Merge branch 'for-2.6.39/drivers' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 /*
1144 * Is it even present?
1145 */
1146 if (!netif_device_present(dev))
1147 return -ENODEV;
1148
1149 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1150 ret = notifier_to_errno(ret);
1151 if (ret)
1152 return ret;
1153
1154 /*
1155 * Call device private open method
1156 */
1157 set_bit(__LINK_STATE_START, &dev->state);
1158
1159 if (ops->ndo_validate_addr)
1160 ret = ops->ndo_validate_addr(dev);
1161
1162 if (!ret && ops->ndo_open)
1163 ret = ops->ndo_open(dev);
1164
1165 /*
1166 * If it went open OK then:
1167 */
1168
1169 if (ret)
1170 clear_bit(__LINK_STATE_START, &dev->state);
1171 else {
1172 /*
1173 * Set the flags.
1174 */
1175 dev->flags |= IFF_UP;
1176
1177 /*
1178 * Enable NET_DMA
1179 */
1180 net_dmaengine_get();
1181
1182 /*
1183 * Initialize multicasting status
1184 */
1185 dev_set_rx_mode(dev);
1186
1187 /*
1188 * Wakeup transmit queue engine
1189 */
1190 dev_activate(dev);
1191 }
1192
1193 return ret;
1194 }
1195
1196 /**
1197 * dev_open - prepare an interface for use.
1198 * @dev: device to open
1199 *
1200 * Takes a device from down to up state. The device's private open
1201 * function is invoked and then the multicast lists are loaded. Finally
1202 * the device is moved into the up state and a %NETDEV_UP message is
1203 * sent to the netdev notifier chain.
1204 *
1205 * Calling this function on an active interface is a nop. On a failure
1206 * a negative errno code is returned.
1207 */
1208 int dev_open(struct net_device *dev)
1209 {
1210 int ret;
1211
1212 /*
1213 * Is it already up?
1214 */
1215 if (dev->flags & IFF_UP)
1216 return 0;
1217
1218 /*
1219 * Open device
1220 */
1221 ret = __dev_open(dev);
1222 if (ret < 0)
1223 return ret;
1224
1225 /*
1226 * ... and announce new interface.
1227 */
1228 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1229 call_netdevice_notifiers(NETDEV_UP, dev);
1230
1231 return ret;
1232 }
1233 EXPORT_SYMBOL(dev_open);
1234
1235 static int __dev_close_many(struct list_head *head)
1236 {
1237 struct net_device *dev;
1238
1239 ASSERT_RTNL();
1240 might_sleep();
1241
1242 list_for_each_entry(dev, head, unreg_list) {
1243 /*
1244 * Tell people we are going down, so that they can
1245 * prepare to death, when device is still operating.
1246 */
1247 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1248
1249 clear_bit(__LINK_STATE_START, &dev->state);
1250
1251 /* Synchronize to scheduled poll. We cannot touch poll list, it
1252 * can be even on different cpu. So just clear netif_running().
1253 *
1254 * dev->stop() will invoke napi_disable() on all of it's
1255 * napi_struct instances on this device.
1256 */
1257 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1258 }
1259
1260 dev_deactivate_many(head);
1261
1262 list_for_each_entry(dev, head, unreg_list) {
1263 const struct net_device_ops *ops = dev->netdev_ops;
1264
1265 /*
1266 * Call the device specific close. This cannot fail.
1267 * Only if device is UP
1268 *
1269 * We allow it to be called even after a DETACH hot-plug
1270 * event.
1271 */
1272 if (ops->ndo_stop)
1273 ops->ndo_stop(dev);
1274
1275 /*
1276 * Device is now down.
1277 */
1278
1279 dev->flags &= ~IFF_UP;
1280
1281 /*
1282 * Shutdown NET_DMA
1283 */
1284 net_dmaengine_put();
1285 }
1286
1287 return 0;
1288 }
1289
1290 static int __dev_close(struct net_device *dev)
1291 {
1292 int retval;
1293 LIST_HEAD(single);
1294
1295 list_add(&dev->unreg_list, &single);
1296 retval = __dev_close_many(&single);
1297 list_del(&single);
1298 return retval;
1299 }
1300
1301 static int dev_close_many(struct list_head *head)
1302 {
1303 struct net_device *dev, *tmp;
1304 LIST_HEAD(tmp_list);
1305
1306 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1307 if (!(dev->flags & IFF_UP))
1308 list_move(&dev->unreg_list, &tmp_list);
1309
1310 __dev_close_many(head);
1311
1312 /*
1313 * Tell people we are down
1314 */
1315 list_for_each_entry(dev, head, unreg_list) {
1316 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1317 call_netdevice_notifiers(NETDEV_DOWN, dev);
1318 }
1319
1320 /* rollback_registered_many needs the complete original list */
1321 list_splice(&tmp_list, head);
1322 return 0;
1323 }
1324
1325 /**
1326 * dev_close - shutdown an interface.
1327 * @dev: device to shutdown
1328 *
1329 * This function moves an active device into down state. A
1330 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1331 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1332 * chain.
1333 */
1334 int dev_close(struct net_device *dev)
1335 {
1336 LIST_HEAD(single);
1337
1338 list_add(&dev->unreg_list, &single);
1339 dev_close_many(&single);
1340 list_del(&single);
1341 return 0;
1342 }
1343 EXPORT_SYMBOL(dev_close);
1344
1345
1346 /**
1347 * dev_disable_lro - disable Large Receive Offload on a device
1348 * @dev: device
1349 *
1350 * Disable Large Receive Offload (LRO) on a net device. Must be
1351 * called under RTNL. This is needed if received packets may be
1352 * forwarded to another interface.
1353 */
1354 void dev_disable_lro(struct net_device *dev)
1355 {
1356 u32 flags;
1357
1358 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1359 flags = dev->ethtool_ops->get_flags(dev);
1360 else
1361 flags = ethtool_op_get_flags(dev);
1362
1363 if (!(flags & ETH_FLAG_LRO))
1364 return;
1365
1366 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1367 WARN_ON(dev->features & NETIF_F_LRO);
1368 }
1369 EXPORT_SYMBOL(dev_disable_lro);
1370
1371
1372 static int dev_boot_phase = 1;
1373
1374 /*
1375 * Device change register/unregister. These are not inline or static
1376 * as we export them to the world.
1377 */
1378
1379 /**
1380 * register_netdevice_notifier - register a network notifier block
1381 * @nb: notifier
1382 *
1383 * Register a notifier to be called when network device events occur.
1384 * The notifier passed is linked into the kernel structures and must
1385 * not be reused until it has been unregistered. A negative errno code
1386 * is returned on a failure.
1387 *
1388 * When registered all registration and up events are replayed
1389 * to the new notifier to allow device to have a race free
1390 * view of the network device list.
1391 */
1392
1393 int register_netdevice_notifier(struct notifier_block *nb)
1394 {
1395 struct net_device *dev;
1396 struct net_device *last;
1397 struct net *net;
1398 int err;
1399
1400 rtnl_lock();
1401 err = raw_notifier_chain_register(&netdev_chain, nb);
1402 if (err)
1403 goto unlock;
1404 if (dev_boot_phase)
1405 goto unlock;
1406 for_each_net(net) {
1407 for_each_netdev(net, dev) {
1408 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1409 err = notifier_to_errno(err);
1410 if (err)
1411 goto rollback;
1412
1413 if (!(dev->flags & IFF_UP))
1414 continue;
1415
1416 nb->notifier_call(nb, NETDEV_UP, dev);
1417 }
1418 }
1419
1420 unlock:
1421 rtnl_unlock();
1422 return err;
1423
1424 rollback:
1425 last = dev;
1426 for_each_net(net) {
1427 for_each_netdev(net, dev) {
1428 if (dev == last)
1429 break;
1430
1431 if (dev->flags & IFF_UP) {
1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1433 nb->notifier_call(nb, NETDEV_DOWN, dev);
1434 }
1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1437 }
1438 }
1439
1440 raw_notifier_chain_unregister(&netdev_chain, nb);
1441 goto unlock;
1442 }
1443 EXPORT_SYMBOL(register_netdevice_notifier);
1444
1445 /**
1446 * unregister_netdevice_notifier - unregister a network notifier block
1447 * @nb: notifier
1448 *
1449 * Unregister a notifier previously registered by
1450 * register_netdevice_notifier(). The notifier is unlinked into the
1451 * kernel structures and may then be reused. A negative errno code
1452 * is returned on a failure.
1453 */
1454
1455 int unregister_netdevice_notifier(struct notifier_block *nb)
1456 {
1457 int err;
1458
1459 rtnl_lock();
1460 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1461 rtnl_unlock();
1462 return err;
1463 }
1464 EXPORT_SYMBOL(unregister_netdevice_notifier);
1465
1466 /**
1467 * call_netdevice_notifiers - call all network notifier blocks
1468 * @val: value passed unmodified to notifier function
1469 * @dev: net_device pointer passed unmodified to notifier function
1470 *
1471 * Call all network notifier blocks. Parameters and return value
1472 * are as for raw_notifier_call_chain().
1473 */
1474
1475 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1476 {
1477 ASSERT_RTNL();
1478 return raw_notifier_call_chain(&netdev_chain, val, dev);
1479 }
1480
1481 /* When > 0 there are consumers of rx skb time stamps */
1482 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1483
1484 void net_enable_timestamp(void)
1485 {
1486 atomic_inc(&netstamp_needed);
1487 }
1488 EXPORT_SYMBOL(net_enable_timestamp);
1489
1490 void net_disable_timestamp(void)
1491 {
1492 atomic_dec(&netstamp_needed);
1493 }
1494 EXPORT_SYMBOL(net_disable_timestamp);
1495
1496 static inline void net_timestamp_set(struct sk_buff *skb)
1497 {
1498 if (atomic_read(&netstamp_needed))
1499 __net_timestamp(skb);
1500 else
1501 skb->tstamp.tv64 = 0;
1502 }
1503
1504 static inline void net_timestamp_check(struct sk_buff *skb)
1505 {
1506 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1507 __net_timestamp(skb);
1508 }
1509
1510 /**
1511 * dev_forward_skb - loopback an skb to another netif
1512 *
1513 * @dev: destination network device
1514 * @skb: buffer to forward
1515 *
1516 * return values:
1517 * NET_RX_SUCCESS (no congestion)
1518 * NET_RX_DROP (packet was dropped, but freed)
1519 *
1520 * dev_forward_skb can be used for injecting an skb from the
1521 * start_xmit function of one device into the receive queue
1522 * of another device.
1523 *
1524 * The receiving device may be in another namespace, so
1525 * we have to clear all information in the skb that could
1526 * impact namespace isolation.
1527 */
1528 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1529 {
1530 skb_orphan(skb);
1531 nf_reset(skb);
1532
1533 if (unlikely(!(dev->flags & IFF_UP) ||
1534 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1535 atomic_long_inc(&dev->rx_dropped);
1536 kfree_skb(skb);
1537 return NET_RX_DROP;
1538 }
1539 skb_set_dev(skb, dev);
1540 skb->tstamp.tv64 = 0;
1541 skb->pkt_type = PACKET_HOST;
1542 skb->protocol = eth_type_trans(skb, dev);
1543 return netif_rx(skb);
1544 }
1545 EXPORT_SYMBOL_GPL(dev_forward_skb);
1546
1547 static inline int deliver_skb(struct sk_buff *skb,
1548 struct packet_type *pt_prev,
1549 struct net_device *orig_dev)
1550 {
1551 atomic_inc(&skb->users);
1552 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1553 }
1554
1555 /*
1556 * Support routine. Sends outgoing frames to any network
1557 * taps currently in use.
1558 */
1559
1560 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1561 {
1562 struct packet_type *ptype;
1563 struct sk_buff *skb2 = NULL;
1564 struct packet_type *pt_prev = NULL;
1565
1566 rcu_read_lock();
1567 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1568 /* Never send packets back to the socket
1569 * they originated from - MvS (miquels@drinkel.ow.org)
1570 */
1571 if ((ptype->dev == dev || !ptype->dev) &&
1572 (ptype->af_packet_priv == NULL ||
1573 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1574 if (pt_prev) {
1575 deliver_skb(skb2, pt_prev, skb->dev);
1576 pt_prev = ptype;
1577 continue;
1578 }
1579
1580 skb2 = skb_clone(skb, GFP_ATOMIC);
1581 if (!skb2)
1582 break;
1583
1584 net_timestamp_set(skb2);
1585
1586 /* skb->nh should be correctly
1587 set by sender, so that the second statement is
1588 just protection against buggy protocols.
1589 */
1590 skb_reset_mac_header(skb2);
1591
1592 if (skb_network_header(skb2) < skb2->data ||
1593 skb2->network_header > skb2->tail) {
1594 if (net_ratelimit())
1595 printk(KERN_CRIT "protocol %04x is "
1596 "buggy, dev %s\n",
1597 ntohs(skb2->protocol),
1598 dev->name);
1599 skb_reset_network_header(skb2);
1600 }
1601
1602 skb2->transport_header = skb2->network_header;
1603 skb2->pkt_type = PACKET_OUTGOING;
1604 pt_prev = ptype;
1605 }
1606 }
1607 if (pt_prev)
1608 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1609 rcu_read_unlock();
1610 }
1611
1612 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1613 * @dev: Network device
1614 * @txq: number of queues available
1615 *
1616 * If real_num_tx_queues is changed the tc mappings may no longer be
1617 * valid. To resolve this verify the tc mapping remains valid and if
1618 * not NULL the mapping. With no priorities mapping to this
1619 * offset/count pair it will no longer be used. In the worst case TC0
1620 * is invalid nothing can be done so disable priority mappings. If is
1621 * expected that drivers will fix this mapping if they can before
1622 * calling netif_set_real_num_tx_queues.
1623 */
1624 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1625 {
1626 int i;
1627 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1628
1629 /* If TC0 is invalidated disable TC mapping */
1630 if (tc->offset + tc->count > txq) {
1631 pr_warning("Number of in use tx queues changed "
1632 "invalidating tc mappings. Priority "
1633 "traffic classification disabled!\n");
1634 dev->num_tc = 0;
1635 return;
1636 }
1637
1638 /* Invalidated prio to tc mappings set to TC0 */
1639 for (i = 1; i < TC_BITMASK + 1; i++) {
1640 int q = netdev_get_prio_tc_map(dev, i);
1641
1642 tc = &dev->tc_to_txq[q];
1643 if (tc->offset + tc->count > txq) {
1644 pr_warning("Number of in use tx queues "
1645 "changed. Priority %i to tc "
1646 "mapping %i is no longer valid "
1647 "setting map to 0\n",
1648 i, q);
1649 netdev_set_prio_tc_map(dev, i, 0);
1650 }
1651 }
1652 }
1653
1654 /*
1655 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1656 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1657 */
1658 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1659 {
1660 int rc;
1661
1662 if (txq < 1 || txq > dev->num_tx_queues)
1663 return -EINVAL;
1664
1665 if (dev->reg_state == NETREG_REGISTERED ||
1666 dev->reg_state == NETREG_UNREGISTERING) {
1667 ASSERT_RTNL();
1668
1669 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1670 txq);
1671 if (rc)
1672 return rc;
1673
1674 if (dev->num_tc)
1675 netif_setup_tc(dev, txq);
1676
1677 if (txq < dev->real_num_tx_queues)
1678 qdisc_reset_all_tx_gt(dev, txq);
1679 }
1680
1681 dev->real_num_tx_queues = txq;
1682 return 0;
1683 }
1684 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1685
1686 #ifdef CONFIG_RPS
1687 /**
1688 * netif_set_real_num_rx_queues - set actual number of RX queues used
1689 * @dev: Network device
1690 * @rxq: Actual number of RX queues
1691 *
1692 * This must be called either with the rtnl_lock held or before
1693 * registration of the net device. Returns 0 on success, or a
1694 * negative error code. If called before registration, it always
1695 * succeeds.
1696 */
1697 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1698 {
1699 int rc;
1700
1701 if (rxq < 1 || rxq > dev->num_rx_queues)
1702 return -EINVAL;
1703
1704 if (dev->reg_state == NETREG_REGISTERED) {
1705 ASSERT_RTNL();
1706
1707 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1708 rxq);
1709 if (rc)
1710 return rc;
1711 }
1712
1713 dev->real_num_rx_queues = rxq;
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1717 #endif
1718
1719 static inline void __netif_reschedule(struct Qdisc *q)
1720 {
1721 struct softnet_data *sd;
1722 unsigned long flags;
1723
1724 local_irq_save(flags);
1725 sd = &__get_cpu_var(softnet_data);
1726 q->next_sched = NULL;
1727 *sd->output_queue_tailp = q;
1728 sd->output_queue_tailp = &q->next_sched;
1729 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1730 local_irq_restore(flags);
1731 }
1732
1733 void __netif_schedule(struct Qdisc *q)
1734 {
1735 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1736 __netif_reschedule(q);
1737 }
1738 EXPORT_SYMBOL(__netif_schedule);
1739
1740 void dev_kfree_skb_irq(struct sk_buff *skb)
1741 {
1742 if (atomic_dec_and_test(&skb->users)) {
1743 struct softnet_data *sd;
1744 unsigned long flags;
1745
1746 local_irq_save(flags);
1747 sd = &__get_cpu_var(softnet_data);
1748 skb->next = sd->completion_queue;
1749 sd->completion_queue = skb;
1750 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1751 local_irq_restore(flags);
1752 }
1753 }
1754 EXPORT_SYMBOL(dev_kfree_skb_irq);
1755
1756 void dev_kfree_skb_any(struct sk_buff *skb)
1757 {
1758 if (in_irq() || irqs_disabled())
1759 dev_kfree_skb_irq(skb);
1760 else
1761 dev_kfree_skb(skb);
1762 }
1763 EXPORT_SYMBOL(dev_kfree_skb_any);
1764
1765
1766 /**
1767 * netif_device_detach - mark device as removed
1768 * @dev: network device
1769 *
1770 * Mark device as removed from system and therefore no longer available.
1771 */
1772 void netif_device_detach(struct net_device *dev)
1773 {
1774 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1775 netif_running(dev)) {
1776 netif_tx_stop_all_queues(dev);
1777 }
1778 }
1779 EXPORT_SYMBOL(netif_device_detach);
1780
1781 /**
1782 * netif_device_attach - mark device as attached
1783 * @dev: network device
1784 *
1785 * Mark device as attached from system and restart if needed.
1786 */
1787 void netif_device_attach(struct net_device *dev)
1788 {
1789 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1790 netif_running(dev)) {
1791 netif_tx_wake_all_queues(dev);
1792 __netdev_watchdog_up(dev);
1793 }
1794 }
1795 EXPORT_SYMBOL(netif_device_attach);
1796
1797 /**
1798 * skb_dev_set -- assign a new device to a buffer
1799 * @skb: buffer for the new device
1800 * @dev: network device
1801 *
1802 * If an skb is owned by a device already, we have to reset
1803 * all data private to the namespace a device belongs to
1804 * before assigning it a new device.
1805 */
1806 #ifdef CONFIG_NET_NS
1807 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1808 {
1809 skb_dst_drop(skb);
1810 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1811 secpath_reset(skb);
1812 nf_reset(skb);
1813 skb_init_secmark(skb);
1814 skb->mark = 0;
1815 skb->priority = 0;
1816 skb->nf_trace = 0;
1817 skb->ipvs_property = 0;
1818 #ifdef CONFIG_NET_SCHED
1819 skb->tc_index = 0;
1820 #endif
1821 }
1822 skb->dev = dev;
1823 }
1824 EXPORT_SYMBOL(skb_set_dev);
1825 #endif /* CONFIG_NET_NS */
1826
1827 /*
1828 * Invalidate hardware checksum when packet is to be mangled, and
1829 * complete checksum manually on outgoing path.
1830 */
1831 int skb_checksum_help(struct sk_buff *skb)
1832 {
1833 __wsum csum;
1834 int ret = 0, offset;
1835
1836 if (skb->ip_summed == CHECKSUM_COMPLETE)
1837 goto out_set_summed;
1838
1839 if (unlikely(skb_shinfo(skb)->gso_size)) {
1840 /* Let GSO fix up the checksum. */
1841 goto out_set_summed;
1842 }
1843
1844 offset = skb_checksum_start_offset(skb);
1845 BUG_ON(offset >= skb_headlen(skb));
1846 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1847
1848 offset += skb->csum_offset;
1849 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1850
1851 if (skb_cloned(skb) &&
1852 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1853 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1854 if (ret)
1855 goto out;
1856 }
1857
1858 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1859 out_set_summed:
1860 skb->ip_summed = CHECKSUM_NONE;
1861 out:
1862 return ret;
1863 }
1864 EXPORT_SYMBOL(skb_checksum_help);
1865
1866 /**
1867 * skb_gso_segment - Perform segmentation on skb.
1868 * @skb: buffer to segment
1869 * @features: features for the output path (see dev->features)
1870 *
1871 * This function segments the given skb and returns a list of segments.
1872 *
1873 * It may return NULL if the skb requires no segmentation. This is
1874 * only possible when GSO is used for verifying header integrity.
1875 */
1876 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1877 {
1878 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1879 struct packet_type *ptype;
1880 __be16 type = skb->protocol;
1881 int vlan_depth = ETH_HLEN;
1882 int err;
1883
1884 while (type == htons(ETH_P_8021Q)) {
1885 struct vlan_hdr *vh;
1886
1887 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1888 return ERR_PTR(-EINVAL);
1889
1890 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1891 type = vh->h_vlan_encapsulated_proto;
1892 vlan_depth += VLAN_HLEN;
1893 }
1894
1895 skb_reset_mac_header(skb);
1896 skb->mac_len = skb->network_header - skb->mac_header;
1897 __skb_pull(skb, skb->mac_len);
1898
1899 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1900 struct net_device *dev = skb->dev;
1901 struct ethtool_drvinfo info = {};
1902
1903 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1904 dev->ethtool_ops->get_drvinfo(dev, &info);
1905
1906 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1907 info.driver, dev ? dev->features : 0L,
1908 skb->sk ? skb->sk->sk_route_caps : 0L,
1909 skb->len, skb->data_len, skb->ip_summed);
1910
1911 if (skb_header_cloned(skb) &&
1912 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1913 return ERR_PTR(err);
1914 }
1915
1916 rcu_read_lock();
1917 list_for_each_entry_rcu(ptype,
1918 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1919 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1920 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1921 err = ptype->gso_send_check(skb);
1922 segs = ERR_PTR(err);
1923 if (err || skb_gso_ok(skb, features))
1924 break;
1925 __skb_push(skb, (skb->data -
1926 skb_network_header(skb)));
1927 }
1928 segs = ptype->gso_segment(skb, features);
1929 break;
1930 }
1931 }
1932 rcu_read_unlock();
1933
1934 __skb_push(skb, skb->data - skb_mac_header(skb));
1935
1936 return segs;
1937 }
1938 EXPORT_SYMBOL(skb_gso_segment);
1939
1940 /* Take action when hardware reception checksum errors are detected. */
1941 #ifdef CONFIG_BUG
1942 void netdev_rx_csum_fault(struct net_device *dev)
1943 {
1944 if (net_ratelimit()) {
1945 printk(KERN_ERR "%s: hw csum failure.\n",
1946 dev ? dev->name : "<unknown>");
1947 dump_stack();
1948 }
1949 }
1950 EXPORT_SYMBOL(netdev_rx_csum_fault);
1951 #endif
1952
1953 /* Actually, we should eliminate this check as soon as we know, that:
1954 * 1. IOMMU is present and allows to map all the memory.
1955 * 2. No high memory really exists on this machine.
1956 */
1957
1958 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1959 {
1960 #ifdef CONFIG_HIGHMEM
1961 int i;
1962 if (!(dev->features & NETIF_F_HIGHDMA)) {
1963 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1964 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1965 return 1;
1966 }
1967
1968 if (PCI_DMA_BUS_IS_PHYS) {
1969 struct device *pdev = dev->dev.parent;
1970
1971 if (!pdev)
1972 return 0;
1973 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1974 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1975 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1976 return 1;
1977 }
1978 }
1979 #endif
1980 return 0;
1981 }
1982
1983 struct dev_gso_cb {
1984 void (*destructor)(struct sk_buff *skb);
1985 };
1986
1987 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1988
1989 static void dev_gso_skb_destructor(struct sk_buff *skb)
1990 {
1991 struct dev_gso_cb *cb;
1992
1993 do {
1994 struct sk_buff *nskb = skb->next;
1995
1996 skb->next = nskb->next;
1997 nskb->next = NULL;
1998 kfree_skb(nskb);
1999 } while (skb->next);
2000
2001 cb = DEV_GSO_CB(skb);
2002 if (cb->destructor)
2003 cb->destructor(skb);
2004 }
2005
2006 /**
2007 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2008 * @skb: buffer to segment
2009 * @features: device features as applicable to this skb
2010 *
2011 * This function segments the given skb and stores the list of segments
2012 * in skb->next.
2013 */
2014 static int dev_gso_segment(struct sk_buff *skb, int features)
2015 {
2016 struct sk_buff *segs;
2017
2018 segs = skb_gso_segment(skb, features);
2019
2020 /* Verifying header integrity only. */
2021 if (!segs)
2022 return 0;
2023
2024 if (IS_ERR(segs))
2025 return PTR_ERR(segs);
2026
2027 skb->next = segs;
2028 DEV_GSO_CB(skb)->destructor = skb->destructor;
2029 skb->destructor = dev_gso_skb_destructor;
2030
2031 return 0;
2032 }
2033
2034 /*
2035 * Try to orphan skb early, right before transmission by the device.
2036 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2037 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2038 */
2039 static inline void skb_orphan_try(struct sk_buff *skb)
2040 {
2041 struct sock *sk = skb->sk;
2042
2043 if (sk && !skb_shinfo(skb)->tx_flags) {
2044 /* skb_tx_hash() wont be able to get sk.
2045 * We copy sk_hash into skb->rxhash
2046 */
2047 if (!skb->rxhash)
2048 skb->rxhash = sk->sk_hash;
2049 skb_orphan(skb);
2050 }
2051 }
2052
2053 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2054 {
2055 return ((features & NETIF_F_GEN_CSUM) ||
2056 ((features & NETIF_F_V4_CSUM) &&
2057 protocol == htons(ETH_P_IP)) ||
2058 ((features & NETIF_F_V6_CSUM) &&
2059 protocol == htons(ETH_P_IPV6)) ||
2060 ((features & NETIF_F_FCOE_CRC) &&
2061 protocol == htons(ETH_P_FCOE)));
2062 }
2063
2064 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2065 {
2066 if (!can_checksum_protocol(features, protocol)) {
2067 features &= ~NETIF_F_ALL_CSUM;
2068 features &= ~NETIF_F_SG;
2069 } else if (illegal_highdma(skb->dev, skb)) {
2070 features &= ~NETIF_F_SG;
2071 }
2072
2073 return features;
2074 }
2075
2076 u32 netif_skb_features(struct sk_buff *skb)
2077 {
2078 __be16 protocol = skb->protocol;
2079 u32 features = skb->dev->features;
2080
2081 if (protocol == htons(ETH_P_8021Q)) {
2082 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2083 protocol = veh->h_vlan_encapsulated_proto;
2084 } else if (!vlan_tx_tag_present(skb)) {
2085 return harmonize_features(skb, protocol, features);
2086 }
2087
2088 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2089
2090 if (protocol != htons(ETH_P_8021Q)) {
2091 return harmonize_features(skb, protocol, features);
2092 } else {
2093 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2094 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2095 return harmonize_features(skb, protocol, features);
2096 }
2097 }
2098 EXPORT_SYMBOL(netif_skb_features);
2099
2100 /*
2101 * Returns true if either:
2102 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2103 * 2. skb is fragmented and the device does not support SG, or if
2104 * at least one of fragments is in highmem and device does not
2105 * support DMA from it.
2106 */
2107 static inline int skb_needs_linearize(struct sk_buff *skb,
2108 int features)
2109 {
2110 return skb_is_nonlinear(skb) &&
2111 ((skb_has_frag_list(skb) &&
2112 !(features & NETIF_F_FRAGLIST)) ||
2113 (skb_shinfo(skb)->nr_frags &&
2114 !(features & NETIF_F_SG)));
2115 }
2116
2117 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2118 struct netdev_queue *txq)
2119 {
2120 const struct net_device_ops *ops = dev->netdev_ops;
2121 int rc = NETDEV_TX_OK;
2122
2123 if (likely(!skb->next)) {
2124 u32 features;
2125
2126 /*
2127 * If device doesnt need skb->dst, release it right now while
2128 * its hot in this cpu cache
2129 */
2130 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2131 skb_dst_drop(skb);
2132
2133 if (!list_empty(&ptype_all))
2134 dev_queue_xmit_nit(skb, dev);
2135
2136 skb_orphan_try(skb);
2137
2138 features = netif_skb_features(skb);
2139
2140 if (vlan_tx_tag_present(skb) &&
2141 !(features & NETIF_F_HW_VLAN_TX)) {
2142 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2143 if (unlikely(!skb))
2144 goto out;
2145
2146 skb->vlan_tci = 0;
2147 }
2148
2149 if (netif_needs_gso(skb, features)) {
2150 if (unlikely(dev_gso_segment(skb, features)))
2151 goto out_kfree_skb;
2152 if (skb->next)
2153 goto gso;
2154 } else {
2155 if (skb_needs_linearize(skb, features) &&
2156 __skb_linearize(skb))
2157 goto out_kfree_skb;
2158
2159 /* If packet is not checksummed and device does not
2160 * support checksumming for this protocol, complete
2161 * checksumming here.
2162 */
2163 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2164 skb_set_transport_header(skb,
2165 skb_checksum_start_offset(skb));
2166 if (!(features & NETIF_F_ALL_CSUM) &&
2167 skb_checksum_help(skb))
2168 goto out_kfree_skb;
2169 }
2170 }
2171
2172 rc = ops->ndo_start_xmit(skb, dev);
2173 trace_net_dev_xmit(skb, rc);
2174 if (rc == NETDEV_TX_OK)
2175 txq_trans_update(txq);
2176 return rc;
2177 }
2178
2179 gso:
2180 do {
2181 struct sk_buff *nskb = skb->next;
2182
2183 skb->next = nskb->next;
2184 nskb->next = NULL;
2185
2186 /*
2187 * If device doesnt need nskb->dst, release it right now while
2188 * its hot in this cpu cache
2189 */
2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2191 skb_dst_drop(nskb);
2192
2193 rc = ops->ndo_start_xmit(nskb, dev);
2194 trace_net_dev_xmit(nskb, rc);
2195 if (unlikely(rc != NETDEV_TX_OK)) {
2196 if (rc & ~NETDEV_TX_MASK)
2197 goto out_kfree_gso_skb;
2198 nskb->next = skb->next;
2199 skb->next = nskb;
2200 return rc;
2201 }
2202 txq_trans_update(txq);
2203 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2204 return NETDEV_TX_BUSY;
2205 } while (skb->next);
2206
2207 out_kfree_gso_skb:
2208 if (likely(skb->next == NULL))
2209 skb->destructor = DEV_GSO_CB(skb)->destructor;
2210 out_kfree_skb:
2211 kfree_skb(skb);
2212 out:
2213 return rc;
2214 }
2215
2216 static u32 hashrnd __read_mostly;
2217
2218 /*
2219 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2220 * to be used as a distribution range.
2221 */
2222 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2223 unsigned int num_tx_queues)
2224 {
2225 u32 hash;
2226 u16 qoffset = 0;
2227 u16 qcount = num_tx_queues;
2228
2229 if (skb_rx_queue_recorded(skb)) {
2230 hash = skb_get_rx_queue(skb);
2231 while (unlikely(hash >= num_tx_queues))
2232 hash -= num_tx_queues;
2233 return hash;
2234 }
2235
2236 if (dev->num_tc) {
2237 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2238 qoffset = dev->tc_to_txq[tc].offset;
2239 qcount = dev->tc_to_txq[tc].count;
2240 }
2241
2242 if (skb->sk && skb->sk->sk_hash)
2243 hash = skb->sk->sk_hash;
2244 else
2245 hash = (__force u16) skb->protocol ^ skb->rxhash;
2246 hash = jhash_1word(hash, hashrnd);
2247
2248 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2249 }
2250 EXPORT_SYMBOL(__skb_tx_hash);
2251
2252 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2253 {
2254 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2255 if (net_ratelimit()) {
2256 pr_warning("%s selects TX queue %d, but "
2257 "real number of TX queues is %d\n",
2258 dev->name, queue_index, dev->real_num_tx_queues);
2259 }
2260 return 0;
2261 }
2262 return queue_index;
2263 }
2264
2265 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2266 {
2267 #ifdef CONFIG_XPS
2268 struct xps_dev_maps *dev_maps;
2269 struct xps_map *map;
2270 int queue_index = -1;
2271
2272 rcu_read_lock();
2273 dev_maps = rcu_dereference(dev->xps_maps);
2274 if (dev_maps) {
2275 map = rcu_dereference(
2276 dev_maps->cpu_map[raw_smp_processor_id()]);
2277 if (map) {
2278 if (map->len == 1)
2279 queue_index = map->queues[0];
2280 else {
2281 u32 hash;
2282 if (skb->sk && skb->sk->sk_hash)
2283 hash = skb->sk->sk_hash;
2284 else
2285 hash = (__force u16) skb->protocol ^
2286 skb->rxhash;
2287 hash = jhash_1word(hash, hashrnd);
2288 queue_index = map->queues[
2289 ((u64)hash * map->len) >> 32];
2290 }
2291 if (unlikely(queue_index >= dev->real_num_tx_queues))
2292 queue_index = -1;
2293 }
2294 }
2295 rcu_read_unlock();
2296
2297 return queue_index;
2298 #else
2299 return -1;
2300 #endif
2301 }
2302
2303 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2304 struct sk_buff *skb)
2305 {
2306 int queue_index;
2307 const struct net_device_ops *ops = dev->netdev_ops;
2308
2309 if (dev->real_num_tx_queues == 1)
2310 queue_index = 0;
2311 else if (ops->ndo_select_queue) {
2312 queue_index = ops->ndo_select_queue(dev, skb);
2313 queue_index = dev_cap_txqueue(dev, queue_index);
2314 } else {
2315 struct sock *sk = skb->sk;
2316 queue_index = sk_tx_queue_get(sk);
2317
2318 if (queue_index < 0 || skb->ooo_okay ||
2319 queue_index >= dev->real_num_tx_queues) {
2320 int old_index = queue_index;
2321
2322 queue_index = get_xps_queue(dev, skb);
2323 if (queue_index < 0)
2324 queue_index = skb_tx_hash(dev, skb);
2325
2326 if (queue_index != old_index && sk) {
2327 struct dst_entry *dst =
2328 rcu_dereference_check(sk->sk_dst_cache, 1);
2329
2330 if (dst && skb_dst(skb) == dst)
2331 sk_tx_queue_set(sk, queue_index);
2332 }
2333 }
2334 }
2335
2336 skb_set_queue_mapping(skb, queue_index);
2337 return netdev_get_tx_queue(dev, queue_index);
2338 }
2339
2340 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2341 struct net_device *dev,
2342 struct netdev_queue *txq)
2343 {
2344 spinlock_t *root_lock = qdisc_lock(q);
2345 bool contended;
2346 int rc;
2347
2348 qdisc_skb_cb(skb)->pkt_len = skb->len;
2349 qdisc_calculate_pkt_len(skb, q);
2350 /*
2351 * Heuristic to force contended enqueues to serialize on a
2352 * separate lock before trying to get qdisc main lock.
2353 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2354 * and dequeue packets faster.
2355 */
2356 contended = qdisc_is_running(q);
2357 if (unlikely(contended))
2358 spin_lock(&q->busylock);
2359
2360 spin_lock(root_lock);
2361 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2362 kfree_skb(skb);
2363 rc = NET_XMIT_DROP;
2364 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2365 qdisc_run_begin(q)) {
2366 /*
2367 * This is a work-conserving queue; there are no old skbs
2368 * waiting to be sent out; and the qdisc is not running -
2369 * xmit the skb directly.
2370 */
2371 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2372 skb_dst_force(skb);
2373
2374 qdisc_bstats_update(q, skb);
2375
2376 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2377 if (unlikely(contended)) {
2378 spin_unlock(&q->busylock);
2379 contended = false;
2380 }
2381 __qdisc_run(q);
2382 } else
2383 qdisc_run_end(q);
2384
2385 rc = NET_XMIT_SUCCESS;
2386 } else {
2387 skb_dst_force(skb);
2388 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2389 if (qdisc_run_begin(q)) {
2390 if (unlikely(contended)) {
2391 spin_unlock(&q->busylock);
2392 contended = false;
2393 }
2394 __qdisc_run(q);
2395 }
2396 }
2397 spin_unlock(root_lock);
2398 if (unlikely(contended))
2399 spin_unlock(&q->busylock);
2400 return rc;
2401 }
2402
2403 static DEFINE_PER_CPU(int, xmit_recursion);
2404 #define RECURSION_LIMIT 10
2405
2406 /**
2407 * dev_queue_xmit - transmit a buffer
2408 * @skb: buffer to transmit
2409 *
2410 * Queue a buffer for transmission to a network device. The caller must
2411 * have set the device and priority and built the buffer before calling
2412 * this function. The function can be called from an interrupt.
2413 *
2414 * A negative errno code is returned on a failure. A success does not
2415 * guarantee the frame will be transmitted as it may be dropped due
2416 * to congestion or traffic shaping.
2417 *
2418 * -----------------------------------------------------------------------------------
2419 * I notice this method can also return errors from the queue disciplines,
2420 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2421 * be positive.
2422 *
2423 * Regardless of the return value, the skb is consumed, so it is currently
2424 * difficult to retry a send to this method. (You can bump the ref count
2425 * before sending to hold a reference for retry if you are careful.)
2426 *
2427 * When calling this method, interrupts MUST be enabled. This is because
2428 * the BH enable code must have IRQs enabled so that it will not deadlock.
2429 * --BLG
2430 */
2431 int dev_queue_xmit(struct sk_buff *skb)
2432 {
2433 struct net_device *dev = skb->dev;
2434 struct netdev_queue *txq;
2435 struct Qdisc *q;
2436 int rc = -ENOMEM;
2437
2438 /* Disable soft irqs for various locks below. Also
2439 * stops preemption for RCU.
2440 */
2441 rcu_read_lock_bh();
2442
2443 txq = dev_pick_tx(dev, skb);
2444 q = rcu_dereference_bh(txq->qdisc);
2445
2446 #ifdef CONFIG_NET_CLS_ACT
2447 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2448 #endif
2449 trace_net_dev_queue(skb);
2450 if (q->enqueue) {
2451 rc = __dev_xmit_skb(skb, q, dev, txq);
2452 goto out;
2453 }
2454
2455 /* The device has no queue. Common case for software devices:
2456 loopback, all the sorts of tunnels...
2457
2458 Really, it is unlikely that netif_tx_lock protection is necessary
2459 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2460 counters.)
2461 However, it is possible, that they rely on protection
2462 made by us here.
2463
2464 Check this and shot the lock. It is not prone from deadlocks.
2465 Either shot noqueue qdisc, it is even simpler 8)
2466 */
2467 if (dev->flags & IFF_UP) {
2468 int cpu = smp_processor_id(); /* ok because BHs are off */
2469
2470 if (txq->xmit_lock_owner != cpu) {
2471
2472 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2473 goto recursion_alert;
2474
2475 HARD_TX_LOCK(dev, txq, cpu);
2476
2477 if (!netif_tx_queue_stopped(txq)) {
2478 __this_cpu_inc(xmit_recursion);
2479 rc = dev_hard_start_xmit(skb, dev, txq);
2480 __this_cpu_dec(xmit_recursion);
2481 if (dev_xmit_complete(rc)) {
2482 HARD_TX_UNLOCK(dev, txq);
2483 goto out;
2484 }
2485 }
2486 HARD_TX_UNLOCK(dev, txq);
2487 if (net_ratelimit())
2488 printk(KERN_CRIT "Virtual device %s asks to "
2489 "queue packet!\n", dev->name);
2490 } else {
2491 /* Recursion is detected! It is possible,
2492 * unfortunately
2493 */
2494 recursion_alert:
2495 if (net_ratelimit())
2496 printk(KERN_CRIT "Dead loop on virtual device "
2497 "%s, fix it urgently!\n", dev->name);
2498 }
2499 }
2500
2501 rc = -ENETDOWN;
2502 rcu_read_unlock_bh();
2503
2504 kfree_skb(skb);
2505 return rc;
2506 out:
2507 rcu_read_unlock_bh();
2508 return rc;
2509 }
2510 EXPORT_SYMBOL(dev_queue_xmit);
2511
2512
2513 /*=======================================================================
2514 Receiver routines
2515 =======================================================================*/
2516
2517 int netdev_max_backlog __read_mostly = 1000;
2518 int netdev_tstamp_prequeue __read_mostly = 1;
2519 int netdev_budget __read_mostly = 300;
2520 int weight_p __read_mostly = 64; /* old backlog weight */
2521
2522 /* Called with irq disabled */
2523 static inline void ____napi_schedule(struct softnet_data *sd,
2524 struct napi_struct *napi)
2525 {
2526 list_add_tail(&napi->poll_list, &sd->poll_list);
2527 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2528 }
2529
2530 /*
2531 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2532 * and src/dst port numbers. Returns a non-zero hash number on success
2533 * and 0 on failure.
2534 */
2535 __u32 __skb_get_rxhash(struct sk_buff *skb)
2536 {
2537 int nhoff, hash = 0, poff;
2538 struct ipv6hdr *ip6;
2539 struct iphdr *ip;
2540 u8 ip_proto;
2541 u32 addr1, addr2, ihl;
2542 union {
2543 u32 v32;
2544 u16 v16[2];
2545 } ports;
2546
2547 nhoff = skb_network_offset(skb);
2548
2549 switch (skb->protocol) {
2550 case __constant_htons(ETH_P_IP):
2551 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2552 goto done;
2553
2554 ip = (struct iphdr *) (skb->data + nhoff);
2555 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2556 ip_proto = 0;
2557 else
2558 ip_proto = ip->protocol;
2559 addr1 = (__force u32) ip->saddr;
2560 addr2 = (__force u32) ip->daddr;
2561 ihl = ip->ihl;
2562 break;
2563 case __constant_htons(ETH_P_IPV6):
2564 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2565 goto done;
2566
2567 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2568 ip_proto = ip6->nexthdr;
2569 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2570 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2571 ihl = (40 >> 2);
2572 break;
2573 default:
2574 goto done;
2575 }
2576
2577 ports.v32 = 0;
2578 poff = proto_ports_offset(ip_proto);
2579 if (poff >= 0) {
2580 nhoff += ihl * 4 + poff;
2581 if (pskb_may_pull(skb, nhoff + 4)) {
2582 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2583 if (ports.v16[1] < ports.v16[0])
2584 swap(ports.v16[0], ports.v16[1]);
2585 }
2586 }
2587
2588 /* get a consistent hash (same value on both flow directions) */
2589 if (addr2 < addr1)
2590 swap(addr1, addr2);
2591
2592 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2593 if (!hash)
2594 hash = 1;
2595
2596 done:
2597 return hash;
2598 }
2599 EXPORT_SYMBOL(__skb_get_rxhash);
2600
2601 #ifdef CONFIG_RPS
2602
2603 /* One global table that all flow-based protocols share. */
2604 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2605 EXPORT_SYMBOL(rps_sock_flow_table);
2606
2607 static struct rps_dev_flow *
2608 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2609 struct rps_dev_flow *rflow, u16 next_cpu)
2610 {
2611 u16 tcpu;
2612
2613 tcpu = rflow->cpu = next_cpu;
2614 if (tcpu != RPS_NO_CPU) {
2615 #ifdef CONFIG_RFS_ACCEL
2616 struct netdev_rx_queue *rxqueue;
2617 struct rps_dev_flow_table *flow_table;
2618 struct rps_dev_flow *old_rflow;
2619 u32 flow_id;
2620 u16 rxq_index;
2621 int rc;
2622
2623 /* Should we steer this flow to a different hardware queue? */
2624 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2625 !(dev->features & NETIF_F_NTUPLE))
2626 goto out;
2627 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2628 if (rxq_index == skb_get_rx_queue(skb))
2629 goto out;
2630
2631 rxqueue = dev->_rx + rxq_index;
2632 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2633 if (!flow_table)
2634 goto out;
2635 flow_id = skb->rxhash & flow_table->mask;
2636 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2637 rxq_index, flow_id);
2638 if (rc < 0)
2639 goto out;
2640 old_rflow = rflow;
2641 rflow = &flow_table->flows[flow_id];
2642 rflow->cpu = next_cpu;
2643 rflow->filter = rc;
2644 if (old_rflow->filter == rflow->filter)
2645 old_rflow->filter = RPS_NO_FILTER;
2646 out:
2647 #endif
2648 rflow->last_qtail =
2649 per_cpu(softnet_data, tcpu).input_queue_head;
2650 }
2651
2652 return rflow;
2653 }
2654
2655 /*
2656 * get_rps_cpu is called from netif_receive_skb and returns the target
2657 * CPU from the RPS map of the receiving queue for a given skb.
2658 * rcu_read_lock must be held on entry.
2659 */
2660 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2661 struct rps_dev_flow **rflowp)
2662 {
2663 struct netdev_rx_queue *rxqueue;
2664 struct rps_map *map;
2665 struct rps_dev_flow_table *flow_table;
2666 struct rps_sock_flow_table *sock_flow_table;
2667 int cpu = -1;
2668 u16 tcpu;
2669
2670 if (skb_rx_queue_recorded(skb)) {
2671 u16 index = skb_get_rx_queue(skb);
2672 if (unlikely(index >= dev->real_num_rx_queues)) {
2673 WARN_ONCE(dev->real_num_rx_queues > 1,
2674 "%s received packet on queue %u, but number "
2675 "of RX queues is %u\n",
2676 dev->name, index, dev->real_num_rx_queues);
2677 goto done;
2678 }
2679 rxqueue = dev->_rx + index;
2680 } else
2681 rxqueue = dev->_rx;
2682
2683 map = rcu_dereference(rxqueue->rps_map);
2684 if (map) {
2685 if (map->len == 1 &&
2686 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2687 tcpu = map->cpus[0];
2688 if (cpu_online(tcpu))
2689 cpu = tcpu;
2690 goto done;
2691 }
2692 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2693 goto done;
2694 }
2695
2696 skb_reset_network_header(skb);
2697 if (!skb_get_rxhash(skb))
2698 goto done;
2699
2700 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2701 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2702 if (flow_table && sock_flow_table) {
2703 u16 next_cpu;
2704 struct rps_dev_flow *rflow;
2705
2706 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2707 tcpu = rflow->cpu;
2708
2709 next_cpu = sock_flow_table->ents[skb->rxhash &
2710 sock_flow_table->mask];
2711
2712 /*
2713 * If the desired CPU (where last recvmsg was done) is
2714 * different from current CPU (one in the rx-queue flow
2715 * table entry), switch if one of the following holds:
2716 * - Current CPU is unset (equal to RPS_NO_CPU).
2717 * - Current CPU is offline.
2718 * - The current CPU's queue tail has advanced beyond the
2719 * last packet that was enqueued using this table entry.
2720 * This guarantees that all previous packets for the flow
2721 * have been dequeued, thus preserving in order delivery.
2722 */
2723 if (unlikely(tcpu != next_cpu) &&
2724 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2725 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2726 rflow->last_qtail)) >= 0))
2727 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2728
2729 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2730 *rflowp = rflow;
2731 cpu = tcpu;
2732 goto done;
2733 }
2734 }
2735
2736 if (map) {
2737 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2738
2739 if (cpu_online(tcpu)) {
2740 cpu = tcpu;
2741 goto done;
2742 }
2743 }
2744
2745 done:
2746 return cpu;
2747 }
2748
2749 #ifdef CONFIG_RFS_ACCEL
2750
2751 /**
2752 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2753 * @dev: Device on which the filter was set
2754 * @rxq_index: RX queue index
2755 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2756 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2757 *
2758 * Drivers that implement ndo_rx_flow_steer() should periodically call
2759 * this function for each installed filter and remove the filters for
2760 * which it returns %true.
2761 */
2762 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2763 u32 flow_id, u16 filter_id)
2764 {
2765 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2766 struct rps_dev_flow_table *flow_table;
2767 struct rps_dev_flow *rflow;
2768 bool expire = true;
2769 int cpu;
2770
2771 rcu_read_lock();
2772 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2773 if (flow_table && flow_id <= flow_table->mask) {
2774 rflow = &flow_table->flows[flow_id];
2775 cpu = ACCESS_ONCE(rflow->cpu);
2776 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2777 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2778 rflow->last_qtail) <
2779 (int)(10 * flow_table->mask)))
2780 expire = false;
2781 }
2782 rcu_read_unlock();
2783 return expire;
2784 }
2785 EXPORT_SYMBOL(rps_may_expire_flow);
2786
2787 #endif /* CONFIG_RFS_ACCEL */
2788
2789 /* Called from hardirq (IPI) context */
2790 static void rps_trigger_softirq(void *data)
2791 {
2792 struct softnet_data *sd = data;
2793
2794 ____napi_schedule(sd, &sd->backlog);
2795 sd->received_rps++;
2796 }
2797
2798 #endif /* CONFIG_RPS */
2799
2800 /*
2801 * Check if this softnet_data structure is another cpu one
2802 * If yes, queue it to our IPI list and return 1
2803 * If no, return 0
2804 */
2805 static int rps_ipi_queued(struct softnet_data *sd)
2806 {
2807 #ifdef CONFIG_RPS
2808 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2809
2810 if (sd != mysd) {
2811 sd->rps_ipi_next = mysd->rps_ipi_list;
2812 mysd->rps_ipi_list = sd;
2813
2814 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2815 return 1;
2816 }
2817 #endif /* CONFIG_RPS */
2818 return 0;
2819 }
2820
2821 /*
2822 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2823 * queue (may be a remote CPU queue).
2824 */
2825 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2826 unsigned int *qtail)
2827 {
2828 struct softnet_data *sd;
2829 unsigned long flags;
2830
2831 sd = &per_cpu(softnet_data, cpu);
2832
2833 local_irq_save(flags);
2834
2835 rps_lock(sd);
2836 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2837 if (skb_queue_len(&sd->input_pkt_queue)) {
2838 enqueue:
2839 __skb_queue_tail(&sd->input_pkt_queue, skb);
2840 input_queue_tail_incr_save(sd, qtail);
2841 rps_unlock(sd);
2842 local_irq_restore(flags);
2843 return NET_RX_SUCCESS;
2844 }
2845
2846 /* Schedule NAPI for backlog device
2847 * We can use non atomic operation since we own the queue lock
2848 */
2849 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2850 if (!rps_ipi_queued(sd))
2851 ____napi_schedule(sd, &sd->backlog);
2852 }
2853 goto enqueue;
2854 }
2855
2856 sd->dropped++;
2857 rps_unlock(sd);
2858
2859 local_irq_restore(flags);
2860
2861 atomic_long_inc(&skb->dev->rx_dropped);
2862 kfree_skb(skb);
2863 return NET_RX_DROP;
2864 }
2865
2866 /**
2867 * netif_rx - post buffer to the network code
2868 * @skb: buffer to post
2869 *
2870 * This function receives a packet from a device driver and queues it for
2871 * the upper (protocol) levels to process. It always succeeds. The buffer
2872 * may be dropped during processing for congestion control or by the
2873 * protocol layers.
2874 *
2875 * return values:
2876 * NET_RX_SUCCESS (no congestion)
2877 * NET_RX_DROP (packet was dropped)
2878 *
2879 */
2880
2881 int netif_rx(struct sk_buff *skb)
2882 {
2883 int ret;
2884
2885 /* if netpoll wants it, pretend we never saw it */
2886 if (netpoll_rx(skb))
2887 return NET_RX_DROP;
2888
2889 if (netdev_tstamp_prequeue)
2890 net_timestamp_check(skb);
2891
2892 trace_netif_rx(skb);
2893 #ifdef CONFIG_RPS
2894 {
2895 struct rps_dev_flow voidflow, *rflow = &voidflow;
2896 int cpu;
2897
2898 preempt_disable();
2899 rcu_read_lock();
2900
2901 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2902 if (cpu < 0)
2903 cpu = smp_processor_id();
2904
2905 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2906
2907 rcu_read_unlock();
2908 preempt_enable();
2909 }
2910 #else
2911 {
2912 unsigned int qtail;
2913 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2914 put_cpu();
2915 }
2916 #endif
2917 return ret;
2918 }
2919 EXPORT_SYMBOL(netif_rx);
2920
2921 int netif_rx_ni(struct sk_buff *skb)
2922 {
2923 int err;
2924
2925 preempt_disable();
2926 err = netif_rx(skb);
2927 if (local_softirq_pending())
2928 do_softirq();
2929 preempt_enable();
2930
2931 return err;
2932 }
2933 EXPORT_SYMBOL(netif_rx_ni);
2934
2935 static void net_tx_action(struct softirq_action *h)
2936 {
2937 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2938
2939 if (sd->completion_queue) {
2940 struct sk_buff *clist;
2941
2942 local_irq_disable();
2943 clist = sd->completion_queue;
2944 sd->completion_queue = NULL;
2945 local_irq_enable();
2946
2947 while (clist) {
2948 struct sk_buff *skb = clist;
2949 clist = clist->next;
2950
2951 WARN_ON(atomic_read(&skb->users));
2952 trace_kfree_skb(skb, net_tx_action);
2953 __kfree_skb(skb);
2954 }
2955 }
2956
2957 if (sd->output_queue) {
2958 struct Qdisc *head;
2959
2960 local_irq_disable();
2961 head = sd->output_queue;
2962 sd->output_queue = NULL;
2963 sd->output_queue_tailp = &sd->output_queue;
2964 local_irq_enable();
2965
2966 while (head) {
2967 struct Qdisc *q = head;
2968 spinlock_t *root_lock;
2969
2970 head = head->next_sched;
2971
2972 root_lock = qdisc_lock(q);
2973 if (spin_trylock(root_lock)) {
2974 smp_mb__before_clear_bit();
2975 clear_bit(__QDISC_STATE_SCHED,
2976 &q->state);
2977 qdisc_run(q);
2978 spin_unlock(root_lock);
2979 } else {
2980 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2981 &q->state)) {
2982 __netif_reschedule(q);
2983 } else {
2984 smp_mb__before_clear_bit();
2985 clear_bit(__QDISC_STATE_SCHED,
2986 &q->state);
2987 }
2988 }
2989 }
2990 }
2991 }
2992
2993 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2994 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2995 /* This hook is defined here for ATM LANE */
2996 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2997 unsigned char *addr) __read_mostly;
2998 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2999 #endif
3000
3001 #ifdef CONFIG_NET_CLS_ACT
3002 /* TODO: Maybe we should just force sch_ingress to be compiled in
3003 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3004 * a compare and 2 stores extra right now if we dont have it on
3005 * but have CONFIG_NET_CLS_ACT
3006 * NOTE: This doesnt stop any functionality; if you dont have
3007 * the ingress scheduler, you just cant add policies on ingress.
3008 *
3009 */
3010 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3011 {
3012 struct net_device *dev = skb->dev;
3013 u32 ttl = G_TC_RTTL(skb->tc_verd);
3014 int result = TC_ACT_OK;
3015 struct Qdisc *q;
3016
3017 if (unlikely(MAX_RED_LOOP < ttl++)) {
3018 if (net_ratelimit())
3019 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3020 skb->skb_iif, dev->ifindex);
3021 return TC_ACT_SHOT;
3022 }
3023
3024 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3025 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3026
3027 q = rxq->qdisc;
3028 if (q != &noop_qdisc) {
3029 spin_lock(qdisc_lock(q));
3030 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3031 result = qdisc_enqueue_root(skb, q);
3032 spin_unlock(qdisc_lock(q));
3033 }
3034
3035 return result;
3036 }
3037
3038 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3039 struct packet_type **pt_prev,
3040 int *ret, struct net_device *orig_dev)
3041 {
3042 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3043
3044 if (!rxq || rxq->qdisc == &noop_qdisc)
3045 goto out;
3046
3047 if (*pt_prev) {
3048 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3049 *pt_prev = NULL;
3050 }
3051
3052 switch (ing_filter(skb, rxq)) {
3053 case TC_ACT_SHOT:
3054 case TC_ACT_STOLEN:
3055 kfree_skb(skb);
3056 return NULL;
3057 }
3058
3059 out:
3060 skb->tc_verd = 0;
3061 return skb;
3062 }
3063 #endif
3064
3065 /**
3066 * netdev_rx_handler_register - register receive handler
3067 * @dev: device to register a handler for
3068 * @rx_handler: receive handler to register
3069 * @rx_handler_data: data pointer that is used by rx handler
3070 *
3071 * Register a receive hander for a device. This handler will then be
3072 * called from __netif_receive_skb. A negative errno code is returned
3073 * on a failure.
3074 *
3075 * The caller must hold the rtnl_mutex.
3076 *
3077 * For a general description of rx_handler, see enum rx_handler_result.
3078 */
3079 int netdev_rx_handler_register(struct net_device *dev,
3080 rx_handler_func_t *rx_handler,
3081 void *rx_handler_data)
3082 {
3083 ASSERT_RTNL();
3084
3085 if (dev->rx_handler)
3086 return -EBUSY;
3087
3088 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3089 rcu_assign_pointer(dev->rx_handler, rx_handler);
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3094
3095 /**
3096 * netdev_rx_handler_unregister - unregister receive handler
3097 * @dev: device to unregister a handler from
3098 *
3099 * Unregister a receive hander from a device.
3100 *
3101 * The caller must hold the rtnl_mutex.
3102 */
3103 void netdev_rx_handler_unregister(struct net_device *dev)
3104 {
3105
3106 ASSERT_RTNL();
3107 rcu_assign_pointer(dev->rx_handler, NULL);
3108 rcu_assign_pointer(dev->rx_handler_data, NULL);
3109 }
3110 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3111
3112 static void vlan_on_bond_hook(struct sk_buff *skb)
3113 {
3114 /*
3115 * Make sure ARP frames received on VLAN interfaces stacked on
3116 * bonding interfaces still make their way to any base bonding
3117 * device that may have registered for a specific ptype.
3118 */
3119 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3120 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3121 skb->protocol == htons(ETH_P_ARP)) {
3122 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3123
3124 if (!skb2)
3125 return;
3126 skb2->dev = vlan_dev_real_dev(skb->dev);
3127 netif_rx(skb2);
3128 }
3129 }
3130
3131 static int __netif_receive_skb(struct sk_buff *skb)
3132 {
3133 struct packet_type *ptype, *pt_prev;
3134 rx_handler_func_t *rx_handler;
3135 struct net_device *orig_dev;
3136 struct net_device *null_or_dev;
3137 bool deliver_exact = false;
3138 int ret = NET_RX_DROP;
3139 __be16 type;
3140
3141 if (!netdev_tstamp_prequeue)
3142 net_timestamp_check(skb);
3143
3144 trace_netif_receive_skb(skb);
3145
3146 /* if we've gotten here through NAPI, check netpoll */
3147 if (netpoll_receive_skb(skb))
3148 return NET_RX_DROP;
3149
3150 if (!skb->skb_iif)
3151 skb->skb_iif = skb->dev->ifindex;
3152 orig_dev = skb->dev;
3153
3154 skb_reset_network_header(skb);
3155 skb_reset_transport_header(skb);
3156 skb->mac_len = skb->network_header - skb->mac_header;
3157
3158 pt_prev = NULL;
3159
3160 rcu_read_lock();
3161
3162 another_round:
3163
3164 __this_cpu_inc(softnet_data.processed);
3165
3166 #ifdef CONFIG_NET_CLS_ACT
3167 if (skb->tc_verd & TC_NCLS) {
3168 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3169 goto ncls;
3170 }
3171 #endif
3172
3173 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3174 if (!ptype->dev || ptype->dev == skb->dev) {
3175 if (pt_prev)
3176 ret = deliver_skb(skb, pt_prev, orig_dev);
3177 pt_prev = ptype;
3178 }
3179 }
3180
3181 #ifdef CONFIG_NET_CLS_ACT
3182 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3183 if (!skb)
3184 goto out;
3185 ncls:
3186 #endif
3187
3188 rx_handler = rcu_dereference(skb->dev->rx_handler);
3189 if (rx_handler) {
3190 if (pt_prev) {
3191 ret = deliver_skb(skb, pt_prev, orig_dev);
3192 pt_prev = NULL;
3193 }
3194 switch (rx_handler(&skb)) {
3195 case RX_HANDLER_CONSUMED:
3196 goto out;
3197 case RX_HANDLER_ANOTHER:
3198 goto another_round;
3199 case RX_HANDLER_EXACT:
3200 deliver_exact = true;
3201 case RX_HANDLER_PASS:
3202 break;
3203 default:
3204 BUG();
3205 }
3206 }
3207
3208 if (vlan_tx_tag_present(skb)) {
3209 if (pt_prev) {
3210 ret = deliver_skb(skb, pt_prev, orig_dev);
3211 pt_prev = NULL;
3212 }
3213 if (vlan_hwaccel_do_receive(&skb)) {
3214 ret = __netif_receive_skb(skb);
3215 goto out;
3216 } else if (unlikely(!skb))
3217 goto out;
3218 }
3219
3220 vlan_on_bond_hook(skb);
3221
3222 /* deliver only exact match when indicated */
3223 null_or_dev = deliver_exact ? skb->dev : NULL;
3224
3225 type = skb->protocol;
3226 list_for_each_entry_rcu(ptype,
3227 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3228 if (ptype->type == type &&
3229 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3230 ptype->dev == orig_dev)) {
3231 if (pt_prev)
3232 ret = deliver_skb(skb, pt_prev, orig_dev);
3233 pt_prev = ptype;
3234 }
3235 }
3236
3237 if (pt_prev) {
3238 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3239 } else {
3240 atomic_long_inc(&skb->dev->rx_dropped);
3241 kfree_skb(skb);
3242 /* Jamal, now you will not able to escape explaining
3243 * me how you were going to use this. :-)
3244 */
3245 ret = NET_RX_DROP;
3246 }
3247
3248 out:
3249 rcu_read_unlock();
3250 return ret;
3251 }
3252
3253 /**
3254 * netif_receive_skb - process receive buffer from network
3255 * @skb: buffer to process
3256 *
3257 * netif_receive_skb() is the main receive data processing function.
3258 * It always succeeds. The buffer may be dropped during processing
3259 * for congestion control or by the protocol layers.
3260 *
3261 * This function may only be called from softirq context and interrupts
3262 * should be enabled.
3263 *
3264 * Return values (usually ignored):
3265 * NET_RX_SUCCESS: no congestion
3266 * NET_RX_DROP: packet was dropped
3267 */
3268 int netif_receive_skb(struct sk_buff *skb)
3269 {
3270 if (netdev_tstamp_prequeue)
3271 net_timestamp_check(skb);
3272
3273 if (skb_defer_rx_timestamp(skb))
3274 return NET_RX_SUCCESS;
3275
3276 #ifdef CONFIG_RPS
3277 {
3278 struct rps_dev_flow voidflow, *rflow = &voidflow;
3279 int cpu, ret;
3280
3281 rcu_read_lock();
3282
3283 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3284
3285 if (cpu >= 0) {
3286 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3287 rcu_read_unlock();
3288 } else {
3289 rcu_read_unlock();
3290 ret = __netif_receive_skb(skb);
3291 }
3292
3293 return ret;
3294 }
3295 #else
3296 return __netif_receive_skb(skb);
3297 #endif
3298 }
3299 EXPORT_SYMBOL(netif_receive_skb);
3300
3301 /* Network device is going away, flush any packets still pending
3302 * Called with irqs disabled.
3303 */
3304 static void flush_backlog(void *arg)
3305 {
3306 struct net_device *dev = arg;
3307 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3308 struct sk_buff *skb, *tmp;
3309
3310 rps_lock(sd);
3311 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3312 if (skb->dev == dev) {
3313 __skb_unlink(skb, &sd->input_pkt_queue);
3314 kfree_skb(skb);
3315 input_queue_head_incr(sd);
3316 }
3317 }
3318 rps_unlock(sd);
3319
3320 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3321 if (skb->dev == dev) {
3322 __skb_unlink(skb, &sd->process_queue);
3323 kfree_skb(skb);
3324 input_queue_head_incr(sd);
3325 }
3326 }
3327 }
3328
3329 static int napi_gro_complete(struct sk_buff *skb)
3330 {
3331 struct packet_type *ptype;
3332 __be16 type = skb->protocol;
3333 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3334 int err = -ENOENT;
3335
3336 if (NAPI_GRO_CB(skb)->count == 1) {
3337 skb_shinfo(skb)->gso_size = 0;
3338 goto out;
3339 }
3340
3341 rcu_read_lock();
3342 list_for_each_entry_rcu(ptype, head, list) {
3343 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3344 continue;
3345
3346 err = ptype->gro_complete(skb);
3347 break;
3348 }
3349 rcu_read_unlock();
3350
3351 if (err) {
3352 WARN_ON(&ptype->list == head);
3353 kfree_skb(skb);
3354 return NET_RX_SUCCESS;
3355 }
3356
3357 out:
3358 return netif_receive_skb(skb);
3359 }
3360
3361 inline void napi_gro_flush(struct napi_struct *napi)
3362 {
3363 struct sk_buff *skb, *next;
3364
3365 for (skb = napi->gro_list; skb; skb = next) {
3366 next = skb->next;
3367 skb->next = NULL;
3368 napi_gro_complete(skb);
3369 }
3370
3371 napi->gro_count = 0;
3372 napi->gro_list = NULL;
3373 }
3374 EXPORT_SYMBOL(napi_gro_flush);
3375
3376 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3377 {
3378 struct sk_buff **pp = NULL;
3379 struct packet_type *ptype;
3380 __be16 type = skb->protocol;
3381 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3382 int same_flow;
3383 int mac_len;
3384 enum gro_result ret;
3385
3386 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3387 goto normal;
3388
3389 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3390 goto normal;
3391
3392 rcu_read_lock();
3393 list_for_each_entry_rcu(ptype, head, list) {
3394 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3395 continue;
3396
3397 skb_set_network_header(skb, skb_gro_offset(skb));
3398 mac_len = skb->network_header - skb->mac_header;
3399 skb->mac_len = mac_len;
3400 NAPI_GRO_CB(skb)->same_flow = 0;
3401 NAPI_GRO_CB(skb)->flush = 0;
3402 NAPI_GRO_CB(skb)->free = 0;
3403
3404 pp = ptype->gro_receive(&napi->gro_list, skb);
3405 break;
3406 }
3407 rcu_read_unlock();
3408
3409 if (&ptype->list == head)
3410 goto normal;
3411
3412 same_flow = NAPI_GRO_CB(skb)->same_flow;
3413 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3414
3415 if (pp) {
3416 struct sk_buff *nskb = *pp;
3417
3418 *pp = nskb->next;
3419 nskb->next = NULL;
3420 napi_gro_complete(nskb);
3421 napi->gro_count--;
3422 }
3423
3424 if (same_flow)
3425 goto ok;
3426
3427 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3428 goto normal;
3429
3430 napi->gro_count++;
3431 NAPI_GRO_CB(skb)->count = 1;
3432 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3433 skb->next = napi->gro_list;
3434 napi->gro_list = skb;
3435 ret = GRO_HELD;
3436
3437 pull:
3438 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3439 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3440
3441 BUG_ON(skb->end - skb->tail < grow);
3442
3443 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3444
3445 skb->tail += grow;
3446 skb->data_len -= grow;
3447
3448 skb_shinfo(skb)->frags[0].page_offset += grow;
3449 skb_shinfo(skb)->frags[0].size -= grow;
3450
3451 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3452 put_page(skb_shinfo(skb)->frags[0].page);
3453 memmove(skb_shinfo(skb)->frags,
3454 skb_shinfo(skb)->frags + 1,
3455 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3456 }
3457 }
3458
3459 ok:
3460 return ret;
3461
3462 normal:
3463 ret = GRO_NORMAL;
3464 goto pull;
3465 }
3466 EXPORT_SYMBOL(dev_gro_receive);
3467
3468 static inline gro_result_t
3469 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3470 {
3471 struct sk_buff *p;
3472
3473 for (p = napi->gro_list; p; p = p->next) {
3474 unsigned long diffs;
3475
3476 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3477 diffs |= p->vlan_tci ^ skb->vlan_tci;
3478 diffs |= compare_ether_header(skb_mac_header(p),
3479 skb_gro_mac_header(skb));
3480 NAPI_GRO_CB(p)->same_flow = !diffs;
3481 NAPI_GRO_CB(p)->flush = 0;
3482 }
3483
3484 return dev_gro_receive(napi, skb);
3485 }
3486
3487 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3488 {
3489 switch (ret) {
3490 case GRO_NORMAL:
3491 if (netif_receive_skb(skb))
3492 ret = GRO_DROP;
3493 break;
3494
3495 case GRO_DROP:
3496 case GRO_MERGED_FREE:
3497 kfree_skb(skb);
3498 break;
3499
3500 case GRO_HELD:
3501 case GRO_MERGED:
3502 break;
3503 }
3504
3505 return ret;
3506 }
3507 EXPORT_SYMBOL(napi_skb_finish);
3508
3509 void skb_gro_reset_offset(struct sk_buff *skb)
3510 {
3511 NAPI_GRO_CB(skb)->data_offset = 0;
3512 NAPI_GRO_CB(skb)->frag0 = NULL;
3513 NAPI_GRO_CB(skb)->frag0_len = 0;
3514
3515 if (skb->mac_header == skb->tail &&
3516 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3517 NAPI_GRO_CB(skb)->frag0 =
3518 page_address(skb_shinfo(skb)->frags[0].page) +
3519 skb_shinfo(skb)->frags[0].page_offset;
3520 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3521 }
3522 }
3523 EXPORT_SYMBOL(skb_gro_reset_offset);
3524
3525 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3526 {
3527 skb_gro_reset_offset(skb);
3528
3529 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3530 }
3531 EXPORT_SYMBOL(napi_gro_receive);
3532
3533 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3534 {
3535 __skb_pull(skb, skb_headlen(skb));
3536 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3537 skb->vlan_tci = 0;
3538 skb->dev = napi->dev;
3539 skb->skb_iif = 0;
3540
3541 napi->skb = skb;
3542 }
3543
3544 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3545 {
3546 struct sk_buff *skb = napi->skb;
3547
3548 if (!skb) {
3549 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3550 if (skb)
3551 napi->skb = skb;
3552 }
3553 return skb;
3554 }
3555 EXPORT_SYMBOL(napi_get_frags);
3556
3557 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3558 gro_result_t ret)
3559 {
3560 switch (ret) {
3561 case GRO_NORMAL:
3562 case GRO_HELD:
3563 skb->protocol = eth_type_trans(skb, skb->dev);
3564
3565 if (ret == GRO_HELD)
3566 skb_gro_pull(skb, -ETH_HLEN);
3567 else if (netif_receive_skb(skb))
3568 ret = GRO_DROP;
3569 break;
3570
3571 case GRO_DROP:
3572 case GRO_MERGED_FREE:
3573 napi_reuse_skb(napi, skb);
3574 break;
3575
3576 case GRO_MERGED:
3577 break;
3578 }
3579
3580 return ret;
3581 }
3582 EXPORT_SYMBOL(napi_frags_finish);
3583
3584 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3585 {
3586 struct sk_buff *skb = napi->skb;
3587 struct ethhdr *eth;
3588 unsigned int hlen;
3589 unsigned int off;
3590
3591 napi->skb = NULL;
3592
3593 skb_reset_mac_header(skb);
3594 skb_gro_reset_offset(skb);
3595
3596 off = skb_gro_offset(skb);
3597 hlen = off + sizeof(*eth);
3598 eth = skb_gro_header_fast(skb, off);
3599 if (skb_gro_header_hard(skb, hlen)) {
3600 eth = skb_gro_header_slow(skb, hlen, off);
3601 if (unlikely(!eth)) {
3602 napi_reuse_skb(napi, skb);
3603 skb = NULL;
3604 goto out;
3605 }
3606 }
3607
3608 skb_gro_pull(skb, sizeof(*eth));
3609
3610 /*
3611 * This works because the only protocols we care about don't require
3612 * special handling. We'll fix it up properly at the end.
3613 */
3614 skb->protocol = eth->h_proto;
3615
3616 out:
3617 return skb;
3618 }
3619 EXPORT_SYMBOL(napi_frags_skb);
3620
3621 gro_result_t napi_gro_frags(struct napi_struct *napi)
3622 {
3623 struct sk_buff *skb = napi_frags_skb(napi);
3624
3625 if (!skb)
3626 return GRO_DROP;
3627
3628 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3629 }
3630 EXPORT_SYMBOL(napi_gro_frags);
3631
3632 /*
3633 * net_rps_action sends any pending IPI's for rps.
3634 * Note: called with local irq disabled, but exits with local irq enabled.
3635 */
3636 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3637 {
3638 #ifdef CONFIG_RPS
3639 struct softnet_data *remsd = sd->rps_ipi_list;
3640
3641 if (remsd) {
3642 sd->rps_ipi_list = NULL;
3643
3644 local_irq_enable();
3645
3646 /* Send pending IPI's to kick RPS processing on remote cpus. */
3647 while (remsd) {
3648 struct softnet_data *next = remsd->rps_ipi_next;
3649
3650 if (cpu_online(remsd->cpu))
3651 __smp_call_function_single(remsd->cpu,
3652 &remsd->csd, 0);
3653 remsd = next;
3654 }
3655 } else
3656 #endif
3657 local_irq_enable();
3658 }
3659
3660 static int process_backlog(struct napi_struct *napi, int quota)
3661 {
3662 int work = 0;
3663 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3664
3665 #ifdef CONFIG_RPS
3666 /* Check if we have pending ipi, its better to send them now,
3667 * not waiting net_rx_action() end.
3668 */
3669 if (sd->rps_ipi_list) {
3670 local_irq_disable();
3671 net_rps_action_and_irq_enable(sd);
3672 }
3673 #endif
3674 napi->weight = weight_p;
3675 local_irq_disable();
3676 while (work < quota) {
3677 struct sk_buff *skb;
3678 unsigned int qlen;
3679
3680 while ((skb = __skb_dequeue(&sd->process_queue))) {
3681 local_irq_enable();
3682 __netif_receive_skb(skb);
3683 local_irq_disable();
3684 input_queue_head_incr(sd);
3685 if (++work >= quota) {
3686 local_irq_enable();
3687 return work;
3688 }
3689 }
3690
3691 rps_lock(sd);
3692 qlen = skb_queue_len(&sd->input_pkt_queue);
3693 if (qlen)
3694 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3695 &sd->process_queue);
3696
3697 if (qlen < quota - work) {
3698 /*
3699 * Inline a custom version of __napi_complete().
3700 * only current cpu owns and manipulates this napi,
3701 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3702 * we can use a plain write instead of clear_bit(),
3703 * and we dont need an smp_mb() memory barrier.
3704 */
3705 list_del(&napi->poll_list);
3706 napi->state = 0;
3707
3708 quota = work + qlen;
3709 }
3710 rps_unlock(sd);
3711 }
3712 local_irq_enable();
3713
3714 return work;
3715 }
3716
3717 /**
3718 * __napi_schedule - schedule for receive
3719 * @n: entry to schedule
3720 *
3721 * The entry's receive function will be scheduled to run
3722 */
3723 void __napi_schedule(struct napi_struct *n)
3724 {
3725 unsigned long flags;
3726
3727 local_irq_save(flags);
3728 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3729 local_irq_restore(flags);
3730 }
3731 EXPORT_SYMBOL(__napi_schedule);
3732
3733 void __napi_complete(struct napi_struct *n)
3734 {
3735 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3736 BUG_ON(n->gro_list);
3737
3738 list_del(&n->poll_list);
3739 smp_mb__before_clear_bit();
3740 clear_bit(NAPI_STATE_SCHED, &n->state);
3741 }
3742 EXPORT_SYMBOL(__napi_complete);
3743
3744 void napi_complete(struct napi_struct *n)
3745 {
3746 unsigned long flags;
3747
3748 /*
3749 * don't let napi dequeue from the cpu poll list
3750 * just in case its running on a different cpu
3751 */
3752 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3753 return;
3754
3755 napi_gro_flush(n);
3756 local_irq_save(flags);
3757 __napi_complete(n);
3758 local_irq_restore(flags);
3759 }
3760 EXPORT_SYMBOL(napi_complete);
3761
3762 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3763 int (*poll)(struct napi_struct *, int), int weight)
3764 {
3765 INIT_LIST_HEAD(&napi->poll_list);
3766 napi->gro_count = 0;
3767 napi->gro_list = NULL;
3768 napi->skb = NULL;
3769 napi->poll = poll;
3770 napi->weight = weight;
3771 list_add(&napi->dev_list, &dev->napi_list);
3772 napi->dev = dev;
3773 #ifdef CONFIG_NETPOLL
3774 spin_lock_init(&napi->poll_lock);
3775 napi->poll_owner = -1;
3776 #endif
3777 set_bit(NAPI_STATE_SCHED, &napi->state);
3778 }
3779 EXPORT_SYMBOL(netif_napi_add);
3780
3781 void netif_napi_del(struct napi_struct *napi)
3782 {
3783 struct sk_buff *skb, *next;
3784
3785 list_del_init(&napi->dev_list);
3786 napi_free_frags(napi);
3787
3788 for (skb = napi->gro_list; skb; skb = next) {
3789 next = skb->next;
3790 skb->next = NULL;
3791 kfree_skb(skb);
3792 }
3793
3794 napi->gro_list = NULL;
3795 napi->gro_count = 0;
3796 }
3797 EXPORT_SYMBOL(netif_napi_del);
3798
3799 static void net_rx_action(struct softirq_action *h)
3800 {
3801 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3802 unsigned long time_limit = jiffies + 2;
3803 int budget = netdev_budget;
3804 void *have;
3805
3806 local_irq_disable();
3807
3808 while (!list_empty(&sd->poll_list)) {
3809 struct napi_struct *n;
3810 int work, weight;
3811
3812 /* If softirq window is exhuasted then punt.
3813 * Allow this to run for 2 jiffies since which will allow
3814 * an average latency of 1.5/HZ.
3815 */
3816 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3817 goto softnet_break;
3818
3819 local_irq_enable();
3820
3821 /* Even though interrupts have been re-enabled, this
3822 * access is safe because interrupts can only add new
3823 * entries to the tail of this list, and only ->poll()
3824 * calls can remove this head entry from the list.
3825 */
3826 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3827
3828 have = netpoll_poll_lock(n);
3829
3830 weight = n->weight;
3831
3832 /* This NAPI_STATE_SCHED test is for avoiding a race
3833 * with netpoll's poll_napi(). Only the entity which
3834 * obtains the lock and sees NAPI_STATE_SCHED set will
3835 * actually make the ->poll() call. Therefore we avoid
3836 * accidently calling ->poll() when NAPI is not scheduled.
3837 */
3838 work = 0;
3839 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3840 work = n->poll(n, weight);
3841 trace_napi_poll(n);
3842 }
3843
3844 WARN_ON_ONCE(work > weight);
3845
3846 budget -= work;
3847
3848 local_irq_disable();
3849
3850 /* Drivers must not modify the NAPI state if they
3851 * consume the entire weight. In such cases this code
3852 * still "owns" the NAPI instance and therefore can
3853 * move the instance around on the list at-will.
3854 */
3855 if (unlikely(work == weight)) {
3856 if (unlikely(napi_disable_pending(n))) {
3857 local_irq_enable();
3858 napi_complete(n);
3859 local_irq_disable();
3860 } else
3861 list_move_tail(&n->poll_list, &sd->poll_list);
3862 }
3863
3864 netpoll_poll_unlock(have);
3865 }
3866 out:
3867 net_rps_action_and_irq_enable(sd);
3868
3869 #ifdef CONFIG_NET_DMA
3870 /*
3871 * There may not be any more sk_buffs coming right now, so push
3872 * any pending DMA copies to hardware
3873 */
3874 dma_issue_pending_all();
3875 #endif
3876
3877 return;
3878
3879 softnet_break:
3880 sd->time_squeeze++;
3881 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3882 goto out;
3883 }
3884
3885 static gifconf_func_t *gifconf_list[NPROTO];
3886
3887 /**
3888 * register_gifconf - register a SIOCGIF handler
3889 * @family: Address family
3890 * @gifconf: Function handler
3891 *
3892 * Register protocol dependent address dumping routines. The handler
3893 * that is passed must not be freed or reused until it has been replaced
3894 * by another handler.
3895 */
3896 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3897 {
3898 if (family >= NPROTO)
3899 return -EINVAL;
3900 gifconf_list[family] = gifconf;
3901 return 0;
3902 }
3903 EXPORT_SYMBOL(register_gifconf);
3904
3905
3906 /*
3907 * Map an interface index to its name (SIOCGIFNAME)
3908 */
3909
3910 /*
3911 * We need this ioctl for efficient implementation of the
3912 * if_indextoname() function required by the IPv6 API. Without
3913 * it, we would have to search all the interfaces to find a
3914 * match. --pb
3915 */
3916
3917 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3918 {
3919 struct net_device *dev;
3920 struct ifreq ifr;
3921
3922 /*
3923 * Fetch the caller's info block.
3924 */
3925
3926 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3927 return -EFAULT;
3928
3929 rcu_read_lock();
3930 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3931 if (!dev) {
3932 rcu_read_unlock();
3933 return -ENODEV;
3934 }
3935
3936 strcpy(ifr.ifr_name, dev->name);
3937 rcu_read_unlock();
3938
3939 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3940 return -EFAULT;
3941 return 0;
3942 }
3943
3944 /*
3945 * Perform a SIOCGIFCONF call. This structure will change
3946 * size eventually, and there is nothing I can do about it.
3947 * Thus we will need a 'compatibility mode'.
3948 */
3949
3950 static int dev_ifconf(struct net *net, char __user *arg)
3951 {
3952 struct ifconf ifc;
3953 struct net_device *dev;
3954 char __user *pos;
3955 int len;
3956 int total;
3957 int i;
3958
3959 /*
3960 * Fetch the caller's info block.
3961 */
3962
3963 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3964 return -EFAULT;
3965
3966 pos = ifc.ifc_buf;
3967 len = ifc.ifc_len;
3968
3969 /*
3970 * Loop over the interfaces, and write an info block for each.
3971 */
3972
3973 total = 0;
3974 for_each_netdev(net, dev) {
3975 for (i = 0; i < NPROTO; i++) {
3976 if (gifconf_list[i]) {
3977 int done;
3978 if (!pos)
3979 done = gifconf_list[i](dev, NULL, 0);
3980 else
3981 done = gifconf_list[i](dev, pos + total,
3982 len - total);
3983 if (done < 0)
3984 return -EFAULT;
3985 total += done;
3986 }
3987 }
3988 }
3989
3990 /*
3991 * All done. Write the updated control block back to the caller.
3992 */
3993 ifc.ifc_len = total;
3994
3995 /*
3996 * Both BSD and Solaris return 0 here, so we do too.
3997 */
3998 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3999 }
4000
4001 #ifdef CONFIG_PROC_FS
4002 /*
4003 * This is invoked by the /proc filesystem handler to display a device
4004 * in detail.
4005 */
4006 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4007 __acquires(RCU)
4008 {
4009 struct net *net = seq_file_net(seq);
4010 loff_t off;
4011 struct net_device *dev;
4012
4013 rcu_read_lock();
4014 if (!*pos)
4015 return SEQ_START_TOKEN;
4016
4017 off = 1;
4018 for_each_netdev_rcu(net, dev)
4019 if (off++ == *pos)
4020 return dev;
4021
4022 return NULL;
4023 }
4024
4025 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4026 {
4027 struct net_device *dev = v;
4028
4029 if (v == SEQ_START_TOKEN)
4030 dev = first_net_device_rcu(seq_file_net(seq));
4031 else
4032 dev = next_net_device_rcu(dev);
4033
4034 ++*pos;
4035 return dev;
4036 }
4037
4038 void dev_seq_stop(struct seq_file *seq, void *v)
4039 __releases(RCU)
4040 {
4041 rcu_read_unlock();
4042 }
4043
4044 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4045 {
4046 struct rtnl_link_stats64 temp;
4047 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4048
4049 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4050 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4051 dev->name, stats->rx_bytes, stats->rx_packets,
4052 stats->rx_errors,
4053 stats->rx_dropped + stats->rx_missed_errors,
4054 stats->rx_fifo_errors,
4055 stats->rx_length_errors + stats->rx_over_errors +
4056 stats->rx_crc_errors + stats->rx_frame_errors,
4057 stats->rx_compressed, stats->multicast,
4058 stats->tx_bytes, stats->tx_packets,
4059 stats->tx_errors, stats->tx_dropped,
4060 stats->tx_fifo_errors, stats->collisions,
4061 stats->tx_carrier_errors +
4062 stats->tx_aborted_errors +
4063 stats->tx_window_errors +
4064 stats->tx_heartbeat_errors,
4065 stats->tx_compressed);
4066 }
4067
4068 /*
4069 * Called from the PROCfs module. This now uses the new arbitrary sized
4070 * /proc/net interface to create /proc/net/dev
4071 */
4072 static int dev_seq_show(struct seq_file *seq, void *v)
4073 {
4074 if (v == SEQ_START_TOKEN)
4075 seq_puts(seq, "Inter-| Receive "
4076 " | Transmit\n"
4077 " face |bytes packets errs drop fifo frame "
4078 "compressed multicast|bytes packets errs "
4079 "drop fifo colls carrier compressed\n");
4080 else
4081 dev_seq_printf_stats(seq, v);
4082 return 0;
4083 }
4084
4085 static struct softnet_data *softnet_get_online(loff_t *pos)
4086 {
4087 struct softnet_data *sd = NULL;
4088
4089 while (*pos < nr_cpu_ids)
4090 if (cpu_online(*pos)) {
4091 sd = &per_cpu(softnet_data, *pos);
4092 break;
4093 } else
4094 ++*pos;
4095 return sd;
4096 }
4097
4098 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4099 {
4100 return softnet_get_online(pos);
4101 }
4102
4103 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4104 {
4105 ++*pos;
4106 return softnet_get_online(pos);
4107 }
4108
4109 static void softnet_seq_stop(struct seq_file *seq, void *v)
4110 {
4111 }
4112
4113 static int softnet_seq_show(struct seq_file *seq, void *v)
4114 {
4115 struct softnet_data *sd = v;
4116
4117 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4118 sd->processed, sd->dropped, sd->time_squeeze, 0,
4119 0, 0, 0, 0, /* was fastroute */
4120 sd->cpu_collision, sd->received_rps);
4121 return 0;
4122 }
4123
4124 static const struct seq_operations dev_seq_ops = {
4125 .start = dev_seq_start,
4126 .next = dev_seq_next,
4127 .stop = dev_seq_stop,
4128 .show = dev_seq_show,
4129 };
4130
4131 static int dev_seq_open(struct inode *inode, struct file *file)
4132 {
4133 return seq_open_net(inode, file, &dev_seq_ops,
4134 sizeof(struct seq_net_private));
4135 }
4136
4137 static const struct file_operations dev_seq_fops = {
4138 .owner = THIS_MODULE,
4139 .open = dev_seq_open,
4140 .read = seq_read,
4141 .llseek = seq_lseek,
4142 .release = seq_release_net,
4143 };
4144
4145 static const struct seq_operations softnet_seq_ops = {
4146 .start = softnet_seq_start,
4147 .next = softnet_seq_next,
4148 .stop = softnet_seq_stop,
4149 .show = softnet_seq_show,
4150 };
4151
4152 static int softnet_seq_open(struct inode *inode, struct file *file)
4153 {
4154 return seq_open(file, &softnet_seq_ops);
4155 }
4156
4157 static const struct file_operations softnet_seq_fops = {
4158 .owner = THIS_MODULE,
4159 .open = softnet_seq_open,
4160 .read = seq_read,
4161 .llseek = seq_lseek,
4162 .release = seq_release,
4163 };
4164
4165 static void *ptype_get_idx(loff_t pos)
4166 {
4167 struct packet_type *pt = NULL;
4168 loff_t i = 0;
4169 int t;
4170
4171 list_for_each_entry_rcu(pt, &ptype_all, list) {
4172 if (i == pos)
4173 return pt;
4174 ++i;
4175 }
4176
4177 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4178 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4179 if (i == pos)
4180 return pt;
4181 ++i;
4182 }
4183 }
4184 return NULL;
4185 }
4186
4187 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4188 __acquires(RCU)
4189 {
4190 rcu_read_lock();
4191 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4192 }
4193
4194 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4195 {
4196 struct packet_type *pt;
4197 struct list_head *nxt;
4198 int hash;
4199
4200 ++*pos;
4201 if (v == SEQ_START_TOKEN)
4202 return ptype_get_idx(0);
4203
4204 pt = v;
4205 nxt = pt->list.next;
4206 if (pt->type == htons(ETH_P_ALL)) {
4207 if (nxt != &ptype_all)
4208 goto found;
4209 hash = 0;
4210 nxt = ptype_base[0].next;
4211 } else
4212 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4213
4214 while (nxt == &ptype_base[hash]) {
4215 if (++hash >= PTYPE_HASH_SIZE)
4216 return NULL;
4217 nxt = ptype_base[hash].next;
4218 }
4219 found:
4220 return list_entry(nxt, struct packet_type, list);
4221 }
4222
4223 static void ptype_seq_stop(struct seq_file *seq, void *v)
4224 __releases(RCU)
4225 {
4226 rcu_read_unlock();
4227 }
4228
4229 static int ptype_seq_show(struct seq_file *seq, void *v)
4230 {
4231 struct packet_type *pt = v;
4232
4233 if (v == SEQ_START_TOKEN)
4234 seq_puts(seq, "Type Device Function\n");
4235 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4236 if (pt->type == htons(ETH_P_ALL))
4237 seq_puts(seq, "ALL ");
4238 else
4239 seq_printf(seq, "%04x", ntohs(pt->type));
4240
4241 seq_printf(seq, " %-8s %pF\n",
4242 pt->dev ? pt->dev->name : "", pt->func);
4243 }
4244
4245 return 0;
4246 }
4247
4248 static const struct seq_operations ptype_seq_ops = {
4249 .start = ptype_seq_start,
4250 .next = ptype_seq_next,
4251 .stop = ptype_seq_stop,
4252 .show = ptype_seq_show,
4253 };
4254
4255 static int ptype_seq_open(struct inode *inode, struct file *file)
4256 {
4257 return seq_open_net(inode, file, &ptype_seq_ops,
4258 sizeof(struct seq_net_private));
4259 }
4260
4261 static const struct file_operations ptype_seq_fops = {
4262 .owner = THIS_MODULE,
4263 .open = ptype_seq_open,
4264 .read = seq_read,
4265 .llseek = seq_lseek,
4266 .release = seq_release_net,
4267 };
4268
4269
4270 static int __net_init dev_proc_net_init(struct net *net)
4271 {
4272 int rc = -ENOMEM;
4273
4274 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4275 goto out;
4276 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4277 goto out_dev;
4278 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4279 goto out_softnet;
4280
4281 if (wext_proc_init(net))
4282 goto out_ptype;
4283 rc = 0;
4284 out:
4285 return rc;
4286 out_ptype:
4287 proc_net_remove(net, "ptype");
4288 out_softnet:
4289 proc_net_remove(net, "softnet_stat");
4290 out_dev:
4291 proc_net_remove(net, "dev");
4292 goto out;
4293 }
4294
4295 static void __net_exit dev_proc_net_exit(struct net *net)
4296 {
4297 wext_proc_exit(net);
4298
4299 proc_net_remove(net, "ptype");
4300 proc_net_remove(net, "softnet_stat");
4301 proc_net_remove(net, "dev");
4302 }
4303
4304 static struct pernet_operations __net_initdata dev_proc_ops = {
4305 .init = dev_proc_net_init,
4306 .exit = dev_proc_net_exit,
4307 };
4308
4309 static int __init dev_proc_init(void)
4310 {
4311 return register_pernet_subsys(&dev_proc_ops);
4312 }
4313 #else
4314 #define dev_proc_init() 0
4315 #endif /* CONFIG_PROC_FS */
4316
4317
4318 /**
4319 * netdev_set_master - set up master pointer
4320 * @slave: slave device
4321 * @master: new master device
4322 *
4323 * Changes the master device of the slave. Pass %NULL to break the
4324 * bonding. The caller must hold the RTNL semaphore. On a failure
4325 * a negative errno code is returned. On success the reference counts
4326 * are adjusted and the function returns zero.
4327 */
4328 int netdev_set_master(struct net_device *slave, struct net_device *master)
4329 {
4330 struct net_device *old = slave->master;
4331
4332 ASSERT_RTNL();
4333
4334 if (master) {
4335 if (old)
4336 return -EBUSY;
4337 dev_hold(master);
4338 }
4339
4340 slave->master = master;
4341
4342 if (old) {
4343 synchronize_net();
4344 dev_put(old);
4345 }
4346 return 0;
4347 }
4348 EXPORT_SYMBOL(netdev_set_master);
4349
4350 /**
4351 * netdev_set_bond_master - set up bonding master/slave pair
4352 * @slave: slave device
4353 * @master: new master device
4354 *
4355 * Changes the master device of the slave. Pass %NULL to break the
4356 * bonding. The caller must hold the RTNL semaphore. On a failure
4357 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4358 * to the routing socket and the function returns zero.
4359 */
4360 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4361 {
4362 int err;
4363
4364 ASSERT_RTNL();
4365
4366 err = netdev_set_master(slave, master);
4367 if (err)
4368 return err;
4369 if (master)
4370 slave->flags |= IFF_SLAVE;
4371 else
4372 slave->flags &= ~IFF_SLAVE;
4373
4374 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4375 return 0;
4376 }
4377 EXPORT_SYMBOL(netdev_set_bond_master);
4378
4379 static void dev_change_rx_flags(struct net_device *dev, int flags)
4380 {
4381 const struct net_device_ops *ops = dev->netdev_ops;
4382
4383 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4384 ops->ndo_change_rx_flags(dev, flags);
4385 }
4386
4387 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4388 {
4389 unsigned short old_flags = dev->flags;
4390 uid_t uid;
4391 gid_t gid;
4392
4393 ASSERT_RTNL();
4394
4395 dev->flags |= IFF_PROMISC;
4396 dev->promiscuity += inc;
4397 if (dev->promiscuity == 0) {
4398 /*
4399 * Avoid overflow.
4400 * If inc causes overflow, untouch promisc and return error.
4401 */
4402 if (inc < 0)
4403 dev->flags &= ~IFF_PROMISC;
4404 else {
4405 dev->promiscuity -= inc;
4406 printk(KERN_WARNING "%s: promiscuity touches roof, "
4407 "set promiscuity failed, promiscuity feature "
4408 "of device might be broken.\n", dev->name);
4409 return -EOVERFLOW;
4410 }
4411 }
4412 if (dev->flags != old_flags) {
4413 printk(KERN_INFO "device %s %s promiscuous mode\n",
4414 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4415 "left");
4416 if (audit_enabled) {
4417 current_uid_gid(&uid, &gid);
4418 audit_log(current->audit_context, GFP_ATOMIC,
4419 AUDIT_ANOM_PROMISCUOUS,
4420 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4421 dev->name, (dev->flags & IFF_PROMISC),
4422 (old_flags & IFF_PROMISC),
4423 audit_get_loginuid(current),
4424 uid, gid,
4425 audit_get_sessionid(current));
4426 }
4427
4428 dev_change_rx_flags(dev, IFF_PROMISC);
4429 }
4430 return 0;
4431 }
4432
4433 /**
4434 * dev_set_promiscuity - update promiscuity count on a device
4435 * @dev: device
4436 * @inc: modifier
4437 *
4438 * Add or remove promiscuity from a device. While the count in the device
4439 * remains above zero the interface remains promiscuous. Once it hits zero
4440 * the device reverts back to normal filtering operation. A negative inc
4441 * value is used to drop promiscuity on the device.
4442 * Return 0 if successful or a negative errno code on error.
4443 */
4444 int dev_set_promiscuity(struct net_device *dev, int inc)
4445 {
4446 unsigned short old_flags = dev->flags;
4447 int err;
4448
4449 err = __dev_set_promiscuity(dev, inc);
4450 if (err < 0)
4451 return err;
4452 if (dev->flags != old_flags)
4453 dev_set_rx_mode(dev);
4454 return err;
4455 }
4456 EXPORT_SYMBOL(dev_set_promiscuity);
4457
4458 /**
4459 * dev_set_allmulti - update allmulti count on a device
4460 * @dev: device
4461 * @inc: modifier
4462 *
4463 * Add or remove reception of all multicast frames to a device. While the
4464 * count in the device remains above zero the interface remains listening
4465 * to all interfaces. Once it hits zero the device reverts back to normal
4466 * filtering operation. A negative @inc value is used to drop the counter
4467 * when releasing a resource needing all multicasts.
4468 * Return 0 if successful or a negative errno code on error.
4469 */
4470
4471 int dev_set_allmulti(struct net_device *dev, int inc)
4472 {
4473 unsigned short old_flags = dev->flags;
4474
4475 ASSERT_RTNL();
4476
4477 dev->flags |= IFF_ALLMULTI;
4478 dev->allmulti += inc;
4479 if (dev->allmulti == 0) {
4480 /*
4481 * Avoid overflow.
4482 * If inc causes overflow, untouch allmulti and return error.
4483 */
4484 if (inc < 0)
4485 dev->flags &= ~IFF_ALLMULTI;
4486 else {
4487 dev->allmulti -= inc;
4488 printk(KERN_WARNING "%s: allmulti touches roof, "
4489 "set allmulti failed, allmulti feature of "
4490 "device might be broken.\n", dev->name);
4491 return -EOVERFLOW;
4492 }
4493 }
4494 if (dev->flags ^ old_flags) {
4495 dev_change_rx_flags(dev, IFF_ALLMULTI);
4496 dev_set_rx_mode(dev);
4497 }
4498 return 0;
4499 }
4500 EXPORT_SYMBOL(dev_set_allmulti);
4501
4502 /*
4503 * Upload unicast and multicast address lists to device and
4504 * configure RX filtering. When the device doesn't support unicast
4505 * filtering it is put in promiscuous mode while unicast addresses
4506 * are present.
4507 */
4508 void __dev_set_rx_mode(struct net_device *dev)
4509 {
4510 const struct net_device_ops *ops = dev->netdev_ops;
4511
4512 /* dev_open will call this function so the list will stay sane. */
4513 if (!(dev->flags&IFF_UP))
4514 return;
4515
4516 if (!netif_device_present(dev))
4517 return;
4518
4519 if (ops->ndo_set_rx_mode)
4520 ops->ndo_set_rx_mode(dev);
4521 else {
4522 /* Unicast addresses changes may only happen under the rtnl,
4523 * therefore calling __dev_set_promiscuity here is safe.
4524 */
4525 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4526 __dev_set_promiscuity(dev, 1);
4527 dev->uc_promisc = 1;
4528 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4529 __dev_set_promiscuity(dev, -1);
4530 dev->uc_promisc = 0;
4531 }
4532
4533 if (ops->ndo_set_multicast_list)
4534 ops->ndo_set_multicast_list(dev);
4535 }
4536 }
4537
4538 void dev_set_rx_mode(struct net_device *dev)
4539 {
4540 netif_addr_lock_bh(dev);
4541 __dev_set_rx_mode(dev);
4542 netif_addr_unlock_bh(dev);
4543 }
4544
4545 /**
4546 * dev_get_flags - get flags reported to userspace
4547 * @dev: device
4548 *
4549 * Get the combination of flag bits exported through APIs to userspace.
4550 */
4551 unsigned dev_get_flags(const struct net_device *dev)
4552 {
4553 unsigned flags;
4554
4555 flags = (dev->flags & ~(IFF_PROMISC |
4556 IFF_ALLMULTI |
4557 IFF_RUNNING |
4558 IFF_LOWER_UP |
4559 IFF_DORMANT)) |
4560 (dev->gflags & (IFF_PROMISC |
4561 IFF_ALLMULTI));
4562
4563 if (netif_running(dev)) {
4564 if (netif_oper_up(dev))
4565 flags |= IFF_RUNNING;
4566 if (netif_carrier_ok(dev))
4567 flags |= IFF_LOWER_UP;
4568 if (netif_dormant(dev))
4569 flags |= IFF_DORMANT;
4570 }
4571
4572 return flags;
4573 }
4574 EXPORT_SYMBOL(dev_get_flags);
4575
4576 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4577 {
4578 int old_flags = dev->flags;
4579 int ret;
4580
4581 ASSERT_RTNL();
4582
4583 /*
4584 * Set the flags on our device.
4585 */
4586
4587 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4588 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4589 IFF_AUTOMEDIA)) |
4590 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4591 IFF_ALLMULTI));
4592
4593 /*
4594 * Load in the correct multicast list now the flags have changed.
4595 */
4596
4597 if ((old_flags ^ flags) & IFF_MULTICAST)
4598 dev_change_rx_flags(dev, IFF_MULTICAST);
4599
4600 dev_set_rx_mode(dev);
4601
4602 /*
4603 * Have we downed the interface. We handle IFF_UP ourselves
4604 * according to user attempts to set it, rather than blindly
4605 * setting it.
4606 */
4607
4608 ret = 0;
4609 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4610 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4611
4612 if (!ret)
4613 dev_set_rx_mode(dev);
4614 }
4615
4616 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4617 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4618
4619 dev->gflags ^= IFF_PROMISC;
4620 dev_set_promiscuity(dev, inc);
4621 }
4622
4623 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4624 is important. Some (broken) drivers set IFF_PROMISC, when
4625 IFF_ALLMULTI is requested not asking us and not reporting.
4626 */
4627 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4628 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4629
4630 dev->gflags ^= IFF_ALLMULTI;
4631 dev_set_allmulti(dev, inc);
4632 }
4633
4634 return ret;
4635 }
4636
4637 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4638 {
4639 unsigned int changes = dev->flags ^ old_flags;
4640
4641 if (changes & IFF_UP) {
4642 if (dev->flags & IFF_UP)
4643 call_netdevice_notifiers(NETDEV_UP, dev);
4644 else
4645 call_netdevice_notifiers(NETDEV_DOWN, dev);
4646 }
4647
4648 if (dev->flags & IFF_UP &&
4649 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4650 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4651 }
4652
4653 /**
4654 * dev_change_flags - change device settings
4655 * @dev: device
4656 * @flags: device state flags
4657 *
4658 * Change settings on device based state flags. The flags are
4659 * in the userspace exported format.
4660 */
4661 int dev_change_flags(struct net_device *dev, unsigned flags)
4662 {
4663 int ret, changes;
4664 int old_flags = dev->flags;
4665
4666 ret = __dev_change_flags(dev, flags);
4667 if (ret < 0)
4668 return ret;
4669
4670 changes = old_flags ^ dev->flags;
4671 if (changes)
4672 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4673
4674 __dev_notify_flags(dev, old_flags);
4675 return ret;
4676 }
4677 EXPORT_SYMBOL(dev_change_flags);
4678
4679 /**
4680 * dev_set_mtu - Change maximum transfer unit
4681 * @dev: device
4682 * @new_mtu: new transfer unit
4683 *
4684 * Change the maximum transfer size of the network device.
4685 */
4686 int dev_set_mtu(struct net_device *dev, int new_mtu)
4687 {
4688 const struct net_device_ops *ops = dev->netdev_ops;
4689 int err;
4690
4691 if (new_mtu == dev->mtu)
4692 return 0;
4693
4694 /* MTU must be positive. */
4695 if (new_mtu < 0)
4696 return -EINVAL;
4697
4698 if (!netif_device_present(dev))
4699 return -ENODEV;
4700
4701 err = 0;
4702 if (ops->ndo_change_mtu)
4703 err = ops->ndo_change_mtu(dev, new_mtu);
4704 else
4705 dev->mtu = new_mtu;
4706
4707 if (!err && dev->flags & IFF_UP)
4708 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4709 return err;
4710 }
4711 EXPORT_SYMBOL(dev_set_mtu);
4712
4713 /**
4714 * dev_set_group - Change group this device belongs to
4715 * @dev: device
4716 * @new_group: group this device should belong to
4717 */
4718 void dev_set_group(struct net_device *dev, int new_group)
4719 {
4720 dev->group = new_group;
4721 }
4722 EXPORT_SYMBOL(dev_set_group);
4723
4724 /**
4725 * dev_set_mac_address - Change Media Access Control Address
4726 * @dev: device
4727 * @sa: new address
4728 *
4729 * Change the hardware (MAC) address of the device
4730 */
4731 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4732 {
4733 const struct net_device_ops *ops = dev->netdev_ops;
4734 int err;
4735
4736 if (!ops->ndo_set_mac_address)
4737 return -EOPNOTSUPP;
4738 if (sa->sa_family != dev->type)
4739 return -EINVAL;
4740 if (!netif_device_present(dev))
4741 return -ENODEV;
4742 err = ops->ndo_set_mac_address(dev, sa);
4743 if (!err)
4744 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4745 return err;
4746 }
4747 EXPORT_SYMBOL(dev_set_mac_address);
4748
4749 /*
4750 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4751 */
4752 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4753 {
4754 int err;
4755 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4756
4757 if (!dev)
4758 return -ENODEV;
4759
4760 switch (cmd) {
4761 case SIOCGIFFLAGS: /* Get interface flags */
4762 ifr->ifr_flags = (short) dev_get_flags(dev);
4763 return 0;
4764
4765 case SIOCGIFMETRIC: /* Get the metric on the interface
4766 (currently unused) */
4767 ifr->ifr_metric = 0;
4768 return 0;
4769
4770 case SIOCGIFMTU: /* Get the MTU of a device */
4771 ifr->ifr_mtu = dev->mtu;
4772 return 0;
4773
4774 case SIOCGIFHWADDR:
4775 if (!dev->addr_len)
4776 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4777 else
4778 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4779 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4780 ifr->ifr_hwaddr.sa_family = dev->type;
4781 return 0;
4782
4783 case SIOCGIFSLAVE:
4784 err = -EINVAL;
4785 break;
4786
4787 case SIOCGIFMAP:
4788 ifr->ifr_map.mem_start = dev->mem_start;
4789 ifr->ifr_map.mem_end = dev->mem_end;
4790 ifr->ifr_map.base_addr = dev->base_addr;
4791 ifr->ifr_map.irq = dev->irq;
4792 ifr->ifr_map.dma = dev->dma;
4793 ifr->ifr_map.port = dev->if_port;
4794 return 0;
4795
4796 case SIOCGIFINDEX:
4797 ifr->ifr_ifindex = dev->ifindex;
4798 return 0;
4799
4800 case SIOCGIFTXQLEN:
4801 ifr->ifr_qlen = dev->tx_queue_len;
4802 return 0;
4803
4804 default:
4805 /* dev_ioctl() should ensure this case
4806 * is never reached
4807 */
4808 WARN_ON(1);
4809 err = -EINVAL;
4810 break;
4811
4812 }
4813 return err;
4814 }
4815
4816 /*
4817 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4818 */
4819 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4820 {
4821 int err;
4822 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4823 const struct net_device_ops *ops;
4824
4825 if (!dev)
4826 return -ENODEV;
4827
4828 ops = dev->netdev_ops;
4829
4830 switch (cmd) {
4831 case SIOCSIFFLAGS: /* Set interface flags */
4832 return dev_change_flags(dev, ifr->ifr_flags);
4833
4834 case SIOCSIFMETRIC: /* Set the metric on the interface
4835 (currently unused) */
4836 return -EOPNOTSUPP;
4837
4838 case SIOCSIFMTU: /* Set the MTU of a device */
4839 return dev_set_mtu(dev, ifr->ifr_mtu);
4840
4841 case SIOCSIFHWADDR:
4842 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4843
4844 case SIOCSIFHWBROADCAST:
4845 if (ifr->ifr_hwaddr.sa_family != dev->type)
4846 return -EINVAL;
4847 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4848 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4849 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4850 return 0;
4851
4852 case SIOCSIFMAP:
4853 if (ops->ndo_set_config) {
4854 if (!netif_device_present(dev))
4855 return -ENODEV;
4856 return ops->ndo_set_config(dev, &ifr->ifr_map);
4857 }
4858 return -EOPNOTSUPP;
4859
4860 case SIOCADDMULTI:
4861 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4862 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4863 return -EINVAL;
4864 if (!netif_device_present(dev))
4865 return -ENODEV;
4866 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4867
4868 case SIOCDELMULTI:
4869 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4870 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4871 return -EINVAL;
4872 if (!netif_device_present(dev))
4873 return -ENODEV;
4874 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4875
4876 case SIOCSIFTXQLEN:
4877 if (ifr->ifr_qlen < 0)
4878 return -EINVAL;
4879 dev->tx_queue_len = ifr->ifr_qlen;
4880 return 0;
4881
4882 case SIOCSIFNAME:
4883 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4884 return dev_change_name(dev, ifr->ifr_newname);
4885
4886 /*
4887 * Unknown or private ioctl
4888 */
4889 default:
4890 if ((cmd >= SIOCDEVPRIVATE &&
4891 cmd <= SIOCDEVPRIVATE + 15) ||
4892 cmd == SIOCBONDENSLAVE ||
4893 cmd == SIOCBONDRELEASE ||
4894 cmd == SIOCBONDSETHWADDR ||
4895 cmd == SIOCBONDSLAVEINFOQUERY ||
4896 cmd == SIOCBONDINFOQUERY ||
4897 cmd == SIOCBONDCHANGEACTIVE ||
4898 cmd == SIOCGMIIPHY ||
4899 cmd == SIOCGMIIREG ||
4900 cmd == SIOCSMIIREG ||
4901 cmd == SIOCBRADDIF ||
4902 cmd == SIOCBRDELIF ||
4903 cmd == SIOCSHWTSTAMP ||
4904 cmd == SIOCWANDEV) {
4905 err = -EOPNOTSUPP;
4906 if (ops->ndo_do_ioctl) {
4907 if (netif_device_present(dev))
4908 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4909 else
4910 err = -ENODEV;
4911 }
4912 } else
4913 err = -EINVAL;
4914
4915 }
4916 return err;
4917 }
4918
4919 /*
4920 * This function handles all "interface"-type I/O control requests. The actual
4921 * 'doing' part of this is dev_ifsioc above.
4922 */
4923
4924 /**
4925 * dev_ioctl - network device ioctl
4926 * @net: the applicable net namespace
4927 * @cmd: command to issue
4928 * @arg: pointer to a struct ifreq in user space
4929 *
4930 * Issue ioctl functions to devices. This is normally called by the
4931 * user space syscall interfaces but can sometimes be useful for
4932 * other purposes. The return value is the return from the syscall if
4933 * positive or a negative errno code on error.
4934 */
4935
4936 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4937 {
4938 struct ifreq ifr;
4939 int ret;
4940 char *colon;
4941
4942 /* One special case: SIOCGIFCONF takes ifconf argument
4943 and requires shared lock, because it sleeps writing
4944 to user space.
4945 */
4946
4947 if (cmd == SIOCGIFCONF) {
4948 rtnl_lock();
4949 ret = dev_ifconf(net, (char __user *) arg);
4950 rtnl_unlock();
4951 return ret;
4952 }
4953 if (cmd == SIOCGIFNAME)
4954 return dev_ifname(net, (struct ifreq __user *)arg);
4955
4956 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4957 return -EFAULT;
4958
4959 ifr.ifr_name[IFNAMSIZ-1] = 0;
4960
4961 colon = strchr(ifr.ifr_name, ':');
4962 if (colon)
4963 *colon = 0;
4964
4965 /*
4966 * See which interface the caller is talking about.
4967 */
4968
4969 switch (cmd) {
4970 /*
4971 * These ioctl calls:
4972 * - can be done by all.
4973 * - atomic and do not require locking.
4974 * - return a value
4975 */
4976 case SIOCGIFFLAGS:
4977 case SIOCGIFMETRIC:
4978 case SIOCGIFMTU:
4979 case SIOCGIFHWADDR:
4980 case SIOCGIFSLAVE:
4981 case SIOCGIFMAP:
4982 case SIOCGIFINDEX:
4983 case SIOCGIFTXQLEN:
4984 dev_load(net, ifr.ifr_name);
4985 rcu_read_lock();
4986 ret = dev_ifsioc_locked(net, &ifr, cmd);
4987 rcu_read_unlock();
4988 if (!ret) {
4989 if (colon)
4990 *colon = ':';
4991 if (copy_to_user(arg, &ifr,
4992 sizeof(struct ifreq)))
4993 ret = -EFAULT;
4994 }
4995 return ret;
4996
4997 case SIOCETHTOOL:
4998 dev_load(net, ifr.ifr_name);
4999 rtnl_lock();
5000 ret = dev_ethtool(net, &ifr);
5001 rtnl_unlock();
5002 if (!ret) {
5003 if (colon)
5004 *colon = ':';
5005 if (copy_to_user(arg, &ifr,
5006 sizeof(struct ifreq)))
5007 ret = -EFAULT;
5008 }
5009 return ret;
5010
5011 /*
5012 * These ioctl calls:
5013 * - require superuser power.
5014 * - require strict serialization.
5015 * - return a value
5016 */
5017 case SIOCGMIIPHY:
5018 case SIOCGMIIREG:
5019 case SIOCSIFNAME:
5020 if (!capable(CAP_NET_ADMIN))
5021 return -EPERM;
5022 dev_load(net, ifr.ifr_name);
5023 rtnl_lock();
5024 ret = dev_ifsioc(net, &ifr, cmd);
5025 rtnl_unlock();
5026 if (!ret) {
5027 if (colon)
5028 *colon = ':';
5029 if (copy_to_user(arg, &ifr,
5030 sizeof(struct ifreq)))
5031 ret = -EFAULT;
5032 }
5033 return ret;
5034
5035 /*
5036 * These ioctl calls:
5037 * - require superuser power.
5038 * - require strict serialization.
5039 * - do not return a value
5040 */
5041 case SIOCSIFFLAGS:
5042 case SIOCSIFMETRIC:
5043 case SIOCSIFMTU:
5044 case SIOCSIFMAP:
5045 case SIOCSIFHWADDR:
5046 case SIOCSIFSLAVE:
5047 case SIOCADDMULTI:
5048 case SIOCDELMULTI:
5049 case SIOCSIFHWBROADCAST:
5050 case SIOCSIFTXQLEN:
5051 case SIOCSMIIREG:
5052 case SIOCBONDENSLAVE:
5053 case SIOCBONDRELEASE:
5054 case SIOCBONDSETHWADDR:
5055 case SIOCBONDCHANGEACTIVE:
5056 case SIOCBRADDIF:
5057 case SIOCBRDELIF:
5058 case SIOCSHWTSTAMP:
5059 if (!capable(CAP_NET_ADMIN))
5060 return -EPERM;
5061 /* fall through */
5062 case SIOCBONDSLAVEINFOQUERY:
5063 case SIOCBONDINFOQUERY:
5064 dev_load(net, ifr.ifr_name);
5065 rtnl_lock();
5066 ret = dev_ifsioc(net, &ifr, cmd);
5067 rtnl_unlock();
5068 return ret;
5069
5070 case SIOCGIFMEM:
5071 /* Get the per device memory space. We can add this but
5072 * currently do not support it */
5073 case SIOCSIFMEM:
5074 /* Set the per device memory buffer space.
5075 * Not applicable in our case */
5076 case SIOCSIFLINK:
5077 return -EINVAL;
5078
5079 /*
5080 * Unknown or private ioctl.
5081 */
5082 default:
5083 if (cmd == SIOCWANDEV ||
5084 (cmd >= SIOCDEVPRIVATE &&
5085 cmd <= SIOCDEVPRIVATE + 15)) {
5086 dev_load(net, ifr.ifr_name);
5087 rtnl_lock();
5088 ret = dev_ifsioc(net, &ifr, cmd);
5089 rtnl_unlock();
5090 if (!ret && copy_to_user(arg, &ifr,
5091 sizeof(struct ifreq)))
5092 ret = -EFAULT;
5093 return ret;
5094 }
5095 /* Take care of Wireless Extensions */
5096 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5097 return wext_handle_ioctl(net, &ifr, cmd, arg);
5098 return -EINVAL;
5099 }
5100 }
5101
5102
5103 /**
5104 * dev_new_index - allocate an ifindex
5105 * @net: the applicable net namespace
5106 *
5107 * Returns a suitable unique value for a new device interface
5108 * number. The caller must hold the rtnl semaphore or the
5109 * dev_base_lock to be sure it remains unique.
5110 */
5111 static int dev_new_index(struct net *net)
5112 {
5113 static int ifindex;
5114 for (;;) {
5115 if (++ifindex <= 0)
5116 ifindex = 1;
5117 if (!__dev_get_by_index(net, ifindex))
5118 return ifindex;
5119 }
5120 }
5121
5122 /* Delayed registration/unregisteration */
5123 static LIST_HEAD(net_todo_list);
5124
5125 static void net_set_todo(struct net_device *dev)
5126 {
5127 list_add_tail(&dev->todo_list, &net_todo_list);
5128 }
5129
5130 static void rollback_registered_many(struct list_head *head)
5131 {
5132 struct net_device *dev, *tmp;
5133
5134 BUG_ON(dev_boot_phase);
5135 ASSERT_RTNL();
5136
5137 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5138 /* Some devices call without registering
5139 * for initialization unwind. Remove those
5140 * devices and proceed with the remaining.
5141 */
5142 if (dev->reg_state == NETREG_UNINITIALIZED) {
5143 pr_debug("unregister_netdevice: device %s/%p never "
5144 "was registered\n", dev->name, dev);
5145
5146 WARN_ON(1);
5147 list_del(&dev->unreg_list);
5148 continue;
5149 }
5150
5151 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5152 }
5153
5154 /* If device is running, close it first. */
5155 dev_close_many(head);
5156
5157 list_for_each_entry(dev, head, unreg_list) {
5158 /* And unlink it from device chain. */
5159 unlist_netdevice(dev);
5160
5161 dev->reg_state = NETREG_UNREGISTERING;
5162 }
5163
5164 synchronize_net();
5165
5166 list_for_each_entry(dev, head, unreg_list) {
5167 /* Shutdown queueing discipline. */
5168 dev_shutdown(dev);
5169
5170
5171 /* Notify protocols, that we are about to destroy
5172 this device. They should clean all the things.
5173 */
5174 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5175
5176 if (!dev->rtnl_link_ops ||
5177 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5178 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5179
5180 /*
5181 * Flush the unicast and multicast chains
5182 */
5183 dev_uc_flush(dev);
5184 dev_mc_flush(dev);
5185
5186 if (dev->netdev_ops->ndo_uninit)
5187 dev->netdev_ops->ndo_uninit(dev);
5188
5189 /* Notifier chain MUST detach us from master device. */
5190 WARN_ON(dev->master);
5191
5192 /* Remove entries from kobject tree */
5193 netdev_unregister_kobject(dev);
5194 }
5195
5196 /* Process any work delayed until the end of the batch */
5197 dev = list_first_entry(head, struct net_device, unreg_list);
5198 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5199
5200 rcu_barrier();
5201
5202 list_for_each_entry(dev, head, unreg_list)
5203 dev_put(dev);
5204 }
5205
5206 static void rollback_registered(struct net_device *dev)
5207 {
5208 LIST_HEAD(single);
5209
5210 list_add(&dev->unreg_list, &single);
5211 rollback_registered_many(&single);
5212 list_del(&single);
5213 }
5214
5215 u32 netdev_fix_features(struct net_device *dev, u32 features)
5216 {
5217 /* Fix illegal checksum combinations */
5218 if ((features & NETIF_F_HW_CSUM) &&
5219 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5220 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5221 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5222 }
5223
5224 if ((features & NETIF_F_NO_CSUM) &&
5225 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5226 netdev_info(dev, "mixed no checksumming and other settings.\n");
5227 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5228 }
5229
5230 /* Fix illegal SG+CSUM combinations. */
5231 if ((features & NETIF_F_SG) &&
5232 !(features & NETIF_F_ALL_CSUM)) {
5233 netdev_info(dev,
5234 "Dropping NETIF_F_SG since no checksum feature.\n");
5235 features &= ~NETIF_F_SG;
5236 }
5237
5238 /* TSO requires that SG is present as well. */
5239 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5240 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5241 features &= ~NETIF_F_TSO;
5242 }
5243
5244 /* Software GSO depends on SG. */
5245 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5246 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5247 features &= ~NETIF_F_GSO;
5248 }
5249
5250 /* UFO needs SG and checksumming */
5251 if (features & NETIF_F_UFO) {
5252 /* maybe split UFO into V4 and V6? */
5253 if (!((features & NETIF_F_GEN_CSUM) ||
5254 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5255 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5256 netdev_info(dev,
5257 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5258 features &= ~NETIF_F_UFO;
5259 }
5260
5261 if (!(features & NETIF_F_SG)) {
5262 netdev_info(dev,
5263 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5264 features &= ~NETIF_F_UFO;
5265 }
5266 }
5267
5268 return features;
5269 }
5270 EXPORT_SYMBOL(netdev_fix_features);
5271
5272 void netdev_update_features(struct net_device *dev)
5273 {
5274 u32 features;
5275 int err = 0;
5276
5277 features = netdev_get_wanted_features(dev);
5278
5279 if (dev->netdev_ops->ndo_fix_features)
5280 features = dev->netdev_ops->ndo_fix_features(dev, features);
5281
5282 /* driver might be less strict about feature dependencies */
5283 features = netdev_fix_features(dev, features);
5284
5285 if (dev->features == features)
5286 return;
5287
5288 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5289 dev->features, features);
5290
5291 if (dev->netdev_ops->ndo_set_features)
5292 err = dev->netdev_ops->ndo_set_features(dev, features);
5293
5294 if (!err)
5295 dev->features = features;
5296 else if (err < 0)
5297 netdev_err(dev,
5298 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5299 err, features, dev->features);
5300 }
5301 EXPORT_SYMBOL(netdev_update_features);
5302
5303 /**
5304 * netif_stacked_transfer_operstate - transfer operstate
5305 * @rootdev: the root or lower level device to transfer state from
5306 * @dev: the device to transfer operstate to
5307 *
5308 * Transfer operational state from root to device. This is normally
5309 * called when a stacking relationship exists between the root
5310 * device and the device(a leaf device).
5311 */
5312 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5313 struct net_device *dev)
5314 {
5315 if (rootdev->operstate == IF_OPER_DORMANT)
5316 netif_dormant_on(dev);
5317 else
5318 netif_dormant_off(dev);
5319
5320 if (netif_carrier_ok(rootdev)) {
5321 if (!netif_carrier_ok(dev))
5322 netif_carrier_on(dev);
5323 } else {
5324 if (netif_carrier_ok(dev))
5325 netif_carrier_off(dev);
5326 }
5327 }
5328 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5329
5330 #ifdef CONFIG_RPS
5331 static int netif_alloc_rx_queues(struct net_device *dev)
5332 {
5333 unsigned int i, count = dev->num_rx_queues;
5334 struct netdev_rx_queue *rx;
5335
5336 BUG_ON(count < 1);
5337
5338 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5339 if (!rx) {
5340 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5341 return -ENOMEM;
5342 }
5343 dev->_rx = rx;
5344
5345 for (i = 0; i < count; i++)
5346 rx[i].dev = dev;
5347 return 0;
5348 }
5349 #endif
5350
5351 static void netdev_init_one_queue(struct net_device *dev,
5352 struct netdev_queue *queue, void *_unused)
5353 {
5354 /* Initialize queue lock */
5355 spin_lock_init(&queue->_xmit_lock);
5356 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5357 queue->xmit_lock_owner = -1;
5358 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5359 queue->dev = dev;
5360 }
5361
5362 static int netif_alloc_netdev_queues(struct net_device *dev)
5363 {
5364 unsigned int count = dev->num_tx_queues;
5365 struct netdev_queue *tx;
5366
5367 BUG_ON(count < 1);
5368
5369 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5370 if (!tx) {
5371 pr_err("netdev: Unable to allocate %u tx queues.\n",
5372 count);
5373 return -ENOMEM;
5374 }
5375 dev->_tx = tx;
5376
5377 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5378 spin_lock_init(&dev->tx_global_lock);
5379
5380 return 0;
5381 }
5382
5383 /**
5384 * register_netdevice - register a network device
5385 * @dev: device to register
5386 *
5387 * Take a completed network device structure and add it to the kernel
5388 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5389 * chain. 0 is returned on success. A negative errno code is returned
5390 * on a failure to set up the device, or if the name is a duplicate.
5391 *
5392 * Callers must hold the rtnl semaphore. You may want
5393 * register_netdev() instead of this.
5394 *
5395 * BUGS:
5396 * The locking appears insufficient to guarantee two parallel registers
5397 * will not get the same name.
5398 */
5399
5400 int register_netdevice(struct net_device *dev)
5401 {
5402 int ret;
5403 struct net *net = dev_net(dev);
5404
5405 BUG_ON(dev_boot_phase);
5406 ASSERT_RTNL();
5407
5408 might_sleep();
5409
5410 /* When net_device's are persistent, this will be fatal. */
5411 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5412 BUG_ON(!net);
5413
5414 spin_lock_init(&dev->addr_list_lock);
5415 netdev_set_addr_lockdep_class(dev);
5416
5417 dev->iflink = -1;
5418
5419 /* Init, if this function is available */
5420 if (dev->netdev_ops->ndo_init) {
5421 ret = dev->netdev_ops->ndo_init(dev);
5422 if (ret) {
5423 if (ret > 0)
5424 ret = -EIO;
5425 goto out;
5426 }
5427 }
5428
5429 ret = dev_get_valid_name(dev, dev->name, 0);
5430 if (ret)
5431 goto err_uninit;
5432
5433 dev->ifindex = dev_new_index(net);
5434 if (dev->iflink == -1)
5435 dev->iflink = dev->ifindex;
5436
5437 /* Transfer changeable features to wanted_features and enable
5438 * software offloads (GSO and GRO).
5439 */
5440 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5441 dev->features |= NETIF_F_SOFT_FEATURES;
5442 dev->wanted_features = dev->features & dev->hw_features;
5443
5444 /* Avoid warning from netdev_fix_features() for GSO without SG */
5445 if (!(dev->wanted_features & NETIF_F_SG)) {
5446 dev->wanted_features &= ~NETIF_F_GSO;
5447 dev->features &= ~NETIF_F_GSO;
5448 }
5449
5450 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5451 * vlan_dev_init() will do the dev->features check, so these features
5452 * are enabled only if supported by underlying device.
5453 */
5454 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5455
5456 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5457 ret = notifier_to_errno(ret);
5458 if (ret)
5459 goto err_uninit;
5460
5461 ret = netdev_register_kobject(dev);
5462 if (ret)
5463 goto err_uninit;
5464 dev->reg_state = NETREG_REGISTERED;
5465
5466 netdev_update_features(dev);
5467
5468 /*
5469 * Default initial state at registry is that the
5470 * device is present.
5471 */
5472
5473 set_bit(__LINK_STATE_PRESENT, &dev->state);
5474
5475 dev_init_scheduler(dev);
5476 dev_hold(dev);
5477 list_netdevice(dev);
5478
5479 /* Notify protocols, that a new device appeared. */
5480 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5481 ret = notifier_to_errno(ret);
5482 if (ret) {
5483 rollback_registered(dev);
5484 dev->reg_state = NETREG_UNREGISTERED;
5485 }
5486 /*
5487 * Prevent userspace races by waiting until the network
5488 * device is fully setup before sending notifications.
5489 */
5490 if (!dev->rtnl_link_ops ||
5491 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5492 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5493
5494 out:
5495 return ret;
5496
5497 err_uninit:
5498 if (dev->netdev_ops->ndo_uninit)
5499 dev->netdev_ops->ndo_uninit(dev);
5500 goto out;
5501 }
5502 EXPORT_SYMBOL(register_netdevice);
5503
5504 /**
5505 * init_dummy_netdev - init a dummy network device for NAPI
5506 * @dev: device to init
5507 *
5508 * This takes a network device structure and initialize the minimum
5509 * amount of fields so it can be used to schedule NAPI polls without
5510 * registering a full blown interface. This is to be used by drivers
5511 * that need to tie several hardware interfaces to a single NAPI
5512 * poll scheduler due to HW limitations.
5513 */
5514 int init_dummy_netdev(struct net_device *dev)
5515 {
5516 /* Clear everything. Note we don't initialize spinlocks
5517 * are they aren't supposed to be taken by any of the
5518 * NAPI code and this dummy netdev is supposed to be
5519 * only ever used for NAPI polls
5520 */
5521 memset(dev, 0, sizeof(struct net_device));
5522
5523 /* make sure we BUG if trying to hit standard
5524 * register/unregister code path
5525 */
5526 dev->reg_state = NETREG_DUMMY;
5527
5528 /* NAPI wants this */
5529 INIT_LIST_HEAD(&dev->napi_list);
5530
5531 /* a dummy interface is started by default */
5532 set_bit(__LINK_STATE_PRESENT, &dev->state);
5533 set_bit(__LINK_STATE_START, &dev->state);
5534
5535 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5536 * because users of this 'device' dont need to change
5537 * its refcount.
5538 */
5539
5540 return 0;
5541 }
5542 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5543
5544
5545 /**
5546 * register_netdev - register a network device
5547 * @dev: device to register
5548 *
5549 * Take a completed network device structure and add it to the kernel
5550 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5551 * chain. 0 is returned on success. A negative errno code is returned
5552 * on a failure to set up the device, or if the name is a duplicate.
5553 *
5554 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5555 * and expands the device name if you passed a format string to
5556 * alloc_netdev.
5557 */
5558 int register_netdev(struct net_device *dev)
5559 {
5560 int err;
5561
5562 rtnl_lock();
5563
5564 /*
5565 * If the name is a format string the caller wants us to do a
5566 * name allocation.
5567 */
5568 if (strchr(dev->name, '%')) {
5569 err = dev_alloc_name(dev, dev->name);
5570 if (err < 0)
5571 goto out;
5572 }
5573
5574 err = register_netdevice(dev);
5575 out:
5576 rtnl_unlock();
5577 return err;
5578 }
5579 EXPORT_SYMBOL(register_netdev);
5580
5581 int netdev_refcnt_read(const struct net_device *dev)
5582 {
5583 int i, refcnt = 0;
5584
5585 for_each_possible_cpu(i)
5586 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5587 return refcnt;
5588 }
5589 EXPORT_SYMBOL(netdev_refcnt_read);
5590
5591 /*
5592 * netdev_wait_allrefs - wait until all references are gone.
5593 *
5594 * This is called when unregistering network devices.
5595 *
5596 * Any protocol or device that holds a reference should register
5597 * for netdevice notification, and cleanup and put back the
5598 * reference if they receive an UNREGISTER event.
5599 * We can get stuck here if buggy protocols don't correctly
5600 * call dev_put.
5601 */
5602 static void netdev_wait_allrefs(struct net_device *dev)
5603 {
5604 unsigned long rebroadcast_time, warning_time;
5605 int refcnt;
5606
5607 linkwatch_forget_dev(dev);
5608
5609 rebroadcast_time = warning_time = jiffies;
5610 refcnt = netdev_refcnt_read(dev);
5611
5612 while (refcnt != 0) {
5613 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5614 rtnl_lock();
5615
5616 /* Rebroadcast unregister notification */
5617 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5618 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5619 * should have already handle it the first time */
5620
5621 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5622 &dev->state)) {
5623 /* We must not have linkwatch events
5624 * pending on unregister. If this
5625 * happens, we simply run the queue
5626 * unscheduled, resulting in a noop
5627 * for this device.
5628 */
5629 linkwatch_run_queue();
5630 }
5631
5632 __rtnl_unlock();
5633
5634 rebroadcast_time = jiffies;
5635 }
5636
5637 msleep(250);
5638
5639 refcnt = netdev_refcnt_read(dev);
5640
5641 if (time_after(jiffies, warning_time + 10 * HZ)) {
5642 printk(KERN_EMERG "unregister_netdevice: "
5643 "waiting for %s to become free. Usage "
5644 "count = %d\n",
5645 dev->name, refcnt);
5646 warning_time = jiffies;
5647 }
5648 }
5649 }
5650
5651 /* The sequence is:
5652 *
5653 * rtnl_lock();
5654 * ...
5655 * register_netdevice(x1);
5656 * register_netdevice(x2);
5657 * ...
5658 * unregister_netdevice(y1);
5659 * unregister_netdevice(y2);
5660 * ...
5661 * rtnl_unlock();
5662 * free_netdev(y1);
5663 * free_netdev(y2);
5664 *
5665 * We are invoked by rtnl_unlock().
5666 * This allows us to deal with problems:
5667 * 1) We can delete sysfs objects which invoke hotplug
5668 * without deadlocking with linkwatch via keventd.
5669 * 2) Since we run with the RTNL semaphore not held, we can sleep
5670 * safely in order to wait for the netdev refcnt to drop to zero.
5671 *
5672 * We must not return until all unregister events added during
5673 * the interval the lock was held have been completed.
5674 */
5675 void netdev_run_todo(void)
5676 {
5677 struct list_head list;
5678
5679 /* Snapshot list, allow later requests */
5680 list_replace_init(&net_todo_list, &list);
5681
5682 __rtnl_unlock();
5683
5684 while (!list_empty(&list)) {
5685 struct net_device *dev
5686 = list_first_entry(&list, struct net_device, todo_list);
5687 list_del(&dev->todo_list);
5688
5689 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5690 printk(KERN_ERR "network todo '%s' but state %d\n",
5691 dev->name, dev->reg_state);
5692 dump_stack();
5693 continue;
5694 }
5695
5696 dev->reg_state = NETREG_UNREGISTERED;
5697
5698 on_each_cpu(flush_backlog, dev, 1);
5699
5700 netdev_wait_allrefs(dev);
5701
5702 /* paranoia */
5703 BUG_ON(netdev_refcnt_read(dev));
5704 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5705 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5706 WARN_ON(dev->dn_ptr);
5707
5708 if (dev->destructor)
5709 dev->destructor(dev);
5710
5711 /* Free network device */
5712 kobject_put(&dev->dev.kobj);
5713 }
5714 }
5715
5716 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5717 * fields in the same order, with only the type differing.
5718 */
5719 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5720 const struct net_device_stats *netdev_stats)
5721 {
5722 #if BITS_PER_LONG == 64
5723 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5724 memcpy(stats64, netdev_stats, sizeof(*stats64));
5725 #else
5726 size_t i, n = sizeof(*stats64) / sizeof(u64);
5727 const unsigned long *src = (const unsigned long *)netdev_stats;
5728 u64 *dst = (u64 *)stats64;
5729
5730 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5731 sizeof(*stats64) / sizeof(u64));
5732 for (i = 0; i < n; i++)
5733 dst[i] = src[i];
5734 #endif
5735 }
5736
5737 /**
5738 * dev_get_stats - get network device statistics
5739 * @dev: device to get statistics from
5740 * @storage: place to store stats
5741 *
5742 * Get network statistics from device. Return @storage.
5743 * The device driver may provide its own method by setting
5744 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5745 * otherwise the internal statistics structure is used.
5746 */
5747 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5748 struct rtnl_link_stats64 *storage)
5749 {
5750 const struct net_device_ops *ops = dev->netdev_ops;
5751
5752 if (ops->ndo_get_stats64) {
5753 memset(storage, 0, sizeof(*storage));
5754 ops->ndo_get_stats64(dev, storage);
5755 } else if (ops->ndo_get_stats) {
5756 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5757 } else {
5758 netdev_stats_to_stats64(storage, &dev->stats);
5759 }
5760 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5761 return storage;
5762 }
5763 EXPORT_SYMBOL(dev_get_stats);
5764
5765 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5766 {
5767 struct netdev_queue *queue = dev_ingress_queue(dev);
5768
5769 #ifdef CONFIG_NET_CLS_ACT
5770 if (queue)
5771 return queue;
5772 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5773 if (!queue)
5774 return NULL;
5775 netdev_init_one_queue(dev, queue, NULL);
5776 queue->qdisc = &noop_qdisc;
5777 queue->qdisc_sleeping = &noop_qdisc;
5778 rcu_assign_pointer(dev->ingress_queue, queue);
5779 #endif
5780 return queue;
5781 }
5782
5783 /**
5784 * alloc_netdev_mqs - allocate network device
5785 * @sizeof_priv: size of private data to allocate space for
5786 * @name: device name format string
5787 * @setup: callback to initialize device
5788 * @txqs: the number of TX subqueues to allocate
5789 * @rxqs: the number of RX subqueues to allocate
5790 *
5791 * Allocates a struct net_device with private data area for driver use
5792 * and performs basic initialization. Also allocates subquue structs
5793 * for each queue on the device.
5794 */
5795 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5796 void (*setup)(struct net_device *),
5797 unsigned int txqs, unsigned int rxqs)
5798 {
5799 struct net_device *dev;
5800 size_t alloc_size;
5801 struct net_device *p;
5802
5803 BUG_ON(strlen(name) >= sizeof(dev->name));
5804
5805 if (txqs < 1) {
5806 pr_err("alloc_netdev: Unable to allocate device "
5807 "with zero queues.\n");
5808 return NULL;
5809 }
5810
5811 #ifdef CONFIG_RPS
5812 if (rxqs < 1) {
5813 pr_err("alloc_netdev: Unable to allocate device "
5814 "with zero RX queues.\n");
5815 return NULL;
5816 }
5817 #endif
5818
5819 alloc_size = sizeof(struct net_device);
5820 if (sizeof_priv) {
5821 /* ensure 32-byte alignment of private area */
5822 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5823 alloc_size += sizeof_priv;
5824 }
5825 /* ensure 32-byte alignment of whole construct */
5826 alloc_size += NETDEV_ALIGN - 1;
5827
5828 p = kzalloc(alloc_size, GFP_KERNEL);
5829 if (!p) {
5830 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5831 return NULL;
5832 }
5833
5834 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5835 dev->padded = (char *)dev - (char *)p;
5836
5837 dev->pcpu_refcnt = alloc_percpu(int);
5838 if (!dev->pcpu_refcnt)
5839 goto free_p;
5840
5841 if (dev_addr_init(dev))
5842 goto free_pcpu;
5843
5844 dev_mc_init(dev);
5845 dev_uc_init(dev);
5846
5847 dev_net_set(dev, &init_net);
5848
5849 dev->gso_max_size = GSO_MAX_SIZE;
5850
5851 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5852 dev->ethtool_ntuple_list.count = 0;
5853 INIT_LIST_HEAD(&dev->napi_list);
5854 INIT_LIST_HEAD(&dev->unreg_list);
5855 INIT_LIST_HEAD(&dev->link_watch_list);
5856 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5857 setup(dev);
5858
5859 dev->num_tx_queues = txqs;
5860 dev->real_num_tx_queues = txqs;
5861 if (netif_alloc_netdev_queues(dev))
5862 goto free_all;
5863
5864 #ifdef CONFIG_RPS
5865 dev->num_rx_queues = rxqs;
5866 dev->real_num_rx_queues = rxqs;
5867 if (netif_alloc_rx_queues(dev))
5868 goto free_all;
5869 #endif
5870
5871 strcpy(dev->name, name);
5872 dev->group = INIT_NETDEV_GROUP;
5873 return dev;
5874
5875 free_all:
5876 free_netdev(dev);
5877 return NULL;
5878
5879 free_pcpu:
5880 free_percpu(dev->pcpu_refcnt);
5881 kfree(dev->_tx);
5882 #ifdef CONFIG_RPS
5883 kfree(dev->_rx);
5884 #endif
5885
5886 free_p:
5887 kfree(p);
5888 return NULL;
5889 }
5890 EXPORT_SYMBOL(alloc_netdev_mqs);
5891
5892 /**
5893 * free_netdev - free network device
5894 * @dev: device
5895 *
5896 * This function does the last stage of destroying an allocated device
5897 * interface. The reference to the device object is released.
5898 * If this is the last reference then it will be freed.
5899 */
5900 void free_netdev(struct net_device *dev)
5901 {
5902 struct napi_struct *p, *n;
5903
5904 release_net(dev_net(dev));
5905
5906 kfree(dev->_tx);
5907 #ifdef CONFIG_RPS
5908 kfree(dev->_rx);
5909 #endif
5910
5911 kfree(rcu_dereference_raw(dev->ingress_queue));
5912
5913 /* Flush device addresses */
5914 dev_addr_flush(dev);
5915
5916 /* Clear ethtool n-tuple list */
5917 ethtool_ntuple_flush(dev);
5918
5919 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5920 netif_napi_del(p);
5921
5922 free_percpu(dev->pcpu_refcnt);
5923 dev->pcpu_refcnt = NULL;
5924
5925 /* Compatibility with error handling in drivers */
5926 if (dev->reg_state == NETREG_UNINITIALIZED) {
5927 kfree((char *)dev - dev->padded);
5928 return;
5929 }
5930
5931 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5932 dev->reg_state = NETREG_RELEASED;
5933
5934 /* will free via device release */
5935 put_device(&dev->dev);
5936 }
5937 EXPORT_SYMBOL(free_netdev);
5938
5939 /**
5940 * synchronize_net - Synchronize with packet receive processing
5941 *
5942 * Wait for packets currently being received to be done.
5943 * Does not block later packets from starting.
5944 */
5945 void synchronize_net(void)
5946 {
5947 might_sleep();
5948 synchronize_rcu();
5949 }
5950 EXPORT_SYMBOL(synchronize_net);
5951
5952 /**
5953 * unregister_netdevice_queue - remove device from the kernel
5954 * @dev: device
5955 * @head: list
5956 *
5957 * This function shuts down a device interface and removes it
5958 * from the kernel tables.
5959 * If head not NULL, device is queued to be unregistered later.
5960 *
5961 * Callers must hold the rtnl semaphore. You may want
5962 * unregister_netdev() instead of this.
5963 */
5964
5965 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5966 {
5967 ASSERT_RTNL();
5968
5969 if (head) {
5970 list_move_tail(&dev->unreg_list, head);
5971 } else {
5972 rollback_registered(dev);
5973 /* Finish processing unregister after unlock */
5974 net_set_todo(dev);
5975 }
5976 }
5977 EXPORT_SYMBOL(unregister_netdevice_queue);
5978
5979 /**
5980 * unregister_netdevice_many - unregister many devices
5981 * @head: list of devices
5982 */
5983 void unregister_netdevice_many(struct list_head *head)
5984 {
5985 struct net_device *dev;
5986
5987 if (!list_empty(head)) {
5988 rollback_registered_many(head);
5989 list_for_each_entry(dev, head, unreg_list)
5990 net_set_todo(dev);
5991 }
5992 }
5993 EXPORT_SYMBOL(unregister_netdevice_many);
5994
5995 /**
5996 * unregister_netdev - remove device from the kernel
5997 * @dev: device
5998 *
5999 * This function shuts down a device interface and removes it
6000 * from the kernel tables.
6001 *
6002 * This is just a wrapper for unregister_netdevice that takes
6003 * the rtnl semaphore. In general you want to use this and not
6004 * unregister_netdevice.
6005 */
6006 void unregister_netdev(struct net_device *dev)
6007 {
6008 rtnl_lock();
6009 unregister_netdevice(dev);
6010 rtnl_unlock();
6011 }
6012 EXPORT_SYMBOL(unregister_netdev);
6013
6014 /**
6015 * dev_change_net_namespace - move device to different nethost namespace
6016 * @dev: device
6017 * @net: network namespace
6018 * @pat: If not NULL name pattern to try if the current device name
6019 * is already taken in the destination network namespace.
6020 *
6021 * This function shuts down a device interface and moves it
6022 * to a new network namespace. On success 0 is returned, on
6023 * a failure a netagive errno code is returned.
6024 *
6025 * Callers must hold the rtnl semaphore.
6026 */
6027
6028 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6029 {
6030 int err;
6031
6032 ASSERT_RTNL();
6033
6034 /* Don't allow namespace local devices to be moved. */
6035 err = -EINVAL;
6036 if (dev->features & NETIF_F_NETNS_LOCAL)
6037 goto out;
6038
6039 /* Ensure the device has been registrered */
6040 err = -EINVAL;
6041 if (dev->reg_state != NETREG_REGISTERED)
6042 goto out;
6043
6044 /* Get out if there is nothing todo */
6045 err = 0;
6046 if (net_eq(dev_net(dev), net))
6047 goto out;
6048
6049 /* Pick the destination device name, and ensure
6050 * we can use it in the destination network namespace.
6051 */
6052 err = -EEXIST;
6053 if (__dev_get_by_name(net, dev->name)) {
6054 /* We get here if we can't use the current device name */
6055 if (!pat)
6056 goto out;
6057 if (dev_get_valid_name(dev, pat, 1))
6058 goto out;
6059 }
6060
6061 /*
6062 * And now a mini version of register_netdevice unregister_netdevice.
6063 */
6064
6065 /* If device is running close it first. */
6066 dev_close(dev);
6067
6068 /* And unlink it from device chain */
6069 err = -ENODEV;
6070 unlist_netdevice(dev);
6071
6072 synchronize_net();
6073
6074 /* Shutdown queueing discipline. */
6075 dev_shutdown(dev);
6076
6077 /* Notify protocols, that we are about to destroy
6078 this device. They should clean all the things.
6079
6080 Note that dev->reg_state stays at NETREG_REGISTERED.
6081 This is wanted because this way 8021q and macvlan know
6082 the device is just moving and can keep their slaves up.
6083 */
6084 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6085 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6086
6087 /*
6088 * Flush the unicast and multicast chains
6089 */
6090 dev_uc_flush(dev);
6091 dev_mc_flush(dev);
6092
6093 /* Actually switch the network namespace */
6094 dev_net_set(dev, net);
6095
6096 /* If there is an ifindex conflict assign a new one */
6097 if (__dev_get_by_index(net, dev->ifindex)) {
6098 int iflink = (dev->iflink == dev->ifindex);
6099 dev->ifindex = dev_new_index(net);
6100 if (iflink)
6101 dev->iflink = dev->ifindex;
6102 }
6103
6104 /* Fixup kobjects */
6105 err = device_rename(&dev->dev, dev->name);
6106 WARN_ON(err);
6107
6108 /* Add the device back in the hashes */
6109 list_netdevice(dev);
6110
6111 /* Notify protocols, that a new device appeared. */
6112 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6113
6114 /*
6115 * Prevent userspace races by waiting until the network
6116 * device is fully setup before sending notifications.
6117 */
6118 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6119
6120 synchronize_net();
6121 err = 0;
6122 out:
6123 return err;
6124 }
6125 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6126
6127 static int dev_cpu_callback(struct notifier_block *nfb,
6128 unsigned long action,
6129 void *ocpu)
6130 {
6131 struct sk_buff **list_skb;
6132 struct sk_buff *skb;
6133 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6134 struct softnet_data *sd, *oldsd;
6135
6136 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6137 return NOTIFY_OK;
6138
6139 local_irq_disable();
6140 cpu = smp_processor_id();
6141 sd = &per_cpu(softnet_data, cpu);
6142 oldsd = &per_cpu(softnet_data, oldcpu);
6143
6144 /* Find end of our completion_queue. */
6145 list_skb = &sd->completion_queue;
6146 while (*list_skb)
6147 list_skb = &(*list_skb)->next;
6148 /* Append completion queue from offline CPU. */
6149 *list_skb = oldsd->completion_queue;
6150 oldsd->completion_queue = NULL;
6151
6152 /* Append output queue from offline CPU. */
6153 if (oldsd->output_queue) {
6154 *sd->output_queue_tailp = oldsd->output_queue;
6155 sd->output_queue_tailp = oldsd->output_queue_tailp;
6156 oldsd->output_queue = NULL;
6157 oldsd->output_queue_tailp = &oldsd->output_queue;
6158 }
6159
6160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6161 local_irq_enable();
6162
6163 /* Process offline CPU's input_pkt_queue */
6164 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6165 netif_rx(skb);
6166 input_queue_head_incr(oldsd);
6167 }
6168 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6169 netif_rx(skb);
6170 input_queue_head_incr(oldsd);
6171 }
6172
6173 return NOTIFY_OK;
6174 }
6175
6176
6177 /**
6178 * netdev_increment_features - increment feature set by one
6179 * @all: current feature set
6180 * @one: new feature set
6181 * @mask: mask feature set
6182 *
6183 * Computes a new feature set after adding a device with feature set
6184 * @one to the master device with current feature set @all. Will not
6185 * enable anything that is off in @mask. Returns the new feature set.
6186 */
6187 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6188 {
6189 /* If device needs checksumming, downgrade to it. */
6190 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6191 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6192 else if (mask & NETIF_F_ALL_CSUM) {
6193 /* If one device supports v4/v6 checksumming, set for all. */
6194 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6195 !(all & NETIF_F_GEN_CSUM)) {
6196 all &= ~NETIF_F_ALL_CSUM;
6197 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6198 }
6199
6200 /* If one device supports hw checksumming, set for all. */
6201 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6202 all &= ~NETIF_F_ALL_CSUM;
6203 all |= NETIF_F_HW_CSUM;
6204 }
6205 }
6206
6207 one |= NETIF_F_ALL_CSUM;
6208
6209 one |= all & NETIF_F_ONE_FOR_ALL;
6210 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6211 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6212
6213 return all;
6214 }
6215 EXPORT_SYMBOL(netdev_increment_features);
6216
6217 static struct hlist_head *netdev_create_hash(void)
6218 {
6219 int i;
6220 struct hlist_head *hash;
6221
6222 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6223 if (hash != NULL)
6224 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6225 INIT_HLIST_HEAD(&hash[i]);
6226
6227 return hash;
6228 }
6229
6230 /* Initialize per network namespace state */
6231 static int __net_init netdev_init(struct net *net)
6232 {
6233 INIT_LIST_HEAD(&net->dev_base_head);
6234
6235 net->dev_name_head = netdev_create_hash();
6236 if (net->dev_name_head == NULL)
6237 goto err_name;
6238
6239 net->dev_index_head = netdev_create_hash();
6240 if (net->dev_index_head == NULL)
6241 goto err_idx;
6242
6243 return 0;
6244
6245 err_idx:
6246 kfree(net->dev_name_head);
6247 err_name:
6248 return -ENOMEM;
6249 }
6250
6251 /**
6252 * netdev_drivername - network driver for the device
6253 * @dev: network device
6254 * @buffer: buffer for resulting name
6255 * @len: size of buffer
6256 *
6257 * Determine network driver for device.
6258 */
6259 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6260 {
6261 const struct device_driver *driver;
6262 const struct device *parent;
6263
6264 if (len <= 0 || !buffer)
6265 return buffer;
6266 buffer[0] = 0;
6267
6268 parent = dev->dev.parent;
6269
6270 if (!parent)
6271 return buffer;
6272
6273 driver = parent->driver;
6274 if (driver && driver->name)
6275 strlcpy(buffer, driver->name, len);
6276 return buffer;
6277 }
6278
6279 static int __netdev_printk(const char *level, const struct net_device *dev,
6280 struct va_format *vaf)
6281 {
6282 int r;
6283
6284 if (dev && dev->dev.parent)
6285 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6286 netdev_name(dev), vaf);
6287 else if (dev)
6288 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6289 else
6290 r = printk("%s(NULL net_device): %pV", level, vaf);
6291
6292 return r;
6293 }
6294
6295 int netdev_printk(const char *level, const struct net_device *dev,
6296 const char *format, ...)
6297 {
6298 struct va_format vaf;
6299 va_list args;
6300 int r;
6301
6302 va_start(args, format);
6303
6304 vaf.fmt = format;
6305 vaf.va = &args;
6306
6307 r = __netdev_printk(level, dev, &vaf);
6308 va_end(args);
6309
6310 return r;
6311 }
6312 EXPORT_SYMBOL(netdev_printk);
6313
6314 #define define_netdev_printk_level(func, level) \
6315 int func(const struct net_device *dev, const char *fmt, ...) \
6316 { \
6317 int r; \
6318 struct va_format vaf; \
6319 va_list args; \
6320 \
6321 va_start(args, fmt); \
6322 \
6323 vaf.fmt = fmt; \
6324 vaf.va = &args; \
6325 \
6326 r = __netdev_printk(level, dev, &vaf); \
6327 va_end(args); \
6328 \
6329 return r; \
6330 } \
6331 EXPORT_SYMBOL(func);
6332
6333 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6334 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6335 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6336 define_netdev_printk_level(netdev_err, KERN_ERR);
6337 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6338 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6339 define_netdev_printk_level(netdev_info, KERN_INFO);
6340
6341 static void __net_exit netdev_exit(struct net *net)
6342 {
6343 kfree(net->dev_name_head);
6344 kfree(net->dev_index_head);
6345 }
6346
6347 static struct pernet_operations __net_initdata netdev_net_ops = {
6348 .init = netdev_init,
6349 .exit = netdev_exit,
6350 };
6351
6352 static void __net_exit default_device_exit(struct net *net)
6353 {
6354 struct net_device *dev, *aux;
6355 /*
6356 * Push all migratable network devices back to the
6357 * initial network namespace
6358 */
6359 rtnl_lock();
6360 for_each_netdev_safe(net, dev, aux) {
6361 int err;
6362 char fb_name[IFNAMSIZ];
6363
6364 /* Ignore unmoveable devices (i.e. loopback) */
6365 if (dev->features & NETIF_F_NETNS_LOCAL)
6366 continue;
6367
6368 /* Leave virtual devices for the generic cleanup */
6369 if (dev->rtnl_link_ops)
6370 continue;
6371
6372 /* Push remaing network devices to init_net */
6373 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6374 err = dev_change_net_namespace(dev, &init_net, fb_name);
6375 if (err) {
6376 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6377 __func__, dev->name, err);
6378 BUG();
6379 }
6380 }
6381 rtnl_unlock();
6382 }
6383
6384 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6385 {
6386 /* At exit all network devices most be removed from a network
6387 * namespace. Do this in the reverse order of registration.
6388 * Do this across as many network namespaces as possible to
6389 * improve batching efficiency.
6390 */
6391 struct net_device *dev;
6392 struct net *net;
6393 LIST_HEAD(dev_kill_list);
6394
6395 rtnl_lock();
6396 list_for_each_entry(net, net_list, exit_list) {
6397 for_each_netdev_reverse(net, dev) {
6398 if (dev->rtnl_link_ops)
6399 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6400 else
6401 unregister_netdevice_queue(dev, &dev_kill_list);
6402 }
6403 }
6404 unregister_netdevice_many(&dev_kill_list);
6405 list_del(&dev_kill_list);
6406 rtnl_unlock();
6407 }
6408
6409 static struct pernet_operations __net_initdata default_device_ops = {
6410 .exit = default_device_exit,
6411 .exit_batch = default_device_exit_batch,
6412 };
6413
6414 /*
6415 * Initialize the DEV module. At boot time this walks the device list and
6416 * unhooks any devices that fail to initialise (normally hardware not
6417 * present) and leaves us with a valid list of present and active devices.
6418 *
6419 */
6420
6421 /*
6422 * This is called single threaded during boot, so no need
6423 * to take the rtnl semaphore.
6424 */
6425 static int __init net_dev_init(void)
6426 {
6427 int i, rc = -ENOMEM;
6428
6429 BUG_ON(!dev_boot_phase);
6430
6431 if (dev_proc_init())
6432 goto out;
6433
6434 if (netdev_kobject_init())
6435 goto out;
6436
6437 INIT_LIST_HEAD(&ptype_all);
6438 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6439 INIT_LIST_HEAD(&ptype_base[i]);
6440
6441 if (register_pernet_subsys(&netdev_net_ops))
6442 goto out;
6443
6444 /*
6445 * Initialise the packet receive queues.
6446 */
6447
6448 for_each_possible_cpu(i) {
6449 struct softnet_data *sd = &per_cpu(softnet_data, i);
6450
6451 memset(sd, 0, sizeof(*sd));
6452 skb_queue_head_init(&sd->input_pkt_queue);
6453 skb_queue_head_init(&sd->process_queue);
6454 sd->completion_queue = NULL;
6455 INIT_LIST_HEAD(&sd->poll_list);
6456 sd->output_queue = NULL;
6457 sd->output_queue_tailp = &sd->output_queue;
6458 #ifdef CONFIG_RPS
6459 sd->csd.func = rps_trigger_softirq;
6460 sd->csd.info = sd;
6461 sd->csd.flags = 0;
6462 sd->cpu = i;
6463 #endif
6464
6465 sd->backlog.poll = process_backlog;
6466 sd->backlog.weight = weight_p;
6467 sd->backlog.gro_list = NULL;
6468 sd->backlog.gro_count = 0;
6469 }
6470
6471 dev_boot_phase = 0;
6472
6473 /* The loopback device is special if any other network devices
6474 * is present in a network namespace the loopback device must
6475 * be present. Since we now dynamically allocate and free the
6476 * loopback device ensure this invariant is maintained by
6477 * keeping the loopback device as the first device on the
6478 * list of network devices. Ensuring the loopback devices
6479 * is the first device that appears and the last network device
6480 * that disappears.
6481 */
6482 if (register_pernet_device(&loopback_net_ops))
6483 goto out;
6484
6485 if (register_pernet_device(&default_device_ops))
6486 goto out;
6487
6488 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6489 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6490
6491 hotcpu_notifier(dev_cpu_callback, 0);
6492 dst_init();
6493 dev_mcast_init();
6494 rc = 0;
6495 out:
6496 return rc;
6497 }
6498
6499 subsys_initcall(net_dev_init);
6500
6501 static int __init initialize_hashrnd(void)
6502 {
6503 get_random_bytes(&hashrnd, sizeof(hashrnd));
6504 return 0;
6505 }
6506
6507 late_initcall_sync(initialize_hashrnd);
6508
This page took 0.186326 seconds and 6 git commands to generate.