Fix "(unregistered net_device): Features changed" message
[deliverable/linux.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125 }
1126 EXPORT_SYMBOL(dev_load);
1127
1128 static int __dev_open(struct net_device *dev)
1129 {
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186 }
1187
1188 /**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200 int dev_open(struct net_device *dev)
1201 {
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224 }
1225 EXPORT_SYMBOL(dev_open);
1226
1227 static int __dev_close_many(struct list_head *head)
1228 {
1229 struct net_device *dev;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 list_for_each_entry(dev, head, unreg_list) {
1235 /*
1236 * Tell people we are going down, so that they can
1237 * prepare to death, when device is still operating.
1238 */
1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240
1241 clear_bit(__LINK_STATE_START, &dev->state);
1242
1243 /* Synchronize to scheduled poll. We cannot touch poll list, it
1244 * can be even on different cpu. So just clear netif_running().
1245 *
1246 * dev->stop() will invoke napi_disable() on all of it's
1247 * napi_struct instances on this device.
1248 */
1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 }
1251
1252 dev_deactivate_many(head);
1253
1254 list_for_each_entry(dev, head, unreg_list) {
1255 const struct net_device_ops *ops = dev->netdev_ops;
1256
1257 /*
1258 * Call the device specific close. This cannot fail.
1259 * Only if device is UP
1260 *
1261 * We allow it to be called even after a DETACH hot-plug
1262 * event.
1263 */
1264 if (ops->ndo_stop)
1265 ops->ndo_stop(dev);
1266
1267 /*
1268 * Device is now down.
1269 */
1270
1271 dev->flags &= ~IFF_UP;
1272
1273 /*
1274 * Shutdown NET_DMA
1275 */
1276 net_dmaengine_put();
1277 }
1278
1279 return 0;
1280 }
1281
1282 static int __dev_close(struct net_device *dev)
1283 {
1284 int retval;
1285 LIST_HEAD(single);
1286
1287 list_add(&dev->unreg_list, &single);
1288 retval = __dev_close_many(&single);
1289 list_del(&single);
1290 return retval;
1291 }
1292
1293 static int dev_close_many(struct list_head *head)
1294 {
1295 struct net_device *dev, *tmp;
1296 LIST_HEAD(tmp_list);
1297
1298 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1299 if (!(dev->flags & IFF_UP))
1300 list_move(&dev->unreg_list, &tmp_list);
1301
1302 __dev_close_many(head);
1303
1304 /*
1305 * Tell people we are down
1306 */
1307 list_for_each_entry(dev, head, unreg_list) {
1308 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1309 call_netdevice_notifiers(NETDEV_DOWN, dev);
1310 }
1311
1312 /* rollback_registered_many needs the complete original list */
1313 list_splice(&tmp_list, head);
1314 return 0;
1315 }
1316
1317 /**
1318 * dev_close - shutdown an interface.
1319 * @dev: device to shutdown
1320 *
1321 * This function moves an active device into down state. A
1322 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1323 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1324 * chain.
1325 */
1326 int dev_close(struct net_device *dev)
1327 {
1328 LIST_HEAD(single);
1329
1330 list_add(&dev->unreg_list, &single);
1331 dev_close_many(&single);
1332 list_del(&single);
1333 return 0;
1334 }
1335 EXPORT_SYMBOL(dev_close);
1336
1337
1338 /**
1339 * dev_disable_lro - disable Large Receive Offload on a device
1340 * @dev: device
1341 *
1342 * Disable Large Receive Offload (LRO) on a net device. Must be
1343 * called under RTNL. This is needed if received packets may be
1344 * forwarded to another interface.
1345 */
1346 void dev_disable_lro(struct net_device *dev)
1347 {
1348 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1349 dev->ethtool_ops->set_flags) {
1350 u32 flags = dev->ethtool_ops->get_flags(dev);
1351 if (flags & ETH_FLAG_LRO) {
1352 flags &= ~ETH_FLAG_LRO;
1353 dev->ethtool_ops->set_flags(dev, flags);
1354 }
1355 }
1356 WARN_ON(dev->features & NETIF_F_LRO);
1357 }
1358 EXPORT_SYMBOL(dev_disable_lro);
1359
1360
1361 static int dev_boot_phase = 1;
1362
1363 /*
1364 * Device change register/unregister. These are not inline or static
1365 * as we export them to the world.
1366 */
1367
1368 /**
1369 * register_netdevice_notifier - register a network notifier block
1370 * @nb: notifier
1371 *
1372 * Register a notifier to be called when network device events occur.
1373 * The notifier passed is linked into the kernel structures and must
1374 * not be reused until it has been unregistered. A negative errno code
1375 * is returned on a failure.
1376 *
1377 * When registered all registration and up events are replayed
1378 * to the new notifier to allow device to have a race free
1379 * view of the network device list.
1380 */
1381
1382 int register_netdevice_notifier(struct notifier_block *nb)
1383 {
1384 struct net_device *dev;
1385 struct net_device *last;
1386 struct net *net;
1387 int err;
1388
1389 rtnl_lock();
1390 err = raw_notifier_chain_register(&netdev_chain, nb);
1391 if (err)
1392 goto unlock;
1393 if (dev_boot_phase)
1394 goto unlock;
1395 for_each_net(net) {
1396 for_each_netdev(net, dev) {
1397 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1398 err = notifier_to_errno(err);
1399 if (err)
1400 goto rollback;
1401
1402 if (!(dev->flags & IFF_UP))
1403 continue;
1404
1405 nb->notifier_call(nb, NETDEV_UP, dev);
1406 }
1407 }
1408
1409 unlock:
1410 rtnl_unlock();
1411 return err;
1412
1413 rollback:
1414 last = dev;
1415 for_each_net(net) {
1416 for_each_netdev(net, dev) {
1417 if (dev == last)
1418 break;
1419
1420 if (dev->flags & IFF_UP) {
1421 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1422 nb->notifier_call(nb, NETDEV_DOWN, dev);
1423 }
1424 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1425 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1426 }
1427 }
1428
1429 raw_notifier_chain_unregister(&netdev_chain, nb);
1430 goto unlock;
1431 }
1432 EXPORT_SYMBOL(register_netdevice_notifier);
1433
1434 /**
1435 * unregister_netdevice_notifier - unregister a network notifier block
1436 * @nb: notifier
1437 *
1438 * Unregister a notifier previously registered by
1439 * register_netdevice_notifier(). The notifier is unlinked into the
1440 * kernel structures and may then be reused. A negative errno code
1441 * is returned on a failure.
1442 */
1443
1444 int unregister_netdevice_notifier(struct notifier_block *nb)
1445 {
1446 int err;
1447
1448 rtnl_lock();
1449 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1450 rtnl_unlock();
1451 return err;
1452 }
1453 EXPORT_SYMBOL(unregister_netdevice_notifier);
1454
1455 /**
1456 * call_netdevice_notifiers - call all network notifier blocks
1457 * @val: value passed unmodified to notifier function
1458 * @dev: net_device pointer passed unmodified to notifier function
1459 *
1460 * Call all network notifier blocks. Parameters and return value
1461 * are as for raw_notifier_call_chain().
1462 */
1463
1464 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1465 {
1466 ASSERT_RTNL();
1467 return raw_notifier_call_chain(&netdev_chain, val, dev);
1468 }
1469
1470 /* When > 0 there are consumers of rx skb time stamps */
1471 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1472
1473 void net_enable_timestamp(void)
1474 {
1475 atomic_inc(&netstamp_needed);
1476 }
1477 EXPORT_SYMBOL(net_enable_timestamp);
1478
1479 void net_disable_timestamp(void)
1480 {
1481 atomic_dec(&netstamp_needed);
1482 }
1483 EXPORT_SYMBOL(net_disable_timestamp);
1484
1485 static inline void net_timestamp_set(struct sk_buff *skb)
1486 {
1487 if (atomic_read(&netstamp_needed))
1488 __net_timestamp(skb);
1489 else
1490 skb->tstamp.tv64 = 0;
1491 }
1492
1493 static inline void net_timestamp_check(struct sk_buff *skb)
1494 {
1495 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1496 __net_timestamp(skb);
1497 }
1498
1499 /**
1500 * dev_forward_skb - loopback an skb to another netif
1501 *
1502 * @dev: destination network device
1503 * @skb: buffer to forward
1504 *
1505 * return values:
1506 * NET_RX_SUCCESS (no congestion)
1507 * NET_RX_DROP (packet was dropped, but freed)
1508 *
1509 * dev_forward_skb can be used for injecting an skb from the
1510 * start_xmit function of one device into the receive queue
1511 * of another device.
1512 *
1513 * The receiving device may be in another namespace, so
1514 * we have to clear all information in the skb that could
1515 * impact namespace isolation.
1516 */
1517 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1518 {
1519 skb_orphan(skb);
1520 nf_reset(skb);
1521
1522 if (unlikely(!(dev->flags & IFF_UP) ||
1523 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1524 atomic_long_inc(&dev->rx_dropped);
1525 kfree_skb(skb);
1526 return NET_RX_DROP;
1527 }
1528 skb_set_dev(skb, dev);
1529 skb->tstamp.tv64 = 0;
1530 skb->pkt_type = PACKET_HOST;
1531 skb->protocol = eth_type_trans(skb, dev);
1532 return netif_rx(skb);
1533 }
1534 EXPORT_SYMBOL_GPL(dev_forward_skb);
1535
1536 static inline int deliver_skb(struct sk_buff *skb,
1537 struct packet_type *pt_prev,
1538 struct net_device *orig_dev)
1539 {
1540 atomic_inc(&skb->users);
1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1542 }
1543
1544 /*
1545 * Support routine. Sends outgoing frames to any network
1546 * taps currently in use.
1547 */
1548
1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1550 {
1551 struct packet_type *ptype;
1552 struct sk_buff *skb2 = NULL;
1553 struct packet_type *pt_prev = NULL;
1554
1555 rcu_read_lock();
1556 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1557 /* Never send packets back to the socket
1558 * they originated from - MvS (miquels@drinkel.ow.org)
1559 */
1560 if ((ptype->dev == dev || !ptype->dev) &&
1561 (ptype->af_packet_priv == NULL ||
1562 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1563 if (pt_prev) {
1564 deliver_skb(skb2, pt_prev, skb->dev);
1565 pt_prev = ptype;
1566 continue;
1567 }
1568
1569 skb2 = skb_clone(skb, GFP_ATOMIC);
1570 if (!skb2)
1571 break;
1572
1573 net_timestamp_set(skb2);
1574
1575 /* skb->nh should be correctly
1576 set by sender, so that the second statement is
1577 just protection against buggy protocols.
1578 */
1579 skb_reset_mac_header(skb2);
1580
1581 if (skb_network_header(skb2) < skb2->data ||
1582 skb2->network_header > skb2->tail) {
1583 if (net_ratelimit())
1584 printk(KERN_CRIT "protocol %04x is "
1585 "buggy, dev %s\n",
1586 ntohs(skb2->protocol),
1587 dev->name);
1588 skb_reset_network_header(skb2);
1589 }
1590
1591 skb2->transport_header = skb2->network_header;
1592 skb2->pkt_type = PACKET_OUTGOING;
1593 pt_prev = ptype;
1594 }
1595 }
1596 if (pt_prev)
1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1598 rcu_read_unlock();
1599 }
1600
1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1602 * @dev: Network device
1603 * @txq: number of queues available
1604 *
1605 * If real_num_tx_queues is changed the tc mappings may no longer be
1606 * valid. To resolve this verify the tc mapping remains valid and if
1607 * not NULL the mapping. With no priorities mapping to this
1608 * offset/count pair it will no longer be used. In the worst case TC0
1609 * is invalid nothing can be done so disable priority mappings. If is
1610 * expected that drivers will fix this mapping if they can before
1611 * calling netif_set_real_num_tx_queues.
1612 */
1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1614 {
1615 int i;
1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1617
1618 /* If TC0 is invalidated disable TC mapping */
1619 if (tc->offset + tc->count > txq) {
1620 pr_warning("Number of in use tx queues changed "
1621 "invalidating tc mappings. Priority "
1622 "traffic classification disabled!\n");
1623 dev->num_tc = 0;
1624 return;
1625 }
1626
1627 /* Invalidated prio to tc mappings set to TC0 */
1628 for (i = 1; i < TC_BITMASK + 1; i++) {
1629 int q = netdev_get_prio_tc_map(dev, i);
1630
1631 tc = &dev->tc_to_txq[q];
1632 if (tc->offset + tc->count > txq) {
1633 pr_warning("Number of in use tx queues "
1634 "changed. Priority %i to tc "
1635 "mapping %i is no longer valid "
1636 "setting map to 0\n",
1637 i, q);
1638 netdev_set_prio_tc_map(dev, i, 0);
1639 }
1640 }
1641 }
1642
1643 /*
1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1646 */
1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1648 {
1649 int rc;
1650
1651 if (txq < 1 || txq > dev->num_tx_queues)
1652 return -EINVAL;
1653
1654 if (dev->reg_state == NETREG_REGISTERED ||
1655 dev->reg_state == NETREG_UNREGISTERING) {
1656 ASSERT_RTNL();
1657
1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1659 txq);
1660 if (rc)
1661 return rc;
1662
1663 if (dev->num_tc)
1664 netif_setup_tc(dev, txq);
1665
1666 if (txq < dev->real_num_tx_queues)
1667 qdisc_reset_all_tx_gt(dev, txq);
1668 }
1669
1670 dev->real_num_tx_queues = txq;
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1674
1675 #ifdef CONFIG_RPS
1676 /**
1677 * netif_set_real_num_rx_queues - set actual number of RX queues used
1678 * @dev: Network device
1679 * @rxq: Actual number of RX queues
1680 *
1681 * This must be called either with the rtnl_lock held or before
1682 * registration of the net device. Returns 0 on success, or a
1683 * negative error code. If called before registration, it always
1684 * succeeds.
1685 */
1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1687 {
1688 int rc;
1689
1690 if (rxq < 1 || rxq > dev->num_rx_queues)
1691 return -EINVAL;
1692
1693 if (dev->reg_state == NETREG_REGISTERED) {
1694 ASSERT_RTNL();
1695
1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1697 rxq);
1698 if (rc)
1699 return rc;
1700 }
1701
1702 dev->real_num_rx_queues = rxq;
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1706 #endif
1707
1708 static inline void __netif_reschedule(struct Qdisc *q)
1709 {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 q->next_sched = NULL;
1716 *sd->output_queue_tailp = q;
1717 sd->output_queue_tailp = &q->next_sched;
1718 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1719 local_irq_restore(flags);
1720 }
1721
1722 void __netif_schedule(struct Qdisc *q)
1723 {
1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1725 __netif_reschedule(q);
1726 }
1727 EXPORT_SYMBOL(__netif_schedule);
1728
1729 void dev_kfree_skb_irq(struct sk_buff *skb)
1730 {
1731 if (atomic_dec_and_test(&skb->users)) {
1732 struct softnet_data *sd;
1733 unsigned long flags;
1734
1735 local_irq_save(flags);
1736 sd = &__get_cpu_var(softnet_data);
1737 skb->next = sd->completion_queue;
1738 sd->completion_queue = skb;
1739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1740 local_irq_restore(flags);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_kfree_skb_irq);
1744
1745 void dev_kfree_skb_any(struct sk_buff *skb)
1746 {
1747 if (in_irq() || irqs_disabled())
1748 dev_kfree_skb_irq(skb);
1749 else
1750 dev_kfree_skb(skb);
1751 }
1752 EXPORT_SYMBOL(dev_kfree_skb_any);
1753
1754
1755 /**
1756 * netif_device_detach - mark device as removed
1757 * @dev: network device
1758 *
1759 * Mark device as removed from system and therefore no longer available.
1760 */
1761 void netif_device_detach(struct net_device *dev)
1762 {
1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1764 netif_running(dev)) {
1765 netif_tx_stop_all_queues(dev);
1766 }
1767 }
1768 EXPORT_SYMBOL(netif_device_detach);
1769
1770 /**
1771 * netif_device_attach - mark device as attached
1772 * @dev: network device
1773 *
1774 * Mark device as attached from system and restart if needed.
1775 */
1776 void netif_device_attach(struct net_device *dev)
1777 {
1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1779 netif_running(dev)) {
1780 netif_tx_wake_all_queues(dev);
1781 __netdev_watchdog_up(dev);
1782 }
1783 }
1784 EXPORT_SYMBOL(netif_device_attach);
1785
1786 /**
1787 * skb_dev_set -- assign a new device to a buffer
1788 * @skb: buffer for the new device
1789 * @dev: network device
1790 *
1791 * If an skb is owned by a device already, we have to reset
1792 * all data private to the namespace a device belongs to
1793 * before assigning it a new device.
1794 */
1795 #ifdef CONFIG_NET_NS
1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1797 {
1798 skb_dst_drop(skb);
1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1800 secpath_reset(skb);
1801 nf_reset(skb);
1802 skb_init_secmark(skb);
1803 skb->mark = 0;
1804 skb->priority = 0;
1805 skb->nf_trace = 0;
1806 skb->ipvs_property = 0;
1807 #ifdef CONFIG_NET_SCHED
1808 skb->tc_index = 0;
1809 #endif
1810 }
1811 skb->dev = dev;
1812 }
1813 EXPORT_SYMBOL(skb_set_dev);
1814 #endif /* CONFIG_NET_NS */
1815
1816 /*
1817 * Invalidate hardware checksum when packet is to be mangled, and
1818 * complete checksum manually on outgoing path.
1819 */
1820 int skb_checksum_help(struct sk_buff *skb)
1821 {
1822 __wsum csum;
1823 int ret = 0, offset;
1824
1825 if (skb->ip_summed == CHECKSUM_COMPLETE)
1826 goto out_set_summed;
1827
1828 if (unlikely(skb_shinfo(skb)->gso_size)) {
1829 /* Let GSO fix up the checksum. */
1830 goto out_set_summed;
1831 }
1832
1833 offset = skb_checksum_start_offset(skb);
1834 BUG_ON(offset >= skb_headlen(skb));
1835 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1836
1837 offset += skb->csum_offset;
1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1839
1840 if (skb_cloned(skb) &&
1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1843 if (ret)
1844 goto out;
1845 }
1846
1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1848 out_set_summed:
1849 skb->ip_summed = CHECKSUM_NONE;
1850 out:
1851 return ret;
1852 }
1853 EXPORT_SYMBOL(skb_checksum_help);
1854
1855 /**
1856 * skb_gso_segment - Perform segmentation on skb.
1857 * @skb: buffer to segment
1858 * @features: features for the output path (see dev->features)
1859 *
1860 * This function segments the given skb and returns a list of segments.
1861 *
1862 * It may return NULL if the skb requires no segmentation. This is
1863 * only possible when GSO is used for verifying header integrity.
1864 */
1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1866 {
1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1868 struct packet_type *ptype;
1869 __be16 type = skb->protocol;
1870 int vlan_depth = ETH_HLEN;
1871 int err;
1872
1873 while (type == htons(ETH_P_8021Q)) {
1874 struct vlan_hdr *vh;
1875
1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1877 return ERR_PTR(-EINVAL);
1878
1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1880 type = vh->h_vlan_encapsulated_proto;
1881 vlan_depth += VLAN_HLEN;
1882 }
1883
1884 skb_reset_mac_header(skb);
1885 skb->mac_len = skb->network_header - skb->mac_header;
1886 __skb_pull(skb, skb->mac_len);
1887
1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1889 struct net_device *dev = skb->dev;
1890 struct ethtool_drvinfo info = {};
1891
1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1893 dev->ethtool_ops->get_drvinfo(dev, &info);
1894
1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1896 info.driver, dev ? dev->features : 0L,
1897 skb->sk ? skb->sk->sk_route_caps : 0L,
1898 skb->len, skb->data_len, skb->ip_summed);
1899
1900 if (skb_header_cloned(skb) &&
1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1902 return ERR_PTR(err);
1903 }
1904
1905 rcu_read_lock();
1906 list_for_each_entry_rcu(ptype,
1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1910 err = ptype->gso_send_check(skb);
1911 segs = ERR_PTR(err);
1912 if (err || skb_gso_ok(skb, features))
1913 break;
1914 __skb_push(skb, (skb->data -
1915 skb_network_header(skb)));
1916 }
1917 segs = ptype->gso_segment(skb, features);
1918 break;
1919 }
1920 }
1921 rcu_read_unlock();
1922
1923 __skb_push(skb, skb->data - skb_mac_header(skb));
1924
1925 return segs;
1926 }
1927 EXPORT_SYMBOL(skb_gso_segment);
1928
1929 /* Take action when hardware reception checksum errors are detected. */
1930 #ifdef CONFIG_BUG
1931 void netdev_rx_csum_fault(struct net_device *dev)
1932 {
1933 if (net_ratelimit()) {
1934 printk(KERN_ERR "%s: hw csum failure.\n",
1935 dev ? dev->name : "<unknown>");
1936 dump_stack();
1937 }
1938 }
1939 EXPORT_SYMBOL(netdev_rx_csum_fault);
1940 #endif
1941
1942 /* Actually, we should eliminate this check as soon as we know, that:
1943 * 1. IOMMU is present and allows to map all the memory.
1944 * 2. No high memory really exists on this machine.
1945 */
1946
1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1948 {
1949 #ifdef CONFIG_HIGHMEM
1950 int i;
1951 if (!(dev->features & NETIF_F_HIGHDMA)) {
1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1953 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1954 return 1;
1955 }
1956
1957 if (PCI_DMA_BUS_IS_PHYS) {
1958 struct device *pdev = dev->dev.parent;
1959
1960 if (!pdev)
1961 return 0;
1962 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1963 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1964 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1965 return 1;
1966 }
1967 }
1968 #endif
1969 return 0;
1970 }
1971
1972 struct dev_gso_cb {
1973 void (*destructor)(struct sk_buff *skb);
1974 };
1975
1976 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1977
1978 static void dev_gso_skb_destructor(struct sk_buff *skb)
1979 {
1980 struct dev_gso_cb *cb;
1981
1982 do {
1983 struct sk_buff *nskb = skb->next;
1984
1985 skb->next = nskb->next;
1986 nskb->next = NULL;
1987 kfree_skb(nskb);
1988 } while (skb->next);
1989
1990 cb = DEV_GSO_CB(skb);
1991 if (cb->destructor)
1992 cb->destructor(skb);
1993 }
1994
1995 /**
1996 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1997 * @skb: buffer to segment
1998 * @features: device features as applicable to this skb
1999 *
2000 * This function segments the given skb and stores the list of segments
2001 * in skb->next.
2002 */
2003 static int dev_gso_segment(struct sk_buff *skb, int features)
2004 {
2005 struct sk_buff *segs;
2006
2007 segs = skb_gso_segment(skb, features);
2008
2009 /* Verifying header integrity only. */
2010 if (!segs)
2011 return 0;
2012
2013 if (IS_ERR(segs))
2014 return PTR_ERR(segs);
2015
2016 skb->next = segs;
2017 DEV_GSO_CB(skb)->destructor = skb->destructor;
2018 skb->destructor = dev_gso_skb_destructor;
2019
2020 return 0;
2021 }
2022
2023 /*
2024 * Try to orphan skb early, right before transmission by the device.
2025 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2026 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2027 */
2028 static inline void skb_orphan_try(struct sk_buff *skb)
2029 {
2030 struct sock *sk = skb->sk;
2031
2032 if (sk && !skb_shinfo(skb)->tx_flags) {
2033 /* skb_tx_hash() wont be able to get sk.
2034 * We copy sk_hash into skb->rxhash
2035 */
2036 if (!skb->rxhash)
2037 skb->rxhash = sk->sk_hash;
2038 skb_orphan(skb);
2039 }
2040 }
2041
2042 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2043 {
2044 return ((features & NETIF_F_GEN_CSUM) ||
2045 ((features & NETIF_F_V4_CSUM) &&
2046 protocol == htons(ETH_P_IP)) ||
2047 ((features & NETIF_F_V6_CSUM) &&
2048 protocol == htons(ETH_P_IPV6)) ||
2049 ((features & NETIF_F_FCOE_CRC) &&
2050 protocol == htons(ETH_P_FCOE)));
2051 }
2052
2053 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2054 {
2055 if (!can_checksum_protocol(features, protocol)) {
2056 features &= ~NETIF_F_ALL_CSUM;
2057 features &= ~NETIF_F_SG;
2058 } else if (illegal_highdma(skb->dev, skb)) {
2059 features &= ~NETIF_F_SG;
2060 }
2061
2062 return features;
2063 }
2064
2065 u32 netif_skb_features(struct sk_buff *skb)
2066 {
2067 __be16 protocol = skb->protocol;
2068 u32 features = skb->dev->features;
2069
2070 if (protocol == htons(ETH_P_8021Q)) {
2071 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2072 protocol = veh->h_vlan_encapsulated_proto;
2073 } else if (!vlan_tx_tag_present(skb)) {
2074 return harmonize_features(skb, protocol, features);
2075 }
2076
2077 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2078
2079 if (protocol != htons(ETH_P_8021Q)) {
2080 return harmonize_features(skb, protocol, features);
2081 } else {
2082 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2083 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2084 return harmonize_features(skb, protocol, features);
2085 }
2086 }
2087 EXPORT_SYMBOL(netif_skb_features);
2088
2089 /*
2090 * Returns true if either:
2091 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2092 * 2. skb is fragmented and the device does not support SG, or if
2093 * at least one of fragments is in highmem and device does not
2094 * support DMA from it.
2095 */
2096 static inline int skb_needs_linearize(struct sk_buff *skb,
2097 int features)
2098 {
2099 return skb_is_nonlinear(skb) &&
2100 ((skb_has_frag_list(skb) &&
2101 !(features & NETIF_F_FRAGLIST)) ||
2102 (skb_shinfo(skb)->nr_frags &&
2103 !(features & NETIF_F_SG)));
2104 }
2105
2106 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2107 struct netdev_queue *txq)
2108 {
2109 const struct net_device_ops *ops = dev->netdev_ops;
2110 int rc = NETDEV_TX_OK;
2111
2112 if (likely(!skb->next)) {
2113 u32 features;
2114
2115 /*
2116 * If device doesnt need skb->dst, release it right now while
2117 * its hot in this cpu cache
2118 */
2119 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2120 skb_dst_drop(skb);
2121
2122 if (!list_empty(&ptype_all))
2123 dev_queue_xmit_nit(skb, dev);
2124
2125 skb_orphan_try(skb);
2126
2127 features = netif_skb_features(skb);
2128
2129 if (vlan_tx_tag_present(skb) &&
2130 !(features & NETIF_F_HW_VLAN_TX)) {
2131 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2132 if (unlikely(!skb))
2133 goto out;
2134
2135 skb->vlan_tci = 0;
2136 }
2137
2138 if (netif_needs_gso(skb, features)) {
2139 if (unlikely(dev_gso_segment(skb, features)))
2140 goto out_kfree_skb;
2141 if (skb->next)
2142 goto gso;
2143 } else {
2144 if (skb_needs_linearize(skb, features) &&
2145 __skb_linearize(skb))
2146 goto out_kfree_skb;
2147
2148 /* If packet is not checksummed and device does not
2149 * support checksumming for this protocol, complete
2150 * checksumming here.
2151 */
2152 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2153 skb_set_transport_header(skb,
2154 skb_checksum_start_offset(skb));
2155 if (!(features & NETIF_F_ALL_CSUM) &&
2156 skb_checksum_help(skb))
2157 goto out_kfree_skb;
2158 }
2159 }
2160
2161 rc = ops->ndo_start_xmit(skb, dev);
2162 trace_net_dev_xmit(skb, rc);
2163 if (rc == NETDEV_TX_OK)
2164 txq_trans_update(txq);
2165 return rc;
2166 }
2167
2168 gso:
2169 do {
2170 struct sk_buff *nskb = skb->next;
2171
2172 skb->next = nskb->next;
2173 nskb->next = NULL;
2174
2175 /*
2176 * If device doesnt need nskb->dst, release it right now while
2177 * its hot in this cpu cache
2178 */
2179 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2180 skb_dst_drop(nskb);
2181
2182 rc = ops->ndo_start_xmit(nskb, dev);
2183 trace_net_dev_xmit(nskb, rc);
2184 if (unlikely(rc != NETDEV_TX_OK)) {
2185 if (rc & ~NETDEV_TX_MASK)
2186 goto out_kfree_gso_skb;
2187 nskb->next = skb->next;
2188 skb->next = nskb;
2189 return rc;
2190 }
2191 txq_trans_update(txq);
2192 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2193 return NETDEV_TX_BUSY;
2194 } while (skb->next);
2195
2196 out_kfree_gso_skb:
2197 if (likely(skb->next == NULL))
2198 skb->destructor = DEV_GSO_CB(skb)->destructor;
2199 out_kfree_skb:
2200 kfree_skb(skb);
2201 out:
2202 return rc;
2203 }
2204
2205 static u32 hashrnd __read_mostly;
2206
2207 /*
2208 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2209 * to be used as a distribution range.
2210 */
2211 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2212 unsigned int num_tx_queues)
2213 {
2214 u32 hash;
2215 u16 qoffset = 0;
2216 u16 qcount = num_tx_queues;
2217
2218 if (skb_rx_queue_recorded(skb)) {
2219 hash = skb_get_rx_queue(skb);
2220 while (unlikely(hash >= num_tx_queues))
2221 hash -= num_tx_queues;
2222 return hash;
2223 }
2224
2225 if (dev->num_tc) {
2226 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2227 qoffset = dev->tc_to_txq[tc].offset;
2228 qcount = dev->tc_to_txq[tc].count;
2229 }
2230
2231 if (skb->sk && skb->sk->sk_hash)
2232 hash = skb->sk->sk_hash;
2233 else
2234 hash = (__force u16) skb->protocol ^ skb->rxhash;
2235 hash = jhash_1word(hash, hashrnd);
2236
2237 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2238 }
2239 EXPORT_SYMBOL(__skb_tx_hash);
2240
2241 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2242 {
2243 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2244 if (net_ratelimit()) {
2245 pr_warning("%s selects TX queue %d, but "
2246 "real number of TX queues is %d\n",
2247 dev->name, queue_index, dev->real_num_tx_queues);
2248 }
2249 return 0;
2250 }
2251 return queue_index;
2252 }
2253
2254 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2255 {
2256 #ifdef CONFIG_XPS
2257 struct xps_dev_maps *dev_maps;
2258 struct xps_map *map;
2259 int queue_index = -1;
2260
2261 rcu_read_lock();
2262 dev_maps = rcu_dereference(dev->xps_maps);
2263 if (dev_maps) {
2264 map = rcu_dereference(
2265 dev_maps->cpu_map[raw_smp_processor_id()]);
2266 if (map) {
2267 if (map->len == 1)
2268 queue_index = map->queues[0];
2269 else {
2270 u32 hash;
2271 if (skb->sk && skb->sk->sk_hash)
2272 hash = skb->sk->sk_hash;
2273 else
2274 hash = (__force u16) skb->protocol ^
2275 skb->rxhash;
2276 hash = jhash_1word(hash, hashrnd);
2277 queue_index = map->queues[
2278 ((u64)hash * map->len) >> 32];
2279 }
2280 if (unlikely(queue_index >= dev->real_num_tx_queues))
2281 queue_index = -1;
2282 }
2283 }
2284 rcu_read_unlock();
2285
2286 return queue_index;
2287 #else
2288 return -1;
2289 #endif
2290 }
2291
2292 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2293 struct sk_buff *skb)
2294 {
2295 int queue_index;
2296 const struct net_device_ops *ops = dev->netdev_ops;
2297
2298 if (dev->real_num_tx_queues == 1)
2299 queue_index = 0;
2300 else if (ops->ndo_select_queue) {
2301 queue_index = ops->ndo_select_queue(dev, skb);
2302 queue_index = dev_cap_txqueue(dev, queue_index);
2303 } else {
2304 struct sock *sk = skb->sk;
2305 queue_index = sk_tx_queue_get(sk);
2306
2307 if (queue_index < 0 || skb->ooo_okay ||
2308 queue_index >= dev->real_num_tx_queues) {
2309 int old_index = queue_index;
2310
2311 queue_index = get_xps_queue(dev, skb);
2312 if (queue_index < 0)
2313 queue_index = skb_tx_hash(dev, skb);
2314
2315 if (queue_index != old_index && sk) {
2316 struct dst_entry *dst =
2317 rcu_dereference_check(sk->sk_dst_cache, 1);
2318
2319 if (dst && skb_dst(skb) == dst)
2320 sk_tx_queue_set(sk, queue_index);
2321 }
2322 }
2323 }
2324
2325 skb_set_queue_mapping(skb, queue_index);
2326 return netdev_get_tx_queue(dev, queue_index);
2327 }
2328
2329 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2330 struct net_device *dev,
2331 struct netdev_queue *txq)
2332 {
2333 spinlock_t *root_lock = qdisc_lock(q);
2334 bool contended;
2335 int rc;
2336
2337 qdisc_skb_cb(skb)->pkt_len = skb->len;
2338 qdisc_calculate_pkt_len(skb, q);
2339 /*
2340 * Heuristic to force contended enqueues to serialize on a
2341 * separate lock before trying to get qdisc main lock.
2342 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2343 * and dequeue packets faster.
2344 */
2345 contended = qdisc_is_running(q);
2346 if (unlikely(contended))
2347 spin_lock(&q->busylock);
2348
2349 spin_lock(root_lock);
2350 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2351 kfree_skb(skb);
2352 rc = NET_XMIT_DROP;
2353 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2354 qdisc_run_begin(q)) {
2355 /*
2356 * This is a work-conserving queue; there are no old skbs
2357 * waiting to be sent out; and the qdisc is not running -
2358 * xmit the skb directly.
2359 */
2360 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2361 skb_dst_force(skb);
2362
2363 qdisc_bstats_update(q, skb);
2364
2365 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2366 if (unlikely(contended)) {
2367 spin_unlock(&q->busylock);
2368 contended = false;
2369 }
2370 __qdisc_run(q);
2371 } else
2372 qdisc_run_end(q);
2373
2374 rc = NET_XMIT_SUCCESS;
2375 } else {
2376 skb_dst_force(skb);
2377 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2378 if (qdisc_run_begin(q)) {
2379 if (unlikely(contended)) {
2380 spin_unlock(&q->busylock);
2381 contended = false;
2382 }
2383 __qdisc_run(q);
2384 }
2385 }
2386 spin_unlock(root_lock);
2387 if (unlikely(contended))
2388 spin_unlock(&q->busylock);
2389 return rc;
2390 }
2391
2392 static DEFINE_PER_CPU(int, xmit_recursion);
2393 #define RECURSION_LIMIT 10
2394
2395 /**
2396 * dev_queue_xmit - transmit a buffer
2397 * @skb: buffer to transmit
2398 *
2399 * Queue a buffer for transmission to a network device. The caller must
2400 * have set the device and priority and built the buffer before calling
2401 * this function. The function can be called from an interrupt.
2402 *
2403 * A negative errno code is returned on a failure. A success does not
2404 * guarantee the frame will be transmitted as it may be dropped due
2405 * to congestion or traffic shaping.
2406 *
2407 * -----------------------------------------------------------------------------------
2408 * I notice this method can also return errors from the queue disciplines,
2409 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2410 * be positive.
2411 *
2412 * Regardless of the return value, the skb is consumed, so it is currently
2413 * difficult to retry a send to this method. (You can bump the ref count
2414 * before sending to hold a reference for retry if you are careful.)
2415 *
2416 * When calling this method, interrupts MUST be enabled. This is because
2417 * the BH enable code must have IRQs enabled so that it will not deadlock.
2418 * --BLG
2419 */
2420 int dev_queue_xmit(struct sk_buff *skb)
2421 {
2422 struct net_device *dev = skb->dev;
2423 struct netdev_queue *txq;
2424 struct Qdisc *q;
2425 int rc = -ENOMEM;
2426
2427 /* Disable soft irqs for various locks below. Also
2428 * stops preemption for RCU.
2429 */
2430 rcu_read_lock_bh();
2431
2432 txq = dev_pick_tx(dev, skb);
2433 q = rcu_dereference_bh(txq->qdisc);
2434
2435 #ifdef CONFIG_NET_CLS_ACT
2436 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2437 #endif
2438 trace_net_dev_queue(skb);
2439 if (q->enqueue) {
2440 rc = __dev_xmit_skb(skb, q, dev, txq);
2441 goto out;
2442 }
2443
2444 /* The device has no queue. Common case for software devices:
2445 loopback, all the sorts of tunnels...
2446
2447 Really, it is unlikely that netif_tx_lock protection is necessary
2448 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2449 counters.)
2450 However, it is possible, that they rely on protection
2451 made by us here.
2452
2453 Check this and shot the lock. It is not prone from deadlocks.
2454 Either shot noqueue qdisc, it is even simpler 8)
2455 */
2456 if (dev->flags & IFF_UP) {
2457 int cpu = smp_processor_id(); /* ok because BHs are off */
2458
2459 if (txq->xmit_lock_owner != cpu) {
2460
2461 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2462 goto recursion_alert;
2463
2464 HARD_TX_LOCK(dev, txq, cpu);
2465
2466 if (!netif_tx_queue_stopped(txq)) {
2467 __this_cpu_inc(xmit_recursion);
2468 rc = dev_hard_start_xmit(skb, dev, txq);
2469 __this_cpu_dec(xmit_recursion);
2470 if (dev_xmit_complete(rc)) {
2471 HARD_TX_UNLOCK(dev, txq);
2472 goto out;
2473 }
2474 }
2475 HARD_TX_UNLOCK(dev, txq);
2476 if (net_ratelimit())
2477 printk(KERN_CRIT "Virtual device %s asks to "
2478 "queue packet!\n", dev->name);
2479 } else {
2480 /* Recursion is detected! It is possible,
2481 * unfortunately
2482 */
2483 recursion_alert:
2484 if (net_ratelimit())
2485 printk(KERN_CRIT "Dead loop on virtual device "
2486 "%s, fix it urgently!\n", dev->name);
2487 }
2488 }
2489
2490 rc = -ENETDOWN;
2491 rcu_read_unlock_bh();
2492
2493 kfree_skb(skb);
2494 return rc;
2495 out:
2496 rcu_read_unlock_bh();
2497 return rc;
2498 }
2499 EXPORT_SYMBOL(dev_queue_xmit);
2500
2501
2502 /*=======================================================================
2503 Receiver routines
2504 =======================================================================*/
2505
2506 int netdev_max_backlog __read_mostly = 1000;
2507 int netdev_tstamp_prequeue __read_mostly = 1;
2508 int netdev_budget __read_mostly = 300;
2509 int weight_p __read_mostly = 64; /* old backlog weight */
2510
2511 /* Called with irq disabled */
2512 static inline void ____napi_schedule(struct softnet_data *sd,
2513 struct napi_struct *napi)
2514 {
2515 list_add_tail(&napi->poll_list, &sd->poll_list);
2516 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2517 }
2518
2519 /*
2520 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2521 * and src/dst port numbers. Returns a non-zero hash number on success
2522 * and 0 on failure.
2523 */
2524 __u32 __skb_get_rxhash(struct sk_buff *skb)
2525 {
2526 int nhoff, hash = 0, poff;
2527 struct ipv6hdr *ip6;
2528 struct iphdr *ip;
2529 u8 ip_proto;
2530 u32 addr1, addr2, ihl;
2531 union {
2532 u32 v32;
2533 u16 v16[2];
2534 } ports;
2535
2536 nhoff = skb_network_offset(skb);
2537
2538 switch (skb->protocol) {
2539 case __constant_htons(ETH_P_IP):
2540 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2541 goto done;
2542
2543 ip = (struct iphdr *) (skb->data + nhoff);
2544 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2545 ip_proto = 0;
2546 else
2547 ip_proto = ip->protocol;
2548 addr1 = (__force u32) ip->saddr;
2549 addr2 = (__force u32) ip->daddr;
2550 ihl = ip->ihl;
2551 break;
2552 case __constant_htons(ETH_P_IPV6):
2553 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2554 goto done;
2555
2556 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2557 ip_proto = ip6->nexthdr;
2558 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2559 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2560 ihl = (40 >> 2);
2561 break;
2562 default:
2563 goto done;
2564 }
2565
2566 ports.v32 = 0;
2567 poff = proto_ports_offset(ip_proto);
2568 if (poff >= 0) {
2569 nhoff += ihl * 4 + poff;
2570 if (pskb_may_pull(skb, nhoff + 4)) {
2571 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2572 if (ports.v16[1] < ports.v16[0])
2573 swap(ports.v16[0], ports.v16[1]);
2574 }
2575 }
2576
2577 /* get a consistent hash (same value on both flow directions) */
2578 if (addr2 < addr1)
2579 swap(addr1, addr2);
2580
2581 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2582 if (!hash)
2583 hash = 1;
2584
2585 done:
2586 return hash;
2587 }
2588 EXPORT_SYMBOL(__skb_get_rxhash);
2589
2590 #ifdef CONFIG_RPS
2591
2592 /* One global table that all flow-based protocols share. */
2593 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2594 EXPORT_SYMBOL(rps_sock_flow_table);
2595
2596 static struct rps_dev_flow *
2597 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2598 struct rps_dev_flow *rflow, u16 next_cpu)
2599 {
2600 u16 tcpu;
2601
2602 tcpu = rflow->cpu = next_cpu;
2603 if (tcpu != RPS_NO_CPU) {
2604 #ifdef CONFIG_RFS_ACCEL
2605 struct netdev_rx_queue *rxqueue;
2606 struct rps_dev_flow_table *flow_table;
2607 struct rps_dev_flow *old_rflow;
2608 u32 flow_id;
2609 u16 rxq_index;
2610 int rc;
2611
2612 /* Should we steer this flow to a different hardware queue? */
2613 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2614 !(dev->features & NETIF_F_NTUPLE))
2615 goto out;
2616 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2617 if (rxq_index == skb_get_rx_queue(skb))
2618 goto out;
2619
2620 rxqueue = dev->_rx + rxq_index;
2621 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2622 if (!flow_table)
2623 goto out;
2624 flow_id = skb->rxhash & flow_table->mask;
2625 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2626 rxq_index, flow_id);
2627 if (rc < 0)
2628 goto out;
2629 old_rflow = rflow;
2630 rflow = &flow_table->flows[flow_id];
2631 rflow->cpu = next_cpu;
2632 rflow->filter = rc;
2633 if (old_rflow->filter == rflow->filter)
2634 old_rflow->filter = RPS_NO_FILTER;
2635 out:
2636 #endif
2637 rflow->last_qtail =
2638 per_cpu(softnet_data, tcpu).input_queue_head;
2639 }
2640
2641 return rflow;
2642 }
2643
2644 /*
2645 * get_rps_cpu is called from netif_receive_skb and returns the target
2646 * CPU from the RPS map of the receiving queue for a given skb.
2647 * rcu_read_lock must be held on entry.
2648 */
2649 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2650 struct rps_dev_flow **rflowp)
2651 {
2652 struct netdev_rx_queue *rxqueue;
2653 struct rps_map *map;
2654 struct rps_dev_flow_table *flow_table;
2655 struct rps_sock_flow_table *sock_flow_table;
2656 int cpu = -1;
2657 u16 tcpu;
2658
2659 if (skb_rx_queue_recorded(skb)) {
2660 u16 index = skb_get_rx_queue(skb);
2661 if (unlikely(index >= dev->real_num_rx_queues)) {
2662 WARN_ONCE(dev->real_num_rx_queues > 1,
2663 "%s received packet on queue %u, but number "
2664 "of RX queues is %u\n",
2665 dev->name, index, dev->real_num_rx_queues);
2666 goto done;
2667 }
2668 rxqueue = dev->_rx + index;
2669 } else
2670 rxqueue = dev->_rx;
2671
2672 map = rcu_dereference(rxqueue->rps_map);
2673 if (map) {
2674 if (map->len == 1 &&
2675 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2676 tcpu = map->cpus[0];
2677 if (cpu_online(tcpu))
2678 cpu = tcpu;
2679 goto done;
2680 }
2681 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2682 goto done;
2683 }
2684
2685 skb_reset_network_header(skb);
2686 if (!skb_get_rxhash(skb))
2687 goto done;
2688
2689 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2690 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2691 if (flow_table && sock_flow_table) {
2692 u16 next_cpu;
2693 struct rps_dev_flow *rflow;
2694
2695 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2696 tcpu = rflow->cpu;
2697
2698 next_cpu = sock_flow_table->ents[skb->rxhash &
2699 sock_flow_table->mask];
2700
2701 /*
2702 * If the desired CPU (where last recvmsg was done) is
2703 * different from current CPU (one in the rx-queue flow
2704 * table entry), switch if one of the following holds:
2705 * - Current CPU is unset (equal to RPS_NO_CPU).
2706 * - Current CPU is offline.
2707 * - The current CPU's queue tail has advanced beyond the
2708 * last packet that was enqueued using this table entry.
2709 * This guarantees that all previous packets for the flow
2710 * have been dequeued, thus preserving in order delivery.
2711 */
2712 if (unlikely(tcpu != next_cpu) &&
2713 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2714 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2715 rflow->last_qtail)) >= 0))
2716 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2717
2718 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2719 *rflowp = rflow;
2720 cpu = tcpu;
2721 goto done;
2722 }
2723 }
2724
2725 if (map) {
2726 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2727
2728 if (cpu_online(tcpu)) {
2729 cpu = tcpu;
2730 goto done;
2731 }
2732 }
2733
2734 done:
2735 return cpu;
2736 }
2737
2738 #ifdef CONFIG_RFS_ACCEL
2739
2740 /**
2741 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2742 * @dev: Device on which the filter was set
2743 * @rxq_index: RX queue index
2744 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2745 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2746 *
2747 * Drivers that implement ndo_rx_flow_steer() should periodically call
2748 * this function for each installed filter and remove the filters for
2749 * which it returns %true.
2750 */
2751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2752 u32 flow_id, u16 filter_id)
2753 {
2754 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2755 struct rps_dev_flow_table *flow_table;
2756 struct rps_dev_flow *rflow;
2757 bool expire = true;
2758 int cpu;
2759
2760 rcu_read_lock();
2761 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2762 if (flow_table && flow_id <= flow_table->mask) {
2763 rflow = &flow_table->flows[flow_id];
2764 cpu = ACCESS_ONCE(rflow->cpu);
2765 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2766 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2767 rflow->last_qtail) <
2768 (int)(10 * flow_table->mask)))
2769 expire = false;
2770 }
2771 rcu_read_unlock();
2772 return expire;
2773 }
2774 EXPORT_SYMBOL(rps_may_expire_flow);
2775
2776 #endif /* CONFIG_RFS_ACCEL */
2777
2778 /* Called from hardirq (IPI) context */
2779 static void rps_trigger_softirq(void *data)
2780 {
2781 struct softnet_data *sd = data;
2782
2783 ____napi_schedule(sd, &sd->backlog);
2784 sd->received_rps++;
2785 }
2786
2787 #endif /* CONFIG_RPS */
2788
2789 /*
2790 * Check if this softnet_data structure is another cpu one
2791 * If yes, queue it to our IPI list and return 1
2792 * If no, return 0
2793 */
2794 static int rps_ipi_queued(struct softnet_data *sd)
2795 {
2796 #ifdef CONFIG_RPS
2797 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2798
2799 if (sd != mysd) {
2800 sd->rps_ipi_next = mysd->rps_ipi_list;
2801 mysd->rps_ipi_list = sd;
2802
2803 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2804 return 1;
2805 }
2806 #endif /* CONFIG_RPS */
2807 return 0;
2808 }
2809
2810 /*
2811 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2812 * queue (may be a remote CPU queue).
2813 */
2814 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2815 unsigned int *qtail)
2816 {
2817 struct softnet_data *sd;
2818 unsigned long flags;
2819
2820 sd = &per_cpu(softnet_data, cpu);
2821
2822 local_irq_save(flags);
2823
2824 rps_lock(sd);
2825 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2826 if (skb_queue_len(&sd->input_pkt_queue)) {
2827 enqueue:
2828 __skb_queue_tail(&sd->input_pkt_queue, skb);
2829 input_queue_tail_incr_save(sd, qtail);
2830 rps_unlock(sd);
2831 local_irq_restore(flags);
2832 return NET_RX_SUCCESS;
2833 }
2834
2835 /* Schedule NAPI for backlog device
2836 * We can use non atomic operation since we own the queue lock
2837 */
2838 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2839 if (!rps_ipi_queued(sd))
2840 ____napi_schedule(sd, &sd->backlog);
2841 }
2842 goto enqueue;
2843 }
2844
2845 sd->dropped++;
2846 rps_unlock(sd);
2847
2848 local_irq_restore(flags);
2849
2850 atomic_long_inc(&skb->dev->rx_dropped);
2851 kfree_skb(skb);
2852 return NET_RX_DROP;
2853 }
2854
2855 /**
2856 * netif_rx - post buffer to the network code
2857 * @skb: buffer to post
2858 *
2859 * This function receives a packet from a device driver and queues it for
2860 * the upper (protocol) levels to process. It always succeeds. The buffer
2861 * may be dropped during processing for congestion control or by the
2862 * protocol layers.
2863 *
2864 * return values:
2865 * NET_RX_SUCCESS (no congestion)
2866 * NET_RX_DROP (packet was dropped)
2867 *
2868 */
2869
2870 int netif_rx(struct sk_buff *skb)
2871 {
2872 int ret;
2873
2874 /* if netpoll wants it, pretend we never saw it */
2875 if (netpoll_rx(skb))
2876 return NET_RX_DROP;
2877
2878 if (netdev_tstamp_prequeue)
2879 net_timestamp_check(skb);
2880
2881 trace_netif_rx(skb);
2882 #ifdef CONFIG_RPS
2883 {
2884 struct rps_dev_flow voidflow, *rflow = &voidflow;
2885 int cpu;
2886
2887 preempt_disable();
2888 rcu_read_lock();
2889
2890 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2891 if (cpu < 0)
2892 cpu = smp_processor_id();
2893
2894 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2895
2896 rcu_read_unlock();
2897 preempt_enable();
2898 }
2899 #else
2900 {
2901 unsigned int qtail;
2902 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2903 put_cpu();
2904 }
2905 #endif
2906 return ret;
2907 }
2908 EXPORT_SYMBOL(netif_rx);
2909
2910 int netif_rx_ni(struct sk_buff *skb)
2911 {
2912 int err;
2913
2914 preempt_disable();
2915 err = netif_rx(skb);
2916 if (local_softirq_pending())
2917 do_softirq();
2918 preempt_enable();
2919
2920 return err;
2921 }
2922 EXPORT_SYMBOL(netif_rx_ni);
2923
2924 static void net_tx_action(struct softirq_action *h)
2925 {
2926 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2927
2928 if (sd->completion_queue) {
2929 struct sk_buff *clist;
2930
2931 local_irq_disable();
2932 clist = sd->completion_queue;
2933 sd->completion_queue = NULL;
2934 local_irq_enable();
2935
2936 while (clist) {
2937 struct sk_buff *skb = clist;
2938 clist = clist->next;
2939
2940 WARN_ON(atomic_read(&skb->users));
2941 trace_kfree_skb(skb, net_tx_action);
2942 __kfree_skb(skb);
2943 }
2944 }
2945
2946 if (sd->output_queue) {
2947 struct Qdisc *head;
2948
2949 local_irq_disable();
2950 head = sd->output_queue;
2951 sd->output_queue = NULL;
2952 sd->output_queue_tailp = &sd->output_queue;
2953 local_irq_enable();
2954
2955 while (head) {
2956 struct Qdisc *q = head;
2957 spinlock_t *root_lock;
2958
2959 head = head->next_sched;
2960
2961 root_lock = qdisc_lock(q);
2962 if (spin_trylock(root_lock)) {
2963 smp_mb__before_clear_bit();
2964 clear_bit(__QDISC_STATE_SCHED,
2965 &q->state);
2966 qdisc_run(q);
2967 spin_unlock(root_lock);
2968 } else {
2969 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2970 &q->state)) {
2971 __netif_reschedule(q);
2972 } else {
2973 smp_mb__before_clear_bit();
2974 clear_bit(__QDISC_STATE_SCHED,
2975 &q->state);
2976 }
2977 }
2978 }
2979 }
2980 }
2981
2982 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2983 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2984 /* This hook is defined here for ATM LANE */
2985 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2986 unsigned char *addr) __read_mostly;
2987 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2988 #endif
2989
2990 #ifdef CONFIG_NET_CLS_ACT
2991 /* TODO: Maybe we should just force sch_ingress to be compiled in
2992 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2993 * a compare and 2 stores extra right now if we dont have it on
2994 * but have CONFIG_NET_CLS_ACT
2995 * NOTE: This doesnt stop any functionality; if you dont have
2996 * the ingress scheduler, you just cant add policies on ingress.
2997 *
2998 */
2999 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3000 {
3001 struct net_device *dev = skb->dev;
3002 u32 ttl = G_TC_RTTL(skb->tc_verd);
3003 int result = TC_ACT_OK;
3004 struct Qdisc *q;
3005
3006 if (unlikely(MAX_RED_LOOP < ttl++)) {
3007 if (net_ratelimit())
3008 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3009 skb->skb_iif, dev->ifindex);
3010 return TC_ACT_SHOT;
3011 }
3012
3013 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3014 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3015
3016 q = rxq->qdisc;
3017 if (q != &noop_qdisc) {
3018 spin_lock(qdisc_lock(q));
3019 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3020 result = qdisc_enqueue_root(skb, q);
3021 spin_unlock(qdisc_lock(q));
3022 }
3023
3024 return result;
3025 }
3026
3027 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3028 struct packet_type **pt_prev,
3029 int *ret, struct net_device *orig_dev)
3030 {
3031 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3032
3033 if (!rxq || rxq->qdisc == &noop_qdisc)
3034 goto out;
3035
3036 if (*pt_prev) {
3037 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3038 *pt_prev = NULL;
3039 }
3040
3041 switch (ing_filter(skb, rxq)) {
3042 case TC_ACT_SHOT:
3043 case TC_ACT_STOLEN:
3044 kfree_skb(skb);
3045 return NULL;
3046 }
3047
3048 out:
3049 skb->tc_verd = 0;
3050 return skb;
3051 }
3052 #endif
3053
3054 /**
3055 * netdev_rx_handler_register - register receive handler
3056 * @dev: device to register a handler for
3057 * @rx_handler: receive handler to register
3058 * @rx_handler_data: data pointer that is used by rx handler
3059 *
3060 * Register a receive hander for a device. This handler will then be
3061 * called from __netif_receive_skb. A negative errno code is returned
3062 * on a failure.
3063 *
3064 * The caller must hold the rtnl_mutex.
3065 */
3066 int netdev_rx_handler_register(struct net_device *dev,
3067 rx_handler_func_t *rx_handler,
3068 void *rx_handler_data)
3069 {
3070 ASSERT_RTNL();
3071
3072 if (dev->rx_handler)
3073 return -EBUSY;
3074
3075 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3076 rcu_assign_pointer(dev->rx_handler, rx_handler);
3077
3078 return 0;
3079 }
3080 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3081
3082 /**
3083 * netdev_rx_handler_unregister - unregister receive handler
3084 * @dev: device to unregister a handler from
3085 *
3086 * Unregister a receive hander from a device.
3087 *
3088 * The caller must hold the rtnl_mutex.
3089 */
3090 void netdev_rx_handler_unregister(struct net_device *dev)
3091 {
3092
3093 ASSERT_RTNL();
3094 rcu_assign_pointer(dev->rx_handler, NULL);
3095 rcu_assign_pointer(dev->rx_handler_data, NULL);
3096 }
3097 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3098
3099 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
3100 struct net_device *master)
3101 {
3102 if (skb->pkt_type == PACKET_HOST) {
3103 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
3104
3105 memcpy(dest, master->dev_addr, ETH_ALEN);
3106 }
3107 }
3108
3109 /* On bonding slaves other than the currently active slave, suppress
3110 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
3111 * ARP on active-backup slaves with arp_validate enabled.
3112 */
3113 static int __skb_bond_should_drop(struct sk_buff *skb,
3114 struct net_device *master)
3115 {
3116 struct net_device *dev = skb->dev;
3117
3118 if (master->priv_flags & IFF_MASTER_ARPMON)
3119 dev->last_rx = jiffies;
3120
3121 if ((master->priv_flags & IFF_MASTER_ALB) &&
3122 (master->priv_flags & IFF_BRIDGE_PORT)) {
3123 /* Do address unmangle. The local destination address
3124 * will be always the one master has. Provides the right
3125 * functionality in a bridge.
3126 */
3127 skb_bond_set_mac_by_master(skb, master);
3128 }
3129
3130 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
3131 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
3132 skb->protocol == __cpu_to_be16(ETH_P_ARP))
3133 return 0;
3134
3135 if (master->priv_flags & IFF_MASTER_ALB) {
3136 if (skb->pkt_type != PACKET_BROADCAST &&
3137 skb->pkt_type != PACKET_MULTICAST)
3138 return 0;
3139 }
3140 if (master->priv_flags & IFF_MASTER_8023AD &&
3141 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
3142 return 0;
3143
3144 return 1;
3145 }
3146 return 0;
3147 }
3148
3149 static int __netif_receive_skb(struct sk_buff *skb)
3150 {
3151 struct packet_type *ptype, *pt_prev;
3152 rx_handler_func_t *rx_handler;
3153 struct net_device *orig_dev;
3154 struct net_device *null_or_orig;
3155 struct net_device *orig_or_bond;
3156 int ret = NET_RX_DROP;
3157 __be16 type;
3158
3159 if (!netdev_tstamp_prequeue)
3160 net_timestamp_check(skb);
3161
3162 trace_netif_receive_skb(skb);
3163
3164 /* if we've gotten here through NAPI, check netpoll */
3165 if (netpoll_receive_skb(skb))
3166 return NET_RX_DROP;
3167
3168 if (!skb->skb_iif)
3169 skb->skb_iif = skb->dev->ifindex;
3170
3171 /*
3172 * bonding note: skbs received on inactive slaves should only
3173 * be delivered to pkt handlers that are exact matches. Also
3174 * the deliver_no_wcard flag will be set. If packet handlers
3175 * are sensitive to duplicate packets these skbs will need to
3176 * be dropped at the handler.
3177 */
3178 null_or_orig = NULL;
3179 orig_dev = skb->dev;
3180 if (skb->deliver_no_wcard)
3181 null_or_orig = orig_dev;
3182 else if (netif_is_bond_slave(orig_dev)) {
3183 struct net_device *bond_master = ACCESS_ONCE(orig_dev->master);
3184
3185 if (likely(bond_master)) {
3186 if (__skb_bond_should_drop(skb, bond_master)) {
3187 skb->deliver_no_wcard = 1;
3188 /* deliver only exact match */
3189 null_or_orig = orig_dev;
3190 } else
3191 skb->dev = bond_master;
3192 }
3193 }
3194
3195 __this_cpu_inc(softnet_data.processed);
3196 skb_reset_network_header(skb);
3197 skb_reset_transport_header(skb);
3198 skb->mac_len = skb->network_header - skb->mac_header;
3199
3200 pt_prev = NULL;
3201
3202 rcu_read_lock();
3203
3204 #ifdef CONFIG_NET_CLS_ACT
3205 if (skb->tc_verd & TC_NCLS) {
3206 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3207 goto ncls;
3208 }
3209 #endif
3210
3211 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3212 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3213 ptype->dev == orig_dev) {
3214 if (pt_prev)
3215 ret = deliver_skb(skb, pt_prev, orig_dev);
3216 pt_prev = ptype;
3217 }
3218 }
3219
3220 #ifdef CONFIG_NET_CLS_ACT
3221 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3222 if (!skb)
3223 goto out;
3224 ncls:
3225 #endif
3226
3227 /* Handle special case of bridge or macvlan */
3228 rx_handler = rcu_dereference(skb->dev->rx_handler);
3229 if (rx_handler) {
3230 if (pt_prev) {
3231 ret = deliver_skb(skb, pt_prev, orig_dev);
3232 pt_prev = NULL;
3233 }
3234 skb = rx_handler(skb);
3235 if (!skb)
3236 goto out;
3237 }
3238
3239 if (vlan_tx_tag_present(skb)) {
3240 if (pt_prev) {
3241 ret = deliver_skb(skb, pt_prev, orig_dev);
3242 pt_prev = NULL;
3243 }
3244 if (vlan_hwaccel_do_receive(&skb)) {
3245 ret = __netif_receive_skb(skb);
3246 goto out;
3247 } else if (unlikely(!skb))
3248 goto out;
3249 }
3250
3251 /*
3252 * Make sure frames received on VLAN interfaces stacked on
3253 * bonding interfaces still make their way to any base bonding
3254 * device that may have registered for a specific ptype. The
3255 * handler may have to adjust skb->dev and orig_dev.
3256 */
3257 orig_or_bond = orig_dev;
3258 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3259 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3260 orig_or_bond = vlan_dev_real_dev(skb->dev);
3261 }
3262
3263 type = skb->protocol;
3264 list_for_each_entry_rcu(ptype,
3265 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3266 if (ptype->type == type && (ptype->dev == null_or_orig ||
3267 ptype->dev == skb->dev || ptype->dev == orig_dev ||
3268 ptype->dev == orig_or_bond)) {
3269 if (pt_prev)
3270 ret = deliver_skb(skb, pt_prev, orig_dev);
3271 pt_prev = ptype;
3272 }
3273 }
3274
3275 if (pt_prev) {
3276 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3277 } else {
3278 atomic_long_inc(&skb->dev->rx_dropped);
3279 kfree_skb(skb);
3280 /* Jamal, now you will not able to escape explaining
3281 * me how you were going to use this. :-)
3282 */
3283 ret = NET_RX_DROP;
3284 }
3285
3286 out:
3287 rcu_read_unlock();
3288 return ret;
3289 }
3290
3291 /**
3292 * netif_receive_skb - process receive buffer from network
3293 * @skb: buffer to process
3294 *
3295 * netif_receive_skb() is the main receive data processing function.
3296 * It always succeeds. The buffer may be dropped during processing
3297 * for congestion control or by the protocol layers.
3298 *
3299 * This function may only be called from softirq context and interrupts
3300 * should be enabled.
3301 *
3302 * Return values (usually ignored):
3303 * NET_RX_SUCCESS: no congestion
3304 * NET_RX_DROP: packet was dropped
3305 */
3306 int netif_receive_skb(struct sk_buff *skb)
3307 {
3308 if (netdev_tstamp_prequeue)
3309 net_timestamp_check(skb);
3310
3311 if (skb_defer_rx_timestamp(skb))
3312 return NET_RX_SUCCESS;
3313
3314 #ifdef CONFIG_RPS
3315 {
3316 struct rps_dev_flow voidflow, *rflow = &voidflow;
3317 int cpu, ret;
3318
3319 rcu_read_lock();
3320
3321 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3322
3323 if (cpu >= 0) {
3324 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3325 rcu_read_unlock();
3326 } else {
3327 rcu_read_unlock();
3328 ret = __netif_receive_skb(skb);
3329 }
3330
3331 return ret;
3332 }
3333 #else
3334 return __netif_receive_skb(skb);
3335 #endif
3336 }
3337 EXPORT_SYMBOL(netif_receive_skb);
3338
3339 /* Network device is going away, flush any packets still pending
3340 * Called with irqs disabled.
3341 */
3342 static void flush_backlog(void *arg)
3343 {
3344 struct net_device *dev = arg;
3345 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3346 struct sk_buff *skb, *tmp;
3347
3348 rps_lock(sd);
3349 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3350 if (skb->dev == dev) {
3351 __skb_unlink(skb, &sd->input_pkt_queue);
3352 kfree_skb(skb);
3353 input_queue_head_incr(sd);
3354 }
3355 }
3356 rps_unlock(sd);
3357
3358 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3359 if (skb->dev == dev) {
3360 __skb_unlink(skb, &sd->process_queue);
3361 kfree_skb(skb);
3362 input_queue_head_incr(sd);
3363 }
3364 }
3365 }
3366
3367 static int napi_gro_complete(struct sk_buff *skb)
3368 {
3369 struct packet_type *ptype;
3370 __be16 type = skb->protocol;
3371 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3372 int err = -ENOENT;
3373
3374 if (NAPI_GRO_CB(skb)->count == 1) {
3375 skb_shinfo(skb)->gso_size = 0;
3376 goto out;
3377 }
3378
3379 rcu_read_lock();
3380 list_for_each_entry_rcu(ptype, head, list) {
3381 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3382 continue;
3383
3384 err = ptype->gro_complete(skb);
3385 break;
3386 }
3387 rcu_read_unlock();
3388
3389 if (err) {
3390 WARN_ON(&ptype->list == head);
3391 kfree_skb(skb);
3392 return NET_RX_SUCCESS;
3393 }
3394
3395 out:
3396 return netif_receive_skb(skb);
3397 }
3398
3399 inline void napi_gro_flush(struct napi_struct *napi)
3400 {
3401 struct sk_buff *skb, *next;
3402
3403 for (skb = napi->gro_list; skb; skb = next) {
3404 next = skb->next;
3405 skb->next = NULL;
3406 napi_gro_complete(skb);
3407 }
3408
3409 napi->gro_count = 0;
3410 napi->gro_list = NULL;
3411 }
3412 EXPORT_SYMBOL(napi_gro_flush);
3413
3414 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3415 {
3416 struct sk_buff **pp = NULL;
3417 struct packet_type *ptype;
3418 __be16 type = skb->protocol;
3419 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3420 int same_flow;
3421 int mac_len;
3422 enum gro_result ret;
3423
3424 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3425 goto normal;
3426
3427 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3428 goto normal;
3429
3430 rcu_read_lock();
3431 list_for_each_entry_rcu(ptype, head, list) {
3432 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3433 continue;
3434
3435 skb_set_network_header(skb, skb_gro_offset(skb));
3436 mac_len = skb->network_header - skb->mac_header;
3437 skb->mac_len = mac_len;
3438 NAPI_GRO_CB(skb)->same_flow = 0;
3439 NAPI_GRO_CB(skb)->flush = 0;
3440 NAPI_GRO_CB(skb)->free = 0;
3441
3442 pp = ptype->gro_receive(&napi->gro_list, skb);
3443 break;
3444 }
3445 rcu_read_unlock();
3446
3447 if (&ptype->list == head)
3448 goto normal;
3449
3450 same_flow = NAPI_GRO_CB(skb)->same_flow;
3451 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3452
3453 if (pp) {
3454 struct sk_buff *nskb = *pp;
3455
3456 *pp = nskb->next;
3457 nskb->next = NULL;
3458 napi_gro_complete(nskb);
3459 napi->gro_count--;
3460 }
3461
3462 if (same_flow)
3463 goto ok;
3464
3465 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3466 goto normal;
3467
3468 napi->gro_count++;
3469 NAPI_GRO_CB(skb)->count = 1;
3470 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3471 skb->next = napi->gro_list;
3472 napi->gro_list = skb;
3473 ret = GRO_HELD;
3474
3475 pull:
3476 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3477 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3478
3479 BUG_ON(skb->end - skb->tail < grow);
3480
3481 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3482
3483 skb->tail += grow;
3484 skb->data_len -= grow;
3485
3486 skb_shinfo(skb)->frags[0].page_offset += grow;
3487 skb_shinfo(skb)->frags[0].size -= grow;
3488
3489 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3490 put_page(skb_shinfo(skb)->frags[0].page);
3491 memmove(skb_shinfo(skb)->frags,
3492 skb_shinfo(skb)->frags + 1,
3493 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3494 }
3495 }
3496
3497 ok:
3498 return ret;
3499
3500 normal:
3501 ret = GRO_NORMAL;
3502 goto pull;
3503 }
3504 EXPORT_SYMBOL(dev_gro_receive);
3505
3506 static inline gro_result_t
3507 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3508 {
3509 struct sk_buff *p;
3510
3511 for (p = napi->gro_list; p; p = p->next) {
3512 unsigned long diffs;
3513
3514 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3515 diffs |= p->vlan_tci ^ skb->vlan_tci;
3516 diffs |= compare_ether_header(skb_mac_header(p),
3517 skb_gro_mac_header(skb));
3518 NAPI_GRO_CB(p)->same_flow = !diffs;
3519 NAPI_GRO_CB(p)->flush = 0;
3520 }
3521
3522 return dev_gro_receive(napi, skb);
3523 }
3524
3525 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3526 {
3527 switch (ret) {
3528 case GRO_NORMAL:
3529 if (netif_receive_skb(skb))
3530 ret = GRO_DROP;
3531 break;
3532
3533 case GRO_DROP:
3534 case GRO_MERGED_FREE:
3535 kfree_skb(skb);
3536 break;
3537
3538 case GRO_HELD:
3539 case GRO_MERGED:
3540 break;
3541 }
3542
3543 return ret;
3544 }
3545 EXPORT_SYMBOL(napi_skb_finish);
3546
3547 void skb_gro_reset_offset(struct sk_buff *skb)
3548 {
3549 NAPI_GRO_CB(skb)->data_offset = 0;
3550 NAPI_GRO_CB(skb)->frag0 = NULL;
3551 NAPI_GRO_CB(skb)->frag0_len = 0;
3552
3553 if (skb->mac_header == skb->tail &&
3554 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3555 NAPI_GRO_CB(skb)->frag0 =
3556 page_address(skb_shinfo(skb)->frags[0].page) +
3557 skb_shinfo(skb)->frags[0].page_offset;
3558 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3559 }
3560 }
3561 EXPORT_SYMBOL(skb_gro_reset_offset);
3562
3563 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3564 {
3565 skb_gro_reset_offset(skb);
3566
3567 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3568 }
3569 EXPORT_SYMBOL(napi_gro_receive);
3570
3571 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3572 {
3573 __skb_pull(skb, skb_headlen(skb));
3574 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3575 skb->vlan_tci = 0;
3576 skb->dev = napi->dev;
3577 skb->skb_iif = 0;
3578
3579 napi->skb = skb;
3580 }
3581
3582 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3583 {
3584 struct sk_buff *skb = napi->skb;
3585
3586 if (!skb) {
3587 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3588 if (skb)
3589 napi->skb = skb;
3590 }
3591 return skb;
3592 }
3593 EXPORT_SYMBOL(napi_get_frags);
3594
3595 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3596 gro_result_t ret)
3597 {
3598 switch (ret) {
3599 case GRO_NORMAL:
3600 case GRO_HELD:
3601 skb->protocol = eth_type_trans(skb, skb->dev);
3602
3603 if (ret == GRO_HELD)
3604 skb_gro_pull(skb, -ETH_HLEN);
3605 else if (netif_receive_skb(skb))
3606 ret = GRO_DROP;
3607 break;
3608
3609 case GRO_DROP:
3610 case GRO_MERGED_FREE:
3611 napi_reuse_skb(napi, skb);
3612 break;
3613
3614 case GRO_MERGED:
3615 break;
3616 }
3617
3618 return ret;
3619 }
3620 EXPORT_SYMBOL(napi_frags_finish);
3621
3622 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3623 {
3624 struct sk_buff *skb = napi->skb;
3625 struct ethhdr *eth;
3626 unsigned int hlen;
3627 unsigned int off;
3628
3629 napi->skb = NULL;
3630
3631 skb_reset_mac_header(skb);
3632 skb_gro_reset_offset(skb);
3633
3634 off = skb_gro_offset(skb);
3635 hlen = off + sizeof(*eth);
3636 eth = skb_gro_header_fast(skb, off);
3637 if (skb_gro_header_hard(skb, hlen)) {
3638 eth = skb_gro_header_slow(skb, hlen, off);
3639 if (unlikely(!eth)) {
3640 napi_reuse_skb(napi, skb);
3641 skb = NULL;
3642 goto out;
3643 }
3644 }
3645
3646 skb_gro_pull(skb, sizeof(*eth));
3647
3648 /*
3649 * This works because the only protocols we care about don't require
3650 * special handling. We'll fix it up properly at the end.
3651 */
3652 skb->protocol = eth->h_proto;
3653
3654 out:
3655 return skb;
3656 }
3657 EXPORT_SYMBOL(napi_frags_skb);
3658
3659 gro_result_t napi_gro_frags(struct napi_struct *napi)
3660 {
3661 struct sk_buff *skb = napi_frags_skb(napi);
3662
3663 if (!skb)
3664 return GRO_DROP;
3665
3666 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3667 }
3668 EXPORT_SYMBOL(napi_gro_frags);
3669
3670 /*
3671 * net_rps_action sends any pending IPI's for rps.
3672 * Note: called with local irq disabled, but exits with local irq enabled.
3673 */
3674 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3675 {
3676 #ifdef CONFIG_RPS
3677 struct softnet_data *remsd = sd->rps_ipi_list;
3678
3679 if (remsd) {
3680 sd->rps_ipi_list = NULL;
3681
3682 local_irq_enable();
3683
3684 /* Send pending IPI's to kick RPS processing on remote cpus. */
3685 while (remsd) {
3686 struct softnet_data *next = remsd->rps_ipi_next;
3687
3688 if (cpu_online(remsd->cpu))
3689 __smp_call_function_single(remsd->cpu,
3690 &remsd->csd, 0);
3691 remsd = next;
3692 }
3693 } else
3694 #endif
3695 local_irq_enable();
3696 }
3697
3698 static int process_backlog(struct napi_struct *napi, int quota)
3699 {
3700 int work = 0;
3701 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3702
3703 #ifdef CONFIG_RPS
3704 /* Check if we have pending ipi, its better to send them now,
3705 * not waiting net_rx_action() end.
3706 */
3707 if (sd->rps_ipi_list) {
3708 local_irq_disable();
3709 net_rps_action_and_irq_enable(sd);
3710 }
3711 #endif
3712 napi->weight = weight_p;
3713 local_irq_disable();
3714 while (work < quota) {
3715 struct sk_buff *skb;
3716 unsigned int qlen;
3717
3718 while ((skb = __skb_dequeue(&sd->process_queue))) {
3719 local_irq_enable();
3720 __netif_receive_skb(skb);
3721 local_irq_disable();
3722 input_queue_head_incr(sd);
3723 if (++work >= quota) {
3724 local_irq_enable();
3725 return work;
3726 }
3727 }
3728
3729 rps_lock(sd);
3730 qlen = skb_queue_len(&sd->input_pkt_queue);
3731 if (qlen)
3732 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3733 &sd->process_queue);
3734
3735 if (qlen < quota - work) {
3736 /*
3737 * Inline a custom version of __napi_complete().
3738 * only current cpu owns and manipulates this napi,
3739 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3740 * we can use a plain write instead of clear_bit(),
3741 * and we dont need an smp_mb() memory barrier.
3742 */
3743 list_del(&napi->poll_list);
3744 napi->state = 0;
3745
3746 quota = work + qlen;
3747 }
3748 rps_unlock(sd);
3749 }
3750 local_irq_enable();
3751
3752 return work;
3753 }
3754
3755 /**
3756 * __napi_schedule - schedule for receive
3757 * @n: entry to schedule
3758 *
3759 * The entry's receive function will be scheduled to run
3760 */
3761 void __napi_schedule(struct napi_struct *n)
3762 {
3763 unsigned long flags;
3764
3765 local_irq_save(flags);
3766 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3767 local_irq_restore(flags);
3768 }
3769 EXPORT_SYMBOL(__napi_schedule);
3770
3771 void __napi_complete(struct napi_struct *n)
3772 {
3773 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3774 BUG_ON(n->gro_list);
3775
3776 list_del(&n->poll_list);
3777 smp_mb__before_clear_bit();
3778 clear_bit(NAPI_STATE_SCHED, &n->state);
3779 }
3780 EXPORT_SYMBOL(__napi_complete);
3781
3782 void napi_complete(struct napi_struct *n)
3783 {
3784 unsigned long flags;
3785
3786 /*
3787 * don't let napi dequeue from the cpu poll list
3788 * just in case its running on a different cpu
3789 */
3790 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3791 return;
3792
3793 napi_gro_flush(n);
3794 local_irq_save(flags);
3795 __napi_complete(n);
3796 local_irq_restore(flags);
3797 }
3798 EXPORT_SYMBOL(napi_complete);
3799
3800 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3801 int (*poll)(struct napi_struct *, int), int weight)
3802 {
3803 INIT_LIST_HEAD(&napi->poll_list);
3804 napi->gro_count = 0;
3805 napi->gro_list = NULL;
3806 napi->skb = NULL;
3807 napi->poll = poll;
3808 napi->weight = weight;
3809 list_add(&napi->dev_list, &dev->napi_list);
3810 napi->dev = dev;
3811 #ifdef CONFIG_NETPOLL
3812 spin_lock_init(&napi->poll_lock);
3813 napi->poll_owner = -1;
3814 #endif
3815 set_bit(NAPI_STATE_SCHED, &napi->state);
3816 }
3817 EXPORT_SYMBOL(netif_napi_add);
3818
3819 void netif_napi_del(struct napi_struct *napi)
3820 {
3821 struct sk_buff *skb, *next;
3822
3823 list_del_init(&napi->dev_list);
3824 napi_free_frags(napi);
3825
3826 for (skb = napi->gro_list; skb; skb = next) {
3827 next = skb->next;
3828 skb->next = NULL;
3829 kfree_skb(skb);
3830 }
3831
3832 napi->gro_list = NULL;
3833 napi->gro_count = 0;
3834 }
3835 EXPORT_SYMBOL(netif_napi_del);
3836
3837 static void net_rx_action(struct softirq_action *h)
3838 {
3839 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3840 unsigned long time_limit = jiffies + 2;
3841 int budget = netdev_budget;
3842 void *have;
3843
3844 local_irq_disable();
3845
3846 while (!list_empty(&sd->poll_list)) {
3847 struct napi_struct *n;
3848 int work, weight;
3849
3850 /* If softirq window is exhuasted then punt.
3851 * Allow this to run for 2 jiffies since which will allow
3852 * an average latency of 1.5/HZ.
3853 */
3854 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3855 goto softnet_break;
3856
3857 local_irq_enable();
3858
3859 /* Even though interrupts have been re-enabled, this
3860 * access is safe because interrupts can only add new
3861 * entries to the tail of this list, and only ->poll()
3862 * calls can remove this head entry from the list.
3863 */
3864 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3865
3866 have = netpoll_poll_lock(n);
3867
3868 weight = n->weight;
3869
3870 /* This NAPI_STATE_SCHED test is for avoiding a race
3871 * with netpoll's poll_napi(). Only the entity which
3872 * obtains the lock and sees NAPI_STATE_SCHED set will
3873 * actually make the ->poll() call. Therefore we avoid
3874 * accidently calling ->poll() when NAPI is not scheduled.
3875 */
3876 work = 0;
3877 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3878 work = n->poll(n, weight);
3879 trace_napi_poll(n);
3880 }
3881
3882 WARN_ON_ONCE(work > weight);
3883
3884 budget -= work;
3885
3886 local_irq_disable();
3887
3888 /* Drivers must not modify the NAPI state if they
3889 * consume the entire weight. In such cases this code
3890 * still "owns" the NAPI instance and therefore can
3891 * move the instance around on the list at-will.
3892 */
3893 if (unlikely(work == weight)) {
3894 if (unlikely(napi_disable_pending(n))) {
3895 local_irq_enable();
3896 napi_complete(n);
3897 local_irq_disable();
3898 } else
3899 list_move_tail(&n->poll_list, &sd->poll_list);
3900 }
3901
3902 netpoll_poll_unlock(have);
3903 }
3904 out:
3905 net_rps_action_and_irq_enable(sd);
3906
3907 #ifdef CONFIG_NET_DMA
3908 /*
3909 * There may not be any more sk_buffs coming right now, so push
3910 * any pending DMA copies to hardware
3911 */
3912 dma_issue_pending_all();
3913 #endif
3914
3915 return;
3916
3917 softnet_break:
3918 sd->time_squeeze++;
3919 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3920 goto out;
3921 }
3922
3923 static gifconf_func_t *gifconf_list[NPROTO];
3924
3925 /**
3926 * register_gifconf - register a SIOCGIF handler
3927 * @family: Address family
3928 * @gifconf: Function handler
3929 *
3930 * Register protocol dependent address dumping routines. The handler
3931 * that is passed must not be freed or reused until it has been replaced
3932 * by another handler.
3933 */
3934 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3935 {
3936 if (family >= NPROTO)
3937 return -EINVAL;
3938 gifconf_list[family] = gifconf;
3939 return 0;
3940 }
3941 EXPORT_SYMBOL(register_gifconf);
3942
3943
3944 /*
3945 * Map an interface index to its name (SIOCGIFNAME)
3946 */
3947
3948 /*
3949 * We need this ioctl for efficient implementation of the
3950 * if_indextoname() function required by the IPv6 API. Without
3951 * it, we would have to search all the interfaces to find a
3952 * match. --pb
3953 */
3954
3955 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3956 {
3957 struct net_device *dev;
3958 struct ifreq ifr;
3959
3960 /*
3961 * Fetch the caller's info block.
3962 */
3963
3964 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3965 return -EFAULT;
3966
3967 rcu_read_lock();
3968 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3969 if (!dev) {
3970 rcu_read_unlock();
3971 return -ENODEV;
3972 }
3973
3974 strcpy(ifr.ifr_name, dev->name);
3975 rcu_read_unlock();
3976
3977 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3978 return -EFAULT;
3979 return 0;
3980 }
3981
3982 /*
3983 * Perform a SIOCGIFCONF call. This structure will change
3984 * size eventually, and there is nothing I can do about it.
3985 * Thus we will need a 'compatibility mode'.
3986 */
3987
3988 static int dev_ifconf(struct net *net, char __user *arg)
3989 {
3990 struct ifconf ifc;
3991 struct net_device *dev;
3992 char __user *pos;
3993 int len;
3994 int total;
3995 int i;
3996
3997 /*
3998 * Fetch the caller's info block.
3999 */
4000
4001 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4002 return -EFAULT;
4003
4004 pos = ifc.ifc_buf;
4005 len = ifc.ifc_len;
4006
4007 /*
4008 * Loop over the interfaces, and write an info block for each.
4009 */
4010
4011 total = 0;
4012 for_each_netdev(net, dev) {
4013 for (i = 0; i < NPROTO; i++) {
4014 if (gifconf_list[i]) {
4015 int done;
4016 if (!pos)
4017 done = gifconf_list[i](dev, NULL, 0);
4018 else
4019 done = gifconf_list[i](dev, pos + total,
4020 len - total);
4021 if (done < 0)
4022 return -EFAULT;
4023 total += done;
4024 }
4025 }
4026 }
4027
4028 /*
4029 * All done. Write the updated control block back to the caller.
4030 */
4031 ifc.ifc_len = total;
4032
4033 /*
4034 * Both BSD and Solaris return 0 here, so we do too.
4035 */
4036 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4037 }
4038
4039 #ifdef CONFIG_PROC_FS
4040 /*
4041 * This is invoked by the /proc filesystem handler to display a device
4042 * in detail.
4043 */
4044 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4045 __acquires(RCU)
4046 {
4047 struct net *net = seq_file_net(seq);
4048 loff_t off;
4049 struct net_device *dev;
4050
4051 rcu_read_lock();
4052 if (!*pos)
4053 return SEQ_START_TOKEN;
4054
4055 off = 1;
4056 for_each_netdev_rcu(net, dev)
4057 if (off++ == *pos)
4058 return dev;
4059
4060 return NULL;
4061 }
4062
4063 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4064 {
4065 struct net_device *dev = v;
4066
4067 if (v == SEQ_START_TOKEN)
4068 dev = first_net_device_rcu(seq_file_net(seq));
4069 else
4070 dev = next_net_device_rcu(dev);
4071
4072 ++*pos;
4073 return dev;
4074 }
4075
4076 void dev_seq_stop(struct seq_file *seq, void *v)
4077 __releases(RCU)
4078 {
4079 rcu_read_unlock();
4080 }
4081
4082 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4083 {
4084 struct rtnl_link_stats64 temp;
4085 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4086
4087 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4088 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4089 dev->name, stats->rx_bytes, stats->rx_packets,
4090 stats->rx_errors,
4091 stats->rx_dropped + stats->rx_missed_errors,
4092 stats->rx_fifo_errors,
4093 stats->rx_length_errors + stats->rx_over_errors +
4094 stats->rx_crc_errors + stats->rx_frame_errors,
4095 stats->rx_compressed, stats->multicast,
4096 stats->tx_bytes, stats->tx_packets,
4097 stats->tx_errors, stats->tx_dropped,
4098 stats->tx_fifo_errors, stats->collisions,
4099 stats->tx_carrier_errors +
4100 stats->tx_aborted_errors +
4101 stats->tx_window_errors +
4102 stats->tx_heartbeat_errors,
4103 stats->tx_compressed);
4104 }
4105
4106 /*
4107 * Called from the PROCfs module. This now uses the new arbitrary sized
4108 * /proc/net interface to create /proc/net/dev
4109 */
4110 static int dev_seq_show(struct seq_file *seq, void *v)
4111 {
4112 if (v == SEQ_START_TOKEN)
4113 seq_puts(seq, "Inter-| Receive "
4114 " | Transmit\n"
4115 " face |bytes packets errs drop fifo frame "
4116 "compressed multicast|bytes packets errs "
4117 "drop fifo colls carrier compressed\n");
4118 else
4119 dev_seq_printf_stats(seq, v);
4120 return 0;
4121 }
4122
4123 static struct softnet_data *softnet_get_online(loff_t *pos)
4124 {
4125 struct softnet_data *sd = NULL;
4126
4127 while (*pos < nr_cpu_ids)
4128 if (cpu_online(*pos)) {
4129 sd = &per_cpu(softnet_data, *pos);
4130 break;
4131 } else
4132 ++*pos;
4133 return sd;
4134 }
4135
4136 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4137 {
4138 return softnet_get_online(pos);
4139 }
4140
4141 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4142 {
4143 ++*pos;
4144 return softnet_get_online(pos);
4145 }
4146
4147 static void softnet_seq_stop(struct seq_file *seq, void *v)
4148 {
4149 }
4150
4151 static int softnet_seq_show(struct seq_file *seq, void *v)
4152 {
4153 struct softnet_data *sd = v;
4154
4155 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4156 sd->processed, sd->dropped, sd->time_squeeze, 0,
4157 0, 0, 0, 0, /* was fastroute */
4158 sd->cpu_collision, sd->received_rps);
4159 return 0;
4160 }
4161
4162 static const struct seq_operations dev_seq_ops = {
4163 .start = dev_seq_start,
4164 .next = dev_seq_next,
4165 .stop = dev_seq_stop,
4166 .show = dev_seq_show,
4167 };
4168
4169 static int dev_seq_open(struct inode *inode, struct file *file)
4170 {
4171 return seq_open_net(inode, file, &dev_seq_ops,
4172 sizeof(struct seq_net_private));
4173 }
4174
4175 static const struct file_operations dev_seq_fops = {
4176 .owner = THIS_MODULE,
4177 .open = dev_seq_open,
4178 .read = seq_read,
4179 .llseek = seq_lseek,
4180 .release = seq_release_net,
4181 };
4182
4183 static const struct seq_operations softnet_seq_ops = {
4184 .start = softnet_seq_start,
4185 .next = softnet_seq_next,
4186 .stop = softnet_seq_stop,
4187 .show = softnet_seq_show,
4188 };
4189
4190 static int softnet_seq_open(struct inode *inode, struct file *file)
4191 {
4192 return seq_open(file, &softnet_seq_ops);
4193 }
4194
4195 static const struct file_operations softnet_seq_fops = {
4196 .owner = THIS_MODULE,
4197 .open = softnet_seq_open,
4198 .read = seq_read,
4199 .llseek = seq_lseek,
4200 .release = seq_release,
4201 };
4202
4203 static void *ptype_get_idx(loff_t pos)
4204 {
4205 struct packet_type *pt = NULL;
4206 loff_t i = 0;
4207 int t;
4208
4209 list_for_each_entry_rcu(pt, &ptype_all, list) {
4210 if (i == pos)
4211 return pt;
4212 ++i;
4213 }
4214
4215 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4216 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4217 if (i == pos)
4218 return pt;
4219 ++i;
4220 }
4221 }
4222 return NULL;
4223 }
4224
4225 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4226 __acquires(RCU)
4227 {
4228 rcu_read_lock();
4229 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4230 }
4231
4232 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4233 {
4234 struct packet_type *pt;
4235 struct list_head *nxt;
4236 int hash;
4237
4238 ++*pos;
4239 if (v == SEQ_START_TOKEN)
4240 return ptype_get_idx(0);
4241
4242 pt = v;
4243 nxt = pt->list.next;
4244 if (pt->type == htons(ETH_P_ALL)) {
4245 if (nxt != &ptype_all)
4246 goto found;
4247 hash = 0;
4248 nxt = ptype_base[0].next;
4249 } else
4250 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4251
4252 while (nxt == &ptype_base[hash]) {
4253 if (++hash >= PTYPE_HASH_SIZE)
4254 return NULL;
4255 nxt = ptype_base[hash].next;
4256 }
4257 found:
4258 return list_entry(nxt, struct packet_type, list);
4259 }
4260
4261 static void ptype_seq_stop(struct seq_file *seq, void *v)
4262 __releases(RCU)
4263 {
4264 rcu_read_unlock();
4265 }
4266
4267 static int ptype_seq_show(struct seq_file *seq, void *v)
4268 {
4269 struct packet_type *pt = v;
4270
4271 if (v == SEQ_START_TOKEN)
4272 seq_puts(seq, "Type Device Function\n");
4273 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4274 if (pt->type == htons(ETH_P_ALL))
4275 seq_puts(seq, "ALL ");
4276 else
4277 seq_printf(seq, "%04x", ntohs(pt->type));
4278
4279 seq_printf(seq, " %-8s %pF\n",
4280 pt->dev ? pt->dev->name : "", pt->func);
4281 }
4282
4283 return 0;
4284 }
4285
4286 static const struct seq_operations ptype_seq_ops = {
4287 .start = ptype_seq_start,
4288 .next = ptype_seq_next,
4289 .stop = ptype_seq_stop,
4290 .show = ptype_seq_show,
4291 };
4292
4293 static int ptype_seq_open(struct inode *inode, struct file *file)
4294 {
4295 return seq_open_net(inode, file, &ptype_seq_ops,
4296 sizeof(struct seq_net_private));
4297 }
4298
4299 static const struct file_operations ptype_seq_fops = {
4300 .owner = THIS_MODULE,
4301 .open = ptype_seq_open,
4302 .read = seq_read,
4303 .llseek = seq_lseek,
4304 .release = seq_release_net,
4305 };
4306
4307
4308 static int __net_init dev_proc_net_init(struct net *net)
4309 {
4310 int rc = -ENOMEM;
4311
4312 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4313 goto out;
4314 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4315 goto out_dev;
4316 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4317 goto out_softnet;
4318
4319 if (wext_proc_init(net))
4320 goto out_ptype;
4321 rc = 0;
4322 out:
4323 return rc;
4324 out_ptype:
4325 proc_net_remove(net, "ptype");
4326 out_softnet:
4327 proc_net_remove(net, "softnet_stat");
4328 out_dev:
4329 proc_net_remove(net, "dev");
4330 goto out;
4331 }
4332
4333 static void __net_exit dev_proc_net_exit(struct net *net)
4334 {
4335 wext_proc_exit(net);
4336
4337 proc_net_remove(net, "ptype");
4338 proc_net_remove(net, "softnet_stat");
4339 proc_net_remove(net, "dev");
4340 }
4341
4342 static struct pernet_operations __net_initdata dev_proc_ops = {
4343 .init = dev_proc_net_init,
4344 .exit = dev_proc_net_exit,
4345 };
4346
4347 static int __init dev_proc_init(void)
4348 {
4349 return register_pernet_subsys(&dev_proc_ops);
4350 }
4351 #else
4352 #define dev_proc_init() 0
4353 #endif /* CONFIG_PROC_FS */
4354
4355
4356 /**
4357 * netdev_set_master - set up master pointer
4358 * @slave: slave device
4359 * @master: new master device
4360 *
4361 * Changes the master device of the slave. Pass %NULL to break the
4362 * bonding. The caller must hold the RTNL semaphore. On a failure
4363 * a negative errno code is returned. On success the reference counts
4364 * are adjusted and the function returns zero.
4365 */
4366 int netdev_set_master(struct net_device *slave, struct net_device *master)
4367 {
4368 struct net_device *old = slave->master;
4369
4370 ASSERT_RTNL();
4371
4372 if (master) {
4373 if (old)
4374 return -EBUSY;
4375 dev_hold(master);
4376 }
4377
4378 slave->master = master;
4379
4380 if (old) {
4381 synchronize_net();
4382 dev_put(old);
4383 }
4384 return 0;
4385 }
4386 EXPORT_SYMBOL(netdev_set_master);
4387
4388 /**
4389 * netdev_set_bond_master - set up bonding master/slave pair
4390 * @slave: slave device
4391 * @master: new master device
4392 *
4393 * Changes the master device of the slave. Pass %NULL to break the
4394 * bonding. The caller must hold the RTNL semaphore. On a failure
4395 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4396 * to the routing socket and the function returns zero.
4397 */
4398 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4399 {
4400 int err;
4401
4402 ASSERT_RTNL();
4403
4404 err = netdev_set_master(slave, master);
4405 if (err)
4406 return err;
4407 if (master)
4408 slave->flags |= IFF_SLAVE;
4409 else
4410 slave->flags &= ~IFF_SLAVE;
4411
4412 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4413 return 0;
4414 }
4415 EXPORT_SYMBOL(netdev_set_bond_master);
4416
4417 static void dev_change_rx_flags(struct net_device *dev, int flags)
4418 {
4419 const struct net_device_ops *ops = dev->netdev_ops;
4420
4421 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4422 ops->ndo_change_rx_flags(dev, flags);
4423 }
4424
4425 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4426 {
4427 unsigned short old_flags = dev->flags;
4428 uid_t uid;
4429 gid_t gid;
4430
4431 ASSERT_RTNL();
4432
4433 dev->flags |= IFF_PROMISC;
4434 dev->promiscuity += inc;
4435 if (dev->promiscuity == 0) {
4436 /*
4437 * Avoid overflow.
4438 * If inc causes overflow, untouch promisc and return error.
4439 */
4440 if (inc < 0)
4441 dev->flags &= ~IFF_PROMISC;
4442 else {
4443 dev->promiscuity -= inc;
4444 printk(KERN_WARNING "%s: promiscuity touches roof, "
4445 "set promiscuity failed, promiscuity feature "
4446 "of device might be broken.\n", dev->name);
4447 return -EOVERFLOW;
4448 }
4449 }
4450 if (dev->flags != old_flags) {
4451 printk(KERN_INFO "device %s %s promiscuous mode\n",
4452 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4453 "left");
4454 if (audit_enabled) {
4455 current_uid_gid(&uid, &gid);
4456 audit_log(current->audit_context, GFP_ATOMIC,
4457 AUDIT_ANOM_PROMISCUOUS,
4458 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4459 dev->name, (dev->flags & IFF_PROMISC),
4460 (old_flags & IFF_PROMISC),
4461 audit_get_loginuid(current),
4462 uid, gid,
4463 audit_get_sessionid(current));
4464 }
4465
4466 dev_change_rx_flags(dev, IFF_PROMISC);
4467 }
4468 return 0;
4469 }
4470
4471 /**
4472 * dev_set_promiscuity - update promiscuity count on a device
4473 * @dev: device
4474 * @inc: modifier
4475 *
4476 * Add or remove promiscuity from a device. While the count in the device
4477 * remains above zero the interface remains promiscuous. Once it hits zero
4478 * the device reverts back to normal filtering operation. A negative inc
4479 * value is used to drop promiscuity on the device.
4480 * Return 0 if successful or a negative errno code on error.
4481 */
4482 int dev_set_promiscuity(struct net_device *dev, int inc)
4483 {
4484 unsigned short old_flags = dev->flags;
4485 int err;
4486
4487 err = __dev_set_promiscuity(dev, inc);
4488 if (err < 0)
4489 return err;
4490 if (dev->flags != old_flags)
4491 dev_set_rx_mode(dev);
4492 return err;
4493 }
4494 EXPORT_SYMBOL(dev_set_promiscuity);
4495
4496 /**
4497 * dev_set_allmulti - update allmulti count on a device
4498 * @dev: device
4499 * @inc: modifier
4500 *
4501 * Add or remove reception of all multicast frames to a device. While the
4502 * count in the device remains above zero the interface remains listening
4503 * to all interfaces. Once it hits zero the device reverts back to normal
4504 * filtering operation. A negative @inc value is used to drop the counter
4505 * when releasing a resource needing all multicasts.
4506 * Return 0 if successful or a negative errno code on error.
4507 */
4508
4509 int dev_set_allmulti(struct net_device *dev, int inc)
4510 {
4511 unsigned short old_flags = dev->flags;
4512
4513 ASSERT_RTNL();
4514
4515 dev->flags |= IFF_ALLMULTI;
4516 dev->allmulti += inc;
4517 if (dev->allmulti == 0) {
4518 /*
4519 * Avoid overflow.
4520 * If inc causes overflow, untouch allmulti and return error.
4521 */
4522 if (inc < 0)
4523 dev->flags &= ~IFF_ALLMULTI;
4524 else {
4525 dev->allmulti -= inc;
4526 printk(KERN_WARNING "%s: allmulti touches roof, "
4527 "set allmulti failed, allmulti feature of "
4528 "device might be broken.\n", dev->name);
4529 return -EOVERFLOW;
4530 }
4531 }
4532 if (dev->flags ^ old_flags) {
4533 dev_change_rx_flags(dev, IFF_ALLMULTI);
4534 dev_set_rx_mode(dev);
4535 }
4536 return 0;
4537 }
4538 EXPORT_SYMBOL(dev_set_allmulti);
4539
4540 /*
4541 * Upload unicast and multicast address lists to device and
4542 * configure RX filtering. When the device doesn't support unicast
4543 * filtering it is put in promiscuous mode while unicast addresses
4544 * are present.
4545 */
4546 void __dev_set_rx_mode(struct net_device *dev)
4547 {
4548 const struct net_device_ops *ops = dev->netdev_ops;
4549
4550 /* dev_open will call this function so the list will stay sane. */
4551 if (!(dev->flags&IFF_UP))
4552 return;
4553
4554 if (!netif_device_present(dev))
4555 return;
4556
4557 if (ops->ndo_set_rx_mode)
4558 ops->ndo_set_rx_mode(dev);
4559 else {
4560 /* Unicast addresses changes may only happen under the rtnl,
4561 * therefore calling __dev_set_promiscuity here is safe.
4562 */
4563 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4564 __dev_set_promiscuity(dev, 1);
4565 dev->uc_promisc = 1;
4566 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4567 __dev_set_promiscuity(dev, -1);
4568 dev->uc_promisc = 0;
4569 }
4570
4571 if (ops->ndo_set_multicast_list)
4572 ops->ndo_set_multicast_list(dev);
4573 }
4574 }
4575
4576 void dev_set_rx_mode(struct net_device *dev)
4577 {
4578 netif_addr_lock_bh(dev);
4579 __dev_set_rx_mode(dev);
4580 netif_addr_unlock_bh(dev);
4581 }
4582
4583 /**
4584 * dev_get_flags - get flags reported to userspace
4585 * @dev: device
4586 *
4587 * Get the combination of flag bits exported through APIs to userspace.
4588 */
4589 unsigned dev_get_flags(const struct net_device *dev)
4590 {
4591 unsigned flags;
4592
4593 flags = (dev->flags & ~(IFF_PROMISC |
4594 IFF_ALLMULTI |
4595 IFF_RUNNING |
4596 IFF_LOWER_UP |
4597 IFF_DORMANT)) |
4598 (dev->gflags & (IFF_PROMISC |
4599 IFF_ALLMULTI));
4600
4601 if (netif_running(dev)) {
4602 if (netif_oper_up(dev))
4603 flags |= IFF_RUNNING;
4604 if (netif_carrier_ok(dev))
4605 flags |= IFF_LOWER_UP;
4606 if (netif_dormant(dev))
4607 flags |= IFF_DORMANT;
4608 }
4609
4610 return flags;
4611 }
4612 EXPORT_SYMBOL(dev_get_flags);
4613
4614 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4615 {
4616 int old_flags = dev->flags;
4617 int ret;
4618
4619 ASSERT_RTNL();
4620
4621 /*
4622 * Set the flags on our device.
4623 */
4624
4625 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4626 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4627 IFF_AUTOMEDIA)) |
4628 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4629 IFF_ALLMULTI));
4630
4631 /*
4632 * Load in the correct multicast list now the flags have changed.
4633 */
4634
4635 if ((old_flags ^ flags) & IFF_MULTICAST)
4636 dev_change_rx_flags(dev, IFF_MULTICAST);
4637
4638 dev_set_rx_mode(dev);
4639
4640 /*
4641 * Have we downed the interface. We handle IFF_UP ourselves
4642 * according to user attempts to set it, rather than blindly
4643 * setting it.
4644 */
4645
4646 ret = 0;
4647 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4648 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4649
4650 if (!ret)
4651 dev_set_rx_mode(dev);
4652 }
4653
4654 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4655 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4656
4657 dev->gflags ^= IFF_PROMISC;
4658 dev_set_promiscuity(dev, inc);
4659 }
4660
4661 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4662 is important. Some (broken) drivers set IFF_PROMISC, when
4663 IFF_ALLMULTI is requested not asking us and not reporting.
4664 */
4665 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4666 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4667
4668 dev->gflags ^= IFF_ALLMULTI;
4669 dev_set_allmulti(dev, inc);
4670 }
4671
4672 return ret;
4673 }
4674
4675 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4676 {
4677 unsigned int changes = dev->flags ^ old_flags;
4678
4679 if (changes & IFF_UP) {
4680 if (dev->flags & IFF_UP)
4681 call_netdevice_notifiers(NETDEV_UP, dev);
4682 else
4683 call_netdevice_notifiers(NETDEV_DOWN, dev);
4684 }
4685
4686 if (dev->flags & IFF_UP &&
4687 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4688 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4689 }
4690
4691 /**
4692 * dev_change_flags - change device settings
4693 * @dev: device
4694 * @flags: device state flags
4695 *
4696 * Change settings on device based state flags. The flags are
4697 * in the userspace exported format.
4698 */
4699 int dev_change_flags(struct net_device *dev, unsigned flags)
4700 {
4701 int ret, changes;
4702 int old_flags = dev->flags;
4703
4704 ret = __dev_change_flags(dev, flags);
4705 if (ret < 0)
4706 return ret;
4707
4708 changes = old_flags ^ dev->flags;
4709 if (changes)
4710 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4711
4712 __dev_notify_flags(dev, old_flags);
4713 return ret;
4714 }
4715 EXPORT_SYMBOL(dev_change_flags);
4716
4717 /**
4718 * dev_set_mtu - Change maximum transfer unit
4719 * @dev: device
4720 * @new_mtu: new transfer unit
4721 *
4722 * Change the maximum transfer size of the network device.
4723 */
4724 int dev_set_mtu(struct net_device *dev, int new_mtu)
4725 {
4726 const struct net_device_ops *ops = dev->netdev_ops;
4727 int err;
4728
4729 if (new_mtu == dev->mtu)
4730 return 0;
4731
4732 /* MTU must be positive. */
4733 if (new_mtu < 0)
4734 return -EINVAL;
4735
4736 if (!netif_device_present(dev))
4737 return -ENODEV;
4738
4739 err = 0;
4740 if (ops->ndo_change_mtu)
4741 err = ops->ndo_change_mtu(dev, new_mtu);
4742 else
4743 dev->mtu = new_mtu;
4744
4745 if (!err && dev->flags & IFF_UP)
4746 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4747 return err;
4748 }
4749 EXPORT_SYMBOL(dev_set_mtu);
4750
4751 /**
4752 * dev_set_group - Change group this device belongs to
4753 * @dev: device
4754 * @new_group: group this device should belong to
4755 */
4756 void dev_set_group(struct net_device *dev, int new_group)
4757 {
4758 dev->group = new_group;
4759 }
4760 EXPORT_SYMBOL(dev_set_group);
4761
4762 /**
4763 * dev_set_mac_address - Change Media Access Control Address
4764 * @dev: device
4765 * @sa: new address
4766 *
4767 * Change the hardware (MAC) address of the device
4768 */
4769 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4770 {
4771 const struct net_device_ops *ops = dev->netdev_ops;
4772 int err;
4773
4774 if (!ops->ndo_set_mac_address)
4775 return -EOPNOTSUPP;
4776 if (sa->sa_family != dev->type)
4777 return -EINVAL;
4778 if (!netif_device_present(dev))
4779 return -ENODEV;
4780 err = ops->ndo_set_mac_address(dev, sa);
4781 if (!err)
4782 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4783 return err;
4784 }
4785 EXPORT_SYMBOL(dev_set_mac_address);
4786
4787 /*
4788 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4789 */
4790 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4791 {
4792 int err;
4793 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4794
4795 if (!dev)
4796 return -ENODEV;
4797
4798 switch (cmd) {
4799 case SIOCGIFFLAGS: /* Get interface flags */
4800 ifr->ifr_flags = (short) dev_get_flags(dev);
4801 return 0;
4802
4803 case SIOCGIFMETRIC: /* Get the metric on the interface
4804 (currently unused) */
4805 ifr->ifr_metric = 0;
4806 return 0;
4807
4808 case SIOCGIFMTU: /* Get the MTU of a device */
4809 ifr->ifr_mtu = dev->mtu;
4810 return 0;
4811
4812 case SIOCGIFHWADDR:
4813 if (!dev->addr_len)
4814 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4815 else
4816 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4817 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4818 ifr->ifr_hwaddr.sa_family = dev->type;
4819 return 0;
4820
4821 case SIOCGIFSLAVE:
4822 err = -EINVAL;
4823 break;
4824
4825 case SIOCGIFMAP:
4826 ifr->ifr_map.mem_start = dev->mem_start;
4827 ifr->ifr_map.mem_end = dev->mem_end;
4828 ifr->ifr_map.base_addr = dev->base_addr;
4829 ifr->ifr_map.irq = dev->irq;
4830 ifr->ifr_map.dma = dev->dma;
4831 ifr->ifr_map.port = dev->if_port;
4832 return 0;
4833
4834 case SIOCGIFINDEX:
4835 ifr->ifr_ifindex = dev->ifindex;
4836 return 0;
4837
4838 case SIOCGIFTXQLEN:
4839 ifr->ifr_qlen = dev->tx_queue_len;
4840 return 0;
4841
4842 default:
4843 /* dev_ioctl() should ensure this case
4844 * is never reached
4845 */
4846 WARN_ON(1);
4847 err = -EINVAL;
4848 break;
4849
4850 }
4851 return err;
4852 }
4853
4854 /*
4855 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4856 */
4857 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4858 {
4859 int err;
4860 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4861 const struct net_device_ops *ops;
4862
4863 if (!dev)
4864 return -ENODEV;
4865
4866 ops = dev->netdev_ops;
4867
4868 switch (cmd) {
4869 case SIOCSIFFLAGS: /* Set interface flags */
4870 return dev_change_flags(dev, ifr->ifr_flags);
4871
4872 case SIOCSIFMETRIC: /* Set the metric on the interface
4873 (currently unused) */
4874 return -EOPNOTSUPP;
4875
4876 case SIOCSIFMTU: /* Set the MTU of a device */
4877 return dev_set_mtu(dev, ifr->ifr_mtu);
4878
4879 case SIOCSIFHWADDR:
4880 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4881
4882 case SIOCSIFHWBROADCAST:
4883 if (ifr->ifr_hwaddr.sa_family != dev->type)
4884 return -EINVAL;
4885 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4886 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4887 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4888 return 0;
4889
4890 case SIOCSIFMAP:
4891 if (ops->ndo_set_config) {
4892 if (!netif_device_present(dev))
4893 return -ENODEV;
4894 return ops->ndo_set_config(dev, &ifr->ifr_map);
4895 }
4896 return -EOPNOTSUPP;
4897
4898 case SIOCADDMULTI:
4899 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4900 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4901 return -EINVAL;
4902 if (!netif_device_present(dev))
4903 return -ENODEV;
4904 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4905
4906 case SIOCDELMULTI:
4907 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4908 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4909 return -EINVAL;
4910 if (!netif_device_present(dev))
4911 return -ENODEV;
4912 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4913
4914 case SIOCSIFTXQLEN:
4915 if (ifr->ifr_qlen < 0)
4916 return -EINVAL;
4917 dev->tx_queue_len = ifr->ifr_qlen;
4918 return 0;
4919
4920 case SIOCSIFNAME:
4921 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4922 return dev_change_name(dev, ifr->ifr_newname);
4923
4924 /*
4925 * Unknown or private ioctl
4926 */
4927 default:
4928 if ((cmd >= SIOCDEVPRIVATE &&
4929 cmd <= SIOCDEVPRIVATE + 15) ||
4930 cmd == SIOCBONDENSLAVE ||
4931 cmd == SIOCBONDRELEASE ||
4932 cmd == SIOCBONDSETHWADDR ||
4933 cmd == SIOCBONDSLAVEINFOQUERY ||
4934 cmd == SIOCBONDINFOQUERY ||
4935 cmd == SIOCBONDCHANGEACTIVE ||
4936 cmd == SIOCGMIIPHY ||
4937 cmd == SIOCGMIIREG ||
4938 cmd == SIOCSMIIREG ||
4939 cmd == SIOCBRADDIF ||
4940 cmd == SIOCBRDELIF ||
4941 cmd == SIOCSHWTSTAMP ||
4942 cmd == SIOCWANDEV) {
4943 err = -EOPNOTSUPP;
4944 if (ops->ndo_do_ioctl) {
4945 if (netif_device_present(dev))
4946 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4947 else
4948 err = -ENODEV;
4949 }
4950 } else
4951 err = -EINVAL;
4952
4953 }
4954 return err;
4955 }
4956
4957 /*
4958 * This function handles all "interface"-type I/O control requests. The actual
4959 * 'doing' part of this is dev_ifsioc above.
4960 */
4961
4962 /**
4963 * dev_ioctl - network device ioctl
4964 * @net: the applicable net namespace
4965 * @cmd: command to issue
4966 * @arg: pointer to a struct ifreq in user space
4967 *
4968 * Issue ioctl functions to devices. This is normally called by the
4969 * user space syscall interfaces but can sometimes be useful for
4970 * other purposes. The return value is the return from the syscall if
4971 * positive or a negative errno code on error.
4972 */
4973
4974 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4975 {
4976 struct ifreq ifr;
4977 int ret;
4978 char *colon;
4979
4980 /* One special case: SIOCGIFCONF takes ifconf argument
4981 and requires shared lock, because it sleeps writing
4982 to user space.
4983 */
4984
4985 if (cmd == SIOCGIFCONF) {
4986 rtnl_lock();
4987 ret = dev_ifconf(net, (char __user *) arg);
4988 rtnl_unlock();
4989 return ret;
4990 }
4991 if (cmd == SIOCGIFNAME)
4992 return dev_ifname(net, (struct ifreq __user *)arg);
4993
4994 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4995 return -EFAULT;
4996
4997 ifr.ifr_name[IFNAMSIZ-1] = 0;
4998
4999 colon = strchr(ifr.ifr_name, ':');
5000 if (colon)
5001 *colon = 0;
5002
5003 /*
5004 * See which interface the caller is talking about.
5005 */
5006
5007 switch (cmd) {
5008 /*
5009 * These ioctl calls:
5010 * - can be done by all.
5011 * - atomic and do not require locking.
5012 * - return a value
5013 */
5014 case SIOCGIFFLAGS:
5015 case SIOCGIFMETRIC:
5016 case SIOCGIFMTU:
5017 case SIOCGIFHWADDR:
5018 case SIOCGIFSLAVE:
5019 case SIOCGIFMAP:
5020 case SIOCGIFINDEX:
5021 case SIOCGIFTXQLEN:
5022 dev_load(net, ifr.ifr_name);
5023 rcu_read_lock();
5024 ret = dev_ifsioc_locked(net, &ifr, cmd);
5025 rcu_read_unlock();
5026 if (!ret) {
5027 if (colon)
5028 *colon = ':';
5029 if (copy_to_user(arg, &ifr,
5030 sizeof(struct ifreq)))
5031 ret = -EFAULT;
5032 }
5033 return ret;
5034
5035 case SIOCETHTOOL:
5036 dev_load(net, ifr.ifr_name);
5037 rtnl_lock();
5038 ret = dev_ethtool(net, &ifr);
5039 rtnl_unlock();
5040 if (!ret) {
5041 if (colon)
5042 *colon = ':';
5043 if (copy_to_user(arg, &ifr,
5044 sizeof(struct ifreq)))
5045 ret = -EFAULT;
5046 }
5047 return ret;
5048
5049 /*
5050 * These ioctl calls:
5051 * - require superuser power.
5052 * - require strict serialization.
5053 * - return a value
5054 */
5055 case SIOCGMIIPHY:
5056 case SIOCGMIIREG:
5057 case SIOCSIFNAME:
5058 if (!capable(CAP_NET_ADMIN))
5059 return -EPERM;
5060 dev_load(net, ifr.ifr_name);
5061 rtnl_lock();
5062 ret = dev_ifsioc(net, &ifr, cmd);
5063 rtnl_unlock();
5064 if (!ret) {
5065 if (colon)
5066 *colon = ':';
5067 if (copy_to_user(arg, &ifr,
5068 sizeof(struct ifreq)))
5069 ret = -EFAULT;
5070 }
5071 return ret;
5072
5073 /*
5074 * These ioctl calls:
5075 * - require superuser power.
5076 * - require strict serialization.
5077 * - do not return a value
5078 */
5079 case SIOCSIFFLAGS:
5080 case SIOCSIFMETRIC:
5081 case SIOCSIFMTU:
5082 case SIOCSIFMAP:
5083 case SIOCSIFHWADDR:
5084 case SIOCSIFSLAVE:
5085 case SIOCADDMULTI:
5086 case SIOCDELMULTI:
5087 case SIOCSIFHWBROADCAST:
5088 case SIOCSIFTXQLEN:
5089 case SIOCSMIIREG:
5090 case SIOCBONDENSLAVE:
5091 case SIOCBONDRELEASE:
5092 case SIOCBONDSETHWADDR:
5093 case SIOCBONDCHANGEACTIVE:
5094 case SIOCBRADDIF:
5095 case SIOCBRDELIF:
5096 case SIOCSHWTSTAMP:
5097 if (!capable(CAP_NET_ADMIN))
5098 return -EPERM;
5099 /* fall through */
5100 case SIOCBONDSLAVEINFOQUERY:
5101 case SIOCBONDINFOQUERY:
5102 dev_load(net, ifr.ifr_name);
5103 rtnl_lock();
5104 ret = dev_ifsioc(net, &ifr, cmd);
5105 rtnl_unlock();
5106 return ret;
5107
5108 case SIOCGIFMEM:
5109 /* Get the per device memory space. We can add this but
5110 * currently do not support it */
5111 case SIOCSIFMEM:
5112 /* Set the per device memory buffer space.
5113 * Not applicable in our case */
5114 case SIOCSIFLINK:
5115 return -EINVAL;
5116
5117 /*
5118 * Unknown or private ioctl.
5119 */
5120 default:
5121 if (cmd == SIOCWANDEV ||
5122 (cmd >= SIOCDEVPRIVATE &&
5123 cmd <= SIOCDEVPRIVATE + 15)) {
5124 dev_load(net, ifr.ifr_name);
5125 rtnl_lock();
5126 ret = dev_ifsioc(net, &ifr, cmd);
5127 rtnl_unlock();
5128 if (!ret && copy_to_user(arg, &ifr,
5129 sizeof(struct ifreq)))
5130 ret = -EFAULT;
5131 return ret;
5132 }
5133 /* Take care of Wireless Extensions */
5134 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5135 return wext_handle_ioctl(net, &ifr, cmd, arg);
5136 return -EINVAL;
5137 }
5138 }
5139
5140
5141 /**
5142 * dev_new_index - allocate an ifindex
5143 * @net: the applicable net namespace
5144 *
5145 * Returns a suitable unique value for a new device interface
5146 * number. The caller must hold the rtnl semaphore or the
5147 * dev_base_lock to be sure it remains unique.
5148 */
5149 static int dev_new_index(struct net *net)
5150 {
5151 static int ifindex;
5152 for (;;) {
5153 if (++ifindex <= 0)
5154 ifindex = 1;
5155 if (!__dev_get_by_index(net, ifindex))
5156 return ifindex;
5157 }
5158 }
5159
5160 /* Delayed registration/unregisteration */
5161 static LIST_HEAD(net_todo_list);
5162
5163 static void net_set_todo(struct net_device *dev)
5164 {
5165 list_add_tail(&dev->todo_list, &net_todo_list);
5166 }
5167
5168 static void rollback_registered_many(struct list_head *head)
5169 {
5170 struct net_device *dev, *tmp;
5171
5172 BUG_ON(dev_boot_phase);
5173 ASSERT_RTNL();
5174
5175 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5176 /* Some devices call without registering
5177 * for initialization unwind. Remove those
5178 * devices and proceed with the remaining.
5179 */
5180 if (dev->reg_state == NETREG_UNINITIALIZED) {
5181 pr_debug("unregister_netdevice: device %s/%p never "
5182 "was registered\n", dev->name, dev);
5183
5184 WARN_ON(1);
5185 list_del(&dev->unreg_list);
5186 continue;
5187 }
5188
5189 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5190 }
5191
5192 /* If device is running, close it first. */
5193 dev_close_many(head);
5194
5195 list_for_each_entry(dev, head, unreg_list) {
5196 /* And unlink it from device chain. */
5197 unlist_netdevice(dev);
5198
5199 dev->reg_state = NETREG_UNREGISTERING;
5200 }
5201
5202 synchronize_net();
5203
5204 list_for_each_entry(dev, head, unreg_list) {
5205 /* Shutdown queueing discipline. */
5206 dev_shutdown(dev);
5207
5208
5209 /* Notify protocols, that we are about to destroy
5210 this device. They should clean all the things.
5211 */
5212 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5213
5214 if (!dev->rtnl_link_ops ||
5215 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5216 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5217
5218 /*
5219 * Flush the unicast and multicast chains
5220 */
5221 dev_uc_flush(dev);
5222 dev_mc_flush(dev);
5223
5224 if (dev->netdev_ops->ndo_uninit)
5225 dev->netdev_ops->ndo_uninit(dev);
5226
5227 /* Notifier chain MUST detach us from master device. */
5228 WARN_ON(dev->master);
5229
5230 /* Remove entries from kobject tree */
5231 netdev_unregister_kobject(dev);
5232 }
5233
5234 /* Process any work delayed until the end of the batch */
5235 dev = list_first_entry(head, struct net_device, unreg_list);
5236 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5237
5238 rcu_barrier();
5239
5240 list_for_each_entry(dev, head, unreg_list)
5241 dev_put(dev);
5242 }
5243
5244 static void rollback_registered(struct net_device *dev)
5245 {
5246 LIST_HEAD(single);
5247
5248 list_add(&dev->unreg_list, &single);
5249 rollback_registered_many(&single);
5250 list_del(&single);
5251 }
5252
5253 u32 netdev_fix_features(struct net_device *dev, u32 features)
5254 {
5255 /* Fix illegal checksum combinations */
5256 if ((features & NETIF_F_HW_CSUM) &&
5257 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5258 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5259 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5260 }
5261
5262 if ((features & NETIF_F_NO_CSUM) &&
5263 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5264 netdev_info(dev, "mixed no checksumming and other settings.\n");
5265 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5266 }
5267
5268 /* Fix illegal SG+CSUM combinations. */
5269 if ((features & NETIF_F_SG) &&
5270 !(features & NETIF_F_ALL_CSUM)) {
5271 netdev_info(dev,
5272 "Dropping NETIF_F_SG since no checksum feature.\n");
5273 features &= ~NETIF_F_SG;
5274 }
5275
5276 /* TSO requires that SG is present as well. */
5277 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5278 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5279 features &= ~NETIF_F_TSO;
5280 }
5281
5282 /* Software GSO depends on SG. */
5283 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5284 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5285 features &= ~NETIF_F_GSO;
5286 }
5287
5288 /* UFO needs SG and checksumming */
5289 if (features & NETIF_F_UFO) {
5290 /* maybe split UFO into V4 and V6? */
5291 if (!((features & NETIF_F_GEN_CSUM) ||
5292 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5293 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5294 netdev_info(dev,
5295 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5296 features &= ~NETIF_F_UFO;
5297 }
5298
5299 if (!(features & NETIF_F_SG)) {
5300 netdev_info(dev,
5301 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5302 features &= ~NETIF_F_UFO;
5303 }
5304 }
5305
5306 return features;
5307 }
5308 EXPORT_SYMBOL(netdev_fix_features);
5309
5310 void netdev_update_features(struct net_device *dev)
5311 {
5312 u32 features;
5313 int err = 0;
5314
5315 features = netdev_get_wanted_features(dev);
5316
5317 if (dev->netdev_ops->ndo_fix_features)
5318 features = dev->netdev_ops->ndo_fix_features(dev, features);
5319
5320 /* driver might be less strict about feature dependencies */
5321 features = netdev_fix_features(dev, features);
5322
5323 if (dev->features == features)
5324 return;
5325
5326 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5327 dev->features, features);
5328
5329 if (dev->netdev_ops->ndo_set_features)
5330 err = dev->netdev_ops->ndo_set_features(dev, features);
5331
5332 if (!err)
5333 dev->features = features;
5334 else if (err < 0)
5335 netdev_err(dev,
5336 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5337 err, features, dev->features);
5338 }
5339 EXPORT_SYMBOL(netdev_update_features);
5340
5341 /**
5342 * netif_stacked_transfer_operstate - transfer operstate
5343 * @rootdev: the root or lower level device to transfer state from
5344 * @dev: the device to transfer operstate to
5345 *
5346 * Transfer operational state from root to device. This is normally
5347 * called when a stacking relationship exists between the root
5348 * device and the device(a leaf device).
5349 */
5350 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5351 struct net_device *dev)
5352 {
5353 if (rootdev->operstate == IF_OPER_DORMANT)
5354 netif_dormant_on(dev);
5355 else
5356 netif_dormant_off(dev);
5357
5358 if (netif_carrier_ok(rootdev)) {
5359 if (!netif_carrier_ok(dev))
5360 netif_carrier_on(dev);
5361 } else {
5362 if (netif_carrier_ok(dev))
5363 netif_carrier_off(dev);
5364 }
5365 }
5366 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5367
5368 #ifdef CONFIG_RPS
5369 static int netif_alloc_rx_queues(struct net_device *dev)
5370 {
5371 unsigned int i, count = dev->num_rx_queues;
5372 struct netdev_rx_queue *rx;
5373
5374 BUG_ON(count < 1);
5375
5376 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5377 if (!rx) {
5378 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5379 return -ENOMEM;
5380 }
5381 dev->_rx = rx;
5382
5383 for (i = 0; i < count; i++)
5384 rx[i].dev = dev;
5385 return 0;
5386 }
5387 #endif
5388
5389 static void netdev_init_one_queue(struct net_device *dev,
5390 struct netdev_queue *queue, void *_unused)
5391 {
5392 /* Initialize queue lock */
5393 spin_lock_init(&queue->_xmit_lock);
5394 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5395 queue->xmit_lock_owner = -1;
5396 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5397 queue->dev = dev;
5398 }
5399
5400 static int netif_alloc_netdev_queues(struct net_device *dev)
5401 {
5402 unsigned int count = dev->num_tx_queues;
5403 struct netdev_queue *tx;
5404
5405 BUG_ON(count < 1);
5406
5407 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5408 if (!tx) {
5409 pr_err("netdev: Unable to allocate %u tx queues.\n",
5410 count);
5411 return -ENOMEM;
5412 }
5413 dev->_tx = tx;
5414
5415 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5416 spin_lock_init(&dev->tx_global_lock);
5417
5418 return 0;
5419 }
5420
5421 /**
5422 * register_netdevice - register a network device
5423 * @dev: device to register
5424 *
5425 * Take a completed network device structure and add it to the kernel
5426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5427 * chain. 0 is returned on success. A negative errno code is returned
5428 * on a failure to set up the device, or if the name is a duplicate.
5429 *
5430 * Callers must hold the rtnl semaphore. You may want
5431 * register_netdev() instead of this.
5432 *
5433 * BUGS:
5434 * The locking appears insufficient to guarantee two parallel registers
5435 * will not get the same name.
5436 */
5437
5438 int register_netdevice(struct net_device *dev)
5439 {
5440 int ret;
5441 struct net *net = dev_net(dev);
5442
5443 BUG_ON(dev_boot_phase);
5444 ASSERT_RTNL();
5445
5446 might_sleep();
5447
5448 /* When net_device's are persistent, this will be fatal. */
5449 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5450 BUG_ON(!net);
5451
5452 spin_lock_init(&dev->addr_list_lock);
5453 netdev_set_addr_lockdep_class(dev);
5454
5455 dev->iflink = -1;
5456
5457 /* Init, if this function is available */
5458 if (dev->netdev_ops->ndo_init) {
5459 ret = dev->netdev_ops->ndo_init(dev);
5460 if (ret) {
5461 if (ret > 0)
5462 ret = -EIO;
5463 goto out;
5464 }
5465 }
5466
5467 ret = dev_get_valid_name(dev, dev->name, 0);
5468 if (ret)
5469 goto err_uninit;
5470
5471 dev->ifindex = dev_new_index(net);
5472 if (dev->iflink == -1)
5473 dev->iflink = dev->ifindex;
5474
5475 /* Transfer changeable features to wanted_features and enable
5476 * software offloads (GSO and GRO).
5477 */
5478 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5479 dev->wanted_features = (dev->features & dev->hw_features)
5480 | NETIF_F_SOFT_FEATURES;
5481
5482 /* Avoid warning from netdev_fix_features() for GSO without SG */
5483 if (!(dev->wanted_features & NETIF_F_SG))
5484 dev->wanted_features &= ~NETIF_F_GSO;
5485
5486 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5487 * vlan_dev_init() will do the dev->features check, so these features
5488 * are enabled only if supported by underlying device.
5489 */
5490 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5491
5492 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5493 ret = notifier_to_errno(ret);
5494 if (ret)
5495 goto err_uninit;
5496
5497 ret = netdev_register_kobject(dev);
5498 if (ret)
5499 goto err_uninit;
5500 dev->reg_state = NETREG_REGISTERED;
5501
5502 netdev_update_features(dev);
5503
5504 /*
5505 * Default initial state at registry is that the
5506 * device is present.
5507 */
5508
5509 set_bit(__LINK_STATE_PRESENT, &dev->state);
5510
5511 dev_init_scheduler(dev);
5512 dev_hold(dev);
5513 list_netdevice(dev);
5514
5515 /* Notify protocols, that a new device appeared. */
5516 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5517 ret = notifier_to_errno(ret);
5518 if (ret) {
5519 rollback_registered(dev);
5520 dev->reg_state = NETREG_UNREGISTERED;
5521 }
5522 /*
5523 * Prevent userspace races by waiting until the network
5524 * device is fully setup before sending notifications.
5525 */
5526 if (!dev->rtnl_link_ops ||
5527 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5528 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5529
5530 out:
5531 return ret;
5532
5533 err_uninit:
5534 if (dev->netdev_ops->ndo_uninit)
5535 dev->netdev_ops->ndo_uninit(dev);
5536 goto out;
5537 }
5538 EXPORT_SYMBOL(register_netdevice);
5539
5540 /**
5541 * init_dummy_netdev - init a dummy network device for NAPI
5542 * @dev: device to init
5543 *
5544 * This takes a network device structure and initialize the minimum
5545 * amount of fields so it can be used to schedule NAPI polls without
5546 * registering a full blown interface. This is to be used by drivers
5547 * that need to tie several hardware interfaces to a single NAPI
5548 * poll scheduler due to HW limitations.
5549 */
5550 int init_dummy_netdev(struct net_device *dev)
5551 {
5552 /* Clear everything. Note we don't initialize spinlocks
5553 * are they aren't supposed to be taken by any of the
5554 * NAPI code and this dummy netdev is supposed to be
5555 * only ever used for NAPI polls
5556 */
5557 memset(dev, 0, sizeof(struct net_device));
5558
5559 /* make sure we BUG if trying to hit standard
5560 * register/unregister code path
5561 */
5562 dev->reg_state = NETREG_DUMMY;
5563
5564 /* NAPI wants this */
5565 INIT_LIST_HEAD(&dev->napi_list);
5566
5567 /* a dummy interface is started by default */
5568 set_bit(__LINK_STATE_PRESENT, &dev->state);
5569 set_bit(__LINK_STATE_START, &dev->state);
5570
5571 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5572 * because users of this 'device' dont need to change
5573 * its refcount.
5574 */
5575
5576 return 0;
5577 }
5578 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5579
5580
5581 /**
5582 * register_netdev - register a network device
5583 * @dev: device to register
5584 *
5585 * Take a completed network device structure and add it to the kernel
5586 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5587 * chain. 0 is returned on success. A negative errno code is returned
5588 * on a failure to set up the device, or if the name is a duplicate.
5589 *
5590 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5591 * and expands the device name if you passed a format string to
5592 * alloc_netdev.
5593 */
5594 int register_netdev(struct net_device *dev)
5595 {
5596 int err;
5597
5598 rtnl_lock();
5599
5600 /*
5601 * If the name is a format string the caller wants us to do a
5602 * name allocation.
5603 */
5604 if (strchr(dev->name, '%')) {
5605 err = dev_alloc_name(dev, dev->name);
5606 if (err < 0)
5607 goto out;
5608 }
5609
5610 err = register_netdevice(dev);
5611 out:
5612 rtnl_unlock();
5613 return err;
5614 }
5615 EXPORT_SYMBOL(register_netdev);
5616
5617 int netdev_refcnt_read(const struct net_device *dev)
5618 {
5619 int i, refcnt = 0;
5620
5621 for_each_possible_cpu(i)
5622 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5623 return refcnt;
5624 }
5625 EXPORT_SYMBOL(netdev_refcnt_read);
5626
5627 /*
5628 * netdev_wait_allrefs - wait until all references are gone.
5629 *
5630 * This is called when unregistering network devices.
5631 *
5632 * Any protocol or device that holds a reference should register
5633 * for netdevice notification, and cleanup and put back the
5634 * reference if they receive an UNREGISTER event.
5635 * We can get stuck here if buggy protocols don't correctly
5636 * call dev_put.
5637 */
5638 static void netdev_wait_allrefs(struct net_device *dev)
5639 {
5640 unsigned long rebroadcast_time, warning_time;
5641 int refcnt;
5642
5643 linkwatch_forget_dev(dev);
5644
5645 rebroadcast_time = warning_time = jiffies;
5646 refcnt = netdev_refcnt_read(dev);
5647
5648 while (refcnt != 0) {
5649 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5650 rtnl_lock();
5651
5652 /* Rebroadcast unregister notification */
5653 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5654 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5655 * should have already handle it the first time */
5656
5657 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5658 &dev->state)) {
5659 /* We must not have linkwatch events
5660 * pending on unregister. If this
5661 * happens, we simply run the queue
5662 * unscheduled, resulting in a noop
5663 * for this device.
5664 */
5665 linkwatch_run_queue();
5666 }
5667
5668 __rtnl_unlock();
5669
5670 rebroadcast_time = jiffies;
5671 }
5672
5673 msleep(250);
5674
5675 refcnt = netdev_refcnt_read(dev);
5676
5677 if (time_after(jiffies, warning_time + 10 * HZ)) {
5678 printk(KERN_EMERG "unregister_netdevice: "
5679 "waiting for %s to become free. Usage "
5680 "count = %d\n",
5681 dev->name, refcnt);
5682 warning_time = jiffies;
5683 }
5684 }
5685 }
5686
5687 /* The sequence is:
5688 *
5689 * rtnl_lock();
5690 * ...
5691 * register_netdevice(x1);
5692 * register_netdevice(x2);
5693 * ...
5694 * unregister_netdevice(y1);
5695 * unregister_netdevice(y2);
5696 * ...
5697 * rtnl_unlock();
5698 * free_netdev(y1);
5699 * free_netdev(y2);
5700 *
5701 * We are invoked by rtnl_unlock().
5702 * This allows us to deal with problems:
5703 * 1) We can delete sysfs objects which invoke hotplug
5704 * without deadlocking with linkwatch via keventd.
5705 * 2) Since we run with the RTNL semaphore not held, we can sleep
5706 * safely in order to wait for the netdev refcnt to drop to zero.
5707 *
5708 * We must not return until all unregister events added during
5709 * the interval the lock was held have been completed.
5710 */
5711 void netdev_run_todo(void)
5712 {
5713 struct list_head list;
5714
5715 /* Snapshot list, allow later requests */
5716 list_replace_init(&net_todo_list, &list);
5717
5718 __rtnl_unlock();
5719
5720 while (!list_empty(&list)) {
5721 struct net_device *dev
5722 = list_first_entry(&list, struct net_device, todo_list);
5723 list_del(&dev->todo_list);
5724
5725 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5726 printk(KERN_ERR "network todo '%s' but state %d\n",
5727 dev->name, dev->reg_state);
5728 dump_stack();
5729 continue;
5730 }
5731
5732 dev->reg_state = NETREG_UNREGISTERED;
5733
5734 on_each_cpu(flush_backlog, dev, 1);
5735
5736 netdev_wait_allrefs(dev);
5737
5738 /* paranoia */
5739 BUG_ON(netdev_refcnt_read(dev));
5740 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5741 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5742 WARN_ON(dev->dn_ptr);
5743
5744 if (dev->destructor)
5745 dev->destructor(dev);
5746
5747 /* Free network device */
5748 kobject_put(&dev->dev.kobj);
5749 }
5750 }
5751
5752 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5753 * fields in the same order, with only the type differing.
5754 */
5755 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5756 const struct net_device_stats *netdev_stats)
5757 {
5758 #if BITS_PER_LONG == 64
5759 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5760 memcpy(stats64, netdev_stats, sizeof(*stats64));
5761 #else
5762 size_t i, n = sizeof(*stats64) / sizeof(u64);
5763 const unsigned long *src = (const unsigned long *)netdev_stats;
5764 u64 *dst = (u64 *)stats64;
5765
5766 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5767 sizeof(*stats64) / sizeof(u64));
5768 for (i = 0; i < n; i++)
5769 dst[i] = src[i];
5770 #endif
5771 }
5772
5773 /**
5774 * dev_get_stats - get network device statistics
5775 * @dev: device to get statistics from
5776 * @storage: place to store stats
5777 *
5778 * Get network statistics from device. Return @storage.
5779 * The device driver may provide its own method by setting
5780 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5781 * otherwise the internal statistics structure is used.
5782 */
5783 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5784 struct rtnl_link_stats64 *storage)
5785 {
5786 const struct net_device_ops *ops = dev->netdev_ops;
5787
5788 if (ops->ndo_get_stats64) {
5789 memset(storage, 0, sizeof(*storage));
5790 ops->ndo_get_stats64(dev, storage);
5791 } else if (ops->ndo_get_stats) {
5792 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5793 } else {
5794 netdev_stats_to_stats64(storage, &dev->stats);
5795 }
5796 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5797 return storage;
5798 }
5799 EXPORT_SYMBOL(dev_get_stats);
5800
5801 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5802 {
5803 struct netdev_queue *queue = dev_ingress_queue(dev);
5804
5805 #ifdef CONFIG_NET_CLS_ACT
5806 if (queue)
5807 return queue;
5808 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5809 if (!queue)
5810 return NULL;
5811 netdev_init_one_queue(dev, queue, NULL);
5812 queue->qdisc = &noop_qdisc;
5813 queue->qdisc_sleeping = &noop_qdisc;
5814 rcu_assign_pointer(dev->ingress_queue, queue);
5815 #endif
5816 return queue;
5817 }
5818
5819 /**
5820 * alloc_netdev_mqs - allocate network device
5821 * @sizeof_priv: size of private data to allocate space for
5822 * @name: device name format string
5823 * @setup: callback to initialize device
5824 * @txqs: the number of TX subqueues to allocate
5825 * @rxqs: the number of RX subqueues to allocate
5826 *
5827 * Allocates a struct net_device with private data area for driver use
5828 * and performs basic initialization. Also allocates subquue structs
5829 * for each queue on the device.
5830 */
5831 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5832 void (*setup)(struct net_device *),
5833 unsigned int txqs, unsigned int rxqs)
5834 {
5835 struct net_device *dev;
5836 size_t alloc_size;
5837 struct net_device *p;
5838
5839 BUG_ON(strlen(name) >= sizeof(dev->name));
5840
5841 if (txqs < 1) {
5842 pr_err("alloc_netdev: Unable to allocate device "
5843 "with zero queues.\n");
5844 return NULL;
5845 }
5846
5847 #ifdef CONFIG_RPS
5848 if (rxqs < 1) {
5849 pr_err("alloc_netdev: Unable to allocate device "
5850 "with zero RX queues.\n");
5851 return NULL;
5852 }
5853 #endif
5854
5855 alloc_size = sizeof(struct net_device);
5856 if (sizeof_priv) {
5857 /* ensure 32-byte alignment of private area */
5858 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5859 alloc_size += sizeof_priv;
5860 }
5861 /* ensure 32-byte alignment of whole construct */
5862 alloc_size += NETDEV_ALIGN - 1;
5863
5864 p = kzalloc(alloc_size, GFP_KERNEL);
5865 if (!p) {
5866 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5867 return NULL;
5868 }
5869
5870 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5871 dev->padded = (char *)dev - (char *)p;
5872
5873 dev->pcpu_refcnt = alloc_percpu(int);
5874 if (!dev->pcpu_refcnt)
5875 goto free_p;
5876
5877 if (dev_addr_init(dev))
5878 goto free_pcpu;
5879
5880 dev_mc_init(dev);
5881 dev_uc_init(dev);
5882
5883 dev_net_set(dev, &init_net);
5884
5885 dev->gso_max_size = GSO_MAX_SIZE;
5886
5887 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5888 dev->ethtool_ntuple_list.count = 0;
5889 INIT_LIST_HEAD(&dev->napi_list);
5890 INIT_LIST_HEAD(&dev->unreg_list);
5891 INIT_LIST_HEAD(&dev->link_watch_list);
5892 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5893 setup(dev);
5894
5895 dev->num_tx_queues = txqs;
5896 dev->real_num_tx_queues = txqs;
5897 if (netif_alloc_netdev_queues(dev))
5898 goto free_all;
5899
5900 #ifdef CONFIG_RPS
5901 dev->num_rx_queues = rxqs;
5902 dev->real_num_rx_queues = rxqs;
5903 if (netif_alloc_rx_queues(dev))
5904 goto free_all;
5905 #endif
5906
5907 strcpy(dev->name, name);
5908 dev->group = INIT_NETDEV_GROUP;
5909 return dev;
5910
5911 free_all:
5912 free_netdev(dev);
5913 return NULL;
5914
5915 free_pcpu:
5916 free_percpu(dev->pcpu_refcnt);
5917 kfree(dev->_tx);
5918 #ifdef CONFIG_RPS
5919 kfree(dev->_rx);
5920 #endif
5921
5922 free_p:
5923 kfree(p);
5924 return NULL;
5925 }
5926 EXPORT_SYMBOL(alloc_netdev_mqs);
5927
5928 /**
5929 * free_netdev - free network device
5930 * @dev: device
5931 *
5932 * This function does the last stage of destroying an allocated device
5933 * interface. The reference to the device object is released.
5934 * If this is the last reference then it will be freed.
5935 */
5936 void free_netdev(struct net_device *dev)
5937 {
5938 struct napi_struct *p, *n;
5939
5940 release_net(dev_net(dev));
5941
5942 kfree(dev->_tx);
5943 #ifdef CONFIG_RPS
5944 kfree(dev->_rx);
5945 #endif
5946
5947 kfree(rcu_dereference_raw(dev->ingress_queue));
5948
5949 /* Flush device addresses */
5950 dev_addr_flush(dev);
5951
5952 /* Clear ethtool n-tuple list */
5953 ethtool_ntuple_flush(dev);
5954
5955 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5956 netif_napi_del(p);
5957
5958 free_percpu(dev->pcpu_refcnt);
5959 dev->pcpu_refcnt = NULL;
5960
5961 /* Compatibility with error handling in drivers */
5962 if (dev->reg_state == NETREG_UNINITIALIZED) {
5963 kfree((char *)dev - dev->padded);
5964 return;
5965 }
5966
5967 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5968 dev->reg_state = NETREG_RELEASED;
5969
5970 /* will free via device release */
5971 put_device(&dev->dev);
5972 }
5973 EXPORT_SYMBOL(free_netdev);
5974
5975 /**
5976 * synchronize_net - Synchronize with packet receive processing
5977 *
5978 * Wait for packets currently being received to be done.
5979 * Does not block later packets from starting.
5980 */
5981 void synchronize_net(void)
5982 {
5983 might_sleep();
5984 synchronize_rcu();
5985 }
5986 EXPORT_SYMBOL(synchronize_net);
5987
5988 /**
5989 * unregister_netdevice_queue - remove device from the kernel
5990 * @dev: device
5991 * @head: list
5992 *
5993 * This function shuts down a device interface and removes it
5994 * from the kernel tables.
5995 * If head not NULL, device is queued to be unregistered later.
5996 *
5997 * Callers must hold the rtnl semaphore. You may want
5998 * unregister_netdev() instead of this.
5999 */
6000
6001 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6002 {
6003 ASSERT_RTNL();
6004
6005 if (head) {
6006 list_move_tail(&dev->unreg_list, head);
6007 } else {
6008 rollback_registered(dev);
6009 /* Finish processing unregister after unlock */
6010 net_set_todo(dev);
6011 }
6012 }
6013 EXPORT_SYMBOL(unregister_netdevice_queue);
6014
6015 /**
6016 * unregister_netdevice_many - unregister many devices
6017 * @head: list of devices
6018 */
6019 void unregister_netdevice_many(struct list_head *head)
6020 {
6021 struct net_device *dev;
6022
6023 if (!list_empty(head)) {
6024 rollback_registered_many(head);
6025 list_for_each_entry(dev, head, unreg_list)
6026 net_set_todo(dev);
6027 }
6028 }
6029 EXPORT_SYMBOL(unregister_netdevice_many);
6030
6031 /**
6032 * unregister_netdev - remove device from the kernel
6033 * @dev: device
6034 *
6035 * This function shuts down a device interface and removes it
6036 * from the kernel tables.
6037 *
6038 * This is just a wrapper for unregister_netdevice that takes
6039 * the rtnl semaphore. In general you want to use this and not
6040 * unregister_netdevice.
6041 */
6042 void unregister_netdev(struct net_device *dev)
6043 {
6044 rtnl_lock();
6045 unregister_netdevice(dev);
6046 rtnl_unlock();
6047 }
6048 EXPORT_SYMBOL(unregister_netdev);
6049
6050 /**
6051 * dev_change_net_namespace - move device to different nethost namespace
6052 * @dev: device
6053 * @net: network namespace
6054 * @pat: If not NULL name pattern to try if the current device name
6055 * is already taken in the destination network namespace.
6056 *
6057 * This function shuts down a device interface and moves it
6058 * to a new network namespace. On success 0 is returned, on
6059 * a failure a netagive errno code is returned.
6060 *
6061 * Callers must hold the rtnl semaphore.
6062 */
6063
6064 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6065 {
6066 int err;
6067
6068 ASSERT_RTNL();
6069
6070 /* Don't allow namespace local devices to be moved. */
6071 err = -EINVAL;
6072 if (dev->features & NETIF_F_NETNS_LOCAL)
6073 goto out;
6074
6075 /* Ensure the device has been registrered */
6076 err = -EINVAL;
6077 if (dev->reg_state != NETREG_REGISTERED)
6078 goto out;
6079
6080 /* Get out if there is nothing todo */
6081 err = 0;
6082 if (net_eq(dev_net(dev), net))
6083 goto out;
6084
6085 /* Pick the destination device name, and ensure
6086 * we can use it in the destination network namespace.
6087 */
6088 err = -EEXIST;
6089 if (__dev_get_by_name(net, dev->name)) {
6090 /* We get here if we can't use the current device name */
6091 if (!pat)
6092 goto out;
6093 if (dev_get_valid_name(dev, pat, 1))
6094 goto out;
6095 }
6096
6097 /*
6098 * And now a mini version of register_netdevice unregister_netdevice.
6099 */
6100
6101 /* If device is running close it first. */
6102 dev_close(dev);
6103
6104 /* And unlink it from device chain */
6105 err = -ENODEV;
6106 unlist_netdevice(dev);
6107
6108 synchronize_net();
6109
6110 /* Shutdown queueing discipline. */
6111 dev_shutdown(dev);
6112
6113 /* Notify protocols, that we are about to destroy
6114 this device. They should clean all the things.
6115
6116 Note that dev->reg_state stays at NETREG_REGISTERED.
6117 This is wanted because this way 8021q and macvlan know
6118 the device is just moving and can keep their slaves up.
6119 */
6120 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6121 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6122
6123 /*
6124 * Flush the unicast and multicast chains
6125 */
6126 dev_uc_flush(dev);
6127 dev_mc_flush(dev);
6128
6129 /* Actually switch the network namespace */
6130 dev_net_set(dev, net);
6131
6132 /* If there is an ifindex conflict assign a new one */
6133 if (__dev_get_by_index(net, dev->ifindex)) {
6134 int iflink = (dev->iflink == dev->ifindex);
6135 dev->ifindex = dev_new_index(net);
6136 if (iflink)
6137 dev->iflink = dev->ifindex;
6138 }
6139
6140 /* Fixup kobjects */
6141 err = device_rename(&dev->dev, dev->name);
6142 WARN_ON(err);
6143
6144 /* Add the device back in the hashes */
6145 list_netdevice(dev);
6146
6147 /* Notify protocols, that a new device appeared. */
6148 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6149
6150 /*
6151 * Prevent userspace races by waiting until the network
6152 * device is fully setup before sending notifications.
6153 */
6154 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6155
6156 synchronize_net();
6157 err = 0;
6158 out:
6159 return err;
6160 }
6161 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6162
6163 static int dev_cpu_callback(struct notifier_block *nfb,
6164 unsigned long action,
6165 void *ocpu)
6166 {
6167 struct sk_buff **list_skb;
6168 struct sk_buff *skb;
6169 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6170 struct softnet_data *sd, *oldsd;
6171
6172 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6173 return NOTIFY_OK;
6174
6175 local_irq_disable();
6176 cpu = smp_processor_id();
6177 sd = &per_cpu(softnet_data, cpu);
6178 oldsd = &per_cpu(softnet_data, oldcpu);
6179
6180 /* Find end of our completion_queue. */
6181 list_skb = &sd->completion_queue;
6182 while (*list_skb)
6183 list_skb = &(*list_skb)->next;
6184 /* Append completion queue from offline CPU. */
6185 *list_skb = oldsd->completion_queue;
6186 oldsd->completion_queue = NULL;
6187
6188 /* Append output queue from offline CPU. */
6189 if (oldsd->output_queue) {
6190 *sd->output_queue_tailp = oldsd->output_queue;
6191 sd->output_queue_tailp = oldsd->output_queue_tailp;
6192 oldsd->output_queue = NULL;
6193 oldsd->output_queue_tailp = &oldsd->output_queue;
6194 }
6195
6196 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6197 local_irq_enable();
6198
6199 /* Process offline CPU's input_pkt_queue */
6200 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6201 netif_rx(skb);
6202 input_queue_head_incr(oldsd);
6203 }
6204 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6205 netif_rx(skb);
6206 input_queue_head_incr(oldsd);
6207 }
6208
6209 return NOTIFY_OK;
6210 }
6211
6212
6213 /**
6214 * netdev_increment_features - increment feature set by one
6215 * @all: current feature set
6216 * @one: new feature set
6217 * @mask: mask feature set
6218 *
6219 * Computes a new feature set after adding a device with feature set
6220 * @one to the master device with current feature set @all. Will not
6221 * enable anything that is off in @mask. Returns the new feature set.
6222 */
6223 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6224 {
6225 /* If device needs checksumming, downgrade to it. */
6226 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6227 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6228 else if (mask & NETIF_F_ALL_CSUM) {
6229 /* If one device supports v4/v6 checksumming, set for all. */
6230 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6231 !(all & NETIF_F_GEN_CSUM)) {
6232 all &= ~NETIF_F_ALL_CSUM;
6233 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6234 }
6235
6236 /* If one device supports hw checksumming, set for all. */
6237 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6238 all &= ~NETIF_F_ALL_CSUM;
6239 all |= NETIF_F_HW_CSUM;
6240 }
6241 }
6242
6243 one |= NETIF_F_ALL_CSUM;
6244
6245 one |= all & NETIF_F_ONE_FOR_ALL;
6246 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6247 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6248
6249 return all;
6250 }
6251 EXPORT_SYMBOL(netdev_increment_features);
6252
6253 static struct hlist_head *netdev_create_hash(void)
6254 {
6255 int i;
6256 struct hlist_head *hash;
6257
6258 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6259 if (hash != NULL)
6260 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6261 INIT_HLIST_HEAD(&hash[i]);
6262
6263 return hash;
6264 }
6265
6266 /* Initialize per network namespace state */
6267 static int __net_init netdev_init(struct net *net)
6268 {
6269 INIT_LIST_HEAD(&net->dev_base_head);
6270
6271 net->dev_name_head = netdev_create_hash();
6272 if (net->dev_name_head == NULL)
6273 goto err_name;
6274
6275 net->dev_index_head = netdev_create_hash();
6276 if (net->dev_index_head == NULL)
6277 goto err_idx;
6278
6279 return 0;
6280
6281 err_idx:
6282 kfree(net->dev_name_head);
6283 err_name:
6284 return -ENOMEM;
6285 }
6286
6287 /**
6288 * netdev_drivername - network driver for the device
6289 * @dev: network device
6290 * @buffer: buffer for resulting name
6291 * @len: size of buffer
6292 *
6293 * Determine network driver for device.
6294 */
6295 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6296 {
6297 const struct device_driver *driver;
6298 const struct device *parent;
6299
6300 if (len <= 0 || !buffer)
6301 return buffer;
6302 buffer[0] = 0;
6303
6304 parent = dev->dev.parent;
6305
6306 if (!parent)
6307 return buffer;
6308
6309 driver = parent->driver;
6310 if (driver && driver->name)
6311 strlcpy(buffer, driver->name, len);
6312 return buffer;
6313 }
6314
6315 static int __netdev_printk(const char *level, const struct net_device *dev,
6316 struct va_format *vaf)
6317 {
6318 int r;
6319
6320 if (dev && dev->dev.parent)
6321 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6322 netdev_name(dev), vaf);
6323 else if (dev)
6324 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6325 else
6326 r = printk("%s(NULL net_device): %pV", level, vaf);
6327
6328 return r;
6329 }
6330
6331 int netdev_printk(const char *level, const struct net_device *dev,
6332 const char *format, ...)
6333 {
6334 struct va_format vaf;
6335 va_list args;
6336 int r;
6337
6338 va_start(args, format);
6339
6340 vaf.fmt = format;
6341 vaf.va = &args;
6342
6343 r = __netdev_printk(level, dev, &vaf);
6344 va_end(args);
6345
6346 return r;
6347 }
6348 EXPORT_SYMBOL(netdev_printk);
6349
6350 #define define_netdev_printk_level(func, level) \
6351 int func(const struct net_device *dev, const char *fmt, ...) \
6352 { \
6353 int r; \
6354 struct va_format vaf; \
6355 va_list args; \
6356 \
6357 va_start(args, fmt); \
6358 \
6359 vaf.fmt = fmt; \
6360 vaf.va = &args; \
6361 \
6362 r = __netdev_printk(level, dev, &vaf); \
6363 va_end(args); \
6364 \
6365 return r; \
6366 } \
6367 EXPORT_SYMBOL(func);
6368
6369 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6370 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6371 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6372 define_netdev_printk_level(netdev_err, KERN_ERR);
6373 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6374 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6375 define_netdev_printk_level(netdev_info, KERN_INFO);
6376
6377 static void __net_exit netdev_exit(struct net *net)
6378 {
6379 kfree(net->dev_name_head);
6380 kfree(net->dev_index_head);
6381 }
6382
6383 static struct pernet_operations __net_initdata netdev_net_ops = {
6384 .init = netdev_init,
6385 .exit = netdev_exit,
6386 };
6387
6388 static void __net_exit default_device_exit(struct net *net)
6389 {
6390 struct net_device *dev, *aux;
6391 /*
6392 * Push all migratable network devices back to the
6393 * initial network namespace
6394 */
6395 rtnl_lock();
6396 for_each_netdev_safe(net, dev, aux) {
6397 int err;
6398 char fb_name[IFNAMSIZ];
6399
6400 /* Ignore unmoveable devices (i.e. loopback) */
6401 if (dev->features & NETIF_F_NETNS_LOCAL)
6402 continue;
6403
6404 /* Leave virtual devices for the generic cleanup */
6405 if (dev->rtnl_link_ops)
6406 continue;
6407
6408 /* Push remaing network devices to init_net */
6409 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6410 err = dev_change_net_namespace(dev, &init_net, fb_name);
6411 if (err) {
6412 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6413 __func__, dev->name, err);
6414 BUG();
6415 }
6416 }
6417 rtnl_unlock();
6418 }
6419
6420 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6421 {
6422 /* At exit all network devices most be removed from a network
6423 * namespace. Do this in the reverse order of registration.
6424 * Do this across as many network namespaces as possible to
6425 * improve batching efficiency.
6426 */
6427 struct net_device *dev;
6428 struct net *net;
6429 LIST_HEAD(dev_kill_list);
6430
6431 rtnl_lock();
6432 list_for_each_entry(net, net_list, exit_list) {
6433 for_each_netdev_reverse(net, dev) {
6434 if (dev->rtnl_link_ops)
6435 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6436 else
6437 unregister_netdevice_queue(dev, &dev_kill_list);
6438 }
6439 }
6440 unregister_netdevice_many(&dev_kill_list);
6441 list_del(&dev_kill_list);
6442 rtnl_unlock();
6443 }
6444
6445 static struct pernet_operations __net_initdata default_device_ops = {
6446 .exit = default_device_exit,
6447 .exit_batch = default_device_exit_batch,
6448 };
6449
6450 /*
6451 * Initialize the DEV module. At boot time this walks the device list and
6452 * unhooks any devices that fail to initialise (normally hardware not
6453 * present) and leaves us with a valid list of present and active devices.
6454 *
6455 */
6456
6457 /*
6458 * This is called single threaded during boot, so no need
6459 * to take the rtnl semaphore.
6460 */
6461 static int __init net_dev_init(void)
6462 {
6463 int i, rc = -ENOMEM;
6464
6465 BUG_ON(!dev_boot_phase);
6466
6467 if (dev_proc_init())
6468 goto out;
6469
6470 if (netdev_kobject_init())
6471 goto out;
6472
6473 INIT_LIST_HEAD(&ptype_all);
6474 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6475 INIT_LIST_HEAD(&ptype_base[i]);
6476
6477 if (register_pernet_subsys(&netdev_net_ops))
6478 goto out;
6479
6480 /*
6481 * Initialise the packet receive queues.
6482 */
6483
6484 for_each_possible_cpu(i) {
6485 struct softnet_data *sd = &per_cpu(softnet_data, i);
6486
6487 memset(sd, 0, sizeof(*sd));
6488 skb_queue_head_init(&sd->input_pkt_queue);
6489 skb_queue_head_init(&sd->process_queue);
6490 sd->completion_queue = NULL;
6491 INIT_LIST_HEAD(&sd->poll_list);
6492 sd->output_queue = NULL;
6493 sd->output_queue_tailp = &sd->output_queue;
6494 #ifdef CONFIG_RPS
6495 sd->csd.func = rps_trigger_softirq;
6496 sd->csd.info = sd;
6497 sd->csd.flags = 0;
6498 sd->cpu = i;
6499 #endif
6500
6501 sd->backlog.poll = process_backlog;
6502 sd->backlog.weight = weight_p;
6503 sd->backlog.gro_list = NULL;
6504 sd->backlog.gro_count = 0;
6505 }
6506
6507 dev_boot_phase = 0;
6508
6509 /* The loopback device is special if any other network devices
6510 * is present in a network namespace the loopback device must
6511 * be present. Since we now dynamically allocate and free the
6512 * loopback device ensure this invariant is maintained by
6513 * keeping the loopback device as the first device on the
6514 * list of network devices. Ensuring the loopback devices
6515 * is the first device that appears and the last network device
6516 * that disappears.
6517 */
6518 if (register_pernet_device(&loopback_net_ops))
6519 goto out;
6520
6521 if (register_pernet_device(&default_device_ops))
6522 goto out;
6523
6524 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6525 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6526
6527 hotcpu_notifier(dev_cpu_callback, 0);
6528 dst_init();
6529 dev_mcast_init();
6530 rc = 0;
6531 out:
6532 return rc;
6533 }
6534
6535 subsys_initcall(net_dev_init);
6536
6537 static int __init initialize_hashrnd(void)
6538 {
6539 get_random_bytes(&hashrnd, sizeof(hashrnd));
6540 return 0;
6541 }
6542
6543 late_initcall_sync(initialize_hashrnd);
6544
This page took 0.163031 seconds and 6 git commands to generate.