dev(struct net_device *dev)
4266 {
4267 ASSERT_RTNL();
4268
4269 return !list_empty(&dev->upper_dev_list);
4270 }
4271 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4272
4273 /**
4274 * netdev_master_upper_dev_get - Get master upper device
4275 * @dev: device
4276 *
4277 * Find a master upper device and return pointer to it or NULL in case
4278 * it's not there. The caller must hold the RTNL lock.
4279 */
4280 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4281 {
4282 struct netdev_upper *upper;
4283
4284 ASSERT_RTNL();
4285
4286 if (list_empty(&dev->upper_dev_list))
4287 return NULL;
4288
4289 upper = list_first_entry(&dev->upper_dev_list,
4290 struct netdev_upper, list);
4291 if (likely(upper->master))
4292 return upper->dev;
4293 return NULL;
4294 }
4295 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4296
4297 /**
4298 * netdev_master_upper_dev_get_rcu - Get master upper device
4299 * @dev: device
4300 *
4301 * Find a master upper device and return pointer to it or NULL in case
4302 * it's not there. The caller must hold the RCU read lock.
4303 */
4304 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4305 {
4306 struct netdev_upper *upper;
4307
4308 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4309 struct netdev_upper, list);
4310 if (upper && likely(upper->master))
4311 return upper->dev;
4312 return NULL;
4313 }
4314 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4315
4316 static int __netdev_upper_dev_link(struct net_device *dev,
4317 struct net_device *upper_dev, bool master)
4318 {
4319 struct netdev_upper *upper;
4320
4321 ASSERT_RTNL();
4322
4323 if (dev == upper_dev)
4324 return -EBUSY;
4325
4326 /* To prevent loops, check if dev is not upper device to upper_dev. */
4327 if (__netdev_search_upper_dev(upper_dev, dev))
4328 return -EBUSY;
4329
4330 if (__netdev_find_upper(dev, upper_dev))
4331 return -EEXIST;
4332
4333 if (master && netdev_master_upper_dev_get(dev))
4334 return -EBUSY;
4335
4336 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4337 if (!upper)
4338 return -ENOMEM;
4339
4340 upper->dev = upper_dev;
4341 upper->master = master;
4342 INIT_LIST_HEAD(&upper->search_list);
4343
4344 /* Ensure that master upper link is always the first item in list. */
4345 if (master)
4346 list_add_rcu(&upper->list, &dev->upper_dev_list);
4347 else
4348 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4349 dev_hold(upper_dev);
4350
4351 return 0;
4352 }
4353
4354 /**
4355 * netdev_upper_dev_link - Add a link to the upper device
4356 * @dev: device
4357 * @upper_dev: new upper device
4358 *
4359 * Adds a link to device which is upper to this one. The caller must hold
4360 * the RTNL lock. On a failure a negative errno code is returned.
4361 * On success the reference counts are adjusted and the function
4362 * returns zero.
4363 */
4364 int netdev_upper_dev_link(struct net_device *dev,
4365 struct net_device *upper_dev)
4366 {
4367 return __netdev_upper_dev_link(dev, upper_dev, false);
4368 }
4369 EXPORT_SYMBOL(netdev_upper_dev_link);
4370
4371 /**
4372 * netdev_master_upper_dev_link - Add a master link to the upper device
4373 * @dev: device
4374 * @upper_dev: new upper device
4375 *
4376 * Adds a link to device which is upper to this one. In this case, only
4377 * one master upper device can be linked, although other non-master devices
4378 * might be linked as well. The caller must hold the RTNL lock.
4379 * On a failure a negative errno code is returned. On success the reference
4380 * counts are adjusted and the function returns zero.
4381 */
4382 int netdev_master_upper_dev_link(struct net_device *dev,
4383 struct net_device *upper_dev)
4384 {
4385 return __netdev_upper_dev_link(dev, upper_dev, true);
4386 }
4387 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4388
4389 /**
4390 * netdev_upper_dev_unlink - Removes a link to upper device
4391 * @dev: device
4392 * @upper_dev: new upper device
4393 *
4394 * Removes a link to device which is upper to this one. The caller must hold
4395 * the RTNL lock.
4396 */
4397 void netdev_upper_dev_unlink(struct net_device *dev,
4398 struct net_device *upper_dev)
4399 {
4400 struct netdev_upper *upper;
4401
4402 ASSERT_RTNL();
4403
4404 upper = __netdev_find_upper(dev, upper_dev);
4405 if (!upper)
4406 return;
4407 list_del_rcu(&upper->list);
4408 dev_put(upper_dev);
4409 kfree_rcu(upper, rcu);
4410 }
4411 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4412
4413 static void dev_change_rx_flags(struct net_device *dev, int flags)
4414 {
4415 const struct net_device_ops *ops = dev->netdev_ops;
4416
4417 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4418 ops->ndo_change_rx_flags(dev, flags);
4419 }
4420
4421 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4422 {
4423 unsigned int old_flags = dev->flags;
4424 kuid_t uid;
4425 kgid_t gid;
4426
4427 ASSERT_RTNL();
4428
4429 dev->flags |= IFF_PROMISC;
4430 dev->promiscuity += inc;
4431 if (dev->promiscuity == 0) {
4432 /*
4433 * Avoid overflow.
4434 * If inc causes overflow, untouch promisc and return error.
4435 */
4436 if (inc < 0)
4437 dev->flags &= ~IFF_PROMISC;
4438 else {
4439 dev->promiscuity -= inc;
4440 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4441 dev->name);
4442 return -EOVERFLOW;
4443 }
4444 }
4445 if (dev->flags != old_flags) {
4446 pr_info("device %s %s promiscuous mode\n",
4447 dev->name,
4448 dev->flags & IFF_PROMISC ? "entered" : "left");
4449 if (audit_enabled) {
4450 current_uid_gid(&uid, &gid);
4451 audit_log(current->audit_context, GFP_ATOMIC,
4452 AUDIT_ANOM_PROMISCUOUS,
4453 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4454 dev->name, (dev->flags & IFF_PROMISC),
4455 (old_flags & IFF_PROMISC),
4456 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4457 from_kuid(&init_user_ns, uid),
4458 from_kgid(&init_user_ns, gid),
4459 audit_get_sessionid(current));
4460 }
4461
4462 dev_change_rx_flags(dev, IFF_PROMISC);
4463 }
4464 return 0;
4465 }
4466
4467 /**
4468 * dev_set_promiscuity - update promiscuity count on a device
4469 * @dev: device
4470 * @inc: modifier
4471 *
4472 * Add or remove promiscuity from a device. While the count in the device
4473 * remains above zero the interface remains promiscuous. Once it hits zero
4474 * the device reverts back to normal filtering operation. A negative inc
4475 * value is used to drop promiscuity on the device.
4476 * Return 0 if successful or a negative errno code on error.
4477 */
4478 int dev_set_promiscuity(struct net_device *dev, int inc)
4479 {
4480 unsigned int old_flags = dev->flags;
4481 int err;
4482
4483 err = __dev_set_promiscuity(dev, inc);
4484 if (err < 0)
4485 return err;
4486 if (dev->flags != old_flags)
4487 dev_set_rx_mode(dev);
4488 return err;
4489 }
4490 EXPORT_SYMBOL(dev_set_promiscuity);
4491
4492 /**
4493 * dev_set_allmulti - update allmulti count on a device
4494 * @dev: device
4495 * @inc: modifier
4496 *
4497 * Add or remove reception of all multicast frames to a device. While the
4498 * count in the device remains above zero the interface remains listening
4499 * to all interfaces. Once it hits zero the device reverts back to normal
4500 * filtering operation. A negative @inc value is used to drop the counter
4501 * when releasing a resource needing all multicasts.
4502 * Return 0 if successful or a negative errno code on error.
4503 */
4504
4505 int dev_set_allmulti(struct net_device *dev, int inc)
4506 {
4507 unsigned int old_flags = dev->flags;
4508
4509 ASSERT_RTNL();
4510
4511 dev->flags |= IFF_ALLMULTI;
4512 dev->allmulti += inc;
4513 if (dev->allmulti == 0) {
4514 /*
4515 * Avoid overflow.
4516 * If inc causes overflow, untouch allmulti and return error.
4517 */
4518 if (inc < 0)
4519 dev->flags &= ~IFF_ALLMULTI;
4520 else {
4521 dev->allmulti -= inc;
4522 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4523 dev->name);
4524 return -EOVERFLOW;
4525 }
4526 }
4527 if (dev->flags ^ old_flags) {
4528 dev_change_rx_flags(dev, IFF_ALLMULTI);
4529 dev_set_rx_mode(dev);
4530 }
4531 return 0;
4532 }
4533 EXPORT_SYMBOL(dev_set_allmulti);
4534
4535 /*
4536 * Upload unicast and multicast address lists to device and
4537 * configure RX filtering. When the device doesn't support unicast
4538 * filtering it is put in promiscuous mode while unicast addresses
4539 * are present.
4540 */
4541 void __dev_set_rx_mode(struct net_device *dev)
4542 {
4543 const struct net_device_ops *ops = dev->netdev_ops;
4544
4545 /* dev_open will call this function so the list will stay sane. */
4546 if (!(dev->flags&IFF_UP))
4547 return;
4548
4549 if (!netif_device_present(dev))
4550 return;
4551
4552 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4553 /* Unicast addresses changes may only happen under the rtnl,
4554 * therefore calling __dev_set_promiscuity here is safe.
4555 */
4556 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4557 __dev_set_promiscuity(dev, 1);
4558 dev->uc_promisc = true;
4559 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4560 __dev_set_promiscuity(dev, -1);
4561 dev->uc_promisc = false;
4562 }
4563 }
4564
4565 if (ops->ndo_set_rx_mode)
4566 ops->ndo_set_rx_mode(dev);
4567 }
4568
4569 void dev_set_rx_mode(struct net_device *dev)
4570 {
4571 netif_addr_lock_bh(dev);
4572 __dev_set_rx_mode(dev);
4573 netif_addr_unlock_bh(dev);
4574 }
4575
4576 /**
4577 * dev_get_flags - get flags reported to userspace
4578 * @dev: device
4579 *
4580 * Get the combination of flag bits exported through APIs to userspace.
4581 */
4582 unsigned int dev_get_flags(const struct net_device *dev)
4583 {
4584 unsigned int flags;
4585
4586 flags = (dev->flags & ~(IFF_PROMISC |
4587 IFF_ALLMULTI |
4588 IFF_RUNNING |
4589 IFF_LOWER_UP |
4590 IFF_DORMANT)) |
4591 (dev->gflags & (IFF_PROMISC |
4592 IFF_ALLMULTI));
4593
4594 if (netif_running(dev)) {
4595 if (netif_oper_up(dev))
4596 flags |= IFF_RUNNING;
4597 if (netif_carrier_ok(dev))
4598 flags |= IFF_LOWER_UP;
4599 if (netif_dormant(dev))
4600 flags |= IFF_DORMANT;
4601 }
4602
4603 return flags;
4604 }
4605 EXPORT_SYMBOL(dev_get_flags);
4606
4607 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4608 {
4609 unsigned int old_flags = dev->flags;
4610 int ret;
4611
4612 ASSERT_RTNL();
4613
4614 /*
4615 * Set the flags on our device.
4616 */
4617
4618 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4619 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4620 IFF_AUTOMEDIA)) |
4621 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4622 IFF_ALLMULTI));
4623
4624 /*
4625 * Load in the correct multicast list now the flags have changed.
4626 */
4627
4628 if ((old_flags ^ flags) & IFF_MULTICAST)
4629 dev_change_rx_flags(dev, IFF_MULTICAST);
4630
4631 dev_set_rx_mode(dev);
4632
4633 /*
4634 * Have we downed the interface. We handle IFF_UP ourselves
4635 * according to user attempts to set it, rather than blindly
4636 * setting it.
4637 */
4638
4639 ret = 0;
4640 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4641 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4642
4643 if (!ret)
4644 dev_set_rx_mode(dev);
4645 }
4646
4647 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4648 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4649
4650 dev->gflags ^= IFF_PROMISC;
4651 dev_set_promiscuity(dev, inc);
4652 }
4653
4654 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4655 is important. Some (broken) drivers set IFF_PROMISC, when
4656 IFF_ALLMULTI is requested not asking us and not reporting.
4657 */
4658 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4659 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4660
4661 dev->gflags ^= IFF_ALLMULTI;
4662 dev_set_allmulti(dev, inc);
4663 }
4664
4665 return ret;
4666 }
4667
4668 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4669 {
4670 unsigned int changes = dev->flags ^ old_flags;
4671
4672 if (changes & IFF_UP) {
4673 if (dev->flags & IFF_UP)
4674 call_netdevice_notifiers(NETDEV_UP, dev);
4675 else
4676 call_netdevice_notifiers(NETDEV_DOWN, dev);
4677 }
4678
4679 if (dev->flags & IFF_UP &&
4680 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4681 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4682 }
4683
4684 /**
4685 * dev_change_flags - change device settings
4686 * @dev: device
4687 * @flags: device state flags
4688 *
4689 * Change settings on device based state flags. The flags are
4690 * in the userspace exported format.
4691 */
4692 int dev_change_flags(struct net_device *dev, unsigned int flags)
4693 {
4694 int ret;
4695 unsigned int changes, old_flags = dev->flags;
4696
4697 ret = __dev_change_flags(dev, flags);
4698 if (ret < 0)
4699 return ret;
4700
4701 changes = old_flags ^ dev->flags;
4702 if (changes)
4703 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4704
4705 __dev_notify_flags(dev, old_flags);
4706 return ret;
4707 }
4708 EXPORT_SYMBOL(dev_change_flags);
4709
4710 /**
4711 * dev_set_mtu - Change maximum transfer unit
4712 * @dev: device
4713 * @new_mtu: new transfer unit
4714 *
4715 * Change the maximum transfer size of the network device.
4716 */
4717 int dev_set_mtu(struct net_device *dev, int new_mtu)
4718 {
4719 const struct net_device_ops *ops = dev->netdev_ops;
4720 int err;
4721
4722 if (new_mtu == dev->mtu)
4723 return 0;
4724
4725 /* MTU must be positive. */
4726 if (new_mtu < 0)
4727 return -EINVAL;
4728
4729 if (!netif_device_present(dev))
4730 return -ENODEV;
4731
4732 err = 0;
4733 if (ops->ndo_change_mtu)
4734 err = ops->ndo_change_mtu(dev, new_mtu);
4735 else
4736 dev->mtu = new_mtu;
4737
4738 if (!err)
4739 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4740 return err;
4741 }
4742 EXPORT_SYMBOL(dev_set_mtu);
4743
4744 /**
4745 * dev_set_group - Change group this device belongs to
4746 * @dev: device
4747 * @new_group: group this device should belong to
4748 */
4749 void dev_set_group(struct net_device *dev, int new_group)
4750 {
4751 dev->group = new_group;
4752 }
4753 EXPORT_SYMBOL(dev_set_group);
4754
4755 /**
4756 * dev_set_mac_address - Change Media Access Control Address
4757 * @dev: device
4758 * @sa: new address
4759 *
4760 * Change the hardware (MAC) address of the device
4761 */
4762 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4763 {
4764 const struct net_device_ops *ops = dev->netdev_ops;
4765 int err;
4766
4767 if (!ops->ndo_set_mac_address)
4768 return -EOPNOTSUPP;
4769 if (sa->sa_family != dev->type)
4770 return -EINVAL;
4771 if (!netif_device_present(dev))
4772 return -ENODEV;
4773 err = ops->ndo_set_mac_address(dev, sa);
4774 if (err)
4775 return err;
4776 dev->addr_assign_type = NET_ADDR_SET;
4777 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4778 add_device_randomness(dev->dev_addr, dev->addr_len);
4779 return 0;
4780 }
4781 EXPORT_SYMBOL(dev_set_mac_address);
4782
4783 /**
4784 * dev_change_carrier - Change device carrier
4785 * @dev: device
4786 * @new_carries: new value
4787 *
4788 * Change device carrier
4789 */
4790 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4791 {
4792 const struct net_device_ops *ops = dev->netdev_ops;
4793
4794 if (!ops->ndo_change_carrier)
4795 return -EOPNOTSUPP;
4796 if (!netif_device_present(dev))
4797 return -ENODEV;
4798 return ops->ndo_change_carrier(dev, new_carrier);
4799 }
4800 EXPORT_SYMBOL(dev_change_carrier);
4801
4802 /**
4803 * dev_new_index - allocate an ifindex
4804 * @net: the applicable net namespace
4805 *
4806 * Returns a suitable unique value for a new device interface
4807 * number. The caller must hold the rtnl semaphore or the
4808 * dev_base_lock to be sure it remains unique.
4809 */
4810 static int dev_new_index(struct net *net)
4811 {
4812 int ifindex = net->ifindex;
4813 for (;;) {
4814 if (++ifindex <= 0)
4815 ifindex = 1;
4816 if (!__dev_get_by_index(net, ifindex))
4817 return net->ifindex = ifindex;
4818 }
4819 }
4820
4821 /* Delayed registration/unregisteration */
4822 static LIST_HEAD(net_todo_list);
4823
4824 static void net_set_todo(struct net_device *dev)
4825 {
4826 list_add_tail(&dev->todo_list, &net_todo_list);
4827 }
4828
4829 static void rollback_registered_many(struct list_head *head)
4830 {
4831 struct net_device *dev, *tmp;
4832
4833 BUG_ON(dev_boot_phase);
4834 ASSERT_RTNL();
4835
4836 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4837 /* Some devices call without registering
4838 * for initialization unwind. Remove those
4839 * devices and proceed with the remaining.
4840 */
4841 if (dev->reg_state == NETREG_UNINITIALIZED) {
4842 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4843 dev->name, dev);
4844
4845 WARN_ON(1);
4846 list_del(&dev->unreg_list);
4847 continue;
4848 }
4849 dev->dismantle = true;
4850 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4851 }
4852
4853 /* If device is running, close it first. */
4854 dev_close_many(head);
4855
4856 list_for_each_entry(dev, head, unreg_list) {
4857 /* And unlink it from device chain. */
4858 unlist_netdevice(dev);
4859
4860 dev->reg_state = NETREG_UNREGISTERING;
4861 }
4862
4863 synchronize_net();
4864
4865 list_for_each_entry(dev, head, unreg_list) {
4866 /* Shutdown queueing discipline. */
4867 dev_shutdown(dev);
4868
4869
4870 /* Notify protocols, that we are about to destroy
4871 this device. They should clean all the things.
4872 */
4873 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4874
4875 if (!dev->rtnl_link_ops ||
4876 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4877 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4878
4879 /*
4880 * Flush the unicast and multicast chains
4881 */
4882 dev_uc_flush(dev);
4883 dev_mc_flush(dev);
4884
4885 if (dev->netdev_ops->ndo_uninit)
4886 dev->netdev_ops->ndo_uninit(dev);
4887
4888 /* Notifier chain MUST detach us all upper devices. */
4889 WARN_ON(netdev_has_any_upper_dev(dev));
4890
4891 /* Remove entries from kobject tree */
4892 netdev_unregister_kobject(dev);
4893 #ifdef CONFIG_XPS
4894 /* Remove XPS queueing entries */
4895 netif_reset_xps_queues_gt(dev, 0);
4896 #endif
4897 }
4898
4899 synchronize_net();
4900
4901 list_for_each_entry(dev, head, unreg_list)
4902 dev_put(dev);
4903 }
4904
4905 static void rollback_registered(struct net_device *dev)
4906 {
4907 LIST_HEAD(single);
4908
4909 list_add(&dev->unreg_list, &single);
4910 rollback_registered_many(&single);
4911 list_del(&single);
4912 }
4913
4914 static netdev_features_t netdev_fix_features(struct net_device *dev,
4915 netdev_features_t features)
4916 {
4917 /* Fix illegal checksum combinations */
4918 if ((features & NETIF_F_HW_CSUM) &&
4919 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4920 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4921 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4922 }
4923
4924 /* Fix illegal SG+CSUM combinations. */
4925 if ((features & NETIF_F_SG) &&
4926 !(features & NETIF_F_ALL_CSUM)) {
4927 netdev_dbg(dev,
4928 "Dropping NETIF_F_SG since no checksum feature.\n");
4929 features &= ~NETIF_F_SG;
4930 }
4931
4932 /* TSO requires that SG is present as well. */
4933 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4934 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4935 features &= ~NETIF_F_ALL_TSO;
4936 }
4937
4938 /* TSO ECN requires that TSO is present as well. */
4939 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4940 features &= ~NETIF_F_TSO_ECN;
4941
4942 /* Software GSO depends on SG. */
4943 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4944 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4945 features &= ~NETIF_F_GSO;
4946 }
4947
4948 /* UFO needs SG and checksumming */
4949 if (features & NETIF_F_UFO) {
4950 /* maybe split UFO into V4 and V6? */
4951 if (!((features & NETIF_F_GEN_CSUM) ||
4952 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4953 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4954 netdev_dbg(dev,
4955 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4956 features &= ~NETIF_F_UFO;
4957 }
4958
4959 if (!(features & NETIF_F_SG)) {
4960 netdev_dbg(dev,
4961 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4962 features &= ~NETIF_F_UFO;
4963 }
4964 }
4965
4966 return features;
4967 }
4968
4969 int __netdev_update_features(struct net_device *dev)
4970 {
4971 netdev_features_t features;
4972 int err = 0;
4973
4974 ASSERT_RTNL();
4975
4976 features = netdev_get_wanted_features(dev);
4977
4978 if (dev->netdev_ops->ndo_fix_features)
4979 features = dev->netdev_ops->ndo_fix_features(dev, features);
4980
4981 /* driver might be less strict about feature dependencies */
4982 features = netdev_fix_features(dev, features);
4983
4984 if (dev->features == features)
4985 return 0;
4986
4987 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4988 &dev->features, &features);
4989
4990 if (dev->netdev_ops->ndo_set_features)
4991 err = dev->netdev_ops->ndo_set_features(dev, features);
4992
4993 if (unlikely(err < 0)) {
4994 netdev_err(dev,
4995 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4996 err, &features, &dev->features);
4997 return -1;
4998 }
4999
5000 if (!err)
5001 dev->features = features;
5002
5003 return 1;
5004 }
5005
5006 /**
5007 * netdev_update_features - recalculate device features
5008 * @dev: the device to check
5009 *
5010 * Recalculate dev->features set and send notifications if it
5011 * has changed. Should be called after driver or hardware dependent
5012 * conditions might have changed that influence the features.
5013 */
5014 void netdev_update_features(struct net_device *dev)
5015 {
5016 if (__netdev_update_features(dev))
5017 netdev_features_change(dev);
5018 }
5019 EXPORT_SYMBOL(netdev_update_features);
5020
5021 /**
5022 * netdev_change_features - recalculate device features
5023 * @dev: the device to check
5024 *
5025 * Recalculate dev->features set and send notifications even
5026 * if they have not changed. Should be called instead of
5027 * netdev_update_features() if also dev->vlan_features might
5028 * have changed to allow the changes to be propagated to stacked
5029 * VLAN devices.
5030 */
5031 void netdev_change_features(struct net_device *dev)
5032 {
5033 __netdev_update_features(dev);
5034 netdev_features_change(dev);
5035 }
5036 EXPORT_SYMBOL(netdev_change_features);
5037
5038 /**
5039 * netif_stacked_transfer_operstate - transfer operstate
5040 * @rootdev: the root or lower level device to transfer state from
5041 * @dev: the device to transfer operstate to
5042 *
5043 * Transfer operational state from root to device. This is normally
5044 * called when a stacking relationship exists between the root
5045 * device and the device(a leaf device).
5046 */
5047 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5048 struct net_device *dev)
5049 {
5050 if (rootdev->operstate == IF_OPER_DORMANT)
5051 netif_dormant_on(dev);
5052 else
5053 netif_dormant_off(dev);
5054
5055 if (netif_carrier_ok(rootdev)) {
5056 if (!netif_carrier_ok(dev))
5057 netif_carrier_on(dev);
5058 } else {
5059 if (netif_carrier_ok(dev))
5060 netif_carrier_off(dev);
5061 }
5062 }
5063 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5064
5065 #ifdef CONFIG_RPS
5066 static int netif_alloc_rx_queues(struct net_device *dev)
5067 {
5068 unsigned int i, count = dev->num_rx_queues;
5069 struct netdev_rx_queue *rx;
5070
5071 BUG_ON(count < 1);
5072
5073 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5074 if (!rx)
5075 return -ENOMEM;
5076
5077 dev->_rx = rx;
5078
5079 for (i = 0; i < count; i++)
5080 rx[i].dev = dev;
5081 return 0;
5082 }
5083 #endif
5084
5085 static void netdev_init_one_queue(struct net_device *dev,
5086 struct netdev_queue *queue, void *_unused)
5087 {
5088 /* Initialize queue lock */
5089 spin_lock_init(&queue->_xmit_lock);
5090 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5091 queue->xmit_lock_owner = -1;
5092 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5093 queue->dev = dev;
5094 #ifdef CONFIG_BQL
5095 dql_init(&queue->dql, HZ);
5096 #endif
5097 }
5098
5099 static int netif_alloc_netdev_queues(struct net_device *dev)
5100 {
5101 unsigned int count = dev->num_tx_queues;
5102 struct netdev_queue *tx;
5103
5104 BUG_ON(count < 1);
5105
5106 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5107 if (!tx)
5108 return -ENOMEM;
5109
5110 dev->_tx = tx;
5111
5112 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5113 spin_lock_init(&dev->tx_global_lock);
5114
5115 return 0;
5116 }
5117
5118 /**
5119 * register_netdevice - register a network device
5120 * @dev: device to register
5121 *
5122 * Take a completed network device structure and add it to the kernel
5123 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5124 * chain. 0 is returned on success. A negative errno code is returned
5125 * on a failure to set up the device, or if the name is a duplicate.
5126 *
5127 * Callers must hold the rtnl semaphore. You may want
5128 * register_netdev() instead of this.
5129 *
5130 * BUGS:
5131 * The locking appears insufficient to guarantee two parallel registers
5132 * will not get the same name.
5133 */
5134
5135 int register_netdevice(struct net_device *dev)
5136 {
5137 int ret;
5138 struct net *net = dev_net(dev);
5139
5140 BUG_ON(dev_boot_phase);
5141 ASSERT_RTNL();
5142
5143 might_sleep();
5144
5145 /* When net_device's are persistent, this will be fatal. */
5146 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5147 BUG_ON(!net);
5148
5149 spin_lock_init(&dev->addr_list_lock);
5150 netdev_set_addr_lockdep_class(dev);
5151
5152 dev->iflink = -1;
5153
5154 ret = dev_get_valid_name(net, dev, dev->name);
5155 if (ret < 0)
5156 goto out;
5157
5158 /* Init, if this function is available */
5159 if (dev->netdev_ops->ndo_init) {
5160 ret = dev->netdev_ops->ndo_init(dev);
5161 if (ret) {
5162 if (ret > 0)
5163 ret = -EIO;
5164 goto out;
5165 }
5166 }
5167
5168 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5169 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5170 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5171 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5172 ret = -EINVAL;
5173 goto err_uninit;
5174 }
5175
5176 ret = -EBUSY;
5177 if (!dev->ifindex)
5178 dev->ifindex = dev_new_index(net);
5179 else if (__dev_get_by_index(net, dev->ifindex))
5180 goto err_uninit;
5181
5182 if (dev->iflink == -1)
5183 dev->iflink = dev->ifindex;
5184
5185 /* Transfer changeable features to wanted_features and enable
5186 * software offloads (GSO and GRO).
5187 */
5188 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5189 dev->features |= NETIF_F_SOFT_FEATURES;
5190 dev->wanted_features = dev->features & dev->hw_features;
5191
5192 /* Turn on no cache copy if HW is doing checksum */
5193 if (!(dev->flags & IFF_LOOPBACK)) {
5194 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5195 if (dev->features & NETIF_F_ALL_CSUM) {
5196 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5197 dev->features |= NETIF_F_NOCACHE_COPY;
5198 }
5199 }
5200
5201 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5202 */
5203 dev->vlan_features |= NETIF_F_HIGHDMA;
5204
5205 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5206 ret = notifier_to_errno(ret);
5207 if (ret)
5208 goto err_uninit;
5209
5210 ret = netdev_register_kobject(dev);
5211 if (ret)
5212 goto err_uninit;
5213 dev->reg_state = NETREG_REGISTERED;
5214
5215 __netdev_update_features(dev);
5216
5217 /*
5218 * Default initial state at registry is that the
5219 * device is present.
5220 */
5221
5222 set_bit(__LINK_STATE_PRESENT, &dev->state);
5223
5224 linkwatch_init_dev(dev);
5225
5226 dev_init_scheduler(dev);
5227 dev_hold(dev);
5228 list_netdevice(dev);
5229 add_device_randomness(dev->dev_addr, dev->addr_len);
5230
5231 /* If the device has permanent device address, driver should
5232 * set dev_addr and also addr_assign_type should be set to
5233 * NET_ADDR_PERM (default value).
5234 */
5235 if (dev->addr_assign_type == NET_ADDR_PERM)
5236 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5237
5238 /* Notify protocols, that a new device appeared. */
5239 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5240 ret = notifier_to_errno(ret);
5241 if (ret) {
5242 rollback_registered(dev);
5243 dev->reg_state = NETREG_UNREGISTERED;
5244 }
5245 /*
5246 * Prevent userspace races by waiting until the network
5247 * device is fully setup before sending notifications.
5248 */
5249 if (!dev->rtnl_link_ops ||
5250 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5251 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5252
5253 out:
5254 return ret;
5255
5256 err_uninit:
5257 if (dev->netdev_ops->ndo_uninit)
5258 dev->netdev_ops->ndo_uninit(dev);
5259 goto out;
5260 }
5261 EXPORT_SYMBOL(register_netdevice);
5262
5263 /**
5264 * init_dummy_netdev - init a dummy network device for NAPI
5265 * @dev: device to init
5266 *
5267 * This takes a network device structure and initialize the minimum
5268 * amount of fields so it can be used to schedule NAPI polls without
5269 * registering a full blown interface. This is to be used by drivers
5270 * that need to tie several hardware interfaces to a single NAPI
5271 * poll scheduler due to HW limitations.
5272 */
5273 int init_dummy_netdev(struct net_device *dev)
5274 {
5275 /* Clear everything. Note we don't initialize spinlocks
5276 * are they aren't supposed to be taken by any of the
5277 * NAPI code and this dummy netdev is supposed to be
5278 * only ever used for NAPI polls
5279 */
5280 memset(dev, 0, sizeof(struct net_device));
5281
5282 /* make sure we BUG if trying to hit standard
5283 * register/unregister code path
5284 */
5285 dev->reg_state = NETREG_DUMMY;
5286
5287 /* NAPI wants this */
5288 INIT_LIST_HEAD(&dev->napi_list);
5289
5290 /* a dummy interface is started by default */
5291 set_bit(__LINK_STATE_PRESENT, &dev->state);
5292 set_bit(__LINK_STATE_START, &dev->state);
5293
5294 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5295 * because users of this 'device' dont need to change
5296 * its refcount.
5297 */
5298
5299 return 0;
5300 }
5301 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5302
5303
5304 /**
5305 * register_netdev - register a network device
5306 * @dev: device to register
5307 *
5308 * Take a completed network device structure and add it to the kernel
5309 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5310 * chain. 0 is returned on success. A negative errno code is returned
5311 * on a failure to set up the device, or if the name is a duplicate.
5312 *
5313 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5314 * and expands the device name if you passed a format string to
5315 * alloc_netdev.
5316 */
5317 int register_netdev(struct net_device *dev)
5318 {
5319 int err;
5320
5321 rtnl_lock();
5322 err = register_netdevice(dev);
5323 rtnl_unlock();
5324 return err;
5325 }
5326 EXPORT_SYMBOL(register_netdev);
5327
5328 int netdev_refcnt_read(const struct net_device *dev)
5329 {
5330 int i, refcnt = 0;
5331
5332 for_each_possible_cpu(i)
5333 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5334 return refcnt;
5335 }
5336 EXPORT_SYMBOL(netdev_refcnt_read);
5337
5338 /**
5339 * netdev_wait_allrefs - wait until all references are gone.
5340 * @dev: target net_device
5341 *
5342 * This is called when unregistering network devices.
5343 *
5344 * Any protocol or device that holds a reference should register
5345 * for netdevice notification, and cleanup and put back the
5346 * reference if they receive an UNREGISTER event.
5347 * We can get stuck here if buggy protocols don't correctly
5348 * call dev_put.
5349 */
5350 static void netdev_wait_allrefs(struct net_device *dev)
5351 {
5352 unsigned long rebroadcast_time, warning_time;
5353 int refcnt;
5354
5355 linkwatch_forget_dev(dev);
5356
5357 rebroadcast_time = warning_time = jiffies;
5358 refcnt = netdev_refcnt_read(dev);
5359
5360 while (refcnt != 0) {
5361 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5362 rtnl_lock();
5363
5364 /* Rebroadcast unregister notification */
5365 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5366
5367 __rtnl_unlock();
5368 rcu_barrier();
5369 rtnl_lock();
5370
5371 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5372 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5373 &dev->state)) {
5374 /* We must not have linkwatch events
5375 * pending on unregister. If this
5376 * happens, we simply run the queue
5377 * unscheduled, resulting in a noop
5378 * for this device.
5379 */
5380 linkwatch_run_queue();
5381 }
5382
5383 __rtnl_unlock();
5384
5385 rebroadcast_time = jiffies;
5386 }
5387
5388 msleep(250);
5389
5390 refcnt = netdev_refcnt_read(dev);
5391
5392 if (time_after(jiffies, warning_time + 10 * HZ)) {
5393 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5394 dev->name, refcnt);
5395 warning_time = jiffies;
5396 }
5397 }
5398 }
5399
5400 /* The sequence is:
5401 *
5402 * rtnl_lock();
5403 * ...
5404 * register_netdevice(x1);
5405 * register_netdevice(x2);
5406 * ...
5407 * unregister_netdevice(y1);
5408 * unregister_netdevice(y2);
5409 * ...
5410 * rtnl_unlock();
5411 * free_netdev(y1);
5412 * free_netdev(y2);
5413 *
5414 * We are invoked by rtnl_unlock().
5415 * This allows us to deal with problems:
5416 * 1) We can delete sysfs objects which invoke hotplug
5417 * without deadlocking with linkwatch via keventd.
5418 * 2) Since we run with the RTNL semaphore not held, we can sleep
5419 * safely in order to wait for the netdev refcnt to drop to zero.
5420 *
5421 * We must not return until all unregister events added during
5422 * the interval the lock was held have been completed.
5423 */
5424 void netdev_run_todo(void)
5425 {
5426 struct list_head list;
5427
5428 /* Snapshot list, allow later requests */
5429 list_replace_init(&net_todo_list, &list);
5430
5431 __rtnl_unlock();
5432
5433
5434 /* Wait for rcu callbacks to finish before next phase */
5435 if (!list_empty(&list))
5436 rcu_barrier();
5437
5438 while (!list_empty(&list)) {
5439 struct net_device *dev
5440 = list_first_entry(&list, struct net_device, todo_list);
5441 list_del(&dev->todo_list);
5442
5443 rtnl_lock();
5444 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5445 __rtnl_unlock();
5446
5447 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5448 pr_err("network todo '%s' but state %d\n",
5449 dev->name, dev->reg_state);
5450 dump_stack();
5451 continue;
5452 }
5453
5454 dev->reg_state = NETREG_UNREGISTERED;
5455
5456 on_each_cpu(flush_backlog, dev, 1);
5457
5458 netdev_wait_allrefs(dev);
5459
5460 /* paranoia */
5461 BUG_ON(netdev_refcnt_read(dev));
5462 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5463 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5464 WARN_ON(dev->dn_ptr);
5465
5466 if (dev->destructor)
5467 dev->destructor(dev);
5468
5469 /* Free network device */
5470 kobject_put(&dev->dev.kobj);
5471 }
5472 }
5473
5474 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5475 * fields in the same order, with only the type differing.
5476 */
5477 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5478 const struct net_device_stats *netdev_stats)
5479 {
5480 #if BITS_PER_LONG == 64
5481 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5482 memcpy(stats64, netdev_stats, sizeof(*stats64));
5483 #else
5484 size_t i, n = sizeof(*stats64) / sizeof(u64);
5485 const unsigned long *src = (const unsigned long *)netdev_stats;
5486 u64 *dst = (u64 *)stats64;
5487
5488 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5489 sizeof(*stats64) / sizeof(u64));
5490 for (i = 0; i < n; i++)
5491 dst[i] = src[i];
5492 #endif
5493 }
5494 EXPORT_SYMBOL(netdev_stats_to_stats64);
5495
5496 /**
5497 * dev_get_stats - get network device statistics
5498 * @dev: device to get statistics from
5499 * @storage: place to store stats
5500 *
5501 * Get network statistics from device. Return @storage.
5502 * The device driver may provide its own method by setting
5503 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5504 * otherwise the internal statistics structure is used.
5505 */
5506 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5507 struct rtnl_link_stats64 *storage)
5508 {
5509 const struct net_device_ops *ops = dev->netdev_ops;
5510
5511 if (ops->ndo_get_stats64) {
5512 memset(storage, 0, sizeof(*storage));
5513 ops->ndo_get_stats64(dev, storage);
5514 } else if (ops->ndo_get_stats) {
5515 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5516 } else {
5517 netdev_stats_to_stats64(storage, &dev->stats);
5518 }
5519 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5520 return storage;
5521 }
5522 EXPORT_SYMBOL(dev_get_stats);
5523
5524 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5525 {
5526 struct netdev_queue *queue = dev_ingress_queue(dev);
5527
5528 #ifdef CONFIG_NET_CLS_ACT
5529 if (queue)
5530 return queue;
5531 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5532 if (!queue)
5533 return NULL;
5534 netdev_init_one_queue(dev, queue, NULL);
5535 queue->qdisc = &noop_qdisc;
5536 queue->qdisc_sleeping = &noop_qdisc;
5537 rcu_assign_pointer(dev->ingress_queue, queue);
5538 #endif
5539 return queue;
5540 }
5541
5542 static const struct ethtool_ops default_ethtool_ops;
5543
5544 void netdev_set_default_ethtool_ops(struct net_device *dev,
5545 const struct ethtool_ops *ops)
5546 {
5547 if (dev->ethtool_ops == &default_ethtool_ops)
5548 dev->ethtool_ops = ops;
5549 }
5550 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5551
5552 /**
5553 * alloc_netdev_mqs - allocate network device
5554 * @sizeof_priv: size of private data to allocate space for
5555 * @name: device name format string
5556 * @setup: callback to initialize device
5557 * @txqs: the number of TX subqueues to allocate
5558 * @rxqs: the number of RX subqueues to allocate
5559 *
5560 * Allocates a struct net_device with private data area for driver use
5561 * and performs basic initialization. Also allocates subquue structs
5562 * for each queue on the device.
5563 */
5564 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5565 void (*setup)(struct net_device *),
5566 unsigned int txqs, unsigned int rxqs)
5567 {
5568 struct net_device *dev;
5569 size_t alloc_size;
5570 struct net_device *p;
5571
5572 BUG_ON(strlen(name) >= sizeof(dev->name));
5573
5574 if (txqs < 1) {
5575 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5576 return NULL;
5577 }
5578
5579 #ifdef CONFIG_RPS
5580 if (rxqs < 1) {
5581 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5582 return NULL;
5583 }
5584 #endif
5585
5586 alloc_size = sizeof(struct net_device);
5587 if (sizeof_priv) {
5588 /* ensure 32-byte alignment of private area */
5589 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5590 alloc_size += sizeof_priv;
5591 }
5592 /* ensure 32-byte alignment of whole construct */
5593 alloc_size += NETDEV_ALIGN - 1;
5594
5595 p = kzalloc(alloc_size, GFP_KERNEL);
5596 if (!p)
5597 return NULL;
5598
5599 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5600 dev->padded = (char *)dev - (char *)p;
5601
5602 dev->pcpu_refcnt = alloc_percpu(int);
5603 if (!dev->pcpu_refcnt)
5604 goto free_p;
5605
5606 if (dev_addr_init(dev))
5607 goto free_pcpu;
5608
5609 dev_mc_init(dev);
5610 dev_uc_init(dev);
5611
5612 dev_net_set(dev, &init_net);
5613
5614 dev->gso_max_size = GSO_MAX_SIZE;
5615 dev->gso_max_segs = GSO_MAX_SEGS;
5616
5617 INIT_LIST_HEAD(&dev->napi_list);
5618 INIT_LIST_HEAD(&dev->unreg_list);
5619 INIT_LIST_HEAD(&dev->link_watch_list);
5620 INIT_LIST_HEAD(&dev->upper_dev_list);
5621 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5622 setup(dev);
5623
5624 dev->num_tx_queues = txqs;
5625 dev->real_num_tx_queues = txqs;
5626 if (netif_alloc_netdev_queues(dev))
5627 goto free_all;
5628
5629 #ifdef CONFIG_RPS
5630 dev->num_rx_queues = rxqs;
5631 dev->real_num_rx_queues = rxqs;
5632 if (netif_alloc_rx_queues(dev))
5633 goto free_all;
5634 #endif
5635
5636 strcpy(dev->name, name);
5637 dev->group = INIT_NETDEV_GROUP;
5638 if (!dev->ethtool_ops)
5639 dev->ethtool_ops = &default_ethtool_ops;
5640 return dev;
5641
5642 free_all:
5643 free_netdev(dev);
5644 return NULL;
5645
5646 free_pcpu:
5647 free_percpu(dev->pcpu_refcnt);
5648 kfree(dev->_tx);
5649 #ifdef CONFIG_RPS
5650 kfree(dev->_rx);
5651 #endif
5652
5653 free_p:
5654 kfree(p);
5655 return NULL;
5656 }
5657 EXPORT_SYMBOL(alloc_netdev_mqs);
5658
5659 /**
5660 * free_netdev - free network device
5661 * @dev: device
5662 *
5663 * This function does the last stage of destroying an allocated device
5664 * interface. The reference to the device object is released.
5665 * If this is the last reference then it will be freed.
5666 */
5667 void free_netdev(struct net_device *dev)
5668 {
5669 struct napi_struct *p, *n;
5670
5671 release_net(dev_net(dev));
5672
5673 kfree(dev->_tx);
5674 #ifdef CONFIG_RPS
5675 kfree(dev->_rx);
5676 #endif
5677
5678 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5679
5680 /* Flush device addresses */
5681 dev_addr_flush(dev);
5682
5683 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5684 netif_napi_del(p);
5685
5686 free_percpu(dev->pcpu_refcnt);
5687 dev->pcpu_refcnt = NULL;
5688
5689 /* Compatibility with error handling in drivers */
5690 if (dev->reg_state == NETREG_UNINITIALIZED) {
5691 kfree((char *)dev - dev->padded);
5692 return;
5693 }
5694
5695 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5696 dev->reg_state = NETREG_RELEASED;
5697
5698 /* will free via device release */
5699 put_device(&dev->dev);
5700 }
5701 EXPORT_SYMBOL(free_netdev);
5702
5703 /**
5704 * synchronize_net - Synchronize with packet receive processing
5705 *
5706 * Wait for packets currently being received to be done.
5707 * Does not block later packets from starting.
5708 */
5709 void synchronize_net(void)
5710 {
5711 might_sleep();
5712 if (rtnl_is_locked())
5713 synchronize_rcu_expedited();
5714 else
5715 synchronize_rcu();
5716 }
5717 EXPORT_SYMBOL(synchronize_net);
5718
5719 /**
5720 * unregister_netdevice_queue - remove device from the kernel
5721 * @dev: device
5722 * @head: list
5723 *
5724 * This function shuts down a device interface and removes it
5725 * from the kernel tables.
5726 * If head not NULL, device is queued to be unregistered later.
5727 *
5728 * Callers must hold the rtnl semaphore. You may want
5729 * unregister_netdev() instead of this.
5730 */
5731
5732 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5733 {
5734 ASSERT_RTNL();
5735
5736 if (head) {
5737 list_move_tail(&dev->unreg_list, head);
5738 } else {
5739 rollback_registered(dev);
5740 /* Finish processing unregister after unlock */
5741 net_set_todo(dev);
5742 }
5743 }
5744 EXPORT_SYMBOL(unregister_netdevice_queue);
5745
5746 /**
5747 * unregister_netdevice_many - unregister many devices
5748 * @head: list of devices
5749 */
5750 void unregister_netdevice_many(struct list_head *head)
5751 {
5752 struct net_device *dev;
5753
5754 if (!list_empty(head)) {
5755 rollback_registered_many(head);
5756 list_for_each_entry(dev, head, unreg_list)
5757 net_set_todo(dev);
5758 }
5759 }
5760 EXPORT_SYMBOL(unregister_netdevice_many);
5761
5762 /**
5763 * unregister_netdev - remove device from the kernel
5764 * @dev: device
5765 *
5766 * This function shuts down a device interface and removes it
5767 * from the kernel tables.
5768 *
5769 * This is just a wrapper for unregister_netdevice that takes
5770 * the rtnl semaphore. In general you want to use this and not
5771 * unregister_netdevice.
5772 */
5773 void unregister_netdev(struct net_device *dev)
5774 {
5775 rtnl_lock();
5776 unregister_netdevice(dev);
5777 rtnl_unlock();
5778 }
5779 EXPORT_SYMBOL(unregister_netdev);
5780
5781 /**
5782 * dev_change_net_namespace - move device to different nethost namespace
5783 * @dev: device
5784 * @net: network namespace
5785 * @pat: If not NULL name pattern to try if the current device name
5786 * is already taken in the destination network namespace.
5787 *
5788 * This function shuts down a device interface and moves it
5789 * to a new network namespace. On success 0 is returned, on
5790 * a failure a netagive errno code is returned.
5791 *
5792 * Callers must hold the rtnl semaphore.
5793 */
5794
5795 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5796 {
5797 int err;
5798
5799 ASSERT_RTNL();
5800
5801 /* Don't allow namespace local devices to be moved. */
5802 err = -EINVAL;
5803 if (dev->features & NETIF_F_NETNS_LOCAL)
5804 goto out;
5805
5806 /* Ensure the device has been registrered */
5807 if (dev->reg_state != NETREG_REGISTERED)
5808 goto out;
5809
5810 /* Get out if there is nothing todo */
5811 err = 0;
5812 if (net_eq(dev_net(dev), net))
5813 goto out;
5814
5815 /* Pick the destination device name, and ensure
5816 * we can use it in the destination network namespace.
5817 */
5818 err = -EEXIST;
5819 if (__dev_get_by_name(net, dev->name)) {
5820 /* We get here if we can't use the current device name */
5821 if (!pat)
5822 goto out;
5823 if (dev_get_valid_name(net, dev, pat) < 0)
5824 goto out;
5825 }
5826
5827 /*
5828 * And now a mini version of register_netdevice unregister_netdevice.
5829 */
5830
5831 /* If device is running close it first. */
5832 dev_close(dev);
5833
5834 /* And unlink it from device chain */
5835 err = -ENODEV;
5836 unlist_netdevice(dev);
5837
5838 synchronize_net();
5839
5840 /* Shutdown queueing discipline. */
5841 dev_shutdown(dev);
5842
5843 /* Notify protocols, that we are about to destroy
5844 this device. They should clean all the things.
5845
5846 Note that dev->reg_state stays at NETREG_REGISTERED.
5847 This is wanted because this way 8021q and macvlan know
5848 the device is just moving and can keep their slaves up.
5849 */
5850 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5851 rcu_barrier();
5852 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5853 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5854
5855 /*
5856 * Flush the unicast and multicast chains
5857 */
5858 dev_uc_flush(dev);
5859 dev_mc_flush(dev);
5860
5861 /* Send a netdev-removed uevent to the old namespace */
5862 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5863
5864 /* Actually switch the network namespace */
5865 dev_net_set(dev, net);
5866
5867 /* If there is an ifindex conflict assign a new one */
5868 if (__dev_get_by_index(net, dev->ifindex)) {
5869 int iflink = (dev->iflink == dev->ifindex);
5870 dev->ifindex = dev_new_index(net);
5871 if (iflink)
5872 dev->iflink = dev->ifindex;
5873 }
5874
5875 /* Send a netdev-add uevent to the new namespace */
5876 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5877
5878 /* Fixup kobjects */
5879 err = device_rename(&dev->dev, dev->name);
5880 WARN_ON(err);
5881
5882 /* Add the device back in the hashes */
5883 list_netdevice(dev);
5884
5885 /* Notify protocols, that a new device appeared. */
5886 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5887
5888 /*
5889 * Prevent userspace races by waiting until the network
5890 * device is fully setup before sending notifications.
5891 */
5892 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5893
5894 synchronize_net();
5895 err = 0;
5896 out:
5897 return err;
5898 }
5899 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5900
5901 static int dev_cpu_callback(struct notifier_block *nfb,
5902 unsigned long action,
5903 void *ocpu)
5904 {
5905 struct sk_buff **list_skb;
5906 struct sk_buff *skb;
5907 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5908 struct softnet_data *sd, *oldsd;
5909
5910 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5911 return NOTIFY_OK;
5912
5913 local_irq_disable();
5914 cpu = smp_processor_id();
5915 sd = &per_cpu(softnet_data, cpu);
5916 oldsd = &per_cpu(softnet_data, oldcpu);
5917
5918 /* Find end of our completion_queue. */
5919 list_skb = &sd->completion_queue;
5920 while (*list_skb)
5921 list_skb = &(*list_skb)->next;
5922 /* Append completion queue from offline CPU. */
5923 *list_skb = oldsd->completion_queue;
5924 oldsd->completion_queue = NULL;
5925
5926 /* Append output queue from offline CPU. */
5927 if (oldsd->output_queue) {
5928 *sd->output_queue_tailp = oldsd->output_queue;
5929 sd->output_queue_tailp = oldsd->output_queue_tailp;
5930 oldsd->output_queue = NULL;
5931 oldsd->output_queue_tailp = &oldsd->output_queue;
5932 }
5933 /* Append NAPI poll list from offline CPU. */
5934 if (!list_empty(&oldsd->poll_list)) {
5935 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5936 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5937 }
5938
5939 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5940 local_irq_enable();
5941
5942 /* Process offline CPU's input_pkt_queue */
5943 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5944 netif_rx(skb);
5945 input_queue_head_incr(oldsd);
5946 }
5947 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5948 netif_rx(skb);
5949 input_queue_head_incr(oldsd);
5950 }
5951
5952 return NOTIFY_OK;
5953 }
5954
5955
5956 /**
5957 * netdev_increment_features - increment feature set by one
5958 * @all: current feature set
5959 * @one: new feature set
5960 * @mask: mask feature set
5961 *
5962 * Computes a new feature set after adding a device with feature set
5963 * @one to the master device with current feature set @all. Will not
5964 * enable anything that is off in @mask. Returns the new feature set.
5965 */
5966 netdev_features_t netdev_increment_features(netdev_features_t all,
5967 netdev_features_t one, netdev_features_t mask)
5968 {
5969 if (mask & NETIF_F_GEN_CSUM)
5970 mask |= NETIF_F_ALL_CSUM;
5971 mask |= NETIF_F_VLAN_CHALLENGED;
5972
5973 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5974 all &= one | ~NETIF_F_ALL_FOR_ALL;
5975
5976 /* If one device supports hw checksumming, set for all. */
5977 if (all & NETIF_F_GEN_CSUM)
5978 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5979
5980 return all;
5981 }
5982 EXPORT_SYMBOL(netdev_increment_features);
5983
5984 static struct hlist_head *netdev_create_hash(void)
5985 {
5986 int i;
5987 struct hlist_head *hash;
5988
5989 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5990 if (hash != NULL)
5991 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5992 INIT_HLIST_HEAD(&hash[i]);
5993
5994 return hash;
5995 }
5996
5997 /* Initialize per network namespace state */
5998 static int __net_init netdev_init(struct net *net)
5999 {
6000 if (net != &init_net)
6001 INIT_LIST_HEAD(&net->dev_base_head);
6002
6003 net->dev_name_head = netdev_create_hash();
6004 if (net->dev_name_head == NULL)
6005 goto err_name;
6006
6007 net->dev_index_head = netdev_create_hash();
6008 if (net->dev_index_head == NULL)
6009 goto err_idx;
6010
6011 return 0;
6012
6013 err_idx:
6014 kfree(net->dev_name_head);
6015 err_name:
6016 return -ENOMEM;
6017 }
6018
6019 /**
6020 * netdev_drivername - network driver for the device
6021 * @dev: network device
6022 *
6023 * Determine network driver for device.
6024 */
6025 const char *netdev_drivername(const struct net_device *dev)
6026 {
6027 const struct device_driver *driver;
6028 const struct device *parent;
6029 const char *empty = "";
6030
6031 parent = dev->dev.parent;
6032 if (!parent)
6033 return empty;
6034
6035 driver = parent->driver;
6036 if (driver && driver->name)
6037 return driver->name;
6038 return empty;
6039 }
6040
6041 static int __netdev_printk(const char *level, const struct net_device *dev,
6042 struct va_format *vaf)
6043 {
6044 int r;
6045
6046 if (dev && dev->dev.parent) {
6047 r = dev_printk_emit(level[1] - '0',
6048 dev->dev.parent,
6049 "%s %s %s: %pV",
6050 dev_driver_string(dev->dev.parent),
6051 dev_name(dev->dev.parent),
6052 netdev_name(dev), vaf);
6053 } else if (dev) {
6054 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6055 } else {
6056 r = printk("%s(NULL net_device): %pV", level, vaf);
6057 }
6058
6059 return r;
6060 }
6061
6062 int netdev_printk(const char *level, const struct net_device *dev,
6063 const char *format, ...)
6064 {
6065 struct va_format vaf;
6066 va_list args;
6067 int r;
6068
6069 va_start(args, format);
6070
6071 vaf.fmt = format;
6072 vaf.va = &args;
6073
6074 r = __netdev_printk(level, dev, &vaf);
6075
6076 va_end(args);
6077
6078 return r;
6079 }
6080 EXPORT_SYMBOL(netdev_printk);
6081
6082 #define define_netdev_printk_level(func, level) \
6083 int func(const struct net_device *dev, const char *fmt, ...) \
6084 { \
6085 int r; \
6086 struct va_format vaf; \
6087 va_list args; \
6088 \
6089 va_start(args, fmt); \
6090 \
6091 vaf.fmt = fmt; \
6092 vaf.va = &args; \
6093 \
6094 r = __netdev_printk(level, dev, &vaf); \
6095 \
6096 va_end(args); \
6097 \
6098 return r; \
6099 } \
6100 EXPORT_SYMBOL(func);
6101
6102 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6103 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6104 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6105 define_netdev_printk_level(netdev_err, KERN_ERR);
6106 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6107 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6108 define_netdev_printk_level(netdev_info, KERN_INFO);
6109
6110 static void __net_exit netdev_exit(struct net *net)
6111 {
6112 kfree(net->dev_name_head);
6113 kfree(net->dev_index_head);
6114 }
6115
6116 static struct pernet_operations __net_initdata netdev_net_ops = {
6117 .init = netdev_init,
6118 .exit = netdev_exit,
6119 };
6120
6121 static void __net_exit default_device_exit(struct net *net)
6122 {
6123 struct net_device *dev, *aux;
6124 /*
6125 * Push all migratable network devices back to the
6126 * initial network namespace
6127 */
6128 rtnl_lock();
6129 for_each_netdev_safe(net, dev, aux) {
6130 int err;
6131 char fb_name[IFNAMSIZ];
6132
6133 /* Ignore unmoveable devices (i.e. loopback) */
6134 if (dev->features & NETIF_F_NETNS_LOCAL)
6135 continue;
6136
6137 /* Leave virtual devices for the generic cleanup */
6138 if (dev->rtnl_link_ops)
6139 continue;
6140
6141 /* Push remaining network devices to init_net */
6142 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6143 err = dev_change_net_namespace(dev, &init_net, fb_name);
6144 if (err) {
6145 pr_emerg("%s: failed to move %s to init_net: %d\n",
6146 __func__, dev->name, err);
6147 BUG();
6148 }
6149 }
6150 rtnl_unlock();
6151 }
6152
6153 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6154 {
6155 /* At exit all network devices most be removed from a network
6156 * namespace. Do this in the reverse order of registration.
6157 * Do this across as many network namespaces as possible to
6158 * improve batching efficiency.
6159 */
6160 struct net_device *dev;
6161 struct net *net;
6162 LIST_HEAD(dev_kill_list);
6163
6164 rtnl_lock();
6165 list_for_each_entry(net, net_list, exit_list) {
6166 for_each_netdev_reverse(net, dev) {
6167 if (dev->rtnl_link_ops)
6168 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6169 else
6170 unregister_netdevice_queue(dev, &dev_kill_list);
6171 }
6172 }
6173 unregister_netdevice_many(&dev_kill_list);
6174 list_del(&dev_kill_list);
6175 rtnl_unlock();
6176 }
6177
6178 static struct pernet_operations __net_initdata default_device_ops = {
6179 .exit = default_device_exit,
6180 .exit_batch = default_device_exit_batch,
6181 };
6182
6183 /*
6184 * Initialize the DEV module. At boot time this walks the device list and
6185 * unhooks any devices that fail to initialise (normally hardware not
6186 * present) and leaves us with a valid list of present and active devices.
6187 *
6188 */
6189
6190 /*
6191 * This is called single threaded during boot, so no need
6192 * to take the rtnl semaphore.
6193 */
6194 static int __init net_dev_init(void)
6195 {
6196 int i, rc = -ENOMEM;
6197
6198 BUG_ON(!dev_boot_phase);
6199
6200 if (dev_proc_init())
6201 goto out;
6202
6203 if (netdev_kobject_init())
6204 goto out;
6205
6206 INIT_LIST_HEAD(&ptype_all);
6207 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6208 INIT_LIST_HEAD(&ptype_base[i]);
6209
6210 INIT_LIST_HEAD(&offload_base);
6211
6212 if (register_pernet_subsys(&netdev_net_ops))
6213 goto out;
6214
6215 /*
6216 * Initialise the packet receive queues.
6217 */
6218
6219 for_each_possible_cpu(i) {
6220 struct softnet_data *sd = &per_cpu(softnet_data, i);
6221
6222 memset(sd, 0, sizeof(*sd));
6223 skb_queue_head_init(&sd->input_pkt_queue);
6224 skb_queue_head_init(&sd->process_queue);
6225 sd->completion_queue = NULL;
6226 INIT_LIST_HEAD(&sd->poll_list);
6227 sd->output_queue = NULL;
6228 sd->output_queue_tailp = &sd->output_queue;
6229 #ifdef CONFIG_RPS
6230 sd->csd.func = rps_trigger_softirq;
6231 sd->csd.info = sd;
6232 sd->csd.flags = 0;
6233 sd->cpu = i;
6234 #endif
6235
6236 sd->backlog.poll = process_backlog;
6237 sd->backlog.weight = weight_p;
6238 sd->backlog.gro_list = NULL;
6239 sd->backlog.gro_count = 0;
6240 }
6241
6242 dev_boot_phase = 0;
6243
6244 /* The loopback device is special if any other network devices
6245 * is present in a network namespace the loopback device must
6246 * be present. Since we now dynamically allocate and free the
6247 * loopback device ensure this invariant is maintained by
6248 * keeping the loopback device as the first device on the
6249 * list of network devices. Ensuring the loopback devices
6250 * is the first device that appears and the last network device
6251 * that disappears.
6252 */
6253 if (register_pernet_device(&loopback_net_ops))
6254 goto out;
6255
6256 if (register_pernet_device(&default_device_ops))
6257 goto out;
6258
6259 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6260 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6261
6262 hotcpu_notifier(dev_cpu_callback, 0);
6263 dst_init();
6264 rc = 0;
6265 out:
6266 return rc;
6267 }
6268
6269 subsys_initcall(net_dev_init);
This page took 0.154455 seconds and 6 git commands to generate.