Merge branch 'bonding-next'
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135 #include <linux/errqueue.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 static DEFINE_SPINLOCK(ptype_lock);
146 static DEFINE_SPINLOCK(offload_lock);
147 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148 struct list_head ptype_all __read_mostly; /* Taps */
149 static struct list_head offload_base __read_mostly;
150
151 static int netif_rx_internal(struct sk_buff *skb);
152 static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156 /*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175 DEFINE_RWLOCK(dev_base_lock);
176 EXPORT_SYMBOL(dev_base_lock);
177
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180
181 static unsigned int napi_gen_id;
182 static DEFINE_HASHTABLE(napi_hash, 8);
183
184 static seqcount_t devnet_rename_seq;
185
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 while (++net->dev_base_seq == 0);
189 }
190
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202
203 static inline void rps_lock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209
210 static inline void rps_unlock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 /* Device list insertion */
218 static void list_netdevice(struct net_device *dev)
219 {
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232 }
233
234 /* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237 static void unlist_netdevice(struct net_device *dev)
238 {
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249 }
250
251 /*
252 * Our notifier list
253 */
254
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256
257 /*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263 EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265 #ifdef CONFIG_LOCKDEP
266 /*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270 static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287 static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308 {
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316 }
317
318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320 {
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326 }
327
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336 }
337 #else
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340 {
341 }
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 }
345 #endif
346
347 /*******************************************************************************
348
349 Protocol management and registration routines
350
351 *******************************************************************************/
352
353 /*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369 static inline struct list_head *ptype_head(const struct packet_type *pt)
370 {
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375 }
376
377 /**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390 void dev_add_pack(struct packet_type *pt)
391 {
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397 }
398 EXPORT_SYMBOL(dev_add_pack);
399
400 /**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413 void __dev_remove_pack(struct packet_type *pt)
414 {
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428 out:
429 spin_unlock(&ptype_lock);
430 }
431 EXPORT_SYMBOL(__dev_remove_pack);
432
433 /**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445 void dev_remove_pack(struct packet_type *pt)
446 {
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450 }
451 EXPORT_SYMBOL(dev_remove_pack);
452
453
454 /**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466 void dev_add_offload(struct packet_offload *po)
467 {
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473 }
474 EXPORT_SYMBOL(dev_add_offload);
475
476 /**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489 static void __dev_remove_offload(struct packet_offload *po)
490 {
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504 out:
505 spin_unlock(&offload_lock);
506 }
507
508 /**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520 void dev_remove_offload(struct packet_offload *po)
521 {
522 __dev_remove_offload(po);
523
524 synchronize_net();
525 }
526 EXPORT_SYMBOL(dev_remove_offload);
527
528 /******************************************************************************
529
530 Device Boot-time Settings Routines
531
532 *******************************************************************************/
533
534 /* Boot time configuration table */
535 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537 /**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546 static int netdev_boot_setup_add(char *name, struct ifmap *map)
547 {
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562 }
563
564 /**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573 int netdev_boot_setup_check(struct net_device *dev)
574 {
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589 }
590 EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593 /**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603 unsigned long netdev_boot_base(const char *prefix, int unit)
604 {
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622 }
623
624 /*
625 * Saves at boot time configured settings for any netdevice.
626 */
627 int __init netdev_boot_setup(char *str)
628 {
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649 }
650
651 __setup("netdev=", netdev_boot_setup);
652
653 /*******************************************************************************
654
655 Device Interface Subroutines
656
657 *******************************************************************************/
658
659 /**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671 struct net_device *__dev_get_by_name(struct net *net, const char *name)
672 {
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681 }
682 EXPORT_SYMBOL(__dev_get_by_name);
683
684 /**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697 {
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706 }
707 EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709 /**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721 struct net_device *dev_get_by_name(struct net *net, const char *name)
722 {
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731 }
732 EXPORT_SYMBOL(dev_get_by_name);
733
734 /**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747 {
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756 }
757 EXPORT_SYMBOL(__dev_get_by_index);
758
759 /**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771 {
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784 /**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795 struct net_device *dev_get_by_index(struct net *net, int ifindex)
796 {
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805 }
806 EXPORT_SYMBOL(dev_get_by_index);
807
808 /**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818 int netdev_get_name(struct net *net, char *name, int ifindex)
819 {
820 struct net_device *dev;
821 unsigned int seq;
822
823 retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840 }
841
842 /**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858 {
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867 }
868 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871 {
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880 }
881 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884 {
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896 }
897 EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899 /**
900 * dev_get_by_flags_rcu - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rcu_read_lock(), and result refcount is unchanged.
908 */
909
910 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912 {
913 struct net_device *dev, *ret;
914
915 ret = NULL;
916 for_each_netdev_rcu(net, dev) {
917 if (((dev->flags ^ if_flags) & mask) == 0) {
918 ret = dev;
919 break;
920 }
921 }
922 return ret;
923 }
924 EXPORT_SYMBOL(dev_get_by_flags_rcu);
925
926 /**
927 * dev_valid_name - check if name is okay for network device
928 * @name: name string
929 *
930 * Network device names need to be valid file names to
931 * to allow sysfs to work. We also disallow any kind of
932 * whitespace.
933 */
934 bool dev_valid_name(const char *name)
935 {
936 if (*name == '\0')
937 return false;
938 if (strlen(name) >= IFNAMSIZ)
939 return false;
940 if (!strcmp(name, ".") || !strcmp(name, ".."))
941 return false;
942
943 while (*name) {
944 if (*name == '/' || isspace(*name))
945 return false;
946 name++;
947 }
948 return true;
949 }
950 EXPORT_SYMBOL(dev_valid_name);
951
952 /**
953 * __dev_alloc_name - allocate a name for a device
954 * @net: network namespace to allocate the device name in
955 * @name: name format string
956 * @buf: scratch buffer and result name string
957 *
958 * Passed a format string - eg "lt%d" it will try and find a suitable
959 * id. It scans list of devices to build up a free map, then chooses
960 * the first empty slot. The caller must hold the dev_base or rtnl lock
961 * while allocating the name and adding the device in order to avoid
962 * duplicates.
963 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
964 * Returns the number of the unit assigned or a negative errno code.
965 */
966
967 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
968 {
969 int i = 0;
970 const char *p;
971 const int max_netdevices = 8*PAGE_SIZE;
972 unsigned long *inuse;
973 struct net_device *d;
974
975 p = strnchr(name, IFNAMSIZ-1, '%');
976 if (p) {
977 /*
978 * Verify the string as this thing may have come from
979 * the user. There must be either one "%d" and no other "%"
980 * characters.
981 */
982 if (p[1] != 'd' || strchr(p + 2, '%'))
983 return -EINVAL;
984
985 /* Use one page as a bit array of possible slots */
986 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
987 if (!inuse)
988 return -ENOMEM;
989
990 for_each_netdev(net, d) {
991 if (!sscanf(d->name, name, &i))
992 continue;
993 if (i < 0 || i >= max_netdevices)
994 continue;
995
996 /* avoid cases where sscanf is not exact inverse of printf */
997 snprintf(buf, IFNAMSIZ, name, i);
998 if (!strncmp(buf, d->name, IFNAMSIZ))
999 set_bit(i, inuse);
1000 }
1001
1002 i = find_first_zero_bit(inuse, max_netdevices);
1003 free_page((unsigned long) inuse);
1004 }
1005
1006 if (buf != name)
1007 snprintf(buf, IFNAMSIZ, name, i);
1008 if (!__dev_get_by_name(net, buf))
1009 return i;
1010
1011 /* It is possible to run out of possible slots
1012 * when the name is long and there isn't enough space left
1013 * for the digits, or if all bits are used.
1014 */
1015 return -ENFILE;
1016 }
1017
1018 /**
1019 * dev_alloc_name - allocate a name for a device
1020 * @dev: device
1021 * @name: name format string
1022 *
1023 * Passed a format string - eg "lt%d" it will try and find a suitable
1024 * id. It scans list of devices to build up a free map, then chooses
1025 * the first empty slot. The caller must hold the dev_base or rtnl lock
1026 * while allocating the name and adding the device in order to avoid
1027 * duplicates.
1028 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1029 * Returns the number of the unit assigned or a negative errno code.
1030 */
1031
1032 int dev_alloc_name(struct net_device *dev, const char *name)
1033 {
1034 char buf[IFNAMSIZ];
1035 struct net *net;
1036 int ret;
1037
1038 BUG_ON(!dev_net(dev));
1039 net = dev_net(dev);
1040 ret = __dev_alloc_name(net, name, buf);
1041 if (ret >= 0)
1042 strlcpy(dev->name, buf, IFNAMSIZ);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL(dev_alloc_name);
1046
1047 static int dev_alloc_name_ns(struct net *net,
1048 struct net_device *dev,
1049 const char *name)
1050 {
1051 char buf[IFNAMSIZ];
1052 int ret;
1053
1054 ret = __dev_alloc_name(net, name, buf);
1055 if (ret >= 0)
1056 strlcpy(dev->name, buf, IFNAMSIZ);
1057 return ret;
1058 }
1059
1060 static int dev_get_valid_name(struct net *net,
1061 struct net_device *dev,
1062 const char *name)
1063 {
1064 BUG_ON(!net);
1065
1066 if (!dev_valid_name(name))
1067 return -EINVAL;
1068
1069 if (strchr(name, '%'))
1070 return dev_alloc_name_ns(net, dev, name);
1071 else if (__dev_get_by_name(net, name))
1072 return -EEXIST;
1073 else if (dev->name != name)
1074 strlcpy(dev->name, name, IFNAMSIZ);
1075
1076 return 0;
1077 }
1078
1079 /**
1080 * dev_change_name - change name of a device
1081 * @dev: device
1082 * @newname: name (or format string) must be at least IFNAMSIZ
1083 *
1084 * Change name of a device, can pass format strings "eth%d".
1085 * for wildcarding.
1086 */
1087 int dev_change_name(struct net_device *dev, const char *newname)
1088 {
1089 unsigned char old_assign_type;
1090 char oldname[IFNAMSIZ];
1091 int err = 0;
1092 int ret;
1093 struct net *net;
1094
1095 ASSERT_RTNL();
1096 BUG_ON(!dev_net(dev));
1097
1098 net = dev_net(dev);
1099 if (dev->flags & IFF_UP)
1100 return -EBUSY;
1101
1102 write_seqcount_begin(&devnet_rename_seq);
1103
1104 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1105 write_seqcount_end(&devnet_rename_seq);
1106 return 0;
1107 }
1108
1109 memcpy(oldname, dev->name, IFNAMSIZ);
1110
1111 err = dev_get_valid_name(net, dev, newname);
1112 if (err < 0) {
1113 write_seqcount_end(&devnet_rename_seq);
1114 return err;
1115 }
1116
1117 if (oldname[0] && !strchr(oldname, '%'))
1118 netdev_info(dev, "renamed from %s\n", oldname);
1119
1120 old_assign_type = dev->name_assign_type;
1121 dev->name_assign_type = NET_NAME_RENAMED;
1122
1123 rollback:
1124 ret = device_rename(&dev->dev, dev->name);
1125 if (ret) {
1126 memcpy(dev->name, oldname, IFNAMSIZ);
1127 dev->name_assign_type = old_assign_type;
1128 write_seqcount_end(&devnet_rename_seq);
1129 return ret;
1130 }
1131
1132 write_seqcount_end(&devnet_rename_seq);
1133
1134 netdev_adjacent_rename_links(dev, oldname);
1135
1136 write_lock_bh(&dev_base_lock);
1137 hlist_del_rcu(&dev->name_hlist);
1138 write_unlock_bh(&dev_base_lock);
1139
1140 synchronize_rcu();
1141
1142 write_lock_bh(&dev_base_lock);
1143 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1144 write_unlock_bh(&dev_base_lock);
1145
1146 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1147 ret = notifier_to_errno(ret);
1148
1149 if (ret) {
1150 /* err >= 0 after dev_alloc_name() or stores the first errno */
1151 if (err >= 0) {
1152 err = ret;
1153 write_seqcount_begin(&devnet_rename_seq);
1154 memcpy(dev->name, oldname, IFNAMSIZ);
1155 memcpy(oldname, newname, IFNAMSIZ);
1156 dev->name_assign_type = old_assign_type;
1157 old_assign_type = NET_NAME_RENAMED;
1158 goto rollback;
1159 } else {
1160 pr_err("%s: name change rollback failed: %d\n",
1161 dev->name, ret);
1162 }
1163 }
1164
1165 return err;
1166 }
1167
1168 /**
1169 * dev_set_alias - change ifalias of a device
1170 * @dev: device
1171 * @alias: name up to IFALIASZ
1172 * @len: limit of bytes to copy from info
1173 *
1174 * Set ifalias for a device,
1175 */
1176 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1177 {
1178 char *new_ifalias;
1179
1180 ASSERT_RTNL();
1181
1182 if (len >= IFALIASZ)
1183 return -EINVAL;
1184
1185 if (!len) {
1186 kfree(dev->ifalias);
1187 dev->ifalias = NULL;
1188 return 0;
1189 }
1190
1191 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1192 if (!new_ifalias)
1193 return -ENOMEM;
1194 dev->ifalias = new_ifalias;
1195
1196 strlcpy(dev->ifalias, alias, len+1);
1197 return len;
1198 }
1199
1200
1201 /**
1202 * netdev_features_change - device changes features
1203 * @dev: device to cause notification
1204 *
1205 * Called to indicate a device has changed features.
1206 */
1207 void netdev_features_change(struct net_device *dev)
1208 {
1209 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1210 }
1211 EXPORT_SYMBOL(netdev_features_change);
1212
1213 /**
1214 * netdev_state_change - device changes state
1215 * @dev: device to cause notification
1216 *
1217 * Called to indicate a device has changed state. This function calls
1218 * the notifier chains for netdev_chain and sends a NEWLINK message
1219 * to the routing socket.
1220 */
1221 void netdev_state_change(struct net_device *dev)
1222 {
1223 if (dev->flags & IFF_UP) {
1224 struct netdev_notifier_change_info change_info;
1225
1226 change_info.flags_changed = 0;
1227 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1228 &change_info.info);
1229 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1230 }
1231 }
1232 EXPORT_SYMBOL(netdev_state_change);
1233
1234 /**
1235 * netdev_notify_peers - notify network peers about existence of @dev
1236 * @dev: network device
1237 *
1238 * Generate traffic such that interested network peers are aware of
1239 * @dev, such as by generating a gratuitous ARP. This may be used when
1240 * a device wants to inform the rest of the network about some sort of
1241 * reconfiguration such as a failover event or virtual machine
1242 * migration.
1243 */
1244 void netdev_notify_peers(struct net_device *dev)
1245 {
1246 rtnl_lock();
1247 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1248 rtnl_unlock();
1249 }
1250 EXPORT_SYMBOL(netdev_notify_peers);
1251
1252 static int __dev_open(struct net_device *dev)
1253 {
1254 const struct net_device_ops *ops = dev->netdev_ops;
1255 int ret;
1256
1257 ASSERT_RTNL();
1258
1259 if (!netif_device_present(dev))
1260 return -ENODEV;
1261
1262 /* Block netpoll from trying to do any rx path servicing.
1263 * If we don't do this there is a chance ndo_poll_controller
1264 * or ndo_poll may be running while we open the device
1265 */
1266 netpoll_poll_disable(dev);
1267
1268 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1269 ret = notifier_to_errno(ret);
1270 if (ret)
1271 return ret;
1272
1273 set_bit(__LINK_STATE_START, &dev->state);
1274
1275 if (ops->ndo_validate_addr)
1276 ret = ops->ndo_validate_addr(dev);
1277
1278 if (!ret && ops->ndo_open)
1279 ret = ops->ndo_open(dev);
1280
1281 netpoll_poll_enable(dev);
1282
1283 if (ret)
1284 clear_bit(__LINK_STATE_START, &dev->state);
1285 else {
1286 dev->flags |= IFF_UP;
1287 net_dmaengine_get();
1288 dev_set_rx_mode(dev);
1289 dev_activate(dev);
1290 add_device_randomness(dev->dev_addr, dev->addr_len);
1291 }
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * dev_open - prepare an interface for use.
1298 * @dev: device to open
1299 *
1300 * Takes a device from down to up state. The device's private open
1301 * function is invoked and then the multicast lists are loaded. Finally
1302 * the device is moved into the up state and a %NETDEV_UP message is
1303 * sent to the netdev notifier chain.
1304 *
1305 * Calling this function on an active interface is a nop. On a failure
1306 * a negative errno code is returned.
1307 */
1308 int dev_open(struct net_device *dev)
1309 {
1310 int ret;
1311
1312 if (dev->flags & IFF_UP)
1313 return 0;
1314
1315 ret = __dev_open(dev);
1316 if (ret < 0)
1317 return ret;
1318
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1320 call_netdevice_notifiers(NETDEV_UP, dev);
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(dev_open);
1325
1326 static int __dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev;
1329
1330 ASSERT_RTNL();
1331 might_sleep();
1332
1333 list_for_each_entry(dev, head, close_list) {
1334 /* Temporarily disable netpoll until the interface is down */
1335 netpoll_poll_disable(dev);
1336
1337 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1338
1339 clear_bit(__LINK_STATE_START, &dev->state);
1340
1341 /* Synchronize to scheduled poll. We cannot touch poll list, it
1342 * can be even on different cpu. So just clear netif_running().
1343 *
1344 * dev->stop() will invoke napi_disable() on all of it's
1345 * napi_struct instances on this device.
1346 */
1347 smp_mb__after_atomic(); /* Commit netif_running(). */
1348 }
1349
1350 dev_deactivate_many(head);
1351
1352 list_for_each_entry(dev, head, close_list) {
1353 const struct net_device_ops *ops = dev->netdev_ops;
1354
1355 /*
1356 * Call the device specific close. This cannot fail.
1357 * Only if device is UP
1358 *
1359 * We allow it to be called even after a DETACH hot-plug
1360 * event.
1361 */
1362 if (ops->ndo_stop)
1363 ops->ndo_stop(dev);
1364
1365 dev->flags &= ~IFF_UP;
1366 net_dmaengine_put();
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371 }
1372
1373 static int __dev_close(struct net_device *dev)
1374 {
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383 }
1384
1385 static int dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403 }
1404
1405 /**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414 int dev_close(struct net_device *dev)
1415 {
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close);
1426
1427
1428 /**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436 void dev_disable_lro(struct net_device *dev)
1437 {
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702 }
1703 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705 /**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724 {
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726 }
1727 EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729 static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732 {
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737 }
1738
1739 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740 {
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750 }
1751
1752 /*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758 {
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804 }
1805
1806 /**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820 {
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842 }
1843
1844 #ifdef CONFIG_XPS
1845 static DEFINE_MUTEX(xps_map_mutex);
1846 #define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851 {
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872 }
1873
1874 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875 {
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904 out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906 }
1907
1908 static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910 {
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941 }
1942
1943 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945 {
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992 #ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997 #endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023 out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047 out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051 error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065 }
2066 EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068 #endif
2069 /*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074 {
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094 #ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096 #endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105 #ifdef CONFIG_SYSFS
2106 /**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117 {
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134 }
2135 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136 #endif
2137
2138 /**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144 int netif_get_num_default_rss_queues(void)
2145 {
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147 }
2148 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150 static inline void __netif_reschedule(struct Qdisc *q)
2151 {
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = &__get_cpu_var(softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162 }
2163
2164 void __netif_schedule(struct Qdisc *q)
2165 {
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168 }
2169 EXPORT_SYMBOL(__netif_schedule);
2170
2171 struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173 };
2174
2175 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176 {
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178 }
2179
2180 void netif_schedule_queue(struct netdev_queue *txq)
2181 {
2182 rcu_read_lock();
2183 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2184 struct Qdisc *q = rcu_dereference(txq->qdisc);
2185
2186 __netif_schedule(q);
2187 }
2188 rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL(netif_schedule_queue);
2191
2192 /**
2193 * netif_wake_subqueue - allow sending packets on subqueue
2194 * @dev: network device
2195 * @queue_index: sub queue index
2196 *
2197 * Resume individual transmit queue of a device with multiple transmit queues.
2198 */
2199 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2200 {
2201 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2202
2203 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2204 struct Qdisc *q;
2205
2206 rcu_read_lock();
2207 q = rcu_dereference(txq->qdisc);
2208 __netif_schedule(q);
2209 rcu_read_unlock();
2210 }
2211 }
2212 EXPORT_SYMBOL(netif_wake_subqueue);
2213
2214 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2215 {
2216 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2217 struct Qdisc *q;
2218
2219 rcu_read_lock();
2220 q = rcu_dereference(dev_queue->qdisc);
2221 __netif_schedule(q);
2222 rcu_read_unlock();
2223 }
2224 }
2225 EXPORT_SYMBOL(netif_tx_wake_queue);
2226
2227 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2228 {
2229 unsigned long flags;
2230
2231 if (likely(atomic_read(&skb->users) == 1)) {
2232 smp_rmb();
2233 atomic_set(&skb->users, 0);
2234 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2235 return;
2236 }
2237 get_kfree_skb_cb(skb)->reason = reason;
2238 local_irq_save(flags);
2239 skb->next = __this_cpu_read(softnet_data.completion_queue);
2240 __this_cpu_write(softnet_data.completion_queue, skb);
2241 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2242 local_irq_restore(flags);
2243 }
2244 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2245
2246 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2247 {
2248 if (in_irq() || irqs_disabled())
2249 __dev_kfree_skb_irq(skb, reason);
2250 else
2251 dev_kfree_skb(skb);
2252 }
2253 EXPORT_SYMBOL(__dev_kfree_skb_any);
2254
2255
2256 /**
2257 * netif_device_detach - mark device as removed
2258 * @dev: network device
2259 *
2260 * Mark device as removed from system and therefore no longer available.
2261 */
2262 void netif_device_detach(struct net_device *dev)
2263 {
2264 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2265 netif_running(dev)) {
2266 netif_tx_stop_all_queues(dev);
2267 }
2268 }
2269 EXPORT_SYMBOL(netif_device_detach);
2270
2271 /**
2272 * netif_device_attach - mark device as attached
2273 * @dev: network device
2274 *
2275 * Mark device as attached from system and restart if needed.
2276 */
2277 void netif_device_attach(struct net_device *dev)
2278 {
2279 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2280 netif_running(dev)) {
2281 netif_tx_wake_all_queues(dev);
2282 __netdev_watchdog_up(dev);
2283 }
2284 }
2285 EXPORT_SYMBOL(netif_device_attach);
2286
2287 static void skb_warn_bad_offload(const struct sk_buff *skb)
2288 {
2289 static const netdev_features_t null_features = 0;
2290 struct net_device *dev = skb->dev;
2291 const char *driver = "";
2292
2293 if (!net_ratelimit())
2294 return;
2295
2296 if (dev && dev->dev.parent)
2297 driver = dev_driver_string(dev->dev.parent);
2298
2299 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2300 "gso_type=%d ip_summed=%d\n",
2301 driver, dev ? &dev->features : &null_features,
2302 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2303 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2304 skb_shinfo(skb)->gso_type, skb->ip_summed);
2305 }
2306
2307 /*
2308 * Invalidate hardware checksum when packet is to be mangled, and
2309 * complete checksum manually on outgoing path.
2310 */
2311 int skb_checksum_help(struct sk_buff *skb)
2312 {
2313 __wsum csum;
2314 int ret = 0, offset;
2315
2316 if (skb->ip_summed == CHECKSUM_COMPLETE)
2317 goto out_set_summed;
2318
2319 if (unlikely(skb_shinfo(skb)->gso_size)) {
2320 skb_warn_bad_offload(skb);
2321 return -EINVAL;
2322 }
2323
2324 /* Before computing a checksum, we should make sure no frag could
2325 * be modified by an external entity : checksum could be wrong.
2326 */
2327 if (skb_has_shared_frag(skb)) {
2328 ret = __skb_linearize(skb);
2329 if (ret)
2330 goto out;
2331 }
2332
2333 offset = skb_checksum_start_offset(skb);
2334 BUG_ON(offset >= skb_headlen(skb));
2335 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2336
2337 offset += skb->csum_offset;
2338 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2339
2340 if (skb_cloned(skb) &&
2341 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2342 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 if (ret)
2344 goto out;
2345 }
2346
2347 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2348 out_set_summed:
2349 skb->ip_summed = CHECKSUM_NONE;
2350 out:
2351 return ret;
2352 }
2353 EXPORT_SYMBOL(skb_checksum_help);
2354
2355 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2356 {
2357 unsigned int vlan_depth = skb->mac_len;
2358 __be16 type = skb->protocol;
2359
2360 /* Tunnel gso handlers can set protocol to ethernet. */
2361 if (type == htons(ETH_P_TEB)) {
2362 struct ethhdr *eth;
2363
2364 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2365 return 0;
2366
2367 eth = (struct ethhdr *)skb_mac_header(skb);
2368 type = eth->h_proto;
2369 }
2370
2371 /* if skb->protocol is 802.1Q/AD then the header should already be
2372 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2373 * ETH_HLEN otherwise
2374 */
2375 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2376 if (vlan_depth) {
2377 if (WARN_ON(vlan_depth < VLAN_HLEN))
2378 return 0;
2379 vlan_depth -= VLAN_HLEN;
2380 } else {
2381 vlan_depth = ETH_HLEN;
2382 }
2383 do {
2384 struct vlan_hdr *vh;
2385
2386 if (unlikely(!pskb_may_pull(skb,
2387 vlan_depth + VLAN_HLEN)))
2388 return 0;
2389
2390 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2391 type = vh->h_vlan_encapsulated_proto;
2392 vlan_depth += VLAN_HLEN;
2393 } while (type == htons(ETH_P_8021Q) ||
2394 type == htons(ETH_P_8021AD));
2395 }
2396
2397 *depth = vlan_depth;
2398
2399 return type;
2400 }
2401
2402 /**
2403 * skb_mac_gso_segment - mac layer segmentation handler.
2404 * @skb: buffer to segment
2405 * @features: features for the output path (see dev->features)
2406 */
2407 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2408 netdev_features_t features)
2409 {
2410 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2411 struct packet_offload *ptype;
2412 int vlan_depth = skb->mac_len;
2413 __be16 type = skb_network_protocol(skb, &vlan_depth);
2414
2415 if (unlikely(!type))
2416 return ERR_PTR(-EINVAL);
2417
2418 __skb_pull(skb, vlan_depth);
2419
2420 rcu_read_lock();
2421 list_for_each_entry_rcu(ptype, &offload_base, list) {
2422 if (ptype->type == type && ptype->callbacks.gso_segment) {
2423 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2424 int err;
2425
2426 err = ptype->callbacks.gso_send_check(skb);
2427 segs = ERR_PTR(err);
2428 if (err || skb_gso_ok(skb, features))
2429 break;
2430 __skb_push(skb, (skb->data -
2431 skb_network_header(skb)));
2432 }
2433 segs = ptype->callbacks.gso_segment(skb, features);
2434 break;
2435 }
2436 }
2437 rcu_read_unlock();
2438
2439 __skb_push(skb, skb->data - skb_mac_header(skb));
2440
2441 return segs;
2442 }
2443 EXPORT_SYMBOL(skb_mac_gso_segment);
2444
2445
2446 /* openvswitch calls this on rx path, so we need a different check.
2447 */
2448 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2449 {
2450 if (tx_path)
2451 return skb->ip_summed != CHECKSUM_PARTIAL;
2452 else
2453 return skb->ip_summed == CHECKSUM_NONE;
2454 }
2455
2456 /**
2457 * __skb_gso_segment - Perform segmentation on skb.
2458 * @skb: buffer to segment
2459 * @features: features for the output path (see dev->features)
2460 * @tx_path: whether it is called in TX path
2461 *
2462 * This function segments the given skb and returns a list of segments.
2463 *
2464 * It may return NULL if the skb requires no segmentation. This is
2465 * only possible when GSO is used for verifying header integrity.
2466 */
2467 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2468 netdev_features_t features, bool tx_path)
2469 {
2470 if (unlikely(skb_needs_check(skb, tx_path))) {
2471 int err;
2472
2473 skb_warn_bad_offload(skb);
2474
2475 err = skb_cow_head(skb, 0);
2476 if (err < 0)
2477 return ERR_PTR(err);
2478 }
2479
2480 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2481 SKB_GSO_CB(skb)->encap_level = 0;
2482
2483 skb_reset_mac_header(skb);
2484 skb_reset_mac_len(skb);
2485
2486 return skb_mac_gso_segment(skb, features);
2487 }
2488 EXPORT_SYMBOL(__skb_gso_segment);
2489
2490 /* Take action when hardware reception checksum errors are detected. */
2491 #ifdef CONFIG_BUG
2492 void netdev_rx_csum_fault(struct net_device *dev)
2493 {
2494 if (net_ratelimit()) {
2495 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2496 dump_stack();
2497 }
2498 }
2499 EXPORT_SYMBOL(netdev_rx_csum_fault);
2500 #endif
2501
2502 /* Actually, we should eliminate this check as soon as we know, that:
2503 * 1. IOMMU is present and allows to map all the memory.
2504 * 2. No high memory really exists on this machine.
2505 */
2506
2507 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2508 {
2509 #ifdef CONFIG_HIGHMEM
2510 int i;
2511 if (!(dev->features & NETIF_F_HIGHDMA)) {
2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2514 if (PageHighMem(skb_frag_page(frag)))
2515 return 1;
2516 }
2517 }
2518
2519 if (PCI_DMA_BUS_IS_PHYS) {
2520 struct device *pdev = dev->dev.parent;
2521
2522 if (!pdev)
2523 return 0;
2524 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2525 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2526 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2527 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2528 return 1;
2529 }
2530 }
2531 #endif
2532 return 0;
2533 }
2534
2535 /* If MPLS offload request, verify we are testing hardware MPLS features
2536 * instead of standard features for the netdev.
2537 */
2538 #ifdef CONFIG_NET_MPLS_GSO
2539 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2540 netdev_features_t features,
2541 __be16 type)
2542 {
2543 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2544 features &= skb->dev->mpls_features;
2545
2546 return features;
2547 }
2548 #else
2549 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2550 netdev_features_t features,
2551 __be16 type)
2552 {
2553 return features;
2554 }
2555 #endif
2556
2557 static netdev_features_t harmonize_features(struct sk_buff *skb,
2558 netdev_features_t features)
2559 {
2560 int tmp;
2561 __be16 type;
2562
2563 type = skb_network_protocol(skb, &tmp);
2564 features = net_mpls_features(skb, features, type);
2565
2566 if (skb->ip_summed != CHECKSUM_NONE &&
2567 !can_checksum_protocol(features, type)) {
2568 features &= ~NETIF_F_ALL_CSUM;
2569 } else if (illegal_highdma(skb->dev, skb)) {
2570 features &= ~NETIF_F_SG;
2571 }
2572
2573 return features;
2574 }
2575
2576 netdev_features_t netif_skb_features(struct sk_buff *skb)
2577 {
2578 __be16 protocol = skb->protocol;
2579 netdev_features_t features = skb->dev->features;
2580
2581 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2582 features &= ~NETIF_F_GSO_MASK;
2583
2584 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2585 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2586 protocol = veh->h_vlan_encapsulated_proto;
2587 } else if (!vlan_tx_tag_present(skb)) {
2588 return harmonize_features(skb, features);
2589 }
2590
2591 features = netdev_intersect_features(features,
2592 skb->dev->vlan_features |
2593 NETIF_F_HW_VLAN_CTAG_TX |
2594 NETIF_F_HW_VLAN_STAG_TX);
2595
2596 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2597 features = netdev_intersect_features(features,
2598 NETIF_F_SG |
2599 NETIF_F_HIGHDMA |
2600 NETIF_F_FRAGLIST |
2601 NETIF_F_GEN_CSUM |
2602 NETIF_F_HW_VLAN_CTAG_TX |
2603 NETIF_F_HW_VLAN_STAG_TX);
2604
2605 return harmonize_features(skb, features);
2606 }
2607 EXPORT_SYMBOL(netif_skb_features);
2608
2609 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2610 struct netdev_queue *txq, bool more)
2611 {
2612 unsigned int len;
2613 int rc;
2614
2615 if (!list_empty(&ptype_all))
2616 dev_queue_xmit_nit(skb, dev);
2617
2618 len = skb->len;
2619 trace_net_dev_start_xmit(skb, dev);
2620 rc = netdev_start_xmit(skb, dev, txq, more);
2621 trace_net_dev_xmit(skb, rc, dev, len);
2622
2623 return rc;
2624 }
2625
2626 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2627 struct netdev_queue *txq, int *ret)
2628 {
2629 struct sk_buff *skb = first;
2630 int rc = NETDEV_TX_OK;
2631
2632 while (skb) {
2633 struct sk_buff *next = skb->next;
2634
2635 skb->next = NULL;
2636 rc = xmit_one(skb, dev, txq, next != NULL);
2637 if (unlikely(!dev_xmit_complete(rc))) {
2638 skb->next = next;
2639 goto out;
2640 }
2641
2642 skb = next;
2643 if (netif_xmit_stopped(txq) && skb) {
2644 rc = NETDEV_TX_BUSY;
2645 break;
2646 }
2647 }
2648
2649 out:
2650 *ret = rc;
2651 return skb;
2652 }
2653
2654 struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, netdev_features_t features)
2655 {
2656 if (vlan_tx_tag_present(skb) &&
2657 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2658 skb = __vlan_put_tag(skb, skb->vlan_proto,
2659 vlan_tx_tag_get(skb));
2660 if (skb)
2661 skb->vlan_tci = 0;
2662 }
2663 return skb;
2664 }
2665
2666 struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 netdev_features_t features;
2669
2670 if (skb->next)
2671 return skb;
2672
2673 /* If device doesn't need skb->dst, release it right now while
2674 * its hot in this cpu cache
2675 */
2676 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2677 skb_dst_drop(skb);
2678
2679 features = netif_skb_features(skb);
2680 skb = validate_xmit_vlan(skb, features);
2681 if (unlikely(!skb))
2682 goto out_null;
2683
2684 /* If encapsulation offload request, verify we are testing
2685 * hardware encapsulation features instead of standard
2686 * features for the netdev
2687 */
2688 if (skb->encapsulation)
2689 features &= dev->hw_enc_features;
2690
2691 if (netif_needs_gso(skb, features)) {
2692 struct sk_buff *segs;
2693
2694 segs = skb_gso_segment(skb, features);
2695 kfree_skb(skb);
2696 if (IS_ERR(segs))
2697 segs = NULL;
2698 skb = segs;
2699 } else {
2700 if (skb_needs_linearize(skb, features) &&
2701 __skb_linearize(skb))
2702 goto out_kfree_skb;
2703
2704 /* If packet is not checksummed and device does not
2705 * support checksumming for this protocol, complete
2706 * checksumming here.
2707 */
2708 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2709 if (skb->encapsulation)
2710 skb_set_inner_transport_header(skb,
2711 skb_checksum_start_offset(skb));
2712 else
2713 skb_set_transport_header(skb,
2714 skb_checksum_start_offset(skb));
2715 if (!(features & NETIF_F_ALL_CSUM) &&
2716 skb_checksum_help(skb))
2717 goto out_kfree_skb;
2718 }
2719 }
2720
2721 return skb;
2722
2723 out_kfree_skb:
2724 kfree_skb(skb);
2725 out_null:
2726 return NULL;
2727 }
2728
2729 static void qdisc_pkt_len_init(struct sk_buff *skb)
2730 {
2731 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2732
2733 qdisc_skb_cb(skb)->pkt_len = skb->len;
2734
2735 /* To get more precise estimation of bytes sent on wire,
2736 * we add to pkt_len the headers size of all segments
2737 */
2738 if (shinfo->gso_size) {
2739 unsigned int hdr_len;
2740 u16 gso_segs = shinfo->gso_segs;
2741
2742 /* mac layer + network layer */
2743 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2744
2745 /* + transport layer */
2746 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2747 hdr_len += tcp_hdrlen(skb);
2748 else
2749 hdr_len += sizeof(struct udphdr);
2750
2751 if (shinfo->gso_type & SKB_GSO_DODGY)
2752 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2753 shinfo->gso_size);
2754
2755 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2756 }
2757 }
2758
2759 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2760 struct net_device *dev,
2761 struct netdev_queue *txq)
2762 {
2763 spinlock_t *root_lock = qdisc_lock(q);
2764 bool contended;
2765 int rc;
2766
2767 qdisc_pkt_len_init(skb);
2768 qdisc_calculate_pkt_len(skb, q);
2769 /*
2770 * Heuristic to force contended enqueues to serialize on a
2771 * separate lock before trying to get qdisc main lock.
2772 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2773 * often and dequeue packets faster.
2774 */
2775 contended = qdisc_is_running(q);
2776 if (unlikely(contended))
2777 spin_lock(&q->busylock);
2778
2779 spin_lock(root_lock);
2780 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2781 kfree_skb(skb);
2782 rc = NET_XMIT_DROP;
2783 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2784 qdisc_run_begin(q)) {
2785 /*
2786 * This is a work-conserving queue; there are no old skbs
2787 * waiting to be sent out; and the qdisc is not running -
2788 * xmit the skb directly.
2789 */
2790 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2791 skb_dst_force(skb);
2792
2793 qdisc_bstats_update(q, skb);
2794
2795 skb = validate_xmit_skb(skb, dev);
2796 if (skb && sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2797 if (unlikely(contended)) {
2798 spin_unlock(&q->busylock);
2799 contended = false;
2800 }
2801 __qdisc_run(q);
2802 } else
2803 qdisc_run_end(q);
2804
2805 rc = NET_XMIT_SUCCESS;
2806 } else {
2807 skb_dst_force(skb);
2808 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2809 if (qdisc_run_begin(q)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 }
2816 }
2817 spin_unlock(root_lock);
2818 if (unlikely(contended))
2819 spin_unlock(&q->busylock);
2820 return rc;
2821 }
2822
2823 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2824 static void skb_update_prio(struct sk_buff *skb)
2825 {
2826 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2827
2828 if (!skb->priority && skb->sk && map) {
2829 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2830
2831 if (prioidx < map->priomap_len)
2832 skb->priority = map->priomap[prioidx];
2833 }
2834 }
2835 #else
2836 #define skb_update_prio(skb)
2837 #endif
2838
2839 static DEFINE_PER_CPU(int, xmit_recursion);
2840 #define RECURSION_LIMIT 10
2841
2842 /**
2843 * dev_loopback_xmit - loop back @skb
2844 * @skb: buffer to transmit
2845 */
2846 int dev_loopback_xmit(struct sk_buff *skb)
2847 {
2848 skb_reset_mac_header(skb);
2849 __skb_pull(skb, skb_network_offset(skb));
2850 skb->pkt_type = PACKET_LOOPBACK;
2851 skb->ip_summed = CHECKSUM_UNNECESSARY;
2852 WARN_ON(!skb_dst(skb));
2853 skb_dst_force(skb);
2854 netif_rx_ni(skb);
2855 return 0;
2856 }
2857 EXPORT_SYMBOL(dev_loopback_xmit);
2858
2859 /**
2860 * __dev_queue_xmit - transmit a buffer
2861 * @skb: buffer to transmit
2862 * @accel_priv: private data used for L2 forwarding offload
2863 *
2864 * Queue a buffer for transmission to a network device. The caller must
2865 * have set the device and priority and built the buffer before calling
2866 * this function. The function can be called from an interrupt.
2867 *
2868 * A negative errno code is returned on a failure. A success does not
2869 * guarantee the frame will be transmitted as it may be dropped due
2870 * to congestion or traffic shaping.
2871 *
2872 * -----------------------------------------------------------------------------------
2873 * I notice this method can also return errors from the queue disciplines,
2874 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2875 * be positive.
2876 *
2877 * Regardless of the return value, the skb is consumed, so it is currently
2878 * difficult to retry a send to this method. (You can bump the ref count
2879 * before sending to hold a reference for retry if you are careful.)
2880 *
2881 * When calling this method, interrupts MUST be enabled. This is because
2882 * the BH enable code must have IRQs enabled so that it will not deadlock.
2883 * --BLG
2884 */
2885 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2886 {
2887 struct net_device *dev = skb->dev;
2888 struct netdev_queue *txq;
2889 struct Qdisc *q;
2890 int rc = -ENOMEM;
2891
2892 skb_reset_mac_header(skb);
2893
2894 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2895 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2896
2897 /* Disable soft irqs for various locks below. Also
2898 * stops preemption for RCU.
2899 */
2900 rcu_read_lock_bh();
2901
2902 skb_update_prio(skb);
2903
2904 txq = netdev_pick_tx(dev, skb, accel_priv);
2905 q = rcu_dereference_bh(txq->qdisc);
2906
2907 #ifdef CONFIG_NET_CLS_ACT
2908 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2909 #endif
2910 trace_net_dev_queue(skb);
2911 if (q->enqueue) {
2912 rc = __dev_xmit_skb(skb, q, dev, txq);
2913 goto out;
2914 }
2915
2916 /* The device has no queue. Common case for software devices:
2917 loopback, all the sorts of tunnels...
2918
2919 Really, it is unlikely that netif_tx_lock protection is necessary
2920 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2921 counters.)
2922 However, it is possible, that they rely on protection
2923 made by us here.
2924
2925 Check this and shot the lock. It is not prone from deadlocks.
2926 Either shot noqueue qdisc, it is even simpler 8)
2927 */
2928 if (dev->flags & IFF_UP) {
2929 int cpu = smp_processor_id(); /* ok because BHs are off */
2930
2931 if (txq->xmit_lock_owner != cpu) {
2932
2933 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2934 goto recursion_alert;
2935
2936 skb = validate_xmit_skb(skb, dev);
2937 if (!skb)
2938 goto drop;
2939
2940 HARD_TX_LOCK(dev, txq, cpu);
2941
2942 if (!netif_xmit_stopped(txq)) {
2943 __this_cpu_inc(xmit_recursion);
2944 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2945 __this_cpu_dec(xmit_recursion);
2946 if (dev_xmit_complete(rc)) {
2947 HARD_TX_UNLOCK(dev, txq);
2948 goto out;
2949 }
2950 }
2951 HARD_TX_UNLOCK(dev, txq);
2952 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2953 dev->name);
2954 } else {
2955 /* Recursion is detected! It is possible,
2956 * unfortunately
2957 */
2958 recursion_alert:
2959 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2960 dev->name);
2961 }
2962 }
2963
2964 rc = -ENETDOWN;
2965 drop:
2966 rcu_read_unlock_bh();
2967
2968 atomic_long_inc(&dev->tx_dropped);
2969 kfree_skb_list(skb);
2970 return rc;
2971 out:
2972 rcu_read_unlock_bh();
2973 return rc;
2974 }
2975
2976 int dev_queue_xmit(struct sk_buff *skb)
2977 {
2978 return __dev_queue_xmit(skb, NULL);
2979 }
2980 EXPORT_SYMBOL(dev_queue_xmit);
2981
2982 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2983 {
2984 return __dev_queue_xmit(skb, accel_priv);
2985 }
2986 EXPORT_SYMBOL(dev_queue_xmit_accel);
2987
2988
2989 /*=======================================================================
2990 Receiver routines
2991 =======================================================================*/
2992
2993 int netdev_max_backlog __read_mostly = 1000;
2994 EXPORT_SYMBOL(netdev_max_backlog);
2995
2996 int netdev_tstamp_prequeue __read_mostly = 1;
2997 int netdev_budget __read_mostly = 300;
2998 int weight_p __read_mostly = 64; /* old backlog weight */
2999
3000 /* Called with irq disabled */
3001 static inline void ____napi_schedule(struct softnet_data *sd,
3002 struct napi_struct *napi)
3003 {
3004 list_add_tail(&napi->poll_list, &sd->poll_list);
3005 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3006 }
3007
3008 #ifdef CONFIG_RPS
3009
3010 /* One global table that all flow-based protocols share. */
3011 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3012 EXPORT_SYMBOL(rps_sock_flow_table);
3013
3014 struct static_key rps_needed __read_mostly;
3015
3016 static struct rps_dev_flow *
3017 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3018 struct rps_dev_flow *rflow, u16 next_cpu)
3019 {
3020 if (next_cpu != RPS_NO_CPU) {
3021 #ifdef CONFIG_RFS_ACCEL
3022 struct netdev_rx_queue *rxqueue;
3023 struct rps_dev_flow_table *flow_table;
3024 struct rps_dev_flow *old_rflow;
3025 u32 flow_id;
3026 u16 rxq_index;
3027 int rc;
3028
3029 /* Should we steer this flow to a different hardware queue? */
3030 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3031 !(dev->features & NETIF_F_NTUPLE))
3032 goto out;
3033 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3034 if (rxq_index == skb_get_rx_queue(skb))
3035 goto out;
3036
3037 rxqueue = dev->_rx + rxq_index;
3038 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3039 if (!flow_table)
3040 goto out;
3041 flow_id = skb_get_hash(skb) & flow_table->mask;
3042 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3043 rxq_index, flow_id);
3044 if (rc < 0)
3045 goto out;
3046 old_rflow = rflow;
3047 rflow = &flow_table->flows[flow_id];
3048 rflow->filter = rc;
3049 if (old_rflow->filter == rflow->filter)
3050 old_rflow->filter = RPS_NO_FILTER;
3051 out:
3052 #endif
3053 rflow->last_qtail =
3054 per_cpu(softnet_data, next_cpu).input_queue_head;
3055 }
3056
3057 rflow->cpu = next_cpu;
3058 return rflow;
3059 }
3060
3061 /*
3062 * get_rps_cpu is called from netif_receive_skb and returns the target
3063 * CPU from the RPS map of the receiving queue for a given skb.
3064 * rcu_read_lock must be held on entry.
3065 */
3066 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3067 struct rps_dev_flow **rflowp)
3068 {
3069 struct netdev_rx_queue *rxqueue;
3070 struct rps_map *map;
3071 struct rps_dev_flow_table *flow_table;
3072 struct rps_sock_flow_table *sock_flow_table;
3073 int cpu = -1;
3074 u16 tcpu;
3075 u32 hash;
3076
3077 if (skb_rx_queue_recorded(skb)) {
3078 u16 index = skb_get_rx_queue(skb);
3079 if (unlikely(index >= dev->real_num_rx_queues)) {
3080 WARN_ONCE(dev->real_num_rx_queues > 1,
3081 "%s received packet on queue %u, but number "
3082 "of RX queues is %u\n",
3083 dev->name, index, dev->real_num_rx_queues);
3084 goto done;
3085 }
3086 rxqueue = dev->_rx + index;
3087 } else
3088 rxqueue = dev->_rx;
3089
3090 map = rcu_dereference(rxqueue->rps_map);
3091 if (map) {
3092 if (map->len == 1 &&
3093 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3094 tcpu = map->cpus[0];
3095 if (cpu_online(tcpu))
3096 cpu = tcpu;
3097 goto done;
3098 }
3099 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3100 goto done;
3101 }
3102
3103 skb_reset_network_header(skb);
3104 hash = skb_get_hash(skb);
3105 if (!hash)
3106 goto done;
3107
3108 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3109 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3110 if (flow_table && sock_flow_table) {
3111 u16 next_cpu;
3112 struct rps_dev_flow *rflow;
3113
3114 rflow = &flow_table->flows[hash & flow_table->mask];
3115 tcpu = rflow->cpu;
3116
3117 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3118
3119 /*
3120 * If the desired CPU (where last recvmsg was done) is
3121 * different from current CPU (one in the rx-queue flow
3122 * table entry), switch if one of the following holds:
3123 * - Current CPU is unset (equal to RPS_NO_CPU).
3124 * - Current CPU is offline.
3125 * - The current CPU's queue tail has advanced beyond the
3126 * last packet that was enqueued using this table entry.
3127 * This guarantees that all previous packets for the flow
3128 * have been dequeued, thus preserving in order delivery.
3129 */
3130 if (unlikely(tcpu != next_cpu) &&
3131 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3132 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3133 rflow->last_qtail)) >= 0)) {
3134 tcpu = next_cpu;
3135 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3136 }
3137
3138 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3139 *rflowp = rflow;
3140 cpu = tcpu;
3141 goto done;
3142 }
3143 }
3144
3145 if (map) {
3146 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3147 if (cpu_online(tcpu)) {
3148 cpu = tcpu;
3149 goto done;
3150 }
3151 }
3152
3153 done:
3154 return cpu;
3155 }
3156
3157 #ifdef CONFIG_RFS_ACCEL
3158
3159 /**
3160 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3161 * @dev: Device on which the filter was set
3162 * @rxq_index: RX queue index
3163 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3164 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3165 *
3166 * Drivers that implement ndo_rx_flow_steer() should periodically call
3167 * this function for each installed filter and remove the filters for
3168 * which it returns %true.
3169 */
3170 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3171 u32 flow_id, u16 filter_id)
3172 {
3173 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3174 struct rps_dev_flow_table *flow_table;
3175 struct rps_dev_flow *rflow;
3176 bool expire = true;
3177 int cpu;
3178
3179 rcu_read_lock();
3180 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3181 if (flow_table && flow_id <= flow_table->mask) {
3182 rflow = &flow_table->flows[flow_id];
3183 cpu = ACCESS_ONCE(rflow->cpu);
3184 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3185 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3186 rflow->last_qtail) <
3187 (int)(10 * flow_table->mask)))
3188 expire = false;
3189 }
3190 rcu_read_unlock();
3191 return expire;
3192 }
3193 EXPORT_SYMBOL(rps_may_expire_flow);
3194
3195 #endif /* CONFIG_RFS_ACCEL */
3196
3197 /* Called from hardirq (IPI) context */
3198 static void rps_trigger_softirq(void *data)
3199 {
3200 struct softnet_data *sd = data;
3201
3202 ____napi_schedule(sd, &sd->backlog);
3203 sd->received_rps++;
3204 }
3205
3206 #endif /* CONFIG_RPS */
3207
3208 /*
3209 * Check if this softnet_data structure is another cpu one
3210 * If yes, queue it to our IPI list and return 1
3211 * If no, return 0
3212 */
3213 static int rps_ipi_queued(struct softnet_data *sd)
3214 {
3215 #ifdef CONFIG_RPS
3216 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3217
3218 if (sd != mysd) {
3219 sd->rps_ipi_next = mysd->rps_ipi_list;
3220 mysd->rps_ipi_list = sd;
3221
3222 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3223 return 1;
3224 }
3225 #endif /* CONFIG_RPS */
3226 return 0;
3227 }
3228
3229 #ifdef CONFIG_NET_FLOW_LIMIT
3230 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3231 #endif
3232
3233 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3234 {
3235 #ifdef CONFIG_NET_FLOW_LIMIT
3236 struct sd_flow_limit *fl;
3237 struct softnet_data *sd;
3238 unsigned int old_flow, new_flow;
3239
3240 if (qlen < (netdev_max_backlog >> 1))
3241 return false;
3242
3243 sd = &__get_cpu_var(softnet_data);
3244
3245 rcu_read_lock();
3246 fl = rcu_dereference(sd->flow_limit);
3247 if (fl) {
3248 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3249 old_flow = fl->history[fl->history_head];
3250 fl->history[fl->history_head] = new_flow;
3251
3252 fl->history_head++;
3253 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3254
3255 if (likely(fl->buckets[old_flow]))
3256 fl->buckets[old_flow]--;
3257
3258 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3259 fl->count++;
3260 rcu_read_unlock();
3261 return true;
3262 }
3263 }
3264 rcu_read_unlock();
3265 #endif
3266 return false;
3267 }
3268
3269 /*
3270 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3271 * queue (may be a remote CPU queue).
3272 */
3273 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3274 unsigned int *qtail)
3275 {
3276 struct softnet_data *sd;
3277 unsigned long flags;
3278 unsigned int qlen;
3279
3280 sd = &per_cpu(softnet_data, cpu);
3281
3282 local_irq_save(flags);
3283
3284 rps_lock(sd);
3285 qlen = skb_queue_len(&sd->input_pkt_queue);
3286 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3287 if (skb_queue_len(&sd->input_pkt_queue)) {
3288 enqueue:
3289 __skb_queue_tail(&sd->input_pkt_queue, skb);
3290 input_queue_tail_incr_save(sd, qtail);
3291 rps_unlock(sd);
3292 local_irq_restore(flags);
3293 return NET_RX_SUCCESS;
3294 }
3295
3296 /* Schedule NAPI for backlog device
3297 * We can use non atomic operation since we own the queue lock
3298 */
3299 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3300 if (!rps_ipi_queued(sd))
3301 ____napi_schedule(sd, &sd->backlog);
3302 }
3303 goto enqueue;
3304 }
3305
3306 sd->dropped++;
3307 rps_unlock(sd);
3308
3309 local_irq_restore(flags);
3310
3311 atomic_long_inc(&skb->dev->rx_dropped);
3312 kfree_skb(skb);
3313 return NET_RX_DROP;
3314 }
3315
3316 static int netif_rx_internal(struct sk_buff *skb)
3317 {
3318 int ret;
3319
3320 net_timestamp_check(netdev_tstamp_prequeue, skb);
3321
3322 trace_netif_rx(skb);
3323 #ifdef CONFIG_RPS
3324 if (static_key_false(&rps_needed)) {
3325 struct rps_dev_flow voidflow, *rflow = &voidflow;
3326 int cpu;
3327
3328 preempt_disable();
3329 rcu_read_lock();
3330
3331 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3332 if (cpu < 0)
3333 cpu = smp_processor_id();
3334
3335 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3336
3337 rcu_read_unlock();
3338 preempt_enable();
3339 } else
3340 #endif
3341 {
3342 unsigned int qtail;
3343 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3344 put_cpu();
3345 }
3346 return ret;
3347 }
3348
3349 /**
3350 * netif_rx - post buffer to the network code
3351 * @skb: buffer to post
3352 *
3353 * This function receives a packet from a device driver and queues it for
3354 * the upper (protocol) levels to process. It always succeeds. The buffer
3355 * may be dropped during processing for congestion control or by the
3356 * protocol layers.
3357 *
3358 * return values:
3359 * NET_RX_SUCCESS (no congestion)
3360 * NET_RX_DROP (packet was dropped)
3361 *
3362 */
3363
3364 int netif_rx(struct sk_buff *skb)
3365 {
3366 trace_netif_rx_entry(skb);
3367
3368 return netif_rx_internal(skb);
3369 }
3370 EXPORT_SYMBOL(netif_rx);
3371
3372 int netif_rx_ni(struct sk_buff *skb)
3373 {
3374 int err;
3375
3376 trace_netif_rx_ni_entry(skb);
3377
3378 preempt_disable();
3379 err = netif_rx_internal(skb);
3380 if (local_softirq_pending())
3381 do_softirq();
3382 preempt_enable();
3383
3384 return err;
3385 }
3386 EXPORT_SYMBOL(netif_rx_ni);
3387
3388 static void net_tx_action(struct softirq_action *h)
3389 {
3390 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3391
3392 if (sd->completion_queue) {
3393 struct sk_buff *clist;
3394
3395 local_irq_disable();
3396 clist = sd->completion_queue;
3397 sd->completion_queue = NULL;
3398 local_irq_enable();
3399
3400 while (clist) {
3401 struct sk_buff *skb = clist;
3402 clist = clist->next;
3403
3404 WARN_ON(atomic_read(&skb->users));
3405 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3406 trace_consume_skb(skb);
3407 else
3408 trace_kfree_skb(skb, net_tx_action);
3409 __kfree_skb(skb);
3410 }
3411 }
3412
3413 if (sd->output_queue) {
3414 struct Qdisc *head;
3415
3416 local_irq_disable();
3417 head = sd->output_queue;
3418 sd->output_queue = NULL;
3419 sd->output_queue_tailp = &sd->output_queue;
3420 local_irq_enable();
3421
3422 while (head) {
3423 struct Qdisc *q = head;
3424 spinlock_t *root_lock;
3425
3426 head = head->next_sched;
3427
3428 root_lock = qdisc_lock(q);
3429 if (spin_trylock(root_lock)) {
3430 smp_mb__before_atomic();
3431 clear_bit(__QDISC_STATE_SCHED,
3432 &q->state);
3433 qdisc_run(q);
3434 spin_unlock(root_lock);
3435 } else {
3436 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3437 &q->state)) {
3438 __netif_reschedule(q);
3439 } else {
3440 smp_mb__before_atomic();
3441 clear_bit(__QDISC_STATE_SCHED,
3442 &q->state);
3443 }
3444 }
3445 }
3446 }
3447 }
3448
3449 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3450 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3451 /* This hook is defined here for ATM LANE */
3452 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3453 unsigned char *addr) __read_mostly;
3454 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3455 #endif
3456
3457 #ifdef CONFIG_NET_CLS_ACT
3458 /* TODO: Maybe we should just force sch_ingress to be compiled in
3459 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3460 * a compare and 2 stores extra right now if we dont have it on
3461 * but have CONFIG_NET_CLS_ACT
3462 * NOTE: This doesn't stop any functionality; if you dont have
3463 * the ingress scheduler, you just can't add policies on ingress.
3464 *
3465 */
3466 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3467 {
3468 struct net_device *dev = skb->dev;
3469 u32 ttl = G_TC_RTTL(skb->tc_verd);
3470 int result = TC_ACT_OK;
3471 struct Qdisc *q;
3472
3473 if (unlikely(MAX_RED_LOOP < ttl++)) {
3474 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3475 skb->skb_iif, dev->ifindex);
3476 return TC_ACT_SHOT;
3477 }
3478
3479 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3480 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3481
3482 q = rcu_dereference(rxq->qdisc);
3483 if (q != &noop_qdisc) {
3484 spin_lock(qdisc_lock(q));
3485 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3486 result = qdisc_enqueue_root(skb, q);
3487 spin_unlock(qdisc_lock(q));
3488 }
3489
3490 return result;
3491 }
3492
3493 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3494 struct packet_type **pt_prev,
3495 int *ret, struct net_device *orig_dev)
3496 {
3497 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3498
3499 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3500 goto out;
3501
3502 if (*pt_prev) {
3503 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3504 *pt_prev = NULL;
3505 }
3506
3507 switch (ing_filter(skb, rxq)) {
3508 case TC_ACT_SHOT:
3509 case TC_ACT_STOLEN:
3510 kfree_skb(skb);
3511 return NULL;
3512 }
3513
3514 out:
3515 skb->tc_verd = 0;
3516 return skb;
3517 }
3518 #endif
3519
3520 /**
3521 * netdev_rx_handler_register - register receive handler
3522 * @dev: device to register a handler for
3523 * @rx_handler: receive handler to register
3524 * @rx_handler_data: data pointer that is used by rx handler
3525 *
3526 * Register a receive handler for a device. This handler will then be
3527 * called from __netif_receive_skb. A negative errno code is returned
3528 * on a failure.
3529 *
3530 * The caller must hold the rtnl_mutex.
3531 *
3532 * For a general description of rx_handler, see enum rx_handler_result.
3533 */
3534 int netdev_rx_handler_register(struct net_device *dev,
3535 rx_handler_func_t *rx_handler,
3536 void *rx_handler_data)
3537 {
3538 ASSERT_RTNL();
3539
3540 if (dev->rx_handler)
3541 return -EBUSY;
3542
3543 /* Note: rx_handler_data must be set before rx_handler */
3544 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3545 rcu_assign_pointer(dev->rx_handler, rx_handler);
3546
3547 return 0;
3548 }
3549 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3550
3551 /**
3552 * netdev_rx_handler_unregister - unregister receive handler
3553 * @dev: device to unregister a handler from
3554 *
3555 * Unregister a receive handler from a device.
3556 *
3557 * The caller must hold the rtnl_mutex.
3558 */
3559 void netdev_rx_handler_unregister(struct net_device *dev)
3560 {
3561
3562 ASSERT_RTNL();
3563 RCU_INIT_POINTER(dev->rx_handler, NULL);
3564 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3565 * section has a guarantee to see a non NULL rx_handler_data
3566 * as well.
3567 */
3568 synchronize_net();
3569 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3570 }
3571 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3572
3573 /*
3574 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3575 * the special handling of PFMEMALLOC skbs.
3576 */
3577 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3578 {
3579 switch (skb->protocol) {
3580 case htons(ETH_P_ARP):
3581 case htons(ETH_P_IP):
3582 case htons(ETH_P_IPV6):
3583 case htons(ETH_P_8021Q):
3584 case htons(ETH_P_8021AD):
3585 return true;
3586 default:
3587 return false;
3588 }
3589 }
3590
3591 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3592 {
3593 struct packet_type *ptype, *pt_prev;
3594 rx_handler_func_t *rx_handler;
3595 struct net_device *orig_dev;
3596 struct net_device *null_or_dev;
3597 bool deliver_exact = false;
3598 int ret = NET_RX_DROP;
3599 __be16 type;
3600
3601 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3602
3603 trace_netif_receive_skb(skb);
3604
3605 orig_dev = skb->dev;
3606
3607 skb_reset_network_header(skb);
3608 if (!skb_transport_header_was_set(skb))
3609 skb_reset_transport_header(skb);
3610 skb_reset_mac_len(skb);
3611
3612 pt_prev = NULL;
3613
3614 rcu_read_lock();
3615
3616 another_round:
3617 skb->skb_iif = skb->dev->ifindex;
3618
3619 __this_cpu_inc(softnet_data.processed);
3620
3621 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3622 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3623 skb = skb_vlan_untag(skb);
3624 if (unlikely(!skb))
3625 goto unlock;
3626 }
3627
3628 #ifdef CONFIG_NET_CLS_ACT
3629 if (skb->tc_verd & TC_NCLS) {
3630 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3631 goto ncls;
3632 }
3633 #endif
3634
3635 if (pfmemalloc)
3636 goto skip_taps;
3637
3638 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3639 if (!ptype->dev || ptype->dev == skb->dev) {
3640 if (pt_prev)
3641 ret = deliver_skb(skb, pt_prev, orig_dev);
3642 pt_prev = ptype;
3643 }
3644 }
3645
3646 skip_taps:
3647 #ifdef CONFIG_NET_CLS_ACT
3648 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3649 if (!skb)
3650 goto unlock;
3651 ncls:
3652 #endif
3653
3654 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3655 goto drop;
3656
3657 if (vlan_tx_tag_present(skb)) {
3658 if (pt_prev) {
3659 ret = deliver_skb(skb, pt_prev, orig_dev);
3660 pt_prev = NULL;
3661 }
3662 if (vlan_do_receive(&skb))
3663 goto another_round;
3664 else if (unlikely(!skb))
3665 goto unlock;
3666 }
3667
3668 rx_handler = rcu_dereference(skb->dev->rx_handler);
3669 if (rx_handler) {
3670 if (pt_prev) {
3671 ret = deliver_skb(skb, pt_prev, orig_dev);
3672 pt_prev = NULL;
3673 }
3674 switch (rx_handler(&skb)) {
3675 case RX_HANDLER_CONSUMED:
3676 ret = NET_RX_SUCCESS;
3677 goto unlock;
3678 case RX_HANDLER_ANOTHER:
3679 goto another_round;
3680 case RX_HANDLER_EXACT:
3681 deliver_exact = true;
3682 case RX_HANDLER_PASS:
3683 break;
3684 default:
3685 BUG();
3686 }
3687 }
3688
3689 if (unlikely(vlan_tx_tag_present(skb))) {
3690 if (vlan_tx_tag_get_id(skb))
3691 skb->pkt_type = PACKET_OTHERHOST;
3692 /* Note: we might in the future use prio bits
3693 * and set skb->priority like in vlan_do_receive()
3694 * For the time being, just ignore Priority Code Point
3695 */
3696 skb->vlan_tci = 0;
3697 }
3698
3699 /* deliver only exact match when indicated */
3700 null_or_dev = deliver_exact ? skb->dev : NULL;
3701
3702 type = skb->protocol;
3703 list_for_each_entry_rcu(ptype,
3704 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3705 if (ptype->type == type &&
3706 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3707 ptype->dev == orig_dev)) {
3708 if (pt_prev)
3709 ret = deliver_skb(skb, pt_prev, orig_dev);
3710 pt_prev = ptype;
3711 }
3712 }
3713
3714 if (pt_prev) {
3715 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3716 goto drop;
3717 else
3718 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3719 } else {
3720 drop:
3721 atomic_long_inc(&skb->dev->rx_dropped);
3722 kfree_skb(skb);
3723 /* Jamal, now you will not able to escape explaining
3724 * me how you were going to use this. :-)
3725 */
3726 ret = NET_RX_DROP;
3727 }
3728
3729 unlock:
3730 rcu_read_unlock();
3731 return ret;
3732 }
3733
3734 static int __netif_receive_skb(struct sk_buff *skb)
3735 {
3736 int ret;
3737
3738 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3739 unsigned long pflags = current->flags;
3740
3741 /*
3742 * PFMEMALLOC skbs are special, they should
3743 * - be delivered to SOCK_MEMALLOC sockets only
3744 * - stay away from userspace
3745 * - have bounded memory usage
3746 *
3747 * Use PF_MEMALLOC as this saves us from propagating the allocation
3748 * context down to all allocation sites.
3749 */
3750 current->flags |= PF_MEMALLOC;
3751 ret = __netif_receive_skb_core(skb, true);
3752 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3753 } else
3754 ret = __netif_receive_skb_core(skb, false);
3755
3756 return ret;
3757 }
3758
3759 static int netif_receive_skb_internal(struct sk_buff *skb)
3760 {
3761 net_timestamp_check(netdev_tstamp_prequeue, skb);
3762
3763 if (skb_defer_rx_timestamp(skb))
3764 return NET_RX_SUCCESS;
3765
3766 #ifdef CONFIG_RPS
3767 if (static_key_false(&rps_needed)) {
3768 struct rps_dev_flow voidflow, *rflow = &voidflow;
3769 int cpu, ret;
3770
3771 rcu_read_lock();
3772
3773 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3774
3775 if (cpu >= 0) {
3776 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3777 rcu_read_unlock();
3778 return ret;
3779 }
3780 rcu_read_unlock();
3781 }
3782 #endif
3783 return __netif_receive_skb(skb);
3784 }
3785
3786 /**
3787 * netif_receive_skb - process receive buffer from network
3788 * @skb: buffer to process
3789 *
3790 * netif_receive_skb() is the main receive data processing function.
3791 * It always succeeds. The buffer may be dropped during processing
3792 * for congestion control or by the protocol layers.
3793 *
3794 * This function may only be called from softirq context and interrupts
3795 * should be enabled.
3796 *
3797 * Return values (usually ignored):
3798 * NET_RX_SUCCESS: no congestion
3799 * NET_RX_DROP: packet was dropped
3800 */
3801 int netif_receive_skb(struct sk_buff *skb)
3802 {
3803 trace_netif_receive_skb_entry(skb);
3804
3805 return netif_receive_skb_internal(skb);
3806 }
3807 EXPORT_SYMBOL(netif_receive_skb);
3808
3809 /* Network device is going away, flush any packets still pending
3810 * Called with irqs disabled.
3811 */
3812 static void flush_backlog(void *arg)
3813 {
3814 struct net_device *dev = arg;
3815 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3816 struct sk_buff *skb, *tmp;
3817
3818 rps_lock(sd);
3819 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3820 if (skb->dev == dev) {
3821 __skb_unlink(skb, &sd->input_pkt_queue);
3822 kfree_skb(skb);
3823 input_queue_head_incr(sd);
3824 }
3825 }
3826 rps_unlock(sd);
3827
3828 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3829 if (skb->dev == dev) {
3830 __skb_unlink(skb, &sd->process_queue);
3831 kfree_skb(skb);
3832 input_queue_head_incr(sd);
3833 }
3834 }
3835 }
3836
3837 static int napi_gro_complete(struct sk_buff *skb)
3838 {
3839 struct packet_offload *ptype;
3840 __be16 type = skb->protocol;
3841 struct list_head *head = &offload_base;
3842 int err = -ENOENT;
3843
3844 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3845
3846 if (NAPI_GRO_CB(skb)->count == 1) {
3847 skb_shinfo(skb)->gso_size = 0;
3848 goto out;
3849 }
3850
3851 rcu_read_lock();
3852 list_for_each_entry_rcu(ptype, head, list) {
3853 if (ptype->type != type || !ptype->callbacks.gro_complete)
3854 continue;
3855
3856 err = ptype->callbacks.gro_complete(skb, 0);
3857 break;
3858 }
3859 rcu_read_unlock();
3860
3861 if (err) {
3862 WARN_ON(&ptype->list == head);
3863 kfree_skb(skb);
3864 return NET_RX_SUCCESS;
3865 }
3866
3867 out:
3868 return netif_receive_skb_internal(skb);
3869 }
3870
3871 /* napi->gro_list contains packets ordered by age.
3872 * youngest packets at the head of it.
3873 * Complete skbs in reverse order to reduce latencies.
3874 */
3875 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3876 {
3877 struct sk_buff *skb, *prev = NULL;
3878
3879 /* scan list and build reverse chain */
3880 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3881 skb->prev = prev;
3882 prev = skb;
3883 }
3884
3885 for (skb = prev; skb; skb = prev) {
3886 skb->next = NULL;
3887
3888 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3889 return;
3890
3891 prev = skb->prev;
3892 napi_gro_complete(skb);
3893 napi->gro_count--;
3894 }
3895
3896 napi->gro_list = NULL;
3897 }
3898 EXPORT_SYMBOL(napi_gro_flush);
3899
3900 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3901 {
3902 struct sk_buff *p;
3903 unsigned int maclen = skb->dev->hard_header_len;
3904 u32 hash = skb_get_hash_raw(skb);
3905
3906 for (p = napi->gro_list; p; p = p->next) {
3907 unsigned long diffs;
3908
3909 NAPI_GRO_CB(p)->flush = 0;
3910
3911 if (hash != skb_get_hash_raw(p)) {
3912 NAPI_GRO_CB(p)->same_flow = 0;
3913 continue;
3914 }
3915
3916 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3917 diffs |= p->vlan_tci ^ skb->vlan_tci;
3918 if (maclen == ETH_HLEN)
3919 diffs |= compare_ether_header(skb_mac_header(p),
3920 skb_mac_header(skb));
3921 else if (!diffs)
3922 diffs = memcmp(skb_mac_header(p),
3923 skb_mac_header(skb),
3924 maclen);
3925 NAPI_GRO_CB(p)->same_flow = !diffs;
3926 }
3927 }
3928
3929 static void skb_gro_reset_offset(struct sk_buff *skb)
3930 {
3931 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3932 const skb_frag_t *frag0 = &pinfo->frags[0];
3933
3934 NAPI_GRO_CB(skb)->data_offset = 0;
3935 NAPI_GRO_CB(skb)->frag0 = NULL;
3936 NAPI_GRO_CB(skb)->frag0_len = 0;
3937
3938 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3939 pinfo->nr_frags &&
3940 !PageHighMem(skb_frag_page(frag0))) {
3941 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3942 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3943 }
3944 }
3945
3946 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3947 {
3948 struct skb_shared_info *pinfo = skb_shinfo(skb);
3949
3950 BUG_ON(skb->end - skb->tail < grow);
3951
3952 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3953
3954 skb->data_len -= grow;
3955 skb->tail += grow;
3956
3957 pinfo->frags[0].page_offset += grow;
3958 skb_frag_size_sub(&pinfo->frags[0], grow);
3959
3960 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3961 skb_frag_unref(skb, 0);
3962 memmove(pinfo->frags, pinfo->frags + 1,
3963 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3964 }
3965 }
3966
3967 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3968 {
3969 struct sk_buff **pp = NULL;
3970 struct packet_offload *ptype;
3971 __be16 type = skb->protocol;
3972 struct list_head *head = &offload_base;
3973 int same_flow;
3974 enum gro_result ret;
3975 int grow;
3976
3977 if (!(skb->dev->features & NETIF_F_GRO))
3978 goto normal;
3979
3980 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
3981 goto normal;
3982
3983 gro_list_prepare(napi, skb);
3984
3985 rcu_read_lock();
3986 list_for_each_entry_rcu(ptype, head, list) {
3987 if (ptype->type != type || !ptype->callbacks.gro_receive)
3988 continue;
3989
3990 skb_set_network_header(skb, skb_gro_offset(skb));
3991 skb_reset_mac_len(skb);
3992 NAPI_GRO_CB(skb)->same_flow = 0;
3993 NAPI_GRO_CB(skb)->flush = 0;
3994 NAPI_GRO_CB(skb)->free = 0;
3995 NAPI_GRO_CB(skb)->udp_mark = 0;
3996
3997 /* Setup for GRO checksum validation */
3998 switch (skb->ip_summed) {
3999 case CHECKSUM_COMPLETE:
4000 NAPI_GRO_CB(skb)->csum = skb->csum;
4001 NAPI_GRO_CB(skb)->csum_valid = 1;
4002 NAPI_GRO_CB(skb)->csum_cnt = 0;
4003 break;
4004 case CHECKSUM_UNNECESSARY:
4005 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4006 NAPI_GRO_CB(skb)->csum_valid = 0;
4007 break;
4008 default:
4009 NAPI_GRO_CB(skb)->csum_cnt = 0;
4010 NAPI_GRO_CB(skb)->csum_valid = 0;
4011 }
4012
4013 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4014 break;
4015 }
4016 rcu_read_unlock();
4017
4018 if (&ptype->list == head)
4019 goto normal;
4020
4021 same_flow = NAPI_GRO_CB(skb)->same_flow;
4022 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4023
4024 if (pp) {
4025 struct sk_buff *nskb = *pp;
4026
4027 *pp = nskb->next;
4028 nskb->next = NULL;
4029 napi_gro_complete(nskb);
4030 napi->gro_count--;
4031 }
4032
4033 if (same_flow)
4034 goto ok;
4035
4036 if (NAPI_GRO_CB(skb)->flush)
4037 goto normal;
4038
4039 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4040 struct sk_buff *nskb = napi->gro_list;
4041
4042 /* locate the end of the list to select the 'oldest' flow */
4043 while (nskb->next) {
4044 pp = &nskb->next;
4045 nskb = *pp;
4046 }
4047 *pp = NULL;
4048 nskb->next = NULL;
4049 napi_gro_complete(nskb);
4050 } else {
4051 napi->gro_count++;
4052 }
4053 NAPI_GRO_CB(skb)->count = 1;
4054 NAPI_GRO_CB(skb)->age = jiffies;
4055 NAPI_GRO_CB(skb)->last = skb;
4056 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4057 skb->next = napi->gro_list;
4058 napi->gro_list = skb;
4059 ret = GRO_HELD;
4060
4061 pull:
4062 grow = skb_gro_offset(skb) - skb_headlen(skb);
4063 if (grow > 0)
4064 gro_pull_from_frag0(skb, grow);
4065 ok:
4066 return ret;
4067
4068 normal:
4069 ret = GRO_NORMAL;
4070 goto pull;
4071 }
4072
4073 struct packet_offload *gro_find_receive_by_type(__be16 type)
4074 {
4075 struct list_head *offload_head = &offload_base;
4076 struct packet_offload *ptype;
4077
4078 list_for_each_entry_rcu(ptype, offload_head, list) {
4079 if (ptype->type != type || !ptype->callbacks.gro_receive)
4080 continue;
4081 return ptype;
4082 }
4083 return NULL;
4084 }
4085 EXPORT_SYMBOL(gro_find_receive_by_type);
4086
4087 struct packet_offload *gro_find_complete_by_type(__be16 type)
4088 {
4089 struct list_head *offload_head = &offload_base;
4090 struct packet_offload *ptype;
4091
4092 list_for_each_entry_rcu(ptype, offload_head, list) {
4093 if (ptype->type != type || !ptype->callbacks.gro_complete)
4094 continue;
4095 return ptype;
4096 }
4097 return NULL;
4098 }
4099 EXPORT_SYMBOL(gro_find_complete_by_type);
4100
4101 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4102 {
4103 switch (ret) {
4104 case GRO_NORMAL:
4105 if (netif_receive_skb_internal(skb))
4106 ret = GRO_DROP;
4107 break;
4108
4109 case GRO_DROP:
4110 kfree_skb(skb);
4111 break;
4112
4113 case GRO_MERGED_FREE:
4114 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4115 kmem_cache_free(skbuff_head_cache, skb);
4116 else
4117 __kfree_skb(skb);
4118 break;
4119
4120 case GRO_HELD:
4121 case GRO_MERGED:
4122 break;
4123 }
4124
4125 return ret;
4126 }
4127
4128 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4129 {
4130 trace_napi_gro_receive_entry(skb);
4131
4132 skb_gro_reset_offset(skb);
4133
4134 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4135 }
4136 EXPORT_SYMBOL(napi_gro_receive);
4137
4138 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4139 {
4140 __skb_pull(skb, skb_headlen(skb));
4141 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4142 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4143 skb->vlan_tci = 0;
4144 skb->dev = napi->dev;
4145 skb->skb_iif = 0;
4146 skb->encapsulation = 0;
4147 skb_shinfo(skb)->gso_type = 0;
4148 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4149
4150 napi->skb = skb;
4151 }
4152
4153 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4154 {
4155 struct sk_buff *skb = napi->skb;
4156
4157 if (!skb) {
4158 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4159 napi->skb = skb;
4160 }
4161 return skb;
4162 }
4163 EXPORT_SYMBOL(napi_get_frags);
4164
4165 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4166 struct sk_buff *skb,
4167 gro_result_t ret)
4168 {
4169 switch (ret) {
4170 case GRO_NORMAL:
4171 case GRO_HELD:
4172 __skb_push(skb, ETH_HLEN);
4173 skb->protocol = eth_type_trans(skb, skb->dev);
4174 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4175 ret = GRO_DROP;
4176 break;
4177
4178 case GRO_DROP:
4179 case GRO_MERGED_FREE:
4180 napi_reuse_skb(napi, skb);
4181 break;
4182
4183 case GRO_MERGED:
4184 break;
4185 }
4186
4187 return ret;
4188 }
4189
4190 /* Upper GRO stack assumes network header starts at gro_offset=0
4191 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4192 * We copy ethernet header into skb->data to have a common layout.
4193 */
4194 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4195 {
4196 struct sk_buff *skb = napi->skb;
4197 const struct ethhdr *eth;
4198 unsigned int hlen = sizeof(*eth);
4199
4200 napi->skb = NULL;
4201
4202 skb_reset_mac_header(skb);
4203 skb_gro_reset_offset(skb);
4204
4205 eth = skb_gro_header_fast(skb, 0);
4206 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4207 eth = skb_gro_header_slow(skb, hlen, 0);
4208 if (unlikely(!eth)) {
4209 napi_reuse_skb(napi, skb);
4210 return NULL;
4211 }
4212 } else {
4213 gro_pull_from_frag0(skb, hlen);
4214 NAPI_GRO_CB(skb)->frag0 += hlen;
4215 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4216 }
4217 __skb_pull(skb, hlen);
4218
4219 /*
4220 * This works because the only protocols we care about don't require
4221 * special handling.
4222 * We'll fix it up properly in napi_frags_finish()
4223 */
4224 skb->protocol = eth->h_proto;
4225
4226 return skb;
4227 }
4228
4229 gro_result_t napi_gro_frags(struct napi_struct *napi)
4230 {
4231 struct sk_buff *skb = napi_frags_skb(napi);
4232
4233 if (!skb)
4234 return GRO_DROP;
4235
4236 trace_napi_gro_frags_entry(skb);
4237
4238 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4239 }
4240 EXPORT_SYMBOL(napi_gro_frags);
4241
4242 /* Compute the checksum from gro_offset and return the folded value
4243 * after adding in any pseudo checksum.
4244 */
4245 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4246 {
4247 __wsum wsum;
4248 __sum16 sum;
4249
4250 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4251
4252 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4253 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4254 if (likely(!sum)) {
4255 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4256 !skb->csum_complete_sw)
4257 netdev_rx_csum_fault(skb->dev);
4258 }
4259
4260 NAPI_GRO_CB(skb)->csum = wsum;
4261 NAPI_GRO_CB(skb)->csum_valid = 1;
4262
4263 return sum;
4264 }
4265 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4266
4267 /*
4268 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4269 * Note: called with local irq disabled, but exits with local irq enabled.
4270 */
4271 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4272 {
4273 #ifdef CONFIG_RPS
4274 struct softnet_data *remsd = sd->rps_ipi_list;
4275
4276 if (remsd) {
4277 sd->rps_ipi_list = NULL;
4278
4279 local_irq_enable();
4280
4281 /* Send pending IPI's to kick RPS processing on remote cpus. */
4282 while (remsd) {
4283 struct softnet_data *next = remsd->rps_ipi_next;
4284
4285 if (cpu_online(remsd->cpu))
4286 smp_call_function_single_async(remsd->cpu,
4287 &remsd->csd);
4288 remsd = next;
4289 }
4290 } else
4291 #endif
4292 local_irq_enable();
4293 }
4294
4295 static int process_backlog(struct napi_struct *napi, int quota)
4296 {
4297 int work = 0;
4298 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4299
4300 #ifdef CONFIG_RPS
4301 /* Check if we have pending ipi, its better to send them now,
4302 * not waiting net_rx_action() end.
4303 */
4304 if (sd->rps_ipi_list) {
4305 local_irq_disable();
4306 net_rps_action_and_irq_enable(sd);
4307 }
4308 #endif
4309 napi->weight = weight_p;
4310 local_irq_disable();
4311 while (1) {
4312 struct sk_buff *skb;
4313
4314 while ((skb = __skb_dequeue(&sd->process_queue))) {
4315 local_irq_enable();
4316 __netif_receive_skb(skb);
4317 local_irq_disable();
4318 input_queue_head_incr(sd);
4319 if (++work >= quota) {
4320 local_irq_enable();
4321 return work;
4322 }
4323 }
4324
4325 rps_lock(sd);
4326 if (skb_queue_empty(&sd->input_pkt_queue)) {
4327 /*
4328 * Inline a custom version of __napi_complete().
4329 * only current cpu owns and manipulates this napi,
4330 * and NAPI_STATE_SCHED is the only possible flag set
4331 * on backlog.
4332 * We can use a plain write instead of clear_bit(),
4333 * and we dont need an smp_mb() memory barrier.
4334 */
4335 list_del(&napi->poll_list);
4336 napi->state = 0;
4337 rps_unlock(sd);
4338
4339 break;
4340 }
4341
4342 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4343 &sd->process_queue);
4344 rps_unlock(sd);
4345 }
4346 local_irq_enable();
4347
4348 return work;
4349 }
4350
4351 /**
4352 * __napi_schedule - schedule for receive
4353 * @n: entry to schedule
4354 *
4355 * The entry's receive function will be scheduled to run
4356 */
4357 void __napi_schedule(struct napi_struct *n)
4358 {
4359 unsigned long flags;
4360
4361 local_irq_save(flags);
4362 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4363 local_irq_restore(flags);
4364 }
4365 EXPORT_SYMBOL(__napi_schedule);
4366
4367 void __napi_complete(struct napi_struct *n)
4368 {
4369 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4370 BUG_ON(n->gro_list);
4371
4372 list_del(&n->poll_list);
4373 smp_mb__before_atomic();
4374 clear_bit(NAPI_STATE_SCHED, &n->state);
4375 }
4376 EXPORT_SYMBOL(__napi_complete);
4377
4378 void napi_complete(struct napi_struct *n)
4379 {
4380 unsigned long flags;
4381
4382 /*
4383 * don't let napi dequeue from the cpu poll list
4384 * just in case its running on a different cpu
4385 */
4386 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4387 return;
4388
4389 napi_gro_flush(n, false);
4390 local_irq_save(flags);
4391 __napi_complete(n);
4392 local_irq_restore(flags);
4393 }
4394 EXPORT_SYMBOL(napi_complete);
4395
4396 /* must be called under rcu_read_lock(), as we dont take a reference */
4397 struct napi_struct *napi_by_id(unsigned int napi_id)
4398 {
4399 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4400 struct napi_struct *napi;
4401
4402 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4403 if (napi->napi_id == napi_id)
4404 return napi;
4405
4406 return NULL;
4407 }
4408 EXPORT_SYMBOL_GPL(napi_by_id);
4409
4410 void napi_hash_add(struct napi_struct *napi)
4411 {
4412 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4413
4414 spin_lock(&napi_hash_lock);
4415
4416 /* 0 is not a valid id, we also skip an id that is taken
4417 * we expect both events to be extremely rare
4418 */
4419 napi->napi_id = 0;
4420 while (!napi->napi_id) {
4421 napi->napi_id = ++napi_gen_id;
4422 if (napi_by_id(napi->napi_id))
4423 napi->napi_id = 0;
4424 }
4425
4426 hlist_add_head_rcu(&napi->napi_hash_node,
4427 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4428
4429 spin_unlock(&napi_hash_lock);
4430 }
4431 }
4432 EXPORT_SYMBOL_GPL(napi_hash_add);
4433
4434 /* Warning : caller is responsible to make sure rcu grace period
4435 * is respected before freeing memory containing @napi
4436 */
4437 void napi_hash_del(struct napi_struct *napi)
4438 {
4439 spin_lock(&napi_hash_lock);
4440
4441 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4442 hlist_del_rcu(&napi->napi_hash_node);
4443
4444 spin_unlock(&napi_hash_lock);
4445 }
4446 EXPORT_SYMBOL_GPL(napi_hash_del);
4447
4448 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4449 int (*poll)(struct napi_struct *, int), int weight)
4450 {
4451 INIT_LIST_HEAD(&napi->poll_list);
4452 napi->gro_count = 0;
4453 napi->gro_list = NULL;
4454 napi->skb = NULL;
4455 napi->poll = poll;
4456 if (weight > NAPI_POLL_WEIGHT)
4457 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4458 weight, dev->name);
4459 napi->weight = weight;
4460 list_add(&napi->dev_list, &dev->napi_list);
4461 napi->dev = dev;
4462 #ifdef CONFIG_NETPOLL
4463 spin_lock_init(&napi->poll_lock);
4464 napi->poll_owner = -1;
4465 #endif
4466 set_bit(NAPI_STATE_SCHED, &napi->state);
4467 }
4468 EXPORT_SYMBOL(netif_napi_add);
4469
4470 void netif_napi_del(struct napi_struct *napi)
4471 {
4472 list_del_init(&napi->dev_list);
4473 napi_free_frags(napi);
4474
4475 kfree_skb_list(napi->gro_list);
4476 napi->gro_list = NULL;
4477 napi->gro_count = 0;
4478 }
4479 EXPORT_SYMBOL(netif_napi_del);
4480
4481 static void net_rx_action(struct softirq_action *h)
4482 {
4483 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4484 unsigned long time_limit = jiffies + 2;
4485 int budget = netdev_budget;
4486 void *have;
4487
4488 local_irq_disable();
4489
4490 while (!list_empty(&sd->poll_list)) {
4491 struct napi_struct *n;
4492 int work, weight;
4493
4494 /* If softirq window is exhuasted then punt.
4495 * Allow this to run for 2 jiffies since which will allow
4496 * an average latency of 1.5/HZ.
4497 */
4498 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4499 goto softnet_break;
4500
4501 local_irq_enable();
4502
4503 /* Even though interrupts have been re-enabled, this
4504 * access is safe because interrupts can only add new
4505 * entries to the tail of this list, and only ->poll()
4506 * calls can remove this head entry from the list.
4507 */
4508 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4509
4510 have = netpoll_poll_lock(n);
4511
4512 weight = n->weight;
4513
4514 /* This NAPI_STATE_SCHED test is for avoiding a race
4515 * with netpoll's poll_napi(). Only the entity which
4516 * obtains the lock and sees NAPI_STATE_SCHED set will
4517 * actually make the ->poll() call. Therefore we avoid
4518 * accidentally calling ->poll() when NAPI is not scheduled.
4519 */
4520 work = 0;
4521 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4522 work = n->poll(n, weight);
4523 trace_napi_poll(n);
4524 }
4525
4526 WARN_ON_ONCE(work > weight);
4527
4528 budget -= work;
4529
4530 local_irq_disable();
4531
4532 /* Drivers must not modify the NAPI state if they
4533 * consume the entire weight. In such cases this code
4534 * still "owns" the NAPI instance and therefore can
4535 * move the instance around on the list at-will.
4536 */
4537 if (unlikely(work == weight)) {
4538 if (unlikely(napi_disable_pending(n))) {
4539 local_irq_enable();
4540 napi_complete(n);
4541 local_irq_disable();
4542 } else {
4543 if (n->gro_list) {
4544 /* flush too old packets
4545 * If HZ < 1000, flush all packets.
4546 */
4547 local_irq_enable();
4548 napi_gro_flush(n, HZ >= 1000);
4549 local_irq_disable();
4550 }
4551 list_move_tail(&n->poll_list, &sd->poll_list);
4552 }
4553 }
4554
4555 netpoll_poll_unlock(have);
4556 }
4557 out:
4558 net_rps_action_and_irq_enable(sd);
4559
4560 #ifdef CONFIG_NET_DMA
4561 /*
4562 * There may not be any more sk_buffs coming right now, so push
4563 * any pending DMA copies to hardware
4564 */
4565 dma_issue_pending_all();
4566 #endif
4567
4568 return;
4569
4570 softnet_break:
4571 sd->time_squeeze++;
4572 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4573 goto out;
4574 }
4575
4576 struct netdev_adjacent {
4577 struct net_device *dev;
4578
4579 /* upper master flag, there can only be one master device per list */
4580 bool master;
4581
4582 /* counter for the number of times this device was added to us */
4583 u16 ref_nr;
4584
4585 /* private field for the users */
4586 void *private;
4587
4588 struct list_head list;
4589 struct rcu_head rcu;
4590 };
4591
4592 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4593 struct net_device *adj_dev,
4594 struct list_head *adj_list)
4595 {
4596 struct netdev_adjacent *adj;
4597
4598 list_for_each_entry(adj, adj_list, list) {
4599 if (adj->dev == adj_dev)
4600 return adj;
4601 }
4602 return NULL;
4603 }
4604
4605 /**
4606 * netdev_has_upper_dev - Check if device is linked to an upper device
4607 * @dev: device
4608 * @upper_dev: upper device to check
4609 *
4610 * Find out if a device is linked to specified upper device and return true
4611 * in case it is. Note that this checks only immediate upper device,
4612 * not through a complete stack of devices. The caller must hold the RTNL lock.
4613 */
4614 bool netdev_has_upper_dev(struct net_device *dev,
4615 struct net_device *upper_dev)
4616 {
4617 ASSERT_RTNL();
4618
4619 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4620 }
4621 EXPORT_SYMBOL(netdev_has_upper_dev);
4622
4623 /**
4624 * netdev_has_any_upper_dev - Check if device is linked to some device
4625 * @dev: device
4626 *
4627 * Find out if a device is linked to an upper device and return true in case
4628 * it is. The caller must hold the RTNL lock.
4629 */
4630 static bool netdev_has_any_upper_dev(struct net_device *dev)
4631 {
4632 ASSERT_RTNL();
4633
4634 return !list_empty(&dev->all_adj_list.upper);
4635 }
4636
4637 /**
4638 * netdev_master_upper_dev_get - Get master upper device
4639 * @dev: device
4640 *
4641 * Find a master upper device and return pointer to it or NULL in case
4642 * it's not there. The caller must hold the RTNL lock.
4643 */
4644 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4645 {
4646 struct netdev_adjacent *upper;
4647
4648 ASSERT_RTNL();
4649
4650 if (list_empty(&dev->adj_list.upper))
4651 return NULL;
4652
4653 upper = list_first_entry(&dev->adj_list.upper,
4654 struct netdev_adjacent, list);
4655 if (likely(upper->master))
4656 return upper->dev;
4657 return NULL;
4658 }
4659 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4660
4661 void *netdev_adjacent_get_private(struct list_head *adj_list)
4662 {
4663 struct netdev_adjacent *adj;
4664
4665 adj = list_entry(adj_list, struct netdev_adjacent, list);
4666
4667 return adj->private;
4668 }
4669 EXPORT_SYMBOL(netdev_adjacent_get_private);
4670
4671 /**
4672 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4673 * @dev: device
4674 * @iter: list_head ** of the current position
4675 *
4676 * Gets the next device from the dev's upper list, starting from iter
4677 * position. The caller must hold RCU read lock.
4678 */
4679 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4680 struct list_head **iter)
4681 {
4682 struct netdev_adjacent *upper;
4683
4684 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4685
4686 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4687
4688 if (&upper->list == &dev->adj_list.upper)
4689 return NULL;
4690
4691 *iter = &upper->list;
4692
4693 return upper->dev;
4694 }
4695 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4696
4697 /**
4698 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4699 * @dev: device
4700 * @iter: list_head ** of the current position
4701 *
4702 * Gets the next device from the dev's upper list, starting from iter
4703 * position. The caller must hold RCU read lock.
4704 */
4705 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4706 struct list_head **iter)
4707 {
4708 struct netdev_adjacent *upper;
4709
4710 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4711
4712 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4713
4714 if (&upper->list == &dev->all_adj_list.upper)
4715 return NULL;
4716
4717 *iter = &upper->list;
4718
4719 return upper->dev;
4720 }
4721 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4722
4723 /**
4724 * netdev_lower_get_next_private - Get the next ->private from the
4725 * lower neighbour list
4726 * @dev: device
4727 * @iter: list_head ** of the current position
4728 *
4729 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4730 * list, starting from iter position. The caller must hold either hold the
4731 * RTNL lock or its own locking that guarantees that the neighbour lower
4732 * list will remain unchainged.
4733 */
4734 void *netdev_lower_get_next_private(struct net_device *dev,
4735 struct list_head **iter)
4736 {
4737 struct netdev_adjacent *lower;
4738
4739 lower = list_entry(*iter, struct netdev_adjacent, list);
4740
4741 if (&lower->list == &dev->adj_list.lower)
4742 return NULL;
4743
4744 *iter = lower->list.next;
4745
4746 return lower->private;
4747 }
4748 EXPORT_SYMBOL(netdev_lower_get_next_private);
4749
4750 /**
4751 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4752 * lower neighbour list, RCU
4753 * variant
4754 * @dev: device
4755 * @iter: list_head ** of the current position
4756 *
4757 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4758 * list, starting from iter position. The caller must hold RCU read lock.
4759 */
4760 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4761 struct list_head **iter)
4762 {
4763 struct netdev_adjacent *lower;
4764
4765 WARN_ON_ONCE(!rcu_read_lock_held());
4766
4767 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4768
4769 if (&lower->list == &dev->adj_list.lower)
4770 return NULL;
4771
4772 *iter = &lower->list;
4773
4774 return lower->private;
4775 }
4776 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4777
4778 /**
4779 * netdev_lower_get_next - Get the next device from the lower neighbour
4780 * list
4781 * @dev: device
4782 * @iter: list_head ** of the current position
4783 *
4784 * Gets the next netdev_adjacent from the dev's lower neighbour
4785 * list, starting from iter position. The caller must hold RTNL lock or
4786 * its own locking that guarantees that the neighbour lower
4787 * list will remain unchainged.
4788 */
4789 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4790 {
4791 struct netdev_adjacent *lower;
4792
4793 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4794
4795 if (&lower->list == &dev->adj_list.lower)
4796 return NULL;
4797
4798 *iter = &lower->list;
4799
4800 return lower->dev;
4801 }
4802 EXPORT_SYMBOL(netdev_lower_get_next);
4803
4804 /**
4805 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4806 * lower neighbour list, RCU
4807 * variant
4808 * @dev: device
4809 *
4810 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4811 * list. The caller must hold RCU read lock.
4812 */
4813 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4814 {
4815 struct netdev_adjacent *lower;
4816
4817 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4818 struct netdev_adjacent, list);
4819 if (lower)
4820 return lower->private;
4821 return NULL;
4822 }
4823 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4824
4825 /**
4826 * netdev_master_upper_dev_get_rcu - Get master upper device
4827 * @dev: device
4828 *
4829 * Find a master upper device and return pointer to it or NULL in case
4830 * it's not there. The caller must hold the RCU read lock.
4831 */
4832 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4833 {
4834 struct netdev_adjacent *upper;
4835
4836 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4837 struct netdev_adjacent, list);
4838 if (upper && likely(upper->master))
4839 return upper->dev;
4840 return NULL;
4841 }
4842 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4843
4844 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4845 struct net_device *adj_dev,
4846 struct list_head *dev_list)
4847 {
4848 char linkname[IFNAMSIZ+7];
4849 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4850 "upper_%s" : "lower_%s", adj_dev->name);
4851 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4852 linkname);
4853 }
4854 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4855 char *name,
4856 struct list_head *dev_list)
4857 {
4858 char linkname[IFNAMSIZ+7];
4859 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4860 "upper_%s" : "lower_%s", name);
4861 sysfs_remove_link(&(dev->dev.kobj), linkname);
4862 }
4863
4864 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4865 (dev_list == &dev->adj_list.upper || \
4866 dev_list == &dev->adj_list.lower)
4867
4868 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4869 struct net_device *adj_dev,
4870 struct list_head *dev_list,
4871 void *private, bool master)
4872 {
4873 struct netdev_adjacent *adj;
4874 int ret;
4875
4876 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4877
4878 if (adj) {
4879 adj->ref_nr++;
4880 return 0;
4881 }
4882
4883 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4884 if (!adj)
4885 return -ENOMEM;
4886
4887 adj->dev = adj_dev;
4888 adj->master = master;
4889 adj->ref_nr = 1;
4890 adj->private = private;
4891 dev_hold(adj_dev);
4892
4893 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4894 adj_dev->name, dev->name, adj_dev->name);
4895
4896 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4897 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4898 if (ret)
4899 goto free_adj;
4900 }
4901
4902 /* Ensure that master link is always the first item in list. */
4903 if (master) {
4904 ret = sysfs_create_link(&(dev->dev.kobj),
4905 &(adj_dev->dev.kobj), "master");
4906 if (ret)
4907 goto remove_symlinks;
4908
4909 list_add_rcu(&adj->list, dev_list);
4910 } else {
4911 list_add_tail_rcu(&adj->list, dev_list);
4912 }
4913
4914 return 0;
4915
4916 remove_symlinks:
4917 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4918 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4919 free_adj:
4920 kfree(adj);
4921 dev_put(adj_dev);
4922
4923 return ret;
4924 }
4925
4926 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4927 struct net_device *adj_dev,
4928 struct list_head *dev_list)
4929 {
4930 struct netdev_adjacent *adj;
4931
4932 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4933
4934 if (!adj) {
4935 pr_err("tried to remove device %s from %s\n",
4936 dev->name, adj_dev->name);
4937 BUG();
4938 }
4939
4940 if (adj->ref_nr > 1) {
4941 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4942 adj->ref_nr-1);
4943 adj->ref_nr--;
4944 return;
4945 }
4946
4947 if (adj->master)
4948 sysfs_remove_link(&(dev->dev.kobj), "master");
4949
4950 if (netdev_adjacent_is_neigh_list(dev, dev_list) &&
4951 net_eq(dev_net(dev),dev_net(adj_dev)))
4952 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4953
4954 list_del_rcu(&adj->list);
4955 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4956 adj_dev->name, dev->name, adj_dev->name);
4957 dev_put(adj_dev);
4958 kfree_rcu(adj, rcu);
4959 }
4960
4961 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4962 struct net_device *upper_dev,
4963 struct list_head *up_list,
4964 struct list_head *down_list,
4965 void *private, bool master)
4966 {
4967 int ret;
4968
4969 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4970 master);
4971 if (ret)
4972 return ret;
4973
4974 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4975 false);
4976 if (ret) {
4977 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4978 return ret;
4979 }
4980
4981 return 0;
4982 }
4983
4984 static int __netdev_adjacent_dev_link(struct net_device *dev,
4985 struct net_device *upper_dev)
4986 {
4987 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4988 &dev->all_adj_list.upper,
4989 &upper_dev->all_adj_list.lower,
4990 NULL, false);
4991 }
4992
4993 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4994 struct net_device *upper_dev,
4995 struct list_head *up_list,
4996 struct list_head *down_list)
4997 {
4998 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4999 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5000 }
5001
5002 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5003 struct net_device *upper_dev)
5004 {
5005 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5006 &dev->all_adj_list.upper,
5007 &upper_dev->all_adj_list.lower);
5008 }
5009
5010 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5011 struct net_device *upper_dev,
5012 void *private, bool master)
5013 {
5014 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5015
5016 if (ret)
5017 return ret;
5018
5019 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5020 &dev->adj_list.upper,
5021 &upper_dev->adj_list.lower,
5022 private, master);
5023 if (ret) {
5024 __netdev_adjacent_dev_unlink(dev, upper_dev);
5025 return ret;
5026 }
5027
5028 return 0;
5029 }
5030
5031 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5032 struct net_device *upper_dev)
5033 {
5034 __netdev_adjacent_dev_unlink(dev, upper_dev);
5035 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5036 &dev->adj_list.upper,
5037 &upper_dev->adj_list.lower);
5038 }
5039
5040 static int __netdev_upper_dev_link(struct net_device *dev,
5041 struct net_device *upper_dev, bool master,
5042 void *private)
5043 {
5044 struct netdev_adjacent *i, *j, *to_i, *to_j;
5045 int ret = 0;
5046
5047 ASSERT_RTNL();
5048
5049 if (dev == upper_dev)
5050 return -EBUSY;
5051
5052 /* To prevent loops, check if dev is not upper device to upper_dev. */
5053 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5054 return -EBUSY;
5055
5056 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5057 return -EEXIST;
5058
5059 if (master && netdev_master_upper_dev_get(dev))
5060 return -EBUSY;
5061
5062 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5063 master);
5064 if (ret)
5065 return ret;
5066
5067 /* Now that we linked these devs, make all the upper_dev's
5068 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5069 * versa, and don't forget the devices itself. All of these
5070 * links are non-neighbours.
5071 */
5072 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5073 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5074 pr_debug("Interlinking %s with %s, non-neighbour\n",
5075 i->dev->name, j->dev->name);
5076 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5077 if (ret)
5078 goto rollback_mesh;
5079 }
5080 }
5081
5082 /* add dev to every upper_dev's upper device */
5083 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5084 pr_debug("linking %s's upper device %s with %s\n",
5085 upper_dev->name, i->dev->name, dev->name);
5086 ret = __netdev_adjacent_dev_link(dev, i->dev);
5087 if (ret)
5088 goto rollback_upper_mesh;
5089 }
5090
5091 /* add upper_dev to every dev's lower device */
5092 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5093 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5094 i->dev->name, upper_dev->name);
5095 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5096 if (ret)
5097 goto rollback_lower_mesh;
5098 }
5099
5100 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5101 return 0;
5102
5103 rollback_lower_mesh:
5104 to_i = i;
5105 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5106 if (i == to_i)
5107 break;
5108 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5109 }
5110
5111 i = NULL;
5112
5113 rollback_upper_mesh:
5114 to_i = i;
5115 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5116 if (i == to_i)
5117 break;
5118 __netdev_adjacent_dev_unlink(dev, i->dev);
5119 }
5120
5121 i = j = NULL;
5122
5123 rollback_mesh:
5124 to_i = i;
5125 to_j = j;
5126 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5127 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5128 if (i == to_i && j == to_j)
5129 break;
5130 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5131 }
5132 if (i == to_i)
5133 break;
5134 }
5135
5136 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5137
5138 return ret;
5139 }
5140
5141 /**
5142 * netdev_upper_dev_link - Add a link to the upper device
5143 * @dev: device
5144 * @upper_dev: new upper device
5145 *
5146 * Adds a link to device which is upper to this one. The caller must hold
5147 * the RTNL lock. On a failure a negative errno code is returned.
5148 * On success the reference counts are adjusted and the function
5149 * returns zero.
5150 */
5151 int netdev_upper_dev_link(struct net_device *dev,
5152 struct net_device *upper_dev)
5153 {
5154 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5155 }
5156 EXPORT_SYMBOL(netdev_upper_dev_link);
5157
5158 /**
5159 * netdev_master_upper_dev_link - Add a master link to the upper device
5160 * @dev: device
5161 * @upper_dev: new upper device
5162 *
5163 * Adds a link to device which is upper to this one. In this case, only
5164 * one master upper device can be linked, although other non-master devices
5165 * might be linked as well. The caller must hold the RTNL lock.
5166 * On a failure a negative errno code is returned. On success the reference
5167 * counts are adjusted and the function returns zero.
5168 */
5169 int netdev_master_upper_dev_link(struct net_device *dev,
5170 struct net_device *upper_dev)
5171 {
5172 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5173 }
5174 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5175
5176 int netdev_master_upper_dev_link_private(struct net_device *dev,
5177 struct net_device *upper_dev,
5178 void *private)
5179 {
5180 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5181 }
5182 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5183
5184 /**
5185 * netdev_upper_dev_unlink - Removes a link to upper device
5186 * @dev: device
5187 * @upper_dev: new upper device
5188 *
5189 * Removes a link to device which is upper to this one. The caller must hold
5190 * the RTNL lock.
5191 */
5192 void netdev_upper_dev_unlink(struct net_device *dev,
5193 struct net_device *upper_dev)
5194 {
5195 struct netdev_adjacent *i, *j;
5196 ASSERT_RTNL();
5197
5198 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5199
5200 /* Here is the tricky part. We must remove all dev's lower
5201 * devices from all upper_dev's upper devices and vice
5202 * versa, to maintain the graph relationship.
5203 */
5204 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5205 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5206 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5207
5208 /* remove also the devices itself from lower/upper device
5209 * list
5210 */
5211 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5212 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5213
5214 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5215 __netdev_adjacent_dev_unlink(dev, i->dev);
5216
5217 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5218 }
5219 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5220
5221 void netdev_adjacent_add_links(struct net_device *dev)
5222 {
5223 struct netdev_adjacent *iter;
5224
5225 struct net *net = dev_net(dev);
5226
5227 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5228 if (!net_eq(net,dev_net(iter->dev)))
5229 continue;
5230 netdev_adjacent_sysfs_add(iter->dev, dev,
5231 &iter->dev->adj_list.lower);
5232 netdev_adjacent_sysfs_add(dev, iter->dev,
5233 &dev->adj_list.upper);
5234 }
5235
5236 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5237 if (!net_eq(net,dev_net(iter->dev)))
5238 continue;
5239 netdev_adjacent_sysfs_add(iter->dev, dev,
5240 &iter->dev->adj_list.upper);
5241 netdev_adjacent_sysfs_add(dev, iter->dev,
5242 &dev->adj_list.lower);
5243 }
5244 }
5245
5246 void netdev_adjacent_del_links(struct net_device *dev)
5247 {
5248 struct netdev_adjacent *iter;
5249
5250 struct net *net = dev_net(dev);
5251
5252 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5253 if (!net_eq(net,dev_net(iter->dev)))
5254 continue;
5255 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5256 &iter->dev->adj_list.lower);
5257 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5258 &dev->adj_list.upper);
5259 }
5260
5261 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5262 if (!net_eq(net,dev_net(iter->dev)))
5263 continue;
5264 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5265 &iter->dev->adj_list.upper);
5266 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5267 &dev->adj_list.lower);
5268 }
5269 }
5270
5271 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5272 {
5273 struct netdev_adjacent *iter;
5274
5275 struct net *net = dev_net(dev);
5276
5277 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5278 if (!net_eq(net,dev_net(iter->dev)))
5279 continue;
5280 netdev_adjacent_sysfs_del(iter->dev, oldname,
5281 &iter->dev->adj_list.lower);
5282 netdev_adjacent_sysfs_add(iter->dev, dev,
5283 &iter->dev->adj_list.lower);
5284 }
5285
5286 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5287 if (!net_eq(net,dev_net(iter->dev)))
5288 continue;
5289 netdev_adjacent_sysfs_del(iter->dev, oldname,
5290 &iter->dev->adj_list.upper);
5291 netdev_adjacent_sysfs_add(iter->dev, dev,
5292 &iter->dev->adj_list.upper);
5293 }
5294 }
5295
5296 void *netdev_lower_dev_get_private(struct net_device *dev,
5297 struct net_device *lower_dev)
5298 {
5299 struct netdev_adjacent *lower;
5300
5301 if (!lower_dev)
5302 return NULL;
5303 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5304 if (!lower)
5305 return NULL;
5306
5307 return lower->private;
5308 }
5309 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5310
5311
5312 int dev_get_nest_level(struct net_device *dev,
5313 bool (*type_check)(struct net_device *dev))
5314 {
5315 struct net_device *lower = NULL;
5316 struct list_head *iter;
5317 int max_nest = -1;
5318 int nest;
5319
5320 ASSERT_RTNL();
5321
5322 netdev_for_each_lower_dev(dev, lower, iter) {
5323 nest = dev_get_nest_level(lower, type_check);
5324 if (max_nest < nest)
5325 max_nest = nest;
5326 }
5327
5328 if (type_check(dev))
5329 max_nest++;
5330
5331 return max_nest;
5332 }
5333 EXPORT_SYMBOL(dev_get_nest_level);
5334
5335 static void dev_change_rx_flags(struct net_device *dev, int flags)
5336 {
5337 const struct net_device_ops *ops = dev->netdev_ops;
5338
5339 if (ops->ndo_change_rx_flags)
5340 ops->ndo_change_rx_flags(dev, flags);
5341 }
5342
5343 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5344 {
5345 unsigned int old_flags = dev->flags;
5346 kuid_t uid;
5347 kgid_t gid;
5348
5349 ASSERT_RTNL();
5350
5351 dev->flags |= IFF_PROMISC;
5352 dev->promiscuity += inc;
5353 if (dev->promiscuity == 0) {
5354 /*
5355 * Avoid overflow.
5356 * If inc causes overflow, untouch promisc and return error.
5357 */
5358 if (inc < 0)
5359 dev->flags &= ~IFF_PROMISC;
5360 else {
5361 dev->promiscuity -= inc;
5362 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5363 dev->name);
5364 return -EOVERFLOW;
5365 }
5366 }
5367 if (dev->flags != old_flags) {
5368 pr_info("device %s %s promiscuous mode\n",
5369 dev->name,
5370 dev->flags & IFF_PROMISC ? "entered" : "left");
5371 if (audit_enabled) {
5372 current_uid_gid(&uid, &gid);
5373 audit_log(current->audit_context, GFP_ATOMIC,
5374 AUDIT_ANOM_PROMISCUOUS,
5375 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5376 dev->name, (dev->flags & IFF_PROMISC),
5377 (old_flags & IFF_PROMISC),
5378 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5379 from_kuid(&init_user_ns, uid),
5380 from_kgid(&init_user_ns, gid),
5381 audit_get_sessionid(current));
5382 }
5383
5384 dev_change_rx_flags(dev, IFF_PROMISC);
5385 }
5386 if (notify)
5387 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5388 return 0;
5389 }
5390
5391 /**
5392 * dev_set_promiscuity - update promiscuity count on a device
5393 * @dev: device
5394 * @inc: modifier
5395 *
5396 * Add or remove promiscuity from a device. While the count in the device
5397 * remains above zero the interface remains promiscuous. Once it hits zero
5398 * the device reverts back to normal filtering operation. A negative inc
5399 * value is used to drop promiscuity on the device.
5400 * Return 0 if successful or a negative errno code on error.
5401 */
5402 int dev_set_promiscuity(struct net_device *dev, int inc)
5403 {
5404 unsigned int old_flags = dev->flags;
5405 int err;
5406
5407 err = __dev_set_promiscuity(dev, inc, true);
5408 if (err < 0)
5409 return err;
5410 if (dev->flags != old_flags)
5411 dev_set_rx_mode(dev);
5412 return err;
5413 }
5414 EXPORT_SYMBOL(dev_set_promiscuity);
5415
5416 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5417 {
5418 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5419
5420 ASSERT_RTNL();
5421
5422 dev->flags |= IFF_ALLMULTI;
5423 dev->allmulti += inc;
5424 if (dev->allmulti == 0) {
5425 /*
5426 * Avoid overflow.
5427 * If inc causes overflow, untouch allmulti and return error.
5428 */
5429 if (inc < 0)
5430 dev->flags &= ~IFF_ALLMULTI;
5431 else {
5432 dev->allmulti -= inc;
5433 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5434 dev->name);
5435 return -EOVERFLOW;
5436 }
5437 }
5438 if (dev->flags ^ old_flags) {
5439 dev_change_rx_flags(dev, IFF_ALLMULTI);
5440 dev_set_rx_mode(dev);
5441 if (notify)
5442 __dev_notify_flags(dev, old_flags,
5443 dev->gflags ^ old_gflags);
5444 }
5445 return 0;
5446 }
5447
5448 /**
5449 * dev_set_allmulti - update allmulti count on a device
5450 * @dev: device
5451 * @inc: modifier
5452 *
5453 * Add or remove reception of all multicast frames to a device. While the
5454 * count in the device remains above zero the interface remains listening
5455 * to all interfaces. Once it hits zero the device reverts back to normal
5456 * filtering operation. A negative @inc value is used to drop the counter
5457 * when releasing a resource needing all multicasts.
5458 * Return 0 if successful or a negative errno code on error.
5459 */
5460
5461 int dev_set_allmulti(struct net_device *dev, int inc)
5462 {
5463 return __dev_set_allmulti(dev, inc, true);
5464 }
5465 EXPORT_SYMBOL(dev_set_allmulti);
5466
5467 /*
5468 * Upload unicast and multicast address lists to device and
5469 * configure RX filtering. When the device doesn't support unicast
5470 * filtering it is put in promiscuous mode while unicast addresses
5471 * are present.
5472 */
5473 void __dev_set_rx_mode(struct net_device *dev)
5474 {
5475 const struct net_device_ops *ops = dev->netdev_ops;
5476
5477 /* dev_open will call this function so the list will stay sane. */
5478 if (!(dev->flags&IFF_UP))
5479 return;
5480
5481 if (!netif_device_present(dev))
5482 return;
5483
5484 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5485 /* Unicast addresses changes may only happen under the rtnl,
5486 * therefore calling __dev_set_promiscuity here is safe.
5487 */
5488 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5489 __dev_set_promiscuity(dev, 1, false);
5490 dev->uc_promisc = true;
5491 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5492 __dev_set_promiscuity(dev, -1, false);
5493 dev->uc_promisc = false;
5494 }
5495 }
5496
5497 if (ops->ndo_set_rx_mode)
5498 ops->ndo_set_rx_mode(dev);
5499 }
5500
5501 void dev_set_rx_mode(struct net_device *dev)
5502 {
5503 netif_addr_lock_bh(dev);
5504 __dev_set_rx_mode(dev);
5505 netif_addr_unlock_bh(dev);
5506 }
5507
5508 /**
5509 * dev_get_flags - get flags reported to userspace
5510 * @dev: device
5511 *
5512 * Get the combination of flag bits exported through APIs to userspace.
5513 */
5514 unsigned int dev_get_flags(const struct net_device *dev)
5515 {
5516 unsigned int flags;
5517
5518 flags = (dev->flags & ~(IFF_PROMISC |
5519 IFF_ALLMULTI |
5520 IFF_RUNNING |
5521 IFF_LOWER_UP |
5522 IFF_DORMANT)) |
5523 (dev->gflags & (IFF_PROMISC |
5524 IFF_ALLMULTI));
5525
5526 if (netif_running(dev)) {
5527 if (netif_oper_up(dev))
5528 flags |= IFF_RUNNING;
5529 if (netif_carrier_ok(dev))
5530 flags |= IFF_LOWER_UP;
5531 if (netif_dormant(dev))
5532 flags |= IFF_DORMANT;
5533 }
5534
5535 return flags;
5536 }
5537 EXPORT_SYMBOL(dev_get_flags);
5538
5539 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5540 {
5541 unsigned int old_flags = dev->flags;
5542 int ret;
5543
5544 ASSERT_RTNL();
5545
5546 /*
5547 * Set the flags on our device.
5548 */
5549
5550 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5551 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5552 IFF_AUTOMEDIA)) |
5553 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5554 IFF_ALLMULTI));
5555
5556 /*
5557 * Load in the correct multicast list now the flags have changed.
5558 */
5559
5560 if ((old_flags ^ flags) & IFF_MULTICAST)
5561 dev_change_rx_flags(dev, IFF_MULTICAST);
5562
5563 dev_set_rx_mode(dev);
5564
5565 /*
5566 * Have we downed the interface. We handle IFF_UP ourselves
5567 * according to user attempts to set it, rather than blindly
5568 * setting it.
5569 */
5570
5571 ret = 0;
5572 if ((old_flags ^ flags) & IFF_UP)
5573 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5574
5575 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5576 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5577 unsigned int old_flags = dev->flags;
5578
5579 dev->gflags ^= IFF_PROMISC;
5580
5581 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5582 if (dev->flags != old_flags)
5583 dev_set_rx_mode(dev);
5584 }
5585
5586 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5587 is important. Some (broken) drivers set IFF_PROMISC, when
5588 IFF_ALLMULTI is requested not asking us and not reporting.
5589 */
5590 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5591 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5592
5593 dev->gflags ^= IFF_ALLMULTI;
5594 __dev_set_allmulti(dev, inc, false);
5595 }
5596
5597 return ret;
5598 }
5599
5600 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5601 unsigned int gchanges)
5602 {
5603 unsigned int changes = dev->flags ^ old_flags;
5604
5605 if (gchanges)
5606 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5607
5608 if (changes & IFF_UP) {
5609 if (dev->flags & IFF_UP)
5610 call_netdevice_notifiers(NETDEV_UP, dev);
5611 else
5612 call_netdevice_notifiers(NETDEV_DOWN, dev);
5613 }
5614
5615 if (dev->flags & IFF_UP &&
5616 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5617 struct netdev_notifier_change_info change_info;
5618
5619 change_info.flags_changed = changes;
5620 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5621 &change_info.info);
5622 }
5623 }
5624
5625 /**
5626 * dev_change_flags - change device settings
5627 * @dev: device
5628 * @flags: device state flags
5629 *
5630 * Change settings on device based state flags. The flags are
5631 * in the userspace exported format.
5632 */
5633 int dev_change_flags(struct net_device *dev, unsigned int flags)
5634 {
5635 int ret;
5636 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5637
5638 ret = __dev_change_flags(dev, flags);
5639 if (ret < 0)
5640 return ret;
5641
5642 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5643 __dev_notify_flags(dev, old_flags, changes);
5644 return ret;
5645 }
5646 EXPORT_SYMBOL(dev_change_flags);
5647
5648 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5649 {
5650 const struct net_device_ops *ops = dev->netdev_ops;
5651
5652 if (ops->ndo_change_mtu)
5653 return ops->ndo_change_mtu(dev, new_mtu);
5654
5655 dev->mtu = new_mtu;
5656 return 0;
5657 }
5658
5659 /**
5660 * dev_set_mtu - Change maximum transfer unit
5661 * @dev: device
5662 * @new_mtu: new transfer unit
5663 *
5664 * Change the maximum transfer size of the network device.
5665 */
5666 int dev_set_mtu(struct net_device *dev, int new_mtu)
5667 {
5668 int err, orig_mtu;
5669
5670 if (new_mtu == dev->mtu)
5671 return 0;
5672
5673 /* MTU must be positive. */
5674 if (new_mtu < 0)
5675 return -EINVAL;
5676
5677 if (!netif_device_present(dev))
5678 return -ENODEV;
5679
5680 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5681 err = notifier_to_errno(err);
5682 if (err)
5683 return err;
5684
5685 orig_mtu = dev->mtu;
5686 err = __dev_set_mtu(dev, new_mtu);
5687
5688 if (!err) {
5689 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5690 err = notifier_to_errno(err);
5691 if (err) {
5692 /* setting mtu back and notifying everyone again,
5693 * so that they have a chance to revert changes.
5694 */
5695 __dev_set_mtu(dev, orig_mtu);
5696 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5697 }
5698 }
5699 return err;
5700 }
5701 EXPORT_SYMBOL(dev_set_mtu);
5702
5703 /**
5704 * dev_set_group - Change group this device belongs to
5705 * @dev: device
5706 * @new_group: group this device should belong to
5707 */
5708 void dev_set_group(struct net_device *dev, int new_group)
5709 {
5710 dev->group = new_group;
5711 }
5712 EXPORT_SYMBOL(dev_set_group);
5713
5714 /**
5715 * dev_set_mac_address - Change Media Access Control Address
5716 * @dev: device
5717 * @sa: new address
5718 *
5719 * Change the hardware (MAC) address of the device
5720 */
5721 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5722 {
5723 const struct net_device_ops *ops = dev->netdev_ops;
5724 int err;
5725
5726 if (!ops->ndo_set_mac_address)
5727 return -EOPNOTSUPP;
5728 if (sa->sa_family != dev->type)
5729 return -EINVAL;
5730 if (!netif_device_present(dev))
5731 return -ENODEV;
5732 err = ops->ndo_set_mac_address(dev, sa);
5733 if (err)
5734 return err;
5735 dev->addr_assign_type = NET_ADDR_SET;
5736 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5737 add_device_randomness(dev->dev_addr, dev->addr_len);
5738 return 0;
5739 }
5740 EXPORT_SYMBOL(dev_set_mac_address);
5741
5742 /**
5743 * dev_change_carrier - Change device carrier
5744 * @dev: device
5745 * @new_carrier: new value
5746 *
5747 * Change device carrier
5748 */
5749 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5750 {
5751 const struct net_device_ops *ops = dev->netdev_ops;
5752
5753 if (!ops->ndo_change_carrier)
5754 return -EOPNOTSUPP;
5755 if (!netif_device_present(dev))
5756 return -ENODEV;
5757 return ops->ndo_change_carrier(dev, new_carrier);
5758 }
5759 EXPORT_SYMBOL(dev_change_carrier);
5760
5761 /**
5762 * dev_get_phys_port_id - Get device physical port ID
5763 * @dev: device
5764 * @ppid: port ID
5765 *
5766 * Get device physical port ID
5767 */
5768 int dev_get_phys_port_id(struct net_device *dev,
5769 struct netdev_phys_port_id *ppid)
5770 {
5771 const struct net_device_ops *ops = dev->netdev_ops;
5772
5773 if (!ops->ndo_get_phys_port_id)
5774 return -EOPNOTSUPP;
5775 return ops->ndo_get_phys_port_id(dev, ppid);
5776 }
5777 EXPORT_SYMBOL(dev_get_phys_port_id);
5778
5779 /**
5780 * dev_new_index - allocate an ifindex
5781 * @net: the applicable net namespace
5782 *
5783 * Returns a suitable unique value for a new device interface
5784 * number. The caller must hold the rtnl semaphore or the
5785 * dev_base_lock to be sure it remains unique.
5786 */
5787 static int dev_new_index(struct net *net)
5788 {
5789 int ifindex = net->ifindex;
5790 for (;;) {
5791 if (++ifindex <= 0)
5792 ifindex = 1;
5793 if (!__dev_get_by_index(net, ifindex))
5794 return net->ifindex = ifindex;
5795 }
5796 }
5797
5798 /* Delayed registration/unregisteration */
5799 static LIST_HEAD(net_todo_list);
5800 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5801
5802 static void net_set_todo(struct net_device *dev)
5803 {
5804 list_add_tail(&dev->todo_list, &net_todo_list);
5805 dev_net(dev)->dev_unreg_count++;
5806 }
5807
5808 static void rollback_registered_many(struct list_head *head)
5809 {
5810 struct net_device *dev, *tmp;
5811 LIST_HEAD(close_head);
5812
5813 BUG_ON(dev_boot_phase);
5814 ASSERT_RTNL();
5815
5816 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5817 /* Some devices call without registering
5818 * for initialization unwind. Remove those
5819 * devices and proceed with the remaining.
5820 */
5821 if (dev->reg_state == NETREG_UNINITIALIZED) {
5822 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5823 dev->name, dev);
5824
5825 WARN_ON(1);
5826 list_del(&dev->unreg_list);
5827 continue;
5828 }
5829 dev->dismantle = true;
5830 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5831 }
5832
5833 /* If device is running, close it first. */
5834 list_for_each_entry(dev, head, unreg_list)
5835 list_add_tail(&dev->close_list, &close_head);
5836 dev_close_many(&close_head);
5837
5838 list_for_each_entry(dev, head, unreg_list) {
5839 /* And unlink it from device chain. */
5840 unlist_netdevice(dev);
5841
5842 dev->reg_state = NETREG_UNREGISTERING;
5843 }
5844
5845 synchronize_net();
5846
5847 list_for_each_entry(dev, head, unreg_list) {
5848 /* Shutdown queueing discipline. */
5849 dev_shutdown(dev);
5850
5851
5852 /* Notify protocols, that we are about to destroy
5853 this device. They should clean all the things.
5854 */
5855 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5856
5857 /*
5858 * Flush the unicast and multicast chains
5859 */
5860 dev_uc_flush(dev);
5861 dev_mc_flush(dev);
5862
5863 if (dev->netdev_ops->ndo_uninit)
5864 dev->netdev_ops->ndo_uninit(dev);
5865
5866 if (!dev->rtnl_link_ops ||
5867 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5868 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5869
5870 /* Notifier chain MUST detach us all upper devices. */
5871 WARN_ON(netdev_has_any_upper_dev(dev));
5872
5873 /* Remove entries from kobject tree */
5874 netdev_unregister_kobject(dev);
5875 #ifdef CONFIG_XPS
5876 /* Remove XPS queueing entries */
5877 netif_reset_xps_queues_gt(dev, 0);
5878 #endif
5879 }
5880
5881 synchronize_net();
5882
5883 list_for_each_entry(dev, head, unreg_list)
5884 dev_put(dev);
5885 }
5886
5887 static void rollback_registered(struct net_device *dev)
5888 {
5889 LIST_HEAD(single);
5890
5891 list_add(&dev->unreg_list, &single);
5892 rollback_registered_many(&single);
5893 list_del(&single);
5894 }
5895
5896 static netdev_features_t netdev_fix_features(struct net_device *dev,
5897 netdev_features_t features)
5898 {
5899 /* Fix illegal checksum combinations */
5900 if ((features & NETIF_F_HW_CSUM) &&
5901 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5902 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5903 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5904 }
5905
5906 /* TSO requires that SG is present as well. */
5907 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5908 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5909 features &= ~NETIF_F_ALL_TSO;
5910 }
5911
5912 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5913 !(features & NETIF_F_IP_CSUM)) {
5914 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5915 features &= ~NETIF_F_TSO;
5916 features &= ~NETIF_F_TSO_ECN;
5917 }
5918
5919 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5920 !(features & NETIF_F_IPV6_CSUM)) {
5921 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5922 features &= ~NETIF_F_TSO6;
5923 }
5924
5925 /* TSO ECN requires that TSO is present as well. */
5926 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5927 features &= ~NETIF_F_TSO_ECN;
5928
5929 /* Software GSO depends on SG. */
5930 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5931 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5932 features &= ~NETIF_F_GSO;
5933 }
5934
5935 /* UFO needs SG and checksumming */
5936 if (features & NETIF_F_UFO) {
5937 /* maybe split UFO into V4 and V6? */
5938 if (!((features & NETIF_F_GEN_CSUM) ||
5939 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5940 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5941 netdev_dbg(dev,
5942 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5943 features &= ~NETIF_F_UFO;
5944 }
5945
5946 if (!(features & NETIF_F_SG)) {
5947 netdev_dbg(dev,
5948 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5949 features &= ~NETIF_F_UFO;
5950 }
5951 }
5952
5953 #ifdef CONFIG_NET_RX_BUSY_POLL
5954 if (dev->netdev_ops->ndo_busy_poll)
5955 features |= NETIF_F_BUSY_POLL;
5956 else
5957 #endif
5958 features &= ~NETIF_F_BUSY_POLL;
5959
5960 return features;
5961 }
5962
5963 int __netdev_update_features(struct net_device *dev)
5964 {
5965 netdev_features_t features;
5966 int err = 0;
5967
5968 ASSERT_RTNL();
5969
5970 features = netdev_get_wanted_features(dev);
5971
5972 if (dev->netdev_ops->ndo_fix_features)
5973 features = dev->netdev_ops->ndo_fix_features(dev, features);
5974
5975 /* driver might be less strict about feature dependencies */
5976 features = netdev_fix_features(dev, features);
5977
5978 if (dev->features == features)
5979 return 0;
5980
5981 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5982 &dev->features, &features);
5983
5984 if (dev->netdev_ops->ndo_set_features)
5985 err = dev->netdev_ops->ndo_set_features(dev, features);
5986
5987 if (unlikely(err < 0)) {
5988 netdev_err(dev,
5989 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5990 err, &features, &dev->features);
5991 return -1;
5992 }
5993
5994 if (!err)
5995 dev->features = features;
5996
5997 return 1;
5998 }
5999
6000 /**
6001 * netdev_update_features - recalculate device features
6002 * @dev: the device to check
6003 *
6004 * Recalculate dev->features set and send notifications if it
6005 * has changed. Should be called after driver or hardware dependent
6006 * conditions might have changed that influence the features.
6007 */
6008 void netdev_update_features(struct net_device *dev)
6009 {
6010 if (__netdev_update_features(dev))
6011 netdev_features_change(dev);
6012 }
6013 EXPORT_SYMBOL(netdev_update_features);
6014
6015 /**
6016 * netdev_change_features - recalculate device features
6017 * @dev: the device to check
6018 *
6019 * Recalculate dev->features set and send notifications even
6020 * if they have not changed. Should be called instead of
6021 * netdev_update_features() if also dev->vlan_features might
6022 * have changed to allow the changes to be propagated to stacked
6023 * VLAN devices.
6024 */
6025 void netdev_change_features(struct net_device *dev)
6026 {
6027 __netdev_update_features(dev);
6028 netdev_features_change(dev);
6029 }
6030 EXPORT_SYMBOL(netdev_change_features);
6031
6032 /**
6033 * netif_stacked_transfer_operstate - transfer operstate
6034 * @rootdev: the root or lower level device to transfer state from
6035 * @dev: the device to transfer operstate to
6036 *
6037 * Transfer operational state from root to device. This is normally
6038 * called when a stacking relationship exists between the root
6039 * device and the device(a leaf device).
6040 */
6041 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6042 struct net_device *dev)
6043 {
6044 if (rootdev->operstate == IF_OPER_DORMANT)
6045 netif_dormant_on(dev);
6046 else
6047 netif_dormant_off(dev);
6048
6049 if (netif_carrier_ok(rootdev)) {
6050 if (!netif_carrier_ok(dev))
6051 netif_carrier_on(dev);
6052 } else {
6053 if (netif_carrier_ok(dev))
6054 netif_carrier_off(dev);
6055 }
6056 }
6057 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6058
6059 #ifdef CONFIG_SYSFS
6060 static int netif_alloc_rx_queues(struct net_device *dev)
6061 {
6062 unsigned int i, count = dev->num_rx_queues;
6063 struct netdev_rx_queue *rx;
6064
6065 BUG_ON(count < 1);
6066
6067 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6068 if (!rx)
6069 return -ENOMEM;
6070
6071 dev->_rx = rx;
6072
6073 for (i = 0; i < count; i++)
6074 rx[i].dev = dev;
6075 return 0;
6076 }
6077 #endif
6078
6079 static void netdev_init_one_queue(struct net_device *dev,
6080 struct netdev_queue *queue, void *_unused)
6081 {
6082 /* Initialize queue lock */
6083 spin_lock_init(&queue->_xmit_lock);
6084 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6085 queue->xmit_lock_owner = -1;
6086 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6087 queue->dev = dev;
6088 #ifdef CONFIG_BQL
6089 dql_init(&queue->dql, HZ);
6090 #endif
6091 }
6092
6093 static void netif_free_tx_queues(struct net_device *dev)
6094 {
6095 kvfree(dev->_tx);
6096 }
6097
6098 static int netif_alloc_netdev_queues(struct net_device *dev)
6099 {
6100 unsigned int count = dev->num_tx_queues;
6101 struct netdev_queue *tx;
6102 size_t sz = count * sizeof(*tx);
6103
6104 BUG_ON(count < 1 || count > 0xffff);
6105
6106 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6107 if (!tx) {
6108 tx = vzalloc(sz);
6109 if (!tx)
6110 return -ENOMEM;
6111 }
6112 dev->_tx = tx;
6113
6114 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6115 spin_lock_init(&dev->tx_global_lock);
6116
6117 return 0;
6118 }
6119
6120 /**
6121 * register_netdevice - register a network device
6122 * @dev: device to register
6123 *
6124 * Take a completed network device structure and add it to the kernel
6125 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6126 * chain. 0 is returned on success. A negative errno code is returned
6127 * on a failure to set up the device, or if the name is a duplicate.
6128 *
6129 * Callers must hold the rtnl semaphore. You may want
6130 * register_netdev() instead of this.
6131 *
6132 * BUGS:
6133 * The locking appears insufficient to guarantee two parallel registers
6134 * will not get the same name.
6135 */
6136
6137 int register_netdevice(struct net_device *dev)
6138 {
6139 int ret;
6140 struct net *net = dev_net(dev);
6141
6142 BUG_ON(dev_boot_phase);
6143 ASSERT_RTNL();
6144
6145 might_sleep();
6146
6147 /* When net_device's are persistent, this will be fatal. */
6148 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6149 BUG_ON(!net);
6150
6151 spin_lock_init(&dev->addr_list_lock);
6152 netdev_set_addr_lockdep_class(dev);
6153
6154 dev->iflink = -1;
6155
6156 ret = dev_get_valid_name(net, dev, dev->name);
6157 if (ret < 0)
6158 goto out;
6159
6160 /* Init, if this function is available */
6161 if (dev->netdev_ops->ndo_init) {
6162 ret = dev->netdev_ops->ndo_init(dev);
6163 if (ret) {
6164 if (ret > 0)
6165 ret = -EIO;
6166 goto out;
6167 }
6168 }
6169
6170 if (((dev->hw_features | dev->features) &
6171 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6172 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6173 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6174 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6175 ret = -EINVAL;
6176 goto err_uninit;
6177 }
6178
6179 ret = -EBUSY;
6180 if (!dev->ifindex)
6181 dev->ifindex = dev_new_index(net);
6182 else if (__dev_get_by_index(net, dev->ifindex))
6183 goto err_uninit;
6184
6185 if (dev->iflink == -1)
6186 dev->iflink = dev->ifindex;
6187
6188 /* Transfer changeable features to wanted_features and enable
6189 * software offloads (GSO and GRO).
6190 */
6191 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6192 dev->features |= NETIF_F_SOFT_FEATURES;
6193 dev->wanted_features = dev->features & dev->hw_features;
6194
6195 if (!(dev->flags & IFF_LOOPBACK)) {
6196 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6197 }
6198
6199 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6200 */
6201 dev->vlan_features |= NETIF_F_HIGHDMA;
6202
6203 /* Make NETIF_F_SG inheritable to tunnel devices.
6204 */
6205 dev->hw_enc_features |= NETIF_F_SG;
6206
6207 /* Make NETIF_F_SG inheritable to MPLS.
6208 */
6209 dev->mpls_features |= NETIF_F_SG;
6210
6211 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6212 ret = notifier_to_errno(ret);
6213 if (ret)
6214 goto err_uninit;
6215
6216 ret = netdev_register_kobject(dev);
6217 if (ret)
6218 goto err_uninit;
6219 dev->reg_state = NETREG_REGISTERED;
6220
6221 __netdev_update_features(dev);
6222
6223 /*
6224 * Default initial state at registry is that the
6225 * device is present.
6226 */
6227
6228 set_bit(__LINK_STATE_PRESENT, &dev->state);
6229
6230 linkwatch_init_dev(dev);
6231
6232 dev_init_scheduler(dev);
6233 dev_hold(dev);
6234 list_netdevice(dev);
6235 add_device_randomness(dev->dev_addr, dev->addr_len);
6236
6237 /* If the device has permanent device address, driver should
6238 * set dev_addr and also addr_assign_type should be set to
6239 * NET_ADDR_PERM (default value).
6240 */
6241 if (dev->addr_assign_type == NET_ADDR_PERM)
6242 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6243
6244 /* Notify protocols, that a new device appeared. */
6245 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6246 ret = notifier_to_errno(ret);
6247 if (ret) {
6248 rollback_registered(dev);
6249 dev->reg_state = NETREG_UNREGISTERED;
6250 }
6251 /*
6252 * Prevent userspace races by waiting until the network
6253 * device is fully setup before sending notifications.
6254 */
6255 if (!dev->rtnl_link_ops ||
6256 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6257 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6258
6259 out:
6260 return ret;
6261
6262 err_uninit:
6263 if (dev->netdev_ops->ndo_uninit)
6264 dev->netdev_ops->ndo_uninit(dev);
6265 goto out;
6266 }
6267 EXPORT_SYMBOL(register_netdevice);
6268
6269 /**
6270 * init_dummy_netdev - init a dummy network device for NAPI
6271 * @dev: device to init
6272 *
6273 * This takes a network device structure and initialize the minimum
6274 * amount of fields so it can be used to schedule NAPI polls without
6275 * registering a full blown interface. This is to be used by drivers
6276 * that need to tie several hardware interfaces to a single NAPI
6277 * poll scheduler due to HW limitations.
6278 */
6279 int init_dummy_netdev(struct net_device *dev)
6280 {
6281 /* Clear everything. Note we don't initialize spinlocks
6282 * are they aren't supposed to be taken by any of the
6283 * NAPI code and this dummy netdev is supposed to be
6284 * only ever used for NAPI polls
6285 */
6286 memset(dev, 0, sizeof(struct net_device));
6287
6288 /* make sure we BUG if trying to hit standard
6289 * register/unregister code path
6290 */
6291 dev->reg_state = NETREG_DUMMY;
6292
6293 /* NAPI wants this */
6294 INIT_LIST_HEAD(&dev->napi_list);
6295
6296 /* a dummy interface is started by default */
6297 set_bit(__LINK_STATE_PRESENT, &dev->state);
6298 set_bit(__LINK_STATE_START, &dev->state);
6299
6300 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6301 * because users of this 'device' dont need to change
6302 * its refcount.
6303 */
6304
6305 return 0;
6306 }
6307 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6308
6309
6310 /**
6311 * register_netdev - register a network device
6312 * @dev: device to register
6313 *
6314 * Take a completed network device structure and add it to the kernel
6315 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6316 * chain. 0 is returned on success. A negative errno code is returned
6317 * on a failure to set up the device, or if the name is a duplicate.
6318 *
6319 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6320 * and expands the device name if you passed a format string to
6321 * alloc_netdev.
6322 */
6323 int register_netdev(struct net_device *dev)
6324 {
6325 int err;
6326
6327 rtnl_lock();
6328 err = register_netdevice(dev);
6329 rtnl_unlock();
6330 return err;
6331 }
6332 EXPORT_SYMBOL(register_netdev);
6333
6334 int netdev_refcnt_read(const struct net_device *dev)
6335 {
6336 int i, refcnt = 0;
6337
6338 for_each_possible_cpu(i)
6339 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6340 return refcnt;
6341 }
6342 EXPORT_SYMBOL(netdev_refcnt_read);
6343
6344 /**
6345 * netdev_wait_allrefs - wait until all references are gone.
6346 * @dev: target net_device
6347 *
6348 * This is called when unregistering network devices.
6349 *
6350 * Any protocol or device that holds a reference should register
6351 * for netdevice notification, and cleanup and put back the
6352 * reference if they receive an UNREGISTER event.
6353 * We can get stuck here if buggy protocols don't correctly
6354 * call dev_put.
6355 */
6356 static void netdev_wait_allrefs(struct net_device *dev)
6357 {
6358 unsigned long rebroadcast_time, warning_time;
6359 int refcnt;
6360
6361 linkwatch_forget_dev(dev);
6362
6363 rebroadcast_time = warning_time = jiffies;
6364 refcnt = netdev_refcnt_read(dev);
6365
6366 while (refcnt != 0) {
6367 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6368 rtnl_lock();
6369
6370 /* Rebroadcast unregister notification */
6371 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6372
6373 __rtnl_unlock();
6374 rcu_barrier();
6375 rtnl_lock();
6376
6377 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6378 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6379 &dev->state)) {
6380 /* We must not have linkwatch events
6381 * pending on unregister. If this
6382 * happens, we simply run the queue
6383 * unscheduled, resulting in a noop
6384 * for this device.
6385 */
6386 linkwatch_run_queue();
6387 }
6388
6389 __rtnl_unlock();
6390
6391 rebroadcast_time = jiffies;
6392 }
6393
6394 msleep(250);
6395
6396 refcnt = netdev_refcnt_read(dev);
6397
6398 if (time_after(jiffies, warning_time + 10 * HZ)) {
6399 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6400 dev->name, refcnt);
6401 warning_time = jiffies;
6402 }
6403 }
6404 }
6405
6406 /* The sequence is:
6407 *
6408 * rtnl_lock();
6409 * ...
6410 * register_netdevice(x1);
6411 * register_netdevice(x2);
6412 * ...
6413 * unregister_netdevice(y1);
6414 * unregister_netdevice(y2);
6415 * ...
6416 * rtnl_unlock();
6417 * free_netdev(y1);
6418 * free_netdev(y2);
6419 *
6420 * We are invoked by rtnl_unlock().
6421 * This allows us to deal with problems:
6422 * 1) We can delete sysfs objects which invoke hotplug
6423 * without deadlocking with linkwatch via keventd.
6424 * 2) Since we run with the RTNL semaphore not held, we can sleep
6425 * safely in order to wait for the netdev refcnt to drop to zero.
6426 *
6427 * We must not return until all unregister events added during
6428 * the interval the lock was held have been completed.
6429 */
6430 void netdev_run_todo(void)
6431 {
6432 struct list_head list;
6433
6434 /* Snapshot list, allow later requests */
6435 list_replace_init(&net_todo_list, &list);
6436
6437 __rtnl_unlock();
6438
6439
6440 /* Wait for rcu callbacks to finish before next phase */
6441 if (!list_empty(&list))
6442 rcu_barrier();
6443
6444 while (!list_empty(&list)) {
6445 struct net_device *dev
6446 = list_first_entry(&list, struct net_device, todo_list);
6447 list_del(&dev->todo_list);
6448
6449 rtnl_lock();
6450 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6451 __rtnl_unlock();
6452
6453 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6454 pr_err("network todo '%s' but state %d\n",
6455 dev->name, dev->reg_state);
6456 dump_stack();
6457 continue;
6458 }
6459
6460 dev->reg_state = NETREG_UNREGISTERED;
6461
6462 on_each_cpu(flush_backlog, dev, 1);
6463
6464 netdev_wait_allrefs(dev);
6465
6466 /* paranoia */
6467 BUG_ON(netdev_refcnt_read(dev));
6468 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6469 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6470 WARN_ON(dev->dn_ptr);
6471
6472 if (dev->destructor)
6473 dev->destructor(dev);
6474
6475 /* Report a network device has been unregistered */
6476 rtnl_lock();
6477 dev_net(dev)->dev_unreg_count--;
6478 __rtnl_unlock();
6479 wake_up(&netdev_unregistering_wq);
6480
6481 /* Free network device */
6482 kobject_put(&dev->dev.kobj);
6483 }
6484 }
6485
6486 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6487 * fields in the same order, with only the type differing.
6488 */
6489 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6490 const struct net_device_stats *netdev_stats)
6491 {
6492 #if BITS_PER_LONG == 64
6493 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6494 memcpy(stats64, netdev_stats, sizeof(*stats64));
6495 #else
6496 size_t i, n = sizeof(*stats64) / sizeof(u64);
6497 const unsigned long *src = (const unsigned long *)netdev_stats;
6498 u64 *dst = (u64 *)stats64;
6499
6500 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6501 sizeof(*stats64) / sizeof(u64));
6502 for (i = 0; i < n; i++)
6503 dst[i] = src[i];
6504 #endif
6505 }
6506 EXPORT_SYMBOL(netdev_stats_to_stats64);
6507
6508 /**
6509 * dev_get_stats - get network device statistics
6510 * @dev: device to get statistics from
6511 * @storage: place to store stats
6512 *
6513 * Get network statistics from device. Return @storage.
6514 * The device driver may provide its own method by setting
6515 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6516 * otherwise the internal statistics structure is used.
6517 */
6518 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6519 struct rtnl_link_stats64 *storage)
6520 {
6521 const struct net_device_ops *ops = dev->netdev_ops;
6522
6523 if (ops->ndo_get_stats64) {
6524 memset(storage, 0, sizeof(*storage));
6525 ops->ndo_get_stats64(dev, storage);
6526 } else if (ops->ndo_get_stats) {
6527 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6528 } else {
6529 netdev_stats_to_stats64(storage, &dev->stats);
6530 }
6531 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6532 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6533 return storage;
6534 }
6535 EXPORT_SYMBOL(dev_get_stats);
6536
6537 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6538 {
6539 struct netdev_queue *queue = dev_ingress_queue(dev);
6540
6541 #ifdef CONFIG_NET_CLS_ACT
6542 if (queue)
6543 return queue;
6544 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6545 if (!queue)
6546 return NULL;
6547 netdev_init_one_queue(dev, queue, NULL);
6548 queue->qdisc = &noop_qdisc;
6549 queue->qdisc_sleeping = &noop_qdisc;
6550 rcu_assign_pointer(dev->ingress_queue, queue);
6551 #endif
6552 return queue;
6553 }
6554
6555 static const struct ethtool_ops default_ethtool_ops;
6556
6557 void netdev_set_default_ethtool_ops(struct net_device *dev,
6558 const struct ethtool_ops *ops)
6559 {
6560 if (dev->ethtool_ops == &default_ethtool_ops)
6561 dev->ethtool_ops = ops;
6562 }
6563 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6564
6565 void netdev_freemem(struct net_device *dev)
6566 {
6567 char *addr = (char *)dev - dev->padded;
6568
6569 kvfree(addr);
6570 }
6571
6572 /**
6573 * alloc_netdev_mqs - allocate network device
6574 * @sizeof_priv: size of private data to allocate space for
6575 * @name: device name format string
6576 * @name_assign_type: origin of device name
6577 * @setup: callback to initialize device
6578 * @txqs: the number of TX subqueues to allocate
6579 * @rxqs: the number of RX subqueues to allocate
6580 *
6581 * Allocates a struct net_device with private data area for driver use
6582 * and performs basic initialization. Also allocates subqueue structs
6583 * for each queue on the device.
6584 */
6585 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6586 unsigned char name_assign_type,
6587 void (*setup)(struct net_device *),
6588 unsigned int txqs, unsigned int rxqs)
6589 {
6590 struct net_device *dev;
6591 size_t alloc_size;
6592 struct net_device *p;
6593
6594 BUG_ON(strlen(name) >= sizeof(dev->name));
6595
6596 if (txqs < 1) {
6597 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6598 return NULL;
6599 }
6600
6601 #ifdef CONFIG_SYSFS
6602 if (rxqs < 1) {
6603 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6604 return NULL;
6605 }
6606 #endif
6607
6608 alloc_size = sizeof(struct net_device);
6609 if (sizeof_priv) {
6610 /* ensure 32-byte alignment of private area */
6611 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6612 alloc_size += sizeof_priv;
6613 }
6614 /* ensure 32-byte alignment of whole construct */
6615 alloc_size += NETDEV_ALIGN - 1;
6616
6617 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6618 if (!p)
6619 p = vzalloc(alloc_size);
6620 if (!p)
6621 return NULL;
6622
6623 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6624 dev->padded = (char *)dev - (char *)p;
6625
6626 dev->pcpu_refcnt = alloc_percpu(int);
6627 if (!dev->pcpu_refcnt)
6628 goto free_dev;
6629
6630 if (dev_addr_init(dev))
6631 goto free_pcpu;
6632
6633 dev_mc_init(dev);
6634 dev_uc_init(dev);
6635
6636 dev_net_set(dev, &init_net);
6637
6638 dev->gso_max_size = GSO_MAX_SIZE;
6639 dev->gso_max_segs = GSO_MAX_SEGS;
6640
6641 INIT_LIST_HEAD(&dev->napi_list);
6642 INIT_LIST_HEAD(&dev->unreg_list);
6643 INIT_LIST_HEAD(&dev->close_list);
6644 INIT_LIST_HEAD(&dev->link_watch_list);
6645 INIT_LIST_HEAD(&dev->adj_list.upper);
6646 INIT_LIST_HEAD(&dev->adj_list.lower);
6647 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6648 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6649 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6650 setup(dev);
6651
6652 dev->num_tx_queues = txqs;
6653 dev->real_num_tx_queues = txqs;
6654 if (netif_alloc_netdev_queues(dev))
6655 goto free_all;
6656
6657 #ifdef CONFIG_SYSFS
6658 dev->num_rx_queues = rxqs;
6659 dev->real_num_rx_queues = rxqs;
6660 if (netif_alloc_rx_queues(dev))
6661 goto free_all;
6662 #endif
6663
6664 strcpy(dev->name, name);
6665 dev->name_assign_type = name_assign_type;
6666 dev->group = INIT_NETDEV_GROUP;
6667 if (!dev->ethtool_ops)
6668 dev->ethtool_ops = &default_ethtool_ops;
6669 return dev;
6670
6671 free_all:
6672 free_netdev(dev);
6673 return NULL;
6674
6675 free_pcpu:
6676 free_percpu(dev->pcpu_refcnt);
6677 free_dev:
6678 netdev_freemem(dev);
6679 return NULL;
6680 }
6681 EXPORT_SYMBOL(alloc_netdev_mqs);
6682
6683 /**
6684 * free_netdev - free network device
6685 * @dev: device
6686 *
6687 * This function does the last stage of destroying an allocated device
6688 * interface. The reference to the device object is released.
6689 * If this is the last reference then it will be freed.
6690 */
6691 void free_netdev(struct net_device *dev)
6692 {
6693 struct napi_struct *p, *n;
6694
6695 release_net(dev_net(dev));
6696
6697 netif_free_tx_queues(dev);
6698 #ifdef CONFIG_SYSFS
6699 kfree(dev->_rx);
6700 #endif
6701
6702 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6703
6704 /* Flush device addresses */
6705 dev_addr_flush(dev);
6706
6707 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6708 netif_napi_del(p);
6709
6710 free_percpu(dev->pcpu_refcnt);
6711 dev->pcpu_refcnt = NULL;
6712
6713 /* Compatibility with error handling in drivers */
6714 if (dev->reg_state == NETREG_UNINITIALIZED) {
6715 netdev_freemem(dev);
6716 return;
6717 }
6718
6719 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6720 dev->reg_state = NETREG_RELEASED;
6721
6722 /* will free via device release */
6723 put_device(&dev->dev);
6724 }
6725 EXPORT_SYMBOL(free_netdev);
6726
6727 /**
6728 * synchronize_net - Synchronize with packet receive processing
6729 *
6730 * Wait for packets currently being received to be done.
6731 * Does not block later packets from starting.
6732 */
6733 void synchronize_net(void)
6734 {
6735 might_sleep();
6736 if (rtnl_is_locked())
6737 synchronize_rcu_expedited();
6738 else
6739 synchronize_rcu();
6740 }
6741 EXPORT_SYMBOL(synchronize_net);
6742
6743 /**
6744 * unregister_netdevice_queue - remove device from the kernel
6745 * @dev: device
6746 * @head: list
6747 *
6748 * This function shuts down a device interface and removes it
6749 * from the kernel tables.
6750 * If head not NULL, device is queued to be unregistered later.
6751 *
6752 * Callers must hold the rtnl semaphore. You may want
6753 * unregister_netdev() instead of this.
6754 */
6755
6756 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6757 {
6758 ASSERT_RTNL();
6759
6760 if (head) {
6761 list_move_tail(&dev->unreg_list, head);
6762 } else {
6763 rollback_registered(dev);
6764 /* Finish processing unregister after unlock */
6765 net_set_todo(dev);
6766 }
6767 }
6768 EXPORT_SYMBOL(unregister_netdevice_queue);
6769
6770 /**
6771 * unregister_netdevice_many - unregister many devices
6772 * @head: list of devices
6773 *
6774 * Note: As most callers use a stack allocated list_head,
6775 * we force a list_del() to make sure stack wont be corrupted later.
6776 */
6777 void unregister_netdevice_many(struct list_head *head)
6778 {
6779 struct net_device *dev;
6780
6781 if (!list_empty(head)) {
6782 rollback_registered_many(head);
6783 list_for_each_entry(dev, head, unreg_list)
6784 net_set_todo(dev);
6785 list_del(head);
6786 }
6787 }
6788 EXPORT_SYMBOL(unregister_netdevice_many);
6789
6790 /**
6791 * unregister_netdev - remove device from the kernel
6792 * @dev: device
6793 *
6794 * This function shuts down a device interface and removes it
6795 * from the kernel tables.
6796 *
6797 * This is just a wrapper for unregister_netdevice that takes
6798 * the rtnl semaphore. In general you want to use this and not
6799 * unregister_netdevice.
6800 */
6801 void unregister_netdev(struct net_device *dev)
6802 {
6803 rtnl_lock();
6804 unregister_netdevice(dev);
6805 rtnl_unlock();
6806 }
6807 EXPORT_SYMBOL(unregister_netdev);
6808
6809 /**
6810 * dev_change_net_namespace - move device to different nethost namespace
6811 * @dev: device
6812 * @net: network namespace
6813 * @pat: If not NULL name pattern to try if the current device name
6814 * is already taken in the destination network namespace.
6815 *
6816 * This function shuts down a device interface and moves it
6817 * to a new network namespace. On success 0 is returned, on
6818 * a failure a netagive errno code is returned.
6819 *
6820 * Callers must hold the rtnl semaphore.
6821 */
6822
6823 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6824 {
6825 int err;
6826
6827 ASSERT_RTNL();
6828
6829 /* Don't allow namespace local devices to be moved. */
6830 err = -EINVAL;
6831 if (dev->features & NETIF_F_NETNS_LOCAL)
6832 goto out;
6833
6834 /* Ensure the device has been registrered */
6835 if (dev->reg_state != NETREG_REGISTERED)
6836 goto out;
6837
6838 /* Get out if there is nothing todo */
6839 err = 0;
6840 if (net_eq(dev_net(dev), net))
6841 goto out;
6842
6843 /* Pick the destination device name, and ensure
6844 * we can use it in the destination network namespace.
6845 */
6846 err = -EEXIST;
6847 if (__dev_get_by_name(net, dev->name)) {
6848 /* We get here if we can't use the current device name */
6849 if (!pat)
6850 goto out;
6851 if (dev_get_valid_name(net, dev, pat) < 0)
6852 goto out;
6853 }
6854
6855 /*
6856 * And now a mini version of register_netdevice unregister_netdevice.
6857 */
6858
6859 /* If device is running close it first. */
6860 dev_close(dev);
6861
6862 /* And unlink it from device chain */
6863 err = -ENODEV;
6864 unlist_netdevice(dev);
6865
6866 synchronize_net();
6867
6868 /* Shutdown queueing discipline. */
6869 dev_shutdown(dev);
6870
6871 /* Notify protocols, that we are about to destroy
6872 this device. They should clean all the things.
6873
6874 Note that dev->reg_state stays at NETREG_REGISTERED.
6875 This is wanted because this way 8021q and macvlan know
6876 the device is just moving and can keep their slaves up.
6877 */
6878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6879 rcu_barrier();
6880 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6881 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6882
6883 /*
6884 * Flush the unicast and multicast chains
6885 */
6886 dev_uc_flush(dev);
6887 dev_mc_flush(dev);
6888
6889 /* Send a netdev-removed uevent to the old namespace */
6890 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6891 netdev_adjacent_del_links(dev);
6892
6893 /* Actually switch the network namespace */
6894 dev_net_set(dev, net);
6895
6896 /* If there is an ifindex conflict assign a new one */
6897 if (__dev_get_by_index(net, dev->ifindex)) {
6898 int iflink = (dev->iflink == dev->ifindex);
6899 dev->ifindex = dev_new_index(net);
6900 if (iflink)
6901 dev->iflink = dev->ifindex;
6902 }
6903
6904 /* Send a netdev-add uevent to the new namespace */
6905 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6906 netdev_adjacent_add_links(dev);
6907
6908 /* Fixup kobjects */
6909 err = device_rename(&dev->dev, dev->name);
6910 WARN_ON(err);
6911
6912 /* Add the device back in the hashes */
6913 list_netdevice(dev);
6914
6915 /* Notify protocols, that a new device appeared. */
6916 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6917
6918 /*
6919 * Prevent userspace races by waiting until the network
6920 * device is fully setup before sending notifications.
6921 */
6922 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6923
6924 synchronize_net();
6925 err = 0;
6926 out:
6927 return err;
6928 }
6929 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6930
6931 static int dev_cpu_callback(struct notifier_block *nfb,
6932 unsigned long action,
6933 void *ocpu)
6934 {
6935 struct sk_buff **list_skb;
6936 struct sk_buff *skb;
6937 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6938 struct softnet_data *sd, *oldsd;
6939
6940 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6941 return NOTIFY_OK;
6942
6943 local_irq_disable();
6944 cpu = smp_processor_id();
6945 sd = &per_cpu(softnet_data, cpu);
6946 oldsd = &per_cpu(softnet_data, oldcpu);
6947
6948 /* Find end of our completion_queue. */
6949 list_skb = &sd->completion_queue;
6950 while (*list_skb)
6951 list_skb = &(*list_skb)->next;
6952 /* Append completion queue from offline CPU. */
6953 *list_skb = oldsd->completion_queue;
6954 oldsd->completion_queue = NULL;
6955
6956 /* Append output queue from offline CPU. */
6957 if (oldsd->output_queue) {
6958 *sd->output_queue_tailp = oldsd->output_queue;
6959 sd->output_queue_tailp = oldsd->output_queue_tailp;
6960 oldsd->output_queue = NULL;
6961 oldsd->output_queue_tailp = &oldsd->output_queue;
6962 }
6963 /* Append NAPI poll list from offline CPU. */
6964 if (!list_empty(&oldsd->poll_list)) {
6965 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6966 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6967 }
6968
6969 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6970 local_irq_enable();
6971
6972 /* Process offline CPU's input_pkt_queue */
6973 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6974 netif_rx_internal(skb);
6975 input_queue_head_incr(oldsd);
6976 }
6977 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6978 netif_rx_internal(skb);
6979 input_queue_head_incr(oldsd);
6980 }
6981
6982 return NOTIFY_OK;
6983 }
6984
6985
6986 /**
6987 * netdev_increment_features - increment feature set by one
6988 * @all: current feature set
6989 * @one: new feature set
6990 * @mask: mask feature set
6991 *
6992 * Computes a new feature set after adding a device with feature set
6993 * @one to the master device with current feature set @all. Will not
6994 * enable anything that is off in @mask. Returns the new feature set.
6995 */
6996 netdev_features_t netdev_increment_features(netdev_features_t all,
6997 netdev_features_t one, netdev_features_t mask)
6998 {
6999 if (mask & NETIF_F_GEN_CSUM)
7000 mask |= NETIF_F_ALL_CSUM;
7001 mask |= NETIF_F_VLAN_CHALLENGED;
7002
7003 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7004 all &= one | ~NETIF_F_ALL_FOR_ALL;
7005
7006 /* If one device supports hw checksumming, set for all. */
7007 if (all & NETIF_F_GEN_CSUM)
7008 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7009
7010 return all;
7011 }
7012 EXPORT_SYMBOL(netdev_increment_features);
7013
7014 static struct hlist_head * __net_init netdev_create_hash(void)
7015 {
7016 int i;
7017 struct hlist_head *hash;
7018
7019 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7020 if (hash != NULL)
7021 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7022 INIT_HLIST_HEAD(&hash[i]);
7023
7024 return hash;
7025 }
7026
7027 /* Initialize per network namespace state */
7028 static int __net_init netdev_init(struct net *net)
7029 {
7030 if (net != &init_net)
7031 INIT_LIST_HEAD(&net->dev_base_head);
7032
7033 net->dev_name_head = netdev_create_hash();
7034 if (net->dev_name_head == NULL)
7035 goto err_name;
7036
7037 net->dev_index_head = netdev_create_hash();
7038 if (net->dev_index_head == NULL)
7039 goto err_idx;
7040
7041 return 0;
7042
7043 err_idx:
7044 kfree(net->dev_name_head);
7045 err_name:
7046 return -ENOMEM;
7047 }
7048
7049 /**
7050 * netdev_drivername - network driver for the device
7051 * @dev: network device
7052 *
7053 * Determine network driver for device.
7054 */
7055 const char *netdev_drivername(const struct net_device *dev)
7056 {
7057 const struct device_driver *driver;
7058 const struct device *parent;
7059 const char *empty = "";
7060
7061 parent = dev->dev.parent;
7062 if (!parent)
7063 return empty;
7064
7065 driver = parent->driver;
7066 if (driver && driver->name)
7067 return driver->name;
7068 return empty;
7069 }
7070
7071 static int __netdev_printk(const char *level, const struct net_device *dev,
7072 struct va_format *vaf)
7073 {
7074 int r;
7075
7076 if (dev && dev->dev.parent) {
7077 r = dev_printk_emit(level[1] - '0',
7078 dev->dev.parent,
7079 "%s %s %s%s: %pV",
7080 dev_driver_string(dev->dev.parent),
7081 dev_name(dev->dev.parent),
7082 netdev_name(dev), netdev_reg_state(dev),
7083 vaf);
7084 } else if (dev) {
7085 r = printk("%s%s%s: %pV", level, netdev_name(dev),
7086 netdev_reg_state(dev), vaf);
7087 } else {
7088 r = printk("%s(NULL net_device): %pV", level, vaf);
7089 }
7090
7091 return r;
7092 }
7093
7094 int netdev_printk(const char *level, const struct net_device *dev,
7095 const char *format, ...)
7096 {
7097 struct va_format vaf;
7098 va_list args;
7099 int r;
7100
7101 va_start(args, format);
7102
7103 vaf.fmt = format;
7104 vaf.va = &args;
7105
7106 r = __netdev_printk(level, dev, &vaf);
7107
7108 va_end(args);
7109
7110 return r;
7111 }
7112 EXPORT_SYMBOL(netdev_printk);
7113
7114 #define define_netdev_printk_level(func, level) \
7115 int func(const struct net_device *dev, const char *fmt, ...) \
7116 { \
7117 int r; \
7118 struct va_format vaf; \
7119 va_list args; \
7120 \
7121 va_start(args, fmt); \
7122 \
7123 vaf.fmt = fmt; \
7124 vaf.va = &args; \
7125 \
7126 r = __netdev_printk(level, dev, &vaf); \
7127 \
7128 va_end(args); \
7129 \
7130 return r; \
7131 } \
7132 EXPORT_SYMBOL(func);
7133
7134 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7135 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7136 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7137 define_netdev_printk_level(netdev_err, KERN_ERR);
7138 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7139 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7140 define_netdev_printk_level(netdev_info, KERN_INFO);
7141
7142 static void __net_exit netdev_exit(struct net *net)
7143 {
7144 kfree(net->dev_name_head);
7145 kfree(net->dev_index_head);
7146 }
7147
7148 static struct pernet_operations __net_initdata netdev_net_ops = {
7149 .init = netdev_init,
7150 .exit = netdev_exit,
7151 };
7152
7153 static void __net_exit default_device_exit(struct net *net)
7154 {
7155 struct net_device *dev, *aux;
7156 /*
7157 * Push all migratable network devices back to the
7158 * initial network namespace
7159 */
7160 rtnl_lock();
7161 for_each_netdev_safe(net, dev, aux) {
7162 int err;
7163 char fb_name[IFNAMSIZ];
7164
7165 /* Ignore unmoveable devices (i.e. loopback) */
7166 if (dev->features & NETIF_F_NETNS_LOCAL)
7167 continue;
7168
7169 /* Leave virtual devices for the generic cleanup */
7170 if (dev->rtnl_link_ops)
7171 continue;
7172
7173 /* Push remaining network devices to init_net */
7174 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7175 err = dev_change_net_namespace(dev, &init_net, fb_name);
7176 if (err) {
7177 pr_emerg("%s: failed to move %s to init_net: %d\n",
7178 __func__, dev->name, err);
7179 BUG();
7180 }
7181 }
7182 rtnl_unlock();
7183 }
7184
7185 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7186 {
7187 /* Return with the rtnl_lock held when there are no network
7188 * devices unregistering in any network namespace in net_list.
7189 */
7190 struct net *net;
7191 bool unregistering;
7192 DEFINE_WAIT(wait);
7193
7194 for (;;) {
7195 prepare_to_wait(&netdev_unregistering_wq, &wait,
7196 TASK_UNINTERRUPTIBLE);
7197 unregistering = false;
7198 rtnl_lock();
7199 list_for_each_entry(net, net_list, exit_list) {
7200 if (net->dev_unreg_count > 0) {
7201 unregistering = true;
7202 break;
7203 }
7204 }
7205 if (!unregistering)
7206 break;
7207 __rtnl_unlock();
7208 schedule();
7209 }
7210 finish_wait(&netdev_unregistering_wq, &wait);
7211 }
7212
7213 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7214 {
7215 /* At exit all network devices most be removed from a network
7216 * namespace. Do this in the reverse order of registration.
7217 * Do this across as many network namespaces as possible to
7218 * improve batching efficiency.
7219 */
7220 struct net_device *dev;
7221 struct net *net;
7222 LIST_HEAD(dev_kill_list);
7223
7224 /* To prevent network device cleanup code from dereferencing
7225 * loopback devices or network devices that have been freed
7226 * wait here for all pending unregistrations to complete,
7227 * before unregistring the loopback device and allowing the
7228 * network namespace be freed.
7229 *
7230 * The netdev todo list containing all network devices
7231 * unregistrations that happen in default_device_exit_batch
7232 * will run in the rtnl_unlock() at the end of
7233 * default_device_exit_batch.
7234 */
7235 rtnl_lock_unregistering(net_list);
7236 list_for_each_entry(net, net_list, exit_list) {
7237 for_each_netdev_reverse(net, dev) {
7238 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7239 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7240 else
7241 unregister_netdevice_queue(dev, &dev_kill_list);
7242 }
7243 }
7244 unregister_netdevice_many(&dev_kill_list);
7245 rtnl_unlock();
7246 }
7247
7248 static struct pernet_operations __net_initdata default_device_ops = {
7249 .exit = default_device_exit,
7250 .exit_batch = default_device_exit_batch,
7251 };
7252
7253 /*
7254 * Initialize the DEV module. At boot time this walks the device list and
7255 * unhooks any devices that fail to initialise (normally hardware not
7256 * present) and leaves us with a valid list of present and active devices.
7257 *
7258 */
7259
7260 /*
7261 * This is called single threaded during boot, so no need
7262 * to take the rtnl semaphore.
7263 */
7264 static int __init net_dev_init(void)
7265 {
7266 int i, rc = -ENOMEM;
7267
7268 BUG_ON(!dev_boot_phase);
7269
7270 if (dev_proc_init())
7271 goto out;
7272
7273 if (netdev_kobject_init())
7274 goto out;
7275
7276 INIT_LIST_HEAD(&ptype_all);
7277 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7278 INIT_LIST_HEAD(&ptype_base[i]);
7279
7280 INIT_LIST_HEAD(&offload_base);
7281
7282 if (register_pernet_subsys(&netdev_net_ops))
7283 goto out;
7284
7285 /*
7286 * Initialise the packet receive queues.
7287 */
7288
7289 for_each_possible_cpu(i) {
7290 struct softnet_data *sd = &per_cpu(softnet_data, i);
7291
7292 skb_queue_head_init(&sd->input_pkt_queue);
7293 skb_queue_head_init(&sd->process_queue);
7294 INIT_LIST_HEAD(&sd->poll_list);
7295 sd->output_queue_tailp = &sd->output_queue;
7296 #ifdef CONFIG_RPS
7297 sd->csd.func = rps_trigger_softirq;
7298 sd->csd.info = sd;
7299 sd->cpu = i;
7300 #endif
7301
7302 sd->backlog.poll = process_backlog;
7303 sd->backlog.weight = weight_p;
7304 }
7305
7306 dev_boot_phase = 0;
7307
7308 /* The loopback device is special if any other network devices
7309 * is present in a network namespace the loopback device must
7310 * be present. Since we now dynamically allocate and free the
7311 * loopback device ensure this invariant is maintained by
7312 * keeping the loopback device as the first device on the
7313 * list of network devices. Ensuring the loopback devices
7314 * is the first device that appears and the last network device
7315 * that disappears.
7316 */
7317 if (register_pernet_device(&loopback_net_ops))
7318 goto out;
7319
7320 if (register_pernet_device(&default_device_ops))
7321 goto out;
7322
7323 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7324 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7325
7326 hotcpu_notifier(dev_cpu_callback, 0);
7327 dst_init();
7328 rc = 0;
7329 out:
7330 return rc;
7331 }
7332
7333 subsys_initcall(net_dev_init);
This page took 0.169804 seconds and 6 git commands to generate.