Merge git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/wireless-drivers.git
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237
238 dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254
255 dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 else
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 struct packet_offload *elem;
477
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
506 spin_lock(&offload_lock);
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 spin_unlock(&offload_lock);
518 }
519
520 /**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 __dev_remove_offload(po);
535
536 synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542 Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
627 if (__dev_get_by_name(&init_net, name))
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634 }
635
636 /*
637 * Saves at boot time configured settings for any netdevice.
638 */
639 int __init netdev_boot_setup(char *str)
640 {
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667 Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
684 return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
730
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 struct net_device *dev;
779
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
782 if (dev)
783 dev_hold(dev);
784 rcu_read_unlock();
785 return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
805
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
808 return dev;
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 struct net_device *dev;
853
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
856 if (dev)
857 dev_hold(dev);
858 rcu_read_unlock();
859 return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 struct net_device *dev;
876 unsigned int seq;
877
878 retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895 }
896
897 /**
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
908 *
909 */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
913 {
914 struct net_device *dev;
915
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
919 return dev;
920
921 return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 struct net_device *dev;
928
929 ASSERT_RTNL();
930 for_each_netdev(net, dev)
931 if (dev->type == type)
932 return dev;
933
934 return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 struct net_device *dev, *ret = NULL;
941
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
963 */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
967 {
968 struct net_device *dev, *ret;
969
970 ASSERT_RTNL();
971
972 ret = NULL;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
975 ret = dev;
976 break;
977 }
978 }
979 return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
990 */
991 bool dev_valid_name(const char *name)
992 {
993 if (*name == '\0')
994 return false;
995 if (strlen(name) >= IFNAMSIZ)
996 return false;
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
998 return false;
999
1000 while (*name) {
1001 if (*name == '/' || *name == ':' || isspace(*name))
1002 return false;
1003 name++;
1004 }
1005 return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1022 */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 int i = 0;
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1046
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1066 return i;
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073 }
1074
1075 /**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
1107 {
1108 char buf[IFNAMSIZ];
1109 int ret;
1110
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120 {
1121 BUG_ON(!net);
1122
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1148 int err = 0;
1149 int ret;
1150 struct net *net;
1151
1152 ASSERT_RTNL();
1153 BUG_ON(!dev_net(dev));
1154
1155 net = dev_net(dev);
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
1159 write_seqcount_begin(&devnet_rename_seq);
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1163 return 0;
1164 }
1165
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168 err = dev_get_valid_name(net, dev, newname);
1169 if (err < 0) {
1170 write_seqcount_end(&devnet_rename_seq);
1171 return err;
1172 }
1173
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1186 return ret;
1187 }
1188
1189 write_seqcount_end(&devnet_rename_seq);
1190
1191 netdev_adjacent_rename_links(dev, oldname);
1192
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1202
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
1209 err = ret;
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1215 goto rollback;
1216 } else {
1217 pr_err("%s: name change rollback failed: %d\n",
1218 dev->name, ret);
1219 }
1220 }
1221
1222 return err;
1223 }
1224
1225 /**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1230 *
1231 * Set ifalias for a device,
1232 */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 char *new_ifalias;
1236
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
1242 if (!len) {
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1245 return 0;
1246 }
1247
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
1250 return -ENOMEM;
1251 dev->ifalias = new_ifalias;
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255 }
1256
1257
1258 /**
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 const struct net_device_ops *ops = dev->netdev_ops;
1312 int ret;
1313
1314 ASSERT_RTNL();
1315
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
1323 netpoll_poll_disable(dev);
1324
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1330 set_bit(__LINK_STATE_START, &dev->state);
1331
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1334
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1337
1338 netpoll_poll_enable(dev);
1339
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1345 dev_activate(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1347 }
1348
1349 return ret;
1350 }
1351
1352 /**
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1355 *
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1363 */
1364 int dev_open(struct net_device *dev)
1365 {
1366 int ret;
1367
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 struct net_device *dev;
1385
1386 ASSERT_RTNL();
1387 might_sleep();
1388
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1392
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1404 }
1405
1406 dev_deactivate_many(head);
1407
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 int retval;
1431 LIST_HEAD(single);
1432
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
1436
1437 return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 struct net_device *dev, *tmp;
1443
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1448
1449 __dev_close_many(head);
1450
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 if (unlink)
1455 list_del_init(&dev->close_list);
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471 int dev_close(struct net_device *dev)
1472 {
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1475
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1478 list_del(&single);
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1497
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1500
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511 {
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1532 */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 struct net_device *dev;
1537 struct net_device *last;
1538 struct net *net;
1539 int err;
1540
1541 rtnl_lock();
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1543 if (err)
1544 goto unlock;
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1556
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 }
1559 }
1560
1561 unlock:
1562 rtnl_unlock();
1563 return err;
1564
1565 rollback:
1566 last = dev;
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
1570 goto outroll;
1571
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 }
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 }
1579 }
1580
1581 outroll:
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1583 goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1599 */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 struct net_device *dev;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 }
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 }
1621 }
1622 unlock:
1623 rtnl_unlock();
1624 return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1641 {
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1651 *
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1654 */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669 static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675 static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685 static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691 static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1701 */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
1712 static_key_slow_dec(&netstamp_needed);
1713 return;
1714 }
1715 #endif
1716 static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727 #endif
1728 static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 skb->tstamp.tv64 = 0;
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1769 unlikely(!is_skb_forwardable(dev, skb))) {
1770 atomic_long_inc(&dev->rx_dropped);
1771 kfree_skb(skb);
1772 return NET_RX_DROP;
1773 }
1774
1775 skb_scrub_packet(skb, true);
1776 skb->priority = 0;
1777 skb->protocol = eth_type_trans(skb, dev);
1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1779
1780 return 0;
1781 }
1782 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1783
1784 /**
1785 * dev_forward_skb - loopback an skb to another netif
1786 *
1787 * @dev: destination network device
1788 * @skb: buffer to forward
1789 *
1790 * return values:
1791 * NET_RX_SUCCESS (no congestion)
1792 * NET_RX_DROP (packet was dropped, but freed)
1793 *
1794 * dev_forward_skb can be used for injecting an skb from the
1795 * start_xmit function of one device into the receive queue
1796 * of another device.
1797 *
1798 * The receiving device may be in another namespace, so
1799 * we have to clear all information in the skb that could
1800 * impact namespace isolation.
1801 */
1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1803 {
1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1805 }
1806 EXPORT_SYMBOL_GPL(dev_forward_skb);
1807
1808 static inline int deliver_skb(struct sk_buff *skb,
1809 struct packet_type *pt_prev,
1810 struct net_device *orig_dev)
1811 {
1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1813 return -ENOMEM;
1814 atomic_inc(&skb->users);
1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1816 }
1817
1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1819 struct packet_type **pt,
1820 struct net_device *orig_dev,
1821 __be16 type,
1822 struct list_head *ptype_list)
1823 {
1824 struct packet_type *ptype, *pt_prev = *pt;
1825
1826 list_for_each_entry_rcu(ptype, ptype_list, list) {
1827 if (ptype->type != type)
1828 continue;
1829 if (pt_prev)
1830 deliver_skb(skb, pt_prev, orig_dev);
1831 pt_prev = ptype;
1832 }
1833 *pt = pt_prev;
1834 }
1835
1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1837 {
1838 if (!ptype->af_packet_priv || !skb->sk)
1839 return false;
1840
1841 if (ptype->id_match)
1842 return ptype->id_match(ptype, skb->sk);
1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1844 return true;
1845
1846 return false;
1847 }
1848
1849 /*
1850 * Support routine. Sends outgoing frames to any network
1851 * taps currently in use.
1852 */
1853
1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1855 {
1856 struct packet_type *ptype;
1857 struct sk_buff *skb2 = NULL;
1858 struct packet_type *pt_prev = NULL;
1859 struct list_head *ptype_list = &ptype_all;
1860
1861 rcu_read_lock();
1862 again:
1863 list_for_each_entry_rcu(ptype, ptype_list, list) {
1864 /* Never send packets back to the socket
1865 * they originated from - MvS (miquels@drinkel.ow.org)
1866 */
1867 if (skb_loop_sk(ptype, skb))
1868 continue;
1869
1870 if (pt_prev) {
1871 deliver_skb(skb2, pt_prev, skb->dev);
1872 pt_prev = ptype;
1873 continue;
1874 }
1875
1876 /* need to clone skb, done only once */
1877 skb2 = skb_clone(skb, GFP_ATOMIC);
1878 if (!skb2)
1879 goto out_unlock;
1880
1881 net_timestamp_set(skb2);
1882
1883 /* skb->nh should be correctly
1884 * set by sender, so that the second statement is
1885 * just protection against buggy protocols.
1886 */
1887 skb_reset_mac_header(skb2);
1888
1889 if (skb_network_header(skb2) < skb2->data ||
1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1892 ntohs(skb2->protocol),
1893 dev->name);
1894 skb_reset_network_header(skb2);
1895 }
1896
1897 skb2->transport_header = skb2->network_header;
1898 skb2->pkt_type = PACKET_OUTGOING;
1899 pt_prev = ptype;
1900 }
1901
1902 if (ptype_list == &ptype_all) {
1903 ptype_list = &dev->ptype_all;
1904 goto again;
1905 }
1906 out_unlock:
1907 if (pt_prev)
1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1909 rcu_read_unlock();
1910 }
1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1912
1913 /**
1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1915 * @dev: Network device
1916 * @txq: number of queues available
1917 *
1918 * If real_num_tx_queues is changed the tc mappings may no longer be
1919 * valid. To resolve this verify the tc mapping remains valid and if
1920 * not NULL the mapping. With no priorities mapping to this
1921 * offset/count pair it will no longer be used. In the worst case TC0
1922 * is invalid nothing can be done so disable priority mappings. If is
1923 * expected that drivers will fix this mapping if they can before
1924 * calling netif_set_real_num_tx_queues.
1925 */
1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1927 {
1928 int i;
1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1930
1931 /* If TC0 is invalidated disable TC mapping */
1932 if (tc->offset + tc->count > txq) {
1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1934 dev->num_tc = 0;
1935 return;
1936 }
1937
1938 /* Invalidated prio to tc mappings set to TC0 */
1939 for (i = 1; i < TC_BITMASK + 1; i++) {
1940 int q = netdev_get_prio_tc_map(dev, i);
1941
1942 tc = &dev->tc_to_txq[q];
1943 if (tc->offset + tc->count > txq) {
1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1945 i, q);
1946 netdev_set_prio_tc_map(dev, i, 0);
1947 }
1948 }
1949 }
1950
1951 #ifdef CONFIG_XPS
1952 static DEFINE_MUTEX(xps_map_mutex);
1953 #define xmap_dereference(P) \
1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1955
1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1957 int cpu, u16 index)
1958 {
1959 struct xps_map *map = NULL;
1960 int pos;
1961
1962 if (dev_maps)
1963 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1964
1965 for (pos = 0; map && pos < map->len; pos++) {
1966 if (map->queues[pos] == index) {
1967 if (map->len > 1) {
1968 map->queues[pos] = map->queues[--map->len];
1969 } else {
1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1971 kfree_rcu(map, rcu);
1972 map = NULL;
1973 }
1974 break;
1975 }
1976 }
1977
1978 return map;
1979 }
1980
1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1982 {
1983 struct xps_dev_maps *dev_maps;
1984 int cpu, i;
1985 bool active = false;
1986
1987 mutex_lock(&xps_map_mutex);
1988 dev_maps = xmap_dereference(dev->xps_maps);
1989
1990 if (!dev_maps)
1991 goto out_no_maps;
1992
1993 for_each_possible_cpu(cpu) {
1994 for (i = index; i < dev->num_tx_queues; i++) {
1995 if (!remove_xps_queue(dev_maps, cpu, i))
1996 break;
1997 }
1998 if (i == dev->num_tx_queues)
1999 active = true;
2000 }
2001
2002 if (!active) {
2003 RCU_INIT_POINTER(dev->xps_maps, NULL);
2004 kfree_rcu(dev_maps, rcu);
2005 }
2006
2007 for (i = index; i < dev->num_tx_queues; i++)
2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2009 NUMA_NO_NODE);
2010
2011 out_no_maps:
2012 mutex_unlock(&xps_map_mutex);
2013 }
2014
2015 static struct xps_map *expand_xps_map(struct xps_map *map,
2016 int cpu, u16 index)
2017 {
2018 struct xps_map *new_map;
2019 int alloc_len = XPS_MIN_MAP_ALLOC;
2020 int i, pos;
2021
2022 for (pos = 0; map && pos < map->len; pos++) {
2023 if (map->queues[pos] != index)
2024 continue;
2025 return map;
2026 }
2027
2028 /* Need to add queue to this CPU's existing map */
2029 if (map) {
2030 if (pos < map->alloc_len)
2031 return map;
2032
2033 alloc_len = map->alloc_len * 2;
2034 }
2035
2036 /* Need to allocate new map to store queue on this CPU's map */
2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2038 cpu_to_node(cpu));
2039 if (!new_map)
2040 return NULL;
2041
2042 for (i = 0; i < pos; i++)
2043 new_map->queues[i] = map->queues[i];
2044 new_map->alloc_len = alloc_len;
2045 new_map->len = pos;
2046
2047 return new_map;
2048 }
2049
2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2051 u16 index)
2052 {
2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2054 struct xps_map *map, *new_map;
2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2056 int cpu, numa_node_id = -2;
2057 bool active = false;
2058
2059 mutex_lock(&xps_map_mutex);
2060
2061 dev_maps = xmap_dereference(dev->xps_maps);
2062
2063 /* allocate memory for queue storage */
2064 for_each_online_cpu(cpu) {
2065 if (!cpumask_test_cpu(cpu, mask))
2066 continue;
2067
2068 if (!new_dev_maps)
2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2070 if (!new_dev_maps) {
2071 mutex_unlock(&xps_map_mutex);
2072 return -ENOMEM;
2073 }
2074
2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2076 NULL;
2077
2078 map = expand_xps_map(map, cpu, index);
2079 if (!map)
2080 goto error;
2081
2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2083 }
2084
2085 if (!new_dev_maps)
2086 goto out_no_new_maps;
2087
2088 for_each_possible_cpu(cpu) {
2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2090 /* add queue to CPU maps */
2091 int pos = 0;
2092
2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2094 while ((pos < map->len) && (map->queues[pos] != index))
2095 pos++;
2096
2097 if (pos == map->len)
2098 map->queues[map->len++] = index;
2099 #ifdef CONFIG_NUMA
2100 if (numa_node_id == -2)
2101 numa_node_id = cpu_to_node(cpu);
2102 else if (numa_node_id != cpu_to_node(cpu))
2103 numa_node_id = -1;
2104 #endif
2105 } else if (dev_maps) {
2106 /* fill in the new device map from the old device map */
2107 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2109 }
2110
2111 }
2112
2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2114
2115 /* Cleanup old maps */
2116 if (dev_maps) {
2117 for_each_possible_cpu(cpu) {
2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2119 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2120 if (map && map != new_map)
2121 kfree_rcu(map, rcu);
2122 }
2123
2124 kfree_rcu(dev_maps, rcu);
2125 }
2126
2127 dev_maps = new_dev_maps;
2128 active = true;
2129
2130 out_no_new_maps:
2131 /* update Tx queue numa node */
2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2133 (numa_node_id >= 0) ? numa_node_id :
2134 NUMA_NO_NODE);
2135
2136 if (!dev_maps)
2137 goto out_no_maps;
2138
2139 /* removes queue from unused CPUs */
2140 for_each_possible_cpu(cpu) {
2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2142 continue;
2143
2144 if (remove_xps_queue(dev_maps, cpu, index))
2145 active = true;
2146 }
2147
2148 /* free map if not active */
2149 if (!active) {
2150 RCU_INIT_POINTER(dev->xps_maps, NULL);
2151 kfree_rcu(dev_maps, rcu);
2152 }
2153
2154 out_no_maps:
2155 mutex_unlock(&xps_map_mutex);
2156
2157 return 0;
2158 error:
2159 /* remove any maps that we added */
2160 for_each_possible_cpu(cpu) {
2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2163 NULL;
2164 if (new_map && new_map != map)
2165 kfree(new_map);
2166 }
2167
2168 mutex_unlock(&xps_map_mutex);
2169
2170 kfree(new_dev_maps);
2171 return -ENOMEM;
2172 }
2173 EXPORT_SYMBOL(netif_set_xps_queue);
2174
2175 #endif
2176 /*
2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2179 */
2180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2181 {
2182 int rc;
2183
2184 if (txq < 1 || txq > dev->num_tx_queues)
2185 return -EINVAL;
2186
2187 if (dev->reg_state == NETREG_REGISTERED ||
2188 dev->reg_state == NETREG_UNREGISTERING) {
2189 ASSERT_RTNL();
2190
2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2192 txq);
2193 if (rc)
2194 return rc;
2195
2196 if (dev->num_tc)
2197 netif_setup_tc(dev, txq);
2198
2199 if (txq < dev->real_num_tx_queues) {
2200 qdisc_reset_all_tx_gt(dev, txq);
2201 #ifdef CONFIG_XPS
2202 netif_reset_xps_queues_gt(dev, txq);
2203 #endif
2204 }
2205 }
2206
2207 dev->real_num_tx_queues = txq;
2208 return 0;
2209 }
2210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2211
2212 #ifdef CONFIG_SYSFS
2213 /**
2214 * netif_set_real_num_rx_queues - set actual number of RX queues used
2215 * @dev: Network device
2216 * @rxq: Actual number of RX queues
2217 *
2218 * This must be called either with the rtnl_lock held or before
2219 * registration of the net device. Returns 0 on success, or a
2220 * negative error code. If called before registration, it always
2221 * succeeds.
2222 */
2223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2224 {
2225 int rc;
2226
2227 if (rxq < 1 || rxq > dev->num_rx_queues)
2228 return -EINVAL;
2229
2230 if (dev->reg_state == NETREG_REGISTERED) {
2231 ASSERT_RTNL();
2232
2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2234 rxq);
2235 if (rc)
2236 return rc;
2237 }
2238
2239 dev->real_num_rx_queues = rxq;
2240 return 0;
2241 }
2242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2243 #endif
2244
2245 /**
2246 * netif_get_num_default_rss_queues - default number of RSS queues
2247 *
2248 * This routine should set an upper limit on the number of RSS queues
2249 * used by default by multiqueue devices.
2250 */
2251 int netif_get_num_default_rss_queues(void)
2252 {
2253 return is_kdump_kernel() ?
2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2255 }
2256 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2257
2258 static void __netif_reschedule(struct Qdisc *q)
2259 {
2260 struct softnet_data *sd;
2261 unsigned long flags;
2262
2263 local_irq_save(flags);
2264 sd = this_cpu_ptr(&softnet_data);
2265 q->next_sched = NULL;
2266 *sd->output_queue_tailp = q;
2267 sd->output_queue_tailp = &q->next_sched;
2268 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2269 local_irq_restore(flags);
2270 }
2271
2272 void __netif_schedule(struct Qdisc *q)
2273 {
2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2275 __netif_reschedule(q);
2276 }
2277 EXPORT_SYMBOL(__netif_schedule);
2278
2279 struct dev_kfree_skb_cb {
2280 enum skb_free_reason reason;
2281 };
2282
2283 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2284 {
2285 return (struct dev_kfree_skb_cb *)skb->cb;
2286 }
2287
2288 void netif_schedule_queue(struct netdev_queue *txq)
2289 {
2290 rcu_read_lock();
2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2292 struct Qdisc *q = rcu_dereference(txq->qdisc);
2293
2294 __netif_schedule(q);
2295 }
2296 rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL(netif_schedule_queue);
2299
2300 /**
2301 * netif_wake_subqueue - allow sending packets on subqueue
2302 * @dev: network device
2303 * @queue_index: sub queue index
2304 *
2305 * Resume individual transmit queue of a device with multiple transmit queues.
2306 */
2307 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2308 {
2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2310
2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2312 struct Qdisc *q;
2313
2314 rcu_read_lock();
2315 q = rcu_dereference(txq->qdisc);
2316 __netif_schedule(q);
2317 rcu_read_unlock();
2318 }
2319 }
2320 EXPORT_SYMBOL(netif_wake_subqueue);
2321
2322 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2323 {
2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2325 struct Qdisc *q;
2326
2327 rcu_read_lock();
2328 q = rcu_dereference(dev_queue->qdisc);
2329 __netif_schedule(q);
2330 rcu_read_unlock();
2331 }
2332 }
2333 EXPORT_SYMBOL(netif_tx_wake_queue);
2334
2335 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2336 {
2337 unsigned long flags;
2338
2339 if (likely(atomic_read(&skb->users) == 1)) {
2340 smp_rmb();
2341 atomic_set(&skb->users, 0);
2342 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2343 return;
2344 }
2345 get_kfree_skb_cb(skb)->reason = reason;
2346 local_irq_save(flags);
2347 skb->next = __this_cpu_read(softnet_data.completion_queue);
2348 __this_cpu_write(softnet_data.completion_queue, skb);
2349 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2350 local_irq_restore(flags);
2351 }
2352 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2353
2354 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2355 {
2356 if (in_irq() || irqs_disabled())
2357 __dev_kfree_skb_irq(skb, reason);
2358 else
2359 dev_kfree_skb(skb);
2360 }
2361 EXPORT_SYMBOL(__dev_kfree_skb_any);
2362
2363
2364 /**
2365 * netif_device_detach - mark device as removed
2366 * @dev: network device
2367 *
2368 * Mark device as removed from system and therefore no longer available.
2369 */
2370 void netif_device_detach(struct net_device *dev)
2371 {
2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2373 netif_running(dev)) {
2374 netif_tx_stop_all_queues(dev);
2375 }
2376 }
2377 EXPORT_SYMBOL(netif_device_detach);
2378
2379 /**
2380 * netif_device_attach - mark device as attached
2381 * @dev: network device
2382 *
2383 * Mark device as attached from system and restart if needed.
2384 */
2385 void netif_device_attach(struct net_device *dev)
2386 {
2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2388 netif_running(dev)) {
2389 netif_tx_wake_all_queues(dev);
2390 __netdev_watchdog_up(dev);
2391 }
2392 }
2393 EXPORT_SYMBOL(netif_device_attach);
2394
2395 /*
2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2397 * to be used as a distribution range.
2398 */
2399 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2400 unsigned int num_tx_queues)
2401 {
2402 u32 hash;
2403 u16 qoffset = 0;
2404 u16 qcount = num_tx_queues;
2405
2406 if (skb_rx_queue_recorded(skb)) {
2407 hash = skb_get_rx_queue(skb);
2408 while (unlikely(hash >= num_tx_queues))
2409 hash -= num_tx_queues;
2410 return hash;
2411 }
2412
2413 if (dev->num_tc) {
2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2415 qoffset = dev->tc_to_txq[tc].offset;
2416 qcount = dev->tc_to_txq[tc].count;
2417 }
2418
2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2420 }
2421 EXPORT_SYMBOL(__skb_tx_hash);
2422
2423 static void skb_warn_bad_offload(const struct sk_buff *skb)
2424 {
2425 static const netdev_features_t null_features;
2426 struct net_device *dev = skb->dev;
2427 const char *name = "";
2428
2429 if (!net_ratelimit())
2430 return;
2431
2432 if (dev) {
2433 if (dev->dev.parent)
2434 name = dev_driver_string(dev->dev.parent);
2435 else
2436 name = netdev_name(dev);
2437 }
2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2439 "gso_type=%d ip_summed=%d\n",
2440 name, dev ? &dev->features : &null_features,
2441 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2443 skb_shinfo(skb)->gso_type, skb->ip_summed);
2444 }
2445
2446 /*
2447 * Invalidate hardware checksum when packet is to be mangled, and
2448 * complete checksum manually on outgoing path.
2449 */
2450 int skb_checksum_help(struct sk_buff *skb)
2451 {
2452 __wsum csum;
2453 int ret = 0, offset;
2454
2455 if (skb->ip_summed == CHECKSUM_COMPLETE)
2456 goto out_set_summed;
2457
2458 if (unlikely(skb_shinfo(skb)->gso_size)) {
2459 skb_warn_bad_offload(skb);
2460 return -EINVAL;
2461 }
2462
2463 /* Before computing a checksum, we should make sure no frag could
2464 * be modified by an external entity : checksum could be wrong.
2465 */
2466 if (skb_has_shared_frag(skb)) {
2467 ret = __skb_linearize(skb);
2468 if (ret)
2469 goto out;
2470 }
2471
2472 offset = skb_checksum_start_offset(skb);
2473 BUG_ON(offset >= skb_headlen(skb));
2474 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2475
2476 offset += skb->csum_offset;
2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2478
2479 if (skb_cloned(skb) &&
2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2482 if (ret)
2483 goto out;
2484 }
2485
2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2487 out_set_summed:
2488 skb->ip_summed = CHECKSUM_NONE;
2489 out:
2490 return ret;
2491 }
2492 EXPORT_SYMBOL(skb_checksum_help);
2493
2494 /* skb_csum_offload_check - Driver helper function to determine if a device
2495 * with limited checksum offload capabilities is able to offload the checksum
2496 * for a given packet.
2497 *
2498 * Arguments:
2499 * skb - sk_buff for the packet in question
2500 * spec - contains the description of what device can offload
2501 * csum_encapped - returns true if the checksum being offloaded is
2502 * encpasulated. That is it is checksum for the transport header
2503 * in the inner headers.
2504 * checksum_help - when set indicates that helper function should
2505 * call skb_checksum_help if offload checks fail
2506 *
2507 * Returns:
2508 * true: Packet has passed the checksum checks and should be offloadable to
2509 * the device (a driver may still need to check for additional
2510 * restrictions of its device)
2511 * false: Checksum is not offloadable. If checksum_help was set then
2512 * skb_checksum_help was called to resolve checksum for non-GSO
2513 * packets and when IP protocol is not SCTP
2514 */
2515 bool __skb_csum_offload_chk(struct sk_buff *skb,
2516 const struct skb_csum_offl_spec *spec,
2517 bool *csum_encapped,
2518 bool csum_help)
2519 {
2520 struct iphdr *iph;
2521 struct ipv6hdr *ipv6;
2522 void *nhdr;
2523 int protocol;
2524 u8 ip_proto;
2525
2526 if (skb->protocol == htons(ETH_P_8021Q) ||
2527 skb->protocol == htons(ETH_P_8021AD)) {
2528 if (!spec->vlan_okay)
2529 goto need_help;
2530 }
2531
2532 /* We check whether the checksum refers to a transport layer checksum in
2533 * the outermost header or an encapsulated transport layer checksum that
2534 * corresponds to the inner headers of the skb. If the checksum is for
2535 * something else in the packet we need help.
2536 */
2537 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2538 /* Non-encapsulated checksum */
2539 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2540 nhdr = skb_network_header(skb);
2541 *csum_encapped = false;
2542 if (spec->no_not_encapped)
2543 goto need_help;
2544 } else if (skb->encapsulation && spec->encap_okay &&
2545 skb_checksum_start_offset(skb) ==
2546 skb_inner_transport_offset(skb)) {
2547 /* Encapsulated checksum */
2548 *csum_encapped = true;
2549 switch (skb->inner_protocol_type) {
2550 case ENCAP_TYPE_ETHER:
2551 protocol = eproto_to_ipproto(skb->inner_protocol);
2552 break;
2553 case ENCAP_TYPE_IPPROTO:
2554 protocol = skb->inner_protocol;
2555 break;
2556 }
2557 nhdr = skb_inner_network_header(skb);
2558 } else {
2559 goto need_help;
2560 }
2561
2562 switch (protocol) {
2563 case IPPROTO_IP:
2564 if (!spec->ipv4_okay)
2565 goto need_help;
2566 iph = nhdr;
2567 ip_proto = iph->protocol;
2568 if (iph->ihl != 5 && !spec->ip_options_okay)
2569 goto need_help;
2570 break;
2571 case IPPROTO_IPV6:
2572 if (!spec->ipv6_okay)
2573 goto need_help;
2574 if (spec->no_encapped_ipv6 && *csum_encapped)
2575 goto need_help;
2576 ipv6 = nhdr;
2577 nhdr += sizeof(*ipv6);
2578 ip_proto = ipv6->nexthdr;
2579 break;
2580 default:
2581 goto need_help;
2582 }
2583
2584 ip_proto_again:
2585 switch (ip_proto) {
2586 case IPPROTO_TCP:
2587 if (!spec->tcp_okay ||
2588 skb->csum_offset != offsetof(struct tcphdr, check))
2589 goto need_help;
2590 break;
2591 case IPPROTO_UDP:
2592 if (!spec->udp_okay ||
2593 skb->csum_offset != offsetof(struct udphdr, check))
2594 goto need_help;
2595 break;
2596 case IPPROTO_SCTP:
2597 if (!spec->sctp_okay ||
2598 skb->csum_offset != offsetof(struct sctphdr, checksum))
2599 goto cant_help;
2600 break;
2601 case NEXTHDR_HOP:
2602 case NEXTHDR_ROUTING:
2603 case NEXTHDR_DEST: {
2604 u8 *opthdr = nhdr;
2605
2606 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2607 goto need_help;
2608
2609 ip_proto = opthdr[0];
2610 nhdr += (opthdr[1] + 1) << 3;
2611
2612 goto ip_proto_again;
2613 }
2614 default:
2615 goto need_help;
2616 }
2617
2618 /* Passed the tests for offloading checksum */
2619 return true;
2620
2621 need_help:
2622 if (csum_help && !skb_shinfo(skb)->gso_size)
2623 skb_checksum_help(skb);
2624 cant_help:
2625 return false;
2626 }
2627 EXPORT_SYMBOL(__skb_csum_offload_chk);
2628
2629 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2630 {
2631 __be16 type = skb->protocol;
2632
2633 /* Tunnel gso handlers can set protocol to ethernet. */
2634 if (type == htons(ETH_P_TEB)) {
2635 struct ethhdr *eth;
2636
2637 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2638 return 0;
2639
2640 eth = (struct ethhdr *)skb_mac_header(skb);
2641 type = eth->h_proto;
2642 }
2643
2644 return __vlan_get_protocol(skb, type, depth);
2645 }
2646
2647 /**
2648 * skb_mac_gso_segment - mac layer segmentation handler.
2649 * @skb: buffer to segment
2650 * @features: features for the output path (see dev->features)
2651 */
2652 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2653 netdev_features_t features)
2654 {
2655 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2656 struct packet_offload *ptype;
2657 int vlan_depth = skb->mac_len;
2658 __be16 type = skb_network_protocol(skb, &vlan_depth);
2659
2660 if (unlikely(!type))
2661 return ERR_PTR(-EINVAL);
2662
2663 __skb_pull(skb, vlan_depth);
2664
2665 rcu_read_lock();
2666 list_for_each_entry_rcu(ptype, &offload_base, list) {
2667 if (ptype->type == type && ptype->callbacks.gso_segment) {
2668 segs = ptype->callbacks.gso_segment(skb, features);
2669 break;
2670 }
2671 }
2672 rcu_read_unlock();
2673
2674 __skb_push(skb, skb->data - skb_mac_header(skb));
2675
2676 return segs;
2677 }
2678 EXPORT_SYMBOL(skb_mac_gso_segment);
2679
2680
2681 /* openvswitch calls this on rx path, so we need a different check.
2682 */
2683 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2684 {
2685 if (tx_path)
2686 return skb->ip_summed != CHECKSUM_PARTIAL;
2687 else
2688 return skb->ip_summed == CHECKSUM_NONE;
2689 }
2690
2691 /**
2692 * __skb_gso_segment - Perform segmentation on skb.
2693 * @skb: buffer to segment
2694 * @features: features for the output path (see dev->features)
2695 * @tx_path: whether it is called in TX path
2696 *
2697 * This function segments the given skb and returns a list of segments.
2698 *
2699 * It may return NULL if the skb requires no segmentation. This is
2700 * only possible when GSO is used for verifying header integrity.
2701 *
2702 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2703 */
2704 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2705 netdev_features_t features, bool tx_path)
2706 {
2707 if (unlikely(skb_needs_check(skb, tx_path))) {
2708 int err;
2709
2710 skb_warn_bad_offload(skb);
2711
2712 err = skb_cow_head(skb, 0);
2713 if (err < 0)
2714 return ERR_PTR(err);
2715 }
2716
2717 /* Only report GSO partial support if it will enable us to
2718 * support segmentation on this frame without needing additional
2719 * work.
2720 */
2721 if (features & NETIF_F_GSO_PARTIAL) {
2722 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2723 struct net_device *dev = skb->dev;
2724
2725 partial_features |= dev->features & dev->gso_partial_features;
2726 if (!skb_gso_ok(skb, features | partial_features))
2727 features &= ~NETIF_F_GSO_PARTIAL;
2728 }
2729
2730 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2731 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2732
2733 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2734 SKB_GSO_CB(skb)->encap_level = 0;
2735
2736 skb_reset_mac_header(skb);
2737 skb_reset_mac_len(skb);
2738
2739 return skb_mac_gso_segment(skb, features);
2740 }
2741 EXPORT_SYMBOL(__skb_gso_segment);
2742
2743 /* Take action when hardware reception checksum errors are detected. */
2744 #ifdef CONFIG_BUG
2745 void netdev_rx_csum_fault(struct net_device *dev)
2746 {
2747 if (net_ratelimit()) {
2748 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2749 dump_stack();
2750 }
2751 }
2752 EXPORT_SYMBOL(netdev_rx_csum_fault);
2753 #endif
2754
2755 /* Actually, we should eliminate this check as soon as we know, that:
2756 * 1. IOMMU is present and allows to map all the memory.
2757 * 2. No high memory really exists on this machine.
2758 */
2759
2760 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2761 {
2762 #ifdef CONFIG_HIGHMEM
2763 int i;
2764 if (!(dev->features & NETIF_F_HIGHDMA)) {
2765 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2766 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2767 if (PageHighMem(skb_frag_page(frag)))
2768 return 1;
2769 }
2770 }
2771
2772 if (PCI_DMA_BUS_IS_PHYS) {
2773 struct device *pdev = dev->dev.parent;
2774
2775 if (!pdev)
2776 return 0;
2777 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2779 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2780 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2781 return 1;
2782 }
2783 }
2784 #endif
2785 return 0;
2786 }
2787
2788 /* If MPLS offload request, verify we are testing hardware MPLS features
2789 * instead of standard features for the netdev.
2790 */
2791 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795 {
2796 if (eth_p_mpls(type))
2797 features &= skb->dev->mpls_features;
2798
2799 return features;
2800 }
2801 #else
2802 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2803 netdev_features_t features,
2804 __be16 type)
2805 {
2806 return features;
2807 }
2808 #endif
2809
2810 static netdev_features_t harmonize_features(struct sk_buff *skb,
2811 netdev_features_t features)
2812 {
2813 int tmp;
2814 __be16 type;
2815
2816 type = skb_network_protocol(skb, &tmp);
2817 features = net_mpls_features(skb, features, type);
2818
2819 if (skb->ip_summed != CHECKSUM_NONE &&
2820 !can_checksum_protocol(features, type)) {
2821 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2822 } else if (illegal_highdma(skb->dev, skb)) {
2823 features &= ~NETIF_F_SG;
2824 }
2825
2826 return features;
2827 }
2828
2829 netdev_features_t passthru_features_check(struct sk_buff *skb,
2830 struct net_device *dev,
2831 netdev_features_t features)
2832 {
2833 return features;
2834 }
2835 EXPORT_SYMBOL(passthru_features_check);
2836
2837 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2838 struct net_device *dev,
2839 netdev_features_t features)
2840 {
2841 return vlan_features_check(skb, features);
2842 }
2843
2844 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2845 struct net_device *dev,
2846 netdev_features_t features)
2847 {
2848 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2849
2850 if (gso_segs > dev->gso_max_segs)
2851 return features & ~NETIF_F_GSO_MASK;
2852
2853 /* Support for GSO partial features requires software
2854 * intervention before we can actually process the packets
2855 * so we need to strip support for any partial features now
2856 * and we can pull them back in after we have partially
2857 * segmented the frame.
2858 */
2859 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2860 features &= ~dev->gso_partial_features;
2861
2862 /* Make sure to clear the IPv4 ID mangling feature if the
2863 * IPv4 header has the potential to be fragmented.
2864 */
2865 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2866 struct iphdr *iph = skb->encapsulation ?
2867 inner_ip_hdr(skb) : ip_hdr(skb);
2868
2869 if (!(iph->frag_off & htons(IP_DF)))
2870 features &= ~NETIF_F_TSO_MANGLEID;
2871 }
2872
2873 return features;
2874 }
2875
2876 netdev_features_t netif_skb_features(struct sk_buff *skb)
2877 {
2878 struct net_device *dev = skb->dev;
2879 netdev_features_t features = dev->features;
2880
2881 if (skb_is_gso(skb))
2882 features = gso_features_check(skb, dev, features);
2883
2884 /* If encapsulation offload request, verify we are testing
2885 * hardware encapsulation features instead of standard
2886 * features for the netdev
2887 */
2888 if (skb->encapsulation)
2889 features &= dev->hw_enc_features;
2890
2891 if (skb_vlan_tagged(skb))
2892 features = netdev_intersect_features(features,
2893 dev->vlan_features |
2894 NETIF_F_HW_VLAN_CTAG_TX |
2895 NETIF_F_HW_VLAN_STAG_TX);
2896
2897 if (dev->netdev_ops->ndo_features_check)
2898 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2899 features);
2900 else
2901 features &= dflt_features_check(skb, dev, features);
2902
2903 return harmonize_features(skb, features);
2904 }
2905 EXPORT_SYMBOL(netif_skb_features);
2906
2907 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2908 struct netdev_queue *txq, bool more)
2909 {
2910 unsigned int len;
2911 int rc;
2912
2913 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2914 dev_queue_xmit_nit(skb, dev);
2915
2916 len = skb->len;
2917 trace_net_dev_start_xmit(skb, dev);
2918 rc = netdev_start_xmit(skb, dev, txq, more);
2919 trace_net_dev_xmit(skb, rc, dev, len);
2920
2921 return rc;
2922 }
2923
2924 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2925 struct netdev_queue *txq, int *ret)
2926 {
2927 struct sk_buff *skb = first;
2928 int rc = NETDEV_TX_OK;
2929
2930 while (skb) {
2931 struct sk_buff *next = skb->next;
2932
2933 skb->next = NULL;
2934 rc = xmit_one(skb, dev, txq, next != NULL);
2935 if (unlikely(!dev_xmit_complete(rc))) {
2936 skb->next = next;
2937 goto out;
2938 }
2939
2940 skb = next;
2941 if (netif_xmit_stopped(txq) && skb) {
2942 rc = NETDEV_TX_BUSY;
2943 break;
2944 }
2945 }
2946
2947 out:
2948 *ret = rc;
2949 return skb;
2950 }
2951
2952 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2953 netdev_features_t features)
2954 {
2955 if (skb_vlan_tag_present(skb) &&
2956 !vlan_hw_offload_capable(features, skb->vlan_proto))
2957 skb = __vlan_hwaccel_push_inside(skb);
2958 return skb;
2959 }
2960
2961 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2962 {
2963 netdev_features_t features;
2964
2965 features = netif_skb_features(skb);
2966 skb = validate_xmit_vlan(skb, features);
2967 if (unlikely(!skb))
2968 goto out_null;
2969
2970 if (netif_needs_gso(skb, features)) {
2971 struct sk_buff *segs;
2972
2973 segs = skb_gso_segment(skb, features);
2974 if (IS_ERR(segs)) {
2975 goto out_kfree_skb;
2976 } else if (segs) {
2977 consume_skb(skb);
2978 skb = segs;
2979 }
2980 } else {
2981 if (skb_needs_linearize(skb, features) &&
2982 __skb_linearize(skb))
2983 goto out_kfree_skb;
2984
2985 /* If packet is not checksummed and device does not
2986 * support checksumming for this protocol, complete
2987 * checksumming here.
2988 */
2989 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2990 if (skb->encapsulation)
2991 skb_set_inner_transport_header(skb,
2992 skb_checksum_start_offset(skb));
2993 else
2994 skb_set_transport_header(skb,
2995 skb_checksum_start_offset(skb));
2996 if (!(features & NETIF_F_CSUM_MASK) &&
2997 skb_checksum_help(skb))
2998 goto out_kfree_skb;
2999 }
3000 }
3001
3002 return skb;
3003
3004 out_kfree_skb:
3005 kfree_skb(skb);
3006 out_null:
3007 atomic_long_inc(&dev->tx_dropped);
3008 return NULL;
3009 }
3010
3011 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3012 {
3013 struct sk_buff *next, *head = NULL, *tail;
3014
3015 for (; skb != NULL; skb = next) {
3016 next = skb->next;
3017 skb->next = NULL;
3018
3019 /* in case skb wont be segmented, point to itself */
3020 skb->prev = skb;
3021
3022 skb = validate_xmit_skb(skb, dev);
3023 if (!skb)
3024 continue;
3025
3026 if (!head)
3027 head = skb;
3028 else
3029 tail->next = skb;
3030 /* If skb was segmented, skb->prev points to
3031 * the last segment. If not, it still contains skb.
3032 */
3033 tail = skb->prev;
3034 }
3035 return head;
3036 }
3037
3038 static void qdisc_pkt_len_init(struct sk_buff *skb)
3039 {
3040 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3041
3042 qdisc_skb_cb(skb)->pkt_len = skb->len;
3043
3044 /* To get more precise estimation of bytes sent on wire,
3045 * we add to pkt_len the headers size of all segments
3046 */
3047 if (shinfo->gso_size) {
3048 unsigned int hdr_len;
3049 u16 gso_segs = shinfo->gso_segs;
3050
3051 /* mac layer + network layer */
3052 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3053
3054 /* + transport layer */
3055 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3056 hdr_len += tcp_hdrlen(skb);
3057 else
3058 hdr_len += sizeof(struct udphdr);
3059
3060 if (shinfo->gso_type & SKB_GSO_DODGY)
3061 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3062 shinfo->gso_size);
3063
3064 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3065 }
3066 }
3067
3068 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3069 struct net_device *dev,
3070 struct netdev_queue *txq)
3071 {
3072 spinlock_t *root_lock = qdisc_lock(q);
3073 struct sk_buff *to_free = NULL;
3074 bool contended;
3075 int rc;
3076
3077 qdisc_calculate_pkt_len(skb, q);
3078 /*
3079 * Heuristic to force contended enqueues to serialize on a
3080 * separate lock before trying to get qdisc main lock.
3081 * This permits qdisc->running owner to get the lock more
3082 * often and dequeue packets faster.
3083 */
3084 contended = qdisc_is_running(q);
3085 if (unlikely(contended))
3086 spin_lock(&q->busylock);
3087
3088 spin_lock(root_lock);
3089 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3090 __qdisc_drop(skb, &to_free);
3091 rc = NET_XMIT_DROP;
3092 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3093 qdisc_run_begin(q)) {
3094 /*
3095 * This is a work-conserving queue; there are no old skbs
3096 * waiting to be sent out; and the qdisc is not running -
3097 * xmit the skb directly.
3098 */
3099
3100 qdisc_bstats_update(q, skb);
3101
3102 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3103 if (unlikely(contended)) {
3104 spin_unlock(&q->busylock);
3105 contended = false;
3106 }
3107 __qdisc_run(q);
3108 } else
3109 qdisc_run_end(q);
3110
3111 rc = NET_XMIT_SUCCESS;
3112 } else {
3113 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3114 if (qdisc_run_begin(q)) {
3115 if (unlikely(contended)) {
3116 spin_unlock(&q->busylock);
3117 contended = false;
3118 }
3119 __qdisc_run(q);
3120 }
3121 }
3122 spin_unlock(root_lock);
3123 if (unlikely(to_free))
3124 kfree_skb_list(to_free);
3125 if (unlikely(contended))
3126 spin_unlock(&q->busylock);
3127 return rc;
3128 }
3129
3130 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3131 static void skb_update_prio(struct sk_buff *skb)
3132 {
3133 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3134
3135 if (!skb->priority && skb->sk && map) {
3136 unsigned int prioidx =
3137 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3138
3139 if (prioidx < map->priomap_len)
3140 skb->priority = map->priomap[prioidx];
3141 }
3142 }
3143 #else
3144 #define skb_update_prio(skb)
3145 #endif
3146
3147 DEFINE_PER_CPU(int, xmit_recursion);
3148 EXPORT_SYMBOL(xmit_recursion);
3149
3150 /**
3151 * dev_loopback_xmit - loop back @skb
3152 * @net: network namespace this loopback is happening in
3153 * @sk: sk needed to be a netfilter okfn
3154 * @skb: buffer to transmit
3155 */
3156 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3157 {
3158 skb_reset_mac_header(skb);
3159 __skb_pull(skb, skb_network_offset(skb));
3160 skb->pkt_type = PACKET_LOOPBACK;
3161 skb->ip_summed = CHECKSUM_UNNECESSARY;
3162 WARN_ON(!skb_dst(skb));
3163 skb_dst_force(skb);
3164 netif_rx_ni(skb);
3165 return 0;
3166 }
3167 EXPORT_SYMBOL(dev_loopback_xmit);
3168
3169 #ifdef CONFIG_NET_EGRESS
3170 static struct sk_buff *
3171 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3172 {
3173 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3174 struct tcf_result cl_res;
3175
3176 if (!cl)
3177 return skb;
3178
3179 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3180 * earlier by the caller.
3181 */
3182 qdisc_bstats_cpu_update(cl->q, skb);
3183
3184 switch (tc_classify(skb, cl, &cl_res, false)) {
3185 case TC_ACT_OK:
3186 case TC_ACT_RECLASSIFY:
3187 skb->tc_index = TC_H_MIN(cl_res.classid);
3188 break;
3189 case TC_ACT_SHOT:
3190 qdisc_qstats_cpu_drop(cl->q);
3191 *ret = NET_XMIT_DROP;
3192 kfree_skb(skb);
3193 return NULL;
3194 case TC_ACT_STOLEN:
3195 case TC_ACT_QUEUED:
3196 *ret = NET_XMIT_SUCCESS;
3197 consume_skb(skb);
3198 return NULL;
3199 case TC_ACT_REDIRECT:
3200 /* No need to push/pop skb's mac_header here on egress! */
3201 skb_do_redirect(skb);
3202 *ret = NET_XMIT_SUCCESS;
3203 return NULL;
3204 default:
3205 break;
3206 }
3207
3208 return skb;
3209 }
3210 #endif /* CONFIG_NET_EGRESS */
3211
3212 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3213 {
3214 #ifdef CONFIG_XPS
3215 struct xps_dev_maps *dev_maps;
3216 struct xps_map *map;
3217 int queue_index = -1;
3218
3219 rcu_read_lock();
3220 dev_maps = rcu_dereference(dev->xps_maps);
3221 if (dev_maps) {
3222 map = rcu_dereference(
3223 dev_maps->cpu_map[skb->sender_cpu - 1]);
3224 if (map) {
3225 if (map->len == 1)
3226 queue_index = map->queues[0];
3227 else
3228 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3229 map->len)];
3230 if (unlikely(queue_index >= dev->real_num_tx_queues))
3231 queue_index = -1;
3232 }
3233 }
3234 rcu_read_unlock();
3235
3236 return queue_index;
3237 #else
3238 return -1;
3239 #endif
3240 }
3241
3242 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3243 {
3244 struct sock *sk = skb->sk;
3245 int queue_index = sk_tx_queue_get(sk);
3246
3247 if (queue_index < 0 || skb->ooo_okay ||
3248 queue_index >= dev->real_num_tx_queues) {
3249 int new_index = get_xps_queue(dev, skb);
3250 if (new_index < 0)
3251 new_index = skb_tx_hash(dev, skb);
3252
3253 if (queue_index != new_index && sk &&
3254 sk_fullsock(sk) &&
3255 rcu_access_pointer(sk->sk_dst_cache))
3256 sk_tx_queue_set(sk, new_index);
3257
3258 queue_index = new_index;
3259 }
3260
3261 return queue_index;
3262 }
3263
3264 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3265 struct sk_buff *skb,
3266 void *accel_priv)
3267 {
3268 int queue_index = 0;
3269
3270 #ifdef CONFIG_XPS
3271 u32 sender_cpu = skb->sender_cpu - 1;
3272
3273 if (sender_cpu >= (u32)NR_CPUS)
3274 skb->sender_cpu = raw_smp_processor_id() + 1;
3275 #endif
3276
3277 if (dev->real_num_tx_queues != 1) {
3278 const struct net_device_ops *ops = dev->netdev_ops;
3279 if (ops->ndo_select_queue)
3280 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281 __netdev_pick_tx);
3282 else
3283 queue_index = __netdev_pick_tx(dev, skb);
3284
3285 if (!accel_priv)
3286 queue_index = netdev_cap_txqueue(dev, queue_index);
3287 }
3288
3289 skb_set_queue_mapping(skb, queue_index);
3290 return netdev_get_tx_queue(dev, queue_index);
3291 }
3292
3293 /**
3294 * __dev_queue_xmit - transmit a buffer
3295 * @skb: buffer to transmit
3296 * @accel_priv: private data used for L2 forwarding offload
3297 *
3298 * Queue a buffer for transmission to a network device. The caller must
3299 * have set the device and priority and built the buffer before calling
3300 * this function. The function can be called from an interrupt.
3301 *
3302 * A negative errno code is returned on a failure. A success does not
3303 * guarantee the frame will be transmitted as it may be dropped due
3304 * to congestion or traffic shaping.
3305 *
3306 * -----------------------------------------------------------------------------------
3307 * I notice this method can also return errors from the queue disciplines,
3308 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3309 * be positive.
3310 *
3311 * Regardless of the return value, the skb is consumed, so it is currently
3312 * difficult to retry a send to this method. (You can bump the ref count
3313 * before sending to hold a reference for retry if you are careful.)
3314 *
3315 * When calling this method, interrupts MUST be enabled. This is because
3316 * the BH enable code must have IRQs enabled so that it will not deadlock.
3317 * --BLG
3318 */
3319 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3320 {
3321 struct net_device *dev = skb->dev;
3322 struct netdev_queue *txq;
3323 struct Qdisc *q;
3324 int rc = -ENOMEM;
3325
3326 skb_reset_mac_header(skb);
3327
3328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330
3331 /* Disable soft irqs for various locks below. Also
3332 * stops preemption for RCU.
3333 */
3334 rcu_read_lock_bh();
3335
3336 skb_update_prio(skb);
3337
3338 qdisc_pkt_len_init(skb);
3339 #ifdef CONFIG_NET_CLS_ACT
3340 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3341 # ifdef CONFIG_NET_EGRESS
3342 if (static_key_false(&egress_needed)) {
3343 skb = sch_handle_egress(skb, &rc, dev);
3344 if (!skb)
3345 goto out;
3346 }
3347 # endif
3348 #endif
3349 /* If device/qdisc don't need skb->dst, release it right now while
3350 * its hot in this cpu cache.
3351 */
3352 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353 skb_dst_drop(skb);
3354 else
3355 skb_dst_force(skb);
3356
3357 #ifdef CONFIG_NET_SWITCHDEV
3358 /* Don't forward if offload device already forwarded */
3359 if (skb->offload_fwd_mark &&
3360 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3361 consume_skb(skb);
3362 rc = NET_XMIT_SUCCESS;
3363 goto out;
3364 }
3365 #endif
3366
3367 txq = netdev_pick_tx(dev, skb, accel_priv);
3368 q = rcu_dereference_bh(txq->qdisc);
3369
3370 trace_net_dev_queue(skb);
3371 if (q->enqueue) {
3372 rc = __dev_xmit_skb(skb, q, dev, txq);
3373 goto out;
3374 }
3375
3376 /* The device has no queue. Common case for software devices:
3377 loopback, all the sorts of tunnels...
3378
3379 Really, it is unlikely that netif_tx_lock protection is necessary
3380 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3381 counters.)
3382 However, it is possible, that they rely on protection
3383 made by us here.
3384
3385 Check this and shot the lock. It is not prone from deadlocks.
3386 Either shot noqueue qdisc, it is even simpler 8)
3387 */
3388 if (dev->flags & IFF_UP) {
3389 int cpu = smp_processor_id(); /* ok because BHs are off */
3390
3391 if (txq->xmit_lock_owner != cpu) {
3392 if (unlikely(__this_cpu_read(xmit_recursion) >
3393 XMIT_RECURSION_LIMIT))
3394 goto recursion_alert;
3395
3396 skb = validate_xmit_skb(skb, dev);
3397 if (!skb)
3398 goto out;
3399
3400 HARD_TX_LOCK(dev, txq, cpu);
3401
3402 if (!netif_xmit_stopped(txq)) {
3403 __this_cpu_inc(xmit_recursion);
3404 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3405 __this_cpu_dec(xmit_recursion);
3406 if (dev_xmit_complete(rc)) {
3407 HARD_TX_UNLOCK(dev, txq);
3408 goto out;
3409 }
3410 }
3411 HARD_TX_UNLOCK(dev, txq);
3412 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3413 dev->name);
3414 } else {
3415 /* Recursion is detected! It is possible,
3416 * unfortunately
3417 */
3418 recursion_alert:
3419 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3420 dev->name);
3421 }
3422 }
3423
3424 rc = -ENETDOWN;
3425 rcu_read_unlock_bh();
3426
3427 atomic_long_inc(&dev->tx_dropped);
3428 kfree_skb_list(skb);
3429 return rc;
3430 out:
3431 rcu_read_unlock_bh();
3432 return rc;
3433 }
3434
3435 int dev_queue_xmit(struct sk_buff *skb)
3436 {
3437 return __dev_queue_xmit(skb, NULL);
3438 }
3439 EXPORT_SYMBOL(dev_queue_xmit);
3440
3441 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3442 {
3443 return __dev_queue_xmit(skb, accel_priv);
3444 }
3445 EXPORT_SYMBOL(dev_queue_xmit_accel);
3446
3447
3448 /*=======================================================================
3449 Receiver routines
3450 =======================================================================*/
3451
3452 int netdev_max_backlog __read_mostly = 1000;
3453 EXPORT_SYMBOL(netdev_max_backlog);
3454
3455 int netdev_tstamp_prequeue __read_mostly = 1;
3456 int netdev_budget __read_mostly = 300;
3457 int weight_p __read_mostly = 64; /* old backlog weight */
3458
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461 struct napi_struct *napi)
3462 {
3463 list_add_tail(&napi->poll_list, &sd->poll_list);
3464 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465 }
3466
3467 #ifdef CONFIG_RPS
3468
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3474
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477
3478 static struct rps_dev_flow *
3479 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3480 struct rps_dev_flow *rflow, u16 next_cpu)
3481 {
3482 if (next_cpu < nr_cpu_ids) {
3483 #ifdef CONFIG_RFS_ACCEL
3484 struct netdev_rx_queue *rxqueue;
3485 struct rps_dev_flow_table *flow_table;
3486 struct rps_dev_flow *old_rflow;
3487 u32 flow_id;
3488 u16 rxq_index;
3489 int rc;
3490
3491 /* Should we steer this flow to a different hardware queue? */
3492 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3493 !(dev->features & NETIF_F_NTUPLE))
3494 goto out;
3495 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3496 if (rxq_index == skb_get_rx_queue(skb))
3497 goto out;
3498
3499 rxqueue = dev->_rx + rxq_index;
3500 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3501 if (!flow_table)
3502 goto out;
3503 flow_id = skb_get_hash(skb) & flow_table->mask;
3504 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3505 rxq_index, flow_id);
3506 if (rc < 0)
3507 goto out;
3508 old_rflow = rflow;
3509 rflow = &flow_table->flows[flow_id];
3510 rflow->filter = rc;
3511 if (old_rflow->filter == rflow->filter)
3512 old_rflow->filter = RPS_NO_FILTER;
3513 out:
3514 #endif
3515 rflow->last_qtail =
3516 per_cpu(softnet_data, next_cpu).input_queue_head;
3517 }
3518
3519 rflow->cpu = next_cpu;
3520 return rflow;
3521 }
3522
3523 /*
3524 * get_rps_cpu is called from netif_receive_skb and returns the target
3525 * CPU from the RPS map of the receiving queue for a given skb.
3526 * rcu_read_lock must be held on entry.
3527 */
3528 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3529 struct rps_dev_flow **rflowp)
3530 {
3531 const struct rps_sock_flow_table *sock_flow_table;
3532 struct netdev_rx_queue *rxqueue = dev->_rx;
3533 struct rps_dev_flow_table *flow_table;
3534 struct rps_map *map;
3535 int cpu = -1;
3536 u32 tcpu;
3537 u32 hash;
3538
3539 if (skb_rx_queue_recorded(skb)) {
3540 u16 index = skb_get_rx_queue(skb);
3541
3542 if (unlikely(index >= dev->real_num_rx_queues)) {
3543 WARN_ONCE(dev->real_num_rx_queues > 1,
3544 "%s received packet on queue %u, but number "
3545 "of RX queues is %u\n",
3546 dev->name, index, dev->real_num_rx_queues);
3547 goto done;
3548 }
3549 rxqueue += index;
3550 }
3551
3552 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3553
3554 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3555 map = rcu_dereference(rxqueue->rps_map);
3556 if (!flow_table && !map)
3557 goto done;
3558
3559 skb_reset_network_header(skb);
3560 hash = skb_get_hash(skb);
3561 if (!hash)
3562 goto done;
3563
3564 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3565 if (flow_table && sock_flow_table) {
3566 struct rps_dev_flow *rflow;
3567 u32 next_cpu;
3568 u32 ident;
3569
3570 /* First check into global flow table if there is a match */
3571 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3572 if ((ident ^ hash) & ~rps_cpu_mask)
3573 goto try_rps;
3574
3575 next_cpu = ident & rps_cpu_mask;
3576
3577 /* OK, now we know there is a match,
3578 * we can look at the local (per receive queue) flow table
3579 */
3580 rflow = &flow_table->flows[hash & flow_table->mask];
3581 tcpu = rflow->cpu;
3582
3583 /*
3584 * If the desired CPU (where last recvmsg was done) is
3585 * different from current CPU (one in the rx-queue flow
3586 * table entry), switch if one of the following holds:
3587 * - Current CPU is unset (>= nr_cpu_ids).
3588 * - Current CPU is offline.
3589 * - The current CPU's queue tail has advanced beyond the
3590 * last packet that was enqueued using this table entry.
3591 * This guarantees that all previous packets for the flow
3592 * have been dequeued, thus preserving in order delivery.
3593 */
3594 if (unlikely(tcpu != next_cpu) &&
3595 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3596 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3597 rflow->last_qtail)) >= 0)) {
3598 tcpu = next_cpu;
3599 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3600 }
3601
3602 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3603 *rflowp = rflow;
3604 cpu = tcpu;
3605 goto done;
3606 }
3607 }
3608
3609 try_rps:
3610
3611 if (map) {
3612 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3613 if (cpu_online(tcpu)) {
3614 cpu = tcpu;
3615 goto done;
3616 }
3617 }
3618
3619 done:
3620 return cpu;
3621 }
3622
3623 #ifdef CONFIG_RFS_ACCEL
3624
3625 /**
3626 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3627 * @dev: Device on which the filter was set
3628 * @rxq_index: RX queue index
3629 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3630 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3631 *
3632 * Drivers that implement ndo_rx_flow_steer() should periodically call
3633 * this function for each installed filter and remove the filters for
3634 * which it returns %true.
3635 */
3636 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3637 u32 flow_id, u16 filter_id)
3638 {
3639 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3640 struct rps_dev_flow_table *flow_table;
3641 struct rps_dev_flow *rflow;
3642 bool expire = true;
3643 unsigned int cpu;
3644
3645 rcu_read_lock();
3646 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3647 if (flow_table && flow_id <= flow_table->mask) {
3648 rflow = &flow_table->flows[flow_id];
3649 cpu = ACCESS_ONCE(rflow->cpu);
3650 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3651 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3652 rflow->last_qtail) <
3653 (int)(10 * flow_table->mask)))
3654 expire = false;
3655 }
3656 rcu_read_unlock();
3657 return expire;
3658 }
3659 EXPORT_SYMBOL(rps_may_expire_flow);
3660
3661 #endif /* CONFIG_RFS_ACCEL */
3662
3663 /* Called from hardirq (IPI) context */
3664 static void rps_trigger_softirq(void *data)
3665 {
3666 struct softnet_data *sd = data;
3667
3668 ____napi_schedule(sd, &sd->backlog);
3669 sd->received_rps++;
3670 }
3671
3672 #endif /* CONFIG_RPS */
3673
3674 /*
3675 * Check if this softnet_data structure is another cpu one
3676 * If yes, queue it to our IPI list and return 1
3677 * If no, return 0
3678 */
3679 static int rps_ipi_queued(struct softnet_data *sd)
3680 {
3681 #ifdef CONFIG_RPS
3682 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3683
3684 if (sd != mysd) {
3685 sd->rps_ipi_next = mysd->rps_ipi_list;
3686 mysd->rps_ipi_list = sd;
3687
3688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3689 return 1;
3690 }
3691 #endif /* CONFIG_RPS */
3692 return 0;
3693 }
3694
3695 #ifdef CONFIG_NET_FLOW_LIMIT
3696 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3697 #endif
3698
3699 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3700 {
3701 #ifdef CONFIG_NET_FLOW_LIMIT
3702 struct sd_flow_limit *fl;
3703 struct softnet_data *sd;
3704 unsigned int old_flow, new_flow;
3705
3706 if (qlen < (netdev_max_backlog >> 1))
3707 return false;
3708
3709 sd = this_cpu_ptr(&softnet_data);
3710
3711 rcu_read_lock();
3712 fl = rcu_dereference(sd->flow_limit);
3713 if (fl) {
3714 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3715 old_flow = fl->history[fl->history_head];
3716 fl->history[fl->history_head] = new_flow;
3717
3718 fl->history_head++;
3719 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3720
3721 if (likely(fl->buckets[old_flow]))
3722 fl->buckets[old_flow]--;
3723
3724 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3725 fl->count++;
3726 rcu_read_unlock();
3727 return true;
3728 }
3729 }
3730 rcu_read_unlock();
3731 #endif
3732 return false;
3733 }
3734
3735 /*
3736 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3737 * queue (may be a remote CPU queue).
3738 */
3739 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3740 unsigned int *qtail)
3741 {
3742 struct softnet_data *sd;
3743 unsigned long flags;
3744 unsigned int qlen;
3745
3746 sd = &per_cpu(softnet_data, cpu);
3747
3748 local_irq_save(flags);
3749
3750 rps_lock(sd);
3751 if (!netif_running(skb->dev))
3752 goto drop;
3753 qlen = skb_queue_len(&sd->input_pkt_queue);
3754 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3755 if (qlen) {
3756 enqueue:
3757 __skb_queue_tail(&sd->input_pkt_queue, skb);
3758 input_queue_tail_incr_save(sd, qtail);
3759 rps_unlock(sd);
3760 local_irq_restore(flags);
3761 return NET_RX_SUCCESS;
3762 }
3763
3764 /* Schedule NAPI for backlog device
3765 * We can use non atomic operation since we own the queue lock
3766 */
3767 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3768 if (!rps_ipi_queued(sd))
3769 ____napi_schedule(sd, &sd->backlog);
3770 }
3771 goto enqueue;
3772 }
3773
3774 drop:
3775 sd->dropped++;
3776 rps_unlock(sd);
3777
3778 local_irq_restore(flags);
3779
3780 atomic_long_inc(&skb->dev->rx_dropped);
3781 kfree_skb(skb);
3782 return NET_RX_DROP;
3783 }
3784
3785 static int netif_rx_internal(struct sk_buff *skb)
3786 {
3787 int ret;
3788
3789 net_timestamp_check(netdev_tstamp_prequeue, skb);
3790
3791 trace_netif_rx(skb);
3792 #ifdef CONFIG_RPS
3793 if (static_key_false(&rps_needed)) {
3794 struct rps_dev_flow voidflow, *rflow = &voidflow;
3795 int cpu;
3796
3797 preempt_disable();
3798 rcu_read_lock();
3799
3800 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3801 if (cpu < 0)
3802 cpu = smp_processor_id();
3803
3804 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3805
3806 rcu_read_unlock();
3807 preempt_enable();
3808 } else
3809 #endif
3810 {
3811 unsigned int qtail;
3812 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3813 put_cpu();
3814 }
3815 return ret;
3816 }
3817
3818 /**
3819 * netif_rx - post buffer to the network code
3820 * @skb: buffer to post
3821 *
3822 * This function receives a packet from a device driver and queues it for
3823 * the upper (protocol) levels to process. It always succeeds. The buffer
3824 * may be dropped during processing for congestion control or by the
3825 * protocol layers.
3826 *
3827 * return values:
3828 * NET_RX_SUCCESS (no congestion)
3829 * NET_RX_DROP (packet was dropped)
3830 *
3831 */
3832
3833 int netif_rx(struct sk_buff *skb)
3834 {
3835 trace_netif_rx_entry(skb);
3836
3837 return netif_rx_internal(skb);
3838 }
3839 EXPORT_SYMBOL(netif_rx);
3840
3841 int netif_rx_ni(struct sk_buff *skb)
3842 {
3843 int err;
3844
3845 trace_netif_rx_ni_entry(skb);
3846
3847 preempt_disable();
3848 err = netif_rx_internal(skb);
3849 if (local_softirq_pending())
3850 do_softirq();
3851 preempt_enable();
3852
3853 return err;
3854 }
3855 EXPORT_SYMBOL(netif_rx_ni);
3856
3857 static void net_tx_action(struct softirq_action *h)
3858 {
3859 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3860
3861 if (sd->completion_queue) {
3862 struct sk_buff *clist;
3863
3864 local_irq_disable();
3865 clist = sd->completion_queue;
3866 sd->completion_queue = NULL;
3867 local_irq_enable();
3868
3869 while (clist) {
3870 struct sk_buff *skb = clist;
3871 clist = clist->next;
3872
3873 WARN_ON(atomic_read(&skb->users));
3874 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3875 trace_consume_skb(skb);
3876 else
3877 trace_kfree_skb(skb, net_tx_action);
3878
3879 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3880 __kfree_skb(skb);
3881 else
3882 __kfree_skb_defer(skb);
3883 }
3884
3885 __kfree_skb_flush();
3886 }
3887
3888 if (sd->output_queue) {
3889 struct Qdisc *head;
3890
3891 local_irq_disable();
3892 head = sd->output_queue;
3893 sd->output_queue = NULL;
3894 sd->output_queue_tailp = &sd->output_queue;
3895 local_irq_enable();
3896
3897 while (head) {
3898 struct Qdisc *q = head;
3899 spinlock_t *root_lock;
3900
3901 head = head->next_sched;
3902
3903 root_lock = qdisc_lock(q);
3904 spin_lock(root_lock);
3905 /* We need to make sure head->next_sched is read
3906 * before clearing __QDISC_STATE_SCHED
3907 */
3908 smp_mb__before_atomic();
3909 clear_bit(__QDISC_STATE_SCHED, &q->state);
3910 qdisc_run(q);
3911 spin_unlock(root_lock);
3912 }
3913 }
3914 }
3915
3916 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3917 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3918 /* This hook is defined here for ATM LANE */
3919 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3920 unsigned char *addr) __read_mostly;
3921 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3922 #endif
3923
3924 static inline struct sk_buff *
3925 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3926 struct net_device *orig_dev)
3927 {
3928 #ifdef CONFIG_NET_CLS_ACT
3929 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3930 struct tcf_result cl_res;
3931
3932 /* If there's at least one ingress present somewhere (so
3933 * we get here via enabled static key), remaining devices
3934 * that are not configured with an ingress qdisc will bail
3935 * out here.
3936 */
3937 if (!cl)
3938 return skb;
3939 if (*pt_prev) {
3940 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3941 *pt_prev = NULL;
3942 }
3943
3944 qdisc_skb_cb(skb)->pkt_len = skb->len;
3945 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3946 qdisc_bstats_cpu_update(cl->q, skb);
3947
3948 switch (tc_classify(skb, cl, &cl_res, false)) {
3949 case TC_ACT_OK:
3950 case TC_ACT_RECLASSIFY:
3951 skb->tc_index = TC_H_MIN(cl_res.classid);
3952 break;
3953 case TC_ACT_SHOT:
3954 qdisc_qstats_cpu_drop(cl->q);
3955 kfree_skb(skb);
3956 return NULL;
3957 case TC_ACT_STOLEN:
3958 case TC_ACT_QUEUED:
3959 consume_skb(skb);
3960 return NULL;
3961 case TC_ACT_REDIRECT:
3962 /* skb_mac_header check was done by cls/act_bpf, so
3963 * we can safely push the L2 header back before
3964 * redirecting to another netdev
3965 */
3966 __skb_push(skb, skb->mac_len);
3967 skb_do_redirect(skb);
3968 return NULL;
3969 default:
3970 break;
3971 }
3972 #endif /* CONFIG_NET_CLS_ACT */
3973 return skb;
3974 }
3975
3976 /**
3977 * netdev_rx_handler_register - register receive handler
3978 * @dev: device to register a handler for
3979 * @rx_handler: receive handler to register
3980 * @rx_handler_data: data pointer that is used by rx handler
3981 *
3982 * Register a receive handler for a device. This handler will then be
3983 * called from __netif_receive_skb. A negative errno code is returned
3984 * on a failure.
3985 *
3986 * The caller must hold the rtnl_mutex.
3987 *
3988 * For a general description of rx_handler, see enum rx_handler_result.
3989 */
3990 int netdev_rx_handler_register(struct net_device *dev,
3991 rx_handler_func_t *rx_handler,
3992 void *rx_handler_data)
3993 {
3994 ASSERT_RTNL();
3995
3996 if (dev->rx_handler)
3997 return -EBUSY;
3998
3999 /* Note: rx_handler_data must be set before rx_handler */
4000 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4001 rcu_assign_pointer(dev->rx_handler, rx_handler);
4002
4003 return 0;
4004 }
4005 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4006
4007 /**
4008 * netdev_rx_handler_unregister - unregister receive handler
4009 * @dev: device to unregister a handler from
4010 *
4011 * Unregister a receive handler from a device.
4012 *
4013 * The caller must hold the rtnl_mutex.
4014 */
4015 void netdev_rx_handler_unregister(struct net_device *dev)
4016 {
4017
4018 ASSERT_RTNL();
4019 RCU_INIT_POINTER(dev->rx_handler, NULL);
4020 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4021 * section has a guarantee to see a non NULL rx_handler_data
4022 * as well.
4023 */
4024 synchronize_net();
4025 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4026 }
4027 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4028
4029 /*
4030 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4031 * the special handling of PFMEMALLOC skbs.
4032 */
4033 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4034 {
4035 switch (skb->protocol) {
4036 case htons(ETH_P_ARP):
4037 case htons(ETH_P_IP):
4038 case htons(ETH_P_IPV6):
4039 case htons(ETH_P_8021Q):
4040 case htons(ETH_P_8021AD):
4041 return true;
4042 default:
4043 return false;
4044 }
4045 }
4046
4047 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4048 int *ret, struct net_device *orig_dev)
4049 {
4050 #ifdef CONFIG_NETFILTER_INGRESS
4051 if (nf_hook_ingress_active(skb)) {
4052 if (*pt_prev) {
4053 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4054 *pt_prev = NULL;
4055 }
4056
4057 return nf_hook_ingress(skb);
4058 }
4059 #endif /* CONFIG_NETFILTER_INGRESS */
4060 return 0;
4061 }
4062
4063 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4064 {
4065 struct packet_type *ptype, *pt_prev;
4066 rx_handler_func_t *rx_handler;
4067 struct net_device *orig_dev;
4068 bool deliver_exact = false;
4069 int ret = NET_RX_DROP;
4070 __be16 type;
4071
4072 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4073
4074 trace_netif_receive_skb(skb);
4075
4076 orig_dev = skb->dev;
4077
4078 skb_reset_network_header(skb);
4079 if (!skb_transport_header_was_set(skb))
4080 skb_reset_transport_header(skb);
4081 skb_reset_mac_len(skb);
4082
4083 pt_prev = NULL;
4084
4085 another_round:
4086 skb->skb_iif = skb->dev->ifindex;
4087
4088 __this_cpu_inc(softnet_data.processed);
4089
4090 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4091 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4092 skb = skb_vlan_untag(skb);
4093 if (unlikely(!skb))
4094 goto out;
4095 }
4096
4097 #ifdef CONFIG_NET_CLS_ACT
4098 if (skb->tc_verd & TC_NCLS) {
4099 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4100 goto ncls;
4101 }
4102 #endif
4103
4104 if (pfmemalloc)
4105 goto skip_taps;
4106
4107 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4108 if (pt_prev)
4109 ret = deliver_skb(skb, pt_prev, orig_dev);
4110 pt_prev = ptype;
4111 }
4112
4113 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4114 if (pt_prev)
4115 ret = deliver_skb(skb, pt_prev, orig_dev);
4116 pt_prev = ptype;
4117 }
4118
4119 skip_taps:
4120 #ifdef CONFIG_NET_INGRESS
4121 if (static_key_false(&ingress_needed)) {
4122 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4123 if (!skb)
4124 goto out;
4125
4126 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4127 goto out;
4128 }
4129 #endif
4130 #ifdef CONFIG_NET_CLS_ACT
4131 skb->tc_verd = 0;
4132 ncls:
4133 #endif
4134 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4135 goto drop;
4136
4137 if (skb_vlan_tag_present(skb)) {
4138 if (pt_prev) {
4139 ret = deliver_skb(skb, pt_prev, orig_dev);
4140 pt_prev = NULL;
4141 }
4142 if (vlan_do_receive(&skb))
4143 goto another_round;
4144 else if (unlikely(!skb))
4145 goto out;
4146 }
4147
4148 rx_handler = rcu_dereference(skb->dev->rx_handler);
4149 if (rx_handler) {
4150 if (pt_prev) {
4151 ret = deliver_skb(skb, pt_prev, orig_dev);
4152 pt_prev = NULL;
4153 }
4154 switch (rx_handler(&skb)) {
4155 case RX_HANDLER_CONSUMED:
4156 ret = NET_RX_SUCCESS;
4157 goto out;
4158 case RX_HANDLER_ANOTHER:
4159 goto another_round;
4160 case RX_HANDLER_EXACT:
4161 deliver_exact = true;
4162 case RX_HANDLER_PASS:
4163 break;
4164 default:
4165 BUG();
4166 }
4167 }
4168
4169 if (unlikely(skb_vlan_tag_present(skb))) {
4170 if (skb_vlan_tag_get_id(skb))
4171 skb->pkt_type = PACKET_OTHERHOST;
4172 /* Note: we might in the future use prio bits
4173 * and set skb->priority like in vlan_do_receive()
4174 * For the time being, just ignore Priority Code Point
4175 */
4176 skb->vlan_tci = 0;
4177 }
4178
4179 type = skb->protocol;
4180
4181 /* deliver only exact match when indicated */
4182 if (likely(!deliver_exact)) {
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &ptype_base[ntohs(type) &
4185 PTYPE_HASH_MASK]);
4186 }
4187
4188 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4189 &orig_dev->ptype_specific);
4190
4191 if (unlikely(skb->dev != orig_dev)) {
4192 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193 &skb->dev->ptype_specific);
4194 }
4195
4196 if (pt_prev) {
4197 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4198 goto drop;
4199 else
4200 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4201 } else {
4202 drop:
4203 if (!deliver_exact)
4204 atomic_long_inc(&skb->dev->rx_dropped);
4205 else
4206 atomic_long_inc(&skb->dev->rx_nohandler);
4207 kfree_skb(skb);
4208 /* Jamal, now you will not able to escape explaining
4209 * me how you were going to use this. :-)
4210 */
4211 ret = NET_RX_DROP;
4212 }
4213
4214 out:
4215 return ret;
4216 }
4217
4218 static int __netif_receive_skb(struct sk_buff *skb)
4219 {
4220 int ret;
4221
4222 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4223 unsigned long pflags = current->flags;
4224
4225 /*
4226 * PFMEMALLOC skbs are special, they should
4227 * - be delivered to SOCK_MEMALLOC sockets only
4228 * - stay away from userspace
4229 * - have bounded memory usage
4230 *
4231 * Use PF_MEMALLOC as this saves us from propagating the allocation
4232 * context down to all allocation sites.
4233 */
4234 current->flags |= PF_MEMALLOC;
4235 ret = __netif_receive_skb_core(skb, true);
4236 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4237 } else
4238 ret = __netif_receive_skb_core(skb, false);
4239
4240 return ret;
4241 }
4242
4243 static int netif_receive_skb_internal(struct sk_buff *skb)
4244 {
4245 int ret;
4246
4247 net_timestamp_check(netdev_tstamp_prequeue, skb);
4248
4249 if (skb_defer_rx_timestamp(skb))
4250 return NET_RX_SUCCESS;
4251
4252 rcu_read_lock();
4253
4254 #ifdef CONFIG_RPS
4255 if (static_key_false(&rps_needed)) {
4256 struct rps_dev_flow voidflow, *rflow = &voidflow;
4257 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4258
4259 if (cpu >= 0) {
4260 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4261 rcu_read_unlock();
4262 return ret;
4263 }
4264 }
4265 #endif
4266 ret = __netif_receive_skb(skb);
4267 rcu_read_unlock();
4268 return ret;
4269 }
4270
4271 /**
4272 * netif_receive_skb - process receive buffer from network
4273 * @skb: buffer to process
4274 *
4275 * netif_receive_skb() is the main receive data processing function.
4276 * It always succeeds. The buffer may be dropped during processing
4277 * for congestion control or by the protocol layers.
4278 *
4279 * This function may only be called from softirq context and interrupts
4280 * should be enabled.
4281 *
4282 * Return values (usually ignored):
4283 * NET_RX_SUCCESS: no congestion
4284 * NET_RX_DROP: packet was dropped
4285 */
4286 int netif_receive_skb(struct sk_buff *skb)
4287 {
4288 trace_netif_receive_skb_entry(skb);
4289
4290 return netif_receive_skb_internal(skb);
4291 }
4292 EXPORT_SYMBOL(netif_receive_skb);
4293
4294 /* Network device is going away, flush any packets still pending
4295 * Called with irqs disabled.
4296 */
4297 static void flush_backlog(void *arg)
4298 {
4299 struct net_device *dev = arg;
4300 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4301 struct sk_buff *skb, *tmp;
4302
4303 rps_lock(sd);
4304 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4305 if (skb->dev == dev) {
4306 __skb_unlink(skb, &sd->input_pkt_queue);
4307 kfree_skb(skb);
4308 input_queue_head_incr(sd);
4309 }
4310 }
4311 rps_unlock(sd);
4312
4313 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4314 if (skb->dev == dev) {
4315 __skb_unlink(skb, &sd->process_queue);
4316 kfree_skb(skb);
4317 input_queue_head_incr(sd);
4318 }
4319 }
4320 }
4321
4322 static int napi_gro_complete(struct sk_buff *skb)
4323 {
4324 struct packet_offload *ptype;
4325 __be16 type = skb->protocol;
4326 struct list_head *head = &offload_base;
4327 int err = -ENOENT;
4328
4329 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4330
4331 if (NAPI_GRO_CB(skb)->count == 1) {
4332 skb_shinfo(skb)->gso_size = 0;
4333 goto out;
4334 }
4335
4336 rcu_read_lock();
4337 list_for_each_entry_rcu(ptype, head, list) {
4338 if (ptype->type != type || !ptype->callbacks.gro_complete)
4339 continue;
4340
4341 err = ptype->callbacks.gro_complete(skb, 0);
4342 break;
4343 }
4344 rcu_read_unlock();
4345
4346 if (err) {
4347 WARN_ON(&ptype->list == head);
4348 kfree_skb(skb);
4349 return NET_RX_SUCCESS;
4350 }
4351
4352 out:
4353 return netif_receive_skb_internal(skb);
4354 }
4355
4356 /* napi->gro_list contains packets ordered by age.
4357 * youngest packets at the head of it.
4358 * Complete skbs in reverse order to reduce latencies.
4359 */
4360 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4361 {
4362 struct sk_buff *skb, *prev = NULL;
4363
4364 /* scan list and build reverse chain */
4365 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4366 skb->prev = prev;
4367 prev = skb;
4368 }
4369
4370 for (skb = prev; skb; skb = prev) {
4371 skb->next = NULL;
4372
4373 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4374 return;
4375
4376 prev = skb->prev;
4377 napi_gro_complete(skb);
4378 napi->gro_count--;
4379 }
4380
4381 napi->gro_list = NULL;
4382 }
4383 EXPORT_SYMBOL(napi_gro_flush);
4384
4385 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4386 {
4387 struct sk_buff *p;
4388 unsigned int maclen = skb->dev->hard_header_len;
4389 u32 hash = skb_get_hash_raw(skb);
4390
4391 for (p = napi->gro_list; p; p = p->next) {
4392 unsigned long diffs;
4393
4394 NAPI_GRO_CB(p)->flush = 0;
4395
4396 if (hash != skb_get_hash_raw(p)) {
4397 NAPI_GRO_CB(p)->same_flow = 0;
4398 continue;
4399 }
4400
4401 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4402 diffs |= p->vlan_tci ^ skb->vlan_tci;
4403 diffs |= skb_metadata_dst_cmp(p, skb);
4404 if (maclen == ETH_HLEN)
4405 diffs |= compare_ether_header(skb_mac_header(p),
4406 skb_mac_header(skb));
4407 else if (!diffs)
4408 diffs = memcmp(skb_mac_header(p),
4409 skb_mac_header(skb),
4410 maclen);
4411 NAPI_GRO_CB(p)->same_flow = !diffs;
4412 }
4413 }
4414
4415 static void skb_gro_reset_offset(struct sk_buff *skb)
4416 {
4417 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4418 const skb_frag_t *frag0 = &pinfo->frags[0];
4419
4420 NAPI_GRO_CB(skb)->data_offset = 0;
4421 NAPI_GRO_CB(skb)->frag0 = NULL;
4422 NAPI_GRO_CB(skb)->frag0_len = 0;
4423
4424 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4425 pinfo->nr_frags &&
4426 !PageHighMem(skb_frag_page(frag0))) {
4427 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4428 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4429 }
4430 }
4431
4432 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4433 {
4434 struct skb_shared_info *pinfo = skb_shinfo(skb);
4435
4436 BUG_ON(skb->end - skb->tail < grow);
4437
4438 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4439
4440 skb->data_len -= grow;
4441 skb->tail += grow;
4442
4443 pinfo->frags[0].page_offset += grow;
4444 skb_frag_size_sub(&pinfo->frags[0], grow);
4445
4446 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4447 skb_frag_unref(skb, 0);
4448 memmove(pinfo->frags, pinfo->frags + 1,
4449 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4450 }
4451 }
4452
4453 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4454 {
4455 struct sk_buff **pp = NULL;
4456 struct packet_offload *ptype;
4457 __be16 type = skb->protocol;
4458 struct list_head *head = &offload_base;
4459 int same_flow;
4460 enum gro_result ret;
4461 int grow;
4462
4463 if (!(skb->dev->features & NETIF_F_GRO))
4464 goto normal;
4465
4466 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4467 goto normal;
4468
4469 gro_list_prepare(napi, skb);
4470
4471 rcu_read_lock();
4472 list_for_each_entry_rcu(ptype, head, list) {
4473 if (ptype->type != type || !ptype->callbacks.gro_receive)
4474 continue;
4475
4476 skb_set_network_header(skb, skb_gro_offset(skb));
4477 skb_reset_mac_len(skb);
4478 NAPI_GRO_CB(skb)->same_flow = 0;
4479 NAPI_GRO_CB(skb)->flush = 0;
4480 NAPI_GRO_CB(skb)->free = 0;
4481 NAPI_GRO_CB(skb)->encap_mark = 0;
4482 NAPI_GRO_CB(skb)->is_fou = 0;
4483 NAPI_GRO_CB(skb)->is_atomic = 1;
4484 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4485
4486 /* Setup for GRO checksum validation */
4487 switch (skb->ip_summed) {
4488 case CHECKSUM_COMPLETE:
4489 NAPI_GRO_CB(skb)->csum = skb->csum;
4490 NAPI_GRO_CB(skb)->csum_valid = 1;
4491 NAPI_GRO_CB(skb)->csum_cnt = 0;
4492 break;
4493 case CHECKSUM_UNNECESSARY:
4494 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4495 NAPI_GRO_CB(skb)->csum_valid = 0;
4496 break;
4497 default:
4498 NAPI_GRO_CB(skb)->csum_cnt = 0;
4499 NAPI_GRO_CB(skb)->csum_valid = 0;
4500 }
4501
4502 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4503 break;
4504 }
4505 rcu_read_unlock();
4506
4507 if (&ptype->list == head)
4508 goto normal;
4509
4510 same_flow = NAPI_GRO_CB(skb)->same_flow;
4511 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4512
4513 if (pp) {
4514 struct sk_buff *nskb = *pp;
4515
4516 *pp = nskb->next;
4517 nskb->next = NULL;
4518 napi_gro_complete(nskb);
4519 napi->gro_count--;
4520 }
4521
4522 if (same_flow)
4523 goto ok;
4524
4525 if (NAPI_GRO_CB(skb)->flush)
4526 goto normal;
4527
4528 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4529 struct sk_buff *nskb = napi->gro_list;
4530
4531 /* locate the end of the list to select the 'oldest' flow */
4532 while (nskb->next) {
4533 pp = &nskb->next;
4534 nskb = *pp;
4535 }
4536 *pp = NULL;
4537 nskb->next = NULL;
4538 napi_gro_complete(nskb);
4539 } else {
4540 napi->gro_count++;
4541 }
4542 NAPI_GRO_CB(skb)->count = 1;
4543 NAPI_GRO_CB(skb)->age = jiffies;
4544 NAPI_GRO_CB(skb)->last = skb;
4545 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4546 skb->next = napi->gro_list;
4547 napi->gro_list = skb;
4548 ret = GRO_HELD;
4549
4550 pull:
4551 grow = skb_gro_offset(skb) - skb_headlen(skb);
4552 if (grow > 0)
4553 gro_pull_from_frag0(skb, grow);
4554 ok:
4555 return ret;
4556
4557 normal:
4558 ret = GRO_NORMAL;
4559 goto pull;
4560 }
4561
4562 struct packet_offload *gro_find_receive_by_type(__be16 type)
4563 {
4564 struct list_head *offload_head = &offload_base;
4565 struct packet_offload *ptype;
4566
4567 list_for_each_entry_rcu(ptype, offload_head, list) {
4568 if (ptype->type != type || !ptype->callbacks.gro_receive)
4569 continue;
4570 return ptype;
4571 }
4572 return NULL;
4573 }
4574 EXPORT_SYMBOL(gro_find_receive_by_type);
4575
4576 struct packet_offload *gro_find_complete_by_type(__be16 type)
4577 {
4578 struct list_head *offload_head = &offload_base;
4579 struct packet_offload *ptype;
4580
4581 list_for_each_entry_rcu(ptype, offload_head, list) {
4582 if (ptype->type != type || !ptype->callbacks.gro_complete)
4583 continue;
4584 return ptype;
4585 }
4586 return NULL;
4587 }
4588 EXPORT_SYMBOL(gro_find_complete_by_type);
4589
4590 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4591 {
4592 switch (ret) {
4593 case GRO_NORMAL:
4594 if (netif_receive_skb_internal(skb))
4595 ret = GRO_DROP;
4596 break;
4597
4598 case GRO_DROP:
4599 kfree_skb(skb);
4600 break;
4601
4602 case GRO_MERGED_FREE:
4603 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4604 skb_dst_drop(skb);
4605 kmem_cache_free(skbuff_head_cache, skb);
4606 } else {
4607 __kfree_skb(skb);
4608 }
4609 break;
4610
4611 case GRO_HELD:
4612 case GRO_MERGED:
4613 break;
4614 }
4615
4616 return ret;
4617 }
4618
4619 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4620 {
4621 skb_mark_napi_id(skb, napi);
4622 trace_napi_gro_receive_entry(skb);
4623
4624 skb_gro_reset_offset(skb);
4625
4626 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4627 }
4628 EXPORT_SYMBOL(napi_gro_receive);
4629
4630 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4631 {
4632 if (unlikely(skb->pfmemalloc)) {
4633 consume_skb(skb);
4634 return;
4635 }
4636 __skb_pull(skb, skb_headlen(skb));
4637 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4638 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4639 skb->vlan_tci = 0;
4640 skb->dev = napi->dev;
4641 skb->skb_iif = 0;
4642 skb->encapsulation = 0;
4643 skb_shinfo(skb)->gso_type = 0;
4644 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4645
4646 napi->skb = skb;
4647 }
4648
4649 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4650 {
4651 struct sk_buff *skb = napi->skb;
4652
4653 if (!skb) {
4654 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4655 if (skb) {
4656 napi->skb = skb;
4657 skb_mark_napi_id(skb, napi);
4658 }
4659 }
4660 return skb;
4661 }
4662 EXPORT_SYMBOL(napi_get_frags);
4663
4664 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4665 struct sk_buff *skb,
4666 gro_result_t ret)
4667 {
4668 switch (ret) {
4669 case GRO_NORMAL:
4670 case GRO_HELD:
4671 __skb_push(skb, ETH_HLEN);
4672 skb->protocol = eth_type_trans(skb, skb->dev);
4673 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4674 ret = GRO_DROP;
4675 break;
4676
4677 case GRO_DROP:
4678 case GRO_MERGED_FREE:
4679 napi_reuse_skb(napi, skb);
4680 break;
4681
4682 case GRO_MERGED:
4683 break;
4684 }
4685
4686 return ret;
4687 }
4688
4689 /* Upper GRO stack assumes network header starts at gro_offset=0
4690 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4691 * We copy ethernet header into skb->data to have a common layout.
4692 */
4693 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4694 {
4695 struct sk_buff *skb = napi->skb;
4696 const struct ethhdr *eth;
4697 unsigned int hlen = sizeof(*eth);
4698
4699 napi->skb = NULL;
4700
4701 skb_reset_mac_header(skb);
4702 skb_gro_reset_offset(skb);
4703
4704 eth = skb_gro_header_fast(skb, 0);
4705 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4706 eth = skb_gro_header_slow(skb, hlen, 0);
4707 if (unlikely(!eth)) {
4708 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4709 __func__, napi->dev->name);
4710 napi_reuse_skb(napi, skb);
4711 return NULL;
4712 }
4713 } else {
4714 gro_pull_from_frag0(skb, hlen);
4715 NAPI_GRO_CB(skb)->frag0 += hlen;
4716 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4717 }
4718 __skb_pull(skb, hlen);
4719
4720 /*
4721 * This works because the only protocols we care about don't require
4722 * special handling.
4723 * We'll fix it up properly in napi_frags_finish()
4724 */
4725 skb->protocol = eth->h_proto;
4726
4727 return skb;
4728 }
4729
4730 gro_result_t napi_gro_frags(struct napi_struct *napi)
4731 {
4732 struct sk_buff *skb = napi_frags_skb(napi);
4733
4734 if (!skb)
4735 return GRO_DROP;
4736
4737 trace_napi_gro_frags_entry(skb);
4738
4739 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4740 }
4741 EXPORT_SYMBOL(napi_gro_frags);
4742
4743 /* Compute the checksum from gro_offset and return the folded value
4744 * after adding in any pseudo checksum.
4745 */
4746 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4747 {
4748 __wsum wsum;
4749 __sum16 sum;
4750
4751 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4752
4753 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4754 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4755 if (likely(!sum)) {
4756 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4757 !skb->csum_complete_sw)
4758 netdev_rx_csum_fault(skb->dev);
4759 }
4760
4761 NAPI_GRO_CB(skb)->csum = wsum;
4762 NAPI_GRO_CB(skb)->csum_valid = 1;
4763
4764 return sum;
4765 }
4766 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4767
4768 /*
4769 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4770 * Note: called with local irq disabled, but exits with local irq enabled.
4771 */
4772 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4773 {
4774 #ifdef CONFIG_RPS
4775 struct softnet_data *remsd = sd->rps_ipi_list;
4776
4777 if (remsd) {
4778 sd->rps_ipi_list = NULL;
4779
4780 local_irq_enable();
4781
4782 /* Send pending IPI's to kick RPS processing on remote cpus. */
4783 while (remsd) {
4784 struct softnet_data *next = remsd->rps_ipi_next;
4785
4786 if (cpu_online(remsd->cpu))
4787 smp_call_function_single_async(remsd->cpu,
4788 &remsd->csd);
4789 remsd = next;
4790 }
4791 } else
4792 #endif
4793 local_irq_enable();
4794 }
4795
4796 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4797 {
4798 #ifdef CONFIG_RPS
4799 return sd->rps_ipi_list != NULL;
4800 #else
4801 return false;
4802 #endif
4803 }
4804
4805 static int process_backlog(struct napi_struct *napi, int quota)
4806 {
4807 int work = 0;
4808 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4809
4810 /* Check if we have pending ipi, its better to send them now,
4811 * not waiting net_rx_action() end.
4812 */
4813 if (sd_has_rps_ipi_waiting(sd)) {
4814 local_irq_disable();
4815 net_rps_action_and_irq_enable(sd);
4816 }
4817
4818 napi->weight = weight_p;
4819 local_irq_disable();
4820 while (1) {
4821 struct sk_buff *skb;
4822
4823 while ((skb = __skb_dequeue(&sd->process_queue))) {
4824 rcu_read_lock();
4825 local_irq_enable();
4826 __netif_receive_skb(skb);
4827 rcu_read_unlock();
4828 local_irq_disable();
4829 input_queue_head_incr(sd);
4830 if (++work >= quota) {
4831 local_irq_enable();
4832 return work;
4833 }
4834 }
4835
4836 rps_lock(sd);
4837 if (skb_queue_empty(&sd->input_pkt_queue)) {
4838 /*
4839 * Inline a custom version of __napi_complete().
4840 * only current cpu owns and manipulates this napi,
4841 * and NAPI_STATE_SCHED is the only possible flag set
4842 * on backlog.
4843 * We can use a plain write instead of clear_bit(),
4844 * and we dont need an smp_mb() memory barrier.
4845 */
4846 napi->state = 0;
4847 rps_unlock(sd);
4848
4849 break;
4850 }
4851
4852 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4853 &sd->process_queue);
4854 rps_unlock(sd);
4855 }
4856 local_irq_enable();
4857
4858 return work;
4859 }
4860
4861 /**
4862 * __napi_schedule - schedule for receive
4863 * @n: entry to schedule
4864 *
4865 * The entry's receive function will be scheduled to run.
4866 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4867 */
4868 void __napi_schedule(struct napi_struct *n)
4869 {
4870 unsigned long flags;
4871
4872 local_irq_save(flags);
4873 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4874 local_irq_restore(flags);
4875 }
4876 EXPORT_SYMBOL(__napi_schedule);
4877
4878 /**
4879 * __napi_schedule_irqoff - schedule for receive
4880 * @n: entry to schedule
4881 *
4882 * Variant of __napi_schedule() assuming hard irqs are masked
4883 */
4884 void __napi_schedule_irqoff(struct napi_struct *n)
4885 {
4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 }
4888 EXPORT_SYMBOL(__napi_schedule_irqoff);
4889
4890 void __napi_complete(struct napi_struct *n)
4891 {
4892 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4893
4894 list_del_init(&n->poll_list);
4895 smp_mb__before_atomic();
4896 clear_bit(NAPI_STATE_SCHED, &n->state);
4897 }
4898 EXPORT_SYMBOL(__napi_complete);
4899
4900 void napi_complete_done(struct napi_struct *n, int work_done)
4901 {
4902 unsigned long flags;
4903
4904 /*
4905 * don't let napi dequeue from the cpu poll list
4906 * just in case its running on a different cpu
4907 */
4908 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4909 return;
4910
4911 if (n->gro_list) {
4912 unsigned long timeout = 0;
4913
4914 if (work_done)
4915 timeout = n->dev->gro_flush_timeout;
4916
4917 if (timeout)
4918 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4919 HRTIMER_MODE_REL_PINNED);
4920 else
4921 napi_gro_flush(n, false);
4922 }
4923 if (likely(list_empty(&n->poll_list))) {
4924 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4925 } else {
4926 /* If n->poll_list is not empty, we need to mask irqs */
4927 local_irq_save(flags);
4928 __napi_complete(n);
4929 local_irq_restore(flags);
4930 }
4931 }
4932 EXPORT_SYMBOL(napi_complete_done);
4933
4934 /* must be called under rcu_read_lock(), as we dont take a reference */
4935 static struct napi_struct *napi_by_id(unsigned int napi_id)
4936 {
4937 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4938 struct napi_struct *napi;
4939
4940 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4941 if (napi->napi_id == napi_id)
4942 return napi;
4943
4944 return NULL;
4945 }
4946
4947 #if defined(CONFIG_NET_RX_BUSY_POLL)
4948 #define BUSY_POLL_BUDGET 8
4949 bool sk_busy_loop(struct sock *sk, int nonblock)
4950 {
4951 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4952 int (*busy_poll)(struct napi_struct *dev);
4953 struct napi_struct *napi;
4954 int rc = false;
4955
4956 rcu_read_lock();
4957
4958 napi = napi_by_id(sk->sk_napi_id);
4959 if (!napi)
4960 goto out;
4961
4962 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4963 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4964
4965 do {
4966 rc = 0;
4967 local_bh_disable();
4968 if (busy_poll) {
4969 rc = busy_poll(napi);
4970 } else if (napi_schedule_prep(napi)) {
4971 void *have = netpoll_poll_lock(napi);
4972
4973 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4974 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4975 trace_napi_poll(napi);
4976 if (rc == BUSY_POLL_BUDGET) {
4977 napi_complete_done(napi, rc);
4978 napi_schedule(napi);
4979 }
4980 }
4981 netpoll_poll_unlock(have);
4982 }
4983 if (rc > 0)
4984 __NET_ADD_STATS(sock_net(sk),
4985 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4986 local_bh_enable();
4987
4988 if (rc == LL_FLUSH_FAILED)
4989 break; /* permanent failure */
4990
4991 cpu_relax();
4992 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4993 !need_resched() && !busy_loop_timeout(end_time));
4994
4995 rc = !skb_queue_empty(&sk->sk_receive_queue);
4996 out:
4997 rcu_read_unlock();
4998 return rc;
4999 }
5000 EXPORT_SYMBOL(sk_busy_loop);
5001
5002 #endif /* CONFIG_NET_RX_BUSY_POLL */
5003
5004 void napi_hash_add(struct napi_struct *napi)
5005 {
5006 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5007 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5008 return;
5009
5010 spin_lock(&napi_hash_lock);
5011
5012 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5013 do {
5014 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5015 napi_gen_id = NR_CPUS + 1;
5016 } while (napi_by_id(napi_gen_id));
5017 napi->napi_id = napi_gen_id;
5018
5019 hlist_add_head_rcu(&napi->napi_hash_node,
5020 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5021
5022 spin_unlock(&napi_hash_lock);
5023 }
5024 EXPORT_SYMBOL_GPL(napi_hash_add);
5025
5026 /* Warning : caller is responsible to make sure rcu grace period
5027 * is respected before freeing memory containing @napi
5028 */
5029 bool napi_hash_del(struct napi_struct *napi)
5030 {
5031 bool rcu_sync_needed = false;
5032
5033 spin_lock(&napi_hash_lock);
5034
5035 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5036 rcu_sync_needed = true;
5037 hlist_del_rcu(&napi->napi_hash_node);
5038 }
5039 spin_unlock(&napi_hash_lock);
5040 return rcu_sync_needed;
5041 }
5042 EXPORT_SYMBOL_GPL(napi_hash_del);
5043
5044 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5045 {
5046 struct napi_struct *napi;
5047
5048 napi = container_of(timer, struct napi_struct, timer);
5049 if (napi->gro_list)
5050 napi_schedule(napi);
5051
5052 return HRTIMER_NORESTART;
5053 }
5054
5055 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5056 int (*poll)(struct napi_struct *, int), int weight)
5057 {
5058 INIT_LIST_HEAD(&napi->poll_list);
5059 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5060 napi->timer.function = napi_watchdog;
5061 napi->gro_count = 0;
5062 napi->gro_list = NULL;
5063 napi->skb = NULL;
5064 napi->poll = poll;
5065 if (weight > NAPI_POLL_WEIGHT)
5066 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5067 weight, dev->name);
5068 napi->weight = weight;
5069 list_add(&napi->dev_list, &dev->napi_list);
5070 napi->dev = dev;
5071 #ifdef CONFIG_NETPOLL
5072 spin_lock_init(&napi->poll_lock);
5073 napi->poll_owner = -1;
5074 #endif
5075 set_bit(NAPI_STATE_SCHED, &napi->state);
5076 napi_hash_add(napi);
5077 }
5078 EXPORT_SYMBOL(netif_napi_add);
5079
5080 void napi_disable(struct napi_struct *n)
5081 {
5082 might_sleep();
5083 set_bit(NAPI_STATE_DISABLE, &n->state);
5084
5085 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5086 msleep(1);
5087 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5088 msleep(1);
5089
5090 hrtimer_cancel(&n->timer);
5091
5092 clear_bit(NAPI_STATE_DISABLE, &n->state);
5093 }
5094 EXPORT_SYMBOL(napi_disable);
5095
5096 /* Must be called in process context */
5097 void netif_napi_del(struct napi_struct *napi)
5098 {
5099 might_sleep();
5100 if (napi_hash_del(napi))
5101 synchronize_net();
5102 list_del_init(&napi->dev_list);
5103 napi_free_frags(napi);
5104
5105 kfree_skb_list(napi->gro_list);
5106 napi->gro_list = NULL;
5107 napi->gro_count = 0;
5108 }
5109 EXPORT_SYMBOL(netif_napi_del);
5110
5111 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5112 {
5113 void *have;
5114 int work, weight;
5115
5116 list_del_init(&n->poll_list);
5117
5118 have = netpoll_poll_lock(n);
5119
5120 weight = n->weight;
5121
5122 /* This NAPI_STATE_SCHED test is for avoiding a race
5123 * with netpoll's poll_napi(). Only the entity which
5124 * obtains the lock and sees NAPI_STATE_SCHED set will
5125 * actually make the ->poll() call. Therefore we avoid
5126 * accidentally calling ->poll() when NAPI is not scheduled.
5127 */
5128 work = 0;
5129 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5130 work = n->poll(n, weight);
5131 trace_napi_poll(n);
5132 }
5133
5134 WARN_ON_ONCE(work > weight);
5135
5136 if (likely(work < weight))
5137 goto out_unlock;
5138
5139 /* Drivers must not modify the NAPI state if they
5140 * consume the entire weight. In such cases this code
5141 * still "owns" the NAPI instance and therefore can
5142 * move the instance around on the list at-will.
5143 */
5144 if (unlikely(napi_disable_pending(n))) {
5145 napi_complete(n);
5146 goto out_unlock;
5147 }
5148
5149 if (n->gro_list) {
5150 /* flush too old packets
5151 * If HZ < 1000, flush all packets.
5152 */
5153 napi_gro_flush(n, HZ >= 1000);
5154 }
5155
5156 /* Some drivers may have called napi_schedule
5157 * prior to exhausting their budget.
5158 */
5159 if (unlikely(!list_empty(&n->poll_list))) {
5160 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5161 n->dev ? n->dev->name : "backlog");
5162 goto out_unlock;
5163 }
5164
5165 list_add_tail(&n->poll_list, repoll);
5166
5167 out_unlock:
5168 netpoll_poll_unlock(have);
5169
5170 return work;
5171 }
5172
5173 static void net_rx_action(struct softirq_action *h)
5174 {
5175 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5176 unsigned long time_limit = jiffies + 2;
5177 int budget = netdev_budget;
5178 LIST_HEAD(list);
5179 LIST_HEAD(repoll);
5180
5181 local_irq_disable();
5182 list_splice_init(&sd->poll_list, &list);
5183 local_irq_enable();
5184
5185 for (;;) {
5186 struct napi_struct *n;
5187
5188 if (list_empty(&list)) {
5189 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5190 return;
5191 break;
5192 }
5193
5194 n = list_first_entry(&list, struct napi_struct, poll_list);
5195 budget -= napi_poll(n, &repoll);
5196
5197 /* If softirq window is exhausted then punt.
5198 * Allow this to run for 2 jiffies since which will allow
5199 * an average latency of 1.5/HZ.
5200 */
5201 if (unlikely(budget <= 0 ||
5202 time_after_eq(jiffies, time_limit))) {
5203 sd->time_squeeze++;
5204 break;
5205 }
5206 }
5207
5208 __kfree_skb_flush();
5209 local_irq_disable();
5210
5211 list_splice_tail_init(&sd->poll_list, &list);
5212 list_splice_tail(&repoll, &list);
5213 list_splice(&list, &sd->poll_list);
5214 if (!list_empty(&sd->poll_list))
5215 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5216
5217 net_rps_action_and_irq_enable(sd);
5218 }
5219
5220 struct netdev_adjacent {
5221 struct net_device *dev;
5222
5223 /* upper master flag, there can only be one master device per list */
5224 bool master;
5225
5226 /* counter for the number of times this device was added to us */
5227 u16 ref_nr;
5228
5229 /* private field for the users */
5230 void *private;
5231
5232 struct list_head list;
5233 struct rcu_head rcu;
5234 };
5235
5236 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5237 struct list_head *adj_list)
5238 {
5239 struct netdev_adjacent *adj;
5240
5241 list_for_each_entry(adj, adj_list, list) {
5242 if (adj->dev == adj_dev)
5243 return adj;
5244 }
5245 return NULL;
5246 }
5247
5248 /**
5249 * netdev_has_upper_dev - Check if device is linked to an upper device
5250 * @dev: device
5251 * @upper_dev: upper device to check
5252 *
5253 * Find out if a device is linked to specified upper device and return true
5254 * in case it is. Note that this checks only immediate upper device,
5255 * not through a complete stack of devices. The caller must hold the RTNL lock.
5256 */
5257 bool netdev_has_upper_dev(struct net_device *dev,
5258 struct net_device *upper_dev)
5259 {
5260 ASSERT_RTNL();
5261
5262 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5263 }
5264 EXPORT_SYMBOL(netdev_has_upper_dev);
5265
5266 /**
5267 * netdev_has_any_upper_dev - Check if device is linked to some device
5268 * @dev: device
5269 *
5270 * Find out if a device is linked to an upper device and return true in case
5271 * it is. The caller must hold the RTNL lock.
5272 */
5273 static bool netdev_has_any_upper_dev(struct net_device *dev)
5274 {
5275 ASSERT_RTNL();
5276
5277 return !list_empty(&dev->all_adj_list.upper);
5278 }
5279
5280 /**
5281 * netdev_master_upper_dev_get - Get master upper device
5282 * @dev: device
5283 *
5284 * Find a master upper device and return pointer to it or NULL in case
5285 * it's not there. The caller must hold the RTNL lock.
5286 */
5287 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5288 {
5289 struct netdev_adjacent *upper;
5290
5291 ASSERT_RTNL();
5292
5293 if (list_empty(&dev->adj_list.upper))
5294 return NULL;
5295
5296 upper = list_first_entry(&dev->adj_list.upper,
5297 struct netdev_adjacent, list);
5298 if (likely(upper->master))
5299 return upper->dev;
5300 return NULL;
5301 }
5302 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5303
5304 void *netdev_adjacent_get_private(struct list_head *adj_list)
5305 {
5306 struct netdev_adjacent *adj;
5307
5308 adj = list_entry(adj_list, struct netdev_adjacent, list);
5309
5310 return adj->private;
5311 }
5312 EXPORT_SYMBOL(netdev_adjacent_get_private);
5313
5314 /**
5315 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5316 * @dev: device
5317 * @iter: list_head ** of the current position
5318 *
5319 * Gets the next device from the dev's upper list, starting from iter
5320 * position. The caller must hold RCU read lock.
5321 */
5322 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5323 struct list_head **iter)
5324 {
5325 struct netdev_adjacent *upper;
5326
5327 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5328
5329 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5330
5331 if (&upper->list == &dev->adj_list.upper)
5332 return NULL;
5333
5334 *iter = &upper->list;
5335
5336 return upper->dev;
5337 }
5338 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5339
5340 /**
5341 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5342 * @dev: device
5343 * @iter: list_head ** of the current position
5344 *
5345 * Gets the next device from the dev's upper list, starting from iter
5346 * position. The caller must hold RCU read lock.
5347 */
5348 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5349 struct list_head **iter)
5350 {
5351 struct netdev_adjacent *upper;
5352
5353 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5354
5355 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5356
5357 if (&upper->list == &dev->all_adj_list.upper)
5358 return NULL;
5359
5360 *iter = &upper->list;
5361
5362 return upper->dev;
5363 }
5364 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5365
5366 /**
5367 * netdev_lower_get_next_private - Get the next ->private from the
5368 * lower neighbour list
5369 * @dev: device
5370 * @iter: list_head ** of the current position
5371 *
5372 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5373 * list, starting from iter position. The caller must hold either hold the
5374 * RTNL lock or its own locking that guarantees that the neighbour lower
5375 * list will remain unchanged.
5376 */
5377 void *netdev_lower_get_next_private(struct net_device *dev,
5378 struct list_head **iter)
5379 {
5380 struct netdev_adjacent *lower;
5381
5382 lower = list_entry(*iter, struct netdev_adjacent, list);
5383
5384 if (&lower->list == &dev->adj_list.lower)
5385 return NULL;
5386
5387 *iter = lower->list.next;
5388
5389 return lower->private;
5390 }
5391 EXPORT_SYMBOL(netdev_lower_get_next_private);
5392
5393 /**
5394 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5395 * lower neighbour list, RCU
5396 * variant
5397 * @dev: device
5398 * @iter: list_head ** of the current position
5399 *
5400 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5401 * list, starting from iter position. The caller must hold RCU read lock.
5402 */
5403 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5404 struct list_head **iter)
5405 {
5406 struct netdev_adjacent *lower;
5407
5408 WARN_ON_ONCE(!rcu_read_lock_held());
5409
5410 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5411
5412 if (&lower->list == &dev->adj_list.lower)
5413 return NULL;
5414
5415 *iter = &lower->list;
5416
5417 return lower->private;
5418 }
5419 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5420
5421 /**
5422 * netdev_lower_get_next - Get the next device from the lower neighbour
5423 * list
5424 * @dev: device
5425 * @iter: list_head ** of the current position
5426 *
5427 * Gets the next netdev_adjacent from the dev's lower neighbour
5428 * list, starting from iter position. The caller must hold RTNL lock or
5429 * its own locking that guarantees that the neighbour lower
5430 * list will remain unchanged.
5431 */
5432 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5433 {
5434 struct netdev_adjacent *lower;
5435
5436 lower = list_entry(*iter, struct netdev_adjacent, list);
5437
5438 if (&lower->list == &dev->adj_list.lower)
5439 return NULL;
5440
5441 *iter = lower->list.next;
5442
5443 return lower->dev;
5444 }
5445 EXPORT_SYMBOL(netdev_lower_get_next);
5446
5447 /**
5448 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5449 * lower neighbour list, RCU
5450 * variant
5451 * @dev: device
5452 *
5453 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5454 * list. The caller must hold RCU read lock.
5455 */
5456 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5457 {
5458 struct netdev_adjacent *lower;
5459
5460 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5461 struct netdev_adjacent, list);
5462 if (lower)
5463 return lower->private;
5464 return NULL;
5465 }
5466 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5467
5468 /**
5469 * netdev_master_upper_dev_get_rcu - Get master upper device
5470 * @dev: device
5471 *
5472 * Find a master upper device and return pointer to it or NULL in case
5473 * it's not there. The caller must hold the RCU read lock.
5474 */
5475 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5476 {
5477 struct netdev_adjacent *upper;
5478
5479 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5480 struct netdev_adjacent, list);
5481 if (upper && likely(upper->master))
5482 return upper->dev;
5483 return NULL;
5484 }
5485 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5486
5487 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5488 struct net_device *adj_dev,
5489 struct list_head *dev_list)
5490 {
5491 char linkname[IFNAMSIZ+7];
5492 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5493 "upper_%s" : "lower_%s", adj_dev->name);
5494 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5495 linkname);
5496 }
5497 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5498 char *name,
5499 struct list_head *dev_list)
5500 {
5501 char linkname[IFNAMSIZ+7];
5502 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5503 "upper_%s" : "lower_%s", name);
5504 sysfs_remove_link(&(dev->dev.kobj), linkname);
5505 }
5506
5507 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5508 struct net_device *adj_dev,
5509 struct list_head *dev_list)
5510 {
5511 return (dev_list == &dev->adj_list.upper ||
5512 dev_list == &dev->adj_list.lower) &&
5513 net_eq(dev_net(dev), dev_net(adj_dev));
5514 }
5515
5516 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5517 struct net_device *adj_dev,
5518 struct list_head *dev_list,
5519 void *private, bool master)
5520 {
5521 struct netdev_adjacent *adj;
5522 int ret;
5523
5524 adj = __netdev_find_adj(adj_dev, dev_list);
5525
5526 if (adj) {
5527 adj->ref_nr++;
5528 return 0;
5529 }
5530
5531 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5532 if (!adj)
5533 return -ENOMEM;
5534
5535 adj->dev = adj_dev;
5536 adj->master = master;
5537 adj->ref_nr = 1;
5538 adj->private = private;
5539 dev_hold(adj_dev);
5540
5541 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5542 adj_dev->name, dev->name, adj_dev->name);
5543
5544 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5545 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5546 if (ret)
5547 goto free_adj;
5548 }
5549
5550 /* Ensure that master link is always the first item in list. */
5551 if (master) {
5552 ret = sysfs_create_link(&(dev->dev.kobj),
5553 &(adj_dev->dev.kobj), "master");
5554 if (ret)
5555 goto remove_symlinks;
5556
5557 list_add_rcu(&adj->list, dev_list);
5558 } else {
5559 list_add_tail_rcu(&adj->list, dev_list);
5560 }
5561
5562 return 0;
5563
5564 remove_symlinks:
5565 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5566 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5567 free_adj:
5568 kfree(adj);
5569 dev_put(adj_dev);
5570
5571 return ret;
5572 }
5573
5574 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5575 struct net_device *adj_dev,
5576 struct list_head *dev_list)
5577 {
5578 struct netdev_adjacent *adj;
5579
5580 adj = __netdev_find_adj(adj_dev, dev_list);
5581
5582 if (!adj) {
5583 pr_err("tried to remove device %s from %s\n",
5584 dev->name, adj_dev->name);
5585 BUG();
5586 }
5587
5588 if (adj->ref_nr > 1) {
5589 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5590 adj->ref_nr-1);
5591 adj->ref_nr--;
5592 return;
5593 }
5594
5595 if (adj->master)
5596 sysfs_remove_link(&(dev->dev.kobj), "master");
5597
5598 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5599 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5600
5601 list_del_rcu(&adj->list);
5602 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5603 adj_dev->name, dev->name, adj_dev->name);
5604 dev_put(adj_dev);
5605 kfree_rcu(adj, rcu);
5606 }
5607
5608 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5609 struct net_device *upper_dev,
5610 struct list_head *up_list,
5611 struct list_head *down_list,
5612 void *private, bool master)
5613 {
5614 int ret;
5615
5616 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5617 master);
5618 if (ret)
5619 return ret;
5620
5621 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5622 false);
5623 if (ret) {
5624 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5625 return ret;
5626 }
5627
5628 return 0;
5629 }
5630
5631 static int __netdev_adjacent_dev_link(struct net_device *dev,
5632 struct net_device *upper_dev)
5633 {
5634 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5635 &dev->all_adj_list.upper,
5636 &upper_dev->all_adj_list.lower,
5637 NULL, false);
5638 }
5639
5640 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5641 struct net_device *upper_dev,
5642 struct list_head *up_list,
5643 struct list_head *down_list)
5644 {
5645 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5646 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5647 }
5648
5649 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5650 struct net_device *upper_dev)
5651 {
5652 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5653 &dev->all_adj_list.upper,
5654 &upper_dev->all_adj_list.lower);
5655 }
5656
5657 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5658 struct net_device *upper_dev,
5659 void *private, bool master)
5660 {
5661 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5662
5663 if (ret)
5664 return ret;
5665
5666 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5667 &dev->adj_list.upper,
5668 &upper_dev->adj_list.lower,
5669 private, master);
5670 if (ret) {
5671 __netdev_adjacent_dev_unlink(dev, upper_dev);
5672 return ret;
5673 }
5674
5675 return 0;
5676 }
5677
5678 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5679 struct net_device *upper_dev)
5680 {
5681 __netdev_adjacent_dev_unlink(dev, upper_dev);
5682 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5683 &dev->adj_list.upper,
5684 &upper_dev->adj_list.lower);
5685 }
5686
5687 static int __netdev_upper_dev_link(struct net_device *dev,
5688 struct net_device *upper_dev, bool master,
5689 void *upper_priv, void *upper_info)
5690 {
5691 struct netdev_notifier_changeupper_info changeupper_info;
5692 struct netdev_adjacent *i, *j, *to_i, *to_j;
5693 int ret = 0;
5694
5695 ASSERT_RTNL();
5696
5697 if (dev == upper_dev)
5698 return -EBUSY;
5699
5700 /* To prevent loops, check if dev is not upper device to upper_dev. */
5701 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5702 return -EBUSY;
5703
5704 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5705 return -EEXIST;
5706
5707 if (master && netdev_master_upper_dev_get(dev))
5708 return -EBUSY;
5709
5710 changeupper_info.upper_dev = upper_dev;
5711 changeupper_info.master = master;
5712 changeupper_info.linking = true;
5713 changeupper_info.upper_info = upper_info;
5714
5715 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5716 &changeupper_info.info);
5717 ret = notifier_to_errno(ret);
5718 if (ret)
5719 return ret;
5720
5721 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5722 master);
5723 if (ret)
5724 return ret;
5725
5726 /* Now that we linked these devs, make all the upper_dev's
5727 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5728 * versa, and don't forget the devices itself. All of these
5729 * links are non-neighbours.
5730 */
5731 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5732 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5733 pr_debug("Interlinking %s with %s, non-neighbour\n",
5734 i->dev->name, j->dev->name);
5735 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5736 if (ret)
5737 goto rollback_mesh;
5738 }
5739 }
5740
5741 /* add dev to every upper_dev's upper device */
5742 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5743 pr_debug("linking %s's upper device %s with %s\n",
5744 upper_dev->name, i->dev->name, dev->name);
5745 ret = __netdev_adjacent_dev_link(dev, i->dev);
5746 if (ret)
5747 goto rollback_upper_mesh;
5748 }
5749
5750 /* add upper_dev to every dev's lower device */
5751 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5752 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5753 i->dev->name, upper_dev->name);
5754 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5755 if (ret)
5756 goto rollback_lower_mesh;
5757 }
5758
5759 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5760 &changeupper_info.info);
5761 ret = notifier_to_errno(ret);
5762 if (ret)
5763 goto rollback_lower_mesh;
5764
5765 return 0;
5766
5767 rollback_lower_mesh:
5768 to_i = i;
5769 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5770 if (i == to_i)
5771 break;
5772 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5773 }
5774
5775 i = NULL;
5776
5777 rollback_upper_mesh:
5778 to_i = i;
5779 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5780 if (i == to_i)
5781 break;
5782 __netdev_adjacent_dev_unlink(dev, i->dev);
5783 }
5784
5785 i = j = NULL;
5786
5787 rollback_mesh:
5788 to_i = i;
5789 to_j = j;
5790 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5791 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5792 if (i == to_i && j == to_j)
5793 break;
5794 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5795 }
5796 if (i == to_i)
5797 break;
5798 }
5799
5800 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5801
5802 return ret;
5803 }
5804
5805 /**
5806 * netdev_upper_dev_link - Add a link to the upper device
5807 * @dev: device
5808 * @upper_dev: new upper device
5809 *
5810 * Adds a link to device which is upper to this one. The caller must hold
5811 * the RTNL lock. On a failure a negative errno code is returned.
5812 * On success the reference counts are adjusted and the function
5813 * returns zero.
5814 */
5815 int netdev_upper_dev_link(struct net_device *dev,
5816 struct net_device *upper_dev)
5817 {
5818 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5819 }
5820 EXPORT_SYMBOL(netdev_upper_dev_link);
5821
5822 /**
5823 * netdev_master_upper_dev_link - Add a master link to the upper device
5824 * @dev: device
5825 * @upper_dev: new upper device
5826 * @upper_priv: upper device private
5827 * @upper_info: upper info to be passed down via notifier
5828 *
5829 * Adds a link to device which is upper to this one. In this case, only
5830 * one master upper device can be linked, although other non-master devices
5831 * might be linked as well. The caller must hold the RTNL lock.
5832 * On a failure a negative errno code is returned. On success the reference
5833 * counts are adjusted and the function returns zero.
5834 */
5835 int netdev_master_upper_dev_link(struct net_device *dev,
5836 struct net_device *upper_dev,
5837 void *upper_priv, void *upper_info)
5838 {
5839 return __netdev_upper_dev_link(dev, upper_dev, true,
5840 upper_priv, upper_info);
5841 }
5842 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5843
5844 /**
5845 * netdev_upper_dev_unlink - Removes a link to upper device
5846 * @dev: device
5847 * @upper_dev: new upper device
5848 *
5849 * Removes a link to device which is upper to this one. The caller must hold
5850 * the RTNL lock.
5851 */
5852 void netdev_upper_dev_unlink(struct net_device *dev,
5853 struct net_device *upper_dev)
5854 {
5855 struct netdev_notifier_changeupper_info changeupper_info;
5856 struct netdev_adjacent *i, *j;
5857 ASSERT_RTNL();
5858
5859 changeupper_info.upper_dev = upper_dev;
5860 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5861 changeupper_info.linking = false;
5862
5863 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5864 &changeupper_info.info);
5865
5866 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5867
5868 /* Here is the tricky part. We must remove all dev's lower
5869 * devices from all upper_dev's upper devices and vice
5870 * versa, to maintain the graph relationship.
5871 */
5872 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5873 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5874 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5875
5876 /* remove also the devices itself from lower/upper device
5877 * list
5878 */
5879 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5880 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5881
5882 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5883 __netdev_adjacent_dev_unlink(dev, i->dev);
5884
5885 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5886 &changeupper_info.info);
5887 }
5888 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5889
5890 /**
5891 * netdev_bonding_info_change - Dispatch event about slave change
5892 * @dev: device
5893 * @bonding_info: info to dispatch
5894 *
5895 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5896 * The caller must hold the RTNL lock.
5897 */
5898 void netdev_bonding_info_change(struct net_device *dev,
5899 struct netdev_bonding_info *bonding_info)
5900 {
5901 struct netdev_notifier_bonding_info info;
5902
5903 memcpy(&info.bonding_info, bonding_info,
5904 sizeof(struct netdev_bonding_info));
5905 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5906 &info.info);
5907 }
5908 EXPORT_SYMBOL(netdev_bonding_info_change);
5909
5910 static void netdev_adjacent_add_links(struct net_device *dev)
5911 {
5912 struct netdev_adjacent *iter;
5913
5914 struct net *net = dev_net(dev);
5915
5916 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5917 if (!net_eq(net, dev_net(iter->dev)))
5918 continue;
5919 netdev_adjacent_sysfs_add(iter->dev, dev,
5920 &iter->dev->adj_list.lower);
5921 netdev_adjacent_sysfs_add(dev, iter->dev,
5922 &dev->adj_list.upper);
5923 }
5924
5925 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5926 if (!net_eq(net, dev_net(iter->dev)))
5927 continue;
5928 netdev_adjacent_sysfs_add(iter->dev, dev,
5929 &iter->dev->adj_list.upper);
5930 netdev_adjacent_sysfs_add(dev, iter->dev,
5931 &dev->adj_list.lower);
5932 }
5933 }
5934
5935 static void netdev_adjacent_del_links(struct net_device *dev)
5936 {
5937 struct netdev_adjacent *iter;
5938
5939 struct net *net = dev_net(dev);
5940
5941 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5942 if (!net_eq(net, dev_net(iter->dev)))
5943 continue;
5944 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5945 &iter->dev->adj_list.lower);
5946 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5947 &dev->adj_list.upper);
5948 }
5949
5950 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5951 if (!net_eq(net, dev_net(iter->dev)))
5952 continue;
5953 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5954 &iter->dev->adj_list.upper);
5955 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5956 &dev->adj_list.lower);
5957 }
5958 }
5959
5960 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5961 {
5962 struct netdev_adjacent *iter;
5963
5964 struct net *net = dev_net(dev);
5965
5966 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5967 if (!net_eq(net, dev_net(iter->dev)))
5968 continue;
5969 netdev_adjacent_sysfs_del(iter->dev, oldname,
5970 &iter->dev->adj_list.lower);
5971 netdev_adjacent_sysfs_add(iter->dev, dev,
5972 &iter->dev->adj_list.lower);
5973 }
5974
5975 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5976 if (!net_eq(net, dev_net(iter->dev)))
5977 continue;
5978 netdev_adjacent_sysfs_del(iter->dev, oldname,
5979 &iter->dev->adj_list.upper);
5980 netdev_adjacent_sysfs_add(iter->dev, dev,
5981 &iter->dev->adj_list.upper);
5982 }
5983 }
5984
5985 void *netdev_lower_dev_get_private(struct net_device *dev,
5986 struct net_device *lower_dev)
5987 {
5988 struct netdev_adjacent *lower;
5989
5990 if (!lower_dev)
5991 return NULL;
5992 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5993 if (!lower)
5994 return NULL;
5995
5996 return lower->private;
5997 }
5998 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5999
6000
6001 int dev_get_nest_level(struct net_device *dev,
6002 bool (*type_check)(const struct net_device *dev))
6003 {
6004 struct net_device *lower = NULL;
6005 struct list_head *iter;
6006 int max_nest = -1;
6007 int nest;
6008
6009 ASSERT_RTNL();
6010
6011 netdev_for_each_lower_dev(dev, lower, iter) {
6012 nest = dev_get_nest_level(lower, type_check);
6013 if (max_nest < nest)
6014 max_nest = nest;
6015 }
6016
6017 if (type_check(dev))
6018 max_nest++;
6019
6020 return max_nest;
6021 }
6022 EXPORT_SYMBOL(dev_get_nest_level);
6023
6024 /**
6025 * netdev_lower_change - Dispatch event about lower device state change
6026 * @lower_dev: device
6027 * @lower_state_info: state to dispatch
6028 *
6029 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6030 * The caller must hold the RTNL lock.
6031 */
6032 void netdev_lower_state_changed(struct net_device *lower_dev,
6033 void *lower_state_info)
6034 {
6035 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6036
6037 ASSERT_RTNL();
6038 changelowerstate_info.lower_state_info = lower_state_info;
6039 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6040 &changelowerstate_info.info);
6041 }
6042 EXPORT_SYMBOL(netdev_lower_state_changed);
6043
6044 static void dev_change_rx_flags(struct net_device *dev, int flags)
6045 {
6046 const struct net_device_ops *ops = dev->netdev_ops;
6047
6048 if (ops->ndo_change_rx_flags)
6049 ops->ndo_change_rx_flags(dev, flags);
6050 }
6051
6052 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6053 {
6054 unsigned int old_flags = dev->flags;
6055 kuid_t uid;
6056 kgid_t gid;
6057
6058 ASSERT_RTNL();
6059
6060 dev->flags |= IFF_PROMISC;
6061 dev->promiscuity += inc;
6062 if (dev->promiscuity == 0) {
6063 /*
6064 * Avoid overflow.
6065 * If inc causes overflow, untouch promisc and return error.
6066 */
6067 if (inc < 0)
6068 dev->flags &= ~IFF_PROMISC;
6069 else {
6070 dev->promiscuity -= inc;
6071 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6072 dev->name);
6073 return -EOVERFLOW;
6074 }
6075 }
6076 if (dev->flags != old_flags) {
6077 pr_info("device %s %s promiscuous mode\n",
6078 dev->name,
6079 dev->flags & IFF_PROMISC ? "entered" : "left");
6080 if (audit_enabled) {
6081 current_uid_gid(&uid, &gid);
6082 audit_log(current->audit_context, GFP_ATOMIC,
6083 AUDIT_ANOM_PROMISCUOUS,
6084 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6085 dev->name, (dev->flags & IFF_PROMISC),
6086 (old_flags & IFF_PROMISC),
6087 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6088 from_kuid(&init_user_ns, uid),
6089 from_kgid(&init_user_ns, gid),
6090 audit_get_sessionid(current));
6091 }
6092
6093 dev_change_rx_flags(dev, IFF_PROMISC);
6094 }
6095 if (notify)
6096 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6097 return 0;
6098 }
6099
6100 /**
6101 * dev_set_promiscuity - update promiscuity count on a device
6102 * @dev: device
6103 * @inc: modifier
6104 *
6105 * Add or remove promiscuity from a device. While the count in the device
6106 * remains above zero the interface remains promiscuous. Once it hits zero
6107 * the device reverts back to normal filtering operation. A negative inc
6108 * value is used to drop promiscuity on the device.
6109 * Return 0 if successful or a negative errno code on error.
6110 */
6111 int dev_set_promiscuity(struct net_device *dev, int inc)
6112 {
6113 unsigned int old_flags = dev->flags;
6114 int err;
6115
6116 err = __dev_set_promiscuity(dev, inc, true);
6117 if (err < 0)
6118 return err;
6119 if (dev->flags != old_flags)
6120 dev_set_rx_mode(dev);
6121 return err;
6122 }
6123 EXPORT_SYMBOL(dev_set_promiscuity);
6124
6125 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6126 {
6127 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6128
6129 ASSERT_RTNL();
6130
6131 dev->flags |= IFF_ALLMULTI;
6132 dev->allmulti += inc;
6133 if (dev->allmulti == 0) {
6134 /*
6135 * Avoid overflow.
6136 * If inc causes overflow, untouch allmulti and return error.
6137 */
6138 if (inc < 0)
6139 dev->flags &= ~IFF_ALLMULTI;
6140 else {
6141 dev->allmulti -= inc;
6142 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6143 dev->name);
6144 return -EOVERFLOW;
6145 }
6146 }
6147 if (dev->flags ^ old_flags) {
6148 dev_change_rx_flags(dev, IFF_ALLMULTI);
6149 dev_set_rx_mode(dev);
6150 if (notify)
6151 __dev_notify_flags(dev, old_flags,
6152 dev->gflags ^ old_gflags);
6153 }
6154 return 0;
6155 }
6156
6157 /**
6158 * dev_set_allmulti - update allmulti count on a device
6159 * @dev: device
6160 * @inc: modifier
6161 *
6162 * Add or remove reception of all multicast frames to a device. While the
6163 * count in the device remains above zero the interface remains listening
6164 * to all interfaces. Once it hits zero the device reverts back to normal
6165 * filtering operation. A negative @inc value is used to drop the counter
6166 * when releasing a resource needing all multicasts.
6167 * Return 0 if successful or a negative errno code on error.
6168 */
6169
6170 int dev_set_allmulti(struct net_device *dev, int inc)
6171 {
6172 return __dev_set_allmulti(dev, inc, true);
6173 }
6174 EXPORT_SYMBOL(dev_set_allmulti);
6175
6176 /*
6177 * Upload unicast and multicast address lists to device and
6178 * configure RX filtering. When the device doesn't support unicast
6179 * filtering it is put in promiscuous mode while unicast addresses
6180 * are present.
6181 */
6182 void __dev_set_rx_mode(struct net_device *dev)
6183 {
6184 const struct net_device_ops *ops = dev->netdev_ops;
6185
6186 /* dev_open will call this function so the list will stay sane. */
6187 if (!(dev->flags&IFF_UP))
6188 return;
6189
6190 if (!netif_device_present(dev))
6191 return;
6192
6193 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6194 /* Unicast addresses changes may only happen under the rtnl,
6195 * therefore calling __dev_set_promiscuity here is safe.
6196 */
6197 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6198 __dev_set_promiscuity(dev, 1, false);
6199 dev->uc_promisc = true;
6200 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6201 __dev_set_promiscuity(dev, -1, false);
6202 dev->uc_promisc = false;
6203 }
6204 }
6205
6206 if (ops->ndo_set_rx_mode)
6207 ops->ndo_set_rx_mode(dev);
6208 }
6209
6210 void dev_set_rx_mode(struct net_device *dev)
6211 {
6212 netif_addr_lock_bh(dev);
6213 __dev_set_rx_mode(dev);
6214 netif_addr_unlock_bh(dev);
6215 }
6216
6217 /**
6218 * dev_get_flags - get flags reported to userspace
6219 * @dev: device
6220 *
6221 * Get the combination of flag bits exported through APIs to userspace.
6222 */
6223 unsigned int dev_get_flags(const struct net_device *dev)
6224 {
6225 unsigned int flags;
6226
6227 flags = (dev->flags & ~(IFF_PROMISC |
6228 IFF_ALLMULTI |
6229 IFF_RUNNING |
6230 IFF_LOWER_UP |
6231 IFF_DORMANT)) |
6232 (dev->gflags & (IFF_PROMISC |
6233 IFF_ALLMULTI));
6234
6235 if (netif_running(dev)) {
6236 if (netif_oper_up(dev))
6237 flags |= IFF_RUNNING;
6238 if (netif_carrier_ok(dev))
6239 flags |= IFF_LOWER_UP;
6240 if (netif_dormant(dev))
6241 flags |= IFF_DORMANT;
6242 }
6243
6244 return flags;
6245 }
6246 EXPORT_SYMBOL(dev_get_flags);
6247
6248 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6249 {
6250 unsigned int old_flags = dev->flags;
6251 int ret;
6252
6253 ASSERT_RTNL();
6254
6255 /*
6256 * Set the flags on our device.
6257 */
6258
6259 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6260 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6261 IFF_AUTOMEDIA)) |
6262 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6263 IFF_ALLMULTI));
6264
6265 /*
6266 * Load in the correct multicast list now the flags have changed.
6267 */
6268
6269 if ((old_flags ^ flags) & IFF_MULTICAST)
6270 dev_change_rx_flags(dev, IFF_MULTICAST);
6271
6272 dev_set_rx_mode(dev);
6273
6274 /*
6275 * Have we downed the interface. We handle IFF_UP ourselves
6276 * according to user attempts to set it, rather than blindly
6277 * setting it.
6278 */
6279
6280 ret = 0;
6281 if ((old_flags ^ flags) & IFF_UP)
6282 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6283
6284 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6285 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6286 unsigned int old_flags = dev->flags;
6287
6288 dev->gflags ^= IFF_PROMISC;
6289
6290 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6291 if (dev->flags != old_flags)
6292 dev_set_rx_mode(dev);
6293 }
6294
6295 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6296 is important. Some (broken) drivers set IFF_PROMISC, when
6297 IFF_ALLMULTI is requested not asking us and not reporting.
6298 */
6299 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6300 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6301
6302 dev->gflags ^= IFF_ALLMULTI;
6303 __dev_set_allmulti(dev, inc, false);
6304 }
6305
6306 return ret;
6307 }
6308
6309 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6310 unsigned int gchanges)
6311 {
6312 unsigned int changes = dev->flags ^ old_flags;
6313
6314 if (gchanges)
6315 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6316
6317 if (changes & IFF_UP) {
6318 if (dev->flags & IFF_UP)
6319 call_netdevice_notifiers(NETDEV_UP, dev);
6320 else
6321 call_netdevice_notifiers(NETDEV_DOWN, dev);
6322 }
6323
6324 if (dev->flags & IFF_UP &&
6325 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6326 struct netdev_notifier_change_info change_info;
6327
6328 change_info.flags_changed = changes;
6329 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6330 &change_info.info);
6331 }
6332 }
6333
6334 /**
6335 * dev_change_flags - change device settings
6336 * @dev: device
6337 * @flags: device state flags
6338 *
6339 * Change settings on device based state flags. The flags are
6340 * in the userspace exported format.
6341 */
6342 int dev_change_flags(struct net_device *dev, unsigned int flags)
6343 {
6344 int ret;
6345 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6346
6347 ret = __dev_change_flags(dev, flags);
6348 if (ret < 0)
6349 return ret;
6350
6351 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6352 __dev_notify_flags(dev, old_flags, changes);
6353 return ret;
6354 }
6355 EXPORT_SYMBOL(dev_change_flags);
6356
6357 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6358 {
6359 const struct net_device_ops *ops = dev->netdev_ops;
6360
6361 if (ops->ndo_change_mtu)
6362 return ops->ndo_change_mtu(dev, new_mtu);
6363
6364 dev->mtu = new_mtu;
6365 return 0;
6366 }
6367
6368 /**
6369 * dev_set_mtu - Change maximum transfer unit
6370 * @dev: device
6371 * @new_mtu: new transfer unit
6372 *
6373 * Change the maximum transfer size of the network device.
6374 */
6375 int dev_set_mtu(struct net_device *dev, int new_mtu)
6376 {
6377 int err, orig_mtu;
6378
6379 if (new_mtu == dev->mtu)
6380 return 0;
6381
6382 /* MTU must be positive. */
6383 if (new_mtu < 0)
6384 return -EINVAL;
6385
6386 if (!netif_device_present(dev))
6387 return -ENODEV;
6388
6389 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6390 err = notifier_to_errno(err);
6391 if (err)
6392 return err;
6393
6394 orig_mtu = dev->mtu;
6395 err = __dev_set_mtu(dev, new_mtu);
6396
6397 if (!err) {
6398 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6399 err = notifier_to_errno(err);
6400 if (err) {
6401 /* setting mtu back and notifying everyone again,
6402 * so that they have a chance to revert changes.
6403 */
6404 __dev_set_mtu(dev, orig_mtu);
6405 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6406 }
6407 }
6408 return err;
6409 }
6410 EXPORT_SYMBOL(dev_set_mtu);
6411
6412 /**
6413 * dev_set_group - Change group this device belongs to
6414 * @dev: device
6415 * @new_group: group this device should belong to
6416 */
6417 void dev_set_group(struct net_device *dev, int new_group)
6418 {
6419 dev->group = new_group;
6420 }
6421 EXPORT_SYMBOL(dev_set_group);
6422
6423 /**
6424 * dev_set_mac_address - Change Media Access Control Address
6425 * @dev: device
6426 * @sa: new address
6427 *
6428 * Change the hardware (MAC) address of the device
6429 */
6430 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6431 {
6432 const struct net_device_ops *ops = dev->netdev_ops;
6433 int err;
6434
6435 if (!ops->ndo_set_mac_address)
6436 return -EOPNOTSUPP;
6437 if (sa->sa_family != dev->type)
6438 return -EINVAL;
6439 if (!netif_device_present(dev))
6440 return -ENODEV;
6441 err = ops->ndo_set_mac_address(dev, sa);
6442 if (err)
6443 return err;
6444 dev->addr_assign_type = NET_ADDR_SET;
6445 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6446 add_device_randomness(dev->dev_addr, dev->addr_len);
6447 return 0;
6448 }
6449 EXPORT_SYMBOL(dev_set_mac_address);
6450
6451 /**
6452 * dev_change_carrier - Change device carrier
6453 * @dev: device
6454 * @new_carrier: new value
6455 *
6456 * Change device carrier
6457 */
6458 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6459 {
6460 const struct net_device_ops *ops = dev->netdev_ops;
6461
6462 if (!ops->ndo_change_carrier)
6463 return -EOPNOTSUPP;
6464 if (!netif_device_present(dev))
6465 return -ENODEV;
6466 return ops->ndo_change_carrier(dev, new_carrier);
6467 }
6468 EXPORT_SYMBOL(dev_change_carrier);
6469
6470 /**
6471 * dev_get_phys_port_id - Get device physical port ID
6472 * @dev: device
6473 * @ppid: port ID
6474 *
6475 * Get device physical port ID
6476 */
6477 int dev_get_phys_port_id(struct net_device *dev,
6478 struct netdev_phys_item_id *ppid)
6479 {
6480 const struct net_device_ops *ops = dev->netdev_ops;
6481
6482 if (!ops->ndo_get_phys_port_id)
6483 return -EOPNOTSUPP;
6484 return ops->ndo_get_phys_port_id(dev, ppid);
6485 }
6486 EXPORT_SYMBOL(dev_get_phys_port_id);
6487
6488 /**
6489 * dev_get_phys_port_name - Get device physical port name
6490 * @dev: device
6491 * @name: port name
6492 * @len: limit of bytes to copy to name
6493 *
6494 * Get device physical port name
6495 */
6496 int dev_get_phys_port_name(struct net_device *dev,
6497 char *name, size_t len)
6498 {
6499 const struct net_device_ops *ops = dev->netdev_ops;
6500
6501 if (!ops->ndo_get_phys_port_name)
6502 return -EOPNOTSUPP;
6503 return ops->ndo_get_phys_port_name(dev, name, len);
6504 }
6505 EXPORT_SYMBOL(dev_get_phys_port_name);
6506
6507 /**
6508 * dev_change_proto_down - update protocol port state information
6509 * @dev: device
6510 * @proto_down: new value
6511 *
6512 * This info can be used by switch drivers to set the phys state of the
6513 * port.
6514 */
6515 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6516 {
6517 const struct net_device_ops *ops = dev->netdev_ops;
6518
6519 if (!ops->ndo_change_proto_down)
6520 return -EOPNOTSUPP;
6521 if (!netif_device_present(dev))
6522 return -ENODEV;
6523 return ops->ndo_change_proto_down(dev, proto_down);
6524 }
6525 EXPORT_SYMBOL(dev_change_proto_down);
6526
6527 /**
6528 * dev_new_index - allocate an ifindex
6529 * @net: the applicable net namespace
6530 *
6531 * Returns a suitable unique value for a new device interface
6532 * number. The caller must hold the rtnl semaphore or the
6533 * dev_base_lock to be sure it remains unique.
6534 */
6535 static int dev_new_index(struct net *net)
6536 {
6537 int ifindex = net->ifindex;
6538 for (;;) {
6539 if (++ifindex <= 0)
6540 ifindex = 1;
6541 if (!__dev_get_by_index(net, ifindex))
6542 return net->ifindex = ifindex;
6543 }
6544 }
6545
6546 /* Delayed registration/unregisteration */
6547 static LIST_HEAD(net_todo_list);
6548 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6549
6550 static void net_set_todo(struct net_device *dev)
6551 {
6552 list_add_tail(&dev->todo_list, &net_todo_list);
6553 dev_net(dev)->dev_unreg_count++;
6554 }
6555
6556 static void rollback_registered_many(struct list_head *head)
6557 {
6558 struct net_device *dev, *tmp;
6559 LIST_HEAD(close_head);
6560
6561 BUG_ON(dev_boot_phase);
6562 ASSERT_RTNL();
6563
6564 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6565 /* Some devices call without registering
6566 * for initialization unwind. Remove those
6567 * devices and proceed with the remaining.
6568 */
6569 if (dev->reg_state == NETREG_UNINITIALIZED) {
6570 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6571 dev->name, dev);
6572
6573 WARN_ON(1);
6574 list_del(&dev->unreg_list);
6575 continue;
6576 }
6577 dev->dismantle = true;
6578 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6579 }
6580
6581 /* If device is running, close it first. */
6582 list_for_each_entry(dev, head, unreg_list)
6583 list_add_tail(&dev->close_list, &close_head);
6584 dev_close_many(&close_head, true);
6585
6586 list_for_each_entry(dev, head, unreg_list) {
6587 /* And unlink it from device chain. */
6588 unlist_netdevice(dev);
6589
6590 dev->reg_state = NETREG_UNREGISTERING;
6591 on_each_cpu(flush_backlog, dev, 1);
6592 }
6593
6594 synchronize_net();
6595
6596 list_for_each_entry(dev, head, unreg_list) {
6597 struct sk_buff *skb = NULL;
6598
6599 /* Shutdown queueing discipline. */
6600 dev_shutdown(dev);
6601
6602
6603 /* Notify protocols, that we are about to destroy
6604 this device. They should clean all the things.
6605 */
6606 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6607
6608 if (!dev->rtnl_link_ops ||
6609 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6610 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6611 GFP_KERNEL);
6612
6613 /*
6614 * Flush the unicast and multicast chains
6615 */
6616 dev_uc_flush(dev);
6617 dev_mc_flush(dev);
6618
6619 if (dev->netdev_ops->ndo_uninit)
6620 dev->netdev_ops->ndo_uninit(dev);
6621
6622 if (skb)
6623 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6624
6625 /* Notifier chain MUST detach us all upper devices. */
6626 WARN_ON(netdev_has_any_upper_dev(dev));
6627
6628 /* Remove entries from kobject tree */
6629 netdev_unregister_kobject(dev);
6630 #ifdef CONFIG_XPS
6631 /* Remove XPS queueing entries */
6632 netif_reset_xps_queues_gt(dev, 0);
6633 #endif
6634 }
6635
6636 synchronize_net();
6637
6638 list_for_each_entry(dev, head, unreg_list)
6639 dev_put(dev);
6640 }
6641
6642 static void rollback_registered(struct net_device *dev)
6643 {
6644 LIST_HEAD(single);
6645
6646 list_add(&dev->unreg_list, &single);
6647 rollback_registered_many(&single);
6648 list_del(&single);
6649 }
6650
6651 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6652 struct net_device *upper, netdev_features_t features)
6653 {
6654 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6655 netdev_features_t feature;
6656 int feature_bit;
6657
6658 for_each_netdev_feature(&upper_disables, feature_bit) {
6659 feature = __NETIF_F_BIT(feature_bit);
6660 if (!(upper->wanted_features & feature)
6661 && (features & feature)) {
6662 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6663 &feature, upper->name);
6664 features &= ~feature;
6665 }
6666 }
6667
6668 return features;
6669 }
6670
6671 static void netdev_sync_lower_features(struct net_device *upper,
6672 struct net_device *lower, netdev_features_t features)
6673 {
6674 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6675 netdev_features_t feature;
6676 int feature_bit;
6677
6678 for_each_netdev_feature(&upper_disables, feature_bit) {
6679 feature = __NETIF_F_BIT(feature_bit);
6680 if (!(features & feature) && (lower->features & feature)) {
6681 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6682 &feature, lower->name);
6683 lower->wanted_features &= ~feature;
6684 netdev_update_features(lower);
6685
6686 if (unlikely(lower->features & feature))
6687 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6688 &feature, lower->name);
6689 }
6690 }
6691 }
6692
6693 static netdev_features_t netdev_fix_features(struct net_device *dev,
6694 netdev_features_t features)
6695 {
6696 /* Fix illegal checksum combinations */
6697 if ((features & NETIF_F_HW_CSUM) &&
6698 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6699 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6700 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6701 }
6702
6703 /* TSO requires that SG is present as well. */
6704 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6705 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6706 features &= ~NETIF_F_ALL_TSO;
6707 }
6708
6709 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6710 !(features & NETIF_F_IP_CSUM)) {
6711 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6712 features &= ~NETIF_F_TSO;
6713 features &= ~NETIF_F_TSO_ECN;
6714 }
6715
6716 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6717 !(features & NETIF_F_IPV6_CSUM)) {
6718 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6719 features &= ~NETIF_F_TSO6;
6720 }
6721
6722 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6723 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6724 features &= ~NETIF_F_TSO_MANGLEID;
6725
6726 /* TSO ECN requires that TSO is present as well. */
6727 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6728 features &= ~NETIF_F_TSO_ECN;
6729
6730 /* Software GSO depends on SG. */
6731 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6732 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6733 features &= ~NETIF_F_GSO;
6734 }
6735
6736 /* UFO needs SG and checksumming */
6737 if (features & NETIF_F_UFO) {
6738 /* maybe split UFO into V4 and V6? */
6739 if (!(features & NETIF_F_HW_CSUM) &&
6740 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6741 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6742 netdev_dbg(dev,
6743 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6744 features &= ~NETIF_F_UFO;
6745 }
6746
6747 if (!(features & NETIF_F_SG)) {
6748 netdev_dbg(dev,
6749 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6750 features &= ~NETIF_F_UFO;
6751 }
6752 }
6753
6754 /* GSO partial features require GSO partial be set */
6755 if ((features & dev->gso_partial_features) &&
6756 !(features & NETIF_F_GSO_PARTIAL)) {
6757 netdev_dbg(dev,
6758 "Dropping partially supported GSO features since no GSO partial.\n");
6759 features &= ~dev->gso_partial_features;
6760 }
6761
6762 #ifdef CONFIG_NET_RX_BUSY_POLL
6763 if (dev->netdev_ops->ndo_busy_poll)
6764 features |= NETIF_F_BUSY_POLL;
6765 else
6766 #endif
6767 features &= ~NETIF_F_BUSY_POLL;
6768
6769 return features;
6770 }
6771
6772 int __netdev_update_features(struct net_device *dev)
6773 {
6774 struct net_device *upper, *lower;
6775 netdev_features_t features;
6776 struct list_head *iter;
6777 int err = -1;
6778
6779 ASSERT_RTNL();
6780
6781 features = netdev_get_wanted_features(dev);
6782
6783 if (dev->netdev_ops->ndo_fix_features)
6784 features = dev->netdev_ops->ndo_fix_features(dev, features);
6785
6786 /* driver might be less strict about feature dependencies */
6787 features = netdev_fix_features(dev, features);
6788
6789 /* some features can't be enabled if they're off an an upper device */
6790 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6791 features = netdev_sync_upper_features(dev, upper, features);
6792
6793 if (dev->features == features)
6794 goto sync_lower;
6795
6796 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6797 &dev->features, &features);
6798
6799 if (dev->netdev_ops->ndo_set_features)
6800 err = dev->netdev_ops->ndo_set_features(dev, features);
6801 else
6802 err = 0;
6803
6804 if (unlikely(err < 0)) {
6805 netdev_err(dev,
6806 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6807 err, &features, &dev->features);
6808 /* return non-0 since some features might have changed and
6809 * it's better to fire a spurious notification than miss it
6810 */
6811 return -1;
6812 }
6813
6814 sync_lower:
6815 /* some features must be disabled on lower devices when disabled
6816 * on an upper device (think: bonding master or bridge)
6817 */
6818 netdev_for_each_lower_dev(dev, lower, iter)
6819 netdev_sync_lower_features(dev, lower, features);
6820
6821 if (!err)
6822 dev->features = features;
6823
6824 return err < 0 ? 0 : 1;
6825 }
6826
6827 /**
6828 * netdev_update_features - recalculate device features
6829 * @dev: the device to check
6830 *
6831 * Recalculate dev->features set and send notifications if it
6832 * has changed. Should be called after driver or hardware dependent
6833 * conditions might have changed that influence the features.
6834 */
6835 void netdev_update_features(struct net_device *dev)
6836 {
6837 if (__netdev_update_features(dev))
6838 netdev_features_change(dev);
6839 }
6840 EXPORT_SYMBOL(netdev_update_features);
6841
6842 /**
6843 * netdev_change_features - recalculate device features
6844 * @dev: the device to check
6845 *
6846 * Recalculate dev->features set and send notifications even
6847 * if they have not changed. Should be called instead of
6848 * netdev_update_features() if also dev->vlan_features might
6849 * have changed to allow the changes to be propagated to stacked
6850 * VLAN devices.
6851 */
6852 void netdev_change_features(struct net_device *dev)
6853 {
6854 __netdev_update_features(dev);
6855 netdev_features_change(dev);
6856 }
6857 EXPORT_SYMBOL(netdev_change_features);
6858
6859 /**
6860 * netif_stacked_transfer_operstate - transfer operstate
6861 * @rootdev: the root or lower level device to transfer state from
6862 * @dev: the device to transfer operstate to
6863 *
6864 * Transfer operational state from root to device. This is normally
6865 * called when a stacking relationship exists between the root
6866 * device and the device(a leaf device).
6867 */
6868 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6869 struct net_device *dev)
6870 {
6871 if (rootdev->operstate == IF_OPER_DORMANT)
6872 netif_dormant_on(dev);
6873 else
6874 netif_dormant_off(dev);
6875
6876 if (netif_carrier_ok(rootdev)) {
6877 if (!netif_carrier_ok(dev))
6878 netif_carrier_on(dev);
6879 } else {
6880 if (netif_carrier_ok(dev))
6881 netif_carrier_off(dev);
6882 }
6883 }
6884 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6885
6886 #ifdef CONFIG_SYSFS
6887 static int netif_alloc_rx_queues(struct net_device *dev)
6888 {
6889 unsigned int i, count = dev->num_rx_queues;
6890 struct netdev_rx_queue *rx;
6891 size_t sz = count * sizeof(*rx);
6892
6893 BUG_ON(count < 1);
6894
6895 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6896 if (!rx) {
6897 rx = vzalloc(sz);
6898 if (!rx)
6899 return -ENOMEM;
6900 }
6901 dev->_rx = rx;
6902
6903 for (i = 0; i < count; i++)
6904 rx[i].dev = dev;
6905 return 0;
6906 }
6907 #endif
6908
6909 static void netdev_init_one_queue(struct net_device *dev,
6910 struct netdev_queue *queue, void *_unused)
6911 {
6912 /* Initialize queue lock */
6913 spin_lock_init(&queue->_xmit_lock);
6914 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6915 queue->xmit_lock_owner = -1;
6916 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6917 queue->dev = dev;
6918 #ifdef CONFIG_BQL
6919 dql_init(&queue->dql, HZ);
6920 #endif
6921 }
6922
6923 static void netif_free_tx_queues(struct net_device *dev)
6924 {
6925 kvfree(dev->_tx);
6926 }
6927
6928 static int netif_alloc_netdev_queues(struct net_device *dev)
6929 {
6930 unsigned int count = dev->num_tx_queues;
6931 struct netdev_queue *tx;
6932 size_t sz = count * sizeof(*tx);
6933
6934 if (count < 1 || count > 0xffff)
6935 return -EINVAL;
6936
6937 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6938 if (!tx) {
6939 tx = vzalloc(sz);
6940 if (!tx)
6941 return -ENOMEM;
6942 }
6943 dev->_tx = tx;
6944
6945 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6946 spin_lock_init(&dev->tx_global_lock);
6947
6948 return 0;
6949 }
6950
6951 void netif_tx_stop_all_queues(struct net_device *dev)
6952 {
6953 unsigned int i;
6954
6955 for (i = 0; i < dev->num_tx_queues; i++) {
6956 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6957 netif_tx_stop_queue(txq);
6958 }
6959 }
6960 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6961
6962 /**
6963 * register_netdevice - register a network device
6964 * @dev: device to register
6965 *
6966 * Take a completed network device structure and add it to the kernel
6967 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6968 * chain. 0 is returned on success. A negative errno code is returned
6969 * on a failure to set up the device, or if the name is a duplicate.
6970 *
6971 * Callers must hold the rtnl semaphore. You may want
6972 * register_netdev() instead of this.
6973 *
6974 * BUGS:
6975 * The locking appears insufficient to guarantee two parallel registers
6976 * will not get the same name.
6977 */
6978
6979 int register_netdevice(struct net_device *dev)
6980 {
6981 int ret;
6982 struct net *net = dev_net(dev);
6983
6984 BUG_ON(dev_boot_phase);
6985 ASSERT_RTNL();
6986
6987 might_sleep();
6988
6989 /* When net_device's are persistent, this will be fatal. */
6990 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6991 BUG_ON(!net);
6992
6993 spin_lock_init(&dev->addr_list_lock);
6994 netdev_set_addr_lockdep_class(dev);
6995
6996 ret = dev_get_valid_name(net, dev, dev->name);
6997 if (ret < 0)
6998 goto out;
6999
7000 /* Init, if this function is available */
7001 if (dev->netdev_ops->ndo_init) {
7002 ret = dev->netdev_ops->ndo_init(dev);
7003 if (ret) {
7004 if (ret > 0)
7005 ret = -EIO;
7006 goto out;
7007 }
7008 }
7009
7010 if (((dev->hw_features | dev->features) &
7011 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7012 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7013 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7014 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7015 ret = -EINVAL;
7016 goto err_uninit;
7017 }
7018
7019 ret = -EBUSY;
7020 if (!dev->ifindex)
7021 dev->ifindex = dev_new_index(net);
7022 else if (__dev_get_by_index(net, dev->ifindex))
7023 goto err_uninit;
7024
7025 /* Transfer changeable features to wanted_features and enable
7026 * software offloads (GSO and GRO).
7027 */
7028 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7029 dev->features |= NETIF_F_SOFT_FEATURES;
7030 dev->wanted_features = dev->features & dev->hw_features;
7031
7032 if (!(dev->flags & IFF_LOOPBACK))
7033 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7034
7035 /* If IPv4 TCP segmentation offload is supported we should also
7036 * allow the device to enable segmenting the frame with the option
7037 * of ignoring a static IP ID value. This doesn't enable the
7038 * feature itself but allows the user to enable it later.
7039 */
7040 if (dev->hw_features & NETIF_F_TSO)
7041 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7042 if (dev->vlan_features & NETIF_F_TSO)
7043 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7044 if (dev->mpls_features & NETIF_F_TSO)
7045 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7046 if (dev->hw_enc_features & NETIF_F_TSO)
7047 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7048
7049 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7050 */
7051 dev->vlan_features |= NETIF_F_HIGHDMA;
7052
7053 /* Make NETIF_F_SG inheritable to tunnel devices.
7054 */
7055 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7056
7057 /* Make NETIF_F_SG inheritable to MPLS.
7058 */
7059 dev->mpls_features |= NETIF_F_SG;
7060
7061 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7062 ret = notifier_to_errno(ret);
7063 if (ret)
7064 goto err_uninit;
7065
7066 ret = netdev_register_kobject(dev);
7067 if (ret)
7068 goto err_uninit;
7069 dev->reg_state = NETREG_REGISTERED;
7070
7071 __netdev_update_features(dev);
7072
7073 /*
7074 * Default initial state at registry is that the
7075 * device is present.
7076 */
7077
7078 set_bit(__LINK_STATE_PRESENT, &dev->state);
7079
7080 linkwatch_init_dev(dev);
7081
7082 dev_init_scheduler(dev);
7083 dev_hold(dev);
7084 list_netdevice(dev);
7085 add_device_randomness(dev->dev_addr, dev->addr_len);
7086
7087 /* If the device has permanent device address, driver should
7088 * set dev_addr and also addr_assign_type should be set to
7089 * NET_ADDR_PERM (default value).
7090 */
7091 if (dev->addr_assign_type == NET_ADDR_PERM)
7092 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7093
7094 /* Notify protocols, that a new device appeared. */
7095 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7096 ret = notifier_to_errno(ret);
7097 if (ret) {
7098 rollback_registered(dev);
7099 dev->reg_state = NETREG_UNREGISTERED;
7100 }
7101 /*
7102 * Prevent userspace races by waiting until the network
7103 * device is fully setup before sending notifications.
7104 */
7105 if (!dev->rtnl_link_ops ||
7106 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7107 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7108
7109 out:
7110 return ret;
7111
7112 err_uninit:
7113 if (dev->netdev_ops->ndo_uninit)
7114 dev->netdev_ops->ndo_uninit(dev);
7115 goto out;
7116 }
7117 EXPORT_SYMBOL(register_netdevice);
7118
7119 /**
7120 * init_dummy_netdev - init a dummy network device for NAPI
7121 * @dev: device to init
7122 *
7123 * This takes a network device structure and initialize the minimum
7124 * amount of fields so it can be used to schedule NAPI polls without
7125 * registering a full blown interface. This is to be used by drivers
7126 * that need to tie several hardware interfaces to a single NAPI
7127 * poll scheduler due to HW limitations.
7128 */
7129 int init_dummy_netdev(struct net_device *dev)
7130 {
7131 /* Clear everything. Note we don't initialize spinlocks
7132 * are they aren't supposed to be taken by any of the
7133 * NAPI code and this dummy netdev is supposed to be
7134 * only ever used for NAPI polls
7135 */
7136 memset(dev, 0, sizeof(struct net_device));
7137
7138 /* make sure we BUG if trying to hit standard
7139 * register/unregister code path
7140 */
7141 dev->reg_state = NETREG_DUMMY;
7142
7143 /* NAPI wants this */
7144 INIT_LIST_HEAD(&dev->napi_list);
7145
7146 /* a dummy interface is started by default */
7147 set_bit(__LINK_STATE_PRESENT, &dev->state);
7148 set_bit(__LINK_STATE_START, &dev->state);
7149
7150 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7151 * because users of this 'device' dont need to change
7152 * its refcount.
7153 */
7154
7155 return 0;
7156 }
7157 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7158
7159
7160 /**
7161 * register_netdev - register a network device
7162 * @dev: device to register
7163 *
7164 * Take a completed network device structure and add it to the kernel
7165 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7166 * chain. 0 is returned on success. A negative errno code is returned
7167 * on a failure to set up the device, or if the name is a duplicate.
7168 *
7169 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7170 * and expands the device name if you passed a format string to
7171 * alloc_netdev.
7172 */
7173 int register_netdev(struct net_device *dev)
7174 {
7175 int err;
7176
7177 rtnl_lock();
7178 err = register_netdevice(dev);
7179 rtnl_unlock();
7180 return err;
7181 }
7182 EXPORT_SYMBOL(register_netdev);
7183
7184 int netdev_refcnt_read(const struct net_device *dev)
7185 {
7186 int i, refcnt = 0;
7187
7188 for_each_possible_cpu(i)
7189 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7190 return refcnt;
7191 }
7192 EXPORT_SYMBOL(netdev_refcnt_read);
7193
7194 /**
7195 * netdev_wait_allrefs - wait until all references are gone.
7196 * @dev: target net_device
7197 *
7198 * This is called when unregistering network devices.
7199 *
7200 * Any protocol or device that holds a reference should register
7201 * for netdevice notification, and cleanup and put back the
7202 * reference if they receive an UNREGISTER event.
7203 * We can get stuck here if buggy protocols don't correctly
7204 * call dev_put.
7205 */
7206 static void netdev_wait_allrefs(struct net_device *dev)
7207 {
7208 unsigned long rebroadcast_time, warning_time;
7209 int refcnt;
7210
7211 linkwatch_forget_dev(dev);
7212
7213 rebroadcast_time = warning_time = jiffies;
7214 refcnt = netdev_refcnt_read(dev);
7215
7216 while (refcnt != 0) {
7217 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7218 rtnl_lock();
7219
7220 /* Rebroadcast unregister notification */
7221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7222
7223 __rtnl_unlock();
7224 rcu_barrier();
7225 rtnl_lock();
7226
7227 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7228 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7229 &dev->state)) {
7230 /* We must not have linkwatch events
7231 * pending on unregister. If this
7232 * happens, we simply run the queue
7233 * unscheduled, resulting in a noop
7234 * for this device.
7235 */
7236 linkwatch_run_queue();
7237 }
7238
7239 __rtnl_unlock();
7240
7241 rebroadcast_time = jiffies;
7242 }
7243
7244 msleep(250);
7245
7246 refcnt = netdev_refcnt_read(dev);
7247
7248 if (time_after(jiffies, warning_time + 10 * HZ)) {
7249 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7250 dev->name, refcnt);
7251 warning_time = jiffies;
7252 }
7253 }
7254 }
7255
7256 /* The sequence is:
7257 *
7258 * rtnl_lock();
7259 * ...
7260 * register_netdevice(x1);
7261 * register_netdevice(x2);
7262 * ...
7263 * unregister_netdevice(y1);
7264 * unregister_netdevice(y2);
7265 * ...
7266 * rtnl_unlock();
7267 * free_netdev(y1);
7268 * free_netdev(y2);
7269 *
7270 * We are invoked by rtnl_unlock().
7271 * This allows us to deal with problems:
7272 * 1) We can delete sysfs objects which invoke hotplug
7273 * without deadlocking with linkwatch via keventd.
7274 * 2) Since we run with the RTNL semaphore not held, we can sleep
7275 * safely in order to wait for the netdev refcnt to drop to zero.
7276 *
7277 * We must not return until all unregister events added during
7278 * the interval the lock was held have been completed.
7279 */
7280 void netdev_run_todo(void)
7281 {
7282 struct list_head list;
7283
7284 /* Snapshot list, allow later requests */
7285 list_replace_init(&net_todo_list, &list);
7286
7287 __rtnl_unlock();
7288
7289
7290 /* Wait for rcu callbacks to finish before next phase */
7291 if (!list_empty(&list))
7292 rcu_barrier();
7293
7294 while (!list_empty(&list)) {
7295 struct net_device *dev
7296 = list_first_entry(&list, struct net_device, todo_list);
7297 list_del(&dev->todo_list);
7298
7299 rtnl_lock();
7300 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7301 __rtnl_unlock();
7302
7303 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7304 pr_err("network todo '%s' but state %d\n",
7305 dev->name, dev->reg_state);
7306 dump_stack();
7307 continue;
7308 }
7309
7310 dev->reg_state = NETREG_UNREGISTERED;
7311
7312 netdev_wait_allrefs(dev);
7313
7314 /* paranoia */
7315 BUG_ON(netdev_refcnt_read(dev));
7316 BUG_ON(!list_empty(&dev->ptype_all));
7317 BUG_ON(!list_empty(&dev->ptype_specific));
7318 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7319 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7320 WARN_ON(dev->dn_ptr);
7321
7322 if (dev->destructor)
7323 dev->destructor(dev);
7324
7325 /* Report a network device has been unregistered */
7326 rtnl_lock();
7327 dev_net(dev)->dev_unreg_count--;
7328 __rtnl_unlock();
7329 wake_up(&netdev_unregistering_wq);
7330
7331 /* Free network device */
7332 kobject_put(&dev->dev.kobj);
7333 }
7334 }
7335
7336 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7337 * all the same fields in the same order as net_device_stats, with only
7338 * the type differing, but rtnl_link_stats64 may have additional fields
7339 * at the end for newer counters.
7340 */
7341 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7342 const struct net_device_stats *netdev_stats)
7343 {
7344 #if BITS_PER_LONG == 64
7345 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7346 memcpy(stats64, netdev_stats, sizeof(*stats64));
7347 /* zero out counters that only exist in rtnl_link_stats64 */
7348 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7349 sizeof(*stats64) - sizeof(*netdev_stats));
7350 #else
7351 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7352 const unsigned long *src = (const unsigned long *)netdev_stats;
7353 u64 *dst = (u64 *)stats64;
7354
7355 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7356 for (i = 0; i < n; i++)
7357 dst[i] = src[i];
7358 /* zero out counters that only exist in rtnl_link_stats64 */
7359 memset((char *)stats64 + n * sizeof(u64), 0,
7360 sizeof(*stats64) - n * sizeof(u64));
7361 #endif
7362 }
7363 EXPORT_SYMBOL(netdev_stats_to_stats64);
7364
7365 /**
7366 * dev_get_stats - get network device statistics
7367 * @dev: device to get statistics from
7368 * @storage: place to store stats
7369 *
7370 * Get network statistics from device. Return @storage.
7371 * The device driver may provide its own method by setting
7372 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7373 * otherwise the internal statistics structure is used.
7374 */
7375 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7376 struct rtnl_link_stats64 *storage)
7377 {
7378 const struct net_device_ops *ops = dev->netdev_ops;
7379
7380 if (ops->ndo_get_stats64) {
7381 memset(storage, 0, sizeof(*storage));
7382 ops->ndo_get_stats64(dev, storage);
7383 } else if (ops->ndo_get_stats) {
7384 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7385 } else {
7386 netdev_stats_to_stats64(storage, &dev->stats);
7387 }
7388 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7389 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7390 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7391 return storage;
7392 }
7393 EXPORT_SYMBOL(dev_get_stats);
7394
7395 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7396 {
7397 struct netdev_queue *queue = dev_ingress_queue(dev);
7398
7399 #ifdef CONFIG_NET_CLS_ACT
7400 if (queue)
7401 return queue;
7402 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7403 if (!queue)
7404 return NULL;
7405 netdev_init_one_queue(dev, queue, NULL);
7406 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7407 queue->qdisc_sleeping = &noop_qdisc;
7408 rcu_assign_pointer(dev->ingress_queue, queue);
7409 #endif
7410 return queue;
7411 }
7412
7413 static const struct ethtool_ops default_ethtool_ops;
7414
7415 void netdev_set_default_ethtool_ops(struct net_device *dev,
7416 const struct ethtool_ops *ops)
7417 {
7418 if (dev->ethtool_ops == &default_ethtool_ops)
7419 dev->ethtool_ops = ops;
7420 }
7421 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7422
7423 void netdev_freemem(struct net_device *dev)
7424 {
7425 char *addr = (char *)dev - dev->padded;
7426
7427 kvfree(addr);
7428 }
7429
7430 /**
7431 * alloc_netdev_mqs - allocate network device
7432 * @sizeof_priv: size of private data to allocate space for
7433 * @name: device name format string
7434 * @name_assign_type: origin of device name
7435 * @setup: callback to initialize device
7436 * @txqs: the number of TX subqueues to allocate
7437 * @rxqs: the number of RX subqueues to allocate
7438 *
7439 * Allocates a struct net_device with private data area for driver use
7440 * and performs basic initialization. Also allocates subqueue structs
7441 * for each queue on the device.
7442 */
7443 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7444 unsigned char name_assign_type,
7445 void (*setup)(struct net_device *),
7446 unsigned int txqs, unsigned int rxqs)
7447 {
7448 struct net_device *dev;
7449 size_t alloc_size;
7450 struct net_device *p;
7451
7452 BUG_ON(strlen(name) >= sizeof(dev->name));
7453
7454 if (txqs < 1) {
7455 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7456 return NULL;
7457 }
7458
7459 #ifdef CONFIG_SYSFS
7460 if (rxqs < 1) {
7461 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7462 return NULL;
7463 }
7464 #endif
7465
7466 alloc_size = sizeof(struct net_device);
7467 if (sizeof_priv) {
7468 /* ensure 32-byte alignment of private area */
7469 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7470 alloc_size += sizeof_priv;
7471 }
7472 /* ensure 32-byte alignment of whole construct */
7473 alloc_size += NETDEV_ALIGN - 1;
7474
7475 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7476 if (!p)
7477 p = vzalloc(alloc_size);
7478 if (!p)
7479 return NULL;
7480
7481 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7482 dev->padded = (char *)dev - (char *)p;
7483
7484 dev->pcpu_refcnt = alloc_percpu(int);
7485 if (!dev->pcpu_refcnt)
7486 goto free_dev;
7487
7488 if (dev_addr_init(dev))
7489 goto free_pcpu;
7490
7491 dev_mc_init(dev);
7492 dev_uc_init(dev);
7493
7494 dev_net_set(dev, &init_net);
7495
7496 dev->gso_max_size = GSO_MAX_SIZE;
7497 dev->gso_max_segs = GSO_MAX_SEGS;
7498
7499 INIT_LIST_HEAD(&dev->napi_list);
7500 INIT_LIST_HEAD(&dev->unreg_list);
7501 INIT_LIST_HEAD(&dev->close_list);
7502 INIT_LIST_HEAD(&dev->link_watch_list);
7503 INIT_LIST_HEAD(&dev->adj_list.upper);
7504 INIT_LIST_HEAD(&dev->adj_list.lower);
7505 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7506 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7507 INIT_LIST_HEAD(&dev->ptype_all);
7508 INIT_LIST_HEAD(&dev->ptype_specific);
7509 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7510 setup(dev);
7511
7512 if (!dev->tx_queue_len) {
7513 dev->priv_flags |= IFF_NO_QUEUE;
7514 dev->tx_queue_len = 1;
7515 }
7516
7517 dev->num_tx_queues = txqs;
7518 dev->real_num_tx_queues = txqs;
7519 if (netif_alloc_netdev_queues(dev))
7520 goto free_all;
7521
7522 #ifdef CONFIG_SYSFS
7523 dev->num_rx_queues = rxqs;
7524 dev->real_num_rx_queues = rxqs;
7525 if (netif_alloc_rx_queues(dev))
7526 goto free_all;
7527 #endif
7528
7529 strcpy(dev->name, name);
7530 dev->name_assign_type = name_assign_type;
7531 dev->group = INIT_NETDEV_GROUP;
7532 if (!dev->ethtool_ops)
7533 dev->ethtool_ops = &default_ethtool_ops;
7534
7535 nf_hook_ingress_init(dev);
7536
7537 return dev;
7538
7539 free_all:
7540 free_netdev(dev);
7541 return NULL;
7542
7543 free_pcpu:
7544 free_percpu(dev->pcpu_refcnt);
7545 free_dev:
7546 netdev_freemem(dev);
7547 return NULL;
7548 }
7549 EXPORT_SYMBOL(alloc_netdev_mqs);
7550
7551 /**
7552 * free_netdev - free network device
7553 * @dev: device
7554 *
7555 * This function does the last stage of destroying an allocated device
7556 * interface. The reference to the device object is released.
7557 * If this is the last reference then it will be freed.
7558 * Must be called in process context.
7559 */
7560 void free_netdev(struct net_device *dev)
7561 {
7562 struct napi_struct *p, *n;
7563
7564 might_sleep();
7565 netif_free_tx_queues(dev);
7566 #ifdef CONFIG_SYSFS
7567 kvfree(dev->_rx);
7568 #endif
7569
7570 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7571
7572 /* Flush device addresses */
7573 dev_addr_flush(dev);
7574
7575 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7576 netif_napi_del(p);
7577
7578 free_percpu(dev->pcpu_refcnt);
7579 dev->pcpu_refcnt = NULL;
7580
7581 /* Compatibility with error handling in drivers */
7582 if (dev->reg_state == NETREG_UNINITIALIZED) {
7583 netdev_freemem(dev);
7584 return;
7585 }
7586
7587 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7588 dev->reg_state = NETREG_RELEASED;
7589
7590 /* will free via device release */
7591 put_device(&dev->dev);
7592 }
7593 EXPORT_SYMBOL(free_netdev);
7594
7595 /**
7596 * synchronize_net - Synchronize with packet receive processing
7597 *
7598 * Wait for packets currently being received to be done.
7599 * Does not block later packets from starting.
7600 */
7601 void synchronize_net(void)
7602 {
7603 might_sleep();
7604 if (rtnl_is_locked())
7605 synchronize_rcu_expedited();
7606 else
7607 synchronize_rcu();
7608 }
7609 EXPORT_SYMBOL(synchronize_net);
7610
7611 /**
7612 * unregister_netdevice_queue - remove device from the kernel
7613 * @dev: device
7614 * @head: list
7615 *
7616 * This function shuts down a device interface and removes it
7617 * from the kernel tables.
7618 * If head not NULL, device is queued to be unregistered later.
7619 *
7620 * Callers must hold the rtnl semaphore. You may want
7621 * unregister_netdev() instead of this.
7622 */
7623
7624 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7625 {
7626 ASSERT_RTNL();
7627
7628 if (head) {
7629 list_move_tail(&dev->unreg_list, head);
7630 } else {
7631 rollback_registered(dev);
7632 /* Finish processing unregister after unlock */
7633 net_set_todo(dev);
7634 }
7635 }
7636 EXPORT_SYMBOL(unregister_netdevice_queue);
7637
7638 /**
7639 * unregister_netdevice_many - unregister many devices
7640 * @head: list of devices
7641 *
7642 * Note: As most callers use a stack allocated list_head,
7643 * we force a list_del() to make sure stack wont be corrupted later.
7644 */
7645 void unregister_netdevice_many(struct list_head *head)
7646 {
7647 struct net_device *dev;
7648
7649 if (!list_empty(head)) {
7650 rollback_registered_many(head);
7651 list_for_each_entry(dev, head, unreg_list)
7652 net_set_todo(dev);
7653 list_del(head);
7654 }
7655 }
7656 EXPORT_SYMBOL(unregister_netdevice_many);
7657
7658 /**
7659 * unregister_netdev - remove device from the kernel
7660 * @dev: device
7661 *
7662 * This function shuts down a device interface and removes it
7663 * from the kernel tables.
7664 *
7665 * This is just a wrapper for unregister_netdevice that takes
7666 * the rtnl semaphore. In general you want to use this and not
7667 * unregister_netdevice.
7668 */
7669 void unregister_netdev(struct net_device *dev)
7670 {
7671 rtnl_lock();
7672 unregister_netdevice(dev);
7673 rtnl_unlock();
7674 }
7675 EXPORT_SYMBOL(unregister_netdev);
7676
7677 /**
7678 * dev_change_net_namespace - move device to different nethost namespace
7679 * @dev: device
7680 * @net: network namespace
7681 * @pat: If not NULL name pattern to try if the current device name
7682 * is already taken in the destination network namespace.
7683 *
7684 * This function shuts down a device interface and moves it
7685 * to a new network namespace. On success 0 is returned, on
7686 * a failure a netagive errno code is returned.
7687 *
7688 * Callers must hold the rtnl semaphore.
7689 */
7690
7691 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7692 {
7693 int err;
7694
7695 ASSERT_RTNL();
7696
7697 /* Don't allow namespace local devices to be moved. */
7698 err = -EINVAL;
7699 if (dev->features & NETIF_F_NETNS_LOCAL)
7700 goto out;
7701
7702 /* Ensure the device has been registrered */
7703 if (dev->reg_state != NETREG_REGISTERED)
7704 goto out;
7705
7706 /* Get out if there is nothing todo */
7707 err = 0;
7708 if (net_eq(dev_net(dev), net))
7709 goto out;
7710
7711 /* Pick the destination device name, and ensure
7712 * we can use it in the destination network namespace.
7713 */
7714 err = -EEXIST;
7715 if (__dev_get_by_name(net, dev->name)) {
7716 /* We get here if we can't use the current device name */
7717 if (!pat)
7718 goto out;
7719 if (dev_get_valid_name(net, dev, pat) < 0)
7720 goto out;
7721 }
7722
7723 /*
7724 * And now a mini version of register_netdevice unregister_netdevice.
7725 */
7726
7727 /* If device is running close it first. */
7728 dev_close(dev);
7729
7730 /* And unlink it from device chain */
7731 err = -ENODEV;
7732 unlist_netdevice(dev);
7733
7734 synchronize_net();
7735
7736 /* Shutdown queueing discipline. */
7737 dev_shutdown(dev);
7738
7739 /* Notify protocols, that we are about to destroy
7740 this device. They should clean all the things.
7741
7742 Note that dev->reg_state stays at NETREG_REGISTERED.
7743 This is wanted because this way 8021q and macvlan know
7744 the device is just moving and can keep their slaves up.
7745 */
7746 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7747 rcu_barrier();
7748 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7749 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7750
7751 /*
7752 * Flush the unicast and multicast chains
7753 */
7754 dev_uc_flush(dev);
7755 dev_mc_flush(dev);
7756
7757 /* Send a netdev-removed uevent to the old namespace */
7758 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7759 netdev_adjacent_del_links(dev);
7760
7761 /* Actually switch the network namespace */
7762 dev_net_set(dev, net);
7763
7764 /* If there is an ifindex conflict assign a new one */
7765 if (__dev_get_by_index(net, dev->ifindex))
7766 dev->ifindex = dev_new_index(net);
7767
7768 /* Send a netdev-add uevent to the new namespace */
7769 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7770 netdev_adjacent_add_links(dev);
7771
7772 /* Fixup kobjects */
7773 err = device_rename(&dev->dev, dev->name);
7774 WARN_ON(err);
7775
7776 /* Add the device back in the hashes */
7777 list_netdevice(dev);
7778
7779 /* Notify protocols, that a new device appeared. */
7780 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7781
7782 /*
7783 * Prevent userspace races by waiting until the network
7784 * device is fully setup before sending notifications.
7785 */
7786 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7787
7788 synchronize_net();
7789 err = 0;
7790 out:
7791 return err;
7792 }
7793 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7794
7795 static int dev_cpu_callback(struct notifier_block *nfb,
7796 unsigned long action,
7797 void *ocpu)
7798 {
7799 struct sk_buff **list_skb;
7800 struct sk_buff *skb;
7801 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7802 struct softnet_data *sd, *oldsd;
7803
7804 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7805 return NOTIFY_OK;
7806
7807 local_irq_disable();
7808 cpu = smp_processor_id();
7809 sd = &per_cpu(softnet_data, cpu);
7810 oldsd = &per_cpu(softnet_data, oldcpu);
7811
7812 /* Find end of our completion_queue. */
7813 list_skb = &sd->completion_queue;
7814 while (*list_skb)
7815 list_skb = &(*list_skb)->next;
7816 /* Append completion queue from offline CPU. */
7817 *list_skb = oldsd->completion_queue;
7818 oldsd->completion_queue = NULL;
7819
7820 /* Append output queue from offline CPU. */
7821 if (oldsd->output_queue) {
7822 *sd->output_queue_tailp = oldsd->output_queue;
7823 sd->output_queue_tailp = oldsd->output_queue_tailp;
7824 oldsd->output_queue = NULL;
7825 oldsd->output_queue_tailp = &oldsd->output_queue;
7826 }
7827 /* Append NAPI poll list from offline CPU, with one exception :
7828 * process_backlog() must be called by cpu owning percpu backlog.
7829 * We properly handle process_queue & input_pkt_queue later.
7830 */
7831 while (!list_empty(&oldsd->poll_list)) {
7832 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7833 struct napi_struct,
7834 poll_list);
7835
7836 list_del_init(&napi->poll_list);
7837 if (napi->poll == process_backlog)
7838 napi->state = 0;
7839 else
7840 ____napi_schedule(sd, napi);
7841 }
7842
7843 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7844 local_irq_enable();
7845
7846 /* Process offline CPU's input_pkt_queue */
7847 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7848 netif_rx_ni(skb);
7849 input_queue_head_incr(oldsd);
7850 }
7851 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7852 netif_rx_ni(skb);
7853 input_queue_head_incr(oldsd);
7854 }
7855
7856 return NOTIFY_OK;
7857 }
7858
7859
7860 /**
7861 * netdev_increment_features - increment feature set by one
7862 * @all: current feature set
7863 * @one: new feature set
7864 * @mask: mask feature set
7865 *
7866 * Computes a new feature set after adding a device with feature set
7867 * @one to the master device with current feature set @all. Will not
7868 * enable anything that is off in @mask. Returns the new feature set.
7869 */
7870 netdev_features_t netdev_increment_features(netdev_features_t all,
7871 netdev_features_t one, netdev_features_t mask)
7872 {
7873 if (mask & NETIF_F_HW_CSUM)
7874 mask |= NETIF_F_CSUM_MASK;
7875 mask |= NETIF_F_VLAN_CHALLENGED;
7876
7877 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7878 all &= one | ~NETIF_F_ALL_FOR_ALL;
7879
7880 /* If one device supports hw checksumming, set for all. */
7881 if (all & NETIF_F_HW_CSUM)
7882 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7883
7884 return all;
7885 }
7886 EXPORT_SYMBOL(netdev_increment_features);
7887
7888 static struct hlist_head * __net_init netdev_create_hash(void)
7889 {
7890 int i;
7891 struct hlist_head *hash;
7892
7893 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7894 if (hash != NULL)
7895 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7896 INIT_HLIST_HEAD(&hash[i]);
7897
7898 return hash;
7899 }
7900
7901 /* Initialize per network namespace state */
7902 static int __net_init netdev_init(struct net *net)
7903 {
7904 if (net != &init_net)
7905 INIT_LIST_HEAD(&net->dev_base_head);
7906
7907 net->dev_name_head = netdev_create_hash();
7908 if (net->dev_name_head == NULL)
7909 goto err_name;
7910
7911 net->dev_index_head = netdev_create_hash();
7912 if (net->dev_index_head == NULL)
7913 goto err_idx;
7914
7915 return 0;
7916
7917 err_idx:
7918 kfree(net->dev_name_head);
7919 err_name:
7920 return -ENOMEM;
7921 }
7922
7923 /**
7924 * netdev_drivername - network driver for the device
7925 * @dev: network device
7926 *
7927 * Determine network driver for device.
7928 */
7929 const char *netdev_drivername(const struct net_device *dev)
7930 {
7931 const struct device_driver *driver;
7932 const struct device *parent;
7933 const char *empty = "";
7934
7935 parent = dev->dev.parent;
7936 if (!parent)
7937 return empty;
7938
7939 driver = parent->driver;
7940 if (driver && driver->name)
7941 return driver->name;
7942 return empty;
7943 }
7944
7945 static void __netdev_printk(const char *level, const struct net_device *dev,
7946 struct va_format *vaf)
7947 {
7948 if (dev && dev->dev.parent) {
7949 dev_printk_emit(level[1] - '0',
7950 dev->dev.parent,
7951 "%s %s %s%s: %pV",
7952 dev_driver_string(dev->dev.parent),
7953 dev_name(dev->dev.parent),
7954 netdev_name(dev), netdev_reg_state(dev),
7955 vaf);
7956 } else if (dev) {
7957 printk("%s%s%s: %pV",
7958 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7959 } else {
7960 printk("%s(NULL net_device): %pV", level, vaf);
7961 }
7962 }
7963
7964 void netdev_printk(const char *level, const struct net_device *dev,
7965 const char *format, ...)
7966 {
7967 struct va_format vaf;
7968 va_list args;
7969
7970 va_start(args, format);
7971
7972 vaf.fmt = format;
7973 vaf.va = &args;
7974
7975 __netdev_printk(level, dev, &vaf);
7976
7977 va_end(args);
7978 }
7979 EXPORT_SYMBOL(netdev_printk);
7980
7981 #define define_netdev_printk_level(func, level) \
7982 void func(const struct net_device *dev, const char *fmt, ...) \
7983 { \
7984 struct va_format vaf; \
7985 va_list args; \
7986 \
7987 va_start(args, fmt); \
7988 \
7989 vaf.fmt = fmt; \
7990 vaf.va = &args; \
7991 \
7992 __netdev_printk(level, dev, &vaf); \
7993 \
7994 va_end(args); \
7995 } \
7996 EXPORT_SYMBOL(func);
7997
7998 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7999 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8000 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8001 define_netdev_printk_level(netdev_err, KERN_ERR);
8002 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8003 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8004 define_netdev_printk_level(netdev_info, KERN_INFO);
8005
8006 static void __net_exit netdev_exit(struct net *net)
8007 {
8008 kfree(net->dev_name_head);
8009 kfree(net->dev_index_head);
8010 }
8011
8012 static struct pernet_operations __net_initdata netdev_net_ops = {
8013 .init = netdev_init,
8014 .exit = netdev_exit,
8015 };
8016
8017 static void __net_exit default_device_exit(struct net *net)
8018 {
8019 struct net_device *dev, *aux;
8020 /*
8021 * Push all migratable network devices back to the
8022 * initial network namespace
8023 */
8024 rtnl_lock();
8025 for_each_netdev_safe(net, dev, aux) {
8026 int err;
8027 char fb_name[IFNAMSIZ];
8028
8029 /* Ignore unmoveable devices (i.e. loopback) */
8030 if (dev->features & NETIF_F_NETNS_LOCAL)
8031 continue;
8032
8033 /* Leave virtual devices for the generic cleanup */
8034 if (dev->rtnl_link_ops)
8035 continue;
8036
8037 /* Push remaining network devices to init_net */
8038 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8039 err = dev_change_net_namespace(dev, &init_net, fb_name);
8040 if (err) {
8041 pr_emerg("%s: failed to move %s to init_net: %d\n",
8042 __func__, dev->name, err);
8043 BUG();
8044 }
8045 }
8046 rtnl_unlock();
8047 }
8048
8049 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8050 {
8051 /* Return with the rtnl_lock held when there are no network
8052 * devices unregistering in any network namespace in net_list.
8053 */
8054 struct net *net;
8055 bool unregistering;
8056 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8057
8058 add_wait_queue(&netdev_unregistering_wq, &wait);
8059 for (;;) {
8060 unregistering = false;
8061 rtnl_lock();
8062 list_for_each_entry(net, net_list, exit_list) {
8063 if (net->dev_unreg_count > 0) {
8064 unregistering = true;
8065 break;
8066 }
8067 }
8068 if (!unregistering)
8069 break;
8070 __rtnl_unlock();
8071
8072 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8073 }
8074 remove_wait_queue(&netdev_unregistering_wq, &wait);
8075 }
8076
8077 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8078 {
8079 /* At exit all network devices most be removed from a network
8080 * namespace. Do this in the reverse order of registration.
8081 * Do this across as many network namespaces as possible to
8082 * improve batching efficiency.
8083 */
8084 struct net_device *dev;
8085 struct net *net;
8086 LIST_HEAD(dev_kill_list);
8087
8088 /* To prevent network device cleanup code from dereferencing
8089 * loopback devices or network devices that have been freed
8090 * wait here for all pending unregistrations to complete,
8091 * before unregistring the loopback device and allowing the
8092 * network namespace be freed.
8093 *
8094 * The netdev todo list containing all network devices
8095 * unregistrations that happen in default_device_exit_batch
8096 * will run in the rtnl_unlock() at the end of
8097 * default_device_exit_batch.
8098 */
8099 rtnl_lock_unregistering(net_list);
8100 list_for_each_entry(net, net_list, exit_list) {
8101 for_each_netdev_reverse(net, dev) {
8102 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8103 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8104 else
8105 unregister_netdevice_queue(dev, &dev_kill_list);
8106 }
8107 }
8108 unregister_netdevice_many(&dev_kill_list);
8109 rtnl_unlock();
8110 }
8111
8112 static struct pernet_operations __net_initdata default_device_ops = {
8113 .exit = default_device_exit,
8114 .exit_batch = default_device_exit_batch,
8115 };
8116
8117 /*
8118 * Initialize the DEV module. At boot time this walks the device list and
8119 * unhooks any devices that fail to initialise (normally hardware not
8120 * present) and leaves us with a valid list of present and active devices.
8121 *
8122 */
8123
8124 /*
8125 * This is called single threaded during boot, so no need
8126 * to take the rtnl semaphore.
8127 */
8128 static int __init net_dev_init(void)
8129 {
8130 int i, rc = -ENOMEM;
8131
8132 BUG_ON(!dev_boot_phase);
8133
8134 if (dev_proc_init())
8135 goto out;
8136
8137 if (netdev_kobject_init())
8138 goto out;
8139
8140 INIT_LIST_HEAD(&ptype_all);
8141 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8142 INIT_LIST_HEAD(&ptype_base[i]);
8143
8144 INIT_LIST_HEAD(&offload_base);
8145
8146 if (register_pernet_subsys(&netdev_net_ops))
8147 goto out;
8148
8149 /*
8150 * Initialise the packet receive queues.
8151 */
8152
8153 for_each_possible_cpu(i) {
8154 struct softnet_data *sd = &per_cpu(softnet_data, i);
8155
8156 skb_queue_head_init(&sd->input_pkt_queue);
8157 skb_queue_head_init(&sd->process_queue);
8158 INIT_LIST_HEAD(&sd->poll_list);
8159 sd->output_queue_tailp = &sd->output_queue;
8160 #ifdef CONFIG_RPS
8161 sd->csd.func = rps_trigger_softirq;
8162 sd->csd.info = sd;
8163 sd->cpu = i;
8164 #endif
8165
8166 sd->backlog.poll = process_backlog;
8167 sd->backlog.weight = weight_p;
8168 }
8169
8170 dev_boot_phase = 0;
8171
8172 /* The loopback device is special if any other network devices
8173 * is present in a network namespace the loopback device must
8174 * be present. Since we now dynamically allocate and free the
8175 * loopback device ensure this invariant is maintained by
8176 * keeping the loopback device as the first device on the
8177 * list of network devices. Ensuring the loopback devices
8178 * is the first device that appears and the last network device
8179 * that disappears.
8180 */
8181 if (register_pernet_device(&loopback_net_ops))
8182 goto out;
8183
8184 if (register_pernet_device(&default_device_ops))
8185 goto out;
8186
8187 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8188 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8189
8190 hotcpu_notifier(dev_cpu_callback, 0);
8191 dst_subsys_init();
8192 rc = 0;
8193 out:
8194 return rc;
8195 }
8196
8197 subsys_initcall(net_dev_init);
This page took 0.235953 seconds and 6 git commands to generate.